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Introduction

There has been a rapidly growing interest in agent-based models in the last years, in order
to understand the behaviour of complex social systems. These models are characterized
by agents, rules that govern the outcome of an interaction between two of them and a
graphical structure that gives the pairs of agents that may interact due to friendship or
geographical proximity. Research in this �eld has the purpose to deduce the macroscopic
behaviour of the model from the microscopic rules, that depends also on the structure of
the network of interactions.

From the mathematical point of view, these models are represented in a �rst simpli�ed
way by the interacting particle systems and in particular by spin systems, and in this
category we can �nd for example the voter model or the contact process. This type of
models consists in continuous time Feller processes on the con�guration space {0, 1}S ,
where S is the countable set of agents. The voter model, as in [6], accounts for social
in�uence, that is the tendency of individuals to become more similar when they interact.
Individuals are characterized by one of two competing opinions which they update at a
constant rate by mimicking one of their neighbors, chosen uniformly at random.

This thesis is focused on one of the most popular models of social dynamics: the
Axelrod model. This model describes the evolution of a simple interacting particle system,
and it has been proposed by political scientist Robert Axelrod as a stochastic model for
the dissemination of culture. In this model, individuals are represented as vertices of a
connected graph G = (V,E), where its set of edges E refers to the interactions between
them. The model di�ers from the voter model because it includes another important
social factor: homophily, that is the tendency of individuals to interact more frequently
with individuals that are more similar. To include this factor, individuals are characterized
by a vector (a culture) of F coordinates, called features, each of which can assume one
of q possible states, denoted as 1, ..., q. Homophily can be modeled considering a cultural
distance between individuals: pairs of neighbors interact at a rate equal to the fraction
of features they have in common. Social in�uence is modeled by assuming that, after an
interaction, one of the cultural features they do not share is chosen uniformly at random
and the state of one of the two individuals is set equal to the state of the other individual
for that cultural feature.
The macroscopic behaviour of the model when the graph is G = Z and the structure is
linear is well known in some cases, as stated in [3],[4] and [5] and discussed in this work.
After some preliminares on interacting particle systems and Cherno� bounds, arguments
useful in the second part of the thesis, the second Chapter deals with the Axelrod model,
in the case G = Z as mentioned above, and the behaviour with respect to di�erent values
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of the parameters. Finally, the last Chapter is a new evolution/modi�cation of the model,
in which it is introduced another individual, called a media, that has a �xed opinion during
time and that interacts at a rate β with all the other individuals. With a coupling with a
contact process, when F, q = 2, we prove that the behaviour of the model depends strongly
on β, and more precisely that if this rate is "small enough" then the model's behaviour is
the same as in the case without media, while if it is "large enough" then all the individuals
reply the media opinion.



Chapter 1

Preliminaries

1.1 Spin Systems

Interacting particle systems, and spin systems that are a special case of them, is a branch
of probability theory that developed in the last fourty years, and it has rich connections
with a great number of areas, as biology or physics, but also the social sciences. These
processes are used to model spread of infection, tumor growth, economic systems and also
magnetism.

We start with some de�nitions. Let X be a compact metric space with measurable
structure given by the Borel σ-algebra. Let D[0,∞) be the set of all functions η. on
[0,∞) with values in X that are right continuous and have left limits. For s ∈ [0,∞),
the evaluation mapping πs from D[0,∞) to X is de�ned by πs(η.) = ηs. Let F be the
smallest σ-algebra on D[0,∞) relative to which all the mappings πs are measurable, and
similarly, for t ∈ [0,∞), let Ft be the smallest σ-algebra on D[0,∞) relative to which all
the mappings πs, for s ≤ t, are measurable.

DEFINITION 1.1. A Markov process on X is a collection {Pη, η ∈ X} of probability
measures on D[0,∞) indexed by X with the following properties:

i) Pη[ξ. ∈ D[0,∞) : ξ0 = η] = 1 for all η ∈ X;

ii) the mapping η → Pη(A) from X to [0, 1] is measurable for every A ∈ F ;

iii) Pη[ηs+. ∈ A|Fs] = Pηs(A) a.s. (Pη) for every η ∈ X and A ∈ F .

The expectation corresponding to Pη will be denoted by Eη. Let C(X) be the set of
continuous functions on X, regarded as a Banach space with

‖f‖ = sup
η∈X
|f(η)|.

De�ne the operator S(t) : C(X)→ C(X) by, for η ∈ X,

S(t)f(η) = Eηf(ηt). (1.1)

DEFINITION 1.2. A Markov process {Pη, η ∈ X} is said to be a Feller process if
S(t)f ∈ C(X) for every t ≥ 0 and f ∈ C(X).

9



10 1. Preliminaries

The processes we will dicuss are spin systems, that are continuous time Feller processes
ηt on the compact con�guration space X = {0, 1}S , where S is a generic countable set,
denoting the set of sites (or individuals).

PROPOSITION 1.3. Let (ηt : t ≥ 0) be a Feller process on X. Then the family (S(t) :
t ≥ 0) is a Markov semigroup, i.e.

a) S(0) = Id;

b) t→ S(t) is right-continuous for all f ∈ C(X);

c) S(t+ s)f = S(t)S(s)f for all f ∈ C(X) and s, t ≥ 0;

d) S(t)1 = 1 for all t ≥ 0;

e) S(t)f ≥ 0 for all non-negative f ∈ C(X).

The dynamic of the process is usually described specifying the transition rates. In spin
systems, these rates represent only a �ip at a site x from 0 to 1 or vice versa from 1 to 0.
Indeed, states at di�erent sites do no change simoultaneously, and this can be described
by saying that

Pη
(
ηt(x) 6= η(x), ηt(y) 6= η(y)

)
= o(t) as t→ 0,

for each x, y ∈ S with x 6= y, and for each η ∈ X. Here, as in (1.1), we use the notation
Pη meaning the distribution of the process with initial con�guration η.

The rates c are functions of the site x and the con�guration η, and they are denoted
by c(x, η). In order to give the de�nition of c(x, η), we have �rst to de�ne the new con�g-
urations obtained from a given con�guration following a single transition. In other words,
for η ∈ X and x ∈ S de�ne ηx by

ηx(z) =

{
η(z) if z 6= x,

1− η(x) if z = x.

In this way, ηx is obtained from η by �ipping the x-th state.

De�ning the transition rates, we have to distinguish between the �nite and the in�nite
case of the cardinality of S; indeed,

• if S is �nite, given a con�guration η and a vertex x, we say that the transition η → ηx

occurs at rate c(x, η) if

Pη(ηt = ηx) = c(x, η)t+ o(t) as t→ 0. (1.2)

• if S is in�nite, the intuitive meaning of rate is similar, replacing equation (1.2) with

Pη(ηt = ηx on A) = c(x, η)t+ o(t) as t→ 0 (1.3)

for large �nite sets A ⊂ S.



1.1 Spin Systems 11

We will assume that c(x, η) is a uniformly bounded nonnegative function which is
continuous in η for each x and which satis�es the condition

sup
x∈S

∑
u∈S

sup
η∈X
|c(x, η)− c(x, ηu)| <∞. (1.4)

The relation between transition rates and the process is provided by the in�nitesimal
generator Ω. It is an operator de�ned on a (dense) subset of C(X) and it is determined by its
values on cylinder functions, functions that depend only on a �nite number of coordinates.

DEFINITION 1.4. A function f ∈ C(X) is a cylinder function if there exists a �nite
subset ∆ ⊂ S such that f(ηx) = f(η) for all x ∈ ∆ and all η ∈ X, i.e. f depends only on
a �nite set of coordinates of a con�guration.

DEFINITION 1.5. The generator Ω : D → C(X) for the process
(S(t) : t ≥ 0) is given by

Ωf := lim
t→0

S(t)f − f
t

(1.5)

where the domain D ⊂ C(X) is the set of functions for which the limit exists.

In spin systems, with condition (1.4), given f a cylinder function the form for the
generator in the case of spin systems is the following:

Ωf(η) =
∑
x

c(x, η)
[
f(ηx)− f(η)

]
. (1.6)

In fact, as stated in [1], under assumption (1.4), the closure of the operator de�ned in
(1.6) is the generator of a unique Feller process ηt on X, that satis�es also (1.5) and so,
by uniqueness, it is the generator of the process.

THEOREM 1.6. Given Ω as in (1.5) and f ∈ D , the process f(ηt) −
∫ t

0 Ωf(ηs)ds is a

martingale for the natural �ltration.

Much of the studies of interacting particle systems involves their invariant measures,
and convergence to them.

DEFINITION 1.7. If µ is a probability measure on X, we denote with µS(t) the distri-
bution of ηt when the initial distribution is µ. It is de�ned by∫

X
fdµS(t) =

∫
X
S(t)fdµ ∀f ∈ C(X) (1.7)

with S(t)f as in (1.1).

REMARK 1. The fact that probability measures on X can by characterised by all expected

values of functions in C(X) is a direct consequence of Riesz representation theorem.

DEFINITION 1.8. A probability measure µ on X is said to be an invariant measure

(or a stationary distribution) if µS(t) = µ for all t > 0. The set of invariant measures is
denoted by I.
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The set I, thanks to the Feller property and the compactness of X, is always nonempty.
In some cases, there will be some stationary distributions that can be written down ex-
plicitely, and the task is to determine whether or not those exhaust all of I. To check
directly if a measure is invariant, we have the following

THEOREM 1.9. A probability measure µ on X is an invariant measure for the process

if and only if ∫
X

Ωfdµ = 0

for every f cylinder function on X.

One of the main questions one can ask is whether coexistence of types is possible in
equilibrium, and in general what is the limiting behaviour of the system for large values of
t.

DEFINITION 1.10. For a spin system ηt we say that:

i) clustering occurs if
lim
t→∞

Pη
(
ηt(x) 6= ηt(y)

)
= 0

for all x, y ∈ S and all initial con�gurations η;

ii) coexistence occurs otherwise, i.e. if there exists a stationary distribution that concen-
trates on con�gurations with in�nitely many 0's and 1's.

Note that, when there is clustering, the only stationary distributions are the ones
supported on the set of con�gurations in which all sites share the same opinion.

1.1.1 Graphical Representation

Some interacting particle systems can be represented graphically using the so called graph-
ical representation. This idea consists in drawing in the plan interactions between vertices,
taking the vertical axis as the time (only the positive ray), and the horizontal axis as the
graph (for this, G must be one-dimensional, so G = Z or a subset of it). We will discuss
it case by case.

1.1.2 The linear voter model

The linear voter model is a particular spin system, where S = Zd and the transition rates
are

c(x, η) =
∑

y:η(y)6=η(x)

p(x, y) (1.8)

with p(x, y) transition probabilities for a Markov chain in S. The interpretation is that
sites are individuals that have one of two opinions (0 and 1) and, at exponential times of
rate 1, an individual x chooses another individual y with probability p(x, y), and he adopts
y's opinion.

There are two trivial stationary distributions, that are δ0 and δ1, respectively the
pointmasses on η ≡ 0 and η ≡ 1.
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For linear voter models it holds, for all η ∈ X,

Pη
(
ηt(x) 6= ηt(y)

)
= P

(
η(Xt) 6= η(Yt)

)
where Xt and Yt are continuous time random walks on S with X0 = x and Y0 = y and
transition rates p(x, y), and η(Xt) is the position of the random walk at time t. Xt is called
the ancestor of x at time t, and one can �nd it using a path in the graphical representation:
the opinion ηt(x) of the voter at x at a large time t came from some other voter at x1 at
some earlier time t1; continuing backward until time tn = 0 (for some n ≥ 1) one can �nd
its ancestor. Such a path is called a dual path. Note that Xs and Ys are not independent,
indeed they are independent only until the �rst time τ they meet, i.e. Xτ = Yτ , and then
they evolve together. For this, they are called coalescing random walks.

Called X̃t = Xt − Yt, we have the following

THEOREM 1.11. The linear voter model clusters if X̃t is recurrent and coexists if X̃t

is transient. In particular,

i) the process clusters if d = 1 and
∑

x |x|p(0, x) <∞, or if d = 2 and
∑

x |x|2p(0, x) <∞;

ii) the process coexists if d ≥ 3.

About the limiting behaviour of the system, we have another time to distinguish the
recurrent case from the transient one.

THEOREM 1.12. Suppose µ is any translation invariant probability measure on the state

space X, and de�ne ρ := µ
(
{η : η(x) = 1}

)
. Then, denoting with ⇒ the weak convergence:

i) if X̃t is recurrent, then µS(t)⇒ ρδ1 + (1− ρ)δ0 as t→∞;

ii) if X̃t is transient, then the extremal invariant measures for ηt form a one- parameter

family {µρ, 0 ≤ ρ ≤ 1}; if µ is also ergodic, then µS(t)⇒ µρ, as t→∞.

1.1.3 A special linear voter model

A special case of the linear voter model is the basic voter model. In this case S = Zd as
above, and the probabilities are

p(x, y) =

{
1/2d if |x− y| = 1 and η(x) 6= η(y);

0 otherwise.

In particular, the rate is

c(x, η) =
1

2d

∣∣∣{y : |y − x| = 1, ηt(x) 6= ηt(y)}
∣∣∣.

Applying the results in the previous section, we have that

THEOREM 1.13. The one dimensional basic voter model clusters.

We will use this theorem in the next chapter to prove the clustering of the Axelrod
model for particular values of its parameters, together with the following proposition.
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PROPOSITION 1.14. For the one dimensional basic voter model it holds

P (ηt(x) 6= ηs(x) for some t > s) = 1 for all x ∈ Z and s > 0.

Proof. Let, for y ∈ Z,

Mt(y) = card{z ∈ Z : y is the ancestor of z at time t}

the process that keeps track of the descendants of y at time t for the process η.
This process is a martingale for the natural �ltration: in fact, the generator of the dual

process, that is the process that consider the dual paths and so the descendant, is the
operator de�ned, for every function f : F(Z)→ R and for every A ∈ F(Z), that is A ⊂ Z
�nite, by

Lf(A) =
1

2

∑
x∈A

∑
y∼x,y /∈A

[(
f(A ∪ {y})− f(A)

)
+
(
f(A \ {x})− f(A)

)]
.

Taking f equal to the cardinality function, one has Lf(A) = 0 for every A ∈ F(Z), and
this means, thanks to theorem (1.6), that the cardinality of descendants, as a function of
time t, is a martingale.

Furthermore, this martingale is absorbed at state 0: if Ms(y) = 0, then Mt(y) = 0 for
every t > s, otherwise Ms(y) should have been di�erent from 0. Since it takes value in
N, and it converges almost surely, as the martingale convergence theorem states, the only
possibility is that it converges to its adsorbing state 0.

Now, �x x ∈ Z and s > 0, and let y = Xs(x) to be the ancestor, as introduced in the
previous section, of x at time s. De�ne

φ(s) = inf{t > 0 : Mt(y) = 0}.

that is a stopping time, larger than s (there is a dual path from (x, s) to (y, 0), soMs(y) ≥
1) and almost surely �nite, because Mt(y) is an integer valued process and it converges
almost surely to 0.

Moreover, the spin at (x, φ(s)) and at (x, s) originates from di�erent vertices at time
0, since there isn't a dual path from (x, φ(s)) to (y, 0). The two spins are so independent,
because the initial distribution is a product measure. Inductively, de�ne s0 = s and, for
i ≥ 0,

si+1 = φ(si) = inf{t > 0 : Mt(Xsi(x)) = 0}.

This is a sequence of (increasing) stopping times, all almost surely �nite. Since all spins at
(x, si) are independent (they originate from di�erent vertices at time 0) and each culture
occurs initially with positive probability, one has

lim
n→+∞

P(ηs0(x) = ηs1(x) = · · · = ηsn(x)) = 0

and so

P
( ∞⋃
n=1

(
ηsn(x) 6= ηs(x)

))
= 1

and the proposition follows.
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1.1.4 The contact process

The contact process is another particular spin system, in which S is thought as a connected
undirected graph whose vertices have bounded degree, and the transition rates are

c(x, η) =

{
1 if η(x) = 1

λ
∣∣{y ∼ x : η(y) = 1}

∣∣ if η(x) = 0
(1.9)

where λ > 0 is a (infection) parameter, and y ∼ xmeans that the two vertices are connected
by an edge. The interpretation is that sites with η(x) = 1 are infected while sites with
η(x) = 0 are healthy. If a site is infected, he recovers after an exponential time of rate
1, while if it is healthy it becomes infected at a rate equal to the number of its neighbors
infected sites times λ. Con�gurations η ∈ X will often by identi�ed with subsets A of S
via A = {x ∈ S : η(x) = 1}, so considering the infected vertices; At so will denote the
infected vertices at time t.

It is easy to see that the pointmass δ0 on the con�guration η ≡ 0 is a stationary
distribution. Another invariant measure is the so called upper invariant measure, and it
is constructed by monotonicity. Indeed, taking A0 = S, so when all vertices are initially
infected, and µt the distribution of At, it exists

ν̄ = lim
t→∞

µt

and it is the biggest invariant measure of the process.

When S is �nite, δ0 is the only stationary distribution, and for any initial con�guration
ηt is eventually ≡ 0 .

The general problem of determining when convergence of µS(t) occurs is di�cult, and
the answer depends heavily on S and λ. In the case S = Zd, if the initial distribution µ
is homogeneous and it satis�es µ(∅) = 0, then µS(t) ⇒ ν̄ as t → ∞, where ⇒ denotes
weak convergence. This means that in this case there are at most two extremal translation
invariant measures in I.

About convergence, there is another important concept:

DEFINITION 1.15. The process is said to complete converge if, for every initial con�g-
uration A,

AAt ⇒ αAν̄ + (1− αA)δ0 (1.10)

where

αA = PA
(
At 6= ∅ ∀t ≥ 0

)
is called the survival probability.

The graphical representation in contact processes is as follows: for every vertex x ∈ S,
assign a Poisson process Nx of rate 1 and for every ordered pair of vertices (x, y) connected
by an edge assign a Poisson process Nx,y of rate λ. All Poisson processes are independent.
At each event time t of Nx place a symbol × at the point (x, t) ∈ S × [0,∞) and for each
event time t of Nx,y put an (infection) arrow ← from (x, t) to (y, t). The case S = Z is
shown in Figure 1.1.
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Figure 1.1: The graphical representation for the contact process.

One advantage of the graphical construction is that it provides a joint coupling of the
process with arbitrary initial states, that is better known as monotone coupling :

A0 ⊂ B0 ⇒ At ⊂ Bt. (1.11)

An active path in S× [0,∞) is a connected path that moves along the time lines in the
increasing t direction and along arrows in their direction, but that do not pass through a
recovery symbol. De�ne AAt to be the set of infected sites at time t, with A as initial set
of infected sites; in other words, with the graphical representation,

AAt = {y ∈ S : ∃x ∈ A s.t. there is an active path from (x, 0) to (y, t)}.

The most important feature of the contact process is that survival and extinction can
both occur, and this depends on the value of λ.

DEFINITION 1.16. The contact process is said to die out (or it becomes extinct) if

P{x}
(
At 6= ∅ ∀t ≥ 0

)
= 0

and it is said to survive otherwise. It is said to survive strongly if

P{x}
(
x ∈ At i.o.

)
> 0

and to survive weakly if it survives but not strongly.

REMARK 2. Note that all the previous properties do not depend on the choice of x, since
S is connected.

For each graph S as in the hypothesis there exist two critical values 0 ≤ λ1 ≤ λ2 ≤ ∞
such that

At dies out if λ < λ1

At survives weakly if λ1 < λ < λ2 (1.12)

At survives strongly if λ > λ2.
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When S = Zd there are more information about the behaviour of the process.

THEOREM 1.17. In the case S = Zd, it holds λ1 = λ2. Moreover, the process dies out

at the common critical value, and complete convergence (1.10) holds for all λ.

About some estimates of the common critical value λc, in the case S = Zd, we have:

1

2d− 1
≤ λc ≤

2

d

and, in the case d = 1, λc ≥ 1.539.

1.2 Laws of large numbers and Cherno� bounds

This section concerns some bounds in the case of a sequence of independent and identically
distributed random variables. Let (Xn)n≥1 be a sequence of i.i.d. random variables, and
de�ne the sample mean as

X̄n :=
1

n

n∑
i=1

Xi.

The two following inequalities will be useful later.

PROPOSITION 1.18. 1. (Markov inequality) Let X be a nonnegative, integrable ran-

dom variable. Then, for every ε > 0

P(X ≥ ε) ≤ E[X]

ε
.

2. (Chebischev inequality) Let X be a square-integrable, real random variable, with mean

µ and variance σ2. Then, for every ε > 0

P
(
|X − µ| ≥ ε

)
≤ σ2

ε2
.

The Weak Law of Large Numbers states that the value of the sample mean can be
predicted if n is large, with a small error probability.

THEOREM 1.19. Let (Xn)n≥1 be a sequence of i.i.d. square integrable random variables

with mean µ and variance σ2. The, for every ε > 0,

lim
n→+∞

P
(
|X̄n − µ| ≥ ε

)
= 0. (1.13)

In the proof of the previous theorem, the bound found for the probability in (1.13) is not
very strong, indeed the order of estimate is 1

n and it comes from the Chebischev inequality
applied to the sample mean. Cherno� estimates use more details of the distribution of
the random variables Xn, but they require some more assumptions. Remember that the
moment generating function of a random variable X is

mX(t) = E[etX ].
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THEOREM 1.20. Let (Xn)n≥1 be a sequence of i.i.d. random variables, and assume

that mXi(t) < +∞ for all t in an open interval I containing zero. The, for every ε > 0
there exist c1, c2 > 0 such that

P
(
X̄n ≥ µ+ ε

)
≤ e−c1n (1.14)

and

P
(
X̄n ≤ µ− ε

)
≤ e−c2n. (1.15)

Proof. Since all variables have the same distribution, they have the same moment gener-
ating function, so call m(t) := mXn(t).

For every t > 0, it holds

P
(
X̄n ≥ µ+ ε

)
= P

(
X1 + · · ·+Xn ≥ n(µ+ ε)

)
= P

(
et(X1+···+Xn) ≥ etn(µ+ε)

)
≤

E
[
et(X1+···+Xn)

]
etn(µ+ε)

where in the last step we have used Markov inequality for et(X1+···+Xn). Rewriting the last
term, we �nd

P
(
X̄n ≥ µ+ ε

)
≤ mn(t)

etn(µ+ε)

= exp[n logm(t)− nt(µ+ ε)]

= exp
[
− n

(
t(µ+ ε)− logm(t)

)]
.

Now, de�ne
g(t) := t(µ+ ε)− logm(t).

Since m(0) = 1, one has that g(0) = 0. Moreover, since m′(0) = µ,

g′(0) = µ+ ε− m′(0)

m(0)
= ε > 0.

This implies that for some t > 0 g(t) is positive. The best possible estimate would be
obtained by maximizing g(t) over t, so de�ne c1 := maxI m(t). Then (1.14) follows.

For the second one, the proof is very similar. Infact, for every t > 0 one has

P
(
|X̄n ≤ µ− ε

)
= P

(
X1 + · · ·+Xn ≤ n(µ− ε)

)
= P

(
e−t(X1+···+Xn) ≥ e−tn(µ−ε)

)
≤

E
[
e−t(X1+···+Xn)

]
e−tn(µ−ε)

=
mn(−t)
e−tn(µ−ε)

= exp
[
− n

(
− t(µ− ε)− logm(−t)

)]
.

As before, the function
h(t) := −t(µ− ε)− logm(−t)

assume positive values for some t > 0, and de�ning c2 := maxI h(t) it follows (1.15).



Chapter 2

The Axelrod model

The Axelrod model is a stochastic process that includes social in�uence, as the voter model,
but also homophily, both mechanism that are usually seen in the dynamic of populations.
The �rst one is the tendency of individuals to become more similar when they interact,
while the second is the tendency to interact more frequently with individuals that are more
similar.

In this model, individuals are represented as vertices of a connected graph G = (V,E),
where its set of edges E refers to the interactions between them. Each vertex x ∈ V
is characterized by a vector X(x), its opinion, of F cultural features, each of which can
assume q possible states. In other words,

X(x) = (X1(x), ..., XF (x))

and
Xi(x) ∈ {1, ..., q} ∀i = 1, ..., F.

Note that the set of cultures, that is {1, ..., q}F and describe the state of a vertex at a time t,
is equipped with a natural distance: the function that counts the number of disagreements
between two cultures. This distance is essential to model both homophily and social
in�uence: homophily is modeled by assuming that the rate at which two neighbors interact
decreases with the distance between their cultures, and social in�uence by assuming that
the result of an interaction is to decrease the cultural distance.
In particular, the dynamic is described as follows: at each time, a vertex x is picked
uniformly at random from V , and then one of its neighbors y. With a probability equal
to the fraction of features x and y have in common, one of the features for which they
disagree (if any) is chosen, and the state of x corresponding to that feature is set equal to
the y's one. In the case the two vertices agree in all features nothing happens.

Assuming that the system evolves in continous time, with each pair of adjacent vertices
interacting ar rate one, the process is actually a continuous time Markov process, whose
state at time t is

Xt : V → {1, ..., q}F

and the dynamic is described by the generator

Ωaxf(X) =
∑
x∈V

∑
y∼x

F∑
i=1

1

2F

[
F (x, y)

1− F (x, y)

]
1{Xi(x) 6= Xi(y)}

[
f(Xi

y→x)− f(X)
]

(2.1)

19



20 2. The Axelrod model

where:

• y ∼ x means that x and y are connected by an edge, because interactions derive only
from edges;

• F (x, y) = 1
F

∑F
i=1 1{Xi(x) = Xi(y)} denotes the fraction of cultural features x and

y share;

• Xi
y→x(x) =

(
X1(x), ..., Xi−1(x), Xi(y), Xi+1(x), ..., XF (x)

)
and

Xi
y→x(z) = X(z) otherwise.

Note that
1

2F

(
F (x, y)

1− F (x, y)

)
= F (x, y)× 1

2
× 1

F (1− F (x, y))

where the �rst term is the rate at which the two vertices interact, the second term is the
probability that one rather than the other is chosen to be updated and the last term is the
inverse of the number of disagreements.

REMARK 3. The case F = 1 is not interesting because when there is only one feature,

since Axelrod model accounts for homophily, nothing happens in every case. In fact, if two

vertices agree nothing happens as prescribed, while if they disagree F (x, y) = 0 and so they

are too discordant. The case q = 1 is trivial too, since every feature is forced to be equal to

1, the only possible state. From now, motivated by this remark, we will assume F , q ≥ 2.

We have now some important de�nitions, that re�ect the asymptotic macroscopic be-
haviuor of the model.

DEFINITION 2.1. We say that there is �uctuation if

P(Xi
t(x) changes in�nitely often in t) = 1 ∀x ∈ V, ∀i = 1, ..., F.

DEFINITION 2.2. We say that there is �xation if ∀x ∈ V and ∀i = 1, ..., F ∃q̄ ∈ {1, ..., q}
such that

P(Xi
t(x) = q̄ eventually in t) = 1.

The previous two de�nitions re�ect properties of vertices (individuals), more precisely
how many times they change their opinion. Note that �xation or �uctuation depend not
only on F and q, but also on the initial condition: for example, if the system starts with
a con�guration in which all the individuals agree for a given cultural feature, whereas the
states at the other ones are i.i.d., it always �uctuates, because individuals have at least one
feature in common at any time, so there are in�nitely many interactions and so there is
�uctuation. On the other hand, take G = Z with every two consecutive vertices connected
by an edge: if the system starts with a con�guration in which all the even sites share the
same culture, while the odd ones share another culture that is incompatible with the even
ones (i.e. these two cultures are di�erent at every level i), it always �xates. This is a
consequence of the fact that there can not be interactions, because all adjacent vertices
have no features in common, so in every case nothing happens.

As in spin systems, we recall the following de�nition.
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DEFINITION 2.3. We say that for the system clustering occurs if

lim
t→+∞

P(Xi
t(x) = Xi

t(y)) = 1 ∀x, y ∈ V, ∀i = 1, ..., F

and we say the system coexists otherwise.

Clustering of the system means convergence to a global consensus, in the sense that,
for large values of t, the probability that two individuals agree is approximately 1. Note
that in general neither �uctuation implies clustering, nor �xation excludes clustering: the
voter model in dimension at least three �uctuates but it does not cluster, in fact it coexists,
while the biased voter model �xates and clusters. This disconnection derives from the fact
that, while �xation/�uctuation consider the probability of an event eventually in time,
clusterization refers to a limit of an event with time �xed.

In this chapter we will study the case G = Z and E =
{
{x, x + 1} : x ∈ Z

}
, the

natural case. Almost all the results refer to the initial distribution π0 in which the states
of the cultural features within each vertex and among di�erent vertices are independent and
identically distributed. Sometimes, the request can be relaxed, as we will see in theorem's
statements. We will always specify what are the minimal hypothesis in any theorem.

2.1 Constructions

2.1.1 System of random walks

Instead of considering cultural features of each vertex, we will consider the interfaces
between vertices, introducing the set of sites. A site simply counts for disagreements
between vertices that it refers to.

In particular, denote with

D := Z + 1/2

the set of sites, meaning that u ∈ D⇔ ∃ x ∈ Z such that u = x+ 1/2. To obtain a system
of random walks, for every site u ∈ D and for every cultural feature i = 1, ..., F let

ξt(u, i) = 1{Xi
t(u− 1/2) 6= Xi

t(u+ 1/2)} (2.2)

where 1{A} is the indicator function of the set A, and put a particle at (u, i) whenever
ξt(u, i) = 1. A particle indicates if there is a disagreement between the two vertices.
To understand when there can be an interaction, so when there is at least one particle at
a site, we let, for every u ∈ D,

ξt(u) =
F∑
i=1

ξt(u, i). (2.3)

DEFINITION 2.4. A site u ∈ D is called a j-site at time t if ξt(u) = j.

This construction induces a system of F non-independent symmetric random walks: in
fact, at each level i, as speci�ed by the rules, when a particle jumps it moves to the left
or to the right with equal probability, unless another particle already occupies the site on
which the �rst one tries to jump. It is a system of non-independent random walks because
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a particle jumps according to the number of disagreements between the two vertices, so its
jump in general depends on all the other levels. These dependencies result actually from
the inclusion of homophily in the model. The symmetry is due to the fact that, when two
vertices interact, each of them is equally likely to be the one chosen to be updated.

The role of q is in the result of collision between particles:

• when q = 2, if at time t a particle at (u, i) tries to jump to (u + 1, i) and this is
already occupied, there is an annihilation event: the presence of two particles means
that {

Xi
t−(u− 1/2) 6= Xi

t−(u+ 1/2)

Xi
t−(u+ 1/2) 6= Xi

t−(u+ 3/2)

so Xi
t−(u− 1/2) must be equal to Xi

t−(u+ 3/2) because there are only two possible
states. It follows that at time t all three vertices agree on their i-th feature, so the
previous particles kill each other and do not exist anymore at time t;

• when q > 2, in the same situation the result depends on the i-th cultural features of
u− 1/2 and u+ 3/2 at time t−: they can be equal, so there is an annihilation event
as above, but they can also be di�erent, in which case there is a coalescing event.
This type of event is characterized by the fact that the particle that tries to jump
is removed, because the two individuals u − 1/2 and u + 1/2 at time t will agree
on their i-th feature, but the other particle remains, since u+ 1/2 and u+ 3/2 still
disagree at time t.

The following picture represents a collisions between two particles and a jump of a
particle, with F = 4 and q = 2: on the left, we see that the particle at site 3

2 wants to
jump to its right, where there is another particle. So, after the jump, all three vertices
1,2,3 share the white dot, and an annihilation event has happened. In the second case, the
particle at 5

2 wants to jumps to its left, but the site to its left is not occupied by a particle,
so simply the particle jumps.

Figure 2.1: Random walks with F=4 and q=2.

This di�erence of collisions results is the reason for which the behaviour in the 2-states
case is well known, as stated in theorems 2.7 and 2.8. In fact, when q = 2, knowing the
con�guration of the Axelrod model is unimportant in determining the evolution of the
random walks, because every collision is an annihilating event, so in the proofs we will
focus only on this particles, forgetting the con�guration. In contrast, when q > 2, whether
a collision results in an annihilating or a coalescing event depends on the con�guration
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of the Axelrod model just before the time of collision. We will see that, in spite of this
dependency, collisions result in either an annihilating or a coalescing event with some �xed
probabilities: in other words, the outcome of a collision is independent of the past of the
system of random walks, but it is not independent of the past of the model.

We end this section giving explicitly the rate of jump of particles. When u is a j-site,
with j 6= 0, the two vertices u − 1/2 and u + 1/2 disagree on exactly j features, so they
interact at a rate equal to 1− j/F , the fraction of features they share. This means that if
u is a j-site, each particle at site u jumps at a rate

r(j) =
1

j

(
1− j

F

)
=

1

j
− 1

F
for j 6= 0 (2.4)

with r(0) = 0, because no features in common means total disagreements and so no
interactions.

2.1.2 Graphical Representation

The Axelrod model is included into a general class of interacting particle systems that can
be constructed using a graphical representation, as in the �rst chapter.
For all pairs of vertex-cultural feature (x, i) ∈ Z× {1, 2, ..., F} we let:

• (Nx,i(t) : t ≥ 0) be independent rate one Poisson processes;

• Tx,i(n) = inf{t ≥ 0 : Nx,i(t) = n};

• (Bx,i(n) : n ≥ 1) be collections of independent Bernoulli variables with parameter
p = 1

2 and with values in {1,−1};

• (Ux,i(n) : n ≥ 1) be collections of independent Uniform random variables on the in-
terval (0, 1).

Poisson processes �x times of interactions between vertices, while Bernoulli variables
choose the adjacent vertex that will update the one that the variable refers to (the value
of p re�ects the symmetry). Finally, Uniform variables verify the correct rate, and split all
interactions between potential and real ones.

More precisely, at each time t = Tx,i(n), we draw an arrow from the pair

(y, i) := (x+Bx,i(n), i)

to the pair (x, i), meaning that at time t there is a potential interaction between vertices
x and y. We say that in this case there is an arrow from vertex y to vertex x at level i, at
time t.

If in addition

Xi
t−(x) 6= Xi

t−(y) and Ux,i(n) ≤ r(ξt−(x)) (2.5)

than the arrow is said to be active. The meaning of active arrows is that they correspond
exactly to interactions that updated the system. Note that, with these choices, the rate of
interaction is exactly the one in (2.1).
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2.1.3 Dual paths

Since Axelrod model is included into a general class of models in which one can apply the
idea of graphical representation, one can apply also duality theory, searching dual paths
from one vertex to another one. Duality is useful when it needs to keep track of the
ancestry of each vertex going backward in time.

DEFINITION 2.5. Let (z, s) and (x, t) be two couples of vertices-times, and i ∈ {1, ..., F}.
We say that there is an active i-path from (z, s) to (x, t) if there exist sequences of times
and vertices

s0 = s < s1 < · · · < sn+1 = t and x0 = z, x1, ..., xn = x

such that the following two conditions hold:

(1) for j = 1, ..., n there is an active i-arrow from xj−1 to xj at time sj ;

(2) for j = 0, ..., n there is no active i-arrow that points at {xj} × (sj , sj+1).

In this case, we use the notation (z, s) i (x, t).

The meaning of active i-paths is the following: the �rst condition is necessary to have
a connection between the two couples, that is vertex x inherits the i-th feature of vertex
z, but the second condition is essential to guarantee this connection, since otherwise there
could exists an index j for which another vertex di�erent from xj−1 interacts with xj in a
time τ ∈ (sj , sj+1).

Then, for A ⊂ Z, the dual process starting at (A, T ) is the set valued process

Ŷs(A, T ) = {y ∈ Z : there is a dual path from (x, T ) to (y, T − s)
for some x ∈ A}.

(2.6)

Conditions (1) and (2) of the de�nition 2.5 implies that ∀ (x, t) ∈ Z × R+ it exists a
unique z ∈ Z such that (z, 0) i (x, t): it is called the ancestor of (x, t) for the i-th cultural
feature.

DEFINITION 2.6. For every (x, t) ∈ Z × R+ we denote with at(x, i) the ancestor of
(x, t) for the i-th cultural feature, that is the unique z ∈ Z such that (z, 0) i (x, t).

Note that in particular it holds

Xi
t(x) = Xi

0(z) whenever (z, 0) i (x, t).

Actually, this relation holds in general for the dual process in (2.6): given t > 0, for all
s ∈ [0, t]

Xi
t(x) = Xi

t−s(y) ∀y ∈ Ŷs(x, t).

Figure 2.2 is an example of dual paths, and going backward in time until time s = 0
one can �nd the ancestor.
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Figure 2.2: Graphical representation of the Axelrod model and ancestors.

2.2 Theorems

THEOREM 2.7. Starting from a translation invariant product measure in which the

cultures appear with positive probability, the 2-states 2-features Axelrod model clusters.

We will see that, besides proving clustering, also �uctuation holds in this case, and it
is a direct consequence of the site recurrence property proved in the �rst chapter.

Actually, there is a generalization of the previous result, when the number of states is
2:

THEOREM 2.8. Starting from a translation invariant product measure in which the

cultures at di�erent individuals are i.i.d and appear with the same positive probability, the

2-states F-features Axelrod model clusters.

Theorem 2.8 implies theorem 2.7, since the 2-2 case is a particular case of the (2− F )
one, but we want to prove it separately, to show that the 2-2 case can be deduced from
properties of the basic voter model.

For the next results, we introduce ω : N2 → Q, where

ω(q, F ) = q

(
1− 1

q

)F
− F

(
1− 1

q

)
.

This function has actually a particular meaning, that we will understand in the proof of
the following theorem, where we exploit the positive condition on ω. More precisely,
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THEOREM 2.9. Assume that ω(q, F ) > 0 and to start from the initial distribution π0.

Then, �xation occurs and clustering does not occur.

Also in this case, there is an improvement of the previous result. Note that ω(3, 2) = 0,
so theorem 2.9 can not be applied. In spite of this,

THEOREM 2.10. The system with F = 2 and q = 3 �xates and coexists.

Figure 2.3: Parameter region of the F − q plane that satis�es ω(q, F ) > 0.

As the picture suggets, the region identi�ed by the condition in theorem 2.9 is almost
equal to the set of parameters below a certain straight line. Since it goes through the
origin, to identify it it remains to �nd its slope c. Replacing F = cq,

ω(q, F )

q
=

(
1− 1

q

)cq
− c

(
1− 1

q

)
−−−→
q→∞

e−c − c.
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If e−c = c, we �nd

(cq − 1) ln

(
1− 1

q

)
− ln(c) = (1− cq)

∞∑
n=1

1

n

(
1

q

)n
+ c

=

∞∑
n=1

1

n

(
1

q

)n
−
∞∑
n=0

c

n+ 1

(
1

q

)n
+ c

=
∞∑
n=1

(
n(1− c) + 1

n(n+ 1)

)(
1

q

)n
> 0.

This means that

cq ln

(
1− 1

q

)
> ln(c) + ln

(
1− 1

q

)
⇔
(

1− 1

q

)cq
> c

(
1− 1

q

)
⇔ ω(q, F ) > 0

so c satisfying e−c = c, (c ≈ 0, 567), is the slope.
The next sections are dedicated to the proofs of the previous theorems.

2.3 Proof of theorem 2.7

In the case F = q = 2 the expression of (2.1) becomes

Ωaxf(X) =
1

4

∑
x∈Z

∑
x∼y

∑
i 6=j

1{Xi(x) 6= Xi(y)}1{Xj(x) = Xj(y)}[f(Xi
y→x)− f(X)]

because, given that x and y disagree at least in one feature, the only case in which F (x, y) 6=
0 is when they agree exactly in one feature (the other one), and in this case F (x, y) = 1

2 ,

so F (x,y)
1−F (x,y) = 1.
Motivated by the fact that there is a product of two indicator functions, we let, for

every x ∈ Z,
Y (x) := |X1(x)−X2(x)|

and we note that the event {Y (x) 6= Y (y)} corresponds to exactly one agreement between
them. In other words,

{Y (x) 6= Y (y)} =
⋃

i,j∈{1,2}:i 6=j

{Xi(x) 6= Xi(y)} ∩ {Xj(x) = Xj(y)}.

Infact, if X(x) = X(y) obviously we have that Y (x) = Y (y), but also when both the
coordinates X1 and X2 are di�erent we have the same conclusion: since q = 2, letting the
two states q1, q2, |q1 − q2| = |q2 − q1|.

The reason for using Y is that the generator becomes

Ωvmf(Y ) =
1

4

∑
x∈Z

∑
x∼y

1{Y (x) 6= Y (y)}[f(Yy→x)− f(Y )]

where as usual

Yy→x(x) = Y (y) and Yy→x(z) = Y (z) otherwise.
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This means that {Yt : t ≥ 0} is a time change of the special linear one-dimension voter
model, that run at rate 1

2 . Since, as in the statement of the theorem, we are only interested
in the limiting distribution of the Axelrod model, we can speed up Y by a factor two and
consider it as an usual voter model.

The proof consists in three parts: we �rst prove that there is almost sure extinction of
1-sites, then we prove the same for 2-sites and �nally we collect together these two results
to obtain the theorem.

LEMMA 2.11. There is almost sure extinction of 1-sites, that is

lim
t→+∞

P(ξt(u) = 1) = 0 for all u ∈ D.

Proof. We �x a site u = x+ 1
2 ∈ D and we recall that

{ξt(u) = 1} = {Yt(x) 6= Yt(x+ 1)}.

It follows from the clustering of the special linear one-dimensional voter model that

lim
t→+∞

P (ξt(u) = 1) = lim
t→+∞

P (Yt(x) 6= Yt(x+ 1)) = 0.

To prove the almost sure extinction of 2-sites, we use the fact that the one-dimensional
voter model is site recurrent, as stated in proposition 1.14.

LEMMA 2.12. There is almost sure extinction of 2-sites, that is

lim
t→+∞

P (ξt(u) = 2) = 0 for all u ∈ D.

Proof. First of all, since the initial con�guration is translation invariant in space, and the
evolution rules too, the probability in the statement does not depend on the choice of u.

Given a vertex x ∈ Z and the pair of sites x− 1
2 and x+ 1

2 , we have that the culture of
x �ips at a positive rate if and only if at least one of both sites is a 1-site, and when there
is an update only one feature changes at that time. So, there are only four possibilities for
the pair of sites (obviously, less than symmetry):

(1, 2)→ (0, 1), (1, 1)→ (0, 2), (1, 1)→ (0, 0), (1, 0)→ (0, 1).

From this, it follows that the probability of u being a 1-site is nonincreasing, because
their number is nonincreasing as function of time: infact, as result of an "interaction" of
two 1-sites there is their annihilation, and in the other cases the number of them remains
the same. An other consequence is that 2-sites can only be generated by the annihilation
of a pair of 1-sites, as in the second possibility above.

Now, given 0 < s < t < +∞, we denote with Ωs,t
− and Ωs,t

+ the following sets:

• Ωs,t
− = {u ∈ D : ξτ (u) = 2 for all τ ∈ (s, t]};

• Ωs,t
+ = {u ∈ D : ξt(u) = 2, ξτ (u) = 1 for some τ ∈ (s, t)}.
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In other words, the �rst set denotes sites that have been lately updated by time s, while
the second corresponds to sites that have been lately updated after time s.

In order to estimate the probability that a site belongs to Ωs,t
+ , we note that, in the

model in which the graph is the torus (with a �nite number of vertices, precisely 2N) it
holds

pN := P(∃τ ∈ (s, t] : ξτ (u) = 1) =
1

2N

N−1∑
i=−N

P
(
∃τ ∈ (s, t] : ξτ (i+

1

2
) = 1

)

=
1

2N
E
[

sup
τ∈(s,t]

N−1∑
i=−N

1{ξτ (i+1/2)=1}

]

≤ 1

2N
E
[ N−1∑
i=−N

1{ξs(i+1/2)=1}

]
= P(ξs(u) = 1)

where we use the invariance in translation, thanks to the initial distribution and the evo-
lution rules, and the fact that, as anticipated above, the number of 1-sites is decreasing in
time.

Now, if u ∈ Ωs,t
+ , then for some time τ ∈ (s, t] site u must verify ξτ (u) = 1 and so, by

an approximating argument,

P(u ∈ Ωs,t
+ ) ≤ lim

N→∞
pN ≤ P(ξs(u) = 1)

and this, together with lemma 2.11, implies the existence of a time s large such that

P(u ∈ Ωs,t
+ ) ≤ ε.

For Ωs,t
− , we note that there exists t > s such that

P(u = x+
1

2
∈ Ωs,t

− ) ≤ P
(
Yτ (x) = Yτ (x+ 1) for all τ ∈ (s, t)

)
≤ P

(
Yτ (x) = Ys(x) for all τ ∈ (s, t)

)
≤ ε

Infact, the �rst inequality holds because, since q = 2, both X1
τ (x) 6= X1

τ (x + 1) and
X2
τ (x) 6= X2

τ (x + 1) implies that Yτ (x) = Yτ (x + 1); the second one holds because if
Yτ (x) = Yτ (x + 1) ∀τ ∈ (s, t), then Yτ (x) must be equal to its initial value Ys(x), since
no interactions can be happened in the time interval (s, t); �nally, the last one is a direct
consequence of 1.14. Combining the previous estimates, for all ε > 0 there exists a time
s > 0 and a time t > s such that

P(ξt(u) = 2) = P(u ∈ Ωs,t
+ ) + P(u ∈ Ωs,t

− ) ≤ 2ε

and this establishes that the limit is zero.



30 2. The Axelrod model

We now simply collect together the previous two results: �x x < y in Z, and let
k := |x− y|, zi = x+ i and ui = zi + 1

2 for every i = 0, ..., k − 1. We have:

lim
t→+∞

P
(
Xt(x) 6= Xt(y)

)
≤ lim

t→+∞
P
(
Xt(zi) 6= Xt(zi+1) for some i = 0, ..., k − 1

)
≤ lim

t→+∞

k−1∑
i=0

P
(
ξt(ui) = 2 or ξt(ui) = 1

)
= 0 (2.7)

because the sum is a �nite sum.

REMARK 4. Note that the site recurrence property given by the proposition 1.14 is

equivalent to �uctuation of the system, so in this case we have proved that the system

clusters and �uctuates.

2.4 Proof of theorem 2.8

The approach in this section is the same of the previous: keeping track of the disagreements
between adjacent vertices rather than their culture; infact, consensus (clustering) of the
Axelrod model is equivalent to extinction of interfaces.

The proof consists as usual in more parts, divided in subsections. The strategy is to
prove almost surely extinction of j-sites, for all j ≥ 1, and then use the same argument as
in (2.7). To do this, we need some preliminary results.

The process cannot become frozen

The target of this section is to prove the following proposition, that states that no site can
remain an F -site forever.

PROPOSITION 2.13. Let u ∈ D be an F -site at time t. Then, de�ned T := inf{s > t :
ξs(u) < F}, it holds

T <∞ a.s.

The idea is to consider only the sites to the right of u, showing that eventually one
particle from the right jumps into u, unless another left-particle has jumped before. For
this reason, let G be the graph induced by N, and suppose the left-most site 1

2 be an F -site
at time 0, while every level of every other edge has initially a particle with probability 1/2,
independently from the others. In this context, let

p := P
(
ξs({0, 1}) = F ∀s > 0

)
.

The aim is to prove that p = 0, deducing then the result of the proposition. For this,
we need two preliminary lemmas, the �rst of which is similar to the proposition, but it
requires a stronger assumption, as in the following de�nition.

DEFINITION 2.14. Given u, v ∈ D with u < v, the interval {u, u + 1, ..., v} is said to
be active at time t if the numbers of particles at two di�erent levels are di�erent in parity,
that is ∃ i, j ∈ {1, ..., F} with i 6= j such that

v∑
z=u

ξt(z, i) 6=
v∑

z=u

ξt(z, j) mod 2.
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LEMMA 2.15. Assume that the interval {u, ..., v} is active at time t, and ξt(u) = F =
ξt(v). De�ned τ := inf{s > t : ξs(u) + ξs(v) < 2F}, it holds

τ <∞ a.s.

Proof. Assume, by contradiction, that ξs(u) = F = ξs(v) for every time s > t. Since, under
this assumption, at the boundary there are no events involving particles, annihilation events
happen only in the interior of the interval, and in these cases particles annihilate in pairs.
It follows that the parity of the number of particles at each level is the same at every later
time, and this means that the interval {u, ..., v} is active at every time s > t.
This implies that, at every time s > t, the interval contains at least one site that is neither a
0-site nor an F -site: indeed, if all sites are 0-sites or F -sites, the number of particles at each
level is the same, and this contraddicts the fact that the interval is active. Therefore, for
every s > t, the interval contains at least one active particle at time s. The contradiction
is now reached: this particle will hit one of the boundaries in an almost surely �nite time,
because, since it is active, it jumps at a positive rate.

LEMMA 2.16. There exists a sequence of random times t0 < t1 < · · · < ∞ with t0 = t
such that, denoting Ak as the event that a particle at site u is annihilated at some time

s ∈ (tk−1, tk], it holds

P

(
Ak

∣∣∣∣ k−1⋂
n=1

Acn

)
≥ p

2
(2.8)

for every k > 0.

Proof. The idea is to prove (2.8) by induction on k, but to do this we have to introduce
some other helpful objects.

For all w ∈ D with w ≥ u and for all s ≥ 0, let Fw(s) be the σ-algebra generated by
the graphical representation through time s and over the spacial interval {u, ..., w}, that is

Fw(s) = σ(ξ0(v, i), (Nv,i(τ) : 0 ≤ τ ≤ s), (Bv,i(n) : 1 ≤ n ≤ Nv,i(s)),

(Uv,i(n) : 1 ≤ n ≤ Nv,i(s)) : u ≤ v ≤ w, i = 1, ..., F ).

We de�ne a stopping pair as a pair of random variables (V, T ) that satis�es:

i) V is {u, u+ 1, ...}-valued;

ii) T is [0,+∞)-valued;

iii) for every w ∈ D with w ≥ u and for every s ≥ 0, {V ≤ w} ∩ {T ≤ s} ∈ Fw(s).

Given a stopping pair (V, T ), de�ne FV (T ) to be the σ-algebra representing the information
of the graphical representation through time T and over the spatial interval {u, ..., V }, that
is the σ-algebra of all events A such that

A ∩ {V ≤ w} ∩ {T ≤ s} ∈ Fw(s) for all w ∈ D, w ≤ u and for all s ≥ 0.

In order to prove (2.8) by induction, we want to prove that for every k ≥ 1 there exist
a random site vk and a random time tk−1 such that:
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h1) Nvk,i(tk−1) = Nvk+1,i(tk−1) = Nvk+2,i(tk−1) = 0 for i = 1, ..., F ;

h2) (vk + 2, tk−1) is a stopping pair and A1, ..., Ak−1 ∈ Fvk+2(tk−1)

and then to prove that

P(Ak|Fvk+2(tk−1)) ≥ p

2
. (2.9)

It will follow from (2.9) that

P

(
An

∣∣∣∣ n−1⋂
k=1

Ack

)
≥ p

2
because

n−1⋂
k=1

Ack ∈ Fvk+2(tk−1).

Certainly, for k = 0 it is true: take t0 = t and

v1 = min{w > u : Nw,i(t) = Nw+1,i(t) = Nw+2,i(t) = 0 ∀i = 1, ..., F}.

Note that, by Borel-Cantelli, v1 is almost surely �nite. The pair (v1 + 2, t0) is a stopping
pair, and conditions h1 and h2 are satis�ed.

Fixed k, we want to prove the existence of vk+1 and tk as above. Condition h1 implies
that there is no arrow starting at either site vk or vk + 1 or vk + 2 by time tk−1, so in
particular particles starting to the right of vk do not reach vk by time tk−1 and particles
starting in {u, ..., vk} do not reach vk + 1 by time tk−1.

Partition out the in�nite interval {u, u + 1, ...} into subintervals of the same length
d = vk − u+ 3, as {u, ..., vk + 2}. Precisely, for j ≥ 0 we let

Bj,k = {jvk + (1− j)u+ 3j, ..., (j + 1)vk − ju+ 3j + 2}

because the initial site is u+ jd = jvk +(1− j)u+3j and the �nal one is u+(j+1)d−1 =
(j + 1)vk − ju+ 3j + 2.

Now, let Jk be the smallest positive integer j that satis�es:

j1) Nw,i(tk−1) = 0 for all w ∈ Bj,k and i = 1, ..., F ;

j2) for m = 0, ..., vk − u+ 1 and i = 1, ..., F it holds translation or re�ection, where

• translation means ξ0(jvk − (j − 1)u+ 3j +m, i) = ξtk−1
(u+m, i);

• re�ection means ξ0((j + 1)vk − ju+ 3j + 2−m, i) = ξtk−1
(u+m, i).

Condition j2) relates the initial con�guration of BJk,k and con�guration of B0,k at time
tk−1: in the �rst case, the con�gurations are the same, while in the second they are one
the mirror image of the other, but in both cases the right-most site of BJk,k is excluded, as
the left-most one (resp. the right-most one) in the translation case (resp. in the re�ection
case). Note that Jk is almost surely �nite.

The �rst step is to prove that the probability of a re�ection is at least one half. Trans-
lation or re�ection events depend only on the initial con�guration of the sites in BJk,k, and
recall that the initial con�guration is the one in which all cultures at di�erent sites are
independent and they appear with the same probability. Because Poisson processes are
independent of the initial con�guration, knowing that j1) holds for a particular j provides
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no information about the initial con�guration in Bj,k. Moreover, h2) implies that the ini-
tial con�guration to the right of vk + 2 is independent of the site vk and time tk−1. So,
conditional on the values of vk and tk−1 and on the event that j1) holds for a particular j,
all possible values for ξ0(w, i) are equally likely, for w ∈ Bj,k and i = 1, ..., F . In partic-
ular, the probabilities of translation and re�ection are the same, because being the same
con�guration as the one in the interval B0,k at time tk−1 excluding the right-most site is
as likely as being the mirror image of the con�guration in the interval B0,k at time tk−1,
escluding the right-most site. Because either translation or re�ection must occur, and their
intersection has a positive probability (indeed, both will occur if the con�guration at time
tk−1 between u and vk + 1 is a mirror image of itself), the probability of a re�ection must
be larger than one half.

Now, consider the process conditioned to the event Jk = j and the fact that a re�ection
occurs. Furthermore, let

rk := (j + 1)vk − ju+ 3j + 2

be the right-most site of Bj,k and

lk := jvk − (j − 1)u+ 3j

be the left-most site of Bj,k, and consider the truncated process, that is the process in the
subinterval Γk = {u, ..., rk}. By condition h1) and by re�ection, particles at vk + 1 and at
lk + 1 have no interactions with other particles before time tk−1, so the con�guration of
particles at these two sites is the same at time tk−1 and at time 0. So, the probability that
the numbers of particles at two given levels of vk + 1 and lk + 1 have the same parity is
exactly one half, another time due to the initial con�guration. In other words, the interval
Γk is an active interval with probability at least one half, since in de�nition 2.4 it is required
only the existence of a pair of levels i and j. It follows that the probability that both a
re�ection occurs and the interval Γk is active is at least 1/2× 1/2 = 1/4.

In case a re�ection does not occur, or the interval is not active, we can repartition
{u, u + 1, ...} into subintervals of length (|Jk| + 1)d, starting with B0,k,2 = Γk instead
of B0,k. We de�ne Jk,2 to be the smallest integer satisfying conditions j1) and j2), with
respect to this new partition. Applying another time the previous arguments, after a �nite
number of steps n we will �nd a partition such that re�ection occurs and the interval
Γk,n−1 = {u, ..., rk,n−1} is active. Actually, what we prove with this construction is that n,
the number of steps that we have to wait for a realization, is stochastically smaller than
a geometric random variable of parameter 1/4. Since the last part of the proof does not
depend on the value of n, we drop the subscript that refers to it.

Now, we want to prove that the law of the truncated process is the same as the law of
its mirror image. First, note that, since no particles in the interval Bj,k can jump before
time tk−1, as required in condition j1), the con�guration in this interval is the same at
time tk−1 and at time zero. In addition, re�ection implies that

ξtk−1
(u+m, i) = ξtk−1

(rk −m, i) ∀m = 0, ..., vk − u+ 1, ∀i = 1, ..., F. (2.10)

Since there is no arrow starting or pointing at either vk + 1 or lk + 1 by time tk−1, the
particles at Ik := {vk + 1, ..., lk + 1} at time zero evolve independently of the particles
outside Ik, at time zero. Since the graphical representation is independent of the initial
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con�guration, the law of the graphical representation in Ik is equal to the law of its mirror
image by time tk−1. Furthermore, conditional on Jk = j, all the initial con�gurations in the
intervalsBi,k for i = 1, ..., j−1, except the two con�gurations described in condition j2) that
have probability zero, have all the same probability. This means that each possible initial
con�guration in Bi,k is as likely as its mirror image, so the law of the initial con�guration
in Ik is the same as the law of its mirror image. And this also implies that the law of
the con�guration in Ik at all times until tk−1 is equal to the law of its mirror image, since
the they depend only on the initial con�guration and the graphical representation in this
interval. The remaining part of the interval Γk not in Ik is symmetric, as stated in (2.10),
so it also follows that the law of the con�guration in Γk at time tk−1 is the same as the
law of its mirror image. But also the law of the graphical representation after time tk−1

is the same as its mirror image, so the law of the truncated process after time tk−1 is the
same as the law of its mirror image. In particular, denoting as Dk the analog of Ak for the
truncated process restricted to Γk, i.e. the event that eventually in time there is a change
to u before a change to rk, it holds

P(Dk|Fvk+2(tk−1)) =
1

2
. (2.11)

To complete, we de�ne tk to be the smallest time at which there is a change either to site
u or to site rk.

Now return to the scenario in which only sites to the left of u are removed, so that
some particle could jump onto rk from its right. Thinking of rk as the left-most site in
the de�nition of p (particles of rk are frozen until at least tk), there is a probability larger
than p that the site rk does not change (so, no particle from rk + 1 jumps onto rk) until
time tk, because p is the probability that the left-most site does not change at every time.
This, together with (2.11), means that there is a probability of at least p/2 that site u will
change at time tk, that is exactly (2.9). We choice vk+1 respecting the property h1), so

vk+1 = min{w > rk : Nw,i(tk) = Nw+1,i(tk) = Nw+2,i(tk) = 0 ∀i = 1, ..., F}

that is a.s. �nite. Since no particle to the right of vk+1 can reach vk+1 by time tk, the
event {vk+1 +2 ≤ w}∩{tk ≤ s} depends only on the initial con�guration and the graphical
representation through time s and over the interval {u, ..., w}, so it belongs to Fw(s), that
is (vk+1 + 2, tk) is a stopping pair. Finally, Ak ∈ Fvk+1+2(tk), because again no particle to
the right of vk+1 can reach vk+1 by time tk.

Proof of Proposition 2.13. As mentioned above, consider the graph in which all sites
to the left of u are removed. Seeking again a contradiction, as in lemma 2.15, note that
the thesis of the proposition is actually equivalent to

P
(
ξs(u) = F for all s > t

)
= 0,

so assume that there is a positive probability that the site u never changes after time t.
This implies that p > 0, in fact:

• if t = 0 then the probability that site u never changes after time t is exactly p, so
there is nothing to prove;
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• if t > 0 it is possible to reduce to the previous case. We �rst claim that with
probability one there are in�nitely many v > u such that, for every i = 1, ..., F it
holds

Nv,i(t) = 0 = Nv+1,i(t).

Indeed, divide the sites to the right of u into groups of 2. Every event of the form
{Nv,i(t) = 0 ∀i = 1., , , F} has positive probability, equal to P({X > t})F , where
X is an esponential random variable of parameter 1. It follows that, for n ≥ 1, the
events

En := {Nu+2n−1,i(t) = 0 = Nu+2n,i(t) ∀i = 1, .., F}

have all positive probability, and (En)n≥1 is a family of independent events. By
Borel-Cantelli, with probability 1, in�nitely many En occurs. Call V the set of such
sites. Letting

Bv =
{

(ξs(u) = F ∀s > t and Nv,i(t) = 0 = Nv+1,i(t) ∀i = 1, ..., F )
}

by intersection with the event in the statement one has

P

(⋃
v∈V

Bv

)
> 0

and since it is a countable union, there must exists a site v̄ > u such that P(Bv̄) > 0.
The fact that Nv̄,i(t) = 0 = Nv̄+1,i(t) means exactly that there is no arrow connecting
them until time t, so the evolution of the process on the interval {u, ..., v̄} under this
condition is independent of its evolution on {v̄ + 1, ...}, until time t. Since there are
only �nitely many possible con�gurations for the sites in the �rst interval (indeed
they are in �nite number), with an argument similar to the one used before there
must exist numbers cz,i ∈ {0, 1} for z = u+ 1, ..., v̄ and i = 1, ..., F such that

P
(
Bv̄ ∩ {ξt(z, i) = cz,i ∀z = u+ 1, ..., v̄,∀i = 1, ..., F}

)
> 0.

For z = u let cu,i = 1 for every i = 1, ..., F , because the assumption is that u is
an F -site at time t. For the initial distribution and Poisson process rules, there is a
positive probability that

ξ0(z, i) = cz,i and Nz,i(t) = 0 ∀z = u, ..., v̄, ∀i = 1, ..., F

so

q := P(ξs(u) = F ∀s > t, ξ0(z, i) = cz,i ∀u ≤ z ≤ v̄ and i = 1, ..., F,

Nz,i(t) = 0 ∀u ≤ z ≤ v̄ + 1) > 0.

But

q ≤ P(ξs(u) = F ∀s > 0, ξ0(z, i) = 1 ∀i = 1, ..., F ) ≤ p

and so p must be positive.
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So in all cases p > 0. But this gives a contradiction: by (2.8), one has

P (
⋂n
k=1A

c
k)

P
(⋂n−1

k=1 A
c
k

) ≤ 1− p

2

so, letting an = P (
⋂n
k=1A

c
k),

an ≤ a0

(
1− p

2

)n
−−−→
n→∞

0.

This means that

P

( ∞⋂
n=1

Acn

)
= 0

that is equivalent to

P

( ∞⋃
n=1

An

)
= 1

which said that, with probability one, eventually some particle at site u will be annihilated.
This contradiction implies the result.

Extinction of particles

In this section we prove that each site is eventually a 0-site, that is equivalent to almost
sure extinction of particles. In other words, for all u ∈ D,

lim
t→∞

P(ξt(u) = 0) = 1.

As always, the proof is divided into steps. The �rst lemma is preliminary to the two other
ones, which separate the active and the frozen case.

LEMMA 2.17. The following limits exist and do not depend on the choice of u ∈ D:

1. limt→∞ E[ξt(u)1{ξt(u) < F}];

2. limt→∞ E[ξt(u)1{ξt(u) = F}].

Proof. Since the initial con�guration, in which the cultures at di�erent sites are i.i.d. and
at a given site every possible culture appears with the same probability, is invariant in
space, and the evolution rules are invariant in space too, one has that, ∀ u, v ∈ D and ∀
j = 1, ..., F ,

P(ξt(u) = j) = P(ξt(v) = j)

and so the upper and lower limits of the expected values in the statement do not depend
on the choice of the site u. Fix u ∈ D; given times s < t, note that

ξt(u)− ξs(u) = J1(u)− J2(u)−A(u)

where:

• J1(u) is the number of particles that jump onto the site u in the time window (s, t];
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• J2(u) is the number of particles that jump away from the site u in the time window
(s, t];

• A(u) is the number of particles that annihilate at site u in the time window (s, t].

Exploiting another time the fact that the dynamic is symmetrical, i.e. the fact that particles
jump to their left or to their right with same probability 1/2, taking the expected value of
J1 and J2 it holds

E[J1(u)] = E[J2(u)]

and so, by linearity of the expected value,

E[ξt(u)]− E[ξs(u)] = −E[A(u)] ≤ 0. (2.12)

It follows that the expected value of particles at site u is a non-increasing function of time,
and so it exists

L := lim
t→∞

E[ξt(u)].

This allows us to prove only that the �rst of the two limits exists and does not depend on
the choice of u, because

E[ξt(u)1{ξt(u) = F}] = E[ξt(u)]− E[ξt(u)1{ξt(u) < F}]

and from the �rst one we deduce the second one.
To show that the �rst limit exists, we proceed by contradiction assuming that it doesn't

exist. This means exactly that L− < L+, where L− and L+ are respectively the limit
inferior and the limit superior of the same function.
Given an arbitrary ε > 0, by limit de�nition there exists t0 > 0 such that, for all t ≥ t0,

L− ε < E[ξt(u)] < L+ ε, (2.13)

and by de�nition of limit superior/inferior, there exist two increasing sequences of times
(tn)n∈N and (sn)n∈N tending to +∞ such that:

• E[ξsn(u)1{ξsn(u) < F}] < L− + ε;

• E[ξtn(u)1{ξtn(u) < F}] > L+ − ε.

Clearly the two sequence can be chosen in such a way that

t0 < s1 < t1 < s2 < · · · < sn < tn < · · · <∞ (2.14)

because the sequences are constructed choosing an element in an arbitrary neighbourhood
of +∞, so that's enough to change neighbourhood restricting it only to the right of the
previous element in (2.14).
Collecting together the previous extimates, one has

E[ξtn(u)1{ξtn(u) = F}]− E[ξsn(u)1{ξsn(u) = F}]
= E[ξtn(u)]− E[ξsn(u)]− E[ξtn(u)1{ξtn(u) < F}] + E[ξsn(u)1{ξsn(u) < F}]
≤ (L+ ε)− (L− ε)− (L+ − ε) + (L− + ε) = L− − L+ + 4ε
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Since until now ε was arbitrary, we �x ε = L+−L−
5 so that

E[ξtn(u)1{ξtn(u) = F}]− E[ξsn(u)1{ξsn(u) = F}] < −ε.

Moreover, by the fact that in those events the value of ξ is obliged to be equal to F , also
the following inequality holds:

P(ξtn(u) = F )− P(ξsn(u) = F ) < − ε

F
.

Now remember that q = 2, so when two particles interact, they cannot create a new particle
in an other site (there is only annihilation, nor coalescing events). This means that new
active particles can only result from the annihilation of two particles, one active and one
frozen, corresponding to the event in which an F -site becomes an (F − 1)-site. Therefore,
in a �nite interval, the number of particles annihilated between times s and t is at least
equal to twice the number of times an F -site becomes an (F − 1)-site between times s and
t. The last quantity is in turn at least equal to twice the number of F -sites at time s minus
twice the number of F -sites at time t, because surely these ones during the time interval
(s, t] have become (F − 1)-sites. Using (2.12) and the last extimates, one found, for every
s < t,

E[ξt(u)]− E[ξs(u)] ≤ 2(P(ξt(u) = F )− P(ξs(u) = F ))

that, with s = sn and t = tn becomes

E[ξtn(u)]− E[ξsn(u)] ≤ −2
ε

F
. (2.15)

Taking now t = tF and s = s1, applying (2.15) F times we get

E[ξtF (u)]− E[ξs1(u)] =

F∑
n=1

(E[ξtn(u)]− E[ξsn(u)]) +

F−1∑
n=1

(
E[ξsn+1(u)]− E[ξtn(u)]

)
≤

F∑
n=1

(E[ξtn(u)]− E[ξsn(u)]) ≤ −2ε

because for the second sum, all terms are non positive, as stated in (2.12). But applying
(2.13), since tF , s1 > t0 one has

E[ξtF (u)]− E[ξs1(u)] > (L− ε)− (L+ ε) = 2ε

and this leads to a contradiction.

REMARK 5. Note that, in the �rst limit of the previous lemma, the expected value can

be written also as

E [ξt(u)1{0 < ξt(u) < F}]

because when ξt(u) = 0, there is nothing to add. This equivalent way will be useful in the

next result.

The next lemma deals with active particles. More precisely, it states almost all we want
to prove clustering, in fact it rules out the frozen case, that is treated below.
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LEMMA 2.18. There is extinction of active particles, i.e.

lim
t→∞

P(0 < ξt(u) < F ) = 0 for all u ∈ D.

Proof. By the previous lemma and remark, we know that it exists

L := lim
t→∞

E [ξt(u)1{0 < ξt(u) < F}] .

In order to seek a contradiction, we assume that this limit is strictly positive: L > 0. Then,
for all t large enough it holds

E [ξt(u)1{0 < ξt(u) < F}] ≥ L

2
. (2.16)

Now, remember that active particles evolve according to symmetric random walks that run
at positive rate, and in one dimension they are recurrent. For this, given any two active
particles at time s at the same level, there exists an almost surely �nite random time t > s
such that at time t one of the following conditions is veri�ed:

• one of these two particles annihilates, due to a collision with a third one;

• one of these two particles becomes frozen;

• both the particles annihilate each other.

This suggests to consider the pair of annihilating and freezing events. We say that at site
u at time t there is:

1. an Annihilating event if ξt(u) + ξt(u+ 1) = ξt−(u) + ξt−(u+ 1)− 2;

2. a Freezing event if ξt(u) = F and ξt−(u) = F − 1.

In annihilating events two particles destroy one each other, and so the number of them
decreases by 2, while in freezing events site u, being at t− an (F − 1)-site, becomes an
F -site. Denote with At(u) and Ft(u) the number of annihilating and freezing events that
occur at site u by time t.
Since, as in (2.16), for large times t the expected value of active particles at a site is strictly
positive, bounded away from zero, and since every active particle will be sooner or later
part of an annihilating or a freezing event, one has that the number of annihilating or
freezing events by time t tends to in�nity, when t tends to in�nity, that is

lim
t→∞

E[At(u) + Ft(u)] = +∞. (2.17)

Now, we prove that (2.17) is not true, obtaining a contradiction.
For the annihilating events, note that every particle can get annihilated only once, and
annihilation happens with pairs of particles. This means that, �xed two times and a �nite
interval, the number of particles destroyed in this space-time window is exactly twice the
number of annihilation events, occuring in this space-time window. Taking the expected
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value per site, and remembering that every site has at most F particles, we obtain, for all
t ≥ 0,

1

2N
E
[ N−1∑
i=−N

At
(
i+

1

2

)]
≤ 1

2N

2N · F
2

=
F

2

so, by an approximation argument and translation invariance,

E[At(u)] = lim
N→∞

1

2N
E
[ N−1∑
i=−N

At
(
i+

1

2

)]
≤ F

2
.

For freezing events, we separate once-freezing case from more than two freezing case.
In fact, when there is only once freezing event, clearly the expected value is 1; when there
are at least two freezing events, it means that, after the �rst one, the site from an F -site
becomes again an (F −1)-site, and so there is an annihilating event. This event can occurs
not only at u, but also at u − 1: it depends on which direction (left or right) the other
particle arrives. In other words,

E[Ft(u)] ≤ 1 + E[At(u)] + E[At(u− 1)] ≤ 1 + F.

Collecting the two last extimates,

E[At(u) + Ft(u)] ≤ 1 +
3

2
F < +∞

that contradicts (2.17). In particular, L = 0 and

lim
t→∞

P(0 < ξt(u) < F ) ≤ lim
t→∞

E[ξt(u)1{0 < ξt(u) < F}] = 0.

The next result deals with frozen particles. In particular,

LEMMA 2.19. There is extinction of frozen particles, i.e.

lim
t→∞

P(ξt(u) = F ) = 0 for all u ∈ D.

Proof. By lemma 2.17, it exists

lim
t→∞

E[ξt(u)1{ξt(u) = F}]

and it does not depend on the choice of u ∈ D. But, since the value of ξt(u) is forced to
be equal to F , the previous limit is actually equal to

lim
t→∞

E[ξt(u)1{ξt(u) = F}] = F × lim
t→∞

P(ξt(u) = F )

so the limit in the statement exists and does not depend on the choice of u. Furthermore,
by lemma 2.18, for every ε > 0 it exists a time t0 > 0 such that

E[ξt(u)1{0 < ξt(u) < F}] < ε/2 for all t ≥ t0. (2.18)
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Recall now proposition 2.13 in an equivalent way: if u is an F -site at time t, then

P(ξs(u) = F ∀s > t) = 0

that is, by the continuity of probability, for any increasing sequence of times (sn)n∈N that
tends to in�nity,

lim
n→∞

P(ξs(u) = F ∀s ∈ (t, sn)) = 0. (2.19)

Applying (2.19) inductively, given t0 as in (2.18), it exists an increasing sequence of times
(tn)n∈N such that, for every n ≥ 0,

P(ξs(u) 6= F ∃s ∈ (tn, tn+1)|ξtn(u) = F ) >
1

2
. (2.20)

In order to estimate the expected number of particles killed per site u between times tn
and tn+1, we divide the case in which u at time tn is an F -site from the case in which it
is a j-site, with 0 ≤ j < F . In the �rst one, we note that, as in (2.20), with probability at
least one half the site will be part of an annihilation event of two particles, so in this case
(with this probability) the number of killed particles is at least 2. In the other case, simply
remember that the number of killed particles is non-negative (for example, see (2.12)).
This implies that, for all n ≥ 0,

E[ξtn(u)]− E[ξtn+1(u)] ≥ 2× 1

2
× P(ξtn(u) = F ) = P(ξtn(u) = F ). (2.21)

Collecting (2.21) and (2.18), we have the following chain of inequalities:

F · P(ξtn+1(u) = F ) ≤
F∑
i=0

i · P(ξtn+1(u) = i)

= E[ξtn+1(u)]

≤ E[ξtn(u)]− P(ξtn(u) = F )

= F · P(ξtn(u) = F ) + E[ξtn(u)1{0 < ξtn(u) < F}]
−P(ξtn(u) = F )

≤ F · P(ξtn(u) = F ) +
ε

2
− P(ξtn(u) = F )

= (F − 1) · P(ξtn(u) = F ) +
ε

2
.

Calling xn = P(ξtn(u) = F ), what is stated before is

xn+1 ≤
(

1− 1

F

)
xn +

ε

2F
,
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and by induction

xn ≤
(

1− 1

F

)n
x0 +

ε

2F

n−1∑
i=0

(
1− 1

F

)i
≤

(
1− 1

F

)n
+

ε

2F

1−
(
1− 1

F

)n
1−

(
1− 1

F

)
≤

(
1− 1

F

)n
+

ε

2F

1

1−
(
1− 1

F

)
=

(
1− 1

F

)n
+
ε

2
.

where in the second inequality we use the fact that x0 ≤ 1 because it is a probability.
Since F ≥ 2,

(
1− 1

F

)n → 0 and so xn ≤ ε for all n su�ciently large. And this is exactly
the thesis: since the limit in the statement exists, it is equal to the limit in a particular
sequence of times going to +∞. Taking (tn)n as this sequence,

lim
t→∞

P(ξt(u) = F ) = lim
n→∞

P(ξtn(u) = F ) ≤ ε

that is what we want.

Now, as in the last part of the proof of the �rst theorem, it is su�cent to collect together
what we have proved until now, that is

lim
t→∞

P(ξt(u) = 0) = 1 ∀u ∈ D. (2.22)

In fact, to see that (2.22) implies Theorem 2, note that, for every x, y ∈ Z with x < y it
holds

lim
t→∞

P(Xt(x) 6= Xt(y)) ≤ lim
t→∞

P(Xt(x+ n− 1) 6= Xt(x+ n) ∃ 1 ≤ n ≤ y − x)

= lim
t→∞

P(ξt(x+ n− 1

2
) 6= 0 ∃ 1 ≤ n ≤ y − x)

≤
y−x∑
n=1

lim
t→∞

P(ξt(x+ n− 1

2
) 6= 0) = 0

because, if vertices x and y have di�erent cultural opinions at time t, there must exists an
n = 1, ..., y−x such that vertices x+n−1 and x+n have di�erent cultural opinions. This
complete the proof.

2.5 Proof of theorem 2.9

We start this section by proving a preliminary result, introduced in section 2.1. We use
the notation

(u, i) −→ (u+ 1, i) at time t

meaning that (u, i) and (u+ 1, i) are occupied at time t− and the particle at (u, i) jumps
one unit to the right at time t, so that there is a collision at (u+ 1, i) at time t.
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LEMMA 2.20. Conditionally on the realization of the system of random walks until time

t−, and the event (u, i) −→ (u+ 1, i), it holds:

i) the collision results in an annihilation event with probability (q − 1)−1;

ii) the collision results in a coalescing event with probability (q − 2) · (q − 1)−1.

REMARK 6. Note that this fact holds in the case q = 2, too. Indeed, as we know, when

there are only two possible states, a collision of two particles can only annihilate them.

Obviously, the interest of the lemma is when q > 2.

Proof. First of all, since a collision can result either in a coalescing or an annihilating event,
it's enough to prove the �rst statement, because the second probability in that case must
be equal to 1− (q − 1)−1 = (q − 2) · (q − 1)−1.

To prove the �rst, let x := u+ 1/2 ∈ Z. For the second property that i-paths have to
satisfy, they cannot cross each other, otherwise there will be an active i-arrow that points
at some intermediate point. So

as(x− 1, i) ≤ as(x, i) ≤ as(x+ 1, i) ∀s ≥ 0. (2.23)

where as(x, i) is the ancestor of x for the i-th feature, as in de�nition (2.6). Moreover,
since there is a collision (u, i) −→ (u+1, i), there are two particles at time t−, one at (u, i)
and one at (u+ 1, i), so{

Xi
0

(
at−(x− 1, i)

)
= Xi

t−(x− 1) 6= Xi
t−(x) = Xi

0

(
at−(x, i)

)
Xi

0

(
at−(x+ 1, i)

)
= Xi

t−(x+ 1) 6= Xi
t−(x) = Xi

0

(
at−(x, i)

)
.

(2.24)

From (2.24), we deduce that, conditional on the event (u, i) −→ (u + 1, i) at time t, the
three ancestors in (2.23) must be di�erent, i.e.

as(x− 1, i) < as(x, i) < as(x+ 1, i) ∀s < t.

This means that

(u, i)
annih−−−−→ (u+ 1, i)⇔

{
(u, i) −→ (u+ 1, i)

Xi
0

(
at−(x− 1, i)

)
= Xi

0

(
at−(x+ 1, i)

)
.

Therefore, the conditional probability of being an annihilating collision depends only on the
ancestors, and so only on the initial condition. Since we take π0 as the initial con�guration,
this probability is

p := P(U1 = U3|U1 6= U2 ∩ U3 6= U2)

where we denote with U1, U2, U3 three independent uniform variables over {1, ..., q}. We
have

p =
P(U1 = U3, U1 6= U2, U3 6= U2)

P(U1 6= U2, U3 6= U2)

=

∑q
j=1 P(U1 = U3, U1 6= j, U3 6= j)P(U2 = j)∑q

j=1 P(U1 6= j, U3 6= j)P(U2 = j)

=

1
q

∑q
j=1 P(U1 = U3, U1 6= j, U3 6= j)
1
q

∑q
j=1 P(U1 6= j, U3 6= j)

=
(q − 1)/q2

(q − 1)2/q2
=

1

q − 1
.
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The next lemma gives a su�cient condition for �xation, based on properties of active
i-paths. We will apply this later to prove �xation. De�ne, for all (z, i) ∈ Z× {1, ..., F},

T (z, i) := inf{t ≥ 0 : (z, 0) i (0, t)}

that is the �rst time an active i-path that originates from the z hits the origin.

LEMMA 2.21. Consider the Axelrod model with initial distribution π0. If in addition

lim
n→∞

P
(
T (z, i) <∞ for some z < −n and some i = 1, ..., F

)
= 0 (2.25)

then the system �xates.

Proof. In order to prove �xation, we prove that the probability that one vertex (we choose
x = 0, and this is the reason for the de�nition of T as above) changes in�nitely often her
culture is zero. This implies �xation, since the graph is connected. In order to estimate
that probability, we have to de�ne stopping times that consider when the vertex at the
origin changes the state of her i-th cultural feature. So, we let, for every i = 1, ..., F and
j ≥ 1,

τi,j = inf{t > τi,j−1 : Xi
t(0) 6= Xi

τi,j−1
(0)}

with obviously τi,0 = 0, and

Bi := {τi,j <∞ for all j ≥ 1}.

The individual at the origin changes her culture in�nitely often if and only if at least one of
the events Bi occurs, so �xation is equivalent to prove that every event Bi has probability
zero.

We have also to consider ai,j , the ancestor of vertex 0 at this stopping times τi,j for the
i-th feature, because we want to use the hypothesis. Indeed, de�ned

Gi,n := {|ai,j | < n for all j ≥ 1}

we have that

P

(⋃
n

Gi,n

)
= 1.

This follows from the fact that (2.25) together with re�ection symmetry implies that

lim
n→∞

P
(
T (z, i) <∞ for some z > n and some i = 1, ..., F

)
= 0

because there is a natural bijection between (−∞, n) and (n,+∞), and the initial distri-
bution is symmetrical.
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From this,

P

(
F⋃
i=1

Bi

)
≤

F∑
i=1

P(Bi)

=
F∑
i=1

P

(
Bi ∩

(⋃
n

Gi,n

))

=

F∑
i=1

P

(⋃
n

(Bi ∩Gi,n)

)

≤
F∑
i=1

∞∑
n=1

P(Bi ∩Gi,n).

It remains to prove that, for every i = 1, ..., F and n ≥ 1

P(Bi ∩Gi,n) = 0. (2.26)

To prove this, we repeat the construction as in Proposition 1.14. We denote with

It(x, i) := {z ∈ Z : (x, 0) i (z, t)}

the set of descendants of x at time t for the i-th feature, and with Mt(x, i) we denote its
cardinality. Mt is a martingale, with constantly expected value one, so by the martingale
convergence theorem it exists M∞ such that

P
(
Mt(x, i) −−−→

t→∞
M∞(x, i)

)
= 1,

where E[|M∞(x, i)|] <∞. Remembering that the process Mt is an integer valued process,

τM (x, i) := inf{t > 0 : Mt(x, i) = M∞(x, i)} <∞ with probability 1.

Since the process is governed by Poisson processes, simultaneous updates occur with prob-
ability zero. This implies that also It enjoys the same properties of Mt, that is, with
probability one:

• P
(
It(x, i) −−−→

t→∞
I∞(x, i)

)
= 1, where I∞(x, i) is a random interval almost surely

�nite;

• τI(x, i) := inf{t > 0 : It(x, i) = I∞(x, i)} <∞.

And from this it follows the conclusion: indeed, �xed i and n, if the individual at the origin
changes in�nitely often her i-th cultural feature, and all its ancestors belong to (−n, n),
then at least one of its ancestors x̄ has to satisfy τI(x̄, i) = ∞, otherwise there is a �nite
number of ancestors, all with a �nite τI , and so that individual at the origin should change
only �nitely many times her i-th cultural feature. So,

P(Bi ∩Gi,n) = P(τI(x, i) =∞ for some x ∈ (−n, n)) = 0

as stated above, and this is exactly (2.26).
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Proof of Theorem 2.9. In order to prove �xation, recalling the previous lemma, it suf-
�ces to prove that the probability of the event as in (2.25) tends to zero as n → ∞. We
denote that event Hn. Note that Hn can be described in an equivalent way: denoted by
τn the in�mum of T (z, i), with conditions as in (2.25), namely

τn := inf{T (z, i) : z < −n, i = 1, ..., F},

one has

Hn = {τn <∞}.

Indeed, it exists a z < −n and an index i = 1, ..., F for which T (z, i) is �nite if and only if
the in�mum of T (z, i), with z and i satisfying the same conditions, is �nite. τn is exactly
the �rst time an active i-path, that originates from z̄ ∈ (−∞,−n), hits the origin. We
have to consider the minimum and the maximum of vertices connected by a generalized
active path to the origin, that are

z− := min{z ∈ Z : (z, 0) (0, τn)} ≤ z̄ < −n, (2.27)

z+ := max{z ∈ Z : (z, 0) (0, σ) for some σ < τn} ≥ 0.

In general, z− < z̄, since the former is de�ned from active i-paths, while the latter is de�ned
from generalized active paths, that are concatenations of active i-paths, with di�erent
values of i. De�ne I = (z−, z+).

Note that each blockade that is initially in I must have been destroyed by time τn,
since surely a particle that derives from a generalized active path creates an annihilating
event. This particle, however, can not be initially outside the interval I, because active
particles can not jump into the space-time region given in (2.27): if one particle came in,
then z− or z+ would not be the minimum or the maximum, as they are de�ned. So, on
the event Hn, all the blockades initially in I must have been destroyed by either active
particles initially in I or active particles that results from these blockade destructions.

In order to estimate the probability of Hn, we de�ne a comparison function φ in this
way:

φ(u) =

{
−i if ξ0(u) = i 6= F

ψ(u)− (F − 1) if ξ0(u) = F.
(2.28)

where ψ(u) are independent geometric random variables with mean q−1. The meaning
is the following: since the number of collisions to break a blockade is bounded by the
number of active particles initially in I or created from destruction of blockades initially in
I, we de�ne φ(u) = −i whenever ξ0(u) = i 6= F to count the former ones. For the second
case, we note that the number of collisions required to break a blockade is geometric (by
the de�nition of geometric random variables) and, by lemma 2.20, its mean is q − 1: in
fact, the probability that the blockade breaks is exactly the probability that there is an
annihilation event given that there is a collision, and this probability is (q − 1)−1. The
de�nition in the case ξ0(u) = F serves to count active particles created from destruction
of blockades.
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Using the function φ, as in (2.28), and using what said until now,

Hn ⊆
{∑
u∈I

φ(u) ≤ 0

}
.

Furthermore, since (−n, 0) ⊂ I,

Hn ⊆
{∑
u∈I

φ(u) ≤ 0

}
⊆
⋃
r≥0
l<−n

{ r∑
u=l

φ(u) ≤ 0

}
. (2.29)

Remember that there is initially a particle at site u at level i if and only if u − 1/2 and
u+1/2 have di�erents i-th features, so with probability 1− q

q2
= 1− 1

q . Moreover, particles

at di�erent levels are independent, so the distribution of ξ0(u) is Binomial with parameters
F , the number of cultural features, and 1 − 1

q , the probability that two vertices disagree
on a speci�cal feature. This means that

E[φ(u)] = (E[ψ(u)]− (F − 1))P(ξ0(u) = F )−
F−1∑
i=0

i · P(ξ0(u) = i)

= (E[ψ(u)] + 1)P(ξ0(u) = F )−
F∑
i=0

i · P(ξ0(u) = i)

= q · P(ξ0(u) = F )− E[ξ0(u)]

= q

(
1− 1

q

)F
− F

(
1− 1

q

)
= ω(q, F )

and the reason for the expression of ω(q, F ) is now clear: one expects �xation when
E[φ(u)] > 0, since all φ(u) are independent.

To make rigorously this idea, we show that the number of collisions required to break
all the blockades in a large interval does not deviate too much from its expected value, and
for this we need a lemma.

LEMMA 2.22. Let In := (−n, 0) ∩ D and assume that ω(q, F ) > 0. Then,

P

(∑
u∈In

φ(u) ≤ 0

)
≤ exp(−nc3)

for a suitable constant c3 > 0, and all n su�ciently large.

Proof. We divide two cases, conditioning to a particular event. For i = 0, ..., F , denote
with

Ni =
∑
u∈In

1{ξ0(u) = i}

the number of sites that are initially i-sites. Ni is a random variable with mean nµi, where
µi = P(ξ0(u) = i), because in the interval In there are exactly n sites. By large deviation
estimates, for all ε > 0 it exists c4 > 0 such that for all i

P(Ni /∈ (µi − ε)n, (µi + ε)n)) ≤ exp(−nc4). (2.30)
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Let Ω = {(µi − ε)n ≤ Ni ≤ (µi + ε)n for all i = 0, ..., F}. On Ω, it holds

1

n

F−1∑
i=0

iNi ≤
F−1∑
i=0

i(µi + ε) = E[ξ0(u)]− FµF + Cε

where C = (F−1)F
2 . Since initially there are at least (µF − ε)n F -sites, the sum of φ(u)

restricted to F -sites is at least the sum of φ(u) for K sites, where K = b(µF − ε)nc. So,

P

(∑
u∈In

φ(u) ≤ 0
∣∣∣Ω) ≤ P

∑
u∈IK

(ψ(u)− (F − 1)) ≤ (E[ξ0(u)]− FµF + Cε)n


≤ P

( ∑
u∈IK

ψ(u) ≤ (E[ξ0(u)]− µF + (C − F + 1)ε)n
)

(2.31)

In the second inequality we use the fact that K ≤ (µF − ε)n, since it is its integer part, to
obtain

(−FµF + Cε)n+ (F − 1)(µF − ε)n = (−µF + (C − F + 1)ε)n

as in (2.31). The left hand side part of (2.31) looks like the estimate in theorem 1.20
(precisely, the second one), so we have to estimate another time the right hand side, and
for this we now use the hypothesis ω(q, F ) > 0. In fact, taking ε ≤ ω(q, F )/(C−F+µF+q),
one has

E[ξ0(u)]− µF + (C − F + 1)ε = (q − 1)µF − ω(q, F ) + (C − F + 1)ε

≤ (q − 1)µF − ε(µF + q − 1)

≤ (q − 1)µF − ε(µF + q − 1) + ε2

= (q − 1− ε)(µF − ε)

so, using theorem 1.20 and (2.31), we get

P

(∑
u∈In

φ(u) ≤ 0
∣∣∣Ω) ≤ P

∑
u∈IK

ψ(u) ≤ (q − 1− ε)K

 ≤ exp(−Kc2) (2.32)

for all K su�ciently large, because another time we stress the fact that K is the integer
part of (µF − ε)n. The result follows intersecting with Ω and its complementary: called
A = {

∑
u∈In φ(u) ≤ 0}, using (2.30) and (2.32),

P(A) = P (A ∩ Ω) + P (A ∩ Ωc)

≤ P(A|Ω) + P(Ωc)

≤ exp(−c2(µF − ε)n) +
F∑
i=0

P(Ni /∈ ((µi − ε)n, (µi + ε)n)

= exp(−c2(µF − ε)n) + (F + 1) exp(−nc4)

for all N su�ciently large.



2.6 Proof of theorem 2.10 49

The conclusion now follows applying in inclusion (2.29) what said in Lemma 2.22:

lim
n→∞

P(Hn) ≤ lim
n→∞

∑
l<−n

∑
r≥0

P

(
r∑
u=l

φ(u) ≤ 0

)
≤ lim

n→∞

∑
l<−n

∑
r≥0

e−c3(r−l)

≤

∑
r≥0

e−c3r

 lim
n→∞

∑
l<−n

ec3l

=
1

1− e−c3
· lim
n→∞

e−c3(n+1)

1− e−c3
= 0.

REMARK 7. Note that we prove also coexistence for these values of parameters. Indeed,

with notation as at the beginning of this section, the time τn is almost surely in�nite, and

with a positive probability some of the blockades in the interval I is not destroyed before

time τn, so there is survival of blockades. And this fact excludes clustering, getting the

system trapped in a highly fragmented con�guration.

2.6 Proof of theorem 2.10

The idea is to exploit lemma 2.21 another time, as in the proof of theorem 2.9, but the com-
parison function de�ned in that contest is now not very useful, since E[φ(u)] = ω(3, 2) = 0.
Indeed, with the previous comparison function, all particles initially active have a weight of
-1, that corresponds to the worst case scenario in which the active particle hits a blockade.
Actually, an active particle can also form a new blockade or hit another active particle.
The possible outcomes are four:

1. if an active particle hits a blockade, it is assigned, as before, a weight of -1;

2. if an active particle annihilates with another active particle, no collisions with a
blockade can be generated, because the particle (actually, the pair of particles) is
destroyed, so it is assigned a weight of 0;

3. if an active particle coalesces with another active particle, then as a result of the
collision from two particles only one remains, and this one can generated at most
only one collision with a blockade, so each particle of this pair is assigned a weight
of -1/2;

4. �nally, if an active particle forms a blockade with another active particle, then, as
before, the pair is assigned a weight of a geometric random variable with mean q−1,
plus -1.
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In view of what said until now, we de�ne a new comparison function φ in this way:

φ(u) =


0 if ξ0(u) = 0,

ψ(u)− 1 if ξ0(u) = 2,

−1 if ξ0(u) = 1 and the particle at u hits a blockade,

−1/2 otherwise,

(2.33)

with ψ(u) again independent geometric random variables with parameter (q − 1)−1 = 1/2
and mean 2. Note that the last case is exactly the case in which ξ0(u) = 1 and the active
particle initially at site u either collides with another active particle or forms a blockade
with another active particle. As in (2.29), we have

Hn ⊆
⋃
r≥0
l<−n

{
r∑
u=l

φ(u) ≤ 0

}
. (2.34)

To prove that the probability of Hn converges to zero as n → ∞, we imitate the same
strategy as in lemma 2.22, with some more details. Actually, the results does not hold
only for the (3− 2)-case but also in general for (q− 2)-case, with q ≥ 3, so we propose the
proof in the general case.

LEMMA 2.23. Let In = (−n, 0) ∩ D, F = 2 and q ≥ 3. Then, there exists c5 > 0 such

that

P

(∑
u∈In

φ(u) ≤ 0

)
≤ exp(−c5n)

for all n su�ciently large.

Proof. First, we need to �nd a lower bound for the initial number of active particles
that will collide with another active particle or form a blockade. This because the new
comparison function φ distinguishes between these active particles and the active ones that
collides with a blockade. To do so, we divide the lattice D into countably many pairs of
adjacent sites, and we said that an active particle initially at site u = 2n − 1/2 is a good

particle if

ξ0(2n− 1/2) = ξ0(2n+ 1/2) = 1. (2.35)

An active particle that is not a good particle is called bad particle. Recall that the variables
ξ0(u) are independent binomial random variables with parameters F = 2 and 1− 1/q, the
probability that at a speci�c level there is initially a particle. We introduce, for u as above,
and v = u+ 1:

• ν0 = P({u, v} is initially occupied by a pair of good particles);

• ν1 = P(u is initially occupied by a bad particle);

• ν2 = P(u is initially a blockade).
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Obviously, these probabilities do not depend on the choice of u (and v in the �rst case).
Moreover, the events that pairs of adjacent sites that are non overlapping are occupied by
two good particles, or one bad particle, or a blockade, or one bad particle and a blockade, or
�nally two blockades are independent, we have, with a standard large deviation argument,
for i = 0, 1, 2,

P(Ni /∈ (νi − ε)n) ≤ exp(−c6n) (2.36)

where N0, N1, N2 denote respectively the initial number of good particles, the initial num-
ber of bad particles and the initial number of blockades in In.

Now, note that, given a pair of sites {u, u + 1} ⊂ D, in the graphical representation
there are exactly six possible arrows that may a�ect the system of random walks at this
pair, that are:

i) u− 1/2→ u+ 1/2, that is the individual in the middle imitates her left neighbor;

ii) u+ 3/2→ u+ 1/2 that is the individual in the middle imitates her right neighbor;

iii) u+ 1/2→ u− 1/2 that is the individual on the left imitates her right neighbor, so the
individual in the middle;

iv) u+ 1/2→ u+ 3/2 that is the individual on the right imitates her left neighbor, so the
individual in the middle;

v) u− 3/2→ u− 1/2, that is the individual on the left imitates her left neighbor;

vi) u+ 5/2→ u+ 3/2, that is the individual on the right imitates her right neighbor.

If a pair of sites {u, u+ 1} has initially a pair of good particles, then either collision or the
making of a blockade from these particles occurs only when the middle individual imitates
one of her neighbors, that is only in the �rst two cases of the list. Moreover, parts of the
graphical representation associated with nonadjacent pairs do not intersect, so the events
that the �rst two arrows in the list appear before any of the other ones are independent for
nonadjacent pairs. In particular, the initial number of good particles that either collide or
form a blockade, that we denote with J , is stochastically larger than a binomial random
variable with parameters nν0/2 and one third: the �rst parameter is n/4, the number of
nonadjacent pairs in the interval In, times ν0, the probability that a pair contains a pair of
good particles, times 2, the number of such good particles, while the second parameter is
2/6=1/3, the probability that one of the two �rst arrows in the previous list appear before
any of the four other ones. Calling X this binomial variable, it holds E[X] = nν0/6. We
want to use again large deviation estimates for binomial variables: note that, for a > 0,

P(J ≤ a) ≤ P(X ≤ a)

because if J ≤ a, then X ≤ J ≤ a. Conditioning to the event that there are "enough"
initially good particles, i.e. N0 > (ν0 − ε)n, we �nd

P
(
J ≤ (

1

6
− ε)(ν0 − ε)n

∣∣∣N0 > (ν0 − ε)n
)
≤ exp(−c7n) (2.37)
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for a suitable constant c7 > 0. In analogy with lemma 2.22, let

Ω =
{
J > (

1

6
− ε)(ν0 − ε)n, (νi − ε)n < Ni < (νi + ε)n ∀i = 0, 1, 2

}
.

Conditioning to Ω, letting K = b(ν2 − ε)nc,

P

(∑
u∈In

φ(u)
∣∣∣Ω) ≤ P

∑
u∈IK

(φ(u)− 1) ≤ 1

2
J + (N0 +N1 − J)

 (2.38)

because initially there are J good particles that either collide or form a blockade, and these
have weight 1/2. Moreover, on Ω it holds

1

2
J + (N0 +N1 − J) = N0 +N1 −

1

2
J

< (ν0 + ν1 + 2ε)n− 1

2
(
1

6
− ε)(ν0 − ε)n

= (
11

12
ν0 + ν1 + Cε)n

with C = 25
12 + ν0

2 −
ε
2 .

Combining (2.38) and the previous estimates, we �nd

P

(∑
u∈In

φ(u) ≤ 0
∣∣∣) ≤ P

∑
u∈IK

(φ(u)− 1) ≤ (
11

12
ν0 + ν1 + Cε)n

 (2.39)

≤ P

∑
u∈IK

φ(u) ≤
(11

12
ν0 + ν1 + ν2 + (C − 1)ε

)
n


where as usual we use K ≤ (ν2 − ε)n.

We want to use theorem 1.20 for the last term in (2.39), but we have to �nd a further
upper bound for its right hand side: note that, if Y denotes a binomial random variable
of parameters 2 and (1− 1/q),

(q − 2)ν2 − ν1 −
11

12
ν0 = (q − 2)P(Y = 2)− P(Y = 1)P(Y 6= 1)− 11

12
P(Y = 1)2

= (q − 2)P(Y = 2)− P(Y = 1) +
1

12
P(Y = 1)2

= (q − 2)

(
1− 1

q

)2

− 2

q

(
1− 1

q

)
+

1

12

(
2

q

(
1− 1

q

))2

= (q − 3)

(
1− 1

q

)
+

1

3

(
1

q

(
1− 1

q

))2

≥ 1

3

(
1

3

(
1− 1

3

))2

=
4

243
> 0
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for all q ≥ 3, since the function in the fourth line is increasing in q, when q ≥ 3. Further-
more, since C > 2, ν2 + q + C − 2 > 0, so there exists ε > 0 small such that

11

12
ν0 + ν1 + ν2 + (C − 1)ε = (q − 1)ν2 −

(
(q − 2)ν2 − ν1 −

11

12
ν0

)
+ (C − 1)ε

≤ (q − 1)ν2 − (ν2 + q + C − 2)ε+ (C − 1)ε

= (q − 1)ν2 − (ν2 + q − 1)ε

≤ (q − 1)ν2 − (ν2 + q − 1)ε+ ε2 = (q − 1− ε)(ν2 − ε).

Since E[φ(u)] = q − 1, theorem 1.20 and (2.39) imply that

P

(∑
u∈In

φ(u) ≤ 0
∣∣∣Ω) ≤ P

∑
u∈IK

φ(u) ≤ (q − 1− ε)K

 ≤ exp(−c2n) (2.40)

for all K su�ciently large, because we use the fact that K is the integer part of (ν2 − ε)n.
We denote with A := {

∑
u∈In φ(u) ≤ 0}; then, combining (2.36), (2.37) and (2.40) we

have, as in lemma 2.22,

P(A) = P(A ∩ Ω) + P(A ∩ Ωc)

≤ P(A|Ω) + P(Ωc)

≤ exp
(
− c2(ν2 − ε)n

)
+ exp(−c7n) + 3 exp(−c6n)

where, since Ωc is a union of two events, one that is {J ≤ (1/6− ε)(ν0− ε)n} and the other
one that is {Ni /∈ ((νi− ε)n, (νi+ ε)n) ∃i = 0, 1, 2}. Then we use conditional probability as
in (2.37) and the fact that the second term is a union of three events, all with probability
bounded as in (2.36), from which it derives the factor three. This gives the thesis.

As in the previous section, (2.34) and lemma 2.23 imply

lim
n→∞

P(Hn) ≤ lim
n→∞

∑
l<−n

∑
r≥0

e−c5(r−l) = 0

and this is �xation in the case F = 2 and q = 3.

REMARK 8. Note that the coexistence derives from the same argument as in remark 7.

2.7 Missing proof of �uctuation in the (F-2) case

In the article [5], it is written that, when q = 2, the annihilating symmetric random
walks constructed in the previous section have a certain site recurrence property, which
is equivalent to �uctuation of the Axelrod model, when starting from π0. The di�erence
between the (2 − 2) case and the (F − 2) case, and this is the reason why we divide this
easier case from the more general one, is that the (2−2) case can be coupled with the voter
model obtained identifying cultures with no features in common, while the more general
(F −2) case cannot be coupled with a voter model, since there are more than two features.
The site recurrence property, that is the proposition (1.14), is exactly �xation, because as
we wrote in remark 4, with probability one, �xed a vertex, there is a �nite time such that
the con�guration on that vertex is di�erent from the current one.

In conclusion, the �uctuation of the Axelrod model when q = 2 is not clear, even
because in [4] the theorem states only clustering but not �uctuation.





Chapter 3

The Axelrod model with one media

In this chapter we want to add an individual to the Axelrod model, that has a function of
media. This is an individual v that does not change his opinion during the time, and that
in�uences all the other individuals. The case treated is the one in which V = Z and E are
nearest neighbors edges as in the previous chapter. The parameter β re�ects the intensity
of the media in�uence. In this case, the generator is

Ωmf(X) =
∑
x∈V

∑
y∼x

F∑
i=1

1

2F

[
F (x, y)

1− F (x, y)

]
1{Xi(x) 6= Xi(y)}

[
f(Xi

y→x)− f(X)
]
(3.1)

+β
∑
x∈V

F∑
i=1

1

2F

[
F (x, v)

1− F (x, v)

]
1{Xi(x) 6= Xi(v)}

[
f(Xi

v→x)− f(X)
]

The interest is to understand how the parameter β in�uences the dynamics of the model,
and if for some value there is a di�erence of behaviour compared to the one of the Axelrod
model without media. We treat the case F, q = 2.

3.1 Graphical representation

First of all, we have to describe how the graphical representation changes. For each x ∈ Z,
we consider the following Poisson processes:

i) Nx,r and Nx,l of intensity 1;

ii) Nx,m of intensity β.

De�ne, for n ≥ 1, Tx,r(n) := inf{t ≥ 0 : Nx,r(t) = n}, Tx,l(n) := inf{t ≥ 0 : Nx,l(t) = n}
and Tx,m(n) := inf{t ≥ 0 : Nx,m(t) = n}. For every s = Tx,r(n) (resp. s = Tx,l(n)) draw
an arrow on the plane Z×R+ from (x− 1, s) to (x, s) (resp. from (x+ 1, s) to (x, s)). For
every s = Tx,m(n) draw a cross on (x, s).

This construction can be used in order to de�ne the trajectories of the process. If there
is an arrow from (x− 1, s) to (x, s), set Xs(x) = Xs−(x− 1) if d

(
Xs−(x), Xs−(x− 1)

)
= 1,

55



56 3. The Axelrod model with one media

where d is the Hamming distance de�ned by

d
(
Xt(x), Xt(y)

)
:=

2∑
i=1

1{Xi
t(x) 6= Xi

t(y)}.

Otherwise, set Xs(x) = Xs−(x) because the arrow is not actually active, with notation as
in the previous chapter. The opinion of the media is set equal to (1, 2), so, for any cross
at (x, s) set Xs(x) = (1, 2) if d

(
Xs−(x), (1, 2)

)
= 1, otherwise Xs(x) = Xs−(x). If we are

given the initial condition X0(x), for every x ∈ Z, then these rules de�ne the above process
up to time scaling 1

2F .

3.2 Fixation/�uctuation cases

THEOREM 3.1. Let λ be the critical infection rate of the one-dimension contact process,

and suppose that the initial condition for the Axelrod model with media is chosen i.i.d. with

each of the states having positive probability. Then,

1. for β ≥ λ−1 the model �xates;

2. for β < λ−1 the model �uctuates.

Proof. De�ne Yt(x) := |X1
t (x) − X2

t (x)|. The process Y is Markovian and its evolution
can be described using the graphical representation of X as above. Indeed, starting from
(x, t) and going backward in time following the arrows (reversed), we run across a unique
path and we stop as we meet a cross or we reach time s = 0. Such a path is called dual

path, starting at (x, t). If this dual path ends at (y, 0) then we set Yt(x) = Y0(y), otherwise
Yt(x) = 1. The last setting derives from the fact that Y (v) = 1 and that a cross is an
interaction with the media v, so the value of Y will be the same of the v's one.

Now, the dynamics of Y can be coupled with that of a contact process Z for which
the arrows denote infections and the crosses denote recovery, but the recovery state is 1,
instead as usual the zero state. The process Z has recovery rate β and infection rate 1,
because by coupling the recovery corresponds to a cross, and so to an event of Nm, while
infection corresponds to an arrow, and so to an event of Nl or Nr. It follows that, if
Z0 = Y0, then Zt ≤ Yt, where as usual the order is by components. Infact, if Zt(x) = 1 for
some x ∈ Z and some t ≥ 0, then x at time t is healthy, and so his dual path (in the sense
of the contact process) ends with a cross or it ends at time 0 with an individual that is
initially healthy; this means that Yt(x) = 1 because of the initial condition Z0 = Y0 and the
rules explained above. Note that it can be possible that Zt(x) = 0 and Yt(x) = 1 for some
x ∈ Z and t ≥ 0; indeed, suppose that Y0(x) = Z0(x) = 0 and Y0(x+ 1) = Z0(x+ 1) = 1.
If there are no other interactions before they interact, their interaction at time τ results
in changing Yτ (x) = 1, but Zτ (x) = 0 because in the contact process they do not interact.

Since we are considering the infection rate �xed (and equal to 1) and the recovery rate
variable (and equal to β), we have that the process Z dies out almost surely if β−1 ≤ λ,
that is if β ≥ λ−1. In this case, Zt(x) = 1 de�nitely (remember that state 1 is healthy) and
so Yt(x) = 1 de�nitely. This further implies that also X �xates: indeed, Yt(x) = 1 means
that Xt(x) = (1, 2) or Xt(x) = (2, 1), but X(x) can not jump from (1, 2) to (2, 1) due to
the fact that in Axelrod model, as in spin systems, a jump changes only one coordinate.
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In the case β < λ−1, consider the process Z as above but with initial condition all zero
(all vertices are infected). In this case, with probability 1, it holds the following fact: for
every (x, s) ∈ Z× R+ there exists a time t > s such that Zt(x) = 0. Indeed, note that

P
(
∃s > 0 : ξt(x) = 1 ∀t ≥ s

)
= 0⇔ P

(
∃n > 0 : ξt(x) = 1 ∀t ≥ n

)
= 0

and so it's enough to prove that P(An,x) = 0 for all x ∈ Z and n ∈ N, where An,x :=
{∃n > 0 : ξt(x) = 1 ∀t ≥ n}. By contradiction, assume that P(An,x) = ε > 0 and let
y ∈ Z, y < x such that P(Bn,x,y) ≥ 1− δ, where Bn,x,y := {rn(y) < x}. For semplicity, we
call A = An,x and B = Bn,x,y. Such a y exists because P(Bc) ≤ P(W ≤ n)x−y, where W is
an exponential variable of parameter λ, and this probability goes to zero when y → −∞.
Choose the initial condition ξ− in such a way that ξ−0 (z) = 0 ∀z ≤ y and ξ−0 (z) = 1 ∀z > y.
Let, as in [1] pag. 276, rt := max{x : η−t (x) = 0}. With the choice of δ < ε one has

P(A ∩B) ≥ ε+ (1− δ)− 1 = ε− δ > 0.

From [1] pag. 283, we know that in the supercritical case rt
t → α > 0 a.s., that implies

rt → +∞ a.s. In particular, for almost every ω ∈ A ∩ B, rt(y)(ω) → +∞. By the fact
that rt can move to the right only to one step, it exists a t > n such that rt(y)(ω) = x.
This means that ξt(x)(ω) = 0 and in particular that ω /∈ A. Since it holds for almost
every ω ∈ A ∩ B, this is a contradiction, that gives P(A) = 0. Finally, since the contact
process is monotone, as stated in (1.11), the same conclusion holds starting from an initial
con�guration in which all vertices are infected.

Fix (x, s) and let t1 such that Zt1(x) = 0. Since this vertex is infected, there must
exists a dual path from (x, t1) to (y1, 0) for some y1 ∈ Z, and Yt1(x) = Y0(y1). Now,
consider the process that counts the descendants of an individual, that is, for y ∈ Z

Mt(y) :=
∣∣{x ∈ Z : there exists a dual path from (x, t) to (y, 0)}

∣∣.
Mt(y) is a positive supermartingale with adsorbing state 0: if Ms(y) = 0, then Mt(y) = 0
for every t > s, otherwiseMs(y) should have been di�erent from zero. To motivate the fact
that Mt is a supermartingale note that the generator of the dual process is the operator
de�ned, for every function f : Z→ R and for every A ⊂ Z �nite by

Lf(A) =
∑
x∈A

∑
y∼x,y /∈A

(
1

2 + β

[(
f(A ∪ {y})− f(A)

)
+
(
f(A \ {x})− f(A)

)]
+

β

2 + β

[
f(A \ {x})− f(A)

])
.

Taking f equal to the cardinality function, one has Lf(A) ≤ 0 for every A, and this means
that the cardinality of descendants, as a function of time t, is a supermartingale. Since
it takes values in N and it converges almost surely, as the supermartingale convergence
theorem states, the only possibility is that it converges almost surely to its adsorbing state
zero.

Now, let for y ∈ Z,
φ(y) := inf{t > 0 : Mt(y) = 0}.
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By the convergence above, φ(y) is a stopping time almost surely �nite, so let t̄2 such that
Mt(y1) = 0 for all t > t̄2. Again, as before, we can �nd almost surely a time t2 > t̄2 such
that there is a dual path from (x, t2) to (y2, 0), for some y2 ∈ Z. Note that necessarily
y2 6= y1, because Mt2(y1) = 0 and so y1 can not be the ancestor of x at time t2.
Iterating this procedure, we �nd a sequence of increasing times tn and a sequence of distinct
integers yn such that

Ytn(x) = Y0(yn).

The initial condition is chosen in such a way that all the states have positive probability,
so Y0(yn) 6= Ys(x) for in�nitely many n's. This is exactly �uctuation for Y , that implies
that also X �uctuates.
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