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Abstract

In many ecosystems, from soil to ocean and lake water, including the human microbiome and
saliva, there are hundreds of microbial species cohabiting the environment including bacteria,
fungi, archaea andprotozoa. They are connected in an intrinsic networkof interactionsdefined
by the shared resources and consumption dynamics. These types of interactions can be divided
based on the type of influence one species has on anotherwhich canbe positive, negative or neu-
tral. By studying these interactions closely, an insight into the difference between healthy and
diseased tissues can be gained which in turn could facilitate the development of suitable treat-
ments for gut related diseases. With the advance of metagenomics sequencing techniques, the
relative abundance of these species can be simultaneously experimentally recorded and studied.
One of the steps in the analysis of the data obtained in this way is the attempt to construct
the network of microbial interactions using a certain reverse engineering method. There are
different methods available in the literature often based on correlation or mutual information.
However, without knowing the original network their accuracy cannot be calculated. In order
to be able to construct a ground truthnetwork, the species abundance data used in thisThesis is
simulated using the Community Simulator package. In addition, experimental noise is added
to the data using the metaSPARSim simulator in order to obtain relative abundances that are
as close as possible to the experimental data. This allows for a network comparison between
the real and method-obtained interactions over multiple metrics as a comparison study. In
addition, statistical results on the obtained data distribution are reported and compared with
publicly available microbial data.
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1
Introduction

According to some predictions, the estimated amount of microbial species on Earth is 1 tril-
lion (1012) species, a value larger that the number of stars in the night sky [1]. The estimated
number of all individual bacteria organisms, however, is 5× 1030. The scale of these numbers
is similar when it comes to microbial populations in the human body. The human body is esti-
mated to be a host to over 39 trillionmicrobial cells, which is more than the estimated number
of human cells (30 trillion). Interestingly, the human body is highly selective of the types of
microbial species which it cultivates a symbiotic relationship with. Gut microbiota in adults
is dominated by members of only two divisions of bacteria—the Bacteroidetes and Firmicutes
and one member of Archaea. Irregularities in the human gut microbiome are a known cause
for a number of diseases such as obesity, IBS, Chron’s disease, chronic skin inflammation and
others. In addition, there exists evidence to link the gutmicriobiomewith neurological, cardio-
vascular and respiratory diseases [2]. Understanding howmicrobial communities interact and
influence their environment is a crucial step in the process of developing treatment options for
these diseases. These interactions cannot be recorded directly and can only be inferred from
the species abundances using different methods.

The microbial interactions in general can be represented as networks, where nodes repre-
sent species and edges are added between interacting species with a weight proportional to the
strength of the interaction. This thesis focuses on the methods of network construction for
microbial interactions and their comparison, with the necessary steps of data simulation, pro-
cessing and analysis. The text is organized as follows: themethods and technologies of data col-
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lection and processing for metagenomics studies are explained in Chapter 2. The main types
of network topologies are outlined in Chapter 3 along with properties from graph theory and
network science. The steps of data simulation from absolute and relative abundance of micro-
bial species and the generation of a ground truth network is detailed in Chapter 4. Different
implementations ofmethods for reverse engineering of the ground truth networks are tested in
Chapter 5, with details for each of the methods and an overall comparison of the results. The
code, the simulations and figures generated in this work are available on the following Google
drive link.
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2
Metagenomics andMicrobial Data

“We are in the midst of the fastest growing revolution in molecular
biology, perhaps in all of life science, and it only seems to be accelerating”

- J. C. Wooley, A. Godzik, and I. Friedberg, “A primer on metagenomics”[3]

.

The estimated quintillions (5×1030) of prokaryotic cells that live on the Earth influence the
health of ecosystems, food chains, environments and interacting species. The advancements in
metagenomics sequencing technologies have opened the possibility to explore the vast world
of microbial life and to answer questions about the way they influence the world. This chapter
introduces the definition of genetics and the analysis techniques of sequence data. It starts with
a section of metagenomics and its development. It follows by focusing on 16S rRNA count
or 16S DNA-seq data and its properties which are the type of data used in this work. Finally,
types of microbial interactions are listed in Section 2.3 in order to explain the expected feature
relationships in detail.

2.1 Metagenomics

Metagenomics is the term used for structural and functional analysis of the genetic material
(nucleotide sequences) obtained by bulk sequencing of all of the organisms present in a sample.
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The organisms are typically microbial consisting of viruses, bacteria, fungi, archaea or protistis.
There are diverse types for the samples of the material too. Environmental samples range form
water (oceans and lakes) to soil environments. Human samples are typically taken from the
part of the body where the complex interaction with the mirobiota happens subject to the
immunoregulation processes of the host. Typical sites for sample collection include: oral cavity,
tongue and throat, vagina and cervix, stool and the intestinal gut along the mucosal firewall.
These samples often include a large number of different species of microbes ranging from the
hundreds to the thousands, a number lower than the typical number of collected samples in a
given study which ranges from the tens to the hundreds. The number of samples required for
a given study can be estimated by plotting a refraction curve. This line shows the number of
single organism sequences against the number of sequences in a sample. When the slope of the
line decreases and an almost constant amount of sequences of the organism are found despite
increasing the total number of sequences, the minimal sample size is reached.

The next step in identifying which species are present in the samples is the sequencing pro-
cess - identifying the unique sequence of nucleotides from which the DNA molecule of each
organism is composed of. Each nucleotide contains one of the following nitrogen bases: Ade-
nine (A), Cytosine (C), Guanine (G) and Thymine (T) and their specific sequence carries the
genetic information of the species. The unit ofmeasure of the length of a given sequence is base
pairs (bp) or the number of nucleotides. There are a number of sequencing techniques devel-
oped since the first bacterial genome (Haemophilus influenza)was sequenced in 1995. A great
advantage is that thesemethods that donot require lab cultured colonies in order to identify the
species. However, since the methods read length (number of nucleotides per fragment) ranges
from 20 to 700bp, fragmented sequences need to be assembled. In metagenomics sequencing,
because the fragments originate from different organisms, computational challenges arise in
the assembly phase.

2.1.1 First Generation Sequencing

All sequencing methods include library preparation steps such as filtration, DNA extraction
and a cloning technique. The first sequencing method for metagenomics data is environmen-
tal shot-gun sequencing (ESS). After fragmenting the isolated DNA, the technique clones the
fragments into plasmid vectors of a growing colony in order to increase the number of frag-
ments. The detected signals are then sequenced by the Sanger chain-termination method [4].
Since there are multiple organisms present in the sample, primers are used to sequencing re-
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gions of interest.

2.1.2 Next Generation Sequencing (NGS)

Newer sequencing methods were developed that overcame some of the challenges with the
traditional Sanger sequencing [5]. They make cost for sequencing is significantly lower with
higher throughput, simplifying the library preparation step and removing the cloning process.
This opened the door in exploring diverse species, since only it has been reported that <2% of
bacteria can be cultured in a lab and are compatible with the bacterial vector.

The first sequencing technology is Roche that uses emulsion PCR (ePCR) for sample am-
plification while the DNA fragments are fixed onmicro beads. During the sequencing step, in
each iteration nucleotides of one base are released into the plate and each binding of the base
with its complementary pair on the template results in a release of pyrophosphate. This is also
referred to as pyrosequencing.
The second technique is created by Illumina. The template fragments are placed on a flow

cell and folded in a bridge shape with the appropriate adaptors. The bridge amplification step
creates clusters of copies around each fragment. The sequencing step allows for all bases to be
present in the flow cell, but the attachment of bases is regulated to one per iteration. Each base
has a unique color emission which is detected in the sequence.

Finally, the Ion Torrent technique uses the same ePCR methodology for the amplification
step and similarly, one base is released in the cell at a time. However, it exploits the fact that
a hydrogen ion is released with every attachment of a nucleotide to the template. During the
sequencing step it detects the change of pH produced by the reaction and transmits the signal.

The third generation sequencing are technologies that do not require the fragments ampli-
fication step. Even though the NGS technologies have numerous advantages, they come with
their own set of challenges such as poor quality reads or adapter interference. There are differ-
ent pipelines available for the downstream analysis of the data depending on the type of study.
It is important to note that agreed on standards that ensure the quality of the data should be
respected in every step of the process, from sample collection to metadata annotation.

2.2 16S rRNA data

Metagenomics samples contain the DNA of all organisms present in the sample, including
viruses. It is useful to filter out the viruses out of the sample and analyse the the remaining
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prokaryotes. Whole genome sequencing is inefficient formetagenomics data, and the read limit
ofmost sequencing technologies is around800bp. For these reasons, a shorter sequencepresent
in all self-replicating organisms which can be used for distinct species identification is needed.
The sequencemost often used in studies is 16S rRNAwhich codes for the 30S small ribosomal
subunit. The regions V1-V19 of this gene can be used for identification of procaryotes in the
sample. Depending on the type of study, different regions may be sequenced instead of the
whole gene, such as regions V3-V5 for compositonal analysis or V8-V9 for clustering [6]. In
this work the simulated data is designed to resemble a count matrix with samples on columns
and species on rows. Species are often referred to operational taxonomic units (OTUs) or taxa
which are defined as a group of closely related individuals. All terms are used interchangeably
in this text. The observed species\OTUabundance in a given sample is shown as an entry in the
count matrix. Often this matrix is normalized by rows, and species abundances are fractions
with the constraint of the constant sum of 1 in each sample. This transformation makes the
data compostional and specific transformations are applied to the data in order to reduce the
compositional effects, later explained in Chapter 5.

2.3 Microbial interactions

Microbes live in complex environments where they constantly interact with hundreds of differ-
ent species. There are there are several types of inter-specific interactions. They differ between
the influence one species has to another which can be positive, negative or neutral. As outlined
in [7], there are 7 types of microbial interactions:

Positive Interactions:

1. Mutualism (+ +)
This is is a positive interaction which benefits the co-existence of both species and more
often refers to individual microbes more than groups.

2. Photocooperation or Synergism (+ +)
This interaction is equally positive for both species as mutualism, but it is not necessary
for the survival of any of the species.

3. Commensialism (+ /)
Commensialism is a positive interaction which results in benefit for one of the interact-
ing species, while for the other it has no effect.
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Negative Interactions

1. Predation (+ −)
Predation is an interaction where one species (the predator) hunts down and consumes
another (the prey).

2. Parasitism (+ −)
Parasitism is an interaction where one of the species benefits over the other. It is positive
for the benefiting party (the parasite) and negative for the host.

3. Ammensalism (− /)
This is an interaction where a given species is negatively impacted by another which re-
mains unaffected by the interaction.

4. Competition (− −)
When two species are competing for a common resource crucial for survival the interac-
tion is impacting them both negatively.

Symbiotic interactions are of special interest. They are defined as a close and long-term inter-
actions between different species and can bemutualistic, commensalistic or parasitic. The large
difference in the genomes of the interacting species makes the species identification task easier
during the assembly faze. In addition, the study of the resources exchanged between long-term
interacting species can give insight into their overall function.
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3
Network topology

This chapter focuses on introducing the necessary network theory concepts for the analysis
of a given model of microbial interactions. The first section 3.1 introduces the graph object,
adjacency and incidence matrices and their connection to networks. The second section 3.2
introduces the most commonly used network properties in the process of network compari-
son such as the degree distribution, clustering coefficient and centrality measures. The third
section focuses 3.3 on the scale-free property as one of themost important ones found in differ-
ent types of network including both biological andmetabolic networks for species interaction.
The graph theory definitions are taken from A textbook of graph theory [8] and the network
science properties definitions closely follow the ones defined in theNetwork Science book by A.
Barabási, andM. Pósfai [9].

3.1 Graph Theory

The definition of a graph object is given as a triple comprised of the set of vertices, the set of
edges and their relation:

Definition 1. (Graph)
A graph is an ordered tripleG = (V (G), E(G), IG), where V (G) is a nonempty set, E(G) is
a set disjoint from V (G) and IG is an “incidence” relation that associates with each element of
E(G) an unordered pair of elements (same or distinct) of V (G). Elements of V (G) are called
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vertices (or nodes or points) ofG, while elements of E(G) are called edges (or lines) ofG. V (G)

andE(G) are named vertex set and edge set ofG, respectively.

The incidence function IG is a mapping between the set of edges and the set of vertices
producing a pair of vertices associated with a given edge. For example: If IG(e) = {u, v}

then the vertices u and v are called the end vertices or ends of the edge e. [8].

Definition 2. (Incidence matrix)
Incidence matrix is a logical matrix that shows the relationship between two classes of objects. The
graph incidence matrix, however is best pictured as amatrix with the set of vertices V (G) on rows
and the set of edges E(G) on columns, where the existing connections are represented by ones (1)
in the corresponding cell.

When representing the graph in a graph diagram, the commonly used matrix is the square
adjacency matrix which is composed of the set of vertices V (G) both on rows and columns
where values in cells are one (1) if there exists and edge between the corresponding vertices.
The self-loops: edges with the same starting and ending vertex are shown on the diagonal.

Each edge in the graph can be directed from a chosen starting to an ending vertex, annotated
with an arrow in the graph diagram and a 1 in the cell between the starting vertex (on rows)
to the ending vertex (on columns) in the adjacency matrix. Alternatively, a given edge can be
undirectedwhich semantically depicts a connectionbetween the vertices, without a starting and
an ending vertex. Graphs comprised of undirected vertices are undirected graphs and graphs
comprised of directed vertices are undirected graphs. In the adjacency matrix an undirected
edge is inputed twice for the both variations of the vertices. Thus, the adjacency matrix for
undirected graphs is symmetric with respect to the main diagonal. In some cases, graphs can
be both directed and undirected. Such is the example of metabolic graphs where the edges
represent reactions which can be reversible (represented by undirected edges) and in the same
graph some are irreversible (represented with a directed edge).

Graphs can also beweighted if the there is a weight associated with each edge. In this case, in
the adjacency matrix, instead of ones that represent the presence of an edge, a weight value is
given for each edge.

If the graph vertices and edges are unlabeled, the same graph can have more than one form.
Any graph that has the same number of edges and vertices and the same edge connectivity is
said to be isomorphic to the original. One metric that is used to assess directed and unlabeled
graph similarity is the Graph Edit Distance (GED). This is a metric calculated between two
graphs defined as the minimum number of elementary graph operations needed to get to the
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first graph to the second. These operations canbe: insertion, deletionor substitutionof vertices
and edges The equation is given as:

GED(g1,g2) = min(e1,...,ek)∈P(g1,g2)

k
∑

i=1

c(ei) (3.1)

where c(ei) is the cost of each graph operation e in the set of edit paths P from graph g1

to g2. The computation of this metrics is slower for large graphs and in that case optimized
algorithm can be used.

The terms graph and network are usually used as synonymous. The nuanced difference be-
tween the two terms is that networks refer to the real systems that are being analyzed, where
graph is the preferred term for the mathematical definition of the main properties [9]. After
introducing the necessary graph theory objects, this textwill continuewith the interchangeable
usage of these terms ([graph, vertex, edge] and [network, node, link]).

3.2 Network properties

This section focuses on defining the basic network properties that are used to compare the
different topologies. One of the main network properties that characterize a network is the
degree distribution. For each node in the network, the node degree is the number of edges that
a given node has. The degree distribution therefore gives the probability pk that a randomly
selected node has degree k. An important property is the average node degree across all nodes.
The total node degree is the sum of all node degrees. For a undirected network this number
is halved, accounting for the fact that each link is counted twice. When the network edges are
directed, the node degree is a sumbetween the in degree and out degree of the nodewhich refers
to the sum of edges pointing to and from the node.

An importantmeasure for quantifying thedistances betweennodes is the shortest path length.
It is the minimum number of steps needed to get from node i to node j. The average shortest
path length of a network gives information about the overall distance between the nodes. In
a fully connected network, this value is always 1.0. The maximum shortest path length in a
network is called the diameter of a network.

Another metric for that gives information about the connectedness of the network is the
clustering coefficient C . It shows the level of linkage between the neighbourhoods of a given
node i and it is defined as:
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Ci =
2Li

ki(ki − 1)
(3.2)

where Li is the number of edges of the ki neighbours of node i. More useful metric for
network characterization is the average clustering coefficient across all nodes.

3.3 Scale-free networks

Many real world network such as the WWW, the citation network and biological network in-
cluding protein and microbial interactions are not random networks and share the scale-free
property. A scale-free network is a network whose degree distribution follows a power law, and
the probability that a given node has degree k is given by:

pk = Ck−γ

∞
∑

k=1

pk = 1
(3.3)

whereC is the normalization constant and γ is the degree exponent. When the degree expo-
nent γ is in the interval (2, 3) the network has the ultra-small world property.

Themain property of scale-free network is that there are a low number of nodes with a high
degree called hubs, whereas the majority of nodes have low degree. Another property of real
networks and in particular of 16S rRNA count matrices is that they are sparse. In order to
test different scenarios, data with four different network topolgies is simulated in Chapter 4
including fully connected, sparse, scale-free and the randomized topology.
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4
Data Simulations

In order to conduct a comparative analysis on the different methods for reverse engineering
of a microbial interaction network, simulated data is used in this work. This allows for the
possibility of having a ground truth network with which the obtained results are compared in
the next chapter. In this one, the detailed process of obtaining the data is explained and three
different types of networks (fully connected, sparse, scale free and randomized) used for testing
are compared.

Section 4.1 explains the first simulation of absolute abundances and the ground truth adja-
cency matrix. The obtained network topologies are compared in Section 4.2. Then, the pro-
cess of simulating the relative abundances with experimental noise is explained in Section 4.3.
Finally, the obtained distributions are compared with available microbial interaction data to
confirm the similarity.

4.1 Absolute abundances simulation

Firstly, the absolute abundances of taxa and resources are simulated using theCommunity Sim-
ulator implemented in Python [10]. The simulator is designed to mimic the steps of a batch
culture experiment for growing microbial communities. The growth of the bacteria is simu-
lated over a given time T, over a defined number of wells. At the end, the absolute abundance
of taxa and resources can be recorded.
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The dynamics of the system are based on theMicrobial Consumer ResourceModel (Micro-
CRM). It is defined by three energy fluxes: J in, Jout, and Jgrow that each represent the energy
flux entering the cell, the flux leaving the cell and the energy used for cell growth, respectively.
Their relationshipmust satisfy J in = Jout+Jgrowth with the addition of a leakage fraction of
Jout = l ·J in. The fullmodel which is used for the simulations is presentedwith the equations
4.1 and 4.2 for the consumer and resource dynamics, respectively.

dNi

dt
= giNi

[

∑

α

(1− lαwαu
in
iασ(ciαRα)−mi

]

(4.1)

dRα

dt
= hα(Rα)−

∑

j

Nju
in
jασ(cjαRα) +

∑

jβ

Nju
in
jβσ(cjβRβ)

[

lβDαβ

wbeta

wα

]

(4.2)

As shown in equation 4.1, the dynamics for a given speciesN referenced with indices i and
j depends on: the species conversion factor from energy to growth rate g and for each resource:
the leakage fraction l, the energy contentw, the metabolic regulation u, the response function
σ as well as the minimal energy uptake for simply maintenance of the speciesm.

In the same time, the the resource dynamics defined in equation 4.2 depends also on the
choice of a replenishment mode h for the given resource. A given resource R is referenced
with indices α and β. The total number of consumers is defined as S and the total number of
resources isM .

In addition to these user defined parameters, the values for ciα andDαβ are taken from the
consumer and metabolic matrices. The consumer matrix c : (S ×M) defines the uptake rate
of a given resourceα by the species i. Themetabolic matrixD : (M ×M) defines the fraction
of byproducts converted from resource β to resourceα. These conversions are divided in three
types: conversion of a resource to a waste class of unusable byproducts such as carboxylic acids,
conversion between resources of the same type (sugars into alcohols), and others. Following
additional user defined parameters, these matrices are sampled from a random distribution.
For the consumermatrix that is a choice betweenBernoulli, Gamma andGaussian distribution
whereas aDirichlet distribution is used for themetabolicmatrix in order to ensure that the sum
of columns amounts to one. The choice of the parameters when creating thesematrices is what
influences the interaction network topology of the simulation. In this work, the parameters
were selected in order to create three different network topologies: fully connected, sparse and
scale free. The exact parameters used in each simulation are given in table A.1 of the Appendix.
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The different consumer and metabolic matrices obtained in each case are shown on Figure 4.1.
The parameters that influence the topology the most are:

1. fs and fw: The fractions of resource conversion of to the same (fs) resource class and to
the waste (fw) class. Their sum is smaller than one with the remainder converted into
other resources. The tuning of the fw parameter to a value close to zero and fs close to
one allows for a resulting sparse topology since the species aren’t connected through the
waste class.

2. Specialised families: The species can either be a part of a specialized family that shares
the same set of resources, or a generalist species which consumes a random subset of all
resources. By creating 6 specialised families and 20 generalist species for the scale free
network, the generalist species become the hubs of the network, while the rest of the
species have a lower number of connections. Each specialized family is constrained to
consume mostly one the resources in of the 6 resource groups.

3. Muc (Mean sum of consumption rates): This parameter controls the amount of con-
sumption of a given species byproducts by another. By lowering the amount total con-
sumption, sparsity is enforced on the resulting network and the values in the consumer
matrix are overall lower in the sparse network case as seen on Figure 4.1 b).
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Figure 4.1: Metabolic and consumer matrices comparison

For each simulation, the number of species (taxa) is 320 and the number of resources is 60.
These are simulated in 60 independent conditions where one resource is removed per simula-
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tion. The initial vectors for the taxa abundance are sampled from a Gamma distribution of
values available in the metaSPARSim R package [11]. This package is a 16S rRNA count data
simulator and vectors of paired intensity and variability values for microbial species are avail-
able in several presets. These vectors are cleaned of missing data and the initial abundances for
the simulations are distributed:

mij ∼ Gamma

(

1

ϕij

, ϕij · µij

)

(4.3)

where

• mij is the abundance of species i in the sample j. For the simulations only one sample
is created per condition in a single experimental well.

• µij is the mean abundance of the species i in its group. Since every condition contains
only one group, this is the intensity level of the species i in the sample j.

• ϕij refers to the biological variability of the species i in the sample.

The initial resource abundance is set to 5000 for all resources with an external supply type.
One initial simulation of the system with all of the resources present is ran in order to bring

the system to a steady state. The initial plate is propagated for 500 time-steps and the taxa
and resources abundances are recorded after each step. After this, 60 different conditions are
simulating using as initial state the state obtained after the first simulation. Each condition
corresponds to one resource having an initial abundance of zero and not being externally re-
supplied. The second simulation done for every condition has a duration of 50 time-steps.
The change of abundance during the first and second simulation is shown on Figure A.1 in

the Appendix.

4.1.1 Randomized network simulation

In addition to these three network topologies, a random network topology has been simulated
with a probabilistic parameterizationof themetabolicmatrix. Thismatrix determines the num-
ber of interactions in which a product is involved in as a product (by rows) or as a substrate (by
columns). The values in the columns are set in a way to differentiate between the probability
that the resources of the same resource class are the products when interacting with this re-
source more often than resources of all other classes. With every consumption of a resource,
at least one other resource from the same class is produced as well as at least one waste class
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resource. The entries in each column for a resource i to be produced by resource j are sampled
with a probability proportional to:

Pij =
1

(
∑j−1

0 dij ̸= 0 + 1)e
(4.4)

where the parameter e controls the sparsity.
In a similar way every row of the consumer matrix has been sampled, where a given species i

is consuming resource j with a probability proportional to:

Pij =
1

(
∑i−1

0 cij ̸= 0 + 1)e
(4.5)

where a higher value for the parameter e increases the inter-species competition, and with
that the number of negative interactions.

This approach helps to control the probabilities that a given resource is consumed and pro-
duced. When a given resource that is consumed by many species is produced by a few, the
species that produce it are hub nodes in the network. On the other hand, when a resource is
produced bymany species but only consumedby few, the resource behaves like awaste resource.
The degree distribution of the randomized network is stable among all of nodes with a small
variation.

The absolute abundance for the randomized network is simulated for 60 species and 50 re-
sources in 200 different conditions. These conditions are created in the following way: for 50
conditions the concentration of each resource is lowered and for additional 50 it is increased,
with a final 100 conditions which are simulated by lowering the concentration of different re-
source pairs.

4.2 Network topology comparison

After conducting the same simulation steps with specific parameters for a fully connected,
sparse, scale free and randomized topology the positive and negative interaction matrices are
computed. The negative interactionsmatrix is created from the energy flux of the energy enter-
ing the cell J in which can be obtained from the resource abundance and parameter dictionary.
Then, the weight of the negative interactions network is proportional to the number of com-
mon resources detected. From here, by using the leakage fraction and the metabolic matrix,
the energy exiting the cell Jout can be computed. The positive interactions matrix is then pro-
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portional to the number of common resources found between two species in the fluxmatrix of
the Jout energy. By summing the positive and negative weight matrices, the combined weight
matrix is obtained. Finally, the adjacency matrix is a binary matrix which is zero where there is
no interaction detected and one where there is either a positive or negative interaction. It is im-
portant to note that this procedure creates the same adjacencymatrix irrespective of the choice
of condition for the resource vector used to calculate the J in energy. However, the choice of
condition affects the weights of the combined interaction. In this work, the first condition is
used to compute the weight and adjacency matrices. The three adjacency matrices computed
in this way are shown on Figure 4.2. In addition, the positive and negative interactionmatrices
are pictured on Figure A.2 and A.3 in the Appendix.

As it can be seen from figure 4.2 in the fully connected case only the diagonal contains zero
values which means that there is a connection between all edges except for self-loops. In the
sparse case, there are a lotmore pairs of specieswithout a connectionbetween them. In the scale
free network, the connections are concentrated mostly within the 6 specialist families, with
other random connections as well. The generalist species seem to be connected to the majority
of the remaining nodes and represent the nodes with the highest number of connections. In
the randomized case, the number of species is significantly lower and the connections between
the species do not follow a determined pattern.

In order to convert the adjacencymatrices into graphs and analyze them the Python package
networkxwas used. Table 4.1 shows some of themain network properties of these graphs. The
sparse graph is an unconnected with a total of 136 sub-graphs that comprise of the fully con-
nected Giant Component (GC) with 185 nodes and the remaining nodes are isolated. As the
number of edges reduces from the fully connected to the sparse network, the average shortest
path length remains one, but the diameter increases slightly. The clustering coefficient and the
average degree both decrease with the lower number of edges. The scale free network has more
edges than the sparse network with a longer average shortest path length and a relatively high
value of the clustering coefficient due to the closely connected specialised families.

This section explores the properties of the scale free network. The degree distribution is
shown on Figure 4.3 a) and in log-log scale on b). The downward trend of a heavy-tailed dis-
tribution shows a lower probability for a given degree to appear in the network as the degree
is increasing. This is the main property of a scale free network. The degrees for which the fre-
quency is zero were excluded from the visualisation. The curve fit to the data in Figure 4.3 a).
is done with a total error of:
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(a) Fully connected network (b) Sparse network

(c) Scale free network (d) Randomized network

Figure 4.2: Adjacency matrices comparison
Dark pixels equal to zero and light pixels to one

R = 0.5486

and the following values for the power law parameters:

p(x) = Cx2.24

where the constant C is equal to 4647796. From the γ exponent resulting in a value 2.9
which is in the interval (2, 3) we can conclude ultra-small world behaviour in the network.

On Figure 4.3 c). the degree distribution data is compared with a theoretical power law
distribution in the log-log scale, using the power law Python package. The degrees until the
120th degree are trimmed since the power law behaviour is expected with larger degrees.

Another property of the scale free networks is that the clustering coefficient decreases with
higher degrees. This behavior shows that nodes with a lower degree tend to be clustered to-
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Parameter Fully Connected Sparse Scale free Randomized
Number of edges 102080 34040 41759 1193*

Strongly / Weakly connected T / T F / F T / T T / T
Average Shortest Path Length 1.0 1.0* 1.59 1.66

Radius 1 1* 1 2
Diameter 1 1* 2 3

Clustering Coefficient 1.0 0.58 0.81 0.41
Average Degree 638.0 212.75 260.99 39.76

Average In Degree 319.0 106.37 130.49 19.88
Average Out Degree 319.0 106.37 130.49 19.88

Density 1.0 0.33 0.41 0.34
Center / Periphery 320 / 320 185 / 185* 4 / 316 54 / 6

Table 4.1: Network properties comparison

gether more closely, whereas the hubs do not share a lot of connections. Figure 4.4 shows the
clustering coefficient with respect to the node degree both in linear and log-log scale.

4.3 Relative abundances simulation

The species abundances obtained with the community simulator in Section 4.1 represent the
amount of species truly present in the given condition and from them the ground truth inter-
action network is formed. Each of the simulations is a 320 × 60 (taxa × conditions) matrix.
However, in order to properly benchmark methods for reverse engineering of the interactions,
it is better to use data similar to the one normally detected with sequencing experiments. This
is done by simulating relative abundances as a 16S rRNA count table using the metaSPAR-
Sim simulator [11]. Since the initial absolute abundancesmij are simulated according to the
Equation (4.3), the relative abundance Yj is sampled from the followingMutivariate Hyperge-
ometric (MGH) distribution:

Yj ∼ MGH(nj,mj) (4.6)

where nj is the library size of the sample or the total number of mapped reads.

For all simulations, the library size is set to 1000 for every species and a relative abundance
vector is sampled for each condition.
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Figure 4.3: Scale free properties

4.4 Distribution comparison

Since sparisty is one of themain properties of 16S rRNAcount data, in this section the distribu-
tion of relative abundances obtained are compared with the presets available inmetaSPARSim.
In order to compare the two distributions, a Kolmogorov Smirnov test is conducted [12]. The
Kolmogorov Smirnov test is a non parametric test used for testing the similarity of a given sam-
ple with a known distribution in the one sample test or testing whether two samples belong
to the same unknown distribution in the two sample test. The general formulation of the test
hypothesis is:

H0 : F1(t) = F2(t) = ... = Fk(t) ∀t ∈ R

H1 : Fi(t) ̸= Fj(t) for at least one t ∈ R and i ̸= j
(4.7)

The two-sided Kolmogorov-Smirnov test statistics is defined as follows:
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Figure 4.4: Clustering coefficient in scale free network

Dk = max
t,i,j

|F̂i(t)− F̂j(t)| i ̸= j i, j ≤ k (4.8)

where F̂ (t) is the empirical distribution function (eCDF) computed from the sample as:

F̂i(t) =
1

n
· [number of sample values lower than t] (4.9)

The value obtained with the Kolmogorov-Smirnov test statistics is the biggest difference in
the empirical distributions between the samples. Even though this test is primarily for continu-
ous distributions, the implementation inR supports discrete data as well [13]. The test is done
on all possible pairs between the vectors of taxa for each condition and the abundances of the
preset for each sample, with the number of conditions being 60 and 110 preset samples. The
number of species between them is however different, with the number of simulated species
being 320while 3541 species are present in the preset.

The significance level is set to 0.05, and with higher values the alternative hypothesis is re-
jected, with the conclusion that the samples are most likely drawn from the same distribution.
For each of the networks the following number of pairs with sufficient test significance are de-
tected: 340 for the fully connected network, 245 for the sparse and 490 for the scale free. On
Figure 4.5 plots of a pair from the scale free network simulation are shown to visualise the dis-
tribution comparison. The data is from the 34th sample in the preset and the 8th condition
in the simulated data. The first plot is a quantile - quantile (Q-Q) plot which plots the quan-
tiles of the given samples against each other. The red line is a fitted least squares regression line.
The second plot shows a side by side box plot of the samples. It can be seen that even though
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Figure 4.5: Distribution comparison between simulated data and preset

the preset sample is a lot bigger, most of the points are centered around the mean, whereas the
simulated data shows a higher number of outliers. Since both samples are generally sparse, the
mean values are close to each-other with 2.08 for the preset sample and 3.12 for the simulated
condition. The third plot shows a comparison between the empirical probability functions of
both samples used to compute the test statistic. The Kolmogorov-Smirnov test statistic can be
sensitive, but it can be seen that the simulations generate sparse data in a similar range to the
preset example.
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5
Reverse EngineeringMethods

The data simulated in the manner explained in Chapter 4 is now used for testing different re-
verse engineering methods for recovering the ground truth adjacency matrix and comparing
the obtained results. This chapter begins with the analysis obtained from the concentration
and correlationmatrices of the simulation as a first insight into the original interactions. How-
ever, there are many statistical methods based on different approaches designed to specifically
solve the problems of correlation inference of compositional data. Many of them are created
formetagenomic studies where the data obtained by experiment is spare and the number of fea-
tures is several magnitudes higher than the number of samples. The feature correlation itself
and the concentration matrix are sensitive to these constraints, and methods have been devel-
oped for a more accurate estimation of the true interactions. The following sections of this
chapter are devoted to explaining the techniques used in each of the algorithms. Their accu-
racy on the simulated data is compared in Chapter 6.

5.1 Concentration matrix comparison

In the attempt to detect the interacting species, the general approach is to isolate the pairs of
species (features) whose abundance changes in a similar way across the conditions (samples).
The covariance matrix of the data is a measure of joint variability between any pair of features.
The shape of thesematrices isN×N whereN is the number of species with every off-diagonal
entryNij depicting the covariance between species i and j and the species variance on the di-
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agonal. On the other hand, the concentration matrix is the matrix inverse of the covariance
matrix. This matrix is can be also called precision matrix. Both terms are used in the text inter-
changeably. The values in these matrices are zero if the corresponding feature are conditionally
independent and the sign shows positive or negative dependence. The methods generally try
to estimate one of these matrices as close as possible when inferring the interactions from the
data. In some cases, the covariancematrix is singular - not all columns of thematrix are linearly
independent and therefore cannot be inverted. In this case, theMoore-Penrose pseudo-inverse
approximation is used. For a given matrixA, the pseudo-inverseA+ can be calculated by:

A+ = V D+UT

where U , V andD is the singular value decomposition ofA andD+ is the transpose of the
matrixD with reciprocal of all non zero elements.

By using the concentrationmatrix for estimating the adjacencymatrix of the given network,
the task can be seen as binary classification. The accuracy is high if the edges of the ground
truth network are detected and the concentration matrix value for unconnected nodes is zero.
However, the matrix contains positive and negative values for the relationship between the
species, whereas the positive and negative interactions are combined in the adjacency matrix.
Therefore, the values of the concentrationmatrix are converted to their absolute values in order
to detect negative as well as positive interactions in the thresholding process.

The values of the concentration matrix are continuous, and a threshold needs to be chosen
in order to separate them between interacting species and non-interacting species. The first
approach is to set the threshold to zero, and any positive value would be detected as an inter-
action. However, there might be small relationship values detected in the matrix between non
connected nodes of the network. Therefore, themodel would get higher accuracy of detection
with a higher threshold. This process is called thresholding and one way to find the optimal
threshold is to plot the ROC (receiver operating characteristic) curve. The plot shows values
for the TPR (true positive rate) and FPR (false positive rate) defined as:

TPR =
TP

TP + FN
(5.1)

FPR =
FP

FP + TN
(5.2)

where TP, FP, TN, FN are true positives, false positives, true negatives and false negatives
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respectively.
The curve is drawn by calculating true positives and false positives at every threshold from

a previously sorted array of predictions. The amount of thresholds is chosen based on the
variability of the values in the list. The diagonal line of the ROC curve shows a performance
of a random classifier, and the classifier performance is evaluated by the AUCmetric which is
the two-dimensional area under the curve. The optimal threshold is chosen by the G-Mean
(geometric mean) between specificity and sensitivity defined as:

G−Mean =
√

(Sensitivity · Specificity) (5.3)

where

Sensitivity = TPR and Specificity = 1− Sensitivity (5.4)

Figure 5.1 shows the ROC curves for all three different networks estimated by the concen-
trationmatrix of the simulated data for that network. The values for theAUCare also added to
the plotwith the optimal thresholds shown as a black dot. It can be seen that the sparse network
can be estimated from the concentration matrix with the highest accuracy, whereas the fully
connected one with the lowest. Since the covariance matrices obtained from the simulations
are often singular, the pseudo-inverse was used when computing the concentration matrix.

The AUC is a threshold insensitive metric, but for deeper comparison additional metrics
can be computed at the optimal threshold. Table 5.1 shows values for the entries of the TP,
FN, FP, TN, precision and recall for these networks computed at the optimal threshold, where
the metrics are defined as:

Precision =
TP

TP + FP
(5.5)

Recall =
TP

TP + FN
(5.6)

These metrics are computed for the optimal threshold of each network and the results are
shown on table 5.1. Precision is a measure of how many of the detected pairs truly form an
interaction and recall measures how many of the true interactions are detected. The precision
value is highest for the fully connected network. That is to be expected, since all species interact
between each other in that case. However, the precision is high on the cost of low recall. In the
scale free network, on the other hand, the values are both close to the random prediction. It
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Figure 5.1: Comparison of ROC curves

is interesting to see that even though the sparse network has the highest AUC, these values are
low at the optimal threshold. Since the randomized simulation has a lower number of species
(60) than the rest, the exact values of the confusion matrix (TP, TN, FP, FN) should not be
compared.

In a similar way as the ROC curve, the precision-recall curve shows the values for precision
and recall for different thresholds. The area under the precision-recall curve (AUPR) is a com-
mon metric used for evaluating the quality of classification. This metric is often adjusted to
account for unbalanced data. This is done by calculating the baseline-adjustedAUPRBA com-
puted in the following way:

AUPRBA =
AUPR− AUPRRandom

1− AUPRRandom

(5.7)
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Metric Fully Connected Sparse Network Scale Free Network Randomized
TP 52415 13384 22128 504
FN 49665 20656 19621 689
FP 4171 27868 31217 1008
TN 148 40492 29424 1399

Precision 99, 67% 32.44% 41.42% 33.33%
Recall 51.35% 39.32% 53.01% 42.25%

Table 5.1: Metrics comparison obtained by concentration matrix inference

whereAUCRandom is the value of the metric obtained with a random classifier.
Figure 5.2 shows the comparison of the precision - recall curves among all four types of net-

work topologies. The best threshold between bothmetrics is shown as a black dot. Along with
the curve, a baseline curve showing the performance of a random classifier for the given data
is shown with a dashed line. In addition, the values for the baseline-corrected area AUPR are
highlighted. It can be seen that even though the fully connected network can be approximated
from the concentrationmatrix the most accurately, the random classifier value is also very high
due to the large imbalance in the ground truth. Among all, the sparse network shows the best
accuracy based on threshold invariantmetrics (AUC and baseline-adjustedAUPR) and is then
used to compare the different classifiers. In the subsequent sections, each of the methods used
to obtain the results is explained.

5.2 Graphical Lasso

One of themethods for estimation of the precisionmatrix is Graphical Lasso[14]. It is used for
sparse graph estimation by applying aL1 (lasso) regularization penalty to the covariancematrix.
In the multivariate Gaussian distribution, for a given sampleX ∼ N(0,Σ) the model for the
precision matrix Θ̂ = Σ−1 estimate is defined as:

Θ̂ = argminΘ≥0

(

tr(SΘ)− log det(Θ) + λ
∑

j ̸=k

|Θjk|

)

(5.8)

where S is the sample covariance matrix and λ is the regularization parameter.
The graphical lasso algorithm cycles trough all of the variables and fits a modified lasso re-

gression to each in every run. The procedure is repeated until convergence is achieved.
In practice before running the graphical lasso solver, a shrinking transformation on the em-
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pirical covariance applied. The amount of required shrinkage depends on the conditioning of
the original data and it is regulated with the parameter α in the following formulation of the
shrinkage:

Σshrunk = (1− α)Σ̂ + α
Tr(Σ̂)

p
Ip (5.9)

where Σ̂ is the empirical covariance and p is the number of features.
The value used for the parameter α for the shrinkage of the empirical covariance is 0.6 and

the regularizationparameterλ for themodel is set to0.1. The results obtainedwith thismethod
based on the AUC show random classification performance for all three networks. At the opti-
mal threshold, the precision values are very high for the sparse and the fully connected network,
but at the expense of very low recall values. In fact, this method obtains the highest precision
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for the sparse network. This method is best if the desired output is a sparse graph with only
high precision.

5.3 SparCC

Another approach for inferring the correlation tailored to microbial data is SparCC [15]. It
takes into account the sparse distribution of sequencing data and the compositional effects of
the data obtained by normalizing the count matrix into fractions of sample abundances. This
produces features that are no longer independent andwhose feature space is theD-dimensional
unit simplex, where p is the number of samples:

S
p =

{

x|xi > 0,

p
∑

i=1

xi = 1

}

(5.10)

One of the problems with compositional data is the constant sum constraint (CSC) which
removes independence between the variables. In other words, the proportion of a given species
depends on the change of abundance in the others. In order to deal with the effects of compo-
sitional data, log-ratio transformations are commonly used. In particular, the transformation
applied in SparCC is the additive log-ratio transformation alr : Sp −→ R

p−1 defined as:

alr(x) = log
xi

xj

= log xi − log xj (5.11)

where xi and xj are the fractions of abundance for species i and j.
Alternatively, the centered log-ratio transformation clr : Sp −→ U,U ⊂ R

p is commonly
used defined as:

clr(x) = log
xi

g(x)
= log xi − log g(x) (5.12)

where g(x) = [
∏p

i=1 xi]
1
p is the geometric mean of the vector x.

The isometric log-ratio (ilr) canbe used aswell [16]. However, these transformations require
pre-processing of the zero values. The zero counts occurwhen the species has not beendetected
experimentally, or when it is not present in the sample at all. However it is imposible to distin-
guish between the both cases. In SparCC, a small pseudo-count is added to the zero counts
in the original matrix before the transformations. Additionally, the SparCC iterative scheme
checks for variables forwhich no positive correlations can be estimated and removes them. The
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algorithm converges when no new correlated pairs are identified and in each iteration the basis
(absolute abundance) covariance matrix is estimated using the values of the variation matrix T
of the log-ratio transformed fractions.

The results of this method are better than a random classifier only for the fully connected
network, with an AUC value of 100. Since the absolute correlation estimate from SparCC
is used and the values on the diagonal are removed due to the expected constrain of a graph
without self-loops, any threshold set on the estimated adjacency matrix successfully detects an
interaction between the off diagonal elements. However, this method is primarily designed for
inference on sparse networks with low component variability.

5.4 CCrepe

Thenextmethod isCompositionalityCorrectedbyRenormalization andPermutationorCCrepe
implemented in R [17]. The main idea in the method is creating an expected (null) distribu-
tion of the data by iteratively permuting each feature and re-normalizing the samples based on
its the previous sum. This is done in order to remove the dependency among the features of
compositional data. After the final iteration, a similarity measure is computed between the
features which can be Spearman correlation orN-dimensional checkerboard score (NC-score).
The results reported are using the default Spearmen correlation metric, since the NC-score
metric produced almost identical values. After this, during a bootstraping step the method it-
erates over subsets of the samples and creates an alternative distribution of the distance metric
used. In the end the two resulting distributions are comparedwith a pooled-variance Z-test. In
addition the data is pre-processed and all of the zero count samples are removed.

Since CCrepe is designed for the analysis of compositional data, the counts are first trans-
formed into fractions by adding a pseudo-count of 0.5 to all values and normalizing the rows.
The results shown in Table ?? are not higher than a random classifier for the scale free network,
but show higher values for the sparse and fully connected case and it is one of the two best per-
forming methods for the sparse network based on the AUC without taking into account the
precision and covariance matrices. Taking computation time into account, CCrepe is also the
one requiring most CPU time until convergence.
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5.5 SPIEC-EASI

Another precision matrix estimation method is SPIEC-EASI (SParse InversE Covariance Esti-
mation for Ecological Association Inference) [18] implemented in R. The algorithm has two
different approaches to estimate the precisionmatrix of the absolute abundance data. The first
approach follows the Meinshausen and Buhlmann (MB) method and it is used for neighbour-
hood selection in sparse high-dimensional graphs. The second approach is based on graphical
lasso. Before running the methods however, the data is transformed using the centered log ra-
tio transformation shown at Equation (5.12). In this work, only the MB approach is used in
the experiments due to slow convergence of the graphical lasso approach (5.8).

The MB neighbourhood selection method approaches the task by solving p regularized lin-
ear regression problems. For each node vi a convex problem is solved defined as:

β̂iλ = argmin
β∈Rp−1

(

1

n
||Zi − Z−iβ||2 + λ||β||1

)

(5.13)

where Z ∈ R
N×p is the matrix of log-ratio transformed abundances and Zi is the ith col-

umn. This formulation is a least-square fit for the the value ofβj for every relationship between
the nodes i and j. The regularization parameter is λ tuning theL1 norm of the vector β calcu-
lated as the sum of its absolute values. For higher values of λ the coefficients tend to absolute
zero. An edge between the nodes i and j is detectedwhere at least one of the coefficients ˆ

β
i,λ
j or

ˆ
β
j,λ
i is positive. In case where both of them are detected, the weight is computed as the average.
Thematrix obtained thisway depends on theλparameter, so in order to find the optimalλ a

model selection schemenamed StabilityApproach toRegularization Selection (StARS) is used.
It works by sub-sampling the data in each iteration and estimating the edges for various levels
of λ. The value for which the incidence matrix is the most stable is chosen as a regularization
parameter.

Based on the AUC in the results, this model shows random classification performance for
all three networks with lower recall at the optimal threshold than the others. It is most similar
to the graphical lasso prediction, with lower precision values.

5.6 Coocur

Coocur is a probabilisticmodel for species co-ocurence [19]. It highlights the advantage against
randomization probability algorithms since id does not try to estimate the null distribution of
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the data which may be prone to randomization errors. Instead, the probability that two given
species 1 and 2 are both found at j samples is given by the following equation:

pj =
C(N, j) · C(N − j,N2 − j) · C(N −N2, N1 − j)

C(N,N2) · C(N,N1)
(5.14)

where the numerator is the product between the number ofways the species can be arranged
in j samples, and the number of ways that they can be arranged in the remaining samples. The
denominator counts the total number of ways the species can occur in the samples.

The experiments on the simulated data are run using the relative abundances. For each net-
work, there are 51040 pair combinations, for the 320 species in 60 samples. However, the
method removes the pairs of species where the expected co-occurence is less than 1. For the
fully connected network the number of removed pairs is is 36873 pairs or (72.24%), for the
sparse network 38107 pairs or (74.66%) and for the scale-free case 38122 pairs or (74.69%).
The high number of undetected interactions can lead to poor classification results. Since the p-
values in themodel estimationmatrix are already positive and co-occurences are only calculated
for the different species, the pre-processing step of taking the absolute values of the predictions
and removing the diagonal elements did not change the results.

5.7 Minerva

Implemented in R, this method is part of the class of statistics called Maximal Information-
based Nonparametric Exploration (MINE) statistics and uses theMaximal Information Coef-
ficient (MIC) for identifying the relationships [20]. The method is based on maximizing the
Mutual Information (I) between every pair of species X and Y in a iterative fashion. The
mutual information between two random variables is defined as:

I(X,Y ) = H(X)−H(X|Y ) (5.15)

whereH(X) is the entropy ofX computed as:

H(X) = −
∑

x

px(x) log px(x) (5.16)

andH(X|Y ) is the conditional entropy:
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H(X|Y ) =
∑

y

py(y)

[

−
∑

x

px|y(x|y) log
(

px|y(x|y)
)

]

(5.17)

The mutual information is a measure of how the uncertainty (entropy) of one random vari-
able changes when introducing information about another. High mutual information corre-
sponds to a large reduce in uncertainty and suggests a significant interaction between the fea-
tures. This method tries to spot significant interaction areas on the scatter-plot drawn between
any pair of features. The plot is then iteratively divided into girds of different resolution and
the grid which maximizes the mutual information between the variables is chosen. After nor-
malizing the results to account for the sample size, the MIC is obtained for each interaction
pair.

The final matrix has positive entries and with no self-loops. From the results shown in ??
it can be seen that this model obtains the highest AUC for the sparse network, apart from the
precisionmatrix. It also shows high results for the fully connected network experiment, second
only to SparCC.

5.8 gCoda

The final method used in this study is gCoda [21]. It is also based on aL1 (lasso) regularization
as previous methods. One of the assumptions in this method is that the log ratios of the abun-
dances follow a multivariate normal distribution. The model tries to estimate the inverse co-
variance matrix through anMM (Majorization - Minimization) optimization algorithm. This
is set by defining amajorizing function for the estimate whose minimization is represented as a
Graphical Lassomodel. This function is minimized iteratively until convergence, aiming to de-
tect the most sparse inverse covariance consistent with the data. The regularization parameter
λ is computed by choosing the value for which the EBIC (Extended Bayesian InformationCri-
teria) is the lowest for the number of edges in the network. A lower EBIC represents a model
with lower variance.
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6
Methods Comparison

This chapter contains commentary on the results obtained by testing the methods explained
in Chapter 5 using the simulated data matrices from Chapter 4. Each inferred matrix from
a given method is compared with the corresponding ground truth adjacency matrix. There
are two sections in this chapter comparing results obtained by the sparse and the randomized
network topology.

From the performance of the concentration matrix as a method, explained in the first sec-
tion of Chapter 5, it can be seen that the sparse network topology is estimated most accurately
among them, without accounting for the fully connected network since it not a natural be-
haviour. For this reason in Section 6.1 10 instances of the sparse topology have been simulated,
using the parameters shown in Table A.1, with 320 species and 60 conditions. Different ac-
curacy metrics are computed and the mean and variation among the 10 networks is displayed.
Since the randomized network scenario consists of 60 species in 200 simulations, whichmeans
that the number of samples is bigger than the number of features, 10 separate networks have
been tested for this scenario as well. The results are shown in Section 6.2.

Since in these performance evaluations, the negative and positive interactions are combined
in order to classify between the presence and absence of a given edge, in Section 6.3 a compari-
son on the ability of the networks to detect positive and negative interactions is shown.
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6.1 Sparse Network simulations

This section describes the results obtained from the 10 sparse network topology simulations.
Before the metrics are computed, there are few pre-processing steps of the inferred data. The
inferred data can contain negative and positive predictions in a different scale depending on
the method. In order to have comparable data, each feature of the matrix is scaled based on its
maximum absolute value. This allows for the data to fall in a selected range [-1, 1] without scal-
ing the 0 values and losing information of the sparsity. Since here methods are tested on both
positive and negative interactions, only the absolute value of the matrix is considered. Then,
due to the network topology constraint, no self loops are allowed because only inter-species in-
teractions are investigated. Thus, the values on the diagonal of the matrix are removed. If any
species have not been detected in any of the simulations of absolute abundance (generation of
abundance as it is in nature), they are removed from the comparison. In these sparse experi-
ments, all species were detected in at least one simulation. The values of the matrix and the
corresponding ground truth are then flattened and sorted in order to computed the metrics.

6 different methods have been tested, along with the concentration matrix, which serves as
a baseline for accuracy. The mean values obtained for the AUPR, baseline-adjusted AUPR,
AUC andRMSD along with the standard deviation are shown onTable 6.1. The bar-plots for
these values are shown on Figure 6.1.

It canbe seen that the best performingmethods areCooccur andMinerva, with averageAUC
of 76.1% and 79.03% respectively. Minerva outperforms Cooccur in all of the other metrics
except for the RMSD and is therefore the best classifier for the sparse scenario.

Most of the other methods are under-performing with accuracy lower than the concentra-
tion matrix prediction or even lower than the random baseline - like CCrepe. Graphical Lasso,
however is a method whose prediction accuracy seems to be very close to the one of the con-
centration matrix.
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Method AUPR BA-AUPR AUC RMSD

ConcentrationMatrix 66.47% (±1.98) 49.88% (±3.24) 77.22% (±1.53) 0.13

Graphical Lasso 69.05% (±0.87) 18.79% (±2.17) 51.23% (±0.28) 0.1

SparCC 36.08% (±0.2) 4.25% (±0.31) 50.45% (±0.34) 0.31

CCrepe 27.3% (±0.51) −8.61% (±0.48) 41.6% (±0.78) 0.44

SPIEC-EASI 45.64% (±1.58) 18.79% (±2.17) 51.23% (±0.28) 0.1

Cooccur 76.54% (±2.1) 64.72% (±3.34) 76.1% (±2.05) 0.11

Minerva 77.54% (±2.19) 49.88% (±3.46) 79.03% (±1.84) 0.21

Table 6.1: Methods comparison for sparse topology ‐ table

It should be noted that the values for the RMSD metric are computed with respect to the
ground truth weight matrix instead of the adjacency matrix. Some methods like Graphical
Lasso and SPIEC-EASI obtain the lowest error among the methods. This could suggest that
even if not all true interactions are detected by the methods in the thresholding process, they
could infer the weights among the connections more accurately. The inference of the strength
of the interactions is another problemworth exploring, but this work focuses on the inference
of the existing edges and the underlying adjacency matrix.

Along with the bar-plots shown on Figure 6.1, a comparison between the ROC and Pre-
cision - Recall curves is shown. On the ROC plot, it can be seen that the best performing
methods have a similar behaviour, Coocur and Minerva, close to the concentration matrix. It
is also visible that the curve formost of themethods have is steep in the beginning, for low FPR
rates. The partial AUC is another useful metric that shows the importance of the performance
of a classifier when the FPR rate is controlled. For a default threshold of FPR (maximum value
for FPR) of 0.1, the partial AUC metric for Coocur and Minerva is over 70%, over 60% for
Graphical Lasso and the concentration matrix and around 50% for the rest. The precision-
recall curve also shows a distinction between the high and low performing methods.
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Figure 6.1: Methods comparison for sparse network topology ‐ figures
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6.2 RandomizedNetwork Simulation

Similarly to the sparse network simulation, for the randomized topology 10 different methods
were simulated. The pre-processing of the data is done in the sameway, with the difference that
in these experiments some species had absolute data abundance equal to zero in each simulation
and are therefore removed. In addition, the gCodamethod is tested only in these experiment,
since it was not computationally possible to test it in the sparse scenario.
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Figure 6.2: Methods comparison for randomized network topology

Figure 6.2 shows the results obtained for each method, the mean among the 10 simulations
and the standard deviation. It can be seen that the results are more variable when compared
to the sparse network scenario and the accuracy is lower. Based on the ROC curve, Graphi-
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cal Lasso is the only one outperforming the concentration matrix, with CCrepe following the
performance. However, when looking at the precision - recall curve, even though the overall
accuracy among the methods is low, SPIEC-EASI and CCrepe have higher values for both
AUPR and baseline-adjusted AUPR.

6.3 Positive andNegative interactions

This section shows a comparison between the detection of positive and negative interactions
between the methods. All method inferred matrices are compared with ground truth matrices
for species competition (negative interactions) or species cooperation (positive interactions).
Figure 6.3 shows the comparison for the sparse network simulations and Figure 6.4 for the
randomized scenario.

For the sparse network simulation there is not a significant difference between the detection
of positive and negative interactions. The AUC values are slightly higher for the positive in-
teractions for the best performing methods: Cooccur andMinerva, but for the concentration
matrix as well. For all of the remaining methods, there is a slight increase in the negative inter-
action AUC. In general, the values for the positive interactions are less variable, but they show
very low performance on other metrics such as AUPR.
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Figure 6.3: Positive and negative interactions for sparse network

From the comparison on Figure 6.4 it can be seen that the performance of almost all meth-
ods is better for the negative interactions retrieval in the randomized scenario. Here, the best
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performing based on all of the metrics was CCrepe, but it can be argued that this is only be-
cause of the detection of the negative interactions. The AUC for this method is 74.9% for
the negative interactions and only 50.65% for the positive case. The rest of the methods show
higher AUC values for the negative interactions as well.
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Figure 6.4: Positive and negative interactions for randomized network
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7
Conclusion

Themicrobial organismsplay a crucial role in all natural processes in theworld fromcontrolling
the state of their environment to influencingdisease risks inhost organisms. Understanding the
details of their interactions can lead to diverse solution of issues from ecosystempreservation to
drug development. The aim of this thesis on reverse engineering networks is to test the perfor-
mance of specializedmethods for inferring these relationships from experiment data. Through
simulating both ground truth and experiment data, 7 different methods have been tested on
different network topologies. Depending on the network, different performance was recorded,
suggesting that the methods are sensitive to the type of data. Many of them assume sparse con-
ditions and high dimensional data and they performed better in this scenario, represented by
the sparse network. The highest AUC value was obtained byMinerva of 79%, but this is lower
than the literature reported performance of all of the methods. In a more general sense, the
results are consistent to the findings reported in [22]. The authors have tested a different set
of reverse engineering methods with a chosen network topology of the data and report lower
accuracy for interaction detection than expected and higher accuracy for negative interactions
detectionwhen comparedwith the positive ones. This shows that this field of research remains
open to alternative solutions that can more accurately detect species relationships. Given the
sensitivity of the data, the accuracy reported here is not enough to detect species interaction
with high certainty, but can be a starting point of further exploration.

45



46



References

[1] K. J. Locey and J. T. Lennon, “Scaling laws predict global microbial diversity,”
Proceedings of the National Academy of Sciences, vol. 113, no. 21, pp. 5970–5975, 2016.
[Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.1521291113

[2] J. Durack and S. V. Lynch, “The gut microbiome: Relationships with disease and op-
portunities for therapy,” J. Exp. Med., vol. 216, no. 1, pp. 20–40, Jan. 2019.

[3] J. C. Wooley, A. Godzik, and I. Friedberg, “A primer on metagenomics,” PLOS
Computational Biology, vol. 6, no. 2, pp. 1–13, 02 2010. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1000667

[4] F. Sanger, S. Nicklen, and A. R. Coulson, “Dna sequencing with chain-terminating
inhibitors,” Proceedings of the National Academy of Sciences, vol. 74, no. 12, pp. 5463–
5467, 1977. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.74.12.
5463

[5] L. Bragg and G. W. Tyson, “Metagenomics using next-generation sequencing,” in En-
vironmental microbiology. Springer, 2014, pp. 183–201.

[6] A. Kamble, S. Sawant, and H. Singh, “16S ribosomal RNA gene-based metagenomics:
A review,” Biomedical Research Journal, vol. 7, no. 1, pp. 5–11, 2020. [Online]. Avail-
able: https://www.brjnmims.org/article.asp?issn=2349-3666;year=2020;volume=7;
issue=1;spage=5;epage=11;aulast=Kamble;t=6

[7] T. S. Tshikantwa, M. W. Ullah, F. He, and G. Yang, “Current trends and potential
applications of microbial interactions for human welfare,” Frontiers in Microbiology,
vol. 9, 2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.
2018.01156

[8] R. Balakrishnan and K. Ranganathan, A textbook of graph theory. Springer Science &
Business Media, 2012.

47



[9] A.-L. Barabási and M. Pósfai, Network science. Cambridge: Cambridge University
Press, 2016. [Online]. Available: http://barabasi.com/networksciencebook/

[10] R.Marsland, P.Mehta,W.Cui, and J.Goldford, “The community simulator: Apython
package for microbial ecology,” bioRxiv, 2020.

[11] I. Patuzzi, G. Baruzzo, C. Losasso, A. Ricci, and B. Di Camillo, “metasparsim: a 16s
rrna gene sequencing count data simulator,” BMC Bioinformatics, vol. 20, no. 9, p.
416, Nov 2019. [Online]. Available: https://doi.org/10.1186/s12859-019-2882-6

[12] G. Schröer and D. Trenkler, “Exact and randomization distributions of kolmogorov-
smirnov tests two or three samples,” Computational Statistics Data Analysis, vol. 20,
no. 2, pp. 185–202, 1995. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/016794739400040P

[13] T. Arnold and J. Emerson, “Nonparametric goodness-of-fit tests for discrete null distri-
butions,”R Journal, vol. 3, 12 2011.

[14] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with
the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 12 2007. [Online].
Available: https://doi.org/10.1093/biostatistics/kxm045

[15] J. Friedman and E. J. Alm, “Inferring correlation networks from genomic survey data,”
PLOS Computational Biology, vol. 8, no. 9, pp. 1–11, 09 2012. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1002687

[16] J. J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barceló-Vidal,
“Isometric logratio transformations for compositional data analysis,” Mathematical
Geology, vol. 35, no. 3, pp. 279–300, Apr 2003. [Online]. Available: https:
//doi.org/10.1023/A:1023818214614

[17] C. B. Emma Schwager and G. Weingart, ccrepe:
ccrepeandnc.score, 2022, rpackageversion1.32.0.

[18] Z. D. Kurtz, C. L. Müller, E. R. Miraldi, D. R. Littman, M. J. Blaser, and
R. A. Bonneau, “Sparse and compositionally robust inference of microbial ecological
networks,” PLOS Computational Biology, vol. 11, no. 5, pp. 1–25, 05 2015. [Online].
Available: https://doi.org/10.1371/journal.pcbi.1004226

48



[19] J.Veech, “Aprobabilisticmodel for analysing species co-occurrence,”GlobalEcology and
Biogeography, vol. 22, 02 2013.

[20] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turn-
baugh, E. S. Lander, M.Mitzenmacher, and P. C. Sabeti, “Detecting novel associations
in large data sets,” pp. 1518–1524, Dec. 2011.

[21] H. Fang, C. Huang, H. Zhao, and M. Deng, “GCoda: Conditional dependence net-
work inference for compositional data,” J. Comput. Biol., vol. 24, no. 7, pp. 699–708,
Jul. 2017.

[22] H. Hirano and K. Takemoto, “Difficulty in inferring microbial community structure
based on co-occurrence network approaches,” BMC Bioinformatics, vol. 20, no. 1, p.
329, Jun 2019. [Online]. Available: https://doi.org/10.1186/s12859-019-2915-1

49



50



A
Appendix

This chapter contains additional tables and figures in the order of reference in the main text.
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Parameter Description Value Network
300 Fully connected

SA Number of specialized species 300 Sparse
6 * 50 Scale free
60 Fully connected

MA Number of resources 60 Sparse
6 * 10 Scale free
0.45 Fully connected

fs Fraction of conversion to same resource 0.99999 Sparse
0.99999 Scale free
0.45 Fully connected

fw Fraction of conversion to waste resource 0.000001 Sparse
0.000001 Scale free

7 Fully connected
muc Mean sum of consumption rates 1 Sparse

7 Scale free
nwells Number of wells 1

Sgen Number of generalist species 20

S Total number of species 320

supply Resource supply (external, self-renewing or off) external
g Conversion factor for species 1

m Maintenance cost for species 1

sparsity Effective sparsity on the metabolic matrix 0.2

regulation Metabolic regulation (energy or independent) independent
response Functional response (type I, type II or type III) type I

[linear, saturating Monod or Hill/sigmoid-like]
l Leakage fraction 0.8

w Energy density for resources 1
tau Turnover rate for externally supplied resources 1

q Preference strength for specialist families 0.9

c0 Sum of background consumption rates 0.0

c1 Specific consumption rate 1

sampling Choice of sampling distribution Binary

Table A.1: Parameters used for simulations
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Figure A.1: Species and resource simulated abundances
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Figure A.2: Positive weight matrices comparison
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Figure A.3: Negative weight matrices comparison
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