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Abstract

The extreme density fluctuations necessary to produce primordial black holes (PBHs)
also lead to the formation of a much greater abundance of dark matter ultradense halos
that form during the radiation epoch. The aim of this thesis is to explore in detail the
dynamics, properties and statistical abundance of these dark matter mini- halos from its
earliest formation, during the radiation epoch, up to the late-time Universe.
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Chapter 1

Introduction

1.1 History of the Universe

The history of the Universe starts with the Big Bang (BB), when the whole Universe
was concentrated and compressed in an extremely dense state, called initial singularity.
Eventually leading to a massive explosion otherwise known as an accelerated expansion
of the Universe, called inflation. During inflation, initial energy density fluctuations were
smoothed out and acted as seeds to the structures of the Universe. This took place
approximately from 10−36 to 10−32 seconds after the Big Bang. After which the radia-
tion dominated epoch took place, when the Universe became dominated by relativistic
particles.

As the time progressed the Universe kept expanding and the cosmic plasma was cool-
ing down, allowing the production of light elements. This process is called Big Bang
Nucleosynthesis (BBN) and it took place after 3 to 20 minutes from the BB. During this
phase, the Universe was cool enough for protons and neutrons to combine to form the
nuclei of light elements like hydrogen, helium, and trace amounts of lithium.

Approximately after 50 to 70 thousands years after BB, the matter-radiation equality
epoch took place, leading to the matter domination of the Universe. The energy density
fluctuations at that point grow via gravitational attraction of the surrounding matter to
the denser regions. These regions are the seeds for the large structures of the Universe
that we see today.

The cosmic plasma was still hot enough to keep photons in thermal equilibrium until
around 380 000 years after the Big Bang, hence the Universe before that time was opaque
to the observer. Afterwards, there is the moment of the last scattering of photons and
the very first light that we are able to see today, called cosmic microwave background
radiation (CMB).

1.2 Primordial Fluctuations

Inflation provides a mechanism for generating the primordial perturbations, although the
details are still unknown, there is no certain theory of inflation. Primordial fluctuations
obey (quasi-)Gaussian statistics and hence can be described by the power spectrum. The
precise measurements of the primordial power spectrum is performed with the help of
CMB temperature anisotropies and polarization as well as through large-scale structure
probes.

There are scalar, vector and tensor perturbations, but scalar perturbations are of
specific interest for us, since they give rise to the variations of energy density. Scalar
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perturbations provide indeed the dominant contribution to the anisotropies observed in
the CMB and are responsible for the large-scale distribution of galaxies.

The seed for dark matter fluctuations was laid down during the inflationary epoch,
a phase of rapid exponential expansion in the early Universe. Quantum fluctuations
during inflation led to variations in the density of all matter, including dark matter.
The fluctuations in dark matter density were initially small, but over time, regions with
slightly higher densities experienced stronger gravitational attraction, causing them to
pull in more matter. This gravitational instability led to the growth of structures from
small density fluctuations. Dark matter fluctuations drove a process called hierarchical
clustering, where small dark matter halos merged to form larger ones. These halos formed
very early and are extremely dense, they acted as gravitational attractors, pulling in
additional dark matter and influencing the distribution of both dark and visible matter.
The growth of dark matter fluctuations set the stage for the formation of the cosmic web
– a complex network of filaments, voids, and galaxy clusters. These structures represent
the large-scale distribution of dark matter in the Universe. The regions of higher dark
matter density, called halos, are where galaxies and galaxy clusters form. The size and
properties of these halos depend on the initial fluctuations in dark matter density.

1.3 Probes via Ultradense Dark Matter Halos

Although the nature of dark matter halos make them invisible, they still have some
observational features. Ultradense minihalos that formed in the radiation epoch, being
extremely, dense affect the paths of light from distant objects such as stars, causing
gravitational lensing. This effect provides a way to indirectly map the distribution of
dark matter in the Universe.

Another way to detect dark matter and explain its origin is the matter-antimatter
production and annihilation, the equilibrium of pair production was disturbed as a result
of the Universe’s expansion and cooling down, leaving a relic behind in terms of dark
matter. This scenario assumes that dark matter annihilation could produce detectable
radiation in the cores of ultradense minihalos.

This master thesis starts with the primordial perturbations in dark matter that lead
to the formation of dark matter halos in Chapter 2. Chapter 3 covers the dynamics of
collapsing overdense region in the radiation dominated epoch for spherical collapse model
(Sec.3.1, 3.2) and ellipsoidal collapse (Sec.3.3). Although the collapse takes place at RD
stage, the actual formation of an ultradense minihalo happens only at local matter domina-
tion. Chapter 4 starts with a simple spherical collapse model in matter domination epoch
(Sec.4.1). The next section of this chapter covers subsequent accretion onto ultradense
minihalo that formed at the radiation dominated epoch (Sec.4.2). Chapter 5 explores
properties of dark matter halos, such as final radius of the core (Sec.5.1 ), density profiles
and structure of the ultradense dark matter halos (Sec.5.2-5.6). Chapter 6 talks about the
Press-Schechter formalism (Sec.6.1), its refined version, excursion set formalism (Sec.6.2)
and summarizes statistical abundance of dark matter halos and primordial black holes
(Sec.6.3, 6.4). Chapter 7 starts with an introduction to gravitational microlensing in the
scope of ultradense dark matter halos (Sec.7.1). Explores the detectability of microlens-
ing events (Sec.7.2) and possibilities of identifying meaningful constraints on primordial
black holes (Sec.7.3). The last section of this chapter provides the routine to calculate
the constraints on primordial power spectrum amplitude (Sec.7.4).
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Chapter 2

Primordial Fluctuations

2.1 Introduction

Primordial perturbations are the initial irregularities in the density distribution of matter
in the early Universe. These fluctuations arise during cosmic inflation and are imprinted
on the Universe’s fabric. They serve as the ”seeds” for the growth of cosmic structures.
Regions with slightly higher densities have a stronger gravitational pull, causing them
to attract more matter over time. This leads to an amplification of density fluctuations,
resulting in the growth of structures. As density fluctuations grow, regions become in-
creasingly overdense compared to their surroundings. The overdense regions collapse
under their self-gravity, forming dark matter halos. These halos act as gravitational at-
tractors, pulling in additional matter from their surroundings and serving as the building
blocks for larger structures. Smaller dark matter halos merge over time to form larger
and more massive halos. This hierarchical growth continues as halos merge and accrete
matter, ultimately leading to the formation of massive galaxy clusters and superclusters.
In this chapter, we will see what kind of primordial perturbations give rise to dark matter
overdensities and eventual dark matter halo formation.

Primordial perturbations can be classified into three main types: scalar, vector, and
tensor perturbations. These classifications are based on the way the perturbations affect
different properties of the cosmic fluid, such as density, velocity, and gravitational waves.
Scalar perturbations are fluctuations in the density of matter and energy in the Universe.
These perturbations lead to variations in the curvature of spacetime and affect the distri-
bution of matter. Scalar perturbations are responsible for the formation of structures like
galaxies, galaxy clusters, and the anisotropies observed in the cosmic microwave back-
ground radiation. Vector perturbations involve fluctuations in the velocity field of the
cosmic fluid. These perturbations describe the possible deviations from uniform motion
along a particular direction. Unlike scalar perturbations, vector perturbations do not
play a significant role in structure formation on large scales, and their effects are usually
subdominant compared to scalar perturbations. Tensor perturbations are associated with
gravitational waves, which are ripples in the fabric of spacetime itself. These perturba-
tions do not directly affect matter density or velocity but are rather a consequence of
the Einstein field equations of general relativity. Tensor perturbations can be detected
through their influence on the polarization patterns in the cosmic microwave background
radiation. Scalar perturbations are the most significant and relevant type when it comes
to structure formation and cosmological observations. They are responsible for the major-
ity of the features we observe in the large-scale structure of the Universe and the cosmic
microwave background. Vector and tensor perturbations, while important in their own
right, typically have smaller effects and are of primary interest in specialized scenarios
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and analyses.
This Chapter is focused on the scalar perturbations in the dark matter energy density.

First, in the Section 2.2, I will examine the different modes of scalar perturbations, namely,
adiabatic and isocurveture modes. Adiabatic and isocurvature modes are two different
types of scalar perturbations that can exist in the early Universe. These modes refer to
the initial conditions of density fluctuations in various components of the cosmic fluid,
including both dark matter and baryonic matter. They have distinct effects on the large-
scale structure formation and the cosmic microwave background radiation. Section 2.3
introduces the tool, which helps to characterize the primordial perturbations, namely,
primordial power spectrum. This Section provides mathematical machinery to be able to
calculate the primordial power spectrum and its amplitude. Section 2.4 introduces the
evolution of overdensity in the radiation dominated epoch. This paramter is of a great
importance, since it will help to understand the eventual dynamics of the overdense region.
Section 2.5 focuses and derives the dark matter perturbations, particularly the cold dark
matter. Throughout this thesis, it is assumed that the dark matter is cold enough to
form clumps and structures. Finally, Section 2.6 examines the density perturbations that
can lead to primordial black hole formation. Primordial black holes require much higher
overdensities for their formation compared to dark matter halos, the connection between
these phenomena is that they originate from the same power spectrum, so Primordial
Black Holes can provide potentially useful insights into the topic of dark matter halos
formation.

2.2 Scalar Perturbations in Adiabatic and Isocurva-

ture Modes

Initial data for scalar perturbations is defined deep at radiation domination epoch. At that
time the modes of interest are superhorizon modes. Perturbation remain superhorizon at
temperature of 1 MeV, so we can always treat dark matter and baryons as non-relativistic
and neutrino and dark matter as decoupled. When studying superhorizon perturbations
we often consider formal limit, which is η −→ 0. Possible initial data and hence types of
perturbations are conveniently decomposed into linear independent parts adiabatic and
isocurvature modes.

The adiabatic mode corresponds to the situation where relativistic matter, which is the
dominant component at the early epoch, has non-vanishing energy density perturbations,
[21]. These perturbations affect all components of the Universe, including dark matter,
baryons, radiation, and dark energy, in the same way. Adiabatic perturbations lead to
variations in the gravitational potential across different regions of the Universe. As regions
with higher potential wells attract more matter, dark matter halos start forming in these
regions of enhanced density. Adiabatic perturbations are considered to be the primary
source of density fluctuations that lead to the formation of large-scale cosmic structures,
including galaxies, galaxy clusters, and dark matter halos.

The main property of baryon and cold dark matter (CDM) isocurvature modes is that
there is no perturbation of the relativistic component deep at radiation domination, but
the composition of the medium is spatially inhomogeneous, [21]. Isocurvature pertur-
bations refer to fluctuations that alter the relative densities of different components of
the Universe, such as dark matter and baryons, while keeping the total energy density
constant. Isocurvature perturbations do not create variations in the gravitational poten-
tial in the same way adiabatic perturbations do. As a result, isocurvature perturbations
can affect the way dark matter halos form and evolve. Isocurvature perturbations might
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lead to differences in the growth of dark matter halos in regions with varying densities
of dark matter and baryons. Depending on the specific nature of isocurvature fluctua-
tions, this could impact the abundance and properties of halos differently than adiabatic
fluctuations.

2.3 Power Spectrum for Scalar Perturbations

The power spectrum is a key quantity used to characterize cosmological perturbations.
It describes the statistical distribution of the amplitude of perturbations as a function
of scale or wavenumber. We focus on the scalar perturbations. Their properties are
well known from the observations. They are adiabatic, without decaying mode and the
admixture of isocurvature modes is constrained.

From the observations we know that the primordial field that specifies the initial data
for the adiabatic mode is the Gaussian Random Field, R(x). This field is determined by
the two-point correlation function, [21]

< R(k)R(k’) >=
PR(k)

(2π)3
δ(k+ k’) (2.1)

where PR(k) is the scalar function, the power spectrum.
It is convenient to introduce the following quantity, which is power spectrum

PR(k) =
k3

2π2
PR(k) (2.2)

From (2.1), we can see that the fluctuation of the random field, R(x) is

< R2(x) >=

∫ ∞

0

dk

k
PR(k) (2.3)

where PR(k) is the contribution to the fluctuation coming from a decimal interval of
momenta around k. This contribution can be constant, independent of k for the flat
spectrum or Harrison-Zeldovich spectrum, [22], [37].

The procedure to obtain the expression (2.3) is the following:

< ϕ2(x) >=

∫

d3kd3k′ei(k+k’)x < ϕ(k)ϕ(k’) >=

∫

d3k
P (k)

(2π)3
(2.4)

Now, integrate the angular part,

< ϕ2(x) >=

∫ ∞

0

4πdk
k2

(2π)3
2π2

k3
PR(k) =

∫ ∞

0

dk

k
PR(k) (2.5)

where ϕ(x) is the Gaussian random field.
Sometimes another notation is used,

∆2
R(k) ≡ PR(k) (2.6)

where ∆R(k) is the amplitude of the scalar perturbations of momentum k.
From the observations we know that the spectrum of the scalar perturbations is nearly

flat. From this we can naturally parameterize the spectrum as the power-law, which looks
as follows:

PR(k) = AR

(

k

k∗

)ns−1

(2.7)
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Here k∗ is some conveniently chosen fiducial momentum and AR is nothing else, but the
power spectrum at k∗, AR = PR(k∗), (ns − 1) is the spectral tilt.

In general, the power spectrum doesn’t have to have the power-law behavior. In
order to account for the other possibility, we introduce another parameter, which is called
running index:

dns

d log k
≡ dns

d log k
(k∗) (2.8)

Then the power spectrum becomes, [21]

PR(k) = AR

(

k

k∗

)ns−1+ dns
d log k

log k
k∗

(2.9)

The running index is the rate of the spectral index variation near k = k∗.
Assuming that there are no tensor perturbations and no momentum dependence of

the tilt, we can obtain the following values by fitting the set of cosmological data, [26].

AR = (2.36± 0.09)× 10−9, ns = 0.960± 0.014 (2.10)

for k∗/a0 = 0.002Mpc−1. Hence, the primordial scalar amplitude is

∆R ≃ 5× 10−5 (2.11)

2.4 Evolution of Perturbations at Radiation Domi-

nation Epoch

Evolution of radiation density perturbation at the radiation dominated epoch obeys the
following law [35]:

δr = xf(x) +
3x2

x2 + 6

d

dx
f(x) (2.12)

The growing mode of this equation is

f(x) = Ainj1(
x√
3
) (2.13)

where j1 is the spherical Bessel function, Ain is normalization constant, x = kη, k is
comoving perturbation wave vector.

The physical perturbation wavelength and the mass within this region:

λph(η) = a(η)
2π

k
Mx =

4π

3
ρ0

(

λph(t0)

2

)3

(2.14)

Adiabatic perturbations in nonrelativistic matter with x≪ 1 obey δ = 3δr/4. Whereas
the analytic solution in the limits x≪ 1 and x≫ 1 is, [18]

δ =
3Ain

2

[

ln

(

x√
3

)

+ γE − 1

2

]

(2.15)

which can be used to the linear order in the limit δ ≪ 1.
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2.5 Dark Matter Perturbations

We start by considering adiabatic mode at the radiation domination epoch (RD). The
dark matter perturbations will be sourced by the following potential, [21]:

Φ(η) = Φ(i)3

√

π

2

1

(uskη)3/2
J3/2(uskη) = (2.16)

= −3Φ(i)
1

(uskη)2

(

cos(uskη)−
sin(uskη)

uskη

)

(2.17)

In general, the perturbations defined as

δ ≡ δρ

ρ
(2.18)

obey the following equations, [21]:

δ′λ + 3
a′

a
(u2s,λ − wλ)δλ − (1 + wλ)k

2vλ = 3(1 + wλ)Φ
′ (2.19)

(

(1 + wλ)vλ
)′
+
a′

a
(1− 3wλ)(1 + wλ)vλ + u2s,λδλ = −(1 + wλ)Φ (2.20)

We set w = u2s = 0, and they become:

δ′CDM − k2vCDM = 3Φ′ (2.21)

v′CDM +
1

η
vCDM = −Φ (2.22)

In the last equation we used the approximation a ∝ η at RD. Here u2s =
δp
δρ

and w = p
ρ

and they are not the same.
The potential (2.16) decrease rapidly during late times, so uskη ≪ 1, then the equa-

tions (2.21), (2.22) become homogeneous:

δ′CDM − k2vCDM = 0 (2.23)

v′CDM +
1

η
vCDM = 0 (2.24)

The solution to (2.24) is

vCDM =
c1
k2η

(2.25)

where c1 is a dimensionless constant.
Then the solution to (2.23) is

δCDM = c1 log kη + c2 (2.26)

So, we can see that the CDM perturbations grow logarithmically at the RD epoch.
However, if there were no sources on the right hand side of equations 2.21, 2.22,

then the logarithmically growing part would be absent, since it would diverge as η → 0,
meaning that it would be the decaying mode or primordial perturbations and we know
that the decaying mode vanish.
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To find the constants, we first solve the equation (2.22) with the potential (2.16). The
solution is

vCDM = −1

η

∫ η

0

dη̃η̃Φ(η̃) (2.27)

so that vCDM → 0 as η → 0. And then the solution to (2.21) becomes:

δCDM(η) = 3Φ(η) + c− k2
∫ η

0

dη̂

η̂

∫ η̂

0

dη̄η̄Φ(η̄) log
η

η̃
(2.28)

The potential decreases as uskη ≫ 1, the integral converges and the solution becomes:

δCDM(η) = δCDM,(i) − 9Φ(i) ×
(

log(uskη) +C− 2

3

)

(2.29)

where C = 0.577 is the Euler constant. In order to obtain these results, we used
u2s = 1/3 and the following integrals:

√

π

2

∫ ∞

0

J3/2(z)
dz√
z
= 1,

√

π

2

∫ ∞

0

J3/2(z) log z
dz√
z
= 1−C (2.30)

From the solution 2.29, we can see that at large values of uskη the dominant term will
be the logarithmic one and the initial value, δCDM,(i) becomes not important.

Using the fact that the gravitational potential obeys

Φ = −2

3
ζ = −2

3
R (2.31)

and recalling that at the RD stage we have

δCDM = δB = δM =
3

4
δrad =

3

4
δγ = −3

2
Φ = R (2.32)

we get the perturbation of dark matter for the subhorizon adiabatic mode, [21]:

δCDM = −9Φ(i)

(

log
kη√
3
+C− 1

2

)

(2.33)

2.6 Formation of Primordial Black Holes

Primordial black holes and dark matter halos originate from common spectrum, [18].
Consider a region with the density ρ > ρc = 3H2/8πG. The evolution of this region can
be investigated independently of the background evolution. This region can collapse to
form a primordial black hole (PBH), if the relative radiation density fluctuation δH = ρ−ρc

ρc
will be in the range:

δc ≤ δh ≤ 1 (2.34)

where δc = 1/3, which corresponds to the condition that the radius of the region stops/
exceeds the Jeans radius, ct√

3
. The other inequality corresponds to the formation of a

PBH. The mass of a forming PBH:

MBH =
MH

33/2
(2.35)

where MH is the mass within the horizon.
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The mass of a PBH as a result of a critical gravitational collapse is:

MBH = AMH(δH − δc)
γ (2.36)

We will consider a broader range for δc:

1/2 ≤ δc ≤ 0.7 (2.37)

It is assumed that there is s sharp peak in the perturbation spectrum at the scale
ξ = r

a(t)
. The threshold for a PBH is too large to result in a PBH formation for every ξ

scale fluctuation. The fluctuations are preserved till the matter domination epoch.
The expressions for the mass within the horizon, MH and the mass of the dust com-

ponent in the fluctuations at the same comoving scale are:

MH =
4π

3
ρH(a(ηH)ξ)

3 Mx =
4π

3
ρ0(a(η0)ξ)

3 (2.38)

At the horizon scale a(ηH)ξ = 2ctH and the densities are:

ρH =
3

32πGt2H
ρ0 = ρeq

(

aeq
a0

)3

(2.39)

Now we can express MH in terms of Mx:

MH =
1

22/3

(

3

2π

)1/6
M

2/3
x c

G1/2ρ
1/6
eq

(2.40)

tH =
GMH

c3
(2.41)

We define the rms fluctuation δH as:

∆H ≡< δ2H >1/2 (2.42)

The fraction of PBH formation at time tH is

β =

∫ 1

δc

dδH√
2π∆H

e
− δ2H

2∆2
H ≃ ∆H

δc
√
2π
e
− δ2H

2∆2
H (2.43)

So, 0.8β of the collapsing matter comes to critical gravitational collapse.
The density parameter of PBH then:

ΩBH =
β

22/3

(

3

2π

)1/6
c

M
1/3
x G1/2ρ

1/6
eq

∆H

δc
e
− δ2H

2∆2
H (2.44)

So, the PBH form in the tail of the Gaussian fluctuation distribution and non-compact
objects form from rms fluctuations. PBH and non-compact objects have common pertur-
bation spectrum, but they don’t form from the same fluctuations.

15



2.7 Conclusion

To conclude, this chapter started with the description of the adiabatic and isothermal
scalar perturbations. Isothermal perturbations in cosmology refer to density fluctua-
tions that preserve their temperature as they evolve, often associated with dark matter,
while adiabatic perturbations involve fluctuations where the entropy remains constant,
commonly linked to both dark matter and baryonic matter, and are essential for the
formation of cosmic structures. The distinguish between these perturbations will be im-
portant in Chapter 3. In order to quantify these perturbations, we have to make use of
primordial power spectrum, which is further discussed. The power spectrum resulting
from scalar perturbations in cosmology describes the statistical distribution of density
fluctuations as a function of their spatial scale, providing crucial information about the
structure and evolution of the Universe. The derivation of the primordial power spectrum
as the power-law (2.7) is shown in the Section 2.3. The next Sections 2.4, 2.5 introduced
the evolution of the overdensity. The evolution of perturbations in cosmology describes
how fluctuations in matter density or temperature, initially generated during the early
Universe, grow and evolve under the influence of gravity and other physical processes,
eventually leading to the formation of cosmic structures. The evolution of dark matter
perturbations can be described by (2.33). Lastly, the Chapter discussed the formation of
the primordial black holes. The threshold needed for its formation (2.34) and the fraction
of the PBH formation at the equivalence period is described by (2.43) [18].
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Chapter 3

Dynamics and Evolution of Dark
Matter Protohalos

3.1 Introduction

Dark matter clumps, also known as dark matter halos, form in the early Universe as a re-
sult of gravitational instability and the amplification of initial density fluctuations. These
fluctuations originated from quantum fluctuations during the inflationary epoch and were
imprinted in the fabric of spacetime. The overdense regions of dark matter attract more
matter into this region resulting in the collapse and eventual formation of dark matter
protohalo. The reason to call it protohalo is because the actual formation of the dark
matter halo happens when the overdense region becomes locally matter dominated. The
dynamics of the formation of this dense object is mathematically sophisticated. First, we
consider a simple case, spherical collapse, which can result from isocurvature perturba-
tions or adiabatic ones. Section 3.2 presents fully developed calculations of the dynamics
of the spherical collapse from the isocurvature fluctuations. Section 3.3 presents the cal-
culations for adiabatic perturbations that results in the spherical collapse. Both sections
allow us to see how the region evolves to form ultradense dark matter clump. In Section
3.4, a more sophisticated case is considered, ellipsoidal collapse. In this case, it is possible
to take into account non-radial evolution of the region, since in reality the collapsing ob-
ject is more like an ellipsoid. Section 3.5 introduces the dynamics of the formation of the
ultradense dark matter halo with the specified overdensity growth. This density growth
accounts for the ellipsoidal shape of the halo.

3.2 Spherical Collapse for Isocurvature Perturbations

3.2.1 Equation of Motion

Consider an overdense region of radius r containing dust in a flat Universe in the radiation
dominated epoch. The equation of motion (EOM) for the radius r of the region:

r̈ = −8πG

3
ρRr −

GMtot

r2
(3.1)

where Mtot is the total mass of matter contained in the region of radius r.
Let’s change to conformal time coordinate dη = dt

a(t)
. Start with the right hand side of

the Equation 3.1. We change the variables, d
dt
= 1

a
d
dη
:
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d

dt

(

d

dt
r

)

=
1

a

d

dη

(

1

a

d

dη
r

)

=
1

a

(

− da

dη

dr

dη

1

a2
+

1

a

d2r

dη2

)

= − 1

a3
a′r′ +

1

a2
r′′ (3.2)

The left hand side stays the same, the equation becomes:

1

a2
r′′ − 1

a3
a′r′ = −8πG

3
ρRr −

GMtot

r2
(3.3)

Multiplying by a3:

ar′′ − a′r′ = −8πG

3
ρRra

3 − GMtot

r2
a3 (3.4)

Rewrite the EOM in terms of co-moving reference frame,

r = a(η)Rξξ (3.5)

Start with the RHS and omit ξ subscript:

a
d

dη

(

d

dη
aRξ

)

− a′
d

dη

(

aRξ

)

(3.6)

First derivative gives:
d

dη
(aRξ) = ξa′R + ξaR′ (3.7)

The second derivative:

d

dη

(

ξa′R + ξaR′
)

= ξ(a′′R + a′R′) + ξ(a′R′ + aR′′) = ξ(a′′R + 2a′R′ + aR′′) (3.8)

Now we insert 3.7, 3.8 into 3.6:

aξ(a′′ + 2a′R′ + aR′′)− ξ(a′2R + aa′R′) = (3.9)

= ξ(aa′′R + 2aa′R′ + a2R′′ − a′2R− aa′R′) = (3.10)

= ξ(a2R′′aa′R′ +R(aa′′ − a′2)) (3.11)

where we use the Friedmann equations to express aa′′ − a′2.

aa′′ − a′2 =
4πG

3
ρMa

4 − 8πG

3
(ρM + ρR)a

4 = −4πG

3
ρMa

4 − 8πG

3
ρRa

4 (3.12)

So the LHS becomes:

aξ(aR′′ + a′R′)− ξR
4πG

3
ρMa

4 − ξR
8πG

3
ρRa

4 (3.13)

Now, the RHS becomes:

−8πG

3
ρRra

3 − GMtot

r2
a3 = −8πG

3
ρRξRa

4 − GMtot

R2ξ2
a (3.14)

Now, let’s combine 3.13 with 3.14:

aξ(aR′′ + a′R′)− ξR
4πG

3
ρMa

4 − ξR
8πG

3
ρRa

4 = −8πG

3
ρRξRa

4 − GMtot

R2ξ2
a (3.15)
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The EOM becomes:

aR′′ + a′R′ +

(

− 4πG

3
ρMRa

3 +
GMtot

R2ξ3

)

= 0 (3.16)

The scale factor of this region satisfies Einstein Equations in a flat, radiation dominated
Universe containing pressureless matter. The Friedmann Equations:

ä = −4πG

3
a(ρR + ρM) (3.17)

ȧ2 =
8πG

3
a2(ρR + ρM) (3.18)

Again, we change to the conformal time coordinate, d
dt
= 1

a
d
dη
, the second derivative:

d

dt

(

d

dt
a

)

=
1

a

d

dη

(

1

a

d

dη
a

)

=
1

a

a′′a− a′2

a2
=
a′′

a2
− a′2

a3
(3.19)

And the first derivative:

ȧ =
a′

a
(3.20)

Now, we insert it into :

a′′

a2
− a′2

a3
= −4πG

3
a(ρR + ρM) (3.21)

(

a′

a

)2

=
8πG

3
(ρR + ρM)a2 (3.22)

Rearranging the equations:

a′′

a3
− a′2

a4
= −4πG

3
ρM (3.23)

a′2

a4
=

8πG

3
(ρR + ρM) (3.24)

a′′

a3
= −4πG

3
(ρR + ρM) +

a′2

a4
= (3.25)

= −4πG

3
(ρR + ρM) +

8πG

3
(ρR + ρM) = (3.26)

=
4πG

3
(ρR + ρM) (3.27)

So, in conformal time coordinate:

a′′ =
4πG

3
ρMa

3 (3.28)

a′2 =
8πG

3
(ρR + ρM)a4 (3.29)

The energy densities can be expressed in terms of the energy densities at the equiva-
lence moment, when radiation and matter are equally spread in the universe.

ρM = ρEQ

(

aEQ

a

)3

ρR = ρEQ

(

aEQ

a

)4

(3.30)
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We obtain the following equation:

a′′ − 1

2a
a′2 = 0 (3.31)

With the solution is:

a(η) =

(

2
η

η∗
+
( η

η∗

)2
)

aEQ (3.32)

where
1

η2∗
=

2πGρEQ

3
a2EQ (3.33)

Parametrizing the total massMtot in the region in terms of the excess density compared
to the background one, Φ(ξ) = δρM

ρM
,

ρ = ρM + δρM = ρM(1 + Φ) = ρEQ

a3EQ

a3
(1 + Φ) (3.34)

The mass is given as follows, we express it in terms of co-moving reference frame and
excess density parameter:

Mtot =
4π

3
ρr3 =

4π

3
ρEQ

a3EQ

a3
(1 + Φ)(aRξ)3 (3.35)

So, we obtain:

Mtot ≡
4π

3
ρEQa

3
EQ

(

1 + Φ
)

ξ3 (3.36)

Now we perform a change of variable from η to x ≡ a
aEQ

. First let’s express it in terms

of the new variable x.

x = 2
η

η∗
+

(

η

η∗

)2

(3.37)

Let’s find the derivative:

dx

dη
=

2

η∗
+ 2

η

η2∗
=

2

η∗

(

1 +
η

η∗

)

(3.38)

And from the chain rule:
d

dη
=

2

η∗

(

1 +
η

η∗

)

d

dx
(3.39)

Let’s start with the expression aR′′ + a′R′, the first term:

aR′′ = a
aEQ

aEQ

R′′ = xaEQ
2

η∗

(

1 +
η

η∗

)

d

dx

(

2

η∗

(

1 +
η

η∗

)

dR

dx

)

= (3.40)

= aEQx

(

2

η∗

)2(

1 +
η

η∗

)(

1

η∗

dη

dx

dR

dx
+

(

1 +
η

η∗

)

d2R

dx2

)

(3.41)

Let’s insert the following expression:

dη

dx
=
η∗
2

(

1 +
η

η∗

)−1

(3.42)

And we get:
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aEQx

(

2

η∗

)2(

1 +
η

η∗

)(

1

2

(

1 +
η

η∗

)−1
dR

dx
+

(

1 +
η

η∗

)

d2R

dx2

)

= (3.43)

= aEQx

(

2

η∗

)2(
1

2

dR

dx
+

(

1 +
η

η∗

)2
d2R

dx2

)

(3.44)

If we open the following expression, we can rewrite it using (3.32):

(

1 +
η

η∗

)2

= 1 + 2
η

η∗
+

(

η

η∗

)2

= 1 + x (3.45)

Now, let’s focus on the second term:

a′R′ = aEQ
2

η∗

(

1 +
η

η∗

)

d(a/aEQ)

dx

2

η∗

(

1 +
η

η∗

)

dR

dx
= (3.46)

= aEQ

(

2

η∗

)2(

1 +
η

η∗

)2
dR

dx
= aEQ

(

2

η∗

)2

(1 + x)
dR

dx
(3.47)

Now, let’s sum both terms:

aEQx(1 + x)

(

2

η∗

)2
d2R

dx2
+ aEQx

(

2

η∗

)2
1

2

dR

dx
+ aEQ

(

2

η∗

)2

(1 + x)
dR

dx
= (3.48)

= aEQ

(

2

η∗

)2(

x(1 + x)
d2R

dx2
+ (1 +

3

2
x)
dR

dx

)

= (3.49)

= 4
2πGρEQ

3
a3EQ

(

x(1 + x)
d2R

dx2
+ (1 +

3

2
x)
dR

dx

)

(3.50)

Now, let’s see the other part of the equation with the change of variables and some
rearrangements:

−4πG

3
ρMRa

3 +
GMtot

R2ξ3
= (3.51)

= −4πG

3
ρEQ

(

aEQ

a

)3

Ra3 +
G

R2ξ3

(

4π

3
ρEQa

3
EQ

(

1 + Φ
)

ξ3
)

= (3.52)

=
4πG

3
ρEQa

3
EQ

(

1 + Φ

R2
−R

)

(3.53)

When combining both parts some coefficients cancel and we obtain the following equa-
tion:

x(1 + x)
d2R

dx2
+ (1 +

3

2
x)
dR

dx
+

1

2

(

1 + Φ

R2
−R

)

= 0 (3.54)

If we assume that the deviation of the shell motion from the background cosmological
expansion is very small, R ≡ 1− δ with δ ≪ 1, then we can reduce the Equation 3.54 to
Meszaros equation:

x(1 + x)
d2δ

dx2
+ (1 +

3

2
x)
dδ

dx
− 3

2
δ = 0 (3.55)

The analytic solution is δ = δ0(1 +
3x
2
) which is the growing mode of the equation.

Numerical solution to the Equation 3.54 at the limit x0 ≪ 1, with R(x0) = 1 gives us

R = (1− 3

2
Φx)1/3 ≃ 1− 1

2
Φx (3.56)
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taking into account that the second derivative is negligible at early times, we can perform
the approximation as well.

The solution can be approximated analytically, resulting in:

R(x) = 1− Φx

2
− Φ2x2

8
− (8Φ3 − Φ2)x3

144
(3.57)

R describes the deviation of the shell motion from the Hubble flow, in other words,
it describes how much the overdense region is denser than the uniform background. So,
the solution describes the time evolution of the overdensity. At a given time, x, we can
identify how the region will be different from the uniform background. It can be defined
as R = 1− δ, meaning that R = 1 corresponds to the uniform background, where δ is the
overdensity of the region.

3.2.2 Parameters of the Overdense Region

Now, let’s analyze the parameters of this overdense region, in particular, its radius and
density at the maximum point or otherwise known as turnaround point. This turnaround
point is characterized by ṙ = 0, since the expansion stops for a moment before collapsing.
After the turnaround point, the system gets stabilized in the radius half of the turnaround
radius and hence the final density is 8 times larger than the density at the turnaround
point. Taking into account this we can say that RTA = const and xTA = const

Φ
.

The density is given by

ρTA =
1

4πr2
dM

dr
(3.58)

with r = RTAxTAξ.
As a result, the parameters at the turnaround:

xTA =
Cx

Φ
ρTA = CρρEQ

Φ3

3ξ2
d

dξ
(1 + Φ)ξ3 (3.59)

The coefficients Cx, Cρ are obtained numerically. And the final density is found to be:

ρF ≃ 140ρEQ
Φ3

3ξ2
d

dξ
(1 + Φ)ξ3 (3.60)

3.3 Spherical Collapse for Adiabatic Perturbations

The equation of motion for the adiabatic perturbations:

y(1 + y)
d2b

dy2
+

(

1 +
3

2
y

)

db

dy
+

1

2

(

1

b2
− b

)

= 0 (3.61)

where y = a(η)/aeq with parametrization. This Equation was derived in the same way
as (3.54).

r = a(η)b(η)ξ (3.62)

where ξ is the comoving coordinate and b(η) allows deceleration of cosmological expansion.
Expressing it in terms of δ:

b = (1 + δ)−1/3 (3.63)

The evolution of the adiabatic perturbation, δ, in the radiation dominated stage can be
seen from the Figure 3.1.
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Figure 3.1: Evolution of the perturbation at the radiation dominated epoch. Here y =
a/aeq, [18].

For entropic (isocurvature) pertubations the initial velocity can be neglected, since
it doesn’t affect the result, db/dy ≃ 0. However, for adiabatic perturbations the initial
velocity is quite high. Therefore the solution to the Equation 3.61 in the limit of x ≫ 1
and y ≪ 1 is:

x =
π

22/3

(

3

2π

)1/6
yc

M
1/3
x G1/2ρ

1/6
eq

(3.64)

The initial conditions are bi = (1 + δi)
−1/3 at yi and using 2.15, 3.63 and 3.64, we

obtain:
db

dy
= − b

y
(3.65)

3.3.1 Parameters of the overdense region

So, at the maximum point or otherwise called turnaround point, we have the following
parameters:

ρmax = ρeqy
−3
maxb

−3
max Rmax =

(

3Mx

4πρmax

)1/3

(3.66)

This means that we can calculate the parameters for the region for a specified pertur-
bation value δ, if it is in the limit δ ≪ 1.
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3.4 Ellipsoidal Collapse

3.4.1 Formalism

Spherical collapse can account for radial motion only within an expanding overdense
region. The simplest way to treat non-radial option is to consider ellipsoidal model of
collapse. Reference [33] summarizes the ellipsoidal model formalism.

The surface of the ellipsoid is described with:

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.67)

where x, y, z are Cartesian coordinates and a, b, c are semi-axes of the ellipsoid.
The gravitational potential inside the ellipsoid is:

Φ = πGρ
(

Ax2 +By2 + Cz2
)

(3.68)

where the coefficients are:

A = abc

∫ ∞

0

dλ

(a2 + λ)f 1/2
(3.69)

B = abc

∫ ∞

0

dλ

(b2 + λ)f 1/2
(3.70)

C = abc

∫ ∞

0

dλ

(c2 + λ)f 1/2
(3.71)

and the function f is defined as:

f = (a2 + λ)(b2 + λ)(c2 + λ) (3.72)

The coefficients sum up as:
A+B + C = 2 (3.73)

giving the hint on the fact that the potential of the ellipsoid satisfies the Poisson’s equa-
tion.

∇2ϕ = 4πGρ(t) (3.74)

If the motion is homogeneous we can set a linear relation between the proper position
rα and the coordinate xα in the following way:

rα = Sαβ(t)xβ (3.75)

where S is a function of time. The potential of the ellipsoid can be written as

ϕ =
1

2
Φαβ(t)r

αrβ (3.76)

The acceleration of the fluid element is then

d2rα

dt2
=
d2Sαβ

dt2
xβ = −Φαβr

β (3.77)

which can be rewritten as:
d2Sαβ

dt2
= −ΦαγS

γβ (3.78)
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3.4.2 Small Deviation from Spherical Shape

To take into account the evolution of non-spherical layers Reference [4] suggests to consider
small deviations (σ) from the spherical case and consider a homogeneous ellipsoid. The
total potential of the perturbation is

Φ = Φel + Φbg + Φsh (3.79)

which are potentials of ellipsoid, background and tidal forces. The potential for the
homogeneous background reads as:

Φbg = 4πGρ̄(t)
I

3
(3.80)

where I is the unit matrix.
The evolution of the non-spherical region can be described by the equation (number).

We can express the matrix of the ellipsoid S as

S =

∥

∥

∥

∥

∥

∥

a
b
c

∥

∥

∥

∥

∥

∥

= Ir + σ (3.81)

And the potential of the ellipsoid can be rewritten as:

Φel = 2πGρe

∥

∥

∥

∥

∥

∥

A
B

C

∥

∥

∥

∥

∥

∥

(3.82)

where the coefficients were defined in the previous section (put reference here) and the
density of the ellipsoid is given by:

ρe ≡
Me

V
= ρm

(

1 + δi
b3

− 1

)

(3.83)

Define ∆ = Tr(σ) and expand the potential of the ellipsoid to the linear order in σ
for σ ≪ 1 as

Φel = 2πGρe

(

2

3

(

1 +
2

5

∆

r

)

I − 4

5

σ

r

)

(3.84)

For the zero order in σ = 0, we restore the equation (number). But to the linear order
in σ we have

d2σ

dt2
=

4π

15
Gρeσ − 4π

3
G(2ρe + ρm)σ (3.85)

We parametrize σ = a(y)s(y)ξ, so that the equation for the new function s(y) can be
written as

y(y + 1)s′′ +

(

1 +
3

2
y

)

s′ − 1

10

(

1

b3
− 1

)

s = 0 (3.86)

The initial conditions for the homogeneous ellipsoid at the radiation dominated epoch
in the conformal Newtonian frame with scale r ≫ ct, we have:

δr = −2Φ = const (3.87)

δi =
3

4
δr,i = −3

2
Φi (3.88)
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Figure 3.2: The growth of asphericity with respect to the rms perturbation at the horizon
crossing, [4].

The solution of the relativistic potential is

Φ(η, k⃗) = Φi(k⃗)
3π1/2

21/2(uskη)3/2
J3/2(uskη) (3.89)

where us =
1√
3
.

The peculiar velocities vj, which define the initial velocity of the ellipsoid’s surface,
can be written as vj =

∂v
∂xj

, where the velocity potential is written as

v(k⃗) = −1

η

∫ η

0

dη′η′Φ(η′, k⃗) = −9Φi(k⃗)
1

ηk2
(3.90)

The form of the ellipsoidal top-hat perturbation depends on the following condition,
if x2

a2
+ y2

b2
+ z2

c2
≤ 1, then the perturbation is constant, δi(x⃗) = δi, otherwise, δi(x⃗) = 0.

Approximating the velocity potential for a small non-sphericity, we can obtain:

v = v0 +
∂v

∂a

∣

∣

∣

∣

0

∆a+
∂v

∂b

∣

∣

∣

∣

0

∆b+
∂v

∂c

∣

∣

∣

∣

0

∆c+ ... (3.91)

where zero corresponds to the spherical case with a = b = c. So, the initial conditions
in this case for each component is in the form:

s|yi = si s′|yi =
3δHb

3
i si

10yiϕ
(3.92)

The equations 3.61 and 3.86 has to be solved numerically simultaneously for peaks
as high as ν = 1 and ν = 2, which is defined as ν ≡ δH/σH and σH ≡< δ2H >1/2. The
new function s(y) measures how much the non-spherical shell deviates from the spherical
shape. So, we can relate it to the asphericity. From [4] we have results for the solution to
the equations 3.61,3.86, they have arrived to the conclusion that the asphericity growth,
which can be quantified as

sf
si
grow with the rms perturbation value at the horizon crossing,
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σH , increasing with the increase of the mass of the forming clump. The results can be
seen in the Figure 3.2. For the case of isocurvature perturbations with s′(ti) = 0, the
asphericity growth is small. In the curvature perturbations, the boundary of the allowed
asphericity for the formation of superdense dark matter clump in the radiation domination
era is

∆si
bi

<
bf
bi

∆si
∆sf

(3.93)

The ellipticity of the potential of the ellipsoidal distribution can be expressed as

e =
λ1 − λ2
2
∑

λi
≃ 1

5

∆si
bi

(3.94)

where λi are the eigenvalues of the gravitational shear tensor.
The prolateness is written as

p =
λ1 + λ3 − 2λ2

∑

λi
(3.95)

The distribution over the eigenvalues λ1 ≥ λ2 ≥ λ3 can be reprepsented in the following
form followed by [19]

p(λ1, λ2, λ3) =
153

8π
√
5σ6

exp

(

− 3I21
σ2

+
15I2
2σ2

)

(λ1 − λ2)(λ2 − λ3)(λ1 − λ3) (3.96)

here σ is the rms perturbation and Ii are defined as

I1 = λ1 + λ2 + λ3 (3.97)

I2 = λ1λ2 + λ2λ3 + λ1λ3 (3.98)

This distribution can be described with ellipticity and prolateness as, [36]

g(e, p|ν) = 1125√
10π

e(e2 − p2)ν5e−
5
2
ν2(3e2+p2) (3.99)

where ν ≡ δ
σ
. This distribution was integrated over p in the range −e < p < e to be used

by [4] in order to compute the fraction of the formed dark matter clumps. The results are
presented in Figure 3.3. The figure represents the fraction of clumps, fcl, which formed by
surviving the growth of anisotropy, from which we can conclude that asphericity reduces
the number of formed clumps significantly, where σH is the rms fluctuation at the horizon
crossing.

The fact that the fraction of survived clumps is so small depends also on the following
mechanism. The absolute value of s doesn’t grow much, hence

sf
si

is not significant.

Whereas the relative asphericity growth is noticable due to the fact that bi
bf

itself is quite

large. In [4], they have plotted the ratio of sf/bf and si/bi, which is shown in Figure 3.4.
From which we can conclude that the initial asphericity (si/bi) has to be very small in
order for the final asphericity to fit the limit of sf/bf > 1. This is why the distribution of
asphericity in Eq.3.99 gives such a strong suppression of fcl.

3.5 Formation of Ultradense Dark Matter Halos

During radiation dominated epoch, primordial curvature perturbations ζ at the scale
wavenumber k cause linear order dark matter density perturbations to grow as

δ(k, a) = I1ζ(k) log (I2a/aH) = I1ζ(k) log

(√
2I2

k

keq

a

aeq

)

(3.100)
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Figure 3.3: Fraction of clumps fcl for peaks ν = 1 (solid line) and ν = 2 (dashed line) for
clump masses M = 102, 10−1, 10−6M⊙ (from up to down), [4].

Figure 3.4: Relative asphericity (sf/bf )/(si/bi) for peaks ν = 1 (solid line) and ν = 2
(dashed line) for clump masses M = 102, 10−1, 10−6M⊙ (from up to down), [4].
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when a ≫ aH , where aH = 2−1/2(keq/k)aeq is the expansion scale factor at horizon
entry, I1 ≃ 6.4 and I2 ≃ 0.47. The expansion factor and horizon scale the matter-radiation
equality are aeq ≃ 3×10−4 and keq ≃ 0.01Mpc−1. The growth described by this Equation
3.100 arises from unaccelerated particle drift, in which particles cover comoving distances
logarithmic in a. The particles are initially set in motion by the transient peculiar potential
at horizon entry, before the radiation pressure homogenizes it. The application of this
Eq.3.100 assumes that the dark matter is nonrelativistic and decoupled from the radiation
during this horizon entry gravitational kick.

The peculiar gravitational forces are negligible, therefore the ellipsoidal collapse treat-
ment simplifies a lot. If a region of scale k−1 has an initial tidal field with ellipticity e
and prolateness p, then its density evolves as

ρ

ρm
=

1

|1− λ1δ(k, a)|
1

|1− λ2δ(k, a)|
1

|1− λ3δ(k, a)|
(3.101)

where ρm is the average dark matter density and the parameters λi are

λ1 =
1 + 3e+ p

3
λ2 =

1− 2p

3
λ3 =

1− 3e+ p

3
(3.102)

Each axis is allowed to drift independently, the last axis collapses at the critical scale
factor, ac, when λ3δ(k, ac) = 1, leading to critical density contrast

δc =
3

1− 3e+ p
. (3.103)

For a density contrast δ in a Gaussian random density field with rms contrast σ, the
most probable values of e and p are, [36]

e =
σ√
5δ

p = 0 (3.104)

A typical 3σ density peak has a collapse threshold of about δc ≃ 5. This peak requires
ζ ≳ 0.5 to collapse by a ≃ 10aH . However, only ζ ≳ 0.15 is needed to ensure the collapse
by a ≃ 300aH . For a primordial black hole ζ ∼ 1, which means that the ultradense halos
outnumber primordial black holes a lot.

The formation of halos from collapsed protohalo cannot be ensured until the local
region becomes matter dominated, only then the protohalo becomes virialized and actually
forms a halo. This was shown in the simulation in the work [5]. For the typical ellipticity
e ≃ 0.15 of the tidal field at a 3σ peak, local matter domination occurs at a ∼ e2aeq ≃
0.02aeq, leading to halo formation long before the matter dominated epoch begins. Being
proportional to the mean cosmic density at their formation time, the density inside these
halos would be extraordinarily high.

Note that halo formation from isocurvature perturbations during the radiation epoch
is more favorable than PBH formation. In case of adiabatic curvature perturbations, halos
are less likely to form compared to PBHs, since the peculiar gravitational forces become
significant prior to the local matter domination of a collapsed region [25].

3.6 Conclusion

In conclusion, this chapter examines the formation of a dark matter protohalo in the
simple spherical collapse scenario and in a more realistic case of ellipsoidal collapse. The
calculation starts with consideration of an overdense region in the radiation dominated
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epoch, which obeys the EOM (3.1). After some mathematical manipulations, we can
modify the EOM and express it in terms of the overdensity of the region and see how it
evolves (3.55).

Having solved the equation numerically taking into account the nature of the per-
turbations, it is possible to analyze the parameters of the overdense regions, which are
presented in the Section 3.2.2 [25]. Evolution of adiabatic equation is described by an anal-
ogous equation (3.61), however the solution differs due to the fact that for the adiabatic
perturbations we have to take into account the initial velocity (3.65). The parameters of
this scenario are specified in the Section 3.3.1 [18].

To consider a more realistic scenario, we have to take into account non-radial evolution,
which can be done with the help of ellipsoidal collapse. This can be done by considering
a small deviation from the spherical scenario described by (3.86). Figure 3.2 shows the
dependence of the asphericity and the rms perturbations. Asphericity parameter has
limits, since exceeding certain level of asphericity makes it impossible to form a halo
(3.93) [4].
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Chapter 4

Formation of Dark Matter Halos

4.1 Introduction

Dark matter halos form through two primary mechanisms: hierarchical clustering and
gravitational attraction. These mechanisms operate during different cosmic epochs and
contribute to the formation of structures at various scales in the Universe. Dark mat-
ter halos that form via gravitational attraction belong to the matter dominated epoch.
Whereas dark matter halos formed via hierarchical clustering start growing structures in
the radiation dominated epoch, but actually form when their region become locally mat-
ter dominated. The resulting compact object is a seed that will experience more matter
accreting onto it in the matter dominated Universe, after the time of equivalence. So, it
is not completely true that dark matter halos form just at the radiation epoch, rather it
is a more complicated scenario. Section 4.2 focuses on the dark matter halos formation
via gravitational attraction, considering only the simple case, spherical collapse. Section
4.3 considers the mechanism of hierarchical clustering and, in fact, is a continuation of
the previous chapter.

4.2 Simple model in Matter Dominated Epoch

Consider a spherical region that is denser than the background in the Einstein de Sitter
Universe, flat and matter dominated, with the background density ρc. The evolution of
this region will be independent of the background evolution.

The Friedmann equations in the parametric form for this region are:

R = A(1− cosθ) (4.1)

t = B(θ − sinθ) (4.2)

where R is the scale factor of the spherical region.

A =
Ωm0

2(Ωm0 − 1)
B =

Ωm0

2H0(Ωm0 − 1)3/2
(4.3)

In this case, Ωm0 > 1 since the density of this overdense region is higher than the
background, ρm > ρc.

According to the parametric equations, the spherical overdense region will be expand-
ing until θ = π, which corresponds to Rmax = 2A then turn around to collapse, which
corresponds to Rmin = 0 at θ = 2π.
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Rmax = 2A =
Ωm0

(Ωm0 − 1)
(4.4)

tmax = πB =
πΩm0

2H0(Ωm0 − 1)3/2
(4.5)

Let’s compare the density of the spherical region to the background density.

ρ

ρ0
=

Ωm0ρc0
1

(Rmax)3

ρc0
1
a3

= Ωm0

(

a

R

)3

(4.6)

The scale factor of the background is a =
(

3
2
H0t

)2/3
in the matter dominated Universe.

At tmax:

a3(tmax) =
(3

2
H0tmax

)2/3
=

9π2

16

Ω2
m0

(Ωm0 − 1)3
(4.7)

Therefore, we have:
ρ

ρ0
=

9π2

16
≃ 5.55 (4.8)

We can see that the spherical region starts to collapse when its density is 5.55 times
the density of the background.

4.2.1 Virialization

In the simplified model there is no internal pressure to stop the collapse and the region
collapses to the infinite density. However, in a more realistic case, the collapse will stop
without reaching the infinite density. The system will reach the point where it obeys the
Virial theorem, which is the most favorable energy configuration:

Ek = −1

2
Ep (4.9)

The redshift at which the region has reached its maximum before collapse is zmax, and
the redshift after the systems has collapsed (zc) can be derived as:

1 + zc
1 + zmax

=
amax

ac
=

(

tmax

tc

)2/3

=
1

22/3
(4.10)

The potential energy at zmax is the total energy of the system, since the overdense
region stops at the maximum before collapsing backwards.

Ep = −3GM2

5rmax

(4.11)

The physical size of the region is r = rmax/2, so when the region has collapsed, the
potential energy is:

Ep = − 3GM2

5rmax/2
= −6GM2

5rmax

(4.12)

So, using the conservation of energy law, we can find the kinetic energy of the region
after the collapse:

Ek = E − Ep = −3GM2

5rmax

+
6GM2

5rmax

=
3GM2

5rmax

(4.13)
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So,

Ek = −1

2
Ep(rmax/2) (4.14)

The system virialized and became stable at half of the maximum radius, rmax/2. It

means that the systems has become (
(

1
2

)3
= 1

8
), 8 times denser than when it was at turn

around point. This coresponds to:

Rvir =
1

2
RmaxA(1− cosθ) = A (4.15)

which means that after collapse θ > π, so the solution should be θ = 3π
2
.

tvir = B(
3π

2
+ 1) = πB(

3

2
+

1

π
) = tmax(

3

2
+

1

π
) ≃ 1.81tmax (4.16)

The background density has decreased after the collapse by the factor of

(

amax

avir

)3

=

(

tmax

tvir

)2

=
1

1.812
(4.17)

This means that the density of the spherical overdense region at virialization is greater
than the background density by the factor of 5.55 × 8 × 1.812 ≃ 145. If we consider
virialization moment to be the moment at R = 0, then tvir = 2tmax, which means the
background density is smaller than the overdense region by the factor of ≃ 178.

4.2.2 Linear perturbation approach

We can analyze the spherical collapse using linear perturbation approach. Let’s expand
the parametric solutions in θ:

R = A(1− cosθ) ≃ A(
1

2
θ2 − 1

24
θ4) (4.18)

t = B(θ − sinθ) = B(
1

6
θ3 − 1

120
θ5) (4.19)

To the first order, we have

R =
1

2
Aθ2 (4.20)

t =
1

6
Bθ3 (4.21)

At the matter domination epoch, the scale factor R ∝ t2/3, the same as the background
expansion. At the turnaround, the scale factor and time:

Rmax = 2A tmax = πB (4.22)

The fractions:

R

Rmax

≃ 1

4
θ2 − 1

48
θ4 (4.23)

t

tmax

=
1

π

(

1

6
θ3 − 1

120
θ5
)

(4.24)
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Using the fraction of time, rewrite:

θ3 = 6π
t

tmax

+
1

20
θ5 (4.25)

Now we solve the equation iteratively, with the first guess:

θ3(0) = 6π
t

tmax

(4.26)

Second guess:

θ3(1) = 6π
t

tmax

+
1

20

(

6π
t

tmax

)5/3

(4.27)

θ(1) =

(

6π
t

tmax

)1/3(

1 +
1

20

(

6π
t

tmax

)2/3)1/3

(4.28)

Define x ≡ 6πt
tmax

, we get

θ(1) ≃ x1/3(1 +
1

60
x2/3) ≃ x1/3 +

1

60
x (4.29)

Inserting it into the fraction of the scale factor:

R

Rmax

=
1

4
θ2(1) −

1

48
θ4(1) ≃

1

4
x2/3(1− 1

20
x2/3) (4.30)

As a result,

R

Rmax

=
1

4

(

6π
t

tmax

)2/3(

1− 1

20

(

6π
t

tmax

)2/3)

= Rlin (4.31)

The first term describes the background evolution and the second term describes the
evolution of the perturbation.

So, the density of the region:

ρ = ρbg(1 + δlin) (4.32)

Rewriting the density in terms of scale factors:

1 + δlin =
a3

R3
lin

Rlin

a
= (1 + δlin)

−1/3 ≃ 1− 1

3
δlin

Since a = 1
4
(6πt/tmax)

2/3, we have

Rlin

Rmax

=
1

4

(

6π
t

tmax

)2/3(

1− 1

3
δ

)

(4.33)

And,

δ =
3

20

(

6π
t

tmax

)2/3

(4.34)

When the overdense region reaches its maximum and starts to collapse, we have
δmax
lin = 3

20
(6π)2/3 ≃ 1.06. The exact calculation predicts the density to be 5.55 times

the background density. After virialization, the fluctuation becomes δvirlin ≃ 1.686. And
the actual density at the virialized point is ≃ 178 times denser than the background.
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4.2.3 Density Contrast Evolution

At matter dominated epoch, taking into account the smooth transition from radiation to
matter domination, the density contrast expression takes the form, [21]

δ(k, z) ≃ 27

2
Φi(k)

1 + zeq
1 + z

ln (0.2kηeq) (4.35)

where Φi is the initial gravitational potential outside the horizon.

4.3 Secondary Accretion on Dark Matter Clump

At the radiation domination stage a compact seed of mass Mc was formed and it is
assumed to be uniformly surrounded by dark matter. At the time long before the equiv-
alence of matter and radiation moment, t ≪ teq, the mass M ≫ Mc, so the isocurvature
perturbation of dark matter δi = Mc

M
doesn’t evolve. This comes from the solution to

Meszaros equation, which is

δ = δi

(

1 +
3

2
x

)

(4.36)

where x = a
aeq

, hence δ ≡ δi.

The secondary accretion begins at t ∼ teq. Since we consider isocurvature perturba-
tions, the Hubble flow was not perturbed, which happens for adiabatic perturbations. In
this case, we can approximate 5δ/3 −→ δ in the top-hat model and the threshold for the

object formation changes to δ(t) = δ̃c =
(

3π
2

)2/3 ≈ 2.81.
Using the solution to Meszaros equation, we can find the mass of the virialized object

as a function of redshift, z:

M(z) =
3

2

(

2

3π

)2/3
1 + zeq
1 + z

Mc ≈ 1.7× 103
(

Mc

102M⊙

)(

1 + z

100

)−1

M⊙ (4.37)

The radius of the virialized clump is

rc =
1

3

(

3

4π

)1/3
M4/3

ρ
1/3
eq Mc

≃ 3.2

(

Mc

102M⊙

)1/3(
100

1 + z

)4/3

pc. (4.38)

So, using the expression for mass and the radius of the formed halo, one can find the
density profile of this object and it is

ρ(r) =
1

4πr2c

dM(rc)

drc

∣

∣

∣

∣

rc=r

≃ 3× 10−21

(

r

1pc

)−9/4(
Mc

102M⊙

)3/4

g cm−3 (4.39)

However, the clusters around black holes don’t have exactly this density profile, ρ ∝
r−9/4. So, ultradense dark matter halos can form around a dark matter clump, which acts
as a seed and was formed from entropy perturbations. There is no difference between
halos formed in different ways. Both of them start to grow only at t ∼ teq.

4.3.1 Final Mass

The total mass of the induced halo increases as more and more matter around the seed
get separated from the Hubble flow and become virialized. The growth of the induced
halo stops when the perturbations of dark matter start to evolve in a nonlinear way with
growing mass os the induced halo, M(t).
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Figure 4.1: The redshift z of the growth termination for ν = 1, 2, 3 fluctuations (from
down to up), [4].

The growth of density contrast δ ∝ t2/3 is the same in the matter domination epoch
for the usual perturbations and perturbations accreting on a seed.

The condition for the growth stop of positive perturbations can be expressed as

νσeq(M) =
9

10

Mc

M
(4.40)

where ν is the value of density perturbation in terms of rms fluctuation σeq(M). The
right hand side of the Equation 4.40 is the amplitude of the fluctuations caused by the
clump with mass Mc. Whereas the left hand side of the equation represents the Gaussian
fluctuations at the time of equivalence, teq.

Large number of perturbations with positive ν ∼ 1, surrounding the ultradense dark
matter halo results in the halo ceasing the growth in multiple directions and eventually
destroys the secondary accretion. The negative perturbations ν < 0 also dump the growth
of the ultradense haloes due to the lower density of dark matter inside them.

Numerical solution to Equation 4.40 gives the final result of the mass of the induced
dark matter halo, which is

M ∼ (101.5 − 102.5)Mc (4.41)

with Mc ∼ 10−8 − 102M⊙.
The redshifts for different ν fluctuations at which the induced halo stops growing can

be seen from the Figures 4.1. The corresponding final mass of the secondary accreted
halo is illustrated in Figure 4.2 for different fluctuations ν = 1, 2, 3.

4.4 Conclusion

The chapter has covered two types of dark matter halo formation. We have evaluated
that in the matter dominated epoch the overdense region starts to collapse when the
region is 5.55 times denser than the background (4.8). The collapsed region is not yet
a fully formed dark matter halo, it has to undergo virialization process, as a result of
which the overdense region becomes ∼ 178 times denser than the background. The same
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Figure 4.2: The final mass of the secondary accreted halo in relation to the seed mass Mc

for ν = 1, 2, 3 fluctuations, [4].

results can be derived using the linear perturbation approach described in the Section
4.2.2. The evolution of the overdensity of the region in the matter dominated epoch can
be chracterized by (4.35).

Another way of dark matter halo formation is through secondary accretion onto a
dark matter clump that was formed in the radiation dominated epoch. The secondary
accretion begins with the matter domination, at the equivalence time. The matter will be
accreting the initial seed until the growth stops, which can be evaluated by this criteria
(4.40) [4].
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Chapter 5

Properties of Dark Matter Halos

5.1 Introduction

This Chapter focuses on the properties of dark matter halos, namely the the core radius,
the density profile and the structure of these objects. The core radius, density profile, and
structure of ultradense dark matter halos are essential aspects of these cosmic structures,
which play a pivotal role in the formation of galaxies and the large-scale structure of
the Universe. The first section of this chapter (Sec. 5.2) investigates the effects on the
maximum radius of the core of the dark matter clump, that was formed in the radiation
dominated epoch. Section 5.3 describes one of the most commonly used density profiles,
Navarro-Frenk-White (NFW) density profile. The authors of this model claim that this
density profile is universal for all possible cosmological scenarios of dark matter halo
formation. Section 5.4 extends the discussion on the NFW density profile by exploring
its dependence on the characteristic overdensity. In this section, there is the derivation
of this characteristic overdensity. Section 5.5 explores the mass density dependence of
the halo. The results of this section are depicted in the plots that show the correlation
between the mass and the density of the halo. From the previous section, it is known that
the density profile is dependent on the overdensity. Another plot that is worth attention
is the plot of concentration parameter with the mass of the halo. The concentration
parameter (c), quantifies how concentrated the mass distribution is within a dark matter
halo. It is typically defined as the ratio of the virial radius to the scale radius of the
density profile. The scale radius is a characteristic radius that describes the inner region
of the halo. Lastly, the section represents another plot of mass dependence and maximum
circular velocity. The maximum circular velocity increases to the center of the halo until
it reaches the maximum value. Section 5.6 introduces another density profile, Hernquist
density profile, which scales as r−4. The last Section 5.7 discussed the structure of the
ultradense dark matter halos, which incorporates both abovementioned density profiles,
NFW and Herquist. NFW densty profile is very accurate in the limits close to the halo’s
center, whereas the Hernquist density profile suits well to describe the outer regions formed
by accretion.

5.2 Maximum Core Radius of Dark Matter Clumps

The region, r < Rc, inside the clump where the density stops growing is the core of that
clump. According to some numerical simulation, the relative core takes values around
Rc/R ≈ 10−2 − 10−3, where R is the radius of the virialized clump. What are the factors
and underlying mechanism that affects on the core radius and hence of the central density
of the clump?
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Figure 5.1: The left panel: in the beginning, particles occupy a certain region in the
phase space. Right panel: the volume of this region doesn’t change as the system evolves.
However, the phase space density averaged over a macroscopic region (encircled) changes
in the time and decreases in the dense regions of the phase space, [21].

5.2.1 Restrictions on the Core Radius

Louisville’s theorem is one of the restricting factors that affects the core radius and puts
boundaries on it. The Liouville’s theorem is stated in the following way: the distribution
function in the phase space in the collisionless system is constant in time, f(p, q) = const.
This is valid at microscopic level. The Louisville’s theorem is applicable only in the initial
and final stages of the evolution of the system due to the intermediate entropy producing
processes.

In reality, one is interested in the coarse grained phase space density, that is the phase
space density averaged over macroscopic regions of phase space. In the beginning, the
particles occupy a certain region of the phase space, but with time progress the underdense
phase space volume becomes more occupied and the overdense volume of phase space gets
diluted. This process is depicted in the Figure 5.1. Therefore, the coarse grained phase
space density obeys the following inequality

f(k,x, t) ≤ maxkfi(k) (5.1)

The distribution function of the clump core can be expressed as

fc =
ρc
v3

(5.2)

where ρc is the core density and v is the characteristic velocity in the core. We can restrict
the core radius using the Louisville’s theorem.

There are two sources of initial entropy: thermal velocities of dark matter particles
at the decoupling and peculiar velocities in case of adiabatic perturbations. For the
thermal part, the neutralino is a nonrelativistic nondegenarate at the moment of kinetic
decoupling, td, hence it can be approximated with Maxwell’s distribution function:

fp(p)d
3rd3p =

ρm
2(2πmkT )3/2

e−
p2

2mkT d3rd3p (5.3)

where ρm is the dark matter density. It is expressed through the temperature using the
entropy conservation condition g∗T

3a3 = const, g∗ is the effective number of degrees of
freedom at the temperature T, m is the dark matter particle mass.
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The distribution function inside the core is less than the initial distribution function,
so we can use the inequality:

fc < fp(p = 0) (5.4)

For the isothermal density profile, ρ(t) ∝ r−2, the relative core radius is restricted as

Rc

R
>

2π1/2ρ̄1/4T
3/4
d

31/4G3/4M1/2m3/4ρ
1/2
m (td)

(5.5)

where Td is the temperature of kinetic decoupling and is approximeted as Td ≃ 25 MeV.
The DM mass is taken to be m = 100 GeV. In [4] they used numerical methods to
approximate the relative core radius and it is Rc/R = 4× 10−3 for clump mass, M/M⊙ =
10−6, average density, ρ̄ = 3× 10−23, and density contrast, δeq = 0.009.

The other entropy producing quantity is the peculiar velocity that is generated due to
the gravitational instability. The peculiar velocity at some mass scale in the case of the
flat metrics can be expressed as

v⃗ =
Ha

4π
∆x

∫

d3x′δ(x⃗′)

|x⃗′ − x⃗| (5.6)

The calculations are analogous to the thermal velocity and for the peculiar velocity it
takes the following form

Rc

R
= 0.01δ9/2eq (5.7)

The numerical calculations from [4] give the result, Rc/R = 6 × 10−12 for the same
parameters described before.

The other factor that restricts the central density and core radius is the annihilation of
dark matter particles. The maximum density in the center of the clump is approxmated
to be

ρ(rmin) ≃
m

< σv > (t0 − tf )
(5.8)

where t0 is the current moment of time and tf is the moment of clump formation. Taking
the isothermal density profile, ρ(r) ∝ r−2, the resulting relative core radius is

Rc

R
≃

(

< σv > t0ρ̄

3m

)1/2

(5.9)

Taking the thermal parameter value, < σv >≃ 3 × 10−26cm3s−1 and the DM particle
mass, m = 100 GeV, the other parameters as before, the relative core radius is Rc/R =
2.6× 10−5.

In the real halos, there are mechanisms of regeneration of orbits with small angular
momentum that go through the center of the clump, which make the central density larger
than Eq. 5.8.

So, we can conclude that the most dominant factor that restricts the relative core
radius is the Liouville restriction with the peculiar velocity out of all in the formation of
the core in the clump formed at the matter-radiation equality.

The other process that could affect the core formation is the hierarchical clustering that
gives rise to the entropy generation and hence dilutes the phase space density. Another
process that makes a difference is the effect of the tidal forces which deflect particles from
the center of the clump. However, the real mechanisms are yet unknown.
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Figure 5.2: [29] The density profile of four halos spanning 4 orders of magnitude in mass,
from ∼ 3 × 1011M⊙ to ∼ 3 × 1015M⊙. The arrows indicate the gravitational softening,
hg, of each simulation.

5.3 Navarro-Frenk-White Density Profile

In [29], the authors have run a high resolution N-body simulations to characterize the
structure of cold dark matter (CDM) halos. They propose a universal density profile
that can fit CDM halos of all masses by making an appropriate scaling. This profile is
shallower than the isothermal one (ρ(r) ∝ r−2) near the center of a halo, and steeper than
the isothermal in its outer regions. This density profile is called Navarro-Frenk-White
(NFW), and is expressed as

ρ(r)

ρcrit
=

δc
r
rs

(

1 + r
rs

)2 (5.10)

where rs = 200/c is a characteristic radius, ρcrit = 3H2/8πG is the critical density. r200
determines the mass of the halo, as

M200 = 200ρcrit
4π

3
r3200 (5.11)

and δc is the characteristic overdensity, c is the concentration and rs is the scale radius.
δc and c are related to each other through the following requirement

δc =
200

3

c3
(

ln (1 + c)− c
1+c

) (5.12)

Figure 5.2 shows the density profiles of four halos of different masses plotted with
respect to the radius of the halo. It is clear that the halos are denser in the core and the
outer layers can go down in density in 6 orders of magnitude.

5.4 Characteristic Overdentsity

From the NFW density profile we see that it is dependent on the characteristic overdensity,
δc. In [30] authors give a step by step procedure to calculate this quantity for Einstein
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de Sitter characterized by Ω0 = 1,Λ = 0, open (Ω0 < 1,Λ = 0) and flat (Ω0 + Λ = 1)
universes.

We can characterize a halo of mass M with its virial radius and circular velocity,

r200 = 1.63× 10−2

(

M

h−1M⊙

)1/3(
Ω0

Ω(z0)

)−1/3

(1 + z0)
−1h−1kpc (5.13)

V200 =

(

GM

r200

)1/2

=

(

r200
h−1kpc

)(

Ω0

Ω(z0)

)1/2

(1 + z0)
3/2km/s (5.14)

And the density profile can be expressed as

ρ(r) =
3H2

0

8πG
(1 + z0)

3 Ω0

Ω(z0)

δc
cx(1 + cx)2

(5.15)

where x = r
r200

and c is the concentration parameter. As you can see, the density profile
can be fully defined either through the characteristic overdensity, δc, or the concentration
parameter, c.

The corresponding circular velocity, Vc(r), is

(

Vc(r)

V200

)2

=
1

x

ln (1 + cx)− cx
1+cx

ln (1 + c)− c
1+c

(5.16)

The characteristic overdensity can be determined by the collapse redshift, zcoll. The
collapse redshift, zcoll(M, f), can be defined as the time at which half of the mass of the
halo was first contained in progenitors more massive than some fraction of the final mass
and can be computed using the following equation

erfc

(

δcrit(zcoll)− δ0crit
√

2(∆2
0(fM)−∆2

0(M))

)

=
1

2
(5.17)

where ∆2
0(M) is the linear variance of the power spectrum at z = 0 smoothed with a

top-hat filter of mass M , δcrit(z) is the density threshold for spherical collapse by redshift
z, and δ0crit = δcrit(0).

Assuming the characteristic overdensity of a halo to be proportional to the density of
the universe at the corresponding zcoll then implies

δc(M |f) = CΩ0(1 + zcoll(M, f))3 (5.18)

where C is a proportionality constant which might depend on f and the power spectrum.
Now the equation for the characteristic overdensity becomes

δcrit(zcoll)

δcrit(z0)
=
δ0crit(Ω(zcoll,Λ))

δ0crit(Ω(z0,Λ))

D(z0,Ω0,Λ)

D(zcoll,Ω0,Λ)
= 1+

0.477

δcrit(z0)

√

2(∆2
0(fM)−∆2

0(M)) (5.19)

where D(z,Ω0,Λ) is defined as

D(z,Ω0,Λ) =











1/(1 + z), if Ω0 = 1 and Λ = 0,

F1(w)/F1(w0), if Ω0 < 1 and Λ = 0,

F2(y)F3(y)/F2(y0)F3(y0), if Ω0 + Λ = 1,

(5.20)

where we used auxiliary functions and defined them as follows

w0 =
1

Ω0

− 1 (5.21)
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w =
w0

1 + z
(5.22)

F1(u) = 1 +
3

u
+

3(1 + u)1/2

u3/2
ln [(1 + u)1/2 − u1/2] (5.23)

y0 = (2w0)
1/3 (5.24)

y =
y0

1 + z
(5.25)

F2(u) =
(u3 + 2)1/2

u3/2
(5.26)

F3(u) =

∫ u

0

(

u′

u′3 + 2

)3/2

du′ (5.27)

A numerical approximation to the Ω-dependence of the critical threshold for the spher-
ical collapse can be expressed as

δ0crit(Ω,Λ) =











0.15(12π)2/3, if Ω0 = 1 and Λ = 0,

0.15(12π)2/3Ω0.0185, if Ω0 < 1 and Λ = 0,

0.15(12π)2/3Ω0.0055, if Ω0 + Λ = 1,

(5.28)

which can be used to compute

δcrit(z0) =
δ0crit(Ω(z0))

D(z0,Ω0,Λ)
(5.29)

Now we have to compute the variance of the power spectrum on mass scale M , ex-
trapolated linear;y to z = 0, ∆2

0(M). For the power law power spectrum, P (k) ∝ kn, we
get

∆2
0(M) = δ0crit

(

M

M∗(z = 0)

)−(n+3)/6

(5.30)

where we have normalized the spectrum by M∗(z = 0) which is the present nonlinear
mass. A CDM spectrum is usually normalized by σ8, which is the rms fluctuations within
a sphere of radius 8h−1 Mpc and its variance can be expressed as

∆0(M) =
σ8F4(M8)

F4(Mh)
(5.31)

where
M8 = 6.005× 1014(hΩ0)

3 (5.32)

Mh =

(

M

h−1M⊙
h3Ω2

0

)

(5.33)

F4(u) = A1u
0.67[1 + (A2u

−0.1 + A3u
−063)p]1/p (5.34)

with A1 = 8.6594× 10−12, A2 = 3.5, A3 = 1.628× 109 and p = 0.255.
The Equations 5.20-5.34 can solve the Eq.5.19 and find the collapse redshift for a

halo of mass M . In the calculation it is preferred to use f = 0.01. The reason for this
choice will be discussed later. Once the collapse redshift is found we can express the
characteristic overdensity

δc(M, f) ∼ 3× 103Ω(z0)

(

1 + zcoll
1 + z0

)3

(5.35)
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Figure 5.3: [30] The correlation between the mass of a halo and its characteristic overden-
sity. Masses are given in units of the nonlinear mass scale, M∗. Overdensities are relative
to the critical value. There are three curves for each value of f , mass fraction.

5.5 The Mass Dependence of Halo Structure

The mass and density dependence of halo can be illustrated in Figure 5.3. The character-
istic overdensity of a halo increases for lower masses. This result supports the idea that
less massive systems have higher redshift collapse, meaning that they collapse earlier in
the history of the universe. This model assigns to each halo of massM a collapse redshift,
zcoll, defined earlier.

Similar figure, illustrating the mass and density dependence is Figure 5.4, which is
different in the fact that it is the concentration parameter plotted to the mass. The
concentration parameter is defined as c = r200/rs.

To support the argument of the mass dependence with the collapse redshift, we have
to take f ≪ 1 to give a good fit to the data. In this limit, ∆2

0(fM) >> ∆2
0(M), which

results in
δcrit(zcoll) = δ0crit + C ′∆0(fM) (5.36)

where C ′ ≈ 0.7. For f ≪ 1, δcrit(zcoll) ≫ δ0crit for all masses in the range defined in the
simulations. Since M∗(zcoll) is defined as ∆0(M∗(zcoll)) = δcrit(zcoll), it means that the
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Figure 5.4: [30]The correlation between the mass of a halo and its concentration parame-
ter. Masses are given in units of the nonlinear mass scale, M∗. Overdensities are relative
to the critical value. There are three curves for each value of f , mass fraction.
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characteristic overdensity of a halo is proportional to the mean density of the Universe
at the time when M∗ ≈ fM . In other words, when the characteristic nonlinear mass is a
fixed small fraction of the final mass of the halo, the characteristic overdensity of the halo
is proportional to the mean density of the universe. This implies that δc ∝M−(n+3)/2.

So, the reason we prefer smaller values of f is that the data taken from the Eq.5.36
that proves the mass-density dependence correlates better with the Einstein de-Sitter sim-
ulations. Another interesting dependence is that the characteristic overdensity decrease
for more negative values of the spectral index, n. Meaning that the characteristic density
of a halo of mass M∗ depends on the shape of the power spectrum on scales ∼ fM∗.

There is a maximum characteristic speed for each halo, Vmax. From the Figure 5.5, we
can clearly see its strong correlation with the mass of the halo. The circular velocity rise
to the center of the halo and reach the maximum value at xmax ∼ 2/c, where x = r/r200
and c is the concentration parameter. More centrally concentrated halos, with higher
characteristic overdensity and concentration parameter, have higher values of Vmax/V200.
As a result, M200 − Vmax is almost the same as the M200 − V200, which suggests for strong
correlation between mass and the characteristic velocity. This tight correlation between
mass and velocity is called Tully-Fisher relation.

As a result, Figures 5.3-5.5 supports the conclusion that the characteristic overdensity
of a halo is dependent on the mean matter density of the universe at the time of col-
lapse. Overdensities of halos of mass M∗ increase with the spectral index, but for higher
masses, M ≳ 10M∗, the differences between models is negligible. Also, there is a strong
dependence of the density profile of a halo on the density parameter Ω0.

5.6 Hernquist Density Profile

The Hernquist density profile is a mathematical model used to describe the density distri-
bution of matter in spherically symmetric systems, such as dark matter halos or galaxies.
It was introduced by Lars Hernquist in 1990 and is commonly used in astrophysical sim-
ulations to represent the density profiles of stellar systems and dark matter haloes. The
Hernquist profile is particularly useful for describing the density distribution of galaxies
and galactic bulges.

The density profile [23],

ρ(r) =
M

2π

a

r

1

(r + a)3
(5.37)

where M is the total mass of the object and a is the scale length. Note that the density
profile scales like ρ ∝ r−4.

5.7 Structures of Ultradense Dark Matter Halos

The characteristic density of dark matter halo, ρh, depends on the mean density of the
universe at the time of halo formation as it was pointed out in the Section 5.4. According
to [17], [16], it is a general consequence of mass accretion process in the cosmological
context. Therefore, the halos formed at the radiation domination epoch, the characteristic
density can be expressed as

ρh = αρr,0a
−4
f (5.38)

where ρr,0 is the radiation density today, α is a proportionality factor, af is the expansion
rate at the time of the halo formation.

The ultradense dark matter halos should form with NFW density profile, characterized
by scale radius, rh and scale density, ρh. The halo’s outer virial radius is taken to be
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Figure 5.5: [30] The mass dependence of the maximum circular velocity of a halo. The
mass is given in the units of 1010M⊙. Velocity units are arbitrary in the power law panels.
Power law fits are of the form M ∝ V α

max.
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Rvir = 2rh and integrating the NFW density profile up to Rvir, we obtain the mass of the
halo at the time of its formation

M ≃ 5.4ρhr
3
h (5.39)

We can describe the mass M as the mass of the densest central part of the halo. Since
further acquisition of mass will be through accretion.

The NFW density profile is accurate in the limit near halo’s center, up to the scale
radius, rh. However, it is not accurate at the distance much larger than rh. The density
profile beyond that limit is set long after the halo formation by the halo’s accretion
history. The density profile predicted in this case is of the form ρ ∝ r−4. Due to these
considerations, the late time density profile of an ultradense halo with Hernquist form
according to [14] looks as

ρ(r) = ρh

(

r

rh

)−1(

1 + 0.58
r

rh

)−3

(5.40)

where the numerical factors were tuned such that the density profile matches the NFW
profile up to a few rh and for r much larger, the density profile scales as ρ ∝ r−4. The
upper panel in Figure 5.6 shows the plot of this density profile with respect to the radial
distance, r. The mass of the halo is taken to beM = 1.9×10−6M⊙ and the characteristic
radius rh = 1100α−1/3R⊙. Integrating this density profile gives 3.5M , where M is the
mass of the halo at its formation (5.39).

The central structure of the collisionless dark matter halos remain almost the same
throughout the evolution and the characteristic density and radius remain accurate even
today. One possibility in which it could be wrong is the merger of halos. Simulations
suggest that the merger remnant’s characteristic density is not lower than that of the
progenitors. Thus the mergers just shift the mass of dark matter halos to higher values.

Ultradense dark matter halos accrete onto larger halos at later times. The extreme
high density of the ultradense halos allow them to avoid any impact from the tidal forces
of the larger halo. The middle panel of the Fig.5.6 illustrates vcirc/r =

√

F/r (blue line)
with respect to the radial distance from the halo’s center. vcirc is the circular orbit velocity
and F is the halo’s central force. If we compare this quantity to the

√

dFMW/dR (red
line), we realize that the impact of the Galactic tidal forces are only feasible at distances
larger than 106R⊙ from the halo’s center. This allows us to neglect the tidal forces of the
galaxy.

However, encounters with individual stars may impact the halo more significantly. The
shocks by stellar encounters become important for the ultradense halo’s density profile
only beyond 104 − 105R⊙. It is unclear how exactly they impact the density profile that
scales as ρ ∝ r−4, since it is considered that this scaling includes the effect from these
encounters.

The last panel of the Figure5.6 shows the deflection of light under the influence of the
ultradense dark matter halos characterized by M and rh specified earlier. The deflection
angle is

4G

c2
M2D(r)

r
(5.41)

where M2D is

M2D(r) ≡
∫ r

0

2πbdb

∫ +∞

−∞
dzρ(

√
b2 + z2) (5.42)

which is the mass within an infinite cylinder of radius r.
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Figure 5.6: The properties of an ultradense dark matter halo with mass at the moment
of formation being M = 1.9 × 10−6M⊙ and the characteristic radius rh = 1100α−1/3R⊙.
Upper panel shows the density profile with respect to the radial distance from the center
of the halo. The middle panel shows the behavior of vcirc/r with respect to the radial
distance from the center of the halo compared to the tidal forces of the Milky Way galaxy
and the shocks produced by encounters with individual stars within a galaxy. The lower
panel shows the deflection of the light under the influence of the halo, [14].
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5.8 Conclusion

In conclusion, the exact mechanism for the core formation of the ultradense dark matter
halo is yet unknown. There are certain factors that affect the growth of the core. One
of the dominant factors to affect the core formation and eventually its maximum size
is the peculiar velocity. Other factors are hierarchical clustering, tidal effects and DM
annihilation [4]. To find out more about the exact mechanisms of the core formation, it
is necessary to run numerical simulations of the ultradense dark matter halos formation
in the radiation dominated epoch, taking into account the above mentioned factors and
the cosmological scenario.

Sections 5.4, 5.5 presents plots that contain significant outcomes about the character-
istic overdensity. The conclusion to draw from these plots is that the overdensity depends
on the mean density of the universe at the time of collapse [30]. The density profiles
of the dark matter halo depends on the overdensity (5.12). Finally, the structure of the
dark matter halo is summarized in the last section, which incorporated NFW (5.12) and
Hernquist (5.37) density profiles to describe the structure of the ultradense dark matter
halos [15].
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Chapter 6

Statistical Abundance of Dark
Matter Halos

6.1 Introduction

The statistical abundance of dark matter halos refers to the distribution of dark matter
halos in the Universe as a function of their mass or size. This statistical abundance is a
crucial concept in cosmology and large-scale structure studies, as it helps us understand
how common or rare dark matter halos of different sizes are in the cosmic landscape. Sev-
eral key aspects of the statistical abundance of dark matter halos are mass function, power
spectrum, halo bias, observational probes, redshift evolution, cosmological probes. This
chapter is focused more on the mass function and power spectrum. The fisrt Section (6.2)
introduces the Press-Schetcher formalism that is a fundamental tool for understanding the
distribution and abundance of dark matter halos, serving as a basis for more sophisticated
models and simulations in modern cosmology. Section 6.3 introduces a more refined ver-
sion of the Press-Schechter formalism, Excursion Set formalism, which takes into account
nonlinear evolution of the dark matter halos, whereas the Press-Schechter formalism is
based on the spherical collapse model. Section 6.4 considers ellipsoidal collapse of the
overdense region resulting in a dark matter halo formation and investigates its abundance
in terms of considering the mass function and the power spectrum of this fluctuation.
Finally, Section 6.5 discusses the formation of the primordial black holes (PBH) and dark
matter halos and their power spectrum.

6.2 Press-Schechter Formalism

The Press-Schechter formalism is based on the assumption that the growth of cosmic
structures, such as dark matter haloes, occurs through the gravitational collapse of small
density perturbations in the early Universe. The Press-Schechter formalism provides
a simple analytical approximation for the abundance of dark matter halos in the early
Universe. It has been a useful tool in cosmology for understanding the general behavior of
halo distributions and making predictions about the large-scale structure of the Universe.
However, it has some limitations, and more refined methods, such as extended Press-
Schechter and excursion set formalisms, have been developed to improve the accuracy of
predicting halo abundances and their properties in numerical simulations.

The distribution and abundance of dark matter halos in the matter-dominated epoch
can be characterized by the halo mass function. The halo mass function describes the
statistical distribution of halo masses, indicating the number density of halos as a func-

51



tion of their mass. It provides insights into the growth and evolution of structures in
the Universe. The Press-Schechter mass function is a fundamental theoretical result in
cosmology that provides an approximate statistical distribution of dark matter halos as
a function of their mass. The mass function gives the comoving number density of dark
matter halos per unit mass interval, and it is expressed as, [34]

dn

d logM
=
ρm
M

d

d logM
erfc

(

ν√
2

)

(6.1)

where ν ≡ δc/σ(M), δc is the overdensity threshold for the collapse to take place, in the
matter dominated universe is usually δc = 1.686.

The Press-Schechter mass function was one of the first attempts to predict the abun-
dance and distribution of dark matter haloes in the Universe based on the primordial
density fluctuations. While it provides a simple and useful analytical approximation, it
has some limitations and discrepancies compared to results from large-scale numerical
simulations.

6.3 Excursion Set Mass Function

The excursion set formalism provides a more accurate and refined description of the
abundance and properties of dark matter halos compared to the original Press-Schechter
formalism. It takes into account the non-linear evolution of density fluctuations and
includes higher-order corrections, leading to improved agreement with results from large-
scale numerical simulations.

The excursion set mass function is, [7]

df

d logM
=

√

2

π

(ν + 0.556)e−
1
2
(ν+1.34)2

(1 + 0.0225ν−2)0.15

∣

∣

∣

∣

d log σM
d logM

∣

∣

∣

∣

(6.2)

where f is the dark matter mass fraction in collapsed region of mass M , ν ≡ 3/σM and
the rms density contrast, σM is

σ2
M =

∫ ∞

0

dk

k
P(k)W 2(kr) (6.3)

where W (x) ≡ 3(sin x − x cos x)/x3, M = 4π
3
ρm,0r

3, ρm,0 is the comoving dark matter
density. The upper panel of Figure 6.1 illustrates df/d logM for collapsed regions of mass
M .

For the dark matter halo formation to take place the local region has to be matter
dominated, the corresponding formation scale factor can be expressed as and is illustrated
in the upper middle panel of Figure 6.1

af (M) ∼ e2
∣

∣

∣

∣

r
∫∞
0
dkP(k)W ′(kr)

∫∞
0

dk
k
P(k)W (kr)

∣

∣

∣

∣

aeq (6.4)

The power spectrum for this calculation is

P(k, a) = I21

(

log

(√
2I2

k

keq

a

aeq

))2

Pζ(k) (6.5)

where I1 ≃ 6.4, I2 ≃ 0.47 from [1]. The ellipticity of the initial tidal field for a region of
mass M at its collapse time is

e(M) =
1

3

(

1−
(

1 +
σM√
5

)−1)

(6.6)
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Figure 6.1: Ultradense halos arising from the primordial power spectrum expressed in
(6.5). The upper panel shows the differential dark matter mass fraction for the collapsed
region of mass M . The upper middle panel shows the scale factor at the time of collapse
of the region of mass M . The lower middle panel shows the characteristic density of the
halo. The lower panel shows the characteristic radius of the halo, [14].
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6.4 Ultradense Dark Matter Halo’s Structure

Consider the ellipsoidal collapse of overdense region that leads to ultradense dark matter
halo formation. The most probable values for e and p to describe the initial tidal field as
discussed in the section above are

e = (
√
5δc/σ) p = 0 (6.7)

Inserting them into the critical collapse threshold, δc = 3/(1− 3e+ p), we can express
it in terms of rms density contrast, σ

δc = 3

(

1 +
σ√
5

)

(6.8)

In the excursion set formalism this threshold corresponds to the moving barrier, [7]

B(S) ≡ 3

(

1 +

√

S

5

)

(6.9)

with S ≡ σ2. For a Gaussian random walk, the distribution of first barrier crossings in
this scenario is well approximated by

F (S) =
3 + 0.556

√
S√

2πS3
exp

(

− B(S)2

2S

)(

1 +
S

400

)−0.15

(6.10)

This distribution results in the following Press-Schechter mass function for the halo

dn

d logM
=

√

2

π

(ν + 0.556)e−
1
2
(ν+1.34)2

(1 + 0.0225ν−2)0.15
d log ν

d logM

ρm,0

M
(6.11)

where ρm,0 ≃ 33M⊙kpc
−3 is the comoving dark matter density and ν ≡ 3/σM . Here, σM

is the rms density contrast smoothed on the mass scale, M , which we evaluate using a
sharp-k filter in order to accommodate power spectra that deviate significantly from scale
invariance.

σ2
M =

∫ kM

0

dk

k
P(k, a) (6.12)

with M ≡ 6π2ρm,0k
−3
M , which implies

d log ν

d logM
=

P(kM , a)

6σ2
M

(6.13)

And,

P(k, a) ≡ k3

(2π)2
P (k, a) (6.14)

which is the dimensionless matter power spectrum, which is a function of time. And, the
power spectrum of the primordial curvature perturbations

P(k, a) = I21

(

log

(√
2I2

k

keq

a

aeq

))2

Pζ(k) (6.15)

where Pζ is the dimensionless power spectrum of primordial curvature perturbations.
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Figure 6.2: Differential dark matter mass fraction in ultradense halos and PBHs in the
double inflation scenario, [15].

6.5 Ultradense halos and Primordial Black Holes

Typical density peak that results in a collapse to produce a halo requires ζ ≳ 0.15, whereas
for a PBH, this requirement is around unity. Due to this argument, ultradense minihalos
are expected to outnumber PBHs in scenarios where there is nonrelativistic dakr matter
decoupled from the radiation at the time that the large amplitude initial density variations
are entering the horizon. There are two possibilities, first - PBHs are only a fraction of
dark matter and ultradense halos form from dark matter particles, second - PBHs are all
of dark matter but have a mass function that extends over many rders of magnitude, so
that the ultradense halos are clusters of much smaller PBHs.

Consider the scenario [24], when a double inflation model yields a complicated pri-
mordial power spectrum that produces asteroid-mass PBHs that comprise almost all of
the dark matter while also producing a small abundance of 10 to 100M⊙ PBHs to ex-
plain binary coaslescence detections. Then we expect that the density fluctuations that
produce more massive PBHs also create ultradense halos that consist of asteroid-mass
PBHs. Figure 6.2 shows the differential mass fraction in ulradense halos that form during
radiation dominated epoch, from which we can see that the massive PBHs comprise only
0.2 per cent of the dark matter. Whereas dark matter halos coming from the same density
variations comprise about 40 per cent of the dark matter mass.

Another scenario [9], where the primordial power spectrum is

Pζ(k) =















As

(

k
0.05Mpc−1

)ns−1

, if k < k1

A1

(

k
106Mpc−1

)ns−1

, if k > k1

(6.16)

where As = 2.1 × 10−9 and ns = 0.96 to match the data from the cosmic microwave
background, the power is boosted to A1 ≃ 0.022 at small scales k > k1 ≃ 190Mpc−1 in
order to produce PBHs in the right abundance to comprise all of the dark matter. This
spectrum is featureless and nearly scale invariant for k > k1, but it yields the nontrivial
PBH mass function that is depicted in Figure 6.3.
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Figure 6.3: Differential dark matter mass fraction in ultradense halos and PBHs in the
PBH scenario, [15].

In this second scenario, the bulk of dark matter consists of O(1)M⊙ PBHs, but a tail
of much larger PBHs act as seeds for the supermassive black holes found at the centers of
galaxies. The density variations on scales large enough to produce such PBHs also cause
the solar mass PBHs to cluster in ultradense halos up to nearly 105M⊙. Whereas PBHs
larger than 103M⊙ comprise only 3 per cent of the dark matter, 30 per cent of the dark
matter resides in ultradense halos above this mass scale. If halos of massMhalo and PBHs
of mass MPBH form from density fluctuations of the same scale, then

Mhalo ∼M
3/2
PBHM

−1/2
eq (6.17)

approximately relates two mass scales, whereMeq ≃ 3×1017M⊙ is the horizon mass at the
matter-radiation equality. The difference between the mass scales arises because PBHs
form from radiation, while halos form from matter.

Figures 6.2 and 6.3 show also the distribution of the collapsed region before halo
formation. As it was discussed before the collapsed region forms a halo only after it
becomes locally matter dominated, which occurs at a ∼ e2aeq, where e is the ellipticity
of the region’s initial tidal field. Typically, ellipticity varies from 0.1 to 0.3, local matter
domination occurs around a ∼ 10−5 within regions that have collapsed by then, so most
of the halos have the formation time af ∼ 10−5.

6.6 Conclusion

All in all, to discuss the abundance of the ultradense dark matter halos, this chapter
covered the Press-Schechter formalism and its extension, Excursion Set formalism. The
power spectrum resulting out of the latter formalism is (6.5). The Excursion Set formalism
takes into account non-radial evolution of the overdense region, unlike the Press-Schechter
one. Figure 6.2 shows the differential dark matter mass fraction for this power spectrum.

Primordial black holes and dark matter halos arise from the same power spectrum
[18]. The differential dark matter mass fraction resulting from (6.16) is depicted in the
Figure 6.3 [15].
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Chapter 7

Gravitational Lensing Constraints

7.1 Introduction

Gravitational lensing is a phenomenon in astrophysics and cosmology where the gravita-
tional field of a massive object, such as a galaxy or a galaxy cluster, bends and distorts
the path of light from a more distant background object. This effect is a consequence of
Einstein’s theory of general relativity and has several important implications and applica-
tions in the study of the Universe. According to general relativity, massive objects warp
the spacetime around them. When light from a distant object, like a quasar or a galaxy,
passes near a massive foreground object, the path of the light is bent due to this curved
spacetime. This bending causes the distant object’s light to follow a curved trajectory as
it passes the massive foreground object. There are several types of gravitational lensing:
strong lensing, weak lensing and microlensing. This chapter focuses on the microlens-
ing. Microlensing occurs when a compact object, like a star or a planet, passes in front
of a background star. It causes a temporary increase in brightness of the background
star, which can be observed when the foreground object is a massive compact halo object
(MACHO). One of the potential applications of microlensing is the search for dark matter
in the form of MACHOs. MACHOs are hypothetical dark matter candidates that could
be composed of objects like brown dwarfs, black holes, or other compact, non-luminous
objects. If ultra-dense dark matter halos consist of MACHOs or other compact objects,
they could cause gravitational microlensing events when they pass in front of background
stars. These microlensing events can be observed, and their statistical properties can be
used to constrain the properties of the dark matter objects. By studying the rate and
characteristics of microlensing events, astronomers can place limits on the abundance and
mass distribution of MACHOs or other compact dark matter candidates in the Milky
Way’s halo, where dark matter is thought to be abundant.

This Chapter focuses particularly on constraining ultradense dark matter halos with
the help of gravitational microlensing. Sections 7.2, 7.3 introduce a framework for this
purpose. Section 7.4 provides the results from constraints using different surveys on
ultradense dark matter halos resulting from different power spectrum as well as discussion
on the constraints on PBHs. Section 7.5 provides calculations on how to connect the
primordial power spectrum amplitude with the density fraction and therefore derive a
constraint.

7.2 Gravitational Microlensing

Gravitational lensing is the transient, achromatic magnification of a star due to a transit-
ing object, which offers opportunities to discover dark matter in macroscopic structures
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Figure 7.1: Sensitivity of the survey to generic dark matter structures in the space of lens
size and mass[13].

weighing between asteroid and solar masses. The populations of effectively pointlike
lenses, primordial black holes and MACHOs, have been constrained across a wide range
of dark matter masses by surveys such as EROS/MACHO [3], OGLE [31], and Subaru-
HSC [32]. The microlensing signal is appreciable when the lens comes within the Einstein
radius along the line of sight between observer and source star.

We denote the lens mass byM , and the observer-lens, observer-source, and lens-source
bu DL, DS and DLS = DS − DL, respectively. The Einstein radius of a pointlike lens is
given by, [13]

RE =

√

4GM

c2
DLDLS

DS

=

√

4GMDS

c2
x(1− x) (7.1)

with x ≡ DL/DS. The Einstein radius, RE is the closest approach to the lens of light
rays from the source to the observer when the lend lies along the line of sight. It is also
a useful distance scale with respect to which we normalize other distances.

Complication arises when the angular extent of source stars corresponds to a distance
at the lens larger than the Einstein radius. This suppresses the magnification relative to
pointlike sources. The effect is applicable particularly to the Subaru-HSC survey of M31
because of its sensitivity to small transit times and hence small Einstein radii.

In paper [13], they consider microlensing constraints on extended dark matter struc-
tures using Subru-HSC survey. Figure 7.1 shows the approximate sensitivity of the survey
to generic dark matter structures in the space of lens size and mass. The dashed line shows
the sensitivity that could be achieved without the effects of the sources’ finite size and
without the effects of wave optics. The lowest and highest masses probed are determined
respectively by the smallest and largest transit time scales to which the survey is sensitive.
For lenses much larger than the maximum Einstein radius of the setup, the lens becomes
too diffuse to magnify source stars appreciably. Besides, lens sized of a given mass are
bounded from below by the Schwarzschild radius corresponding to that mass.
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Figure 7.2: Geometry of the setup projected on the lens plane, [13].

7.3 Microlensing Constraints on Ultradense Dark Mat-

ter Halos

To determine th constraints on dark matter structures by the Subaru-HSC experiment,
consider the microlensing signals from extended sources by extended lenses. Dark matter
halos are intrinsically extended objects, therefore it is important to take into account
for their size when deriving their potential lensing signatures. The setup to obtain the
magnification of images is depicted in Figure 7.2.

The relevant distance scales along the line of sight (DS, DL) are typically much larger
than those in the transverse direction, e.g. RE, in the microlensing surveys that are
considered. This means that we can treat the lensing as occurring entirely in the transverse
place containing the lens. Therefore it is useful to view the lensing setup projected onto
this plane with all distances expressed in units of RE as in Fig. 7.2. In units of RE, the
source radius in the lens plane is rs ≡ sR∗/RE, the distance from the lens center to the
source center is u, and to an arbitrary point on the edge of the source is

ū(ϕ) =
√

u2 + r2s + 2urs cosϕ (7.2)

The lensing equation describing the trajectory of light rays after passing the lens plane,
for every infinitesimal point on the edge of the source

ū(ϕ) = t(ϕ)− m(t(ϕ))

t(ϕ)
(7.3)

Solving this yields the positions of infinitesimal images at ti(ū(ϕ)) ≡ θi/θE with i labeling
multiple solutions. It is convenient to introduce Einstein angle, θE

θE ≡
√

4GM0

c2
DLS

DLDS

=

√

4GM0

c2
(1− x)

xDS

(7.4)

and the Einstein radius can be expressed as RE ≡ DLθE.
The mass profile, m(t), is the distributions of the lens mass projected onto the lens

plane. For spherically symmetric density profile ρ(r), [14]

m(t) =

∫ t

0
dσσ

∫∞
0
dλρ(RE

√
σ2 + λ2)

∫∞
0
dγγ2ρ(REγ)

(7.5)
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7.3.1 Detectability of a microlensing event

The light coming from a source is deflected by the gravitational field of an object (lens).
For low-mass lenses, the deflection cannot be resolved, but only a modification of the flux
F, defined as

µ ≡ F
F0

(7.6)

where F0 is the flux in the absence of lensing. It is convenient to define β as the true
source position angle with respect to the axis passing though the lens center, θ as the angle
of the observed lensed image of the source. Then the lensing equation can be expressed
as

β = θ − θ2E
θ

M0(θ)

M0

(7.7)

whereM0(θ) =M2D(DLθ) is the lens mass projected onto the lens plane, defined as before
Eq. (5.42).

The magnification produced by an image i is given by the ratio of the image area to
the source area

µi =
1

4πr2s

(

2η

∫ 2π

0

dϕ
dψ

dϕ
t2i (ϕ)

)

(7.8)

where η = sgn(dt2i /dū
2)|ϕ=π while the angular measure is defined from the angle ψ as

tanψ ≡ rs sinϕ

u+ rs cosϕ
(7.9)

The overall total magnification is defined as the sum of the individual contributions

µtot =
∑

i

µi (7.10)

In this treatment, the wave optics effects, that are relevant when computing the mag-
nification from lenses whose size is smaller than the wavelength of the detected , can be
ignored. For the masses considered, the finite source size effect dominates the suppression
of lensing signatures below M ∼ 10−11M⊙. Therefore, the wave effects can be neglected.

In the limit of negligible source size (rs ≪ u) and pointlke lens (R90 ≪ RE), with R90

defined as the radius at which 90 per cent of the total mass is contained, R90 = 32rh. The
analytical solutions in these limits to the lens equation

µtot =
2 + u2

u
√
u2 + 4

(7.11)

In the opposite limit of a very large source, rs ≫ u, the lensing solutions give a large
suppression of µ. This is because the lens only affects a negligible fraction of light rays
coming from the source.

The lensing surveys, such as EROS, OGLE, and Subaru-HSC define as detectable a
microlensing event whose temporary magnification of the source star exceeds the threshold
value µth = 1.34. Following this criterion, we require µtot > µth. The impact parameter,
u1.34, can be depicted as a funciton of both the size of the source, rs, and the size of the
lens, r90 (Figure 7.3).
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Figure 7.3: The threshold impact parameter as a function of the source size and the size
of the lens [14].

7.3.2 Number of Detectable Events

The number of detectable lensing events can be computed by integrating the rate of
overthreshold signals. For a single source star and unit exposure time, the differential
events rate with respect to the halo mass distribution, x = DL/DS, and event timescale
tE, can be written as

d2Γ

dxdtEd lnM0

=

(

dρlens(x)

d logM0

)

2DSϵ(tE)Q
2(x)

M0v20
e−Q(x)/v20 (7.12)

where v0 is the circular velocity in the galaxy. The differential density distribution of
lenses ρlens(x) can be derived as

dρlens(x)

d logM0

≡ df0
d logM0

× ρDM(x) (7.13)

The function Q(x) introduced earlier is

Q(x) ≡ 4

(

u1.34(x)RE(x)

tE

)2

(7.14)

and ϵ(tE) is the efficiency of telescopic detection.
The total number of detectable events Nevents is

Nevents

N∗Tobs
=

∫

d logM0dR∗dtEdx

(

d2Γ

dxdtEd logM0

dn

dR∗

)

(7.15)

where N∗ is the number of observed source stars in the survey, Tobs is the total observation
time and dn/dR∗ is the distribution of source star radii.
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7.4 Constraints on the power spectrum at small scales

Now let’s test the sensitivity of microlensing to the ultradense halos arising from a broader
family of primordial curvature power spectra. Consider realistic narrow spectra as a
benchmark,

PPL+Exp
ζ (k) = A0

(

k

k0

)4

exp
(

2− 2(k/k0)
2
)

(7.16)

which is parameterized by the peak amplitude A0 and wave number k0 such that the
maximum is achieved at PPL+Exp

ζ (k0) = A0. This spectrum grows as Pζ(k) ∝ k4 for
k < k0, while it is Gaussian suppressed for k > k0. The precise form of the small-scale
suppression is not important for our constraint. It can be checked by considering the
functional form

PPL+PL
ζ (k) =

2A0
(

(k/k0)−4 + (k/k0)4
)−1 (7.17)

This spectrum similarly peaks at k0, PPL+PL
ζ (k0) = A0 and grows as ∝ k4 for k < k0, but

for k > k0 it decays as ∝ k−4.
The Press-Schechter mass functions from Eq. (num), when evaluated using the real-

space top-hat window function, are not well behaved when the power spectrum decays
rapidly at small scales. They predict a halo count that diverges at small mass scales, even
when there is no power on such scales. This arises from the assumption of uncorrelated
steps in the excursion set formulation of Press-Schechter theory, which corresponds to
the use of a sharp k-space window function, W (x) = θH(c − x), instead of the top-hat
window, with c, a constant, which fixes the connection between the wavenumber and the
mass scale, θH , the Heaviside step function. Therefore we adopt the sharp k-space window
when evaluating σM in (6.12).

The resulting halo distribution is depicted in Figure 7.4. The upper panel depicts the
differential mass fraction in halos as a function of formation mass M . The middle panel
shows the characteristic density of the halo, ρh, as a function of formation mass, M . And
the lower panel shows the characteristic radius of the halo as a function of formation mass,
M .

Note that even though the overall mass fraction f decreases with smaller peak am-
plitude, A0, the corresponding halo density increases, Fig. 7.4. As the amplitudes of
primordial perturbations decrease, the overdensities that can collapse to form ultradense
halos are rarer and therefore increasingly spherical. This means that halos that form
earlier in the history of the universe have larger internal density.

The parameter α, from the Eq.5.38, parametrizes theoretical uncertainty about the
internal structures of ultradense halos. If we adopt a more moderate assumption, α = 30,
then the current constraint disappears and only future observations can constrain a smaller
portion of parameter space. If we take the most conservative assumption, α = 1, both
current and future constraints disappear, as the lenses are then too diffuse to generate
observable signatures within the Subaru-HSC survey.

The meaning of the values for the parameter α is as follows. Simulations during the
matter dominated epoch suggest that the density of material within a halo is about 103

times the density of the universe at the time that the material became part of the halo.
This consideration suggests α ≃ 103, but the halo formation dynamics may be significantly
different during the radiation epoch. So, the α parameter is free to vary. Generally, one
expects that at least the matter density does not drop during the formation process, which
suggests the lower limit for α ∼ 1.

The resulting constraints are depicted in the Figure 7.5, which shows the fraction of
dark matter in terms of ultradense halos from a monochromatic halo mass distribution
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Figure 7.4: Ultradense halos arising from PL+Exp power spectrum and PL+PL power
spectrum [14].

with respect to the halo mass, M0. The constraints are shown by taking different values
of the average density of the halos,

ρ̄ ≡ 3M0

4πR3
90

=
ρh

7300
. (7.18)

From the Fig. 7.5, we can see that the density of the halo plays a crucial role for
obtaining meaningful constraints from microlensing. For the lowest mass, the peak comes
to M0 ≃ 10−9M⊙, which is mostly constrained by the HSC survey. OGLE survey puts
constraints dominantly at the masses around M0 ≃ 5 × 10−5M⊙. Lastly, EROS survey
constraints mostly heavy masses around M0 ≃ 10−1M⊙. More about the surveys can be
read in Appendix A. If the limits for average density is taken to be ρ̄ ≲ 10−15M⊙/R

3
⊙ for

masses M0 < 10−2M⊙ then the system doesn’t have any constraints.
Besides, Figure 7.5 shows the final halo mass distribution, df0/d logM0. Model A is

taken from the Ref. [20] that considers the epoch of QCD phase transition, when the
quarks were confined into hadrons. The distribution from this model crosses constraints
from HSC and OGLE surveys for the average density to be at least ρ̄ = 10−12M⊙/R

3
⊙.

However, taking into account the results from the Figure 6.1, it was realized that halos
formed in this scenario are too large to be constrained by these surveys and setup.

7.4.1 Primordial Black Holes

To compare the lensing constraints with the PBH scenario, compute the power spectral
amplitude required to generate PBHs with the power spectrum as in Equations 7.16,
7.17. First, consider the relationship between the cosmological horizon mass, MH , and
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Figure 7.5: The fraction of dark matter in the form of ultradense halos with the assump-
tion of monochromatic mass distribution. Colored lines show the mass fraction today
with f0 = 3.5f and black curves illustrates the halo mass distribution, [14].

the comoving wave number, k,

MH ≃ 17M⊙

(

g∗
10.75

)−1/6(
k/κ

pc−1

)

(7.19)

where g∗ is the effective number of degrees of freedom, κ ≡ krm, with rm being the
characteristic perturbation size at horizon crossing. Next, compute the abundance of
PBHs, fPBH

fPBH ≡ ΩPBH

ΩCDM

=
1

ΩCDM

d logMH

(

Meq

MH

)1/2

β(MH) (7.20)

where Meq ≃ 3 × 1017M⊙ is the horizon mass at matter-radiation equality, ΩCDM is the
dark matter density today. Using threshold statistics and computing the mass fraction
assuming Gaussian primordial curvature perturbations, [14]

β(MH) = K
∫ δmax

l

δmin
l

dδl

(

δl −
1

4Φ
δ2l − δc

)γ

PG(δl) (7.21)

PG(δl) =
1√

2πσ(rm)
e−δ2

l
/2σ2(rm) (7.22)

where δl is the linear component of the density contrast and the integration boundaries
are dictated by having overthreshold perturbations and type-I PBH collapse. σ(rm) is the
variance of the linear density field computed at horizon crossing time and smoothed on
a scale rm. K and γ are introduced to include the effect of critical collapse, Φ controls
the relationship between the density contrast and the curvature perturbations. Using
the technique from [28] to compute the overdensity threshold, δc for PBH formation, the
spectrum from (7.16) gives rise to collapsing peaks for which the characteristic comoving
size is κ ≡ krm = 2.51 and the shape parameter is αc = 4.14, the threshold for collapse,
δc = 0.572, [14].
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7.5 Constraints on the Primordial Power Spectrum

Amplitude

In order to constrain the primordial power spectrum, we use the bounds on the equivalence
fraction, feq. It can be assumed that feq is equal to the fraction of dark matter contained
in the regions with overdensities, larger than the threshold to form ultradense minihalos,
δmin, but smaller than the threshold to form primordial black holes, ∼ 1/4, then, [10]

feq(Mi) =
2

√

2πσ2
hor(R)

∫ 1/4

δmin

exp

(

− δ2

2σ2
hor(R)

)

dδ (7.23)

where R is the comoving radius containing a dark matter mass, Mi.
If we assume a scale dependence for the amplitude of the primordial power spectrum,

PR(k), we can then calculate using σ2
hor. General approach for varius models of PR(k) can

be found in [8]. Whereas, in our case Ref. [27] summarizes similar approach.
In the matter dominated epoch (MD), the collapse overdensity is δc ≃ 1.686. The

amplitude of subhorizon density perturbation at MD epoch can be expressed as

δχ(k, z) =
2

5

k2

H2
0ΩM

T (k)D(z)R(k) (7.24)

where OmegaM is the matter density parameter today, T (k) is the transfer function,
R(k) is the curvature perturbations at horizon entry, and D(z) is the growth function,
expressed as

D(z) =
(1 + z)2

(1 + zeq)3

(

2 +

(

1 + zeq
1 + z

− 2

)

√

1 +
1 + zeq
1 + z

)

(7.25)

The curvature perturbation at some collapse redshift, zc is required to be δχ(k, zc) = δc,
with zc = 1000, [8].

The dark matter overdensity is evaluated at the rest frame of the radiation and it is
given by

δχ(k, a) = 6R(k)
(

ln θ + γE − 1

2
− Ci(θ) +

sin theta

2θ

)

(7.26)

where γE is the Euler-Mascheroni constant, Ci is the cosine integral function, θ = k√
3aH

.

At the horizon entry, k = aH, (7.26) becomes

δmin(k, zc) =
5

6
δc
H2

0ΩM

k2T (k)

0.988

D(zc)
(7.27)

with k = 5.1× 104Mpc−1, for which the mass Mi = 10−3M⊙ and δmin = 2.2× 10−3.
Now, the relation between power spectrum and σ2(R, t)

σ2(R, t) =

∫ ∞

0

F 2(kR)Pχ(k, t)
dk

k
=

1

9

∫ ∞

0

F 2(kR)
k4

a4H4
T 2
χ(θ)PR(k)

dk

k
(7.28)

where F (x) = 3x−3(sin x − x cos x) is the Fourier transform of the top-hat function, the
transfer function, Tχ(θ) ≡ δχ

θ2R . Perform change of variables, x ≡ kR and evaluate (7.28)
at the horizon crossing

σ2
hor(R) =

1

9

∫ ∞

0

x3T 2
χ

(

x√
3

)

F 2(x)PR

(

x

R

)

dx (7.29)

If we assume that PR is nearly constant, it can be pulled out of the integral and (7.29)
becomes σ2

hor(R) ≃ 0.908PR(k = R−1). And σ2
hor yields the values of feq.
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7.6 Conclusion

To conclude, the main goal of this chapter was to use the microlensing features to constrain
ultradense dark matter halos. The key findings are illustrated in Figure 7.5, which shows
the mass fraction and the halo mass distribution. One conclusion to draw from there
is that the density plays a crucial role in obtaining meaningful constraints, so choosing
proper range of the average density is important. For ρ̄ ≲ 10−15M⊙/R

3
⊙ for the masses

M0 < 10−2M⊙, then the system will not have any constraints [14].
The microlensing features can be also used to put constrain the primordial black holes

(PBH). It was found out that the threshold for the collapse leading to the formation of
the PBH is δc = 0.572 [14].

In order to improve the ability to constrain the data, there is a gap of knowledge that
has to be addressed, namely, the internal density profile of the dark matter halo. This
topic is a open question and it required more simulations of ultradense dark matter halos
formation in the radiation epoch.
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Chapter 8

Conclusion

Ultradense dark matter halos are prominent probes in the cosmology of the early Uni-
verse. The imprints in the power spectrum of energy density perturbations contain po-
tential answers to the questions of the mechanism of inflation, the origin of dark matter
and shine light to the opaque period of the Universe. Though the probes are prominent,
there are uncertainties and challenges requiring further investigation. In this thesis work,
the investigation of this topic from the cosmological perturbations that give rise to the
cosmic structure, including dark matter halos. In Chapter 2, we derived the primordial
power spectrum (2.7) and the evolution of the dark matter overdensity in the radiation
dominated epoch (2.33). This allows to proceed further to study the collapse and the
formation of the so-called dark matter protohalo in Chapter 3. The reason to call it a
protohalo is due to the fact that the overdense region in the radiation dominated epoch
after collapse doesn’t form a halo until it becomes locally matter dominated [4]. We
considered a spherical collapse from isothermal and adiabatic perturbations, the equa-
tions to describe these perturbations were derived fully (3.55, 3.61). A more realistic
case would be the one, which takes into account non-radial evolution, namely, ellipsoidal
collapse, described by (3.86). Chapter 4 provides calculations of the dynamics of the
collapse of overdense region in the matter dominated epoch and further accretion process
onto ultradense minihalo that formed in radiation epoch. Chapter 5 concludes with the
properties of the ultradense dark matter halos, such as the core maximum size, density
profiles and structures. Though the internal structure and density profile is yet unknown
and is an open question. The factors that affect the formation of the internal structure
of the ultradense dark matter halo are the nature of dark matter particle, annihilation of
dark matter and inflow dynamics to the centre of the halo and the cosmological scenario
[4]. To obtain a better understanding more simulations of ultradense dark matter halos
formation should be done, for example [6]. Chapter 6 concludes on the abundance of the
ultradense halos and primordial black holes. Lastly, Chapter 7 provides a way to constrain
primordial power spectrum amplitude. However to obtain more conservative constraints
more research in the internal structure of the ultrandese halos is required, namely more
numerical simulations of the ultradense halos formation. Overall, the internal density
of the ultrandense dark matter halos is an intriguing topic for further investigations. I
hope to proceed further in my PhD research in this direction and learn more about com-
putational tools such as GADGET, RAMSES, ENZO. These tools can help to design a
simulation for the formation of the ultradense dark matter halo, having studied more of
the key factors affecting this process.
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Appendix A

Lensing Surveys

Lensing surveys refer to astronomical surveys that are designed to study gravitational
lensing phenomena, particularly weak gravitational lensing, and their applications in as-
trophysics and cosmology. These surveys involve the observation and analysis of how
the gravitational fields of massive objects, such as galaxies and galaxy clusters, distort
and magnify the light from more distant background objects. Lensing surveys provide
valuable insights into various aspects of the Universe, including dark matter distribution,
the nature of dark energy, and the large-scale structure of the cosmos.

A.1 EROS

The EROS collaboration conducted gravitational microlensing surveys to search for dark
matter objects and to study the distribution of matter in the Milky Way galaxy. The
primary goal of EROS was to detect gravitational microlensing events caused by compact
objects, such as dark matter particles, passing in front of background stars. Gravitational
microlensing occurs when a massive object passes in front of a more distant background
star. The gravitational field of the massive object acts as a lens, causing the light from
the background star to be magnified and temporarily brightened. This phenomenon can
provide insights into the distribution of dark matter in the Milky Way and the nature
of dark matter particles. EROS surveys aimed to detect microlensing events caused by
compact, massive objects that might be candidates for dark matter, such as MACHOs
(Massive Compact Halo Objects) or other faint objects that do not emit significant light.
In this appendix, the setup that was used in Ch. 7 is summarized here.

EROS-2 survey is focused on the observations of stars within the Large Magellanic
Cloud (LMC), at a distance DS = 50kpc away from Earth. The contribution of the Small
Magellanic Cloud (SMC) was neglected in the analysis, since it is dim compared to the
source of interest. The lenses of this setup are located in the Milky Way (MW). The
density profile of the dark matter is isothermal one and is expressed as, [12]

ρDM(r) =
ρs

1 + (r/rs)2
(A.1)

r ≡
√

R2
sol − 2xRsolDS cos l cos b+ x2D2

S (A.2)

with ρs = 1.39GeV/cm3 the core density and rs = 4.38kpc the core radius and Rsol =
8.5kpc the radial distance of the Sun, l and b are the longitude and the latitude of
the source in galactic coordinates. In the case of LMC, l = 238◦ and b = −33◦. The
number of observed stars, N∗ = 5.49× 106, the observation time, Tobs = 2500 days. The
efficiency factor, ϵ(tE), of the EROS survey can be found in the Ref.[2]. EROS-2 LMC
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survey observation revealed only one candidate for microlensing signature, Nobs = 1. The
constraint obtained by the EROS survey is depicted in the Figure 7.5 for monochromatic
mass distribution. The constraint is not effective anymore for values of the average density,
ρ̄ ≳ 10−9M⊙/R

3
⊙. This is due to the fact that the lens of this size is smaller than the

Einstein radius, RE.

A.2 OGLE

OGLE-IV survey observes stars from the Milky Way (MW) galaxy. The density profile
of the MW halo is taken to be isothermal one. The distance to the source stars is
DS ≃ 8.5kpc, the longitude and the latitude of the source in Galactic coordinates are
(l, b) = (1.09◦,−2.39◦). The number of the source stars that were used in the survey is
N∗ = 4.88× 107 and the observation time is Tobs = 1826 days. The number of candidate
microlensing events over the observation time is 2622. The survey resulted in Nobs = 6
for tE ∼ 0.1 days, this can possibly constitute to PBH detection. To derive the constraint
on the fraction of dark matter, f , this expression is used [11]

κ = 2

Nbins
∑

i=1

(

NFG
i −NSIG

i +NSIG
i ln

NSIG
i

NFG
i

)

(A.3)

and it is required that κ < 4.61, which corresponds to the 90 per cent confidence level
in Poisson statistics. Index i indicates the binning events by tE , NDM

i is the number
of lensing signals induced by dark matter halos, NFG

i is the number of astrophysical
foreground events and NSIG

i ≡ NFG
i + NDM

i . The constraint from the OGLE survey
ranges for masses from 10−6M⊙ to 10−6M⊙ and is effective for ρ̄ ≳ 10−9.

A.3 Subaru-HSC

Subaru-HSC survey used the stars from the M31 galaxy with the distance DS ≃ 770
kpc from us. Lensing signatures in this survey arises both by M31 and MW compact
structures. The circular speed for the MW galaxy is v0 = 220 km/s and for the M31
is v0 = 250 km/s. The differential event rate is the sum of each differential rate, dΓ =
dΓMW + dΓM31. The density profile of dark matter is assumed to be NFW with scale
density 0.184 GeV/cm3 and the latitude and the longitude are (l, b) = (121.2◦,−21.6◦).
The number of stars in the HSC survey id N∗ = 8.7 × 107, the observation time is
Tobs = 7h. The HSC survey constraints the lens masses much smaller than the previous
surveys, EROS and OGLE.
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