
University of Padova

Department of Information Engineering
Master of Science in Computer Engineering

A Sampling-Based Tree Planner for Robot
Navigation Among Movable Obstacles

Student: Supervisor:
Nicola Castaman Prof. Enrico Pagello

Co-supervisor:
Dott.ssa Elisa Tosello

Academic Year 2015 - 2016

Abstract

Over the last decades, many Motion Planning algorithms have been developed in
order to find a continuous robot motion connecting a robot start configuration S and
a goal configuration G. Traditional algorithms limit the search of the path within the
collision-free space, while avoiding contacts with obstacles in the scene. This is in
contrast with how humans naturally act, utilizing their manipulation capabilities to
modify the environment to assist locomotion. If necessary, humans do not hesitate to
move objects, such as chairs, out of their way to reach an otherwise unreachable goal.
This thesis aims to bring robots closer to such capabilities proposing a planner that
solves Navigation Among Movable Obstacles (NAMO) problems giving robots the
ability to reason about the environment and choose when manipulating obstacles. It
finds a path from a robot start configuration S to a goal configuration G taking into
consideration the possibility of moving objects if G cannot be reached or if moving
objects may significantly shorten the path. The planner combines the A*-Search and
the exploration strategy of the Kinodynamic Motion Planning by Interior-Exterior
Cell Exploration (KPIECE) algorithm. It is locally optimal and independent from the
size of the map and from the number, shape, and position of obstacles. It assumes
full world knowledge but the world is completely reconfigurable and it can be easily
extended in order to explore unknown environments.

i

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Challenges . 3
1.3. Approach . 4
1.4. Overview . 5

2. Related Work 7
2.1. NAMO Planning . 7

2.1.1. NAMO Planning with Uncertainty 8
2.2. Sampling-based Motion Planning . 9

3. NAMO Planning Domain 11
3.1. Problem Statement . 11
3.2. Operators . 13
3.3. Actions . 14

4. NAMO Planner 17
4.1. Navigation . 17

4.1.1. Proposed Solution . 17
4.2. Manipulation . 21

4.2.1. The relocation routine of graspable objects 21
4.2.2. The relocation routine of pushable objects 23
4.2.3. Displacement . 24

4.3. Sensors feedback . 24

5. Implementation Details 25
5.1. ROS . 25
5.2. NAMO Package . 26

5.2.1. Map 2D . 27
5.2.2. NAMO Planner . 29

6. Experiments 31
6.1. Point-Like Robot . 31

6.1.1. Experimental Setup . 32
6.1.2. Results . 32

iii

Contents

6.2. Point-Like Robot with Footprint . 34
6.2.1. Experimental Setup . 34
6.2.2. Results . 36

6.3. Simulated Robot . 36
6.3.1. The Robot . 37
6.3.2. Tools . 40
6.3.3. Simulated Execution . 41

7. Conclusions and Future Work 45
7.1. Future Work . 45

A. A* 47

B. KPIECE 49

Bibliography 52

iv

1. Introduction

Over the last decades, many Motion Planning algorithms have been developed in
order to find a continuous robot motion connecting a robot start configuration S and
a goal configuration G. Traditional algorithms limit the search of the path within the
collision-free space, while avoiding contacts with obstacles in the scene: the robot
sees environment objects as obstacles. Moreover, these algorithms are not designed
for systems with complex dynamics such as humanoids or mobile manipulators,
which have manipulation capabilities. This is in contrast with how humans naturally
act, utilizing their manipulation capabilities to modify the environment to assist
locomotion. If necessary, humans do not hesitate to move objects, such as chairs,
out of their way to reach an otherwise unreachable goal. Future robots should
demonstrate similar behavior, using their manipulation capabilities to move or even
use environment objects.
This work, based on a work already published in [2], aims to bring robots closer

to such capabilities, to enable robots to autonomously reason about the environment
and to change it to reach the goal. For a robot, not all environment objects have to
be obstacles and it should be able to move each manipulable object out of the way
to archive a task.

All developed packages are public released as open-source and available at https:
//bitbucket.org/account/user/iaslab-unipd/projects/NAMO.

1.1. Motivation

Most of existing motion planning algorithms implemented for actual robots search
for collision-free paths. Assume, for example, the scenario of Figure 1.1a where the
robot has to reach a Goal but the shortest way is restricted by a box. Figure 1.1b
depicts the actual robots behavior: when the robot sees the obstacle that occludes
the goal it search for a collision-free path that circumnavigate the collision space.
Humans behave in a different way, if it is necessary or less strenuous, they ma-

nipulate objects in order to create free spaces while minimizing efforts and time
necessary to reach the goal. If the manipulation is too onerous (e.g., object is heavy,
time required to manipulate the object exceeds the time to perform the collision-free
path), then humans will interrupt the task and walk through the existing free space.
Figure 1.2b depicts the human behavior in the same scenario of the robot. The
human sees the obstacle and first tries to move it instead of circumnavigating the

1

1. Introduction

(a) Configuration (b) Solution obtained with actual planner

Figure 1.1.: Robot behavior: walk to the Goal; detect the obstacle; search a collision-
free path; reach the Goal.

collision space that occludes the goal.
Robots that collaborate with humans in future industries or future rescue robots

that save humans from disasters should behave in the same way. Robots should
quickly decide which objects must be moved and where to move them in order
to create an accessible path or clear a path to reach the Goal. Moreover robots
should choose how to manipulate objects and compute a motion plan that integrate
manipulation and navigation.
In fact, in a real scenario, such as in case of earthquake disasters, it could be

impossible to find a collision free path connecting two states because of obstructions.
Moreover, the minimum cost path allowing a robot to reach a planned pose could not
involve a carefully collision-free navigation around the clutter. Sometimes, creating
gaps among obstacles can be necessary or can considerably reduce navigation costs.
Think for example to a service robots, it will have to be able to autonomously

navigate inside a home or an office while opening doors, moving chairs, etc. Rescue
robots, should instead, be able to act in areas affected by disasters such as mining
accidents, floods, and earthquakes; they should be able to decide when moving
obstacles out of the way, in order to reach and save human lives as soon as possible.
An example could be the scenario of an incident at a nuclear power plant, where the
radiation levels is too high for workers to enter in damaged buildings. The use of
robots turn out to be the right choice, however, current robot technologies prove to
be limited. Robots require constant teleoperation, which in turn require operators
to be within close proximity to the power plant at all times in full protection
suits. In this way, there is an increase of the difficulty of operating the robots

2

1.2. Challenges

(a) Configuration (b) Solution obtained by human

Figure 1.2.: Human behavior: walk to the Goal; detect the obstacle; try to remove
the obstacle; reach the Goal.

teleoperation command terminal while workers are exposed to radiation. In addition,
if communication between the operation terminal and the robot breaks, the robot
will be lost and the task could not be completed. If robots are able to operate more
autonomously and reach target areas without constant supervision and teleoperation,
radiation exposure of workers could be lower and task completion rate increase.

Navigation Among Movable Obstacles (NAMO) gives robots the ability to reason
about the environment and choose when manipulating obstacles [21, 23, 22]. It plans
robot movements taking into consideration the possibility of moving objects if the
goal cannot be reached or if moving objects may significantly shorten the path to
the goal.

1.2. Challenges

The goal of this thesis is to develop a practical system that allow a robot to
reason about the environment and to move obstacles away. There are two challenges
that address NAMO planners: the very high dimensional of the state space in
NAMO planning and the uncertainty that outcome on real systems and in physical
interactions between a robot and its environment.
To understand the state space dimensionality, consider the navigation in a room

with manipulable obstacles such as the ones depicted in Figure 1.1a. In contrast to
planning for a single mobile robot with a fixed number of degrees of freedom, NAMO
requires to consider the displacement of any movable object. The full state space

3

1. Introduction

has the same dimension of that of a robot that has as many joints as the number of
obstacles in the environment. In order to obtain an efficient solution, the robot will
need heuristics for deciding which objects should be moved or where to move them.
In reality, robots have incomplete world knowledge and can only perceive the

environment through limited sensory input, resulting in state and action uncertainty.
To better understand why this might be a problem, consider again the example in
Figure 1.1a. Maybe the robot knows that the shortest path to the goal involves
moving the box, but it does not know whether the box is too heavy to be moved.
How might the robot weigh the cost of moving the box? Moreover, the pose of the
objects in the scene may be subject to uncertainty as well as the motion of the robot.
All these concepts are the base that motivate the proposed planning algorithms.

The algorithm aims to be scalable: independent from the size of the map and from
the number, shape and pose of objects. It has not to impose restrictions on actions
to be performed: the robot can both push and grasp every object. Moreover, to be
really useful the algorithm must ensure a real-time computation: the computation
time cannot take more time than the time that the robot take to avoid obstacles.
Fast planning and replannig is preferable to work in a real scenario. In the end, the
implementation of the algorithm aims to achieve three important features: portability,
reusability and flexibility. The algorithm has to be immediately compatible with a
lot of widely used robots, that obviously have different features and DOF. Moreover,
it has to work in different environment and not to be a problem specific solution.
The challenges of recognition and localization of objects are beyond the scope of

this thesis. For this reason existing tools have been used in order to test to efficiency
of the proposed planing algorithm on a simulated robot acting on a simulated scene.

1.3. Approach

In order to reach the objective proposed by this thesis, an algorithm that solves
the NAMO problem is proposed; this algorithm combinine benefits of existing
NAMO solvers with that of Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration (KPIECE) [25, 24], a promising sampling-based algorithm. Sampling-
based motion planning algorithms explore the state space of the robotic system by
growing a tree of valid motions from the start state of the system towards a goal
region, using a model of motion [10]. In detail, complex systems motion planning
can be solved by whose tree planners that only depend on forward propagating the
model of motion, numerically evaluating motions only forward in time. KPIECE,
in particular, is designed for systems with complex dynamics, where physics-based
simulation is necessary and it simplifies the problem resolution by projecting the
robot states space into a discretized Euclidean space. Moreover, KPIECE focuses
exploration on the less covered areas by assigning an importance function that gives
priority to unexplored cells. In a similar way to KPIECE, the developed algorithm

4

1.4. Overview

projects the three-dimensional cluttered workspace into an Euclidean space and
discretize it by a grid. Consequently, the algorithm considers both objects in contact
and not in contact with the ground. In the same way the algorithm projects the robot
states space into the Euclidean space. An importance value is assigned to every cell.
With this purpose, the importance function of KPIECE, was reformulated in order
to assign an importance value to both free and occupied cells. The value corresponds
to the robot effort required to reach the cell and eventually manipulate the obstacles
inside it. As in KPIECE, the importance function favors the exploration of less
explored areas. This behavior makes the robot more "curious", in a way similar to
that used by humans.
Initially, the algorithm is developed to project the robot as a point-like robot in

the two-dimensional space. This approach is a good step to prove the validity of the
solution but is not enough. Indeed, the planner does not consider the occupancy of
the robot and its state. Then, the algorithm was improved to take into consideration
first the footprint of the robot, then its simulated state. The algorithms assumes full
world knowledge but the environment is reconfigurable and it can be easily extended
in order to solve NAMO problems in unknown environments. In fact, it is able to
handle sensor feedbacks and correct uncertainties regarding obstacle poses and robot
actions. Performed tests prove that it is locally optimal.

The obtained algorithm addresses two NAMO challenges: scalability and real-time
computation. It is scalable because of its independence from the size of the map
and from the number, shape, and pose of obstacles. It does not impose restrictions
on actions to be performed: the robot can both push and grasp every object. In
addition, it is real-time as proved by the performed experiments where the path was
computed in a time less than a millisecond.
The implementation of the algorithm has been made ROS-compliant. The open-

source Robot Operating System (ROS) [16] is a flexible framework for develop
robot software. In fact, it creates an abstraction of the robot to the developer, so
the developed software is instantly usable in all compatible robots. Moreover, it
is extensively used among the robotics community and is compatible with a lot
of widely used robots. This allow the proposed solution to be portable, reusable
and flexible. The proposed NAMO algorithm extends the ROS navigation package
allowing the assignment of different weights to whose cells of the 2D costmap that
are populated by obstacles.

1.4. Overview

The rest of this thesis work is organized as follows:

Chapter 2 - Related Work provides an overview of related work in NAMO plan-
ning, robotic planning under uncertainty, and Sampling-Based Motion Planning;

5

1. Introduction

Chapter 3 - NAMO Planning Domain introduces NAMO as a robot planning
domain and presents its technical challenges;

Chapter 4 - NAMO Planner gives a practical solution for NAMO, describe in
depth the algorithm proposed for the navigation and gives an overview on the
object manipulation and sensors feedbacks;

Chapter 5 - Implementation Details describes the implementation of the pro-
posed algorithm in a ROS-compliant package and gives an overview on what is
ROS and how it works;

Chapter 6 - Experiments describes the performed experiments and discusses the
obtained results, moreover describes the simulation performed and robot used
for this purpose;

Chapter 7 - Conclusions and future works provides concluding remarks and out-
lines future research directions;

Appendix A - A* gives an overview on how the A* algorithm works;

Appendix B - KPIECE describe how the KPIECE algorithm works.

6

2. Related Work

The work presented in this thesis aims to improve existing NAMO algorithms by
adding a Sampling-based Motion Planning. In this chapter the state of the art of
both NAMO and Sampling-Based Motion Planning algorithm is discussed to provide
an overview of researches now available.

2.1. NAMO Planning

Navigation Among Movable Obstacle (NAMO) has always been a challenge, even
considering complete environment knowledge. As stated in [21, 23, 28, 14], Wilfong
[27] first proved that deterministic NAMO with an unconstrained number of obstacles
is NP-hard. Demaine [3] showed that even when considering only unit square obstacles
the problem remains NP-hard.
In [21], Stilman solved a subclass of NAMO problems, namely LP1, where dis-

connected components of free-space could be connected independently by moving a
single obstacle. As stated in [23], the planner was successfully implemented on the
humanoid robot HRP-2. Subsequentely, Van Den Berg with Stillman presented a
probabilistically complete algorithm for NAMO domains [26]. However, all these
planners solved NAMO problems assuming full world knowledge.
Following researches by Wu [28] and Kakiuchi [6] bring a solution to NAMO

problems even in unknown environments. Wu, in [28], discretizes the environment
in a grid and calculates a plan from Start to Goal through an A*-Search using
the Euclidean distance as heuristic. Authors presented a baseline as well as an
optimized approach. The baseline approach calculates plans for all possible actions
on all known objects for any change in the environment. The method does not scale
for larger environments. The optimized method does not automatically recompute
plans if new information becomes available. When encountering new obstacles, [28]
recomputes plans only when the current one becomes invalid due to collisions. For
every new obstacle considered for the re-plan, it evaluates push actions limiting their
number by the cost of just avoiding the obstacle itself. It maintains an ordered list
of costs relative to the manipulation of each object and, at every step, it selects the
minimum cost one. This approach reduces the number of objects that have to be
evaluated during the selection but it does not guarantee local optimality, it supports
only push actions, and it constrains obstacle shapes to be rectangular. Levihn, in
[14], improves [28] guaranteeing local optimality. It supports a larger action set

7

2. Related Work

(both pushes and grasps) and arbitrary object shapes. It introduces a dynamic
bound that limits the number of obstacles evaluations, and it maintains two lists of
cost underestimates for every plan. The first list maintains the minimum distance
that the robot will have to cover if it moves a specific obstacle. This estimate is
less informed but is fast to evaluate and remains constant throughout the entire
execution. The second list is populated with the information of the obstacles already
evaluated. Furthermore, a dynamic upper bound of the effort required to avoid all
obstacles is stored. The use of the two lists and of the upper bound increases the
computational efficiency and guarantees local optimality. Authors of [14] proved
that the algorithm guided the robot to the goal in a time between 18 and 50 seconds
in an environment containing between 2 and 70 randomly generated obstacles in
randomized configurations. Kakiuchi [6] presented a solution for NAMO in unknown
environments and experiments it on the humanoid robot HRP-2 using only on-board
sensors. Movable obstacles are detected using active sensing and a color range sensor,
and when an obstacle is moved, the perception of the environment is reconstructed.

2.1.1. NAMO Planning with Uncertainty

As stated in [11], the uncertainty in state and action outcome on real systems is a
primary challenge in developing practical systems that allow a real robotic system
to reason about environment objects. In literature there is a class of algorithms
designed for mobile robot navigation with initial uncertainty about the poses of
obstacles in its workspace. These algorithms discretized the states space, and employ
methods based on A* search. They assume that space is free until it discovers to be
blocked, and replan when the current plan is made impracticable by newly discovered
obstacles. Early versions used a relatively straightforward planning strategy instead
more advanced versions, e.g. D* [19], employ algorithmic techniques to ensure
computational efficiency and limit the frequency of replanning.

A modern and interesting approach was proposed by Levihn [13, 12, 11]. In these
works, authors uses ideas from decision theory to formally represent the uncertainty
in NAMO for scenarios that require the robot to move a single object out of the way
to connect two free-space regions. Authors define the NAMO problem as a Markov
Decision Process (MDP).

General strategy is to construct a MDP that looks like the real problem, but can
be solved in linear time for typical environments. The construction of this MDP
builds on two insights of the domain. First, the state space is abstracted into a
small set of states. These states are free-space regions that indicate that the robot
can move collision-free between any two configurations within the region. Second,
there is a small number of actions that lets the movement within this state space:
since each free-space region is circumscribed by obstacles, an action that creates an
opening to the neighboring free-space is defined for each obstacle. Together these
two ideas permit the construction of a MDP. This representation by itself, however,

8

2.2. Sampling-based Motion Planning

is insufficient. To solve the MDP, Levihn proposed to use Monte Carlo methods.

2.2. Sampling-based Motion Planning

One of the first successful sampling-based motion planners was the Probabilistic
Roadmap Method (PRM) [7]. The algorithm subdivides the search of a valid path
into a learning and a query phase. The former takes random samples from the
configuration space of the robot, tests them for whether they are in the free space,
and uses a local planner in order to attempt to connect these configurations. The
latter adds the starting and goal configurations to the graph and applies a graph
search algorithm in order to determine a path. Starting from PRM, many other
algorithms were developed in order to better guide the tree expansion. Rapidly-
exploring Random Trees (RRT) [8] expand from states closed to randomly produced
states, Expansive Space Trees (EST) [5] and Single-query Bidirectional probabilistic
roadmap planner with Lazy collision checking (SBL) [18] attempt to detect less
explored regions and expand from them. Kinodynamic Motion Planning by Interior-
Exterior Cell Exploration (KPIECE) [25, 24] finnaly improves the decision phase by
making better use of the information collected during the planning process. This
information is used to decrease the amount of forward propagation the algorithm
needs. As consequence, both runtime and memory requirements decrease making the
algorithm suitable to handle high dimensional systems with complex dynamics. As
stated in [24], the exploration strategy of KPIECE projects the state space to a lower
dimensional Euclidean space and discretizes it by using a grid. The discretization
is used to estimate the coverage of the state space and to evaluate cells goodness:
for every cell, the algorithm saves the number of times it has been explored and the
progress achieved by exploring it. Combining collected information, KPIECE is able
to deterministically select the regions to explore: the best less explored ones.

9

3. NAMO Planning Domain

This chapter defines the NAMO domain and gives an interpretation of that domain
in configuration space. Consequently, it gives a description on the action that a robot
can execute in NAMO domain.

3.1. Problem Statement

As stated by Stilman in [20], the NAMO domain is analyzed as an instance of
geometric path planning [9].
In path planning, a complete description of the geometry of a robot A and of a

workspace W is provided. The workspace W = RN , in which N = 2 or N = 3, is a
two-dimensional or three-dimensional Euclidean space.

Objects and robot are represented as polyhedrons in the three-dimensional space.
The environment objects are classified as either fixed or movable.

The workspace is populated by the following items:

• Ofixed, a set of Fixed Obstacles that must be avoided.

• Omovable, a set of Movable Obstacles that the robot can manipulate.

• A, a robot with n degrees of freedom with manipulation capabilities.

The goal for a path planning algorithm is to find a path for A from an initial
position and orientation (pose) to reach a goal position and orientation. To achieve
that, a complete specification of the location of every point on the robot geometry,
or a configuration q, must be provided. The configuration space, or C-space (q ∈ C),
is the space of all possible configurations. The C-space represents the set of all
transformations that can be applied to a robot given its kinematics. Motion planning
researches recognize that the C-space is a useful way to abstract planning problems
in a unified way. The advantage of this abstraction is that a robot with a complex
geometric shape is mapped to a single point in the C-space. The number of degrees
of freedom of a robot system is the dimension of the C- space, or the minimum
number of parameters needed to specify a configuration.
Let the closed set O ⊂ W, where O = Ofixed ∪ Omovable, represent the obstacle

region, which is usually expressed as a collection of polyhedrons. Let the closed set
A(q) ⊂ W denote the set of points occupied by the robot when at configuration

11

3. NAMO Planning Domain

Figure 3.1.: Motion planning in configuration space. Obstacles are part of Cobs,
meaning that placing the robot in a configuration within that region
would lead to collision. The remaining space represents Cfree, the collision-
free region.

q ∈ C; this set is usually modeled using the same primitives used for O. The C-space
obstacle region, Cobs, is defined as

Cobs = {q ∈ C|A(q) ∩ O 6= ∅} (3.1)

Since O and A(q) are closed sets in W , the obstacle region is a closed set in C. The
set of configurations that avoid collision is Cfree = C \ Cobs, and is called the free space.
For a traditional path planning algorithms, the goal is to solve the problem of

finding a continuous path that moves the robot A gradually from a start configuration
qS to a goal configuration qG while never touching any obstacle:

τ : [0, 1]→ Cfree (3.2)

with:
τ(0) = qS and τ(1) = qG (3.3)

A NAMO planning algorithm solves the same problem but it is possible to move
one or more obstacles in OM :

τ : [0, 1]→ C��free (3.4)

with:
τ(0) = qS and τ(1) = qG (3.5)

12

3.2. Operators

this means that all possible configurations C = Cfree ∪ Cobs are allowed.
An instance of the NAMO problem can be formally defined by a tuple S =

(C,U , qS, qG, f). Where:

• C is the configuration space. As seen before C = Cfree ∪ Cobs;

• U is the control space;

• qS ∈ Cfree is the robot initial configuration;

• qG ∈ Cfree is the robot goal configuration.

• f : C ×U → TgC is the forward routine describing the dynamics, where TgC is
the tangent bundle of C.

A solution of the NAMO problem consists of a sequence of controls u1, ..., un ∈ U
and times t1, ..., tn ∈ R>0 such that q0 = qS, qn = qG and qk ∈ Cfree ∪ Cmovable,
k = 1, ..., n− 1 can be obtained sequentially by integrating f . This means that the
motion plan can iterates walking, grasping and moving obstacles until the robot is
at goal qG.
During the planning, it is assumed that the geometry and kinematics of the

environment and the robot are known. Also, it is assumed that there is no uncertainty
in sensing and effects of robot actions.

3.2. Operators

In order to achieve the goal configuration, the robot is permitted to change its
own configuration and possibly the configuration of a grasped obstacle. It is possible
distinguish between two primitive operators or actions: Navigate and Manipulate.
Each action is parameterized by a path τ(qi, qj) that defines the motion of the robot
between two configurations: τ : [0, 1]→ C where τ(0) = qi and τ(1) = qj.
Let W t the world state at any time t that defines the position and orientation of

the robot links and each object. The world state can be represented as follows:

W t = (t, qt,Ot
movable) (3.6)

where qt is the robot configuration at instant t and Ot
movable are the positions of all

movable obstacles at instant t.
The Navigate operator refers to contact-free motion. While the robot may be in

sliding contact with an object, its motion must not displace any objects by collision
or friction. Navigate simply moves the robot joints as specified by τ .

Navigate : (W t, τ(qt, qt+1))→W t+1 (3.7)

13

3. NAMO Planning Domain

When the robot motion affects the environment by displacing an object, Oi, it
refers to the action as Manipulate. The manipulate operator consists of two paths:
one for the robot and one for Oi. Since the object is not autonomous, the object
path is parameterized by the robot path and the initial contact or grasp Gi ∈ G(Oi).
The set G(Oi) consists of all possible point of contact between the robot end-effector
and the object. Distinct Gi lead to different object motions.

Manipulate : (W t,Oi,Gi, τ(qt, qt+1))→W t+1 (3.8)

Manipulate maps a state, contact and path to a new world state where the obstacle
Oi have been displaced. The action is valid when neither the robot nor object collide
or displace other objects.
The two action descriptions point to a general formulation for interacting with

environment objects. The robot iterates a two step procedure. First, it moves to a
contact state with the Navigate operator and then applies a Manipulate operator to
displace the object. The robot also uses Navigate to reach a goal state.

3.3. Actions

In Section 3.2, Manipulate operators has not receive a precise definition. In this
section we give two type of actions for manipulating objects. In each case, the actions
translates the trajectory of the robot into a motion for the object.

Grasping The simplest method for move and manipulate an object is when the
object is rigidly grasped by the robot. A grasped object remains at a fixed transform
relative to the robot end-effector. To move an object, the robot must first Navigate to
a grasping configuration and then Manipulate. In addition to requiring collision-free
paths, a valid Manipulate operator constrains the initial state of the robot and
object. Typically the contact must be a grasp that satisfies form closure. These
criteria indicate that a desired motion of the robot will not cause it to release the
object. Moreover, it is also possible to constrain grasps with regard to robot force
capabilities. Grasping allow to easily predict the possible displacements for an object
by looking at robot and object geometry. However, some objects, such as large boxes,
are difficult or impossible to grasp. Constrained environments may also restrict
robot positions to make grasping impossible or require the end-effector to move with
respect to the object.

Pushing A manipulation action that does not require a grasp with closure is
called non-prehensile. Given any contact between the robot and object, pushing
manipulation restricts the path that the manipulator can follow in order to maintain
a fixed transform between the end-effector and the object. The most studied version

14

3.3. Actions

of pushing manipulation is based on static friction during pushing [15]. At sufficiently
low velocities, static friction prevents the object from slipping with respect to the
contact surface. Given the friction coefficient and the friction center of the object we
can restrict robot paths to those that apply a force inside the friction cone for the
object. Pushing manipulation is more general than Grasping manipulation, however
it needs more detailed modeling. In addition to geometry, this method requires
knowledge of friction properties. An incorrect assessment would bring to slip causing
an unplanned behavior.

15

4. NAMO Planner

In Chapter 3 was defined the NAMO domain and highlighted the complexity of mo-
tion planning with movable obstacles. Defining the domain in terms of configuration
space allows to make useful observations about the planning problem.

While complete planning for NAMO may be very difficult to achieve, it is possible
look at Navigate andManipulate operators independently. However, the most inter-
esting aspect of NAMO is the interdependence of the two actions. For instance, in
order for the robot to manipulate an object it must be within reach of the object. It
is not always possible to make contact with an object without previously moving
another one.
The core of this thesis is to propose an algorithm that aims to resolve NAMO

problems focusing on the Navigate operator independently from the Manipulate one.
Afterwards, for further information, in Section 4.2 aManipulate method is proposed

ti accomplish to grasp and push actions. In Section 4.3 the use of sensors feedback, in
particular vision sensors, is depicted to correct uncertainties regarding robot actions
and obstacle poses.

4.1. Navigation

Implementing a navigation algorithm is the focus of this thesis. This section depicts
the proposed solution for navigation that can be used then in combination with
manipulation. The proposed algorithm for navigation combined existing A*-based
NAMO algorithms with the exploration strategy of KPIECE to create a NAMO
planner. A detailed study of A* and KPIECE algorithms can be found in Appendix A
and Appendix B.

4.1.1. Proposed Solution

Without loss of generality the domain is restricted to a planar projection of the
three-dimensional environment. As for KPIECE, every q ∈ C is projected into an
Euclidean space E through a projection Proj. If p = Proj(q), then the coordinates
of p in E will be:

Coord(p) = Coord((p1, ..., pk)) =

(⌊
p1 − o1

d1

⌋
, ...,

⌊
pk − ok
dk

⌋)
(4.1)

17

4. NAMO Planner

Figure 4.1.: The path generated by the algorithm.

where (p1, ..., pk) are the components of p, (o1, ..., ok) is the origin of the Euclidean
map, and (d1, ..., dk) is its resolution.
E is discretized through a grid G of N ×M cells of length d. Without loss of

generality, d is chosen as propagation step size of the expansion tree. This means
that d = d1 = ... = dk will be the resolution of the map.

Cell(p) = {q ∈ C|Coord(Proj(q) ∈ Cell(p))} (4.2)

defines, for every p ∈ E, the corresponding cell of G.
A tree data structure T is defined. Every vertex vi ∈ T refers to the cell Cell(i) ∈ G;

vi points to the state of Q projected into Cell(i) and used for the propagation. The
algorithm proceeds as described in Algorithm 1.
T is initialized with vS referring to S ∈ Cell(S). At every iteration, the importance

of cells referring to the current node and to its neighbors is updated. The node of
the tree referring to the most important cell is selected and a state of it is chosen for
the expansion. The process iterates until T reaches Cell(G).
The importance of Cell(i) is defined as:

Importance(i) =

1

1 +Distance(i) +Weight(i)TOT

1 + Selection(i) + V isits(i)
(4.3)

where:

18

4.1. Navigation

• Distance(i) is the effort done to cover the Euclidean distance separating Cell(i)
from Cell(G); it reflects the A* search;

• Selection(i) is the number of times that Cell(i) was selected for expansion;

• V isits(i) refers to the number of times that Cell(i) was considered during the
selection phase, namely it is the coverage of Cell(i);

• Weight(i)TOT is the cost of the path to be performed in order to reach Cell(i),
i.e., the sum of the weights of the cells that NAMO sampled as parents of
Cell(i).

Weight(i) assigned to a cell Cell(i) is defined as follows:

Weight(i) = α ·Reach(i) +
∑
k

(β ·Move(k, i) + γ ·Return(i)) (4.4)

where:

• Reach(i) is the effort done by the robot in order to reach qi within Cell(i) from
the current state;

• Move(k, i) is the effort required to remove the k-th obstacle from Cell(i)
and place it out of the Euclidean distance separating Cell(S) and Cell(G)
(0 ≤ k ≤ n, n number of obstacles in Cell(i));

• Return(i) is the effort required to come back. In order to homologue data,
efforts are represented as time variables.

Importance can be computed in constant time since all the values it depends on
can be made readily available. Once visited a cell, its coverage is updated. Once
selected a cell from which continuing the expansion, its selection rate is incremented
and a robot state within it is sampled. A chain of states Path = (q0, ..., qk, ..., qn)
results, with q0 = S and qn = G. The robot real-time performs the Path.

It is easy to observe that, as KPIECE, NAMO prefers expanding from cells that are
less covered rather than from cells that are well covered. Cells that have been selected
for expansion fewer times are preferred over cells that have been selected many times.
Moreover, NAMO gives priority to cells closer to the goal, i.e., less explored areas;
and it prioritizes cells that carry the robot to make the least effort, combining
navigation and manipulation efforts. Studies show that considering these heuristics
in the selection of cells work well in practice [25]. Formulating these heuristics could
facilitate the resolution of the NAMO problem in unknown environments.

19

4. NAMO Planner

Algorithm 1 NAMO
Input: A collision map Map, a start state Start, a goal state Goal
Output: A set of states Path that minimize the cost of reaching Goal from Start

1: Discretize Map through a grid G
2: Create a tree data-structure T of nodes n where cell(n) is the cell of G of which n collects the

ExpansionData(n)
3: Let S and G be respectively the Start and Goal nodes
4: T .pushBack(S)
5: S.visits++
6: current ← S
7: while current 6= G do
8: current ← SelectBestCurrentNode(T)
9: current.selection++

10: next ← SelectBestNextNode(current)
11: next.visits++
12: T .pushBack(next)
13: end while
14: for every n in T do
15: Select a state s in cell(n)
16: Add s in Path
17: end for
18: Let the robot perform Path

Algorithm 2 Select Best Current Node
1: function SelectBestCurrentNode(T)
2: current ← T .begin()
3: max_importance ← GetImportance(current)
4: best_current ← current
5: while current 6= T .end() do
6: current ← T .next()
7: importance ← GetImportance(current)
8: if importance > max_importance then
9: max_importance ← importance

10: best_current ← current
11: end if
12: end while
13: return best_current
14: end function

20

4.2. Manipulation

Algorithm 3 Select Best Next Node
1: function SelectBestNextNode(n)
2: best_next ← a random neighbour of n
3: max_score ← 0
4: while n has non-selected neighbours do
5: next ← a random neighbour of n
6: score ← GetScore(next)
7: if score > next_score then
8: max_score ← score
9: best_next ← next

10: end if
11: end while
12: return best_next
13: end function

4.2. Manipulation

Once detected the obstacle on the path, the robot has to decide which manipulation
action to apply in order to move it. Generally, if the object is small enough (width
or length less than the gripper maximum opening), the robot tries to grasp it,
otherwise it proceeds with a push. Depending on the action, a different method
has been implemented in order to geometrically compute the new object position
(the re-estimation of the orientation is unnecessary). Every approach refers to the
obstacle position (current or next) as the position of their Center of Mass. These
actions are generated for a generic mobile manipulator robot.

4.2.1. The relocation routine of graspable objects

Figure 4.2 depicts the new positions generation process of a graspable object.
Starting from the manipulator origin, n positions are generated around the robot.
Every position i(0 6 i < n) has the following coordinates:

xi = ri ∗ sin θi (4.5)

yi = ri ∗ cos θi (4.6)

where

ri =

min i = 0

ri−1 + ∆r otherwise
max i = n− 1

(4.7)

θi =

0 i = 0

θi−1 + ∆θ otherwise
2π i = n− 1

(4.8)

21

4. NAMO Planner

Figure 4.2.: The positions generation routine of a graspable obstacle.

∆r and ∆θ are the angle and radius resolution respectively. min is the minimum
reach of the robotics arm allowing the placement of the object out of the footprint
polygon of the mobile base and max is its maximum reach.

In order to facilitate the new positions selection, a weight wi is assigned to every i:

wi =

1 (xi, yi)behind the robot
0.1 (xi, yi)in front of the robot
− cos θ otherwise

(4.9)

Positions are inserted in aa ordered list L depending on wi and on the distance di
from the manipulator origin:

L = [(x1, y1, w1, d1), (x2, y2, w2, d2), ..., (xn, yn, wn, dn)] (4.10)

with w1 > w2 > ... > wn. If wi = wj, than di 6 dj.
Typically, human navigation routines prefer a forward motion instead of a backward

one. Inspired from this behavior, the implemented positions generation process prefers
to relocate encountered obstacles behind the robot. This decision should minimize
the probability of reconsidering the object again while solving the NAMO problem.
If, during the displacement, no i is kinematically feasible and collision-free, than the
constraint ri 6 max is relaxed allowing the motion of the mobile base. Depending
on the relaxation, L is reformulated.

22

4.2. Manipulation

Figure 4.3.: The positions generation process of a pushable obstacle.

4.2.2. The relocation routine of pushable objects

Figure 4.3 depicts the positions generation process of a pushable object. A Zig-Zag
mode is adopted: new positions are generating to the right or the left of the current
one taking into account the space that the robot requires to move. i (0 6 i < n) has
coordinates:

xi = x0 + i∆d (4.11)

yi = y0 ± l (4.12)

where (x0, y0) is the current position of the object, ∆d is the distance resolution, and
l is the robot maximum side.
As for the Grasp routine, a weight wi is assigned to every i. The adopted rule

follows:

wi =

1 xi = x0

1

di
otherwise

(4.13)

where di = D((xi, yi), (x0, y0)) is the distance between the new and the current object
position with respect to the object reference system. An ordered list

L = [(x1, y1, w1), (x2, y2, w2), ..., (xn, yn, wn)] (4.14)

is formulated with w1 > w2 > ... > wn.
In case of failed displacement, the routine increases l. L is reformulated.

23

4. NAMO Planner

Figure 4.4.: Objects in the scene and their segmentations. A marker is visible for
every reference system. Objects are ordered depending on the distance
from the robot.

4.2.3. Displacement

The current state of the work requires that objects in the scene are known as well
as the gripper poses necessary to grasp or push them. The tuples (object, gripperpose)
are stored in a data set and retrieved when needed. Once L has been computed,
the displacement routine starts: it extracts the positions in L starting from the first
and try to place there the object eventually combing navigation and manipulation
actions. The routine provides a collision checking of the object during its motion
from the current to the goal position.

4.3. Sensors feedback

As stated before, while moving in a workspace, robots may have to deal with
unexpected events. Moreover, the pose of the objects in the scene may be subject to
uncertainty as well as the motion of the robot. For these reasons, sensors should be
mounted on every robot and every automaton should be able to correct its actions
based on sensor feedbacks. In this work, the Point Cloud Library [17] has been
exploited in order to implement a routine able to read signals of a vision sensor
and to process them in order to detect the scene, segment the obstacles, extract
their coordinates and eventually recognize them (See Figure 4.4). The proposed
algorithm takes this information in order to update the occupancy map and eventually
recompute the NAMO path.

24

5. Implementation Details

Simulation and experiments are essential in order to evaluate the effectiveness of
the proposed solution. As mentioned before in the introduction, the implementation
of the algorithm have to fulfill three important features: portability, reusability and
flexibility. Moreover, it has to be immediately usable with a lot of widely used robots.
For these reasons, the implemented solution has been made ROS-compliant.

5.1. ROS

ROS1 (Robot Operating System) [16] is a framework that is widely used in robotics.
ROS makes available libraries and tools to help software developers to create robot
applications that is immediately usable in a lot of robots. The philosophy is to make
a piece of software that could work in other robots with only little changes to the
code.
ROS is designed to be modular and is organized in software packages that can

contain one or more nodes, which are processes where computation is done. To
understand the ROS modularity, thinks to a system that control a movable robot:
one node controls a laser range-finder, one node controls the wheel motors, one
node performs localization, one node performs path planning, one node provides a
graphical view of the system, and so on.
Usually, a system will have many nodes to control different functions, and it is

better to have many nodes that provide only a single functionality, rather than having
a large node that makes everything in the system. A ROS node can be written using
the ROS roscpp for C++ or rospy for Python. Nodes communicate with each other
sending information using messages. A ROS message is simply a data structure that
uses standard types or types developed by the user.
Messages, in ROS, are exchanged thanks to asynchronous nodes as depicted in

Figure 5.1.

Topics Messages are exchanged with publish/subscribe model. A node sends out
a message publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain
kind of message can subscribe to the appropriate topic, and it isn’t necessary
that the node that is publishing this topic should exist. It is important that

1http://www.ros.org/

25

5. Implementation Details

Figure 5.1.: Messages exchange system in ROS

the name of the topic be unique to avoid problems and confusion between
topics with the same name. There may be multiple concurrent publishers and
subscribers for a single topic, and a single node may publish and/or subscribe
to multiple topics. This permits to decouple the production of information
from its consumption.

Services The publish/subscribe model is a very flexible communication paradigm,
but sending data in a many-to-many fashion is not appropriate when is needed
a request or an answer from a node. Services implements a request/response
model, which are defined by a pair of message structures: one for the request
and one for the reply. A providing node offers a service under a name and a
client uses the service by sending the request message and awaiting the reply.
When a node has a service, all the nodes can communicate with it, thanks to
ROS client libraries.

Nodes use topics and services by a peer-to-peer connection, but all the nodes have
to communicate with the Master service to enable the entire connection. It provides
name registration and lookup. Without the Master, nodes would not be able to find
each other, exchange messages, or invoke services.

5.2. NAMO Package

ROS implements a 2D Navigation Stack2 that takes information from odometry,
sensor streams, goal pose and outputs safe velocity commands that are sent to a
mobile base. To use the Navigation Stack, the robot must be running ROS (of
course), have a tf transform tree in place, and publish sensor data using the correct
ROS Message types.
This project aims to create a package that extends ROS Navigation Stack to

implement the proposed solution for Navigation Among Movable Obstacles.

2http://wiki.ros.org/navigation

26

5.2. NAMO Package

The 2D costmap (costmap_2d) implemented in ROS cannot handle information
like the weight of obstacles populating the grid. Moreover, it does not distinguish
between different obstacles that occupy the map, in fact this ROS package manage
the space as free or obstruct. To overcome this lack, it was necessary to implement a
new package that memorizes distinctly every object in the map. In this package, an
object is memorized with its weight value. This object is then assigned to cells that
occupy. To use this package in a simulated 3D enviroment, the sole of the 3D object
shape is remapped into 2D polygons and then projected on the grid.
The packages developed to implement the improved costmap (map_2d) and to

implement the proposed navigation algorithm (namo_planner) and used in the
following experiments are explained in details below.

All developed packages are public released as open-source and available at https:
//bitbucket.org/account/user/iaslab-unipd/projects/NAMO.

For the objects segmentation, the package rail_segmentation3, included in the
ROS distribution, was used. This package provides tabletop object segmentation
functionality for handheld objects given a point cloud. It also allows the segmentation
within a robot’s coordinate frame, so that objects stored on a robot’s platform can
be segmented. Under the hood, rail_segmentation use the PCL functions in order
to segment obstacles. Computer vision routines used to segment obstacles allow
to update the occupancy map, control collisions, and handle uncertainty in robot
position and manipulation actions.

The package for objects manipulation (pushes and grasps) is provided by IAS-Lab4

of University of Padova. This package is based on the MoveIt! Simple Grasps
tool developed by Dave T. Coleman5. This is a simple grasps generator for simple
objects for use with the MoveIt! pick and place tool. In this package, to move the
end-effector to the object that has to be manipulated, the motion planning algorithm
calculates a Cartesian path to the goal. Otherwise, the gripper is moved calculating
the movement in joints space.

5.2.1. Map 2D

The map_2d package provides an implementation of a 2D costmap that receive
information about the environment and builds a 2D occupancy grid of the data that
memorize obstacles and their assigned weight.

In this package, an object is memorized through the map_2d/Obstacle that store
its weight value. To create an obstacle, besides the assigned weight value, it is
necessary to have the position with respect to the map and its footprint as polygon
in the way of vector of points (std::vector<geometry_msgs::Point>). With this

3http://wiki.ros.org/rail_segmentation
4http://robotics.dei.unipd.it/
5https://github.com/davetcoleman/moveit_simple_grasps

27

5. Implementation Details

Figure 5.2.: The procedure of extraction of cells corresponding to the footprint.

information the cells occupied by the obstacle are calculated. A link to the obstacle
is inserted in every cell that it occupies. This approach allows to distinguish between
different obstacles inserted inside the map and know which cells occupy. Therefore,
each cells of the grid can be empty or links to one or more obstacles, the unknown
space is considered free. A cell has a weight value calculated by the sum of the
weight of the obstacles that occupy that cell. If there are no obstacles, the space is
considered free and the weight is 0.
map_2d provides a purely two dimensional interface, meaning that if two objects

are in the same position in the XY plane, but with different Z positions would result
linked by same cells, and that cells have the weight equals to the sum of the weight
of objects. This approach is designed to help planning in planar spaces.

Footprint and cells

Now, an overview is given on how to find out cells corresponding to an obstacle
footprint. As depicted in Figure 5.2, polygons corrispondent to the obstacles are
positionated to their relative positions in the maps. Thanks to raytracing algorithm
developer by Bresenhamit [1] the cells corresponding to edges of footprint are
extracted. Bresenhamit’s algorithm determines the points of an n-dimensional raster
that should be selected in order to form a close approximation to a straight line
between two points and it is commonly used to draw line primitives in a bitmap
image. When the boundary cells are extracted , the inner cells are also extracted.

28

5.2. NAMO Package

Published Topics

• costmap(nav_msgs/OccupancyGrid)
The values in the costmap, published every time the map is updated, and used
only for visualization purposes.

Services

• add_obstacles (map_2d/Obstacle)
Add a new obstacle in the map.

• remove_obstacles (std_msgs/String)
Remove an obstacle present in the map by its ID.

5.2.2. NAMO Planner

The NAMO Planner (namo_planner) package provides an implementation of the
proposed algorithm for Navigation Among Movable Obstacles. This package is
fairly simple. It receives information about obstacles present in the word that are
memorized in the costmap generated with the map_2d package. Then, the algorithm
is able to find the path to reach the goal pose and select which obstacles to move.
In order to find the best orientation of the robot that allows, if it is possible, to

pass through the free space while avoiding collisions, at each change of cell, the
footprint is rotated by 360 degrees with step of 45 degrees. This approach allows
to find a collision free path if it exist and, of course, it is better than moving an
obstacle.
The collision check is done by verifying if one or more cells corresponding to the

robot footprint are occupied by an obstacle. If an obstacle is detected, it begins to
be considered for the displacement.

Published Topics

• plan (nav_msgs/Path)
The last plan computed, published every time the planner computes a new
path, and used primarily for visualization purposes.

Subscribed Topics

• map (nav_msgs/OccupancyGrid)
2D costmap originating from map_2d. A map change will trigger replanning.

• initialpose (geometry_msgs/PoseWithCovarianceStamped)
Current starting pose (x, y, theta) in the map frame.

29

5. Implementation Details

• goal (geometry_msgs/PoseStamped)
Goal pose (x, y, theta) in the map frame.

Services

• plan_namo (nav_msgs/GetPlan)
Plan a path from a given start to goal, return the success.

30

6. Experiments

In order to evaluate the effectiveness of the solution proposed in Chapter 4, an
extensive phase of tests was executed. The first series of tests on the proposed
algorithm has been focused on a point-like robot. As previously explained, the
robot states space is projected into an Euclidean space. Results of these tests allow
to evaluate the effectiveness of the proposed solution, in particular the weight of
the moved obstacles, the computational time and the scalability of the algorithm.
After proving the effectiveness of the proposed solution with the point-like robot
model, the following tests have been focused on a real robot model. More precisely
was tested the projection of the footprint of the robot into the two-dimensional
plane. All tests were performed with full known environment. Anyway, the algorithm
works on a full reconfigurable environment and this allows an easily extension to an
unknown environment. The workbench for all performed experiments is a MacBook
Pro equipped with an Intel Core i7 2.2GHz quad-core processor and 16GB DDR3
RAM memory.
In the end a simulated execution was performed to prove the validity of the

proposed solution in a real simulated scenario with a real simulated robot. It was
decided to use a robot that combines motion capabilities of a unmanned ground
vehicle with manipulation capabilities of a robotic arm.

6.1. Point-Like Robot

First experiments were performed on a point-like robot model. In order to evaluate
the effectiveness of the proposed solution, two different versions of the algorithm
were tested: the proposed one and its random version. As stated in Chapter 4,
the proposed version of the algorithm adds the Euclidean distance, other than the
objects weights, to the formulation of the importance. In this solution is evident
the combination of A* and KPIECE algorithms. On the other hand, the random
version does not consider the Euclidean distance while evaluating the importance of
the neighbors of a cell. It randomly selects a neighbor to be added to the tree for
the expansion.
Goals of these experiments are:

• proving the timing improvement achieved by the proposed algorithm;

31

6. Experiments

• showing its independence from the size of the map and from the number of
obstacles;

• proving that lighter objects are preferred for moving.

6.1.1. Experimental Setup

To reach the goals of this experiment, two different type of tests were made. The
first one tests the computational time of the algorithm and it proves the correct
choice of the objects to be moved.
In the first setup, two different types of maps were created. The first map

was populated by 70 obstacles, than again, the second one was populated by 100
obstacles. Secondly, every map was discretized into a 25x25 and a 50x50 grid. For
every configuration, (depending on the size of the grid and the number of obstacles)
100 different maps were randomly generated. Tests were repeated 100 timers for each
generated map, creating a sample of 10000 tests for every proposed configuration.

In the second setup, a different approach was used to test how time changes varying
the number of the obstacles or the size of the map. Firstly, a map with 50× 50 grid
was fixed. The number of obstacles populating it varied from 10 to 250. Secondly,
the number of the obstacles was fixed to 70 and the size of the grid was varied from
20× 20 to 100× 100.

The two different setups, had in common that the obstacles were polygons of
random random size, randomly placed on the map and with weight randomly assigned.
For simplicity, three different weights [1, 3, 5] were considered.

6.1.2. Results

Table 6.1 and Table 6.2 collect the results of the previously explained test, more
specifically those performed with setup 1.
Table 6.1 proves that the elaboration time is not influenced by the number of

obstacles. The implemented version is faster than the random one and less affected
by an increase of the grid size.
On the other hand, Table 6.2 shows that, on average, only obstacles with little

weight are chosen. In addition, the implemented version selects less obstacles than
the random one. The choice shows the ability of the robot to select those objects
whose displacement requires less effort.

Figure 6.2 and 6.1 depict results obtained performing tests with setup 2. As shown,
time increase linearly both in random and proposed execution, in both cases, time
follow the growth of the number of obstacles but, as depicted in Figure 6.1, the
random execution time increases faster than the other one.

The chart of Figure 6.2 shows that the random algorithm time increases exponen-
tially with respect to a change of the grid size. On the other side, the implemented

32

6.1. Point-Like Robot

Table 6.1.: Mean time of 10000 executions (time expressed in ms).

25x25 50x50
Obstacles deterministic random deterministic random

70 0.265 1.021 0.389 3.742
100 0.257 1.350 0.380 3.590

Table 6.2.: Mean obstacles weight of 10000 executions.

25x25 50x50
Obstacles deterministic random deterministic random

70 1.056 1.278 1.000 1.333
100 1.126 1.280 1.000 1.306

Figure 6.1.: Computational time with respect to the number of obstacles populating
the grid.

33

6. Experiments

Figure 6.2.: Computational time with respect to the size of the map.

algorithm time increases more slowly and linearly. In summary, these charts prove
that the algorithm is independent from the size of the map and the number, weight,
size and location of obstacles. In fact, as stated in Subsection 6.1.1, weights are
assigned randomly to obstacles and obstacles are located randomly on the map.
Beyond tests results, Figure 6.3 depicts the working of the algorithm. The figures
show a point-like robot performing a path from a Start state to a Goal while adopting
the proposed methodology. As it is possible to see, one light obstacle has been
selected for the relocation.

6.2. Point-Like Robot with Footprint

After really good results obtained with the point like robot, another experiment
was performed taking in consideration the footprint of the robot. The footprint is
the two-dimensional projection of the robot to the ground plane. This experiments
aims to confirm the effectiveness of the proposed solution also considering the robot
occupation. Furthermore, it aims to verify the accuracy of the algorithm in a simple
but possible real scenario.

6.2.1. Experimental Setup

For the purpose of this experiment a simple map with three obstacles was generated.
As depicted in Figure 6.4, two heavy obstacles, like tables, were placed in the opposite
sides and a small lightweight object, like a small box, was placed in the middle. The

34

6.2. Point-Like Robot with Footprint

Figure 6.3.: The path connecting a Start state to the Goal state: one obstacle selected
for the relocation.

Figure 6.4.: The environment proposed for the experiment with the footprint of the
robot.

35

6. Experiments

Figure 6.5.: An example of execution with Small Robot and Big Robot. In figures
are visible the start footprint in green and the goal footprint in red.

robot, starting from the start position, has to reach the goal position through the
free space or moving the box. Two robots of different size were used: a small ones
that can obstacles and reach the goal passing through free space and a bigger ones
that can not avoid obstacles. The experiment was executed 10 times changing the
start or the goal position using both two robots. In Figure 6.5 it is possible to see an
example of execution with the Small Robot and another one with the Big Robot.

6.2.2. Results

Results of the test are collected in Table 6.3. For each exectution it were collected
the computation time and if the small obstacle was removed or not. As it is possible
to see by the mean of the results the computation time is around 20 milliseconds,
slightly higher with the Big Robot. Compared to the result obtained without consider
the footprint of the robot, computational time is an order of magnitude higher. About
the small obstacle, Big Robot obviously removes it every time, on the other hand,
Small Robot removes it in the 40% of the case

6.3. Simulated Robot

Once proved the effectiveness of the algorithm for a point-like robot, tests were
performed on a simulated one.

The robot with which tests were performed is composed of an Husky mobile robot
with an UR5 robot manipulator, a Robotiq 2-Finger gripper, and a Microsoft Kinect
vision sensor. A deep analysis of this robot will be given later in this Section.

36

6.3. Simulated Robot

Table 6.3.: The results obtained in 10 test considering the footprint of the robot.
Time is expressed in seconds.

Small Robot Big Robot
Time Removed Time Removed

0.0258952 Y 0.0267104 Y
0.0206904 Y 0.0236292 Y
0.0213171 N 0.0252328 Y
0.0217194 N 0.0280514 Y
0.0199351 N 0.0311342 Y
0.0200567 Y 0.0230287 Y
0.0182324 Y 0.0226662 Y
0.0168608 N 0.0261195 Y
0.0209737 N 0.0286647 Y
0.0203648 N 0.0267853 Y

Mean 0.0206046 40% 0.0262022 100%

In order to execute the simulation experiment, Gazebo was used as simulator [19].
For the objects manipulation it was used MoveIt!

6.3.1. The Robot

In order to simulate the behavior of the algorithm in a real scenario it was decided
to use a robot that combine motion capabilities of a unmanned ground vehicle with
the manipulation capabilities of a robotic arm. The choice, as depicted in Figure 6.6,
is an Husky that interact with the world around it with a UR5 robot arm from
Universal Robots mounted to the Husky top plate and a 2 Finger Gripper from
Robotiq. The arm can extend up to 0.85m and carry a 5kg payload and safe around
humans. A Microsoft Kinect vision sensor was added for object segmentation and to
correct uncertainty in manipulation operations. Another strong point come out in
favor of this choice is that Husky, UR5 and Robotiq gripper and Microsoft Kinect
are fully supported in ROS.
This robot is generally utilized in:

• outdoor autonomous navigation;

• remote inspection and long distance tele-operation;

• larger scale mapping and localization.

37

6. Experiments

Figure 6.6.: The utilized robot. Husky UGV, UR5 robot arm, 2 Finger Gripper and
Microsoft Kinect

Clearpath Robotics Husky Husky1 (see Figure 6.7) is a rugged, outdoor-ready
unmanned ground vehicle (UGV), suitable for research and rapid prototyping ap-
plications. Its large payload capacity and power systems allow a very wide variety
of customization to meet research needs. In fact, Stereo cameras, LIDAR, GPS,
IMUs, manipulators and more can be added to this UGV. Moreover, Husky is fully
supported in ROS with community driven Open Source code and examples.

Universal Robots UR5 UR5 from Universal Robots2 is a lightweight, flexible and
collaborative industrial robot from Universal Robots (see Figure 6.8). The UR5 is
a six-jointed robotic arm with a very low weight that can extend up to 0.85m and
carry a 5kg payload. Universal Robots are Collaborative Robots which means that
they can work right alongside people without safety guarding. This features make
this robot ideal to low-weight collaborative processes, such as: picking, placing and
testing.

1http://www.clearpathrobotics.com/
2http://www.universal-robots.com/

38

6.3. Simulated Robot

Figure 6.7.: Clearpath Robotics Husky

Figure 6.8.: Universal Robots UR5

Robotiq 2-Finger Robotiq3 2 Finger (see Figure 6.9) is a gripper that, as its name
says, has two articulated fingers and it is compatible with all major industrial robots.
This gripper can engage up to five points of contact with objects (two on each of
the phalanges plus the palm). The fingers are under-actuated, meaning they have
fewer motors than the total number of joints. This configuration allows the fingers
to automatically adapt to the shape of the object they grip and it also simplifies the
control of the gripper.

Microsoft Kinect The Kinect sensor is a flat, black box that sits on a small
platform when placed on a table or shelf near the television used with Xbox 360.
This device has the following three sensors that can be used for vision and robotics
tasks:

• a color VGA video camera to see the world in color;

• a depth sensor, which is an infrared projector and a monochrome CMOS sensor
working together, to see objects in 3D;

3http://www.robotiq.com/

39

6. Experiments

Figure 6.9.: Robotiq 2-Finger 85

Figure 6.10.: Microsoft Kinect 360

• a multiarray microphone that is used to isolate the voices of the players from
the noise in the room.

For the scope of this project, it is used only two of these sensors: the RGB camera
and the depth sensor.

6.3.2. Tools

Gazebo Robot simulator is an essential tool. Gazebo4 is a multirobot simulator for
complex indoor and outdoor environments. It is capable of simulating a population of
robots, sensors, and objects in a three-dimensional world. It generates both realistic
sensor feedback and physically plausible interactions between objects, included an
accurate simulation of rigid-body physics. Gazebo is composed of a robust physics
engine (ODE), a high-quality rendering engine (OGRE), and a graphical interfaces.
Two threads run in Gazebo. The first manages the GUI and rendering engine, and
the second thread manages the physics engine.

The worlds rendered in gazebo are described by a XML document where you can
use external 3D objects (e.g. meshes). The ROS version of gazebo provides some

4http://www.gazebosim.org/

40

6.3. Simulated Robot

key-features:

• ROS service for loading robot models defined using the URDF language;

• Services whose permit to move directly joints and links resident in the gazebo
simulating.

MoveIt! MoveIt!5 is state of the art open-source software for mobile manipulation in
ROS. The library incorporates a fast inverse kinematics solver (as part of the motion
planning primitives), state-of-the-art algorithms for manipulation, grasping 3D
perception (usually in the form of point clouds), kinematics, control, and navigation.
Apart from the backend, it provides an easy-to-use GUI to configure new robotic
arms with the MoveIt! and RViz plugins to develop motion planning tasks in an
intuitive way. MoveIt! can be easily integrated in robotics products for industrial,
commercial, research purpose.

Point Cloud Library (PCL) The Point Cloud Library6 (PCL) is a standalone,
large scale, open project for 2D/3D image and point cloud processing.

Point clouds appeared in the robotics toolbox as a way to intuitively represent and
manipulate the information provided by 3D sensors, such as time-of-flight cameras
and laser scanners, in which the space is sampled in a finite set of points in a 3D
frame of reference. The Point Cloud Library (PCL) provides a number of data
structures to easily represent the points of the sampled space. PCL also provides a
number of state-of-the-art algorithms to perform data processing, such as filtering,
model estimation, surface reconstruction, and segmentation.

ROS provides a message-based interface through which PCL point clouds can be
efficiently communicated, and a set of conversion functions from native PCL types
to ROS messages. Aside from the standard capabilities of the ROS API, there are a
number of standard packages that can be used to interact with common 3D sensors,
such as the widely used Microsoft Kinect or the Hokuyo laser, and visualize the data
in different reference frames with RViz.

6.3.3. Simulated Execution

The simulation aims to simulate a possible environment in which the robot has
to remove a small object to reach quickly the goal. As depicted in Figure 6.11 the
presented scenario, similar to the scenario utilized for the experiment in Section 6.2,
is formed by two big and heavy objects and a small can placed in the middle. The
robot, placed in the start position has to reach the goal placed beyond the can,
choosing if moving the can or avoiding obstacles.

5http://moveit.ros.org/
6http://www.pointclouds.org

41

6. Experiments

Figure 6.11.: Simulated environment

The software segments obstacles in the scene using the rail_segmentation pack-
age and assigns a weight value to each one. The footprint with the segmented object
is calculated and the costmap, created through the map_2d package, is populated.
The information about the footprint of the robot is passed to the software as a
configuration parameter.

The namo_planner package, containing the implementation of the proposed algo-
rithm, is used to find the path that the robot has to follow. As it is possible to see
in Figure 6.12c the algorithm chose to remove the obstacle to reach the goal. Indeed
this is the shortest way.

The robot, as is visible in Figure 6.12d, follows the calculated path until a distance
useful for the manipulation of the can. Then it removes the can from the path using
the grasping technique exploiting functions implemented in MoveIt! (see Section 4.2).
In the end, the robot continues to follow the path until it reaches the goal.

42

6.3. Simulated Robot

(a) Segmentation (b) Map creation

(c) Path planning (d) Execution

Figure 6.12.: Some moments during the simulation execution.

43

7. Conclusions and Future Work

This thesis presented a NAMO solver combining the existing A*-based NAMO algo-
rithms with the exploration strategy of KPIECE. The obtained algorithm addresses a
primary NAMO challenge: scalability. It is scalable because of its independence from
the size of the map and from the number, shape, and pose of obstacles. Moreover, it
does not impose restrictions on actions to be performed: the robot can both push and
grasp every object. It works on a two-dimensional projection of a three-dimensional
cluttered workspace letting consider both objects in contact and not in contact with
the ground. It assumes full world knowledge but the environment is completely recon-
figurable and the algorithms can be easily extended in order to solve NAMO problems
in unknown environments. In fact, it is able to handle sensor feedbacks and correct
uncertainties regarding obstacle poses and robot actions. Performed tests, discussed
in Chapter 6, prove that the solution shown above is locally optimal. Simulations
demonstrated that implemented algorithm is ready for being used with a real robot.
ROS-compliant developed packages are public released as open-source and available
at https://bitbucket.org/account/user/iaslab-unipd/projects/NAMO.

7.1. Future Work

With respect to the results obtained, a future goal is to switch from a reconfigurable
to an unknown environment. In this way robots are allowed to operate in unknown
spaces that is closely to a real scenario; an example could be that robots become
helpful in rescue operation. A successive step is to generalize concepts and move
from the Navigation Among Movable Obstacles (NAMO) domain to the Navigation
Using Manipulable Objects (NUMO) domain. In NUMO domain, the robot is not
restricted to just the moving of environment objects to clear a path, but it can also
use them as tools to create a path. For these reasons, NAMO and its generalization
NUMO allow to create cognitive robots that can operate autonomously in every
scenario and explore unknown regions. Robots understand the world around and
find a local optimal solution to achieve the assigned task.

When dealing with unknown objects, a predetermined gripper pose is not available.
A solution can be that of exploiting the Reinforcement Learning techniques in order
to let robots manipulate unknown objects of any shape. An ontology is being
formulating allowing the storage of the information necessary for the manipulation.
Its Cloud sharing will speed up the robots ability to manipulate objects thanks to the

45

7. Conclusions and Future Work

combined exploitation of their prior knowledge and of the expertise of other robots.
In conclusion, the future goal is to create a system that allows robots to au-

tonomously navigate the world in order to complete an assigned task. Following this
idea, robots will be able to recognize objects and obstacles and autonomously take
decisions on what is the local optimal way to take. Moreover, robots will be able to
learn how to manipulate new objects and memorize this information for the future
or to share them with other robots.

46

A. A*

A* [4] is an informed search algorithm or a best-first search algorithm, this means
that it solves problems by searching among all possible paths to the goal for the
one that take the smallest cost (i.e. least distance travelled, shortest time, etc.);
among these paths it first considers the ones that appear to lead most quickly to the
solution. It is formulated in terms of weighted graphs: starting from a start node S
of a graph, it constructs a tree of paths starting from that node, expanding paths
one step at a time, until one of its paths ends at the predetermined goal node G.

At each iteration of its main loop, A* needs to determine which of its partial paths
to expand into one or more longer paths. This operation is done by using an estimate
of the cost (total weight) still to go to the goal node. Specifically, A* selects the
path that minimizes

f(n) = g(n) + h(n) (A.1)

where:

• n is the last node on the path;

• g(n) is the cost of the path from the start node to n;

• h(n) is a heuristic that estimates the cost of the cheapest path from n to the
goal.

The heuristic is problem-specific. For the algorithm to find the actual shortest
path, the heuristic function must be admissible, meaning that it never overestimates
the actual cost to get to the nearest goal node.
Typical implementations of A* use a priority queue to perform the repeated

selection of minimum estimated cost nodes to expand. This priority queue is known
as the open set. At each step of the algorithm, the node with the lowest f(x) value is
removed from the queue, the f and g values of its neighbors are updated accordingly,
and these neighbors are added to the queue. The algorithm continues until a goal
node has a lower f value than any node in the queue, or until the queue is empty.
The f value of the goal is then the length of the shortest path, since h at the goal is
zero in an admissible heuristic.
The algorithm described gives only the length of the shortest path. To find the

actual sequence of steps, the algorithm can be easily revised so that each node on
the path keeps track of its predecessor. After this algorithm is run, the ending node

47

A. A*

will point to its predecessor, and so on, until some predecessor of the node is the
start node.
As an example, when searching for the shortest route on a map, h(x) might

represent the straight-line distance to the goal, since that is physically the smallest
possible distance between any two points.
If the heuristic h satisfies the additional condition h(x) ≤ d(x, y) + h(y) for

every edge (x, y) of the graph (where d denotes the length of that edge), then h
is called monotone, or consistent. In such a case, A* can be implemented more
efficiently and it is equivalent to running Dijkstra’s algorithm with the reduced cost
d′(x, y) = d(x, y) + h(y)− h(x).
Additionally, if the heuristic is monotonic (or consistent), a closed set of nodes

already traversed may be used to make the search more efficient.

Algorithm 4 A*
Input: start, goal
Output: path

1: open← start
2: closed← ∅
3: while open 6= ∅ do
4: current← the node in open having the lowest f value
5: if current = goal then
6: return reverse path from goal to start
7: end if
8: closed← current
9: for all neighbor of current /∈ closed do

10: new_g_score← current.gscore+ distbetween(current, neighbor)
11: if neighbor /∈ open then
12: Add neighbor to open
13: else if g(current) + heuristic(current, neighbor) < g(neighbor) then
14: Update neighbor’s backpointer to point to current
15: end if
16: end for
17: end while
18: return failure

48

B. KPIECE

KPIECE, or Kynodinamic motion Planning by Interior-Exterior Cell Exploration,
is a tree-based planner that uses a discretization to guide the exploration of the state
space. It iteratively constructs a tree that connect the start state S to the goal G.
Moreover, KPIECE prefers less explored areas of the state space.

In fact, KPIECE discretizes the whole state space by a grid of cells all having the
same size. Initially, the grid is populated by a single cell placed in correspondence of
the initial state. Then, in turn, the necessary cells are allocated. Each cell includes
a list of states, initially empty, in which whole visited states belonging to the cell
are insert. This makes possible to identify areas highly and poorly explored (see
Figure B.1).
In particular, cells of the grid can be divided into two types: INTERIOR and

EXTERIOR. The INTERIOR ones are cells that have 2n neighboring cells, where n
is the size of the discretization space; they identify areas where the exploration has
already occurred. The other ones are the EXTERIOR cells.

Algorithm 5 KPIECE
1: Create a grid G = Cell(start)
2: Create a list Cell(start).list = start
3: while time < TIMEMAX do
4: cell← select a cell EXTERIOR or INTERIOR
5: qold ← select a cell’s already visited state
6: Sample a new state qrand with probability P such that ditance(qold, qrand) ≤ ε
7: if (qold, qrand) is valid then
8: Add Cell(qrand) to the grid G
9: Add qrand to the list Cell(start).list

10: Save the path between qold and qrand in the solution tree
11: if qrand = qold then
12: return the path between start and goal
13: end if
14: end if
15: end while

The algorithm prefers the expansion in less explored areas so, when selecting the
cell to be expanded, it prefers to start the expansion from EXTERIOR cells.

Determined the type of the cell to be expanded, the actual cell is selected according
to the formula:

Importance(i) =
log10(I) ∗ score
S ∗N ∗ C

(B.1)

49

B. KPIECE

Figure B.1.: KPIECE

where:

• I is the iteration in which the cell i was created

• score is the estimated distance to the goal;

• S is the number of times in which the cell i was selected for expansion;

• N is the number of instantiated neighboring cells;

• C is the measure of coverage for the cell i (the sum of its visited states).

Given a cell, a state qold is extracted from the already visited ones and stored
inside the relative list according to an half normal distribution. From qold, the tree’s
expansion starts. A new state qrand is optained with probability with a certain
probability P placed to a distance less than ε by qold. The edge that joins the two
states is evaluated. If it’s valid:

• if necessary the cell containing qrand is added to the grid;

• qrand is added to the newly created cell;

• the search tree is updated by adding the new edge.

Otherwise:

• the last valid state qnew belonging to the edge is extracted;

50

• it is checked that its value is greater than a threshold;

• if so qrand = qnew.

After adding the edge, it is checked if the goal is reached, otherwise the process
iterates. The probabilistic component affects a lot the correctness of the algorithm.
It is present in selection of:

• the type of cell;

• the state belonging to a cell;

• a new state qrand.

51

Bibliography

[1] Jack E Bresenham. “Algorithm for computer control of a digital plotter”. In:
IBM Systems journal 4.1 (1965), pp. 25–30.

[2] Nicola Castaman, Elisa Tosello, and Enrico Pagello. “A Sampling-Based Tree
Planner for Navigation Among Movable Obstacles”. In: 47th International
Symposium on Robotics (ISR 2016). Munich, Germany, June 2016.

[3] Erik D. Demaine, Joseph O’Rourke, and Martin L. Demaine. “PushPush and
Push-1 are NP-hard in 2D”. In: In Proceedings of the 12th Canadian Conference
on Computational Geometry. 2000, pp. 211–219.

[4] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths”. In: Systems Science and
Cybernetics, IEEE Transactions on 4.2 (1968), pp. 100–107.

[5] David Hsu et al. “Randomized kinodynamic motion planning with moving
obstacles”. In: The International Journal of Robotics Research 21.3 (2002),
pp. 233–255.

[6] Yohei Kakiuchi et al. “Working with movable obstacles using on-line environ-
ment perception reconstruction using active sensing and color range sensor”.
In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE. 2010, pp. 1696–1701.

[7] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: Robotics and Automation, IEEE Trans-
actions on 12.4 (1996), pp. 566–580.

[8] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach
to single-query path planning”. In: Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on. Vol. 2. IEEE. 2000, pp. 995–1001.

[9] Jean-Claude Latombe. Robot motion planning. Springer, 1991.

[10] Steven M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge Univer-
sity Press, 2006.

[11] Martin Levihn. “Autonomous environment manipulation to facilitate task
completion”. PhD thesis. Georgia Institute of Technology, 2015.

53

Bibliography

[12] Martin Levihn, Jason Scholz, and Mike Stilman. “Planning with movable
obstacles in continuous environments with uncertain dynamics”. In: Robotics
and Automation (ICRA), 2013 IEEE International Conference on. IEEE. 2013,
pp. 3832–3838.

[13] Martin Levihn, Jonathan Scholz, and Mike Stilman. “Hierarchical Decision
Theoretic Planning for Navigation Among Movable Obstacles”. In: Proceedings
of the Tenth International Workshop on the Algorithmic Foundations of Robotics
(WAFR 2012). 2012, pp. 13–15.

[14] Martin Levihn, Mike Stilman, and Henrik Christensen. “Locally optimal nav-
igation among movable obstacles in unknown environments”. In: Humanoid
Robots (Humanoids), 2014 14th IEEE-RAS International Conference on. IEEE.
2014, pp. 86–91.

[15] Kevin M Lynch and Matthew T Mason. “Stable pushing: Mechanics, controlla-
bility, and planning”. In: The International Journal of Robotics Research 15.6
(1996), pp. 533–556.

[16] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In:
ICRA workshop on open source software. Vol. 3. 3.2. 2009, p. 5.

[17] Radu Bogdan Rusu and Steve Cousins. “3d is here: Point cloud library (pcl)”.
In: Robotics and Automation (ICRA), 2011 IEEE International Conference on.
IEEE. 2011, pp. 1–4.

[18] Gildardo Sánchez and Jean-Claude Latombe. “A single-query bi-directional
probabilistic roadmap planner with lazy collision checking”. In: Robotics Re-
search. Springer, 2003, pp. 403–417.

[19] Anthony Stentz. The D* Algorithm for Real-Time Planning of Optimal Tra-
verses. Tech. rep. DTIC Document, 1994.

[20] Mike Stilman. “Navigation among movable obstacles”. PhD thesis. Carnegie
Mellon University, 2007.

[21] Mike Stilman and James Kuffner. “Navigation among movable obstacles: real-
time reasoning in complex environments”. In: Humanoid Robots, 2004 4th
IEEE/RAS International Conference on. Vol. 1. IEEE. 2004, pp. 322–341.

[22] Mike Stilman and James Kuffner. “Planning among movable obstacles with
artificial constraints”. In: The International Journal of Robotics Research 27.11-
12 (2008), pp. 1295–1307.

[23] Mike Stilman et al. “Planning and Executing Navigation Among Movable
Obstacles”. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on. IEEE. 2006, pp. 820–826.

54

Bibliography

[24] Ioan A. Şucan and Lydia E. Kavraki. “A sampling-based tree planner for
systems with complex dynamics”. In: Robotics, IEEE Transactions on 28.1
(2012), pp. 116–131.

[25] Ioan A. Şucan and Lydia E. Kavraki. “Kinodynamic Motion Planning by
Interior-Exterior Cell Exploration”. In: Algorithmic Foundation of Robotics
VIII. Springer, 2010, pp. 449–464.

[26] Jur Van Den Berg et al. “Path planning among movable obstacles: a proba-
bilistically complete approach”. In: Algorithmic Foundation of Robotics VIII.
Springer, 2009, pp. 599–614.

[27] Gordon Wilfong. “Motion planning in the presence of movable obstacles”. In:
Proceedings of the fourth annual symposium on Computational geometry. ACM.
1988, pp. 279–288.

[28] Hai-ning Wu, Martin Levihn, and Mike Stilman. “Navigation among movable
obstacles in unknown environments”. In: Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on. IEEE. Oct. 2010, pp. 1433–1438.

55

Acknowledgments

I am grateful to my supervisor, professor Enrico Pagello, for the passion transmitted
and for the opportunity that he gives to me by working in the marvelous world of
robotics.
Huge thanks to my co-supervisor Elisa Tosello, for her support and guidance in

the development of the work presented in this thesis. Elisa introduced me to motion
planning and inspire me to pursue the work on NAMO.
I am grateful to all the people in the IAS-Lab that took their time to help me

with my exams and my works. In particular I want say thank to Stefano Ghidoni
that is a mentor for me, and he always finds time to give me a good advice.
Thanks to EuRoC team for the fantastic experience in Stuttgart.
I would like to thanks my parents Katia and Giovanni for supporting me in these

not always simple years of studies, and to my grandparents for raising me.
Thanks to my oldest friends Mirko and Martina that were always there for me an

spur me in there years, and to all other my friends.
I want to thank to all the people that i meet over these years at university and in

particular to Matteo with which I share a lot of studying days and also the apartment
in Padova.
Finally, I thank the girl that turned my world upside down. Elisa, my girlfriend,

that has always been close to me during the work on this thesis and that try to
understand my studies in robotics.

