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Preface

All sentient being are strongly bounded in the way in which they can efficiently and usefully
manipulate their environment by their cortical circuits’ proficiency at themeaningful encod-
ing of incoming information into a compact and interpretable code, that ultimately results
in an implicit (cognition) or explicit (motion) action. Cortical circuits are characterized by
immensely complex networks of neurons and inter-neurons that continuously interact with
each other by means of electrical currents and chemicals, with each of them propagating a
non homogeneous series of bursts, called action potentials, that fully characterizes the neu-
ron’s code. It is still to be understood the extent to which this individual code ultimately
impacts the organism’s output, and whether and how the integration of many codes within
and across cortical layers generates complex behaviour. Nonetheless, in order to gain some
insight into how this organic maze works and how it is so efficient at doing what it does, it is
necessary to start from an investigation of its building blocks, or its simplest units: neurons.
Specifically, it would be interesting to understandwhether, from the codes of neurons alone,
it is possible to extract their overall encoding relevance for the task at hand, which in itself is
a highly non-trivial goal given the simple nature of the signal. The problem arising from this
type of quantification primarily resides in the lack of knowledge of the interactions in the
network, the dynamics of the individual units in the network, and the time scale characteriz-
ing the generated code. A perhaps cumbersome approach at this quantification would first
require the construction of an approximatemodel of the network under study, and only later
an examination of the acquired codes; such method introduces a fair degree of arbitrariness
in the whole process, thus potentially biasing the interpretation if not the results themselves.
For this reason, it would be desirable to develop a coefficient that abstracts from any assump-
tion on the underlying model and that at the same time is able to deliver a quantification of
the relevance of the code generated by the unit under study.
The first chapter of this book will focus on the biological and mathematical description of
the brain and its components, to the degree which I think is most suited for the reader to un-
derstand the rest of the thesis work. The second chapter will instead define Multiscale Rel-
evance (MSR), which is, the coefficient for task relevance quantification mentioned above,
along with a recent application to an ensemble of firing neurons. In the third chapter of
the book, I will describe the theory behind a simple model of the cortex exhibiting sustained
chaotic activity, to which the coefficient will be later applied and in the fourth chapter I will
recall some basic concepts from graph theory. Finally, the remaining part of the thesis will
be entirely devoted to the outline of the results obtained during my internship at the Kavli
Institute for Systems Neuroscience at NTNU.
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1
The Brain as a Complex System

1.1 Evolution of the Brain and its Anatomy

If we consider the life span of our planet, the Earth, which started its geological formation

about 4.5 billion years ago, we immediately recognize how the dawn of intelligent life and,

more specifically, the development of nervous systems, has only been a recent addition in

history. Indeed, the first life forms presenting a rudimentary nervous system appeared on

Earth about 700million years ago [16], such as snails, and their system mainly consisted of

collections of cells, known as ganglia, that were functional to the simplest motor and regula-

tory behaviour. It was only about 250million years ago that life forms with the first brains

developed and, given its position - embedded close to the major sensory organs - it provided

a clear evolutionary advantage to those organisms, granting them rapid responses to hostile

environments. From that moment on, those delicate yet extremely complex structures have

constantly been under evolutionary pressure, with the human brain representing the pinna-
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cle of this incredible process.

The human brain is an astonishingly complex organ constituted by approximately 100 bil-

lion neurons, each of which connects, on average, to other 10000 and enforce a small-world

topology [26] on the network as whole. The average human brain has a volume of about

1400 cm3, it is characterized by a heavily convoluted surface and is subdivided into four

major cortices spanning two different interconnected hemispheres: the frontal cortex, the

sensory-motor cortex, the parietal cortex and the occipital cortex. Yet, all of its processing

units, the neurons characterizing the cortex, can be found in a strata of gray matter ranging

from 1.5mm to 4mm in thickness and distributed at the surface; the bulk of the organ, the

white matter, is characterized by nerve fibers connecting the different areas of the brain with

each other as well as with themajor pathways of the nervous system. The sheer size of the vol-

ume occupied by this connecting tissue should give the reader a vague idea of how complex

the correlations in activity between different neurons and, more in general, different cortical

areas are.

Figure 1.1: Visualization of the Difference between Gray and White matter (source:https://
operativeneurosurgery.com/doku.php)

Focusingon the external layer of graymatter, and imagining to carve aperfect parallelepipedal

column, we find six distinguishable layers characterized by different properties, which have
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formed through a migration process during early fetal development. Namely

• Layer I: nerve fibers for connections with the other layers (upmost layer)

• Layer II: granule cells

• Layer III: pyramidal cells

• Layer IV: granule cells

• Layer V: pyramidal cells

• Layer VI: many types of neuron merging with the white matter below (down-most)

All these layer serve different functions and process different types of information, being

it incoming from sensory modalities or from other layers. The coordination with which

such information processing is carried out is the result of the functional evolution of the

network topology, which undergoes a phase of increase in connection (synaptic) density, in

tight relation with the exposition of the young organism to input coming from the exter-

nal environment, and a subsequent phase of pruning, in which all the synapses that are not

closely coupled with the activity of the neuron to which they relay information, die [23].

This topological evolutionary process, in humans, covers a period of about a year and a half,

and should suggest to the reader how primary the tuning of an efficient network of synaptic

connections is for the development of an information processing infrastructure that contin-

uously deals with incoming complex external stimulation. It remains to be understood how

this intricate network impacts the coding of its individual units.

1.2 The Neuron and the Action Potential

The cortex is characterized by two main types of cells, namely neurons (nerve cells) and glia

(glia cells), and they serve different functions.

Glia cells greatly outnumber neurons [25], being 2 to 10 times more, and are not electrically

excitable. Thereby, glia cells are not functional at the active transmission of information in

the network, but rather have a support role, either through the provision of nutrients and
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organic structure or through the engagement in immune system functions. Nonetheless, it

would be imprudent to automatically discard glia cells from advanced modelling of infor-

mation processing in biological neural networks (or neuronal networks), as their role in the

generation of higher cognition may be as important as that of neurons. However, for the

time being the latter will be the protagonists of our story.

Neurons are cells with a very peculiar structure, which in its most general classification can

be schematized as follows

• Soma
It is the main body of the nerve cell, and it hosts the nucleus with its genetic material
as well as other cellular supportive structures that are functional at providing energy.
It is also the part of the neuron where the electrical charge accumulates and, if not
dissipated quickly enough, gives rise to the propagation of a signal.

• Dendrites
Dendrites are long extension of the soma that collect incoming signals from other
units in the network and propagate it according to the principles of temporal summa-
tion (many signal impinging on the sameneuron in the interval [t, t+∆t] are summed
together) and spatial summation (signals arriving at the same dendritic branch are
summed together).

• Axon
The axon is an elongated branch of tissue that can span from 0.1 mm to 2 m and
can be either not coated (slow signal propagation) or coated with a sheet of myelin
(fast signal propagation). Each neuron has just one axon, which near its terminal part
branches into many presynaptic terminals afferring to neighbouring neurons. The
connecting region between the presynaptic terminal and the postsynaptic dendrite is
called synapse, and can be either electrical (fast transmission) or chemical (slow trans-
mission).

Aside from this very general descriptions, neurons vary greatly in their form, branching

and functions, and this variability adds to the complexity of the information processing sys-

tem as a whole, which is ultimately what allows the organism to respond quickly and selec-

tively to changing external conditions.

4



Figure 1.2: Structure of a neuron (source: Principles of Neural Science, Kandel[25])

The generation of the signal that conveys information to other neurons in the network

takes place in the axon hillock (fig. 1.2), which is the initial segment of the axon. The gen-
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erated signal, which then propagates across the entire length of the axon, is called action

potential, and it is described as a all-or-none phenomenon. For the purpose of action po-

tential generation, a particularly important component of the neuron is its cell membrane,

the ionic conductance of which can change in response to different external stimuli [40],

thus making neurons excitable cells. Indeed, before talking about the signal itself, we have

to consider the membrane potential of the neuron, which at rest ranges from −70 mV to

−60mV , and quantifies the difference in voltage between the intracellular and extracellular

fluid, which is due to differences in ion concentration. As a matter of fact, the two fluids

have a different ionic composition, with the former being rich in potassium cations (K+)

and macro-molecules P−, while the latter is richer in sodium (Na+), Calcium (Ca2+), and

chlorine (Cl−). It is this difference in ion concentrations that ultimately makes the genera-

tion andpropagation of the action potential possible, provided that the neuron is sufficiently

excited.

When enough input currents, collected by the dendrites of the neuron, accumulate in the

soma, depolirizing the cell to the pointwhere themembrane potential is−45mV , an abrupt

change in the ionic conductance of the cell membrane occurs. From this point on, the dy-

namic interplay between fluxes of Na+ and K+ continuously changes the ionic conduc-

tance of the cell membrane around the axon in both time and space, so that if v(t, x) =

50mV , then at time t+ dt the portion of the axon of coordinates x+ dxwill be subjected

to a significant Na+ influx and a relatively smaller and late K+ outflux, which then leads

that portion of the membrane into a refractory state such that further excitation is impossi-

ble. Further actions by additional gates and sodium-potassium pumps will bring that axon

segment back to its original equilibrium state, thus making the propagation of subsequent

action potentials possible. In order to make the process clearer, consider the following im-

age representing the propagation of an action potential in the giant axon of a squid, the same

used by Hodgkin and Huxley for their revolutionary paper.
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Figure 1.3: Propagation of an action potential in a giant axon of a squid (source: https://commons.wikimedia.
org/wiki/File:Propagation_of_action_potential_along_a_giant_axon_en.png)

1.3 Formalization of Neurons as Point Processes

Consider a neuron n as a generic point in space, the coordinates of which are irrelevant, and

which is subject to external inputs ϵnj(t) coming from a set of neighbouring neurons. Then

we model the membrane potential of the chosen neuron, for a limited number of incoming

inputs, as

un(t) = ur +
X
j

X
f∈F j

ϵnj(t− tfj ) (1.3.1)

whereur is the resting value of themembrane potential andF j denotes the set of firing times

of neuron j [17]; instead, if the number of impinging signals is significantly high, then the

interaction is non-linear. In both cases, the occurrence of a spike is modelled as an instan-
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taneous and transient phenomenon, accurately defined by a Dirac’s delta function (which

in itself is a distribution rather than a function). Suppose then that neuron n fires at time

tfn ∈ [0, T ]; the event is captured by

δ(t− tfn)

Thereby, the entire spike train associated to a neuron n in the interval [0, T ] is given by

ST
n (t) =

X
f∈F (T )

δ(t− tfn) (1.3.2)

and here F (T ) denotes the firing time of the neuron up to time T . We will now exploit the

definition of spike train to provide a more realistic model of neuronal firing, where we allow

for non-linear interactions and we impose a reset condition, which brings the membrane

potential instantaneously back to its resting value. Thus, for uθ themembrane threshold for

firing, we have

dun
dt

(t) =
1

τm
− (un(t)− ur)−RC(uθ − ur)Sn(t) + RI(t) (1.3.3)

where R and C are resistance and capacitance of the cell membrane, respectively, and I(t)

accounts for the non-linear input impinging on the cell. The term

C(uθ − ur)Sn(t)

accounts for the instantaneous subtraction of charge every time that the threshold is reached.

Thismodel is known as Leaky-Integrate-and-Firemodel (LIF) and provides a very simple yet

powerful account of neuronal dynamics.

A more realistic model, which is also significantly harder to fully simulate, is the Hodgkin-

Huxley model, formulated by Hodgkin andHuxley in the ’50s, later granting them the No-
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bel prize in medicine. The model starts from the same dynamic equation for the membrane

potential

C
du

dt
(t) = I(t)−

X
k

Ik(t) (1.3.4)

where the last termdescribes the contribution due to the fluxes of ionic currents. Specifically,

X
k

Ik(t) = gNam
3h(u− ENa) + gKn

4h(u− Ek) + gL(u− EL) (1.3.5)

m : Sodium activation (3 sites)

n : Potassium activation (4 sites)

h : Inactivation

where the dynamics of the gates themselves are regulated by a set of O.D.E.s of the form

dϕ

dt
=

1

τϕ(u)
(ϕ− ϕ0(u)) ϕ ∈ {m,n, h}

This model, however, does not take into account the stochasticity inherent in channel open-

ing; such phenomenon could be taken into account by gating dynamics

dϕ

dt
= αϕ(u)(1− ϕ) + βϕ(u)ϕ

with

αϕ∆t : p(ϕ(t) = on |ϕ(t−∆t) = off )

βϕ∆t : p(ϕ(t) = off |ϕ(t−∆t) = on )

Above all, from any of the presented model we are able to extract a set of firing times for the

neurons under study, where for example we could consider {t ∈ F (T )} as the set of hitting

9



times in the interval [0, T ] satisfying the condition

t : u(t) = −45mV

that is, when a spike is generated. Thus, the information that we can extract from suchmod-

els mainly consists of firing times, and we now venture into another avenue of the debate on

how neurons encode information. There are two prevalent views on the issue

1. Rate (Frequency) View

2. Spike-Times View

1.3.1 Rate View

According to the rate view,most of the information carried by a spike-time series is contained

in the cardinality of the set, or in the cardinality of different partitions of the set. Specifically,

the rate of firing of a neuron when exposed to any given stimulus is in itself informative

about the neuron selectivity and purpose, and it can be quantified in many ways. The most

superficial coefficient that quantifies the firing rate of a neuron is

rn(T ) =
1

T

Z T

0

ST
n (t) dt (1.3.6)

This is a very coarse estimate of the firing rate, as we have no evidence that the spikes gener-

ated in the considered interval are archetypal of that neuron response to the environment (it

is possible to record during an anomalous response). Instead, a finer measure of firing rate

closes down on a smaller interval [t, t+∆t] but, rather than taking the actual spike train re-

sponseST
n , it considers an average, which could be overmany trials or over the spike intervals

distribution, if the latter is known.

rn(t) =
1

∆t

Z t+∆t

t

E[ST
n ](τ) dτ (1.3.7)
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Notice that, in this last case, taking the limit∆t→ 0 does notmakemuch sense, as the inter-

val needs to be big enough to actually contain a spike. Indeed, for very small time intervals

the firing rate coincides with the neural response; suppose that E[ST
n ] ∈ L1[0, T ] and that

its primitive is φ : [0, T ] → R+

rn(t) =
φ(t+∆t)− φ(t)

∆t

=
d
dt
φ(t)∆(t) + o(∆t2)

∆t

≈ d

dt
φ(t) = E[ST

n ](t)

Thereby, it follows that any functionof the neural response that results from the convolution

of a property h ∈ L2[0, T ] and the expected neuronal response can actually be written as

F(T ) =
1

T

Z T

0

h(τ)E[ST
n ](t− τ) dτ

=
1

T

Z T

0

h(τ)r(t− τ) dτ

where the latter should hold a great empirical advantage. As a matter of fact, in empirical

contexts the firing rate is estimated through a binning procedure, so that if we want to know

the quantity for a small interval [t, t+∆t]we use

ω(τ) =

(∆t)−1 τ ∈ [t, t+∆t]

0

rappr(t) =

Z
R
ω(τ)ST

n (t− τ) dτ (1.3.8)

Sincewe are considering only first ordermoments of the spike train statistics, we can suppose

subsequent spikes to be independent from one another, and subsequentlymodel the timing

for the entire series as a homogeneous Poisson process, or rather the probability to have k
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spikes in a time window [0, T ].

pT (n) =
(rT )k

k!
e−rT (1.3.9)

1.3.2 Spike-Times View

The spike-times view, on the other hand, hypothesizes that most of the information in a

neural code is contained in the timing of the spikes, and consequently also in the length of

the interspikes intervals (ISI).Thereby, this stance holds thatmost of the informative content

resides in higher order moments of the neural code, as the autocorrelation of the spike train

response function, which is defined as

QSnSn =

Z
R
E[(Sn(t)− E[rn])(Sn(t+ τ)− E[rn])] dt (1.3.10)

Under this assumption, we are expressing the fact that the timing of the different spikes,

rather than their number, is what actually conveys information, and this allows to expand

the framework to inter-neuron correlations, where we consider the correlation between the

neural codes of two or more different neurons to gauge how much they depend on each

other.

QSnSm =

Z
R
E[(Sn(t)− E[rn])(Sm(t)− E[rm])] dt (1.3.11)

Consequently, since we are introducing higher order dependencies, we are in some sense

considering the information content of the network as more sensible to state perturbations,

and therefore as having higher variance across conditions. Furthermore, given the supposed

dependencies and their importance for the framework, the neural code of a neuron can no

longer be considered as generated by a homogeneous Poisson process. Instead, wemust con-

sider the firing rate as time dependent, and express

pT (t1, .., tn) = e−
∫ T
0 r(t) dt

nY
i

r(ti) (1.3.12)
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Notice that we still consider it a Poisson process, as the consideration of all the possible com-

bination of inter-spike intervals yields

pT (n) =
pT (t1, .., tn)

n!

(a) Slightly Coupled LIF neurons

(b) LIF neurons governed by double OU process

Figure 1.4: Example of correlated neural codes in a population ‐ rasterplot visualization
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To summarize, the reader can consider this principles as a modelling choice:

• dr
dt

< 1 → rate code

• dr
dt

≫ 1 → temporal code

Finally, we consider how entire networks of neurons are modelled, and how researchers

try to understand their underlying mechanisms through the study of the spike statistics.

1.4 StatisticalMechanics andNeuronal Networks

The field of statistical mechanics deals with the study of large ensembles characterized by

elementary units, the interaction of which results in the system exhibiting emergent prop-

erties - that is, properties that could not be studied or observed focusing on the individual

unit. Since the systems taken into consideration are characterized by very large number of

units (of the order of the Avogadro number 6.02 · 1023), statistical mechanics cannot con-

cern itself with the global deterministic dynamics of the system, but must instead focus on

a probabilistic treatment of the same, narrowing on the statistical moments of the variable

of interest. Throughout the years, it has provided invaluable insight into the behaviour of

a wide breadth of physical systems, and specifically on some of their properties, such as the

alignment of magnetic moments in lattices of interacting particles (Ising Model) or, more

recently, in systems where the spatial structures among units is embodied in the random-

ness of the couplings (Spin Glasses). It has only recently started to gain traction on possible

applications to neuroscience and artificial intelligence.
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Figure 1.5: Visualization of a system in a Spin Glass State (above)

Consider now {σn} as the set of neurons that have a synapse connected to neuron n’s

dendritic tree, and we are interested at understanding how the input incoming from all of

these different sources affects the activity of this neuron. Suppose that it is possible to quan-

tify the amount of neurotransmitters (chemicals) that are released at the synapse between

any neuron in {σn} and the receiving one, and that we proceed with such quantification

for every neuron in the network. Then we can construct a coupling matrix Jij such that

∀i, j ∈ {1, ..., N}, i ̸= j, the coefficient quantifies the amount of neurotransmitters that

neuron j releases at the synapse afferring to neuron i, and finally evaluate the overall neuron-
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dependent input as

Ineun (t) =
X

j∈{σn}

JijS
T
j (t)

By doing so, we obtain for the entire network of neurons a system of coupled differential

equations (take n varing in {1,..,N}) of the following form

dun
dt

=
1

τm
− (un(t)− ur)−RC(uθ − ur)Sn(t) + RI(t) + Ineun (t) (1.4.1)

This last set of equations gives a very detailed account of the dynamic state of each neuron

in the network as time progresses. However, this level of details fails at providing relevant

insight on how the activity of the network as a whole can result in information processing

of some kind. In order to study the network response at a more fundamental level, it is nec-

essary to take a step back and simplify the network model to the point where we consider

neurons as units being either in an active or inactive state. For simplicity, and without nota-

tional overlap, consider the activity of neuron n as modelled by σn, with this being, in most

of the cases, a variable obtaining two possible values. Furthermore, we completely neglect in-

ternal neuronal dynamics, as dictated by the preceding set ofO.D.E.s, in favour of amagnetic

field hn which approximately quantifies internal contributions to the state; the meaning of

the matrix Jij remains the same, except that now we impose Jij = Jji (symmetric matrix).

Under these conditions, we can express the Hamiltonian of the network

H{σ} = −1

2

X
ij

Jijσiσj −
X
i

hiσi (1.4.2)

which quantifies the energy of the system when this is in the specific state σ. Notice that at

any given time there are 2N possible state configurations, and the update dynamics for the

system can be either synchronous (the state value for all the units in the network is updated

at the same time) or asynchronous (the state value is updated for one unit at a time). Then

the probability of the systembeing in a specific stateσ is given by the Boltzmanndistribution
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p({σ}) = e−βH{σ}

Z
(1.4.3)

where β = (kT )−1 for T temperature parameter and k Boltzmann constant, and Z is the

partition function

Z =
X
{σ}

e−βH{σ} (1.4.4)

which is not always tractable. This type of modelling has been widely exploited both for the

study of simple cortical networks of associative memory and feature extraction, as well as,

more in general, for other types of complex systems (e.g. magnets, financial networks, etc..).

1.4.1 TheHopfieldModel

One of themost famous applications of statisticalmechanics to neuroscience has been the so

calledHopfieldmodel, which formalizes how a system of simple units can, through systemic

response, instantiate an associative memory mechanism. Specifically, the author observed

how, by drastically simplifying the inherent dynamics of the units in the network, it was pos-

sible to observe the rise of memory as an emergent property of the system.

Maintaining the previous formalism, we will define a set of binary variables {σi}i=1,..,N

which will be the units of our network. Now, suppose to have a setM = {X1, .., Xn :

X ∈ {0, 1}N} of memories to be stored, and set the coupling matrix as [22]

Jij = (1− δij)
nX

k=1

(2σk
i − 1)(2σk

j − 1) (1.4.5)

where σk
i is the ith component of the kth memory in the set. The idea is then that, with this

type of initialization, any instantiation of the network starting from a generic state σ will

converge, according to the following asynchronous dynamics

σi =
X
j

Jijσj (1.4.6)
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to the memoryXh ∈M such thatXh = arg minx∈M ||σ− x|| at the start. If we consider

the associated Hamiltonian

H{σ} = −1

2

X
ij

Jijσiσj (1.4.7)

and suppose that the following quantity is actually computable, we readily see how conver-

gence gradually decreases the energy of the system, and leads it, from the way in which Jij is

initiated, to an energy well.
∂E

∂σi
= −

X
j

Jijσj < 0 (1.4.8)

Indeed, the stationary states constitute local minima of the energy functionH{σ} with re-

spect to the flipping of the variables {σi}i=1,..,n[8]. As a matter of fact, it is the tuning of

the couplings according to equation 1.4.5 that molds the energy surface H̃ = {(σ,H{σ})}

so that the chosen configuration minimizeH and, consequently, the obtained manifold in-

stantiate a form of content-addressablememory. Each of the chosen configurations can later

be correctly retrieved if the starting configuration of the system lies within its basin of attrac-

tion.

An ingenuous transformation of the system states σi → Si : Si ∈ {−1,+1}

Si = 2σi − 1 (1.4.9)

and of the Hamiltonian [4] as

H{S} = −1

2

X
ij

JijSiSj (1.4.10)

where now the storing of specific patterns by means of the coupling matrix is given by

Jij = (1− δij)
1

n

nX
k=1

Sk
i S

k
j
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allows us to drawmore similarities with a classical spin-glass model, having states in {−1, 1}

and couplings that are quenched but of stochastic nature. Differently from the very popular

SK model, the couplings in the Hopfield model are not drawn from a probability distribu-

tion (Gaussian, in this case), but are rather externally imposed on the base of the patterns

that need to be stored.

Suppose now thatwe are interested at studying the thermodynamics of themodel, and there-

fore that we must derive its free energy. Formally, it is defined as

−βF = Eρ[log(Z)] (1.4.11)

for a generic probability distribution ρ, and where we write, for notational simplicity

Z =
X
σ

e−βH{σ} = Trσ e
−βH{σ} (1.4.12)

The computation of the expected value of the logarithm of the partition function is often-

times not possible, and for this reason the same functionalmust be evaluated bymeans of the

replica method [31], which exploits the trick of ”replicas”, even though they loose physical

meaning in the limit.

−βF = lim
l→0

Eρ[Z
l]− 1

l
(1.4.13)

For this passage, we are implicitly supposing that the product log(Z) ·ρ satisfies the hypoth-

esis of the Lebesgue dominated convergence theorem, so that then the limit and expected

value operators commute.

Following computations analogous to those carried out for the SK model, hence introduc-

ing additional Gaussian variables and the associated Gaussian densities, we get
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E[Z l] =
Y
γ<δ

Z +i∞

−i∞

Nβ2α

2π
dqγδ

Z +∞

−∞
dtγδ

Y
γ

Z +i∞

−i∞

Nβ2α

4π
dxγ

×
Z +∞

−∞
dyγ

Y
γ,k∈Γγ

Z
dmk

γ

(2π/Nβ)
1
2

e[nG({mk
γ ,x

γ ,yγ ,tγδ ,qγδ})] (1.4.14)

with Γγ overlap between the (chosen) configuration k and the replica γ. The functional

expression of G({mk
γ, x

γ, yγ, tγδ, qγδ}) is not relevant for the current exposition (but can

be found in [8]). However, the variables inG, and specifically their saddle point, identify the

order parameters for themodel, and under the assumption of replica symmetry they have the

following physical interpretation

mr = E[(2σk
i − 1)σ̄i] (1.4.15)

the overlap of the configuration k with the thermodynamic state,

q =
1

n

X
i

E[(σ̄i)2] (1.4.16)

x =
1

n

X
i

E[σi] (1.4.17)

are the thermal fluctuations and mean of the spin-glass state, and

t =
1

α

X
k∈Γγ

1

n

X
i

(2σk
i − 1)σ̄i

2

(1.4.18)

y =
1

α

X
k∈Γγ

1

n

X
i

(2σk
i − 1)σi

2

(1.4.19)

mean and thermal fluctuations of the overlap between the thermodynamic state and those

nominated configurations with which its overlap is microscopic. In the given definition, the
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bar above a certain quantity defines the thermal expectation, which is the expectation of the

chosen quantity under the configurations of the system (instead, the expectation E is over

the distribution of the couplings). The order parameters of the model are relevant for the

understanding of how the system behaves in its different phases, and specifically how the

system drastically alters some of its property during the phase transitions.

Studies of this type highlight the primary relevance of statistical mechanics in the investiga-

tion of large scale information processing in biological and artificial systems, by uncovering

how the interaction among very simple units can result in the emergence of complex be-

haviour.

Figure 1.6: Visualization of the energy landscape for a spin glassmodel (source: https://scglass.uchicago.edu/
wp-content/uploads/2017/11/Figure6.png)
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2
Multiscale Relevance - MSR

Suppose to have a sample S drawn from an unknown probability distribution, and that we

are interested at quantifying the informative content of S on the generative process. Most

of the pre-existing theory bases this quantification on the a priori knowledge (or hypothesis)

of the underlying model, or at least of the class of models to which the generative process

belongs, thereby introducing a certain degree of arbitrariness in the assessment. Then given

such approximate knowledge, it would be possible to assess how informativeS is on the gen-

erative process, i.e. how probable the sample is under the unknown distribution. However,

the introduction of extra assumptions can seriously bias the assessment, given that most of

the times, for a generic sample, we have poor if any understanding of the underlying genera-

tive process, let alone the scale at which the generated events (elements of the sample) unfold.

For this reason, it would be useful to devise a measure, or more loosely a sample metric, that

exempts from any assumption on the underlying generative process, and only gauges the

informative content of the sample based on its statistics.
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2.1 Minimally Sufficient Representations

Consider then a sample S = (s1, .., sN) of data-points drawn from a generic alphabet A,

and suppose that this events are sampled independently, which is formally equivalent to

{si}i=1,..,N being i.i.d. and drawn from an unknown probability distribution; furthermore,

suppose total absence of information onA to make the argument as general as possible. We

are now interested at quantifying the informative content of our sample, expressed in the

number of bits that are necessary to represent one of the outcomes [11]. Let

k(s) =
X
si∈S

δ(s− si) s ∈ A (2.1.1)

N =

Z
s∈A

k(s) ds

and broadly define the entropy (associated to the sample)

Ĥ[s] = −
Z
s∈A

k(s)

N
· log2

k(s)

N
ds (2.1.2)

Given our definition of Ĥ as the quantity of encoding bits necessary to represent S , we will

generally have that some of these bits will in fact be useful information, while others just

noise, hence be random variables that, given the useful information, have a maximum en-

tropy distribution [24] (statistical mechanics definition of noise). Given this differentiation,

we are interested at better quantifying such useful information, which will be encoded by a

set of parameters {ϕ}, starting from the following hypothesis:

1. The data of the sample conditioned on {ϕ} is as random as possible.

2. {ϕ} provides the most succinct representation of the useful information
→ minimum description length.

A set of parameters {ϕ} satisfying the previous two hypothesis is defined as aminimally

sufficient representation.
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Without loss of generality, we can consider the alphabetA to be finite, and accordingly we

will consider a set of featuresO = {ϕ1, ..., ϕN} for ϕi ∈ Φ finite set of values, and define

the augmented set

d̂ = (s, ϕ)

so that the total information content associated to d̂ is

Ĥ[s, ϕ] = −
X
s∈S

X
ϕ∈O

p̂s,ϕ · log2(p̂s,ϕ)

= −
X
s∈S

X
ϕ∈O

p̂s,ϕ · log2(p̂s · p̂ϕ|s)

= −

"X
s∈S

X
ϕ∈O

p̂s,ϕ · log2(p̂s) +
X
s∈S

p̂s
X
ϕ∈O

p̂ϕ|s · log2(p̂ϕ|s)

#

= Ĥ[s] + Ĥ[ϕ|s] (2.1.3)

In order for the set of parametersO to be eligible for the definition of minimally sufficient

representation, it must satisfy

1. Features ϕ ∈ O do not introduce additional information on the generative process

Ĥ[ϕ|s] = 0

2. Ĥ[s|ϕ] accounts only for noise in the sample

andwewill now examine how this two assumptions interplay with the given definition of

entropy. Specifically, observing that we can rewrite

Ĥ[ϕ|s] = −
X
s∈S

X
ϕ∈O

p̂ϕp̂s|ϕ · log2(p̂ϕ|s)
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thenwe can exploit the first requirement to obtain a newdefinition of the entropy; namely

Ĥ[s] = −
X
s∈S

p̂s · log2(p̂s)

= −
X
ϕ∈O

p̂ϕ · log2(p̂ϕ) −
X
s∈S

p̂s · log2(p̂s) +
X
ϕ∈O

p̂ϕ · log2(p̂ϕ)

= Ĥ[ϕ] −
X
s∈S

X
ϕ∈O

p̂s|ϕp̂ϕ · log2(p̂s)

+
X
ϕ∈O

p̂ϕ
X
s∈S

p̂s|ϕ · log2(p̂ϕ) + Ĥ[ϕ|s]

= Ĥ[ϕ] −
X
s∈S

X
ϕ∈O

p̂ϕp̂s|ϕ · log2
p̂s
p̂ϕ

−
X
s∈S

X
ϕ∈O

p̂ϕp̂s|ϕ · log2(p̂ϕ|s)

= Ĥ[ϕ] −
X
ϕ∈O

p̂ϕ
X
s∈S

p̂s|ϕ · log2(p̂s|ϕ)

= Ĥ[ϕ] + Ĥ[s|ϕ] (2.1.4)

Focusing now on the second requirement, we are imposing a state of maximal ignorance on

the conditional p̂(s|ϕ), hence that

p̂(s|ϕ) = p̂(s̄|ϕ) ∀s, s̄ : ϕ(s) = ϕ(s̄) = ϕ̃

and since we also have that

p̂(s) = p̂(s|ϕ(s))p̂(ϕ(s))

= p̂(s̄|ϕ(s̄))p̂(ϕ(s̄))

= p̂(s̄)

then by necessity, considering the finite alphabet we must have the equivalence for the asso-

ciated frequencies

k(s) = k(s̄) (2.1.5)
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so that, accordingly, k(s) ̸= k(s̃) ∀s, s̃ : ϕ(s) ̸= ϕ(s̃), which implies that we can express

k(s) as a function of ϕ(s) (in fact, we have a bijective map between the two).

In order to understand the implications of this last fact, we have to resort to tools specific

of information theory and, specifically, to hinge on the data processing inequality. In plain

terms, the data processing inequality asserts that no clever manipulation of the data can im-

prove the inference that can be made from it [10].

Theorem 1 (Data Processing Inequality). LetX → Y → Z be aMarkov Chain and I( ; )

the mutual information operator, defined as

I(X;Y ) = H[X]−H[X|Y ]

Then

I(X;Y ) ≥ I(X;Z)

Proof.

I(X;Y, Z) = H[X]−H[X|Y, Z]

= I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y )

and sinceX andZ are independent given Y , then

I(X;Z|Y ) = 0

I(X;Y |Z) > 0
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where we have used, extending on the mutual information

I(X;Y, Z) =
X
X,Y,Z

p(X,Y, Z) · log2
p(X,Y, Z)

p(X)p(Y, Z)

=
X
X,Y,Z

p(X,Y, Z) · log2
p(Z|X,Y )p(X,Y )

p(X)p(Y )p(Z|Y )

=
X
X,Y,Z

p(X,Y, Z) · log2
p(X,Y )

p(X)p(Y )

+
X
X,Y,Z

p(X,Y, Z) ·log2
p(Z|X,Y )

p(Z|Y )

= I(X;Y ) +
X
X,Y,Z

p(X,Y, Z) · log2
p(X,Z|Y )

p(X|Y )p(Z|Y )

= I(X;Y ) + I(X;Z|Y ) (2.1.6)

In addition, we will also need

Corollary 1. In particular, if Z = g(Y ) we have

I(X;Y ) ≥ I(X; g(Y )) (2.1.7)

We can now apply this tools to the features ϕ and the frequency k(s), which yields the

following inequality

I(s;ϕ(s)) = H[s]−H[s|ϕ(s)]

= H[ϕ(s)] +H[s|ϕ(s)]−H[s|ϕ(s)]

≥ I(s; k(s)) = H[s]−H[s|k(s)]

= H[k(s)] +H[s|k(s)]−H[s|k(s)] (2.1.8)

⇒ Ĥ[ϕ(s)] ≥ Ĥ[k(s)] (2.1.9)
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Since for ϕ(s) to constitute a minimally sufficient representation we have that H[s|ϕ(s)]

must be maximised over the set of all possible featuresΦ, and sinceH[s] is constant for any

given sample S with non-changing classification, then we have that

ϕ(s) = arg minϕ̂∈ΦH[ϕ̂]

At the same time, minimally sufficient representation must saturate the inequality 2.1.8.

Consequently, we reach the following proposition [11][12]

Proposition 1. The frequency k(s) provides aminimally sufficient representation of the sam-

ple S in the sense that

1. The total content of the sample S can be divided as

Ĥ[s] = Ĥ[k] + Ĥ[s|k]

with
Ĥ[k] = −

X
k

k ·mk

N
· log2

k ·mk

N
(2.1.10)

wheremk is the number of outcomes s for which k(s) = k, and

Ĥ[s|k] =
X
k

k ·mk

N
· log2(mk) (2.1.11)

2. In the absence of prior information, Ĥ[k] is the maximum number of bits (per data
point) that can be used to estimate the underlying generative process, and Ĥ[s|k] is a
measure of noise.

Before diving further into the matter, an important remark on non-distinguishable sam-

ples is due. Suppose to have two outcomes s, s̃, each characterized by l ∈ N sample points

and such that k(s) = k(s̃). The formal distinction between s and s̃withinS is the result of

some arbitrary or a priori classification. Any alternative classification leaving S unvaried ex-

cept for a reshuffling of the 2l data points into different outcomes of equal size lwould finally
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result in a sample yielding the same statistics, i.e. the data itself is void of any information on

the classification characterizing the sample that would make it distinguishable, according to

the defined statistics, from any other yielding the same class sizes. The degeneracy resulting

from all this possible alternative classifications is captured by Ĥ[s|k]. The arising question

is how statistically equivalent classifications emerge, and how to formulate a metric that ab-

stracts from all of them, thus providing a quantification that depends exclusively on the data

points of the underlying generative process.

2.2 Resolution, Relevance, andMIS

Suppose now thatwe are interested in events that can be described, in their entire complexity,

as vectors x⃗ ∈ Rn forn≫ 1, and thatwe dispose of a submersion s : Rn → Rm form≪ n

such that it encodes a description of the dataset X = {x⃗1, .., x⃗N} at a given level of details.

This formalization allows us to represent rigorously the operation of classification for our

objects. Suppose now, more loosely, that s : Rn → H whereH is a countable set of labels.

Then

• x⃗ : Complete description of the object

• s⃗ = s(x⃗) ∈ S ⊂ H finite set of discrete labels

Suppose now to consider a family {si}i si : Rn → Hi where each spaceHi provides a

description of the same datasetX at different levels of details. It does follow that the coding

cost Ĥ[s] depends implicitly onHi and this will result in different costs for different levels

of details. Specifically, if we gauge the extremes of the frequency spectrum

1. Let k(s) ∈ {0, 1} ∀s ∈ S −→ very fine level of details. Then

Ĥ[s] = −
X
s∈S

k(s)

N
· log2

k(s)

N

= −N
N

· log2
1

N

= log2(N) (2.2.1)
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It thus follow that any potentially finer level of details would result in a mere rela-
belling of the objects, with the information content remaining the same.

2. Let k(sl) = N and k(sj) = 0 ∀j ̸= l → very coarse description. Then

Ĥ[s] = −
X
s∈S

k(s)

N
· log2

k(s)

N

= −N
N

· log2
N

N

= 0 (2.2.2)

From the previous two point, we can formalize

Definition 1. Ĥ[s] quantifies in bits the level of details of the chosen description s(x⃗) and it

is called resolution.

Now, the finest level of details represent the maximum resolution, while the coarsest the

minimum, and consequently we have a range of intermediate values of Ĥ[s], each associated

to a value Ĥ[k], which is an intrinsic property of the sample at that level of details [11].

Definition 2. Ĥ[k] quantifies the amount of information that the sample of labelsS contains

on the generative process, and it is called relevance.

Moreover, the relevance, which is a positive quantity, satisfies the following properties

1. Ĥ[s] = log2(N) → k(s) ≤ 1

Ĥ[k] = −
X
k

k ·mk

N
· log2

k ·mk

N

= −1 ·N
N

log2
1 ·N
N

= 0 (2.2.3)
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2. Ĥ[s] = 0 → k(s) = N

Ĥ[k] = −
X
k

k ·mk

N
· log2

k ·mk

N

= −N · 1
N

log2
N · 1
N

= 0 (2.2.4)

Given the bound Ĥ[k] ≤ Ĥ[s] and the previous property we have, under a continuum

assumption, that the curve (Ĥ[s], Ĥ[k]) is parabolic and upper bounded by the line Ĥ[s] =

Ĥ[k].

Figure 2.1: Visualization of possible curves in Ĥ[s]− Ĥ[k] space (source: [13])

The region on the right ofmaxĤ[s] Ĥ[k] is called under sampling regime, and any further

increase in resolution will result in a loss of information on the generative process.

The question that now arises is ”Which are the samples that are the most informative on the
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generative process?”. These samples can be found from the maximisation problem

maxmk
Ĥ[k] + µĤ[s] + λ

X
k

k ·mk (2.2.5)

where for convenience we rewrite

Ĥ[s] = −
X
k

k ·mk

N
· log2

k

N
(2.2.6)

The solution to this maximisation problem results in the fact that the maximally informa-

tive samples in the under sampling regime are those that have a characteristic power-law fre-

quency distribution.

mk ∼ k−µ−1 (2.2.7)

which is, in itself, a signature of statistical criticality. From 2.2.7 we have that, in the under

sampling regime, a decrease of ∆ bits in resolution Ĥ[s] grants an increase of µ∆ bits in

relevance Ĥ[k]. Consequently, we have that the parameterµquantifies the trade offbetween

resolution and relevance, and specifically:

• µ ≥ 1 → Lossless compression

• µ < 1 → Lossy compression

• µ = 1 → Zipf’s law - optimal trade off between resolution and relevance

Now that we have defined both resolution and relevance, we can finally provide a formal

and meaningful definition of the (statistical) metric Multiscale Relevance.

Definition 3. Let Ĥ[s] denote the resolution associated to a sample S and Ĥ[k] the related

relevance. Then we formally define theMultiscale Relevance (MSR) as

Rt =

Z
Ĥ[s]

Ĥ[k] dĤ[s] (2.2.8)
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Now, it is calledMultiscale Relevance because it evaluates the relevance of the considered

objects across all possible classification, thus providing ametric which is independent on the

choice of si. This comes particularly in hand, as knowledge of the resolution that best cap-

tures the unfolding of events is often unknown, and therefore it quantifies their information

content in a way that abstracts from any external arbitrary choice.

2.3 MSR andNeural Spike Data

We now consider an application ofMSR to neural spike data, provided in the form of time

seriesF (T ) as defined for 1.3.2. In function of this definition, a spike train can be imagined

as a graph being zero at any time except whenever the neuron fires, where instead it attains

value 1.

Figure 2.2: Exemplification of a Spike Train (source: [38])

Given this object, we will, in accordance with the preceding framework, impose F (T ) =

{t1, ..., tN} := X set of complex instances that admits many different classifications {si}i,

where T is the end time for the recording session. For simplicity, suppose that t1 < t2 <

.. < tN , whereN is the cardinality of F (T ), and proceed with the following construction

[13]

1. Define a time-step δt ≤ T

2. Discretize the time interval T = m · δt intom equal size bins
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3. Generate, using 1.3.2, a set of frequencies {k1, .., km} :

kj =

Z (j+1)·δt

j·δt
ST (t) dt j ∈ {1, ..,m− 1} (2.3.1)

Notice that the initial definition of δt allows us to fixate the time scale at which the spike

sequence is analyzed, thus allowing us to formalize

s : ∆ −→ S̃

such that

si = s(δti) = {b1, .., bmi
} δti ∈ ∆ (2.3.2)

where bj denotes the time bin [j · δti, (j + 1) · δti], j = 1, .., (mi − 1). Adapting then

the resolution metric to the present case, and normalizing in order to obtain Ĥ[s] ∈ [0, 1],

we get

Ĥ[s] = − log(2)

log(N)

mX
j=1

kj
N

· log2
kj
N

= −
mX
j=1

kj
N

· logN
kj
N

(2.3.3)

and coherently with the previous theory,

• ∃δt− : ∀δt ≤ δt− kj ∈ {0, 1} ⇒ Ĥ[s] = 1

• ∃δt+ : ∀δt ≥ δt+ kl = N, kj = 0 ∀j ̸= l ⇒ Ĥ[s] = 0

For each resolution Ĥ[s]we are then interested at characterizing the dynamic response of

the neuron [13]. Indeed, if for some reason ∃l, h ∈ {1, ..,m} kl = kh, then the dynamic

response of the neuron in the bins bl and bh cannot be tell apart. Consequently, one possi-

ble way to evaluate such response over a recording interval [0, T ] is to count the number of

dynamic states at the given resolution. Specifically, definingmk ∈ {1, ..,m} as the number
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of bins characterized by a frequency k
N
, then we define the relevance of the Spike train at the

given resolution as

Ĥ[k] = − log(2)

log(N)

NX
k=1

k ·mk

N
· log2

k ·mk

N

= −
NX
k=1

k ·mk

N
· logN

k ·mk

N
(2.3.4)

and again, in accordance with the limit cases that we have generally discussed in the previous

section, we have that

• k = 1, mk = N ⇒ Ĥ[k] = 0

• k = N, mk = 1 ⇒ Ĥ[k] = 0

SinceMSR, in this specific case, is supposed to measure the richness in dynamic response

of the neuron, it should correlate with other metrics previously defined for analogous pur-

poses, such as the coefficient of local variation [34][33] and the burstiness and memory (sta-

tistical) metrics [19].

We now turn to an application of this adaptation of MSR to spike data, reporting results

from [13] that were subsequently reproduced by myself as a proof of concept.

2.4 MSR and Applications to Real Spike Data recorded from Populations

of Neurons

In the experiment runbyStensola et. al. [36], 65 functional neurons - notnecessarily anatom-

ical neurons, but point sources that emit a spike signal in a neuron like fashion (can be en-

sembles of neurons; recording resolution is not fine enough to discriminate) - were recorded

from themedial Enthorinal cortex (mEC) of freelymoving rats in a 150×150 cm2 box. The

choice of investigating activity in the mEC has not been casual, but rather a task dependent

choice, since the only activity performed by the rats in the given environment is navigation.

Indeed, themedial EnthorinalCortex serves the dynamic representation of self-location [36]
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through the conglomerate working of grid-cells, which are neuronmodules characterized by

hexagonal neural fields that comb the navigated environment. Specifically, grid cells have

several periodic firing fields arranged in an hexagonal lattice [20][29] and the coordinated ac-

tivation of this cells provides the network with a spatial representation of the environment

which is independent from feature extraction. The recorded network is comprehensive of

several grid cells, as well as interneurons, which make up more than 99% of the nervous sys-

tem and mainly serve an integration function, carrying sensory information and regulating

motor activity [28]; overall, they provide relevant compounded information tomodules car-

rying primary cognitive functions, such as memory, learning, cognition, and planning.

In their study, Cubero et al. investigated theMSR score for each of the 65 recorded neurons,

generating a distribution of such values in the range [0.25, 0.3], with the area difference be-

tween more and less informative neurons being clearly identifiable from the plot

Figure 2.3: Difference in MSR area between the least and most informative neurons
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It is nowworth asking whether such scoring really reflects a difference in information cod-

ing relevance for the recorded neurons under the presented framework. Specifically, since

the rats are performing a spatial task, and the investigated area is closely involved in spatial

navigation, we would like to know whether neurons that are classified by MSR as highly

informative (relative to the sample) are also those that provide information relevant for the

task.

In order to answer this question, we will rely on a previously defined metric, which has gen-

eral applications but, in origin, was tailored for the investigation of neural spatial relevance

for signals generated by rats freely moving in an environment. The pseudo-measure in ques-

tion is Skaggs spatial information[35], which is formally defined as

I =

Z
Ω

λ(x) · log2
λ(x)

λ
· p(x) dx (2.4.1)

where p : Ω −→ [0, 1] is the probability measure over the state spaceΩ and λ : Ω −→ R+

its the mean firing rate of the neuron when the agent is in state x ∈ Ω, and

λ =

Z
Ω

λ(x) · p(x) dx (2.4.2)

the overall mean firing rate. In the present case, x denotes the centre of each of a 7.5 ×

7.5 cm2 bin, λ(x) number of spikes of the considered neuron when the rat is located in

the bin of centre x ∈ Ω, and p(x) the probability of being in such bin. Notice however

that x ∈ Ω could represent any state of the agent, not necessarily position, as long as it is a

stationary randomvariable, alongwith the associated spike train. Moreover, in order tomake

the transition of the considered quantities between different bins smoother, I have applied

a Gaussian smoothing kernel to each of the bin centred state probabilities and mean firing

rates. Formally, suppose that the binning procedure results in a continuum of centres - such

thatΩ and its binning are equal - and take a generic centre x̄ ∈ Ω, and consider the generic
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map ϕ (either state probability or mean firing rate); then the smoothed map will be

ϕ̃(x̄) = ϕ(#) ∗ G(#, σ)(x̄)

=

Z
Ω

ϕ(x) · 1√
2πσ2

e−
||x̄−x||
2σ2 dx (2.4.3)

where, in the present case, σ = 1

rTn (x̄)
1
12

for rTn (x̄) spatially dependent firing rate defined

according to1.3.7. Following this introductionon an auxiliary informationpseudo-measure,

I will present the receptive fields of two high and two lowMSR scoring neurons.

Figure 2.4: The top row presents the receptive fields of two high MSR scoring neurons, and as can be seen they display
a strongly selective firing. The bottom row presents the receptive fields of two low MSr scoring neurons, and as can be
seen, they are very noisy.

As can be readily seen from this visual representation and from the descriptive tables on

the right of each figure, in this subset of neurons those associated with a relatively highMSR

values are also associated with relatively high spatial information values. Furthermore, as
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can be observed from 2.4, the receptive fields of high MSR neurons seem to be way more

localized than those of low scoring ones, which presents substantial background noise. To

further corroborate the hypothesis of the article by Cubero et al. [13], and matching their

line of work, I have also computed the spatial information content associated to the head

direction of the mouse, through a transposition of the space in spherical coordinates.

Figure 2.5: The top row presents the HD receptive fields of high MSR scoring neurons, which are constrained to a narrow
interval of angular values. The bottom row presents the HD receptive fields of low MSR scoring neurons, which span
almost the entire interval [0, 360]◦.

Again, we can see how the spatial information value associated to low MSR scoring neu-

rons is significantly smaller (one order of magnitude smaller) than that of highMSR scoring

neurons, and the associated receptive fields are much less localized, highlighting an almost

invariance of those neurons selectivity with respect to head direction.
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The question now remains of whether this difference is just a spurious correlation observed

in an ad hoc sub-sample of neurons, or rather a manifestation of a more general correlation

holding over the entire set of neurons. As visible from the subsequent graphs, we are in the

latter case, with a significant correlation ofMSRwith both spatial and head direction Skaggs

information.

Figure 2.6: Correlation for MSR and Spatial Information

Figure 2.7: Correlation for MSR and Head Direction Information
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2.5 OtherMetrics of Variability in Spike Trains

Throughout the years, other metrics have been developed to characterize the richness of re-

sponse of neuronal signals, or more in general, of signals fromwhich inter-event times series

can be extracted. Such metrics may provide a relevant starting point to understand which

aspects of the signals the adapted MSRmetric is able to capture, as well as if it characterizes

degeneracy along some dimensions of variability.

Two such metrics are the burstiness and memory coefficients, first introduced by Goh and

Barabasi [19], which jointly aim at a full definition of the irregularities observed in bursty

patterns, as they intently target two complementary sources of randomness. The former, the

burstiness coefficient, is presented as a distribution-basedmeasure, as it directly addresses the

variability of the inter-events time distribution, and it is formally defined as

B =
στ

mτ
− 1

στ

mτ
+ 1

≡ στ −mτ

στ +mτ

(2.5.1)

It is a bounded metricB ∈ (−1, 1), and the two extremes provide a very insightful picture

on the nature of the signal, as

• B → − 1 ⇒ Regular Pattern (στ → 0)

• B → 1 ⇒ Most random pattern (στ → +∞)

The latter, the memory coefficient, is presented as a correlation-based measure, as it di-

rectly addresses the degree of correlation in successive inter-event times, and is formally de-

fined as

M =
1

nτ − 1

nτ−1X
i=1

(τi −m1)(τi+1 −m2)

σ1σ2
(2.5.2)

where nτ is the number of inter-event intervals extrapolated from the spike train,m1 (m2)

and σ1 (σ2) are the mean and variance of the series {τi} ({τi+1}) for i = 1, .., nτ − 1,

respectively. As in the case of the B coefficient, we haveM ∈ (−1, 1), and of particular
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relevance for the understanding of the properties of the signal is the meaning of the two

range halves

• M ≪ 0 ⇒ Short (long) intervals likely to be followed by long (short) ones

• M ≫ 0 ⇒ Short (long) intervals likely to be followed by short (long) ones

• M ≈ 0 ⇒ No correlation

Yet another metric assessing the variability of inter-events times has been introduced by

Shinomoto et. al. [34][33], and it is the coefficient of local variation, formally defined as

LV =
3

nτ − 1

nτ−1X
i=1

(τi+1 − τi)
2

(τi+1 + τi)2
(2.5.3)

Differently from the global coefficient of variation CV , which detects the global variability

of the ISI sequence, the coefficient of local variation LV detects step-wise variability in the

firing of a neuron, or more generally the bursting of a process; nonetheless, and coherently

withCV , it is expected to take value 1 for a sufficiently long, Poisson distributed ISI.

These new metrics should allow us to thoroughly characterize the aspects of bursty sig-

nals variability that MSR is able to capture, as well as those that are not detected. Indeed,

such comparison has been undertaken by Cubero et. al. on the data drawn from Stensola

[36], providing initial evidence for MSR ranges where the metrics overlap or differ. Despite

the encouraging results, studying experimentally the property of MSR in relation to corti-

cal activity remains as much a challenge as an unexplored field, due to the present ethical

and technological limitations in the acquisition of neural data. For this reason, it is neces-

sary to spearhead the experimental inquiry of such properties through the consideration of

simulated neuronal networks.
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3
A Simple Model of the Cortex exhibiting

Chaotic Activity

The importance of simulating large scale neuronal populations for the study of their macro-

scopic, emerging properties, requires a careful tailoring of the trade-off between the amount

of details considered and the relevance of such computational effort for collective analysis.

Therefore, it is necessary todefine theminimumamountofdetails that our simulation should

incorporate in order to produce results of interest. Specifically, we will need

• An excitatory population of neurons

• An inhibitory population of neurons

• A rule for the coupling of units

• An activation function determining the state of a unit in the network
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3.1 Interaction of Homogeneous Populations

One of the most daunting problem in neural populations neuroscience has been to under-

stand the nature of the strong temporal fluctuations characterizing neuronal spiking. In-

deed, it has been observed, in animals, how the ISIs are characterized by broad distributions,

resembling the one that could be generated by a Poisson process [1][9][14], and how the

membrane potential itself displays strong temporal fluctuations. A first insight on the un-

derlying mechanism comes from experimental studies of constant current injection in in-

vitro neurons; in this case, we reliably observe a regular firing pattern. Thus, it has been ac-

cordingly hypothesized that the irregularity observed in real neuronal populationsmust be a

consequence of the massive and heterogeneous synaptic input [27][21]. One of the leading

hypothesis that aims at explaining such irregularity of firing is that the spatial and temporal

integration of synaptic inputs coming from excitatory and inhibitory neurons tends to bal-

ance near the receiving neuron firing threshold, so that even slight fluctuations in such input

prove sufficient to determine either the presence or absence of firing. This hypothesis implic-

itly implies that the inherent stochasticity in neuronal firing is a result of the deterministic

summation of a large number of inputs. Furthermore, the high sensitivity to fluctuations

should determine a general network state characterized by highly chaotic activity and weak

cross-correlation between neurons’ firing. Wewill now proceed with a complete description

of the model that satisfies all of the above requirements.

LetPE be the population of excitatory neurons, characterized byNE units, andPI the pop-

ulation of inhibitory neurons, with NI units respectively, and define a population specific

external input

I(t) = IE(t)1(PE) + II(t)1(PI) (3.1.1)

which, generally, may be either of deterministic or stochastic nature. Accordingly, define a

population specific threshold for spike firing as
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θ(t) = θE(t)1(PE) + θI(t)1(PI) (3.1.2)

where the time dependence considers the most general case of externally modulated thresh-

old. Consider now between-populations specific coupling Jkl [42], for k, l ∈ {E, I} that

are constant in time, and letK ≪ min(NE, NI) be the average number of coupling affer-

ring from the population l to each unit of the populationk. Then the total synaptic strength

of an active connection will be

J ij
kl =

Jkl√
K

(3.1.3)

and since we want our network to be sparse - biological networks are far from full connectiv-

ity - we additionally impose

P (J ij
kl ̸= 0) =

K

Nk

(3.1.4)

Thereby, we can define the total synaptic input to unit i of population k as

uik(t) =
X
l∈E,I

NlX
j=1

J ij
klσ

j
l (t) + Ik(t)− θk(t) (3.1.5)

where σ is the state of a single unit, trivially defined as

σi
k(t) = H(uik(t)) (3.1.6)

whereH : R −→ [0, 1] is the Heaviside step function. Of particular importance to the net-

work dynamics is the asynchronous update of units, which is operated through the random

choice of units from each population.
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Figure 3.1: Visualization of heterogeneous population model (source: [42])

The central assumptions of our model are

1. The total excitatory and inhibitory inputs are large if compared the the unit threshold
θk

2. The external input is large compared to the threshold θk and may be expressed as

Ik = ξkm0

√
K ξk ∼ O(1), m0 ∈ (0, 1) (3.1.7)

In the presented case, the authors [42] have chosen to set both the external input Ik(t) ≡

Ik and θk(t) ≡ θk constant in time. Moreover, for simplicity they have also set

JEE = JIE = 1
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3.2 Mean Field Approximation of Population Rates

In order to proceed with the mean field results for our network, we must first appropriately

define the limitNE +NI = N −→ +∞. Specifically, we require that NE

NI
remains fixed as

N −→ +∞, and that, in order to assess results at different degree of sparsity, we first take

the limitN −→ +∞ and only laterK −→ +∞; by doing so, we systematically avoid to

incur in full connectivity. Thus, formally, for any network property γ(N,K)we consider

lim
K−→+∞

lim
N−→+∞

γ(N,K)

From 3.1.6 we can obtain the population-averaged firing rate of a generic population k as

mk(t) =
1

Nk

NkX
i=1

σi
k(t)

= [σi
k(t)] (3.2.1)

which will be the starting point of our mean field approximation. With a slight change of

perspective, consider now

mi
k(t) = ⟨σi

k(t)⟩ (3.2.2)

which is the average of the activity of unit i in population k at time t across different initial

conditions. Ginzburg and Sompolinsky (1994) [18] have proven that mean activity rates

obey the following dynamics

τk
d

dt
mi

k(t) = −mi
k(t) +H(uik(t)) (3.2.3)

Wenowadd a further simplification toourmodel, supposing that inputs fromdifferent units

are uncorrelated forK ≪ log(N), by considering nE(t) and nI(t) the total excitatory and

inhibitory inputs to a generic unit, so that we effectively write
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uk(t) = Jk0m0

√
K +

JkE√
K
nE(t) +

JkI√
K
nI(t)− θk (3.2.4)

and under

Fk(mE(t),mI(t)) =
+∞X

nE ,nI=0

p(nE)p(nI)H(uk(t)) (3.2.5)

probability that the updating unit is activated at time t, with p(nl) probability of receiving

nl inputs from population l, we finally obtain the following dynamics

τk
d

dt
mk(t) = [τk

d

dt
mi

k(t)]

= −mk(t) + Fk(mE(t),mI(t)) (3.2.6)

In the largeN limit, it can be shown that

p(nl) =
+∞X
s=nl

Ks · e−K

s!

s

nl

rnl
l (1− rl)

s−nl

=
(rlK)nl

nl!
· e−rlK (3.2.7)

where rl = K
Nl

is the probability for a synapse to be activewithin population l. Most notably,

since p(nl) is Poisson, we will have

E[nl] = V[nl]

= mlK (3.2.8)
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and consequently

V[uk] = V
Jk0m0K + JkEnE + JkInI√

K
− θk

=
1

K
V[JkEnE + JkInI ]

=
1

K
J2
kEV[nE] + J2

kIV[nI ] + 2JkEJkICoV (nE, nI)

=
1

K
(J2

kEmEK + J2
kImIK)

= J2
kEmE + J2

kImI (3.2.9)

where between the third and fourth equation we have exploited the uncorrelation of the

inputs. Thus, in the limitK −→ +∞

Fk(mE,mI) =

Z
R

e−
x2

2

√
2π

H(uk +
√
αkx) dx

= H − uk√
αk

(3.2.10)

whereH() is the complementary error function. Thus, we have proven that under themean

field approximation

τk
d

dt
mk(t) = −mk(t) +H − uk√

αk

(3.2.11)

But if, as by assumption, the external input is constant, then so should be the average activity,

and consequently

mk = H − uk√
αk

(3.2.12)

which reflects the fact that the input to each unit fluctuates across the entire population,

with the fluctuation obeying a Normal statistics.

Using the defined parameters, we reach the following expression for the generic population
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input

uE = (Em0 +mE − JEmI)
√
K − θE (3.2.13)

uI = (Im0 +mE − JImI)
√
K − θI (3.2.14)

JEI = −JE

JII = −JI

where with the last two equations we explicit the inhibitory nature of the connections ex-

iting a unit from the inhibitory population. Given this full characterization, we are now

interested at understanding the networkmean response in the balance state, which is, a state

in which neither of the two populations has absent or saturated activity⇒ mk ∈ (0, 1).

In a balanced state, the order of the temporal fluctuations is the same of the difference be-

tween the networkmean response and the population threshold. Furthermore, if we assume

that asN −→ +∞ the generic population input remains finite - hence the balance - then

from 3.2.13 and 3.2.14 we have that forK ≫ 1

Em0 +mE − JEmI = O 1√
K

(3.2.15)

Im0 +mE − JImI = O 1√
K

(3.2.16)

which in the largeK limit reduces to

Em0 +mE − JEmI = 0 (3.2.17)

Im0 +mE − JImI = 0 (3.2.18)
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Solving the system formE andmI leads to the following interesting results [42]

mE =
JIE − JEI

JE − JI
m0 ≡ ΦEm0 (3.2.19)

mI =
E − I

JE − JI
m0 ≡ ΦIm0 (3.2.20)

This result tells us that under a balanced chaotic regime the network responds linearly to

its mean external input, albeit the activity of each individual unit is highly non-linear. This

supports the original assumption that the input from the two populations balances out and

only fluctuations contribute to determine the state of individual units. Expanding now on

the requirement for this system to be well defined, we havemk ∈ (0, 1) ⇒ ΦE,ΦI > 0.

Thus
E

I
>
JE
JI

> 1 (3.2.21)

or
E

I
<
JE
JI

< 1 (3.2.22)

The further requirement of absence of stationary solutionsmk = 0, 1 excludes the second

positivity condition and leaves us with the defining parameters

E
I
> JE

JI
> 1

JE > 1
(3.2.23)

Notice however that for finiteK the terms of order 1√
K
are not negligible, and account for

the deviations from the results predicted by 3.2.19 and 3.2.20.
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(a)Mean Activity of the Network

(b) Total input to a single unit

Figure 3.2: Results forE = 1, I = 0.8, JE = 2, JI = 1.8, θE = 1, and θI = 0.8 (source: [41])
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3.3 Higher OrderMoments of NetworkQuantities

The study of the network mean response to the input provides only a partial description of

the network dynamics, as it totally neglects the nature of the fluctuations that are character-

istics of the balanced chaotic state. These fluctuations are necessary, since the only other way

to obtain the linear responsewould be to have a ”frozen” (fixed) subset of units continuously

firing, which in turnwill contradict the chaotic nature of the network states - that is, it would

determine a stationary state.

Drawing from the theory of spin glasses, we then define another, second order, parameter

for the network

qk =
1

Nk

NkX
i=1

(mi
k)

2 (3.3.1)

where, generalizing to the continuum, we set

mi
k = ⟨σi

k(t)⟩t =
1

T

Z T

0

σi
k(t) dt (3.3.2)

3.3.1 Spatial Fluctuations

Consider now the spatial inhomogeneities in the inputs. SinceK only defines the average

connectivity of each unit in the network, different unitsmay be characterized by significantly

different number of connections; indeed, we have already seen that the ”synaptic” distribu-

tion is Poisson distributed in the large N limit. Therefore, this variability in connectivity

characterizes the first type of spatial inhomogenity, and can be quantified as

δ̄⟨uik⟩ =
X
l∈E,I

NlX
j=1

δJ ij
kl [m

j
l ] (3.3.3)

Additionally, even if wewere to impose that p(s) = δ(K−s), the identities of the units pro-

jecting to any other given unit would be totally heterogeneous across the network, thus de-
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termining self-consistently developed spatial inhomogeneities. These can be quantitatively

defined through

δ̃⟨uik⟩ =
X
l∈E,I

NlX
j=1

[J ij
kl ]δm

j
l (3.3.4)

where we define, for a generic field ψ, δψ = ψ − [ψ]. Adding both the components and

considering the related variance estimator for the network configuration, we obtain

[(δ⟨uik⟩)2] =
X
l∈E,I

J2
klql = qE + J2

kIqI

= βk (3.3.5)

3.3.2 Temporal Fluctuations

Consider now the temporal deviation in the input to a given unit at a specific time t

δ̂uik(t) = uik(t)− uik

=
X
l∈E,I

NlX
j=1

J ij
kl(σ

j
l (t)−mj

l ) (3.3.6)

Then the temporal fluctuation bearing on population k at time t can be fully expressed as

[(δ̂uik)
2] =

X
l∈E,I

J2
kl(ml − ql)

= αk − βk (3.3.7)

It then follows that for xi, yi(t) ∼ N (0, 1) independent random variables, we can express

the state of unit i in population k as a function of the generic net input, the spatial and

temporal fluctuations

σi
k(t) = H(uk +

p
βk · xi +

p
αk − βk · yi(t)) (3.3.8)
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Expanding now on the order parameter qk, we first consider the rate distribution for popu-

lation k, formally given by

pk(m) =
1

NK

NkX
i=1

δ(m−mi
k) (3.3.9)

and then exploit the bound (mk)
2 ≤ qk ≤ mk. Qualitatively, the order parameter qk

quantifies the amount of coherence in the rate distribution, so that if

• qk −→ mk then the system tends to be in a ”frozen” state, and the homogeneity in
the rate distribution is minimal.

• qk −→ (mk)
2 the system tends to be in a random chaotic state, and the homogeneity

in the rate distribution is maximal.

We finally want to characterize the autocorrelation of the temporal fluctuations for each

single unit. In order to do so, we define a time-dependent order parameter

qk(τ) =
1

Nk

NkX
i=1

⟨σi
k(t)σ

i
k(t+ τ)⟩t (3.3.10)

and specifically, we are interested at such order parameter in the two limiting cases, that is,

when the interval shrinks to zero and when it extends to+∞. For τ = 0

qk(0) =
1

Nk

NkX
i=1

⟨(σi
k(t))

2⟩t

=
σ∈0,1

1

Nk

NkX
i=1

mi
k = mk (3.3.11)
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and for τ −→ +∞

lim
τ→+∞

qk(τ) = lim
τ→+∞

1

Nk

NkX
i=1

⟨σi
k(t)σ

i
k(t+ τ)⟩t

=
ind.

lim
τ→+∞

1

Nk

NkX
i

⟨σi
k(t)⟩t⟨σi

k(t+ τ)⟩t

≈ 1

Nk

NkX
i=1

(mi
k)

2 = qk (3.3.12)

Then if we characterize the autocorrelation of the temporal fluctuations for the population

k as

βk(τ) = [⟨δuik(t)δuik(t+ τ)⟩t]

= qE(τ) + J2
kqI(τ) (3.3.13)

it is immediate to observe that

• βk(τ) −−→
τ→0

αk

• βk(τ) −−−−→
τ→+∞

βk

and the new order parameter obeys the following dynamics [42]

τk
d

dτ
qk(τ) = −qk(τ) +

Z +∞

0

e
− t

τk

τk

Z
R

e−
x2

2

√
2π

H
−uk −

p
βk(t+ τ) · xp

αk − βk(t+ τ)

2

dx dt

It is possible to prove that the balance state is stable and that any perturbation δ : O(δ) ≪

O( 1√
K
) is smoothed out by the collective nature of the input. Notice however that for very

large networks, evenperturbations δ ∝ 1√
K
are very small; consequently, since perturbations

of this order drive the system towards a new mean state, we conclude that the network is

extremely sensitive to small variations in its input. Thus, the system is well endowed to track

subtle changes in its environment on a very small time scale.
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3.4 Beyond FixedWeights and RandomConnectivity

A clear problem of the model outlined so far is the significant structural rigidity of the net-

work, where the weights of each population are frozen both in time and in space. The in-

troduction of this simplification has proved crucial for the derivation of the results on the

mean linear response and the study of spatial and temporal fluctuations with respect to that

base value. However, it is very unlikely for real neuronal networks to be characterized by

population-frozen functional connectivity; instead, it is probable that the strength of the

coupling between any two neurons is distributed along a continuum. What is the actual

range of this continuum still remains, if addressable at all, an open question, since at the mo-

ment we still do not have a unique rigorous definition of functional connectivity. Indeed,

different quantitative definitions, not necessarily in contradiction with one another, may

provide different qualitative interpretations. Proceeding then one step at the time, it would

be interesting to define a cortical model like the previous one but where couplings are drawn

from a distribution that allows for the same type of population identification.

Consider then a generic probability distribution ρ : I → [0, 1] defined on a probability

space (I,F , ρ), where F is the σ-algebra defined over I . Since we want to identify in a

unique way excitatory and inhibitory units, we must impose I ⊆ R+ and define

• JkE = J with P(JkE = J ) = ρ(J )

• JkI = −J with P(JkE = J ) = ρ(J )

with J > 0 for the given quantities to be well defined. In addition, since it would be

ideal to be able to compute the order parameters defined for the previous network, we must

require that

• ∃Eρ[x] < +∞ x ∈ I

• ∃Eρ[x
2] < +∞ x ∈ I

From Appendix B of [18] we see that the derivation of 3.2.3 does not depend on a par-

ticular choice of the connection architecture, so that the results seen so far, at least for the
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linear response, should hold also in this new case. Thus, since we are directly introducing

stochasticity in the network, when deriving the system associated to the linear response we

need to take expected values with respect to the weights distribution. Thereby, without any

specific assumption on the weights, we could write the generic population specific expected

input, function of the expected weights, as

uk = (ξkm0 + Eρ[JkE]mE + Eρ[JkI ]mI)
√
K − θk (3.4.1)

Taking then, in the following orders, the limitsN → +∞ andK → +∞we obtain a new

system

Em0 + Eρ[JEE]mE − Eρ[JEI ]mI = 0

Im0 + Eρ[JIE]mE − Eρ[JII ]mI = 0
(3.4.2)

Solving again formE andmI , we obtain the following two expressions for the expected linear

response of the network populations to an external input

mE =
EEρ[JII ]− IEρ[JEI ]

Eρ[JEI ]Eρ[JIE]− Eρ[JEE]Eρ[JII ]
·m0

= ΓEm0 (3.4.3)

and

mI =
EEρ[JIE]− IEρ[JEE]

Eρ[JEI ]Eρ[JIE]− Eρ[JEE]Eρ[JII ]
·m0

= ΓIm0 (3.4.4)

Notice that, analogously to the case with fixed weights, in order for the linear response to be

well defined, we need to impose the following constraints: ΓE > 0 and ΓI > 0. This in
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turn results in the following conditions

E

I
<

Eρ[JEI ]

Eρ[JII ]
<

Eρ[JEE]

Eρ[JIE]
(3.4.5)

or
E

I
>

Eρ[JEI ]

Eρ[JII ]
>

Eρ[JEE]

Eρ[JIE]
(3.4.6)

Further elaboration onwhich of the two conditions results, from a theoretical point of view,

in a balanced chaotic state eludes the purpose of the present thesis and, for this reason, no fur-

ther comments on how this couplings initialization affects dynamics will bemade. Nonethe-

less, there are other network properties that could contribute to the creation of a balanced

chaotic state and that provide a more realistic description of cortical networks.

As it stands, the networks considered so far rely on a very simplistic network topology - in

fact, the simplest possible - since it instantaneously assign to each unit a fixed number of

connections, on average, and the topological identity of the different units is not taken into

consideration. Specifically, negligence towards topological identity means, in the present

context, lack of proximity dependent wiring rules. This choice is in stark contrast with what

seems to be the prevailingwiring principle in the brain. Indeed, neurons seem to form a tight

bundle of connections with other neurons in a close neighbourhood, with a smaller fraction

of longer ranging ones. This particular type of connectivity may incentivize the emergence

of processing cliques, that is, clusters of highly dependent activity. Therefore, it would be

advisable to study the impact that the choice of such a network topology will have on the

network activity, and if and how this differ from the one generated by the original model.

Yet another factor that is not taken into account is that the formation of neuronal networks

is not a stationary process, but rather a dynamic one characterized by generation of newunits

and rewiring of older ones according to both topological and chronological factors. Conse-

quently, it would be interesting to study themean response of a network that has undergone

a dynamic generative process, to draw relevant conclusions on themain differences with net-
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works generated through stationary processes. By doing so, we would be able to more fully

characterize the principles underlying propagation of activity in real neuronal networks.
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4
Graph Theory and its Importance for

Neural Activity

Many real world phenomenons are characterized by the same underlying super-structure,

where a collection of agents, or units, interact with one another on the basis of the existence

or absence of a relation, the effectiveness of which may vary from one couple of interacting

ends to another. One of the best exemplification of such phenomenons could be a social

network, where people constitute the set of agents, and the relationmay stand for friendship,

political affiliation, business flow etc, with the effectiveness quantifying the quality of the

friendship, the predisposition for a certain political orientation, or the quantity of goods and

services exchanged. Within such a paradigm, a fundamental feature that strongly impacts

how interactions propagate across agents, namely how the relation between person 1 and

personN is affected by the relation of person1with other people, or by the relation of people

external to 1 andN , is the global pattern of such relationships, or their topology.
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4.1 Graphs and RandomNetworks

The issue of modelling a network of the kind described above first occurred in the 18th cen-

tury, while Euler was seeking a way to allow people in Königsberg to walk around the city,

and visit its central island, walking across each of its seven bridges only once. In order to

solve this problem, Euler relied on an abstract object that has ever since been at the centre of

discrete mathematics: the graph [39].

Definition 4. A Graph G is identified by a tuple G = (V,E), where V = {v1, .., vN}

denotes the set of nodes ofG, andE = {(vi, vj)}i,j=1,..,N the set of its edges. In particular, if

(vi, vj) = (vj, vi) ∀i, j = 1, .., N , thenG is undirected, otherwise it is directed.

For computational simplicity, from here on we will define a coupling matrix J ∈ RN×N

such that

Jij = (vi, vj) (4.1.1)

and that quantifies the strength of the connection from unit j to unit i. However, the exis-

tence of an edge between two nodes is not guaranteed, so that if ∄(vα, vβ) ∈ E ⇒ Jαβ = 0.

Definition 5. LetG = (V,E) be a graph with nodes V = {v1, .., vN}. If ∀i, j = 1, .., N

∃(vi, vj) ∈ E, then we say that the graphG is fully connected.

Conversely, ifE = ∅, then each node in the graph is isolated from the others, and any de-

veloping dynamics will be due to intrinsic properties of the node itself. The type of graphs

that will be considered in this thesis lies somewhere in between these two extremes, and they

aredefined ashaving ”sparse connectivity”,meaning that, ifwedefineEi = {(vi, vj)}j∈{1,..,N},

then |Ei| = K ≪ N . But if Jαβ = 0, can we say that the state of node vβ has no effect on

vα? In explicit term, Jαβ = 0 means exactly this, but on an implicit level the statement is

wrong, or at least partially incorrect; the state of vβ may indeed have an effect on the state of

vα if there exists a path between the two.
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Definition 6. LetG = (V,E) be a graph, and consider the nodes vα, vβ ∈ V . We say that

∃Pαβ path between the two nodes if it exists a set of consecutive edges

Eβ→α = {(vβ, vi1), (vi1 , vi2), ...., (vil , vα)} (4.1.2)

and the length of such path is L(Pαβ) = |Eβ→α|.

Since the existence of paths between nodes depends on the connectivity of the graph, or

its set of edges, it follows that the more connected a graph is, the more likely the existence of

a path between any two nodes is. To this aim, we define the degree of a node, and its variants,

as

Definition 7. LetG = (V,E) be a directed graph; then we define

• In-degree of vi: din(vi) = |{(vi, vj)}j∈{1,..,N}|

• Out-degree of vi: dout(vi) = |{(vj, vi)}j∈{1,..,N}|

The total degree of the node vi is then given by din(vi) + dout(vi) = d(vi).

Notice that if the graph is undirected the twomeasures coincide, and in this casewe simply

speak of total degree of a node.

Figure 4.1: Visualization of the Königsberg bridge problem and of its graph transposition (source: https://www.
wikipedia.org/)
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Most of the work in graph theory up to the 1950s [2] has however focused on regular

graphs, that is, graphs where each node has the same degree. It was only in the second part

of the last century that graphs have been used to study large scale networks with no specific

”wiring” rule for the edges, which are for this reason called random graphs. Indeed, most of

the real world networks are generally random graphs, and their abstraction is first and fore-

most differentiated on the basis of whether it is generated by a static or dynamic algorithm.

4.1.1 The Erdõs-Rényi Model

Consider a graphG = (V,#), where the# symbol signifies that the set of edges still needs

to be constructed, and for simplicity assume thatwe are only considering presence or absence

of a connection; hence

• ∃(vi, vj) ∈ E ⇒ Jij = 1

• ∄(vi, vj) ∈ E ⇒ Jij = 0

Then the set of edges is statically constructed in the following way. Define p ∈ [0, 1] [30],

and set

P(Jij = 1) = p (4.1.3)

P(Jij = 0) = 1− p (4.1.4)

Thereby, considering for the moment undirected graphs, we will have that nodes will be

characterized by different degree, but that it is possible to characterize the expected degree of

a generic node in the graph.

K = E[d(vi)]

=
X
ij

JijP(Jij = 1) +
X
ij

JijP(Jij = 0)

= p
N(N − 1)

2
(4.1.5)
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It thus follow that there will be
N(N−1)

2
K

equiprobable graphs, and we can define a proba-

bility space over such family as (ΩG, FG, ρG) such that ∀G, Ḡ ∈ ΩG ρG(G) = ρG(Ḡ). By

doing so, we can formalize the notion of property of a graph as a function Q : ΩG → Y

such that

ρG(Q(G))
N→+∞−−−−→

a.s.
1 (4.1.6)

where the a.s. (almost surely) signifies that the propertyQ holds for all the realizations of the

graph inΩG except for at most a negligible set. Notice that the probability measure defined

over ΩG is dependent on the value of the parameter p, and as a consequence, so will be the

observation of the propertyQ. Indeed, Erdõs and Rényi observed that properties of a graph

arise quite suddenly [2] as p transitions over a range of values, and therefore it is possible to

define a critical parameter pc : ρG(Q, p) → 1 ∀p ∈ [0, pc[∨]pc, 1].

Figure 4.2: Visualization of two realizations of an Erdõs‐Rényi random graph (source: https://igraph.org/
python/tutorial/develop/tutorials/erdos_renyi/erdos_renyi.html)

Since all the nodes of the network are simultaneously instantiated, and therefore the emer-

gence of edges does not depend on a specific ordering in which those are considered, then

we are looking at a random graph generated by a stationary process.
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4.1.2 TheWatts-StrogatzModel

LetG = (V,#) be the usual graph without specified connectivity, and consider the set of

nodesV = {v1, .., vN} such that they are disposed around a ring and vi, v(i+1), i = 1, .., N

are nearest neighbours, forN + 1 = 1. DefineK ≪ N as the initial number of edges that

each node must have, and set

P(Jij = 1) = 1 ⇐⇒ |i− j| < K

2
(4.1.7)

which means that each node is connected to its K nearest neighbours on a ring topology.

Then we obtain a ring graph, which defines a state of maximum topological order.

Figure 4.3: Visualization of a realization of a ring graph (source: http://www.ams.org/images/
fcarc-august2012-ws.0.0.jpg)

Now, we want to introduce some disorder, or randomness, in our structure, and in order

to do so, we define a parameter q ∈ [0, 1] such that for each central node vi ∈ V we can

define Ṽi = {vj ∈ V : |i−j| < K
2
} set ofK-nearest neighbours nodes and Ẽi = {(vi, vj) :

|i− j| < K
2
} set of the related (undirected) edges. Then we define

P(Jij = 0 ∧ Jik = 1) = q vj ∈ Ṽi, vk ∈ Ṽ c
i (4.1.8)
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which is essentially a rewiring process, which creates ”long-range” connections with nodes

outside the club of Ṽi. More concisely

P(Jij ̸= 0) = (1− q)
1√
K22π

e−
|i−j|2

2K2 + q
K

N
(4.1.9)

Notice that, given this parameter, we will have

• q → 0: ordered (ring) network

• q → 1: random network

Of particular interest is the range of q-values lying in between the two extremes, and specif-

ically how the transition in such interval affects two fundamental graphmeasures, which are

the average shortest path length and the average clustering coefficients.

Figure 4.4: Visualization of the transition from a ring graph to a random graph (source: [37])

Formally, we define the average shortest path length for a directed network as

L(P )−1 =
1

N(N − 1)

X
ij

min(L(Pij))
−1 (4.1.10)

also called harmonicmean since it handles the case where there does not exist a path between

two nodes, and hence attributesmin(L) = +∞ to the shortest distance between the two.
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Consider now a generic node vi ∈ V , and for simplicity assume that d(vi) > 1, and define

the set of triangles connected to it as

Ti = {(vi, vj, vk) : ∃Pij, Pjk, Pki ∨ ∃Pik, Pkj, Pji

∧ min(L(Pαβ)) = 1 , ∀α, β ∈ {i, j, k}, α ̸= β}

vj, vk ∈ Vi

and accordingly, define the set of triples that are connected to node vi ∈ V as

T̄i = {(vi, vj, vk) : ∃Pij, Pjk ∨ ∃Pik, Pkj

∧ min(L(Pαβ)) = 1 , ∀α, β ∈ {i, j, k}, α ̸= β}

vj, vk ∈ V

Then, the clustering coefficient for an unweighted, undirected network associated to node

vi is

Ci =
|Ti|
|T̄i|

(4.1.11)

and the average clustering coefficient

C =
1

N

NX
i=1

Ci (4.1.12)

Now, we have that as q → 0 both L(P ) and C tend to be relatively large, while for q → 1

they both tend to be relatively small. However, there exists an intermediate range of q-values

such thatL(P ) ↘ whileC remains relatively large; because of suchproperties, and drawing

its etymology from social sciences, these networks are referred to as small-world. Indeed, the

label refers to theway inwhich in social networksmost people have a closed group of friends,

with some sporadic acquaintances from the other part of the world.

In addition, notice that since all the nodes of the network are simultaneously instantiated,
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theWatts-Strogatz model is an example of a network generated through a stationary process.

4.1.3 The Barabasi-AlbertModel

Many real world networks are scale-free, meaning the the degree distribution P(d(vi) = K)

follows a power-law distribution that deviates significantly from a Poisson. The generative

processes seen so far do not seem to be able to instantiate a distribution of this kind on the

degree of the nodes ofG. For this reason, a question that naturally arose was if there exists a

generating process that produces this type of network, and whether such process is station-

ary or dynamic [2].

The first observation leading to the modelling of such network was that, in many real world

contexts, networks do not emerge with a number of nodes fixed a priori, but rather undergo

an evolutive process where new nodes are continuously added to an existing structure, and

edges are created according to some well-defined dynamics. The second pivotal observation

was that, differently from the networks studied so far, most real world networks exhibit pref-

erential attachment, a phenomenon where the likelihood of a node to receive a new con-

nection depends on its degree. Thereby, the algorithm for the creation of the new type of

network, which will be called Barabasi-Albert network, is

1. Instantiate n nodes {v1, .., vn} = V0 with arbitrary connectivityE0.

2. Define a final evolution time T .

3. Add a new node: V1 = vn+1 ∪ V0.

4. Define a fixed number of connections n0 < n that each new node must generate.

5. Let dj(τ) denote the degree of a generic node vj ∈ Vτ at time-step τ ≤ T . Define
the probability for node vi ∈ Vτ−1 to receive an edge from the new node vn+τ as

Π(di(τ) = di(τ − 1) + 1) =
di(τ − 1)P
j dj(τ − 1)

(4.1.13)

6. At time T , we will have a graphG = (VT , ET ) such that
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• |VT | = n+ T

• |ET | = |E0|+ n0T

It has been shown that the resulting graph G = (VT , ET ) is such that the probability

that a node has final degree P(d(vi) = K) follows a power-law distribution with exponent

µ = 3, independently from n0.

Interestingly, the average shortest path length is, for an equal number of nodesN , relevantly

smaller in the Barabasi-Albert model than in a random network. Instead, the global clus-

tering coefficient of the network seems to strictly depend on the exponent µ (supposing to

consider different scale-free networks) [32].

Figure 4.5: Visualization of a realization of a Barabasi‐Albert Graph (source: https://www.oreilly.com/
library/view/graph-algorithms/9781492047674/ch01.html)
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4.2 Graph CentralityMeasures

In this sectionwe proceedwith a brief overview of some centralitymeasures, which quantify

the importance of a node in the network according to somewell-defined criteria. Each of this

measures exploits different properties of the graphG = (V,E), and for this reason there is

none of them that unequivocally and absolutely ranks nodes, but rather each of them pro-

vides insight into a specific feature of the network [7]. Let V = {v1, .., vN}

Degree Centrality

As the name suggests, this centrality measure ranks the nodes of the network on the base of

their degree, and is nothing more than the normalized degree.

cdegvi
=

d(vi)

N − 1
(4.2.1)

Closeness Centrality

The measure of closeness centrality expands on degree centrality by considering the paths

that stem from a generic node vi ∈ V , considering neighbourhoods of all possible radii up

to the diameter of the network.

cclosvi
=

N − 1P
j ̸=imin(L(Pij))

(4.2.2)

Katz-Bonachic Centrality

TheKatz-Bonachic centralitymeasure ranks the nodes in a graph on the basis of the number

of walks radiating from it. It relies on the assumption that shorter walks should yield higher
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prestige to the node, and for this reason it relies on a discount factor γ ∈ (0, 1). Then

cktzvi
(γ) =

+∞X
l=1

γl
X
j

δ(l − L(Pij)) (4.2.3)

where in this case we are not only considering the shortest path, but any possible walk be-

tween any two given nodes vi, vj ∈ V .

Betweenness Centrality

The betweenness centrality measure ranks the nodes in a graph on the basis of how impor-

tant they are at connecting other nodes, hence their hubbiness. Formally, let νi(j, k) be the

number of geodesic from node vj to node vk that pass through vi, and ν(j, k) simply the

number of geodesic between the two nodes. Then

cbetwvi
=

2

(N − 2)(N − 3)

X
vj ,vk∈V \{vi}

νi(j, k)

ν(j, k)
(4.2.4)

Pagerank Centrality

ThePagerank centralitymeasure is a special centralitymeasuredevelopedbyGoogle’s founders

to rank web pages by popularity, and it relies on the following ideas (Zhang et al. [46]).

1. It must be proportional to the number of incoming edges

2. It is inversely proportional to the out-degree of the sending nodes

3. It is proportional to the pagerank centrality of the senders

Given this definitions, it is obvious that the formulation of pagerank centrality will be

recursive

cpgrkvi
= γ

X
j

θ
JijP
h Jjh

+ (1− θ)
AijP
hAjh

cpgrkvj
+

(1− γ)βiP
j βj

(4.2.5)
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If the coupling matrix J ∈ RN×N and the associated adjacency matrix A ∈ {0, 1}N×N

coincide, we get the unweighted pagerank score. Finally, β is the non-uniform relative im-

portance of each node.

4.3 Graph Structure and Firing Rate in a Network of LIF Neurons

Most of the examples permeating the literature of neural networks modelling up to the

present moment instantiate different types of connectivity, primarily depending on the pur-

pose of the modelling effort. Indeed, in the machine learning literature, where the goal is to

build a network able to solve a specific task, most of the architectures are instantiated as fully

connected, whereas in more realistic contexts, networks of neurons are connected by means

of a random, sparse connectivity; however, as we have seen, different network topologies

yields significantly different network properties. Consequently, it is sensible to ask ourselves

whether neural networks characterized by paradigmatically different network topologies will

also be characterized by significantly different activity, and how network features may be ex-

ploited to predict relevant aspects of such dynamics.

It has already been established that known examples of neuronal networks are organized into

a small-world topology [43][45], which seems to promote efficient encoding of information

and memory formation. Expanding on this knowledge, it would be interesting to under-

stand if some of the measures detailed above are useful for the prediction of the associated

neural activity. In addition, gauging how this measures correlate with the activity of net-

works with different topology, it may be possible to understand the network features that

are most relevant for the propagation of activity. For this reason, Fletcher et. al. [15] have

simulated a network of LIF neurons connected according to specific topological choices and

examined how activity and measures correlate. Specifically, they have looked at

• RandomlyWired Excitatory Network

• RandomlyWired Excitatory and Inhibitory Network

• RandomlyWired Excitatory and Inhibitory Network satisfying Dale’s principle
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• Small-World Excitatory Network

• Small-World Excitatory and Inhibitory Network

• Small-World Excitatory and Inhibitory Network satisfying Dale’s principle

where in the case of networks satisfying Dale’s principle, we not only define excitatory

and inhibitory connections, but inhibitory and excitatory units, possessing all the exiting

connections belonging to the specified classification. Indeed, Dale’s principle asserts that ev-

ery mature neuron releases neurotransmitters of the same type at all its synaptic sites.

Fletcher et. al. [15] have found that the only measure that reliably and consistently corre-

lates with the firing rate of the units is Katz centrality, whereas most of the other measures

correlate only in the simplest case of random excitatory connectivity. The authors suggest

that the reason why Katz centrality correlates so well with firing rate independently from

the complexity of the network is because, as detailed by 4.2.3, themeasure perfectly captures

the influence that the activity of a unit has on another unit l-hops away, with such effect

decaying with distance.

Figure 4.6: Plot for the normalized neural activity against the graph measure of interest. (source: [15])
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It now remains to be understood whether such correlation holds independently of the

specified network dynamics, that is, whether simulated cortical networks characterized by

units with a different type of activity dynamics will display the same correlation.

4.4 Graph Structure andMemory in a Network of LIF Neurons

As we have already seen in subsection 4.1.2, the Watts-Strogatz model is endowed with a pa-

rameter q that allows for the transition from a state of maximum order to a state of pure

randomness. The effects that the extremes of this parameter exercise on the network activ-

ity have been extensively studied, and it has been established that for q = 0 (ring topology)

[6] the network exhibits bumps in activity coherent with self-sustained excitation of units

in a localized neighbourhood. Instead, for q = 1 (random topology), the network exhibits

distributed activity coherent with the emergence of autoassociative memory [3], where the

short path length is functional at the network-wide propagation of activation. What remains

to be established is whetherW-S networks characterized by a q parameter within some inter-

mediate interval ]q1, q2[: q1 > 0 ∧ q2 < 1, hence small-world networks, are able to sustain

both localized activity and retrieval of stored patterns in virtue of their high clustering co-

efficient coupled with a short path length. In principle, one would expect that a range of

q-values providing the desired regime should exist, as the localized activity mainly depends

on the existence of localized clusters of units, ensured by the high clustering coefficient [44],

and the memory retrieval depends on the ability to propagate partial cues across the entire

network, hence on short average path length.

In order to prove such hypothesis, Anishchenko and Trevez [5] have simulated a family of

W-S networks of LIF neurons obeying dynamics akin to 1.4.1, and regulated by a varying

parameter q. They have found that for low values of the q parameter (q ∈ [0, 0.2]), the

network displays robust bumps in activity that are resilient to the introduction of full or par-

tial cues, having the purpose of driving the system towards a specific state. Conversely, for

q ∈ [0.8, 1], hence for a condition where the model approaches a random network, we have
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that the architecture is perfectly able to retrieve stored memories with partial cues, while

displaying no localization of activity. Through a gradual increase of q-values, the authors

have observed that the total loss of localization occurs for q ≥ 0.6, while memory retrieval

emerges for q ≥ 0.5. Thereby, they have hypothesized that, if an interval of coexistence

for localized activity and memory retrieval exists, it should be very narrow. Furthermore,

through this study they have proven that the small-world regime is not functional at provid-

ing an understanding of the interplay between the two phenomena, which plays amajor role

in the activity of biological neuronal networks.

Following the same modus operandi, we now ask whether different degree of randomness

in a network, as parametrized by q, generate significantly and statistically different MSR dis-

tributions and, if such change is observed, whether it reflects on other metrics of spiking

variability, or more generally on other statistics of the network activity.
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5
Methods

5.1 Hardware

Almost all of the simulations have been run on the IDUN cluster of NTNU, which is a

high performance computer administered by NTNU and shared among the different de-

partments, each owning a holding over the architecture. It comprises 8 possible login ports,

each endowedwith about 27 nodeswith Intel XeonE5 orGold processors, 128Gb ofRAM

per node, and eventually a GPU among different models (NVIDIA Tesla, NVIDIA Titan,

NVIDIA A100). The simulations were run simulatneously on a number of nodes varying

from 2−5, each simulation lasting about 48 hours when not optimised, and 23 hours when

optimised.
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5.2 Software

The code for the simulationswaswritten in Python 3.9,mainly exploiting the functionalities

of the package NumPy, already provided in the Anaconda distribution of the product. The

graph associated to the network was instantiated through the packageNetworkx, and all the

graph measures were computed using the functionalities within this package. The plots for

the results of the simulations were drawn with the support of the Matplotlib package.

Finally, the code was optimised by means of the Numba package, which provides a transla-

tion from Python to C++ for specified functions, with the best results on those that mainly

exploit NumPy tools.

5.3 Network

The network was instantiated as an heterogeneous population of excitatory and inhibitory

units, with outgoing connections satisfyingDale’s principle. Specifically, the populationwas

characterized by

• NE = 1000 Excitatory units

• NI = 1000 Inhibitory units

• K = 0.1 ·min{NE, NI}

and the associated coupling matrix had the following structure

J =



JEE JEI

JIE JII


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and the topology of the network was not implemented on J as a whole, but rather on each

block Jkl, so that by choosing a network topology T , we would have that units in popula-

tion kwould be connected to units in population l according to T , for k, l ∈ {E, I}. If, for

example, we set T =W-S(p = 0), we would have that excitatory units are organized accord-

ing to a perfect ring topology ofK-nearest neighbours, and so will be their connection to

the inhibitory population, so that finally each unit vi ∈ E will have, on average, incoming

connections from 2K-nearest neighbours, half excitatory and half inhibitory.

The couplings were set, in the fixed weights condition, as

JEE = 1

JIE = 1

JEI = −1.8

JII = −2.0

The external currents were set in the range

IE ∈ [1.35, 14]

II ∈ [1, 12.5]

The population thresholds were set, as in the original paper by Sompolinsky et. al. [41], as

θE = 1.0

θI = 0.8

Finally, the total simulation time is T = 60000, where the value has been appropriately

chosen so that the maximum plausible number of spikes for the simulated networks is ap-

proximately the same as that registered by Stensola et al. [36] for the neurons in mEC.

81



5.4 Area and Time-Steps inMSRComputation

With reference to the MSR formulation 2.3.3, 2.3.4 adapted to a time series, we consider a

discrete set of time-steps to discretize the spike series

∆T = {∆t ∈ [2, 10000]} : |∆T | = 150

generated through the following two function

• np.linspace(start=2, stop=80, num=40, dtype=np.int64)

• np.linspace(start=100, stop=10000, num=110, dtype=np.int64)

which ensure the generation of a set of points (Ĥ[s], Ĥ[k]) informative enough to com-

pute the area underlying the interpolating curve. The resulting set

H̃ = {(Ĥ[s](∆t), Ĥ[k](∆t)) : ∆t ∈ ∆T}

was linearly interpolated using the scipy.interpolate.interp1d() function, and the area

enclosed by the associated curve was computed by means of numerical quadrature through

the use of the function scipy.integrate.quad().

For computational purposes, units that spiked less than 5 times out of the whole simulation

were discarded from the analysis, lest numerical errors.

Another important point of order is that, in most simulations, the highest MSR values

needed, in theory, to be discarded, as sparsely spiking units generate very few (Ĥ[s], Ĥ[k])

pairs, and this in turn resulted in very coarse linear interpolation and subsequent numerical

quadrature. For example, a unit generating only 4 of such pairs would produce an MSR

graph that has a trapezoidal shape, and that potentially could include far more area than the

expected parabola.
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6
Results

The present chapter is entirely dedicated to the illustration of the experimental results ob-

tained from the simulations of the network of chaotic activity while a host of parameters

change gradually. Specifically, we will first verify that the simulated networks satisfy the the-

ory outlined in chapter 3, and in particular the linear response, to make sure that there are

no errors in the implementation. In addition, we will examine how, keeping the number of

units, average number of connections per unit, population specific weights and thresholds

fixed, the distributions of the different activity metrics change as we transition from a state

of topological order (q = 0) to a state of topological randomness (q = 1) for the network,

as detailed in chapter 4.
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6.1 Fixed Population SpecificWeights

Considering for eachof the injected currents I the statematrix,which is aS(I) ∈ R(NE+NI)×T

matrix having entry Sit = 0 if unit i is quiescent at time t, and Sit = 1 if it is active, we can

get the network mean response as

m̄(I) =
1

(NE +NI) · T

NE+NIX
i=1

TX
t=1

Sit(I) (6.1.1)

Starting from the case of the random topology, which is the same explored by Vreeswijk and

Sompolinsky [41], we can indeed observe a linear response of both the excitatory and in-

hibitory populations to the provided input (suitably averaged between the two populations

and subsequently normalized)

Figure 6.1: The excitatory population of the network characterized by random connections exhibits an almost perfect
linear response to the averaged external input according to 3.2.19 withΦE < 1.
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Figure 6.2: The inhibitory population of the network characterized by random connections exhibits an almost perfect
linear response to the averaged external input according to 3.2.20 withΦI ≈ 1.

Consequently, the network described by the authors has been adequately simulated, and

we are only left with the verification that this result is not related to the formation of frozen

states, but rather to a time varying chaotic activity. Choosing 4 reference external inputs, in

an increasing order, we indeed verify that the associated activity is chaotic.

85



Figure 6.4: The four raster plots display different regimes of chaotic activity, with absence of frozen states, as the external
current gradually increases. As can be observed, the increase in the external current is directly related to an increase in
the network activity (black dot ‐ spike; white dot ‐ no spike).

Consequently, as can be readily observed from the raster plots above, there is no forma-

tion of frozen states (m = 0 ∨ m = 1) for any of the presented external currents, and we

can conclude that the archetypal network has been appropriately simulated. It now remains

to gradually vary the q-parameter, decreasing it from 1 to 0, to investigate how different

topological conditions affect the distributions of the metrics computed on the network ac-

tivity and the correlation of the sames with relevant graph measures. Therefore, we begin

by presenting the results on the MSR, Burstiness, Firing, andMemory distributions for the

following configurations

• q = 0.1

• q = 0.5

• q = 1.0

• Appendix - q = 0.3 ∧ q = 0.8

and taking as reference the three following external current conditions

• (iE(t), iI(t)) ≡ (1.35, 1.00)

• (iE(t), iI(t)) ≡ (6.15, 5.36)

• (iE(t), iI(t)) ≡ (12.26, 10.91)
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Figure 6.5: In the top panel, the MSR distributions for (iE , iI) = (1.35, 1.00) and, from left to right q ∈
{0.1, 0.5, 1.0} clearly show a narrowing and heightening of the peak for the small‐world condition q = 0.5, while
it tends to broaden for both high order and high randomness topological conditions. Instead, in the lower panel, for exter‐
nal conditions characterizing the saturation regime (iE , iI) = (12.26, 10.91) and the same progression of q‐values,
we can observe how the high topological order associated to q = 0.1 and the consequent bump‐like activity enables the
network to sustain activity characterized by relatively high MSR, while for any other condition characterized by higher
topological randomness the network saturates and produces meaningless (from the perspective of MSR) signals.

Figure 6.6: From the top panel of the Burstiness Coefficient distribution we can observe how for (iE , iI) =
(1.35, 1.00), its skewness towards highB‐values becomes more and more evident as the q‐parameter transitions from
a state of high topological order (q = 0.1, top left figure) to one of topological randomness (q = 1.0, top right fig‐
ure). Thus, for external conditions characterizing balanced mild network activity, the degree of randomness is directly
proportional to the Burstiness Coefficient. In addition, from the bottom panel notice also how in the saturation regime
(iE , iI) = (12.26, 10.91) the higher the randomness in the network topology, the higher the variance in the inter‐
event times series (although for a small sample of units).
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Figure 6.7: From both the top and bottom panels, displaying the firing rate distributions of networks characterized by q ∈
{0.1, 0.5, 1.0} (left to right), we can observe how only networks characterized by high topological order present broad
enough distributions, which in turn explains the much broaderRt, B distributions observed for the same network and
for the corresponding external currents (iE , iI) ∈ {(1.35, 1, 00), (12.26, 10.91)}. Instead, for higher topological
randomness (q > 0.2) the firing rate distributions are considerably peaked and characterized by sharp transitions, with
a small sample of units which displays very high firing rates under low external currents, and another (not necessarily
different) that displays very low firing rates under saturating external currents.

Figure 6.8: From the top panel, hence for low external currents (iE , iI) = (1.35, 1.00), it can be observed how the
Memory Coefficient distributions, which are characterized by an almost symmetric shape, display a drift of the mean
towards the valueM = 0 (no correlation between inter‐events times) as we transition from states of high topological
order (q = 0.1, top left figure) to states of high topological randomness (q = 1.0, top right panel). This is somehow to
be expected, as networks characterized by higher topological order and displaying bump‐like activity have the incoming
input highly depending on their close neighbourhood. Results for very high currents are misleading, as the saturation
resulting from the finite size of the network induces false correlations in the activity.
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From a first inspection of the plots on the MSR distribution across q conditions, we

can observe how both when the network tends to a state of maximum topological order

(ring topology) and minimum topological order (random topology) the distribution tends

to broaden, especially at low currents. However, as the current increases, the network with

q = 0.1 is able to retain a fairly broad MSR distribution, probably due to the fact that the

formed clusters are less sensible to external perturbations, and it is peaked towards the high

MSR range, while the network with q = 1.0 becomes characterized by a MSR distribution

sharply peaked around values in the lowMSR range. Instead, it is interesting to see how net-

works characterized by q ∈ [0.3, 0.8[ present an MSR distribution (figures 8.5, 8.9) which,

for low external currents, is visibly peaked in the highMSR range, and it presents an interme-

diate response to changes in external conditions, with the peak gradually shifting towards the

lowMSR range but not as drastically as for a completely randomnetwork. By virtue of what

was presented in chapters 1 and 2, it might be argued that networks that are randomly con-

nected may be somewhat unsuited for the propagation of information in a way that is com-

patible with the emergence of intelligent life, as when exposed to low excitation they present

a fair number of units that are not optimally encoding, and all units become quickly useless

for the purpose as excitation increases. To understand this heuristic argument, it suffices

to think that we, as humans, are not exposed to homogeneous external inputs, but rather,

to a heterogeneous variety continuosly varying in both relevance and intensity; thus, if the

topology of the connections in our nervous systemwould have been completely random, we

would be extremely sensible to external perturbations, which is somewhat in disagreement

with the adaptability that we have displayed throughout evolution. On the other hand, a

network organized according to a ring topology, while being resilient to external perturba-

tion, would also be characterized by a large number of units that are not optimally encoding

throughout all the possible external conditions, thus making the organism endowed with a

neuronal topology somewhat unsuited to quick responses to the environment. Finally, net-

works that in virtue of their q-values might be characterized as small-world presents us with
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results that are compatible with the evolution of an organism that is able to respond almost-

optimally under many different external conditions, and that even in very high excitation

regimes is able to retain some relevant and meaningful activity propagation capabilities. Of

course, illustration of the results aside, the previous arguments are only qualitative and I dare

say highly speculative.

An important note is in order, and it regards the range of external currents that a network

is able to withstand without saturation in its activity. As can be proven experimentally (the

reader is encouraged to try), the bigger is the size of the network, the bigger is the interval

characterizing the balanced non-saturating network activity. Therefore, it must be kept in

mind that any consideration made in this thesis with respect to regimes of balanced chaotic

activity and saturated activity must be interpreted strictly within the adopted framework,

hence the chosen number of units and the chosen weights (it has not been explored yet, but

I suspect that the absolute value of the weights plays a relevant role in the determination of

such range as well).

In order to assess whether there indeed exists a difference in the MSR evolution across ex-

ternal conditions for different network topologies, it is necessary to obtain an estimate that

abstracts both from the identity of the single units and from the network initialization. For

this reason, it is instructive to compute, for each current, aMSR coefficient that is the result

of the average of the MSR coefficients of a single realization, averaged across a statistically

significant number of realizations. Formally, let G1, ..., GL be the different realizations of

the same network architecture at a fixed current (iE, iI); then we consider

Rt((iE, iI)) =
1

L(NE +NI)

LX
j=1

NE+NIX
i=1

Rt(v
j
i ; (iE, iI)) (6.1.2)

The results obtained for 5 realizations of each of the presented configurations are

90



Figure 6.9: In the left panel, we see the MSR trajectory across external currents for networks characterized by different
degrees of topological order, as quantified by the q‐parameter. The averageMSR coefficient for networks with q typical of
the small‐world range is systematically higher than the same for networks characterized by almost or complete topological
randomness. Instead, for q‐values typical of the high topological order condition, the same is true only up to I(t) ≈
8, where then the saturation of activity drives to zero the MSR values of the units of all the networks except those
characterized by ring‐topologies. In the right panel, the averageLV ‐coefficient remains systematically higher, across all
currents, for networks characterized by q in the small‐world range than for networks defined by either high topological
order or randomness.

Figure 6.10: In the left panel, it is possible to observe the direct relationship existing between the degree of topological
randomness of the network and the burstiness coefficient of its units: the more random is the network topology, the
higher will the average burstiness coefficient be. The trend then reverses when external currents determine saturating
regimes. In the right panel, we appreciate an opposite trend for the memory coefficient, as the higher the degree of
randomness is, the lower the respective average memory coefficient. This reverses at I(t) ≈ 8, again as a consequence
of the networks being driven towards saturation and to spurious correlations appearing due to finite size effects.

As can be observed, the MSR values of networks characterized by q-parameters in the

small-world range are statistically higher across most of the currents than those for q at the

extremes of the interval (except of course for the high current regime when q = 0.1). This

result supports the hypothesis that network wired according to a small-world topology pro-

duce, all else being equal, signals that are consistently more informative according to MSR

than the same generated by random or highly regular topologies. We now want to under-
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stand more thoroughly whether topology affects other metrics of signal variability in a way

that is consistentwith the results observed forMSR, and for the purposewewill focus on the

burstiness coefficient, the coefficient of local variation, and the memory coefficient, suitably

averaged in a way consistent with what was done for the MSR coefficient (see 6.1.2).

From the plot of the trajectory of the average burstiness coefficient across currents, it is clear

how for most of the external conditions, the networks characterized by higher topological

randomness preserve higher B-coefficients, and hence a higher inter-spikes time variability

(of course, for very high currents networks characterized by greater topological order are the

only one that do not saturate, and consequently preserve variance in the inter-spike times

series).

The plot for the averaged coefficient of local variation across currents seems to depict a pic-

ture more similar to that portrayed by MSR, where the two networks characterized by q-

parameters proper of a small-world regime obtain, throughout most of the external condi-

tions, scores that are higher than those of networks defined by either high topological order

or randomness. By means of this comparison, it may be safe to conclude that what MSR

encodes in a signal is more closely related to the variability in the time elapsing between sub-

sequent events, and how the entire inter-spike sequence may be discretized, which is in turn

captured throughout the switches in temporal resolution defined by 2.3.2. It is worth notic-

ing that the two measures that are the most in agreement are those that do not consider the

inter-spike series as a whole, but rather those that systematically focus on chunks of the spike

train and try to determine the amount of information that is possible to extract from that

localized signal-stamp.

As could be expected, no significant trend is observable from the plot of the averaged mem-

ory coefficient across currents, as all the networks, by virtue of how they are modeled, are

supposed to have complete or almost independently spiking units in the largeN limit (but

since our network is finite, obviously at low currents the ring topology yields higher averaged

memory coefficients). The subsequent increase in the coefficient is mainly a numerical ar-
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tifact as, given the finite size, the external currents increase drives all the networks towards

saturation, and consequently spurious correlations between successive inter-spike times ap-

pear.

Finally, it is important to notice how, from I(t) ≈ 8 on, the average MSR coefficient could

enable the researcher, given appropriate information on the range of currents that the net-

work under study can withstand, to determine the q-parameter characterizing the network,

and therefore its topology. The same could potentially be extrapolated from the knowledge

of the average memory coefficient; however, as visible from the plots 6.10, the distance in

the average memory coefficient between different q-conditions at a fixed current is narrower,

thus making discrimination of the topological signature somewhat harder. Specifically, in

the graph for the average MSR coefficient there seems to be, for I(t) > 8, a clear differen-

tiation of the ranges traversed by network characterized by ring, random, and small-world

topologies. For this reason, we argue that given appropriate knowledge of the network sen-

sitivity to external currents, experimental researchers could exploit the average MSR coeffi-

cient to determine, without any prior knowledge on connectivity, the topological structure

of their network.

Now that we have established what is the topological dependence in the average trend of

the considered spike metrics, it would be instructive to understand the dependence of the

MSR coefficient on the firing rate of the units. This evaluation becomes necessary after con-

sidering that, for a network close to saturation (or quiescent, on the opposite end), the gen-

erated spike trains present little (high) variance in inter-event times, and consequently each

time bin generated by 2.3.2 will have a similar (different) number of spikes. Consequently,

we would expect MSR to be inversely proportional to the firing rate of each unit, and we

want to understand if this hypothesis holds and whether there are any topological connota-

tions in this functional dependence. In order to asses such hypothesis, we plot, for each unit

in our network, its MSR value at a given current against the logarithm of the total number

of spikes burst by the unit in the simulation. Following the conventions of 2.3.3, 2.3.4
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Figure 6.11: In the top panel, we have the log(M)−Rt plots for (iE , iI) = (1.35, 1.00)with q ∈ {0.1, 0.5, 1.0}
(left to right), and we can appreciate two main differences. First, networks characterized by high topological order (q <
0.2, top left figure) display a considerably higher firing rate than either small‐world or random networks, at low external
currents. Second, networks within this high topological order range also display a much narrower MSR distribution for
both the populations. In the bottom panel we consider instead the same plots but for (iE , iI) = (6.15, 5.36); while
the difference in the firing rate has disappeared, we can appreciate how, as q transitions from 0 to 1, the cluster of
MSR values for the two populations seems to separate, thus hinting at the formation of two different population specific
regimes of activity as the connectivity becomes random.

The first thing that we notice is that for any topological choice there is a clear relationship

between the firing rate of each unit and its MSR value, with this relationship becoming in-

creasingly clearer as we transition from low external currents to high external currents, with

a drastic plummeting of MSR values as we approach the maximum possible firing rate. No-

tice however that, if we consider only the external current condition (iE, iI) = (1.35, 1.00),

then networks characterized by high topological order (fig. 8.21 and fig. 8.22) already dis-

play a quite high firing rate if compared to that of networks characterized by higher random-

ness and subjected to the same external condition. In addition, and keeping in mind that

the images report results from a single realization of a specific network condition, it can be

observed that as q → 1, the two populations of units seem to separate with respect to the

MSR values, with the excitatory population occupying the higher range. Furthermore, we

can observe for q → 0, compatibly with what can be seen in fig. 8.1 and 8.5, that the MSR

distribution remains broad even for relatively high external conditions, while for q → 1 the
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entire log(M) − Rt plot tends to collapse on a few points occupying the right extreme of

the log(M) interval (M ≈ 60000).

Once gained knowledge on the dependence of theMSRmetric on the firing rate of the units,

it would be interesting to understand the relationship betweenMSR and the other statistics

that can be computed on the spike trains, to understand if there exist regions where the for-

mer and the latter provide the same quantification of the generated signal. Moreover, color-

mapping the points in the plot according to the firing rate allows us to better evaluate how

also the other statistics depend on the same. Finally, we extend such comparison to topolo-

gies characterized by different degree of randomness in connectivity, to assess the impact that

this has on the correlation.

Figure 6.12: In the top panel, presenting results for the external condition (iE , iI) = (1.35, 1.00), we see that
for conditions of high topological randomness (top right panel), the memory M ‐values are much more spread around
their central valueM = 0. However, since from figure 6.10 we have seen that, for these conditions and low external
currents, the average Memory coefficient is much closer to the central value, we can conclude that for most of the units
characterized by memory coefficient M = m̃ there existing another unit in the network with M ≈ −m̃; this does
not appear to be the case when q = 0.1. In the bottom panel, for external current (iE , iI) = (6.15, 5.36), theM ‐
values are considerably more spread for q = 0.1 (bottom left panel), and the cluster of points characterizing the plots
for q = 0.5 ∧ q = 1.0 (bottom middle and right panel) is gradually drifting towards higherM ‐ranges, thus informing
us on the general rise of correlations between inter‐events times as the external current increases.

95



Figure 6.13: For relatively high topological order and low external current (iE , iI) = (1.35, 1.00) (q = 0.1, top left
figure) the relationship between the two metrics is approximately linear, and therefore the two encodes similar aspects
of the units activity. As the topological randomness increases, we can still appreciate the presence of a general linear
relationship, although as q → 1 some non‐linearity starts to appear (initial curvature). As the external current increases
(iE , iI) ≥ (6.15, 5.36), a region of degeneracy appears (bottom panel); specifically, for all the topological conditions,
we have that units with Rt ∈ [0, 0.15] span a very narrow LV range. Furthermore, as q progresses towards values
defining topological randomness, the degeneracy seems to become two‐sided, with the relationship displaying an asymp‐
totic trend.

Figure 6.14: In the top panel, the relationship between MSR and the burstiness coefficient for (iE , iI) = (1.35, 1.00)
is almost linear. Instead, as q transitions towards values peculiar to higher topological randomness, the relation becomes
a cloud of points with opposite slope, thus hinting at a possible switch in the correlation at a specific q‐value. In the
bottompanel, presenting results for the external current condition (iE , iI) = (6.15, 5.36), we observe that, in general,
the relationship between MSR and Burstiness remains linear across topological conditions. However, for q = 0.5 ∧
q = 1.0, the relation peaks and then decreases, thus determining an MSR range where units characterized by the same
B‐coefficient (hence same inter‐events time variance) produce differentRt values.
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Starting from the case q = 0.1, we can see how for the external condition (iE, iI) =

(1.35, 1.00) the relationship between MSR and the coefficient of local variation is almost

linear and characterized by a low firing rate, thus hinting at the fact that in this regime the

twometrics explains the same features of the spike train. Accordingly, although constrained

to a much smaller range, we can observe the same kind of linear relationship for MSR and

burstiness. Interestingly enough, both the coefficient of local variation and the burstiness

coefficient hinge on the variance intrinsic in the inter-spikes time series, and for a mildly

excited network this seems to coincide with what MSR considers relevant across multiple

time-scales. As soon as we increase the external current, and subject the network to a strong-

to-saturating current, the LV maintains a linear relationship with MSR only in the interval

Rt ∈ [0.15, 0.30], while most of the units withRt ∈ [0.00, 0.15] are characterized by de-

generacy in a very narrow strip of values of the comparisonmetric. Similarly, we can observe

how the Burstiness coefficient B relates linearly to MSR in the intervalRt ∈ [0.05, 0.30],

while a degeneracy over a small strip of B values appears for units withRt ∈ [0, 0.05]. By

looking closely, it is possible to observe how the region of degeneracy is the same that is char-

acterized by relatively high firing rates. Thus, it could be argue that, by virtue of this first

observation, much of the statistical information contained in densely bursting signal is lost

when encoded by both the coefficients of local variation and burstiness; instead, MSR with

its spectrum-like time-scale approach, discerns variations that go beyond the simple differ-

ences in subsequent inter-spike times or overall variation of the series. Closing narrowly on

the correlation betweenMSR and burstiness for (iE, iI) = (6.15, 5.36), we can appreciate

how degeneracy is two-faceted, with multiple values of the burstiness coefficient associated

to each MSR value, and vice versa. This could be due to the fact that, for a moderately

strongly excited network, the two metrics, despite capturing an overall trend (observable

from the shape of the plot), encode different aspects of the richness of response coded in a

bursty signal. Finally, the memory coefficient remains rather broadly distributed across all

currents, as could be expected by a network characterized by localized bump activity where
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there is no complete independence from other units’ activity (in fact, most of them belong

to the same neighbourhood).

Switching now to networks characterized by q-values (q ∈ [0.3, 0.8[) in the small-world

range, we can start to observe some subtle and somemore evident differences. First of all, we

notice that for (iE, iI) = (1.35, 1.00) there is still a linear relationship between MSR and

both the coefficient of local variation and the burstiness coefficient, but the interval where

such a relation holds shrinks toRt ∈ [0.25, 0.30] (neglecting the few outliers characterized

by a surprisingly high firing rate for the given external condition). Accordingly, for external

currents in the strong-to-saturating regimes the MSR interval characterized by degeneracy

over narrow stripswiden visibly for the coefficient of local variation, with units characterized

byRt ∈ [0.00, 0.20] collapsing on a fewLV values, and imperceptibly for the burstiness co-

efficient, with all units characterized by Rt ∈ [0.00, 0.05] being associated to B ≈ −1 -

hence to the region of almost homogeneous bursty signals. Interestingly, by looking at the

plot for the relation between theMSRand theBurstiness coefficient, we can observe how the

region of highestMSR scoring units, which coincides with the onewhere units have the low-

est firing rate, starts to invert the linear trend. Additionally, it can be observed that the profile

of each the LV − Rt plot is significantly ”tighter”, with only a few comparison metric val-

ues associated to eachMSR point; consequently, we can assert thatMSR and the coefficient

of local variation encode, across most of their entire range, the same statistical information

of the bursty signal. Finally, and coherently with the known theory, most of the memory

values for small-world networks cluster more closely toM = 0, as could be expected from

an ideal network havingN → +∞ and fraction of independent inputs proportional to the

q-parameter; indeed, if inputs were fully independent, there would be no correlation among

subsequent spikes.

At last, by considering networks characterized by q ∈ [0.8, 1.0], hence in a range where the

network topology is almost or totally random, we see that for (iE, iI) = (1.35, 1.00) the

coefficient of local variation maintains an almost linear relationship with MSR, although
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the positive slope seems to increase with respect to the same in the other q-conditions. In-

stead, while also the burstiness coefficient still maintains a linear relationship withMSR, the

slope of the relationship has become negative, hence it has inverted with respect to the con-

dition q ∈ [0, 0.3[. As the external current to the network increases, we observe from the

plot of the correlation between theMSR and the coefficient of local variation that, while the

interval of degeneracy for Rt-values onto LV -values remains unvaried with respect to the

small-world regime, in the high MSR range the relation between the two coefficients seems

to be almost bijective and linear, thus hinting on the fact that, for random networks and

external currents in the strong-to-saturating regime,Rt and LV encode the same signal fea-

tures. Surprisingly, we loose almost all the degeneracy ofRt onto B, with the relationship

being linear forRt ∈ [0, 0.25]. Importantly enough, for units characterized byRt > 0.25

the inversion in the linear trend is now evident, more pronounced than the same for small-

world networks, and coherent with what was observed for the initial external current. For

what concerns the shape of the trend itself, it is still fairly spread, so that arguments of bijec-

tivity will not hold. To conclude, for most of the currents the memory coefficients is tightly

clustered aroundM = 0, confirming once again the network’s drift towards a couplings

configuration characterized by independent inputs.

Given all these elements, a final remark on the relation betweenMSR and the burstiness co-

efficient is due. Indeed, it seems that for highly regular networks, the higher is the variance

in the series of inter-event times, the higher will the respective MSR score be. Instead, as we

increase the randomness of the network topology, for units with Rt > 0.25 the trend in-

verts, and the higher is the variance in the series of inter-event times, the lower will the respec-

tive MSR scores be. A possible reason could be that, in topological states of high regularity

where the associated activity can be expected to be to some degree correlated and localized,

the variance in the inter-event times has an upper-bound coherent with the existence of the

positive linear relationship withMSR. Conversely, in topological states of high randomness,

given the absence of correlations and the naturally higher burstiness scores, it may be that a
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maximality condition on B is reached

B̃ = maxRt B(Rt) ≈ 0.7 (6.1.3)

Thereby, we can conclude that spike trains presenting the highest richness of response ac-

cording to theMSRmetric are not those that also display the highest variance in inter-events

times. The pressing question now is what determines differences in MSR score between

units that are characterized by the same burstiness coefficientB = B̄, where we are consid-

ering a small-world or random network and B̄ = B̃ − δ, for 0 < δ << 1.

Now that we have studied how MSR correlates with other statistics of the spike train,

and since we have abundantly explored their dependence on the firing rate, it would be in-

teresting to understand whether there are some graph theoretical measures that allow us to

consistently predict the firing rate for each single unit, and by virtue of theMSRdependence

on it, if there are some of them that consistently correlate with MSR, across currents. The

results, for the same configurations of q-values, were the following (for a complete outline,

see Appendix 8).

(a) q = 0.1 (b) q = 0.5 (c) q = 1.0

Figure 6.15: (a) In the condition q = 0.1, the correlation between the weighted, directed clustering coefficient and MSR
increases with the external current, very rapidly for low ones and then gradually for higher ones. (b) In the condition
q = 0.5, we have again a very sharp increase in the correlation for low external currents, followed by a peak and
then a gradual decrease. (c) In the condition q = 1.0, the increase in correlation at low external currents is again
abrupt, and differently from (b) the peak is followed by sharper decrease. It is worth noticing that the only condition
where the correlation continues to increase is the one where the network is characterized by an almost ring topology; it
may be possible that, given the high topological regularity of the network, subtle variations in the clustering coefficient
significantly impact the MSR value of the units. Such advantage is lost as the topological randomness increases, and the
perturbations are quickly relayed throughout the entire network.
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(a) q = 0.1 (b) q = 0.5 (c) q = 1.0

Figure 6.16: (a) In the condition q = 0.1, the correlation between pagerank and MSR is characterized by a sudden
decrease to ρr = −0.2 for relatively low currents, and promptly followed by a more gradual decrease as the external
current continues to increase. (b) In the condition q = 0.5, the correlation is characterized by a sharp decrease for
relatively low external currents, followed by a plateau and a subsequent gradual increase. (c) In the condition q = 1.0, the
correlation is characterized by a steep but controlled decrease for low currents, followed by a plateau and a sharp increase.
Given the recursiveness with which pagerank is defined, results (b) and (c) may highlight how nodes that are highly referred
to by other pagerank relevant nodes in the network are particularly inefficient at the generation of meaningful (according
to MSR) signals for relatively low currents.

As evident from the plots 8.46,8.49, 8.52, 8.55 and 8.58, there is no significant correlation

between MSR and the graph measures of Betweenness, Closeness, In-degree, and Katz cen-

trality, and this absence holds across all the external currents the network was subjected to.

Now, given the absence of correlation between any of these measures and MSR, and since

MSR depends on firing rate, we can infer that there will be no correlation between any of

these measures and firing rate. This is somewhat surprising, as Fletcher et. al. [15] found

that neural activity correlated strongly with Katz centrality, and consequently the measure

could be used as a good predictor of the same. However, we have to consider the fact that

they created a network of LIF neurons wired according to a random topology; this could

have significantly contributed to the observed differences, as the dynamics for each of the in-

volved units are significantly more sophisticated. Thereby, since in our network the activity

of units depends in a step-like manner from internally incoming input, rather than differen-

tially, the evaluation of the weighted impact of nodes k-hops away from the unit of interest

could bear little or no relevance to the actual determination of its firing activity, since single

units activation is highly stochastic and dependent on small fluctuations, as we have seen

in chapter 3. On the other hand, the MSR of each unit is significantly correlated with its
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weighted local clustering coefficient and anti-correlated with its pagerank coefficient, where

the former is defined as

CJ
i =

P
j∈Vi

P
k∈Vi\{j} J

1
3
ijJ

1
3
jkJ

1
3
ki

d(vi)(d(vi)− 1) ·maxlh Jlh
(6.1.4)

Interestingly enough, these correlations behave in a drastically different way as they evolve

across currents fornetworkswithdifferentdegrees of randomness in their connectivity. Specif-

ically, for networks defined by q ∈ [0.0, 0.2[, and therefore by considerably high clustering

for all the units in the network (ring topologies with few random connections), the local

clustering coefficient strongly and inversely correlates with MSR for low-currents, with a

rapid correlation change driving it towards positive values. Indeed, as the current increases,

so does the correlation, reaching a maximum of ρr(Rt;LC) ≈ 0.4. Conversely, the cor-

relation between MSR and Pagerank starts at ρr(Rt;PGRK) = 0.8 for low currents and

rapidly decreases to a minimum of ρr(Rt;PGRK) ≈ − 0.4. If we consider instead net-

works defined by q ∈ [0.3, 0.8[, hence small-world networks tending towards total random

connectivity, we have that the local clustering coefficient significantly correlates with MSR -

ρr(Rt, LC) ∈ [0.4, 0.7] - for low external currents, i.e. (iE, iI) ∈ [1.00, 5.00], with a steep

initial increase, and then gradually decreases to ρr(Rt, LC) = 0 as the current increases.

Conversely, the correlation between MSR and pagerank attains significant negative values

for low external currents - ρr(Rt;PGRK) ∈ [−0.7,−0.4], and then gradually increases

to ρr(Rt;PGRK) = 0 as the current increases. Finally, for almost or totally random net-

workswith q ∈ [0.8, 1.0], we observe a steep initial increase toρr(Rt, LC) ≈ 0.8, promptly

followed by an equally steep decrease to ρc(Rt, LC) = 0. In an almost symmetrical way, we

can observe a steep decrease to ρc(Rt, PGRK) ≈ −0.8 for low external currents, and then

a quick increase to ρc(Rt, PGRK) = 0. In order to better understand the correlations, we

focus on snapshots of the points relation between conditions of highest correlation change,

and on a snapshot for the points relation in a strong-to-saturating current condition.
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(a) (b) (c)

(d) (e) (f)

Figure 6.17: The top row (figures (a),(b),(c)) displays the point relation between Local Clustering and MSR for q = 0.1.
From (a)→ (b) we can appreciate the steep increase in correlation, that leads it from strongly anti‐correlated (a) to not
correlated (b). Figure (c) instead presents a condition of positive correlation, with most of the high MSR preserving units
localized on the cluster characterized by positive local clustering coefficient. The bottom row (figures (d),(e),(f)) displays
the point relation between Pagerank andMSR, which follows an exact opposite evolution if compared to Local Clustering.
From (d)→ (e) there is a steep change from strong positive correlation to no correlation, and in (f) we can appreciate how
the highest MSR scoring units are localized to the left cluster (negative pagerank).

(a) (b) (c)

(d) (e) (f)

Figure 6.18: The top row (figures (a),(b),(c)) displays the point relation between Local Clustering and MSR for q=0.5. From
(a)→ (b) a positive correlation change is displayed, with the population on the right (positive local clustering) presenting
a fainter decay in MSR scores. Instead, figure (c) again presents a denser cluster of high MSR scoring units for positive
clustering coefficients, despite the considerable tail of high firing rate, low MSR scoring units below it. Conversely, from
(d)→ (e) we observe how the cluster of negatively pagerank scoring units is the one that displays slower MSR decay,
while from (f) we see how the column of negative pagerank units is the one preserving the denser cluster of high MSR
scores.
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(a) (b) (c)

(d) (e) (f)

Figure 6.19: The top row (figures (a),(b),(c)) displays the point relation between Local Clustering and MSR for q =
1.0. From (a)→ (b) we can appreciate the strong, positively oriented change in correlation, which has a peak at
ρc(Rt, LC) ≈ 0.8. Figure (c) instead presents how most of the units escaping saturation and preserving high
MSR scores are found in the cluster of positive local clustering units. The bottom row (figures (d),(e),(f)) displays the
point relation between Pagerank and MSR. From (d)→ (e) there is a steep negative change in correlation down to
ρc(Rt, LC) ≈ −0.8, and in (f) we can appreciate how the most high MSR scoring, non‐saturating units are local‐
ized to the left cluster (negative pagerank).

From the graphs of the point relation betweenMSR and Local Clustering and Pagerank,

respectively, we can make some inferences on the identity of the units that preserves high

MSR scores across currents. First of all, we notice that the units in the network are subdi-

vided, by each of the fore-mentioned graph measures, into two populations that span inter-

vals of the measure’s co-domain characterized by opposite signs, but these intervals are not

perfectly symmetric with respect to their zero. As could be expected from the definition of

local clustering coefficient and from the way in which we have defined our family of net-

works, the modulus of the values in the spanned intervals shrinks as q → 1. On the other

hand, and quite interestingly, the intervals spanned by values of the pagerank coefficient re-

main, in magnitude, approximately unvaried across order conditions, except for the spread

of the points around the central interval value, thus highlighting how more randomness in

the network associates with more heterogeneity in the flow of activity through nodes. From

a global consideration of figures 6.17, 6.18, and 6.19, and drawing a comparison with fig-
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ures 6.15 and 6.16, we can observe how the point relation betweenMSR and the respective

graph measures follows a population inverse pattern, thus providing us with a clue that the

population that is characterized by positively (negatively) valued local clustering coefficients

significantly overlaps with the one characterized by negatively (positively) valued pagerank

coefficients. This clue seems to be further supported by an analysis of each population and

the firing rate of the respective units, especially for regimes of high external currents. Indeed,

by looking at plots (c), (f) of each of the considered figures, we can observe how the den-

sity of low-firing, high MSR scoring units is population-symmetric across graph measures -

denser for positive local clustering and negative pagerank units - and this difference in den-

sity could be one of the driving correlation factors in conditions of high external currents.

In addition, notice that this denser population achieves, across all the explored q-conditions,

higher MSR values than the sparser one. In addition, from the plots (a), (b), (d), and (e) of

each of the considered figures, which present the conditions of steepest correlation change

in figures 6.15 and 6.16, we can see how such change always corresponds to an upward push

for the population of positively (negatively) local clustering (pagerank) scoring units, thus

highlighting once again, even in situations where an analysis of the firing rate is of no aid,

how there might be a high degree of overlap between measure-symmetric populations. A

quantification of the real degree of overlap between the considered populations would be

advisable, but unfortunately unfeasible for the completion of the current thesis, as the clus-

ter on which simulations are run is under maintenance.

On the basis of the definition of the weighted local clustering coefficient and of the weighted

pagerank coefficient, and taking into consideration both the y-symmetric trajectory of their

correlation with MSR and the hypothesized overlap in populations across graph measures,

we propose the under-interacting hub hypothesis. Specifically, we hypothesize that in a net-

work of excitatory and inhibitory units connected by population-specific weights, the units

that interact mostly locally (high local clustering) but through which only a small fraction

of the total network activity flows (low pagerank) are the ones capable of generating, across
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the entire range of currents that the network can withstand without entering a saturation

regime, highMSR spike trains.

6.1.1 The Barabasi-Albert Network

The defining feature of the Barabasi-Albert model, for what concerns the goals of the simu-

lation, is the power-law distribution of the nodes’ degree. As a result of preferential attach-

ment, we will have nodes that display a broad distribution of degrees, and consequently we

cannot expect, on average, the input to each unit to be the same. For this reason, the iden-

tity itself of the nodes within each population and across populations becomes relevant. In

particular, the property of ergodicity, which is the property of a network where all nodes

are connected to other nodes via an existing path, may play a fundamental role in shaping

the network response. Indeed, since the Barabasi-Albert network, under the assumption of

sparse connectivity, is not supposed to be ergodic, then each different realization of the same

network architecture could potentially lead to drastically different results. To evaluate such

difference, we will consider two reference realizations of a BA network, where all the param-

eters are kept the same except for the specific wiring between nodes. Starting from the mean

network response to the external input

Figure 6.20: Mean response of the excitatory population for two different realizations of the same network
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Figure 6.21: Mean response of the inhibitory population for two different realizations of the same network

This difference inmean responsewas not observed across different realization of theWatts-

Strogatzmodel, for anyof the chosen q-parameters, since themodel satisfies ergodicity. More-

over, differences were negligible for any of the other considered distributions or correlations.

Thus, this subsectionwill bemainly devoted to the presentation of howdifferent realizations

of the BAmodel may differ, and the possible solutions to the problem.

Starting from theMSR distribution for the external current conditions

(iE, iI) ∈ {(1.35, 1.00), (6.15, 5.36), (12.26, 10.91)}

- displayed in the given order - we have

MSR distribution for the first BA network realization.
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MSR distribution for the second BA network realization.

and the 3D-plots for log(M)−Rt, displayed for any given current

Figure 6.24: log(M)−Rt plots for any given current for the first BA realization (left) and the second (right).

Thus, it will closely follow that all the other results that were presented for the Watts-

Strogatzmodelwill vary considerably across different realizations. For this reason, in order to

draw valuable conclusions on theMSR properties for signals generated by a Barabasi-Albert

model, it would be advisable to consider average properties, where the average is taken across

many realization of the same architecture (ensemble averaging).
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..It was onEarth that the positronic brainwas inventedand

on Earth that robots had first been put to productive use...

Caves of Steel, Asimov

7
Conclusion

In this thesis, we have adequately simulated a family of sparse networks characterized by dif-

ferent degree of randomness in their connectivity, without having them to complete any

task. Indeed, the only remarking feature of such networks was their ability to quickly track

changes in their external input and have an average activity that linearly depended on them.

The aim of the thesis was then to compute themetricMultiscale Relevance on the output of

each single unit, and study its correlation with other metrics or graph measures, in order to

gain a more thorough understanding of its interplay with different features of the network

and of its activity.

The results that were found led us to conclude that the Multiscale Relevance metric de-

pends indirectly on the topology of the network and that it encodes features of the signal

similar to the ones considered by the Coefficient of Local Variation and the Burstiness Coef-

ficient. The presence of intervals of linear and non-linear relationship between suchmetrics

urges us to draw the reader’s attention towards specific ranges of sensitivity. Indeed, in inter-
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vals where the relation between MSR and such metrics is linear, and keeping in mind that

such relation does depend on the external input, we are led to believe that the two are essen-

tially equally valuing the properties of the considered signal. Instead, in intervals where such

relation is non-linear, we are prompted to consider either one of the two metric (MSR and

either the coefficient of local variation or the burstiness coefficient) as providing more infor-

mation on the properties underlying the considered signals, although what this information

is and what is its importance still remains an open problem.

In addition, we found that among a set of graph measures MSR correlates significantly,

and depending on the external current, with the local clustering coefficient and the pagerank

coefficient. While with the former the correlation is mostly positive, with the latter is mostly

negative and the correlation evolution across external currents for the two measures follows

a y-symmetric trajectory. This led us to formulate the under-interactive hub hypothesis, ac-

cording to which, for our family of networks, the units that seem best positioned to produce

signals resulting in high MSR coefficients, across currents, are those characterized by rela-

tively high fractions of local interactions (high clustering coefficients) but relatively low flow

of total network activity through them (low pagerank). This result seems to hold consis-

tently for our cortical model, which is very simple and excludes from any internal dynamic

of the unit. Consequently, it would be interesting to understand whether different types of

model cortical networks, such as networks of LIF neurons, preserve this same property or

whether it is peculiar to ours’.

Much work still needs to be done to understand Multiscale Relevance more thoroughly,

evenwhile constraining ourselves to the same family of networks. For example, this thesis has

not addressed the same problembutwithweights that are not population specific, but rather

drawn from a probability distribution that still allow us to unequivocally distinguish an ex-

citatory and inhibitory population, as outlined in the paragraph 3.4. Furthermore, we could

also consider the same type of network, either with population-specific or random weights,

but with a time-varying external current, both of deterministic and stochastic nature. Ex-
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panding then to other types of network, the same kind of analysis could be run on a network

of LIF neurons or, if the reader is interested in even more biologically plausible models, to

small networks of Hodgkin-Huxley neurons. All these experiments are considering a pur-

poseless network that simply simulates activity on the basis of some specified dynamics and

connectivity. Going a step further, the reader may apply the same analysis on networks of

spiking units that perform a relevant task, such as the storing and retrieval of memories, the

classification of objects, etc. Experimenting with all this different, well-understood types of

network will allow the research community to gain a solid understanding of which are the

general properties that relate Multiscale Relevance to network activity, while analysing re-

sults that are specific to a particular network will in turn, hopefully, shed more light on the

dynamics and properties underlying its global and unit-specific activity.
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8
Appendix

8.1 FixedWeights Network

In this section of theAppendix I will provide all the relevant, generated plots for the distribu-

tions and the correlations pertaining to the fixed weights condition of the network. Starting

from results on the distribution of the considered spike statistics, and closely following with

the correlation between the log of the total number of spikes and MSR, between the differ-

ent spike statistics, and finally the correlation of MSR with the graph measures detailed in

chapter 4
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Figure 8.1: MSR Distribution for q = 0.1

Figure 8.2: Burstiness Distribution for q = 0.1

Figure 8.3: Firing Rate Distribution for q = 0.1

Figure 8.4: Memory Distribution for q = 0.1
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Figure 8.5: MSR Distribution for q = 0.3

Figure 8.6: Burstiness Distribution for q = 0.3

Figure 8.7: Firing Rate Distribution for q = 0.3

Figure 8.8: Memory Distribution for q = 0.3
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Figure 8.9: MSR Distribution for q = 0.5

Figure 8.10: Burstiness Distribution for q = 0.5

Figure 8.11: Firing Rate Distribution for q = 0.5

Figure 8.12: Memory Distribution for q = 0.5
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Figure 8.13: MSR Distribution for q = 0.8

Figure 8.14: Burstiness Distribution for q = 0.8

Figure 8.15: Firing Rate Distribution for q = 0.8

Figure 8.16: Memory Distribution for q = 0.8
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Figure 8.17: MSR Distribution for q = 1.0

Figure 8.18: Burstiness Distribution for q = 1.0

Figure 8.19: Firing Rate Distribution for q = 1.0

Figure 8.20: Memory Distribution for q = 1.0
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Figure 8.21: log(M)‐MSR for q = 0.1

Figure 8.22: log(M)‐MSR for q = 0.3

Figure 8.23: log(M)‐MSR for q = 0.5

Figure 8.24: log(M)‐MSR for q = 0.8

Figure 8.25: log(M)‐MSR for q = 1.0
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Figure 8.26: Local Variation ‐ Burstiness correlation for q = 0.1

Figure 8.27: Local Variation ‐ MSR correlation for q = 0.1

Figure 8.28: MSR ‐ Burstiness for q = 0.1

Figure 8.29: MSR ‐ Memory for q = 0.1
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Figure 8.30: Local Variation ‐ Burstiness correlation for q = 0.3

Figure 8.31: Local Variation ‐ MSR correlation for q = 0.3

Figure 8.32: MSR ‐ Burstiness for q = 0.3

Figure 8.33: MSR ‐ Memory for q = 0.3
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Figure 8.34: Local Variation ‐ Burstiness correlation for q = 0.5

Figure 8.35: Local Variation ‐ MSR correlation for q = 0.5

Figure 8.36: MSR ‐ Burstiness for q = 0.5

Figure 8.37: MSR ‐ Memory for q = 0.5
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Figure 8.38: Local Variation ‐ Burstiness correlation for q = 0.8

Figure 8.39: Local Variation ‐ MSR correlation for q = 0.8

Figure 8.40: MSR ‐ Burstiness for q = 0.8

Figure 8.41: MSR ‐ Memory for q = 0.8
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Figure 8.42: Local Variation ‐ Burstiness correlation for q = 1.0

Figure 8.43: Local Variation ‐ MSR correlation for q = 1.0

Figure 8.44: MSR ‐ Burstiness for q = 1.0

Figure 8.45: MSR ‐ Memory for q = 1.0
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Figure 8.46: MSR‐Node Centralities correlation for q = 0.1

Figure 8.47: MSR‐Local Clustering correlation for fixed currents, q = 0.1

Figure 8.48: MSR‐Pagerank correlation for fixed currents, q = 0.1
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Figure 8.49: MSR‐Node Centralities correlation for q = 0.3

Figure 8.50: MSR‐Local Clustering correlation for fixed currents, q = 0.3

Figure 8.51: MSR‐Pagerank correlation for fixed currents, q = 0.3
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Figure 8.52: MSR‐Node Centralities correlation for q = 0.5

Figure 8.53: MSR‐Local Clustering correlation for fixed currents, q = 0.5

Figure 8.54: MSR‐Pagerank correlation for fixed currents, q = 0.5
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Figure 8.55: MSR‐Node Centralities correlation for q = 0.8

Figure 8.56: MSR‐Local Clustering correlation for fixed currents, q = 0.8

Figure 8.57: MSR‐Pagerank correlation for fixed currents, q = 0.8
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Figure 8.58: MSR‐Node Centralities correlation for q = 1.0

Figure 8.59: MSR‐Local Clustering correlation for fixed currents, q = 1.0

Figure 8.60: MSR‐Pagerank correlation for fixed currents, q = 1.0
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