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Abstract

An important field of research in computer vision is the 3D analysis and re-

construction of objects and scenes. Currently, among all the the techniques

for 3D acquisition, stereo vision systems are the most common. These sys-

tems provide an estimation of the three-dimensional geometry of the scene

by using two or more cameras and exploiting the triangulation principle.

More recently, Time-of-Flight (ToF) range cameras have been introduced.

They allow real-time depth estimation in condition where stereo does not

work well. Unfortunately, ToF sensors still have a limited resolution (e.g.,

200 × 200 pixel). The focus of this thesis is to combine the information

from the ToF with one or two standard cameras, in order to obtain a high-

resolution depth image. To this end, ToF cameras and stereo systems are

described in Chapters 2 and 3 respectively. Then, a comparison between the

two systems is provided in Chapter 4, in order to show their complementar-

ity. Chapters 5 and 6 present two approaches to up-sample a low-resolution

depth image, which exploit the additional information coming from a sin-

gle camera color image or a two cameras disparity map. In Chapter 7 the

camera rig calibration procedure and some tests for the noise characteriza-

tion of the ToF camera are presented. Finally, Chapter 8 presents the entire

framework of the method for fusing the ToF data with a single camera color

image. Furthermore, an optional refinement based on the stereo matching

is proposed. The algorithm allows to enhance the resolution of the ToF

camera depth image up to 1920 × 1080 pixel. Moreover, the image noise

is reduced in the super-resolution, thanks to a filtering procedure based on

the ToF camera noise measurements.





Sommario

L’analisi e la ricostruzione tridimensionale di scene ed oggetti è uno dei più

importanti settori di ricerca nell’ambito della visione artificiale. Al giorno

d’oggi, tra tutti i sistemi di acquisizione 3D, i sistemi di visione stereoscopica

sono quelli più comuni. Tali sistemi permettono di stimare la configurazione

geometrica della scena utilizzando due o più telecamere e sfruttando il prin-

cipio di triangolazione. Più recentemente sono stati introdotti sensori basati

sul principio del tempo di volo. Come i sistemi stereoscopici, anche questi

apparecchi permettono l’acquisizione 3D, e forniscono i risultati migliori

proprio nelle condizioni in cui i sistemi stereoscopici danno i maggiori prob-

lemi. Sfortunatamente il principale svantaggio dei sensori a tempo di volo

è la bassa risoluzione, la quale è nell’ordine dei 200× 200 pixel. L’obiettivo

di questa tesi è di ottenere una mappa di profondità ad alta risoluzione,

partendo dall’informazione fornita dal sensore a tempo di volo e combinan-

dola con l’informazione proveniente da una o due telecamere. A questo

scopo, i due sistemi di acquisizione 3D sono analizzati nei Capitoli 2 e

3. Dopodichè i due sistemi vengono confrontati nel Capitolo 4, dal quale

emerge chiaramente la loro complementarità. Nei Capitoli 5 e 6 vengono

descritti due approcci per aumentare la risoluzione della mappa di profon-

dità, i quali sfruttano l’informazione addizionale proveniente da una o due

telecamere. Nel Capitolo 7 vengono presentate la procedura di calibrazione

delle telecamere e i risultati di alcuni esperimenti per la caratterizzazione

del rumore della telecamera a tempo di volo. Infine nel Capitolo 8 viene

descritto l’intero sistema per la super-risoluzione della mappa di profondità

del sensore a tempo di volo usando l’immagine a colori proveniente da una

telecamera. L’algoritmo permette di raggiungere una risoluzione massima

di 1920 × 1080 pixel. Viene inoltre proposta una procedura di rifinitura

basata sull’uso di una seconda telecamera.
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Chapter 1

Introduction

One of the most important field of research in computer vision is the 3D analysis and

reconstruction of objects and scenes. The aim of 3D reconstruction is to produce a

2D image showing the distance to surface points on objects in a scene from a known

reference point, normally associated with some type of sensor device. These information

are fundamental inputs data for position determination, object recognition, or collision

prevention. Therefore they can be applied in areas like robotics, automotive assistance,

human machine interfaces and many more. Currently there exists a variety of systems

for acquiring three-dimensional information about the target scene. For example laser

range scanners and structured light cameras, which can provide extremely accurate and

dense 3D measurements over a large working volume. However, laser range cameras

can measure a single point at a time, limiting their applications to static scenes only.

In a similar way, structured light techniques are not suited for real-time applications.

The most common approaches for 3D reconstruction are the well-known stereo vi-

sion systems. Stereo systems are able to deliver high-resolution range images by using

two or more standard cameras, hence without any energy emission or moving parts.

These systems works well on textured scenes, but have difficulties in textureless ho-

mogeneous regions. Moreover, depth discontinuities in stereo vision systems causes

occlusions.

In recent years time-of-flight (ToF ) range cameras have been introduced. These

new sensors are active systems, which compute the depth at video frame rates (up to

80 [fps]). They exploit the known speed of light and measure for each point of the scene
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1. INTRODUCTION

the time that an emitted infrared (IR) signal need to cover the distance from the emitter

to the object and from the object to the camera. Compared to stereo systems, ToF

systems have a greater power consumption since they are active systems. Moreover,

these particular range cameras are, in contrary to stereo systems, not sensitive to the

scene peculiarity, as for instance textureless surfaces. The main issues of ToF cameras

are the provided low-resolution depth image and the several noise sources affecting the

measurement. The most significant noise sources are the so-called flying pixels at depth

boundaries and the wrong depth estimation in region with low infrared reflectance.

From their characteristics, stereo systems and ToF cameras can be considered as

complementary systems. Therefore, a collaborative approach which exploits the best

characteristics of the two systems may allow to reach a better quality of the final three-

dimensional scene sensing. The aim of this thesis is to exploit the information coming

from a camera rig composed by a ToF camera and three standard video-cameras in

order to increase the low-resolution ToF depth up to the camera image resolution.

Chapter 2 starts with a model that describes the ToF acquisition process. Further-

more, a detailed description of the ToF noise sources is given. Chapter 3 introduces the

pinhole camera model and the two-view geometry, which are fundamental concepts for

the description of the used camera rig. Moreover, stereo vision systems are presented,

with a focus on the three main approaches for depth estimation. Chapter 4 provides

a comparison between all the characteristics of ToF and stereo systems, in order to

show their complementarity. Then in Chapter 5 a super-resolution algorithm based

on compressive sensing theory is presented. Chapter 6 presents another approach for

the depth super-resolution, which exploits the joint bilateral filter. Specifically, a color

image is used to guide the up-sampling of a depth map. Moreover, it is proposed to

use a modified joint bilateral filter which adapts its behavior according to the area

characteristics (edge or flat). All the super-resolution algorithms have been tested on

the Middlebury dataset [17], which provides stereo images together with the respective

ground truth disparity images. In Chapter 7 a description of the camera calibration

procedure and of the ToF noise measurement is given. Finally, Chapter 8 presents the

real depth super-resolution algorithm, which combines the high-resolution color image

from one video-camera and the low-resolution depth image from the ToF to obtain a

high-resolution depth.

2



Chapter 2

Time-of-Flight (ToF) Cameras

Matricial Time-of-Flight (ToF ) range cameras are relatively new active sensors which

allow the acquisition of 3D point clouds at video frame rates. One of the advantages of

these sensors with respect to laser scanners or stereo cameras is that they can acquire

3D images without any scanning mechanism and from just one point of view. Among

all the ToF manufacturers, the more known ones are PMDTec [39], Mesa Imaging [29],

SoftKinetic [48] and Microsoft [30]. Recently, new camera models were released, such

as MESA SR4000 [29] and PMD CamCube 3.0 [39] (Figure 2.1), and researchers have

started to work extensively with these recent models. Depth measurements are based

Figure 2.1: Examples of ToF camera models. Left side: CamCube 3.0 from PMD Tech-

nologies GmbH, Germany. Right side: SR4000 from MESA Imaging AG, Switzerland.

on the well-known time-of-flight principle. Time-of-flight τd is the time that the light

needs to cover the distance d from a light source to an object and from this object back

to the camera. If the light source is assumed to be located near the camera, τd can be

3



2. TIME-OF-FLIGHT (TOF) CAMERAS

computed as

τd =
2d

c
, (2.1)

where c is the light speed (c = 3 · 108[m/s]). According to the camera technology, the

ToF method is suitable for ranges starting from some centimeters to several hundreds

of meters with relative accuracies of 0.1%. This means that standard deviations in

the millimeter range are realistically achievable at absolute distances of some meters,

corresponding to a time-resolution of 6.6[ps] [3].

Two types of ToF cameras are available: pulse-based and phase-based, the latter

better known as Continuous Wave (CW ) ToF [47]. This Chapter describes the CW

technology following the model presented by Dal Mutto in his Ph.D. thesis [33]. In

Section 2.1 the working principle is presented. Section 2.2 describes the major compo-

nents of a ToF camera. Then, Section 2.3 examines CW ToF technology, which is the

approach that all the majors ToF manufacturers are currently using for their products.

In Section 2.4 a detailed description of all the distance measurement errors is given.

Finally, Section 2.5 concludes the Chapter with a short overview of the main specifi-

cations of the PMD[vision] R© CamCube 3.0, which is the ToF camera used during the

development of this thesis.

2.1 ToF cameras: working principle

As previously stated, two different variations of ToF cameras exist, which are pulse-

based and CW. The simplest version are the pulse-based ToF cameras, which directly

evaluate τd using discrete pulse of light emitted by a light source and backscattered

by the object. In these devices each pixels has an independent clock, used to measure

the time of travelled laser pulse [37]. Pulse-based ToF cameras can be implemented

by arrays of Single-Photon Avalanche Diodes (SPADs) [1, 43] or an optical shutter

technology [12]. The SPADs high sensitivity enables the sensor to detect low level of

reflected light, therefore inexpensive laser sources with milliwatt power can be used for

ranges up to several meters [37]. The advantage of using pulsed light is the possibility

of transmitting a high amount of energy in a very short time. Thus, the influence of

background illumination can be reduced. The common drawback of these systems is

4



2.2 ToF cameras: components

that they must be able to produce very short light pulses with fast rise and fall times,

which are necessary to assure an accurate detection of the incoming light pulse.

Given that the time-of-flight is very short and the reflected signal very weak, direct

measurement is difficult. Indirect methods that imply modulation and demodulation of

light are used, like in the continuous wave ToF cameras, where the depth is determined

by measuring the phase shift between the emitted and the received optical signal [25].

As shown in Figure 2.2, the emitted light is reflected by the objects in the scene and

travel backs to the camera. Here the returning Radio Frequency (RF ) modulated

signal is demodulated by each pixel of the image sensor, producing a per-pixel range

and intensity measurement. For a periodical modulation of frequency fmod the phase

Figure 2.2: Principle of continuous wave ToF measurement.

shift ∆φ corresponds to a temporal shift

τd =
∆φ

2πfmod
. (2.2)

From this, the distance is calculated by inverting (2.1)

d =
c

4πfmod
∆φ. (2.3)

2.2 ToF cameras: components

So far, ToF cameras where considered as a single sensor composed by a single emitter

and a co-positioned single receiver. This simplification was used to explain the work-

ing principle, but a real ToF camera is more complex. The camera structure can be

described in three major components: the image sensor, the illumination unit and the

5



2. TIME-OF-FLIGHT (TOF) CAMERAS

camera optics. In the following Sections a description about these components and the

data delivered by ToF cameras is reported.

2.2.1 Image sensor

The first component is the image sensor. This is conceptually an array of collectors

matching the type of emitters of the illumination unit as considered so far. Currently,

the integration in a single chip of NR × NC (where R means row, and C means col-

umn) emitters and the corresponding NR ×NC receivers is not possible, especially for

high values of NR and NC as needed to achieve a high image resolution. However,

a single emitter can provide an irradiation that is reflected back by the target object

and collected by many neighbors pixels. These receiver pixels are based on Comple-

mentary Metal Oxide Semiconductor active pixel sensor architecture fabricated with

Charge Coupled Device technology (CCD/CMOS ) [3, 24] and integrated in a NR×NC

matrix (e.g., the sensor of the PMD CamCube 3.0 is made by 200 × 200 lock-in pix-

els). The so-called Photonic Mixer Device (PMD) sensor, also implemented on the

PMD CamCube 3.0, consists of two quantum wells for every pixel, which store the

electrons generated by the incident photons (Figure 2.3). Those photons generate elec-

trons which are sorted by an electronic switch, implemented as a variable electrical

field, into the one or the other quantum well. This switch is synchronized with the

reference modulated signal, thus the number of accumulated electrons in each quantum

well corresponds to one sample of the light signal [46].

Figure 2.3: Schematic representation of the PMD two-tap ToF sensor. Incident photons

generate electrons which are sorted by an electric field into two quantum wells. The switch

is synchronized with the modulated light source, thus the number of electrons in each tap

corresponds to a sample of the correlation function [46].

6



2.2 ToF cameras: components

2.2.2 Illumination unit

The illumination unit is the component responsible of sending the modulated signal

toward the scene. Different kind of emitters can form the illumination unit, but the

most frequently employed IR emitters are the Light Emitting Diods (LEDs) arrays.

The issue of the LEDs is that they cannot be integrated in the sensor. However, it is

possible to simulate the presence of a single emitter co-positioned with the center of

the receiver. Figure 2.4 shows this configuration for the case of the PMD CamCube

3.0. All the IR signals emitted by the LEDs can be considered as a unique spherical

Figure 2.4: Scheme of a ToF sensor. The CCD/CMOS matrix of lock-in pixels is red.

The emitters (blue) are distributed on the two sides of the the lock-in pixels and mimic a

simulated emitter co-positioned with the center of the sensor (light-blue).

wave emitted by a single emitter, called simulated emitter. This approximation leads

to some artifacts, one of which is a systematic distance measurement offset larger for

closer than for further scene points [33].

2.2.3 Camera optics

The third component of a ToF sensor is the camera optics, which consist of a lens and a

filter. The lens collects a mix of reflected light and ambient lights and projects the im-

age onto the image sensor. The narrow band pass filter only propagates the light with

the same wavelength as the illumination unit. This is the optimal combination to min-

imize sunlight entering to the sensor (background light suppression) and to maximize

transmission of light from the active light source.

7
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2.2.4 Other components

Beyond the three fundamental components already mentioned, a ToF camera is com-

posed of two more elements: the driver electronics and the computation unit. Both

the illumination unit and the image sensor have to be controlled by high speed signals.

These signals have to be very accurate to obtain a high-resolution. For example, if the

signals between the illumination unit and the sensor shift by only 10[ps], the distance

changes by 1.5[mm]. This accuracy requirement is given by the driver electronics, de-

signed to transmit the amplitude modulated signal output to the computation unit.

Finally the computation unit uses the reference signal and the measurements from the

image sensor to calculate the distance directly in the camera.

2.3 CW ToF cameras

ToF cameras can be described with a physical model, whose aim it is to give a realistic

reproduction of the sensor data. In literature, complete and accurate models exist, such

as the CW ToF camera model described in [46]. This model is focused on an precise

reproduction of the camera noise. In this thesis the chosen model follows the version

reported in [33], which describes the acquisition process and all the noise sources of

CW ToF cameras.

Continuous wave ToF cameras emit an IR optical signal sE(t) of amplitude AE

modulated by a sinusoid of frequency fmod

sE = AE [1 + sin (2πfmodt)] . (2.4)

The signal sE(t) is reflected by the target scene surface and travels back to the camera

sensor positioned near the emitter. The received signal sR(t), which is detected by the

sensor, is offset-shifted in intensity with respect to the emitted signal mainly because

of additional background light [34]. This signal results in a mean intensity of BR.

Furthermore, there is also a phase delay ∆φ due to the energy absorption generally

associated to the reflection, to the free-path propagation attenuation (proportional to

the square of the distance) and to the time needed for the propagation of IR optical

signals. The received signal is described by the following equation

sR = AR [1 + sin (2πfmodt+ ∆φ)] +BR, (2.5)

8



2.3 CW ToF cameras

where AR is the amplitude attenuated by a factor k taking into account all optical losses

in the transmission path. Figure 2.5 shows a scheme of the phase shift measurement

principle. Even though they are both IR radiation amplitudes (measured in [V ]), it

Figure 2.5: Scheme of the phase shift measurement principle (emitted signal sE(t) in

blue and received signal sR(t) in red) [33].

is common to call the quantity AR (denoted by A) amplitude and AR + BR (denoted

by B) intensity or offset ; the latter is the average of the received signal, with the

component BR due to the background light and the component AR due to the non-

perfect demodulation [3]. With these notations, Equation (2.5) becomes

sR = A sin (2πfmodt+ ∆φ) +B. (2.6)

The unknowns are the two amplitudes A, B (measured in volt) and the phase delay

∆φ (pure number). The former amplitudes are important for SNR evaluation, whereas

the latter phase delay is essential for the estimation of the depth. In fact the relation

between ∆φ and the time-of-flight τd is

∆φ = 2πfmodτd = 2πfmod
2d

c
. (2.7)

As stated in Equation (2.3) the inversion of Equation (2.7) gives the distance.

The three unknowns are extracted using a suitable demodulation device, which can

perform either a correlation or a sampling process. As described in [3], the received

signal sR(t) is usually sampled at least 4 times per modulation period, with each sample

9
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shifted by 90◦. Every sample represents the integration of the photo-generated charge

carriers over a fraction of the modulation period: this technique is the so-called natural

sampling process. Adding up the samples over several modulation periods increases

the signal-to-noise ratio. For instance, using a modulation frequency of 20[MHz] and

a summation over 10[ms] means that each sampling can be integrated over 200.000

modulation periods. From these four samples (s0
R, s1

R, s2
R, s3

R), the amplitude (A), the

phase shift (∆φ) and the intensity offset (B) can be calculated:

A =

√(
s0
R − s2

R

)2
+
(
s1
R − s3

R

)2
2

(2.8)

B =
s0
R + s1

R + s2
R + s3

R

4
(2.9)

∆φ = arctan

(
s0
R − s2

R

s1
R − s3

R

)
. (2.10)

The amplitude is a measure of the achieved depth resolution and it is also used to

generate a grayscale image of the observed scene. The offset describes the total intensity

of the detected signal, also including the additional background light, and it may be

used to generate another 2D grayscale intensity image. The final distance d is obtained

from the phase information combining (2.3) and (2.10) as

d =
c

4πfmod
∆φ. (2.11)

Sometimes, a sort of confidence map or flag matrix is also delivered, which contains

information about the quality of the acquired data (i.e., saturated pixels, low signal

amplitudes, invalid measurement, etc.). In order to give an idea of the data acquired

with the PMD CamCube 3.0, an example is showed in Figure 2.6.

2.4 CW ToF cameras: typical distance measurement er-

rors

This Section provides an overview about the typical distance measurement errors of

CW ToF cameras as well as the currently available compensation methods. There are

two type of errors: random errors (like photon-shot noise, internal scattering, multi-

path effect, motion blur, flying pixels) and systematic errors (like harmonic distortion,

phase wrapping, amplitude-related errors). Generally, the former can be managed by

calibration and the latter by filtering.

10



2.4 CW ToF cameras: typical distance measurement errors

(a) Amplitude image. (b) Intensity image. (c) Range image.

Figure 2.6: Visualization of data acquired with the PMD CamCube 3.0 camera: (a)

amplitude image A, (b) intensity image B, (c) range image Z (scale in meters).

2.4.1 Harmonic distortion

Unfortunately, it is technically very difficult to create perfect sinusoids with the re-

quired frequency. In practice [4], most ToF cameras modulate the light with a square

wave rather than a sinusoidal wave. Precisely, the sinusoids are obtained as low-pass

filtered versions of squared wave-forms emitted by the LEDs. Since a harmonic sinu-

soidal illumination is the basic assumption for the measurement process, the estimated

phase shift ∆φ and consequently the corresponding distance d results distorted. This

distortion leads to a systematic offset component which depends only on the measured

depth for each pixel. A metrological characterization of this harmonic distortion can be

found in [19] and [53]. As reported in [33] the harmonic distortion offset usually varies

with a cyclic influence in the whole working range of the camera and it can assume

values up to some tens of centimeters. This systematic offset, sometimes referred to as

wiggling or circular error, reduces the accuracy of distance measurements, but it can

be limited using a compensation via look-up-table (LUT ) correction. A LUT has been

proposed in [20], this method stores the depth errors depending on the measured depth

distance using only one central pixel.

Furthermore, as shown in Figure 2.7, the sampling of the received signal is not

ideal, but it is performed in finite time intervals ∆t (for ideal sampling the system

would need an infinite bandwidth). However, the natural sampling process has no

influence on the phase as long as the integration time of each sampling point is shorter

than the modulation period of the sampled signal. Only the measured amplitude is
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Figure 2.7: Pictorial illustration of non instantaneous sampling of the received signal

sR(t) [33].

attenuated, but if the integration time is chosen as one half of the modulation period

∆t = T/2 = 1/2fmod the measured amplitude is 64% of the real amplitude [24].

2.4.2 Phase wrapping

The second systematic distance measurement error is the phase wrapping. While with

pulse-based ToF cameras no problem of measurement ambiguity occurs, with CW ToF

the phase shift estimation can give some issues. In fact, the phase shift ∆φ is obtained

from the arctangent function in Equation (2.10), which is only unambiguously defined

for values in the range [−π
2 ,

π
2 ]. However, since the physical delays in Equation (2.7)

can only be positive, with the usage of arctan2(·, ·) it is possible to have a larger

interval available for ∆φ, extending the codomain to [0, 2π]. Hence, from Equation

(2.11) the non-ambiguity range for the estimated distance is [0, c
2fmod

]. For instance,

with fmod = 20[MHz], the distance measurement range of the camera is [0, 7500][mm].

For this reason, objects located at a distance d > dMAX = c
2fmod

appear to be at

the distance modulo(d/dMAX), in fact the corresponding estimated phase shift ∆φ is

greater than 2π, so the distance of these objects is wrongly estimated. In practice, the

measured distance corresponds to the remainder of the division between the actual ∆φ

and 2π, multiplied by c
2fmod

. This is the well-known phenomenon called phase wrapping

since it may be regarded as a periodic wrapping around 2π of phase values ∆φ [33].

Several methods have been proposed in order to resolve the phase wrapping problem
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and one of them uses multiple modulation frequencies to extend the non-ambiguity

range.

With this approach two frequencies f1 and f2 are used either in two subsequent

measurements or as a superposed signal in one measurement. The beat frequency,

which is given by the difference of the two single modulation frequencies (fb = f2−f1),

extends the maximum measurable distance to

dMAX =
c

2 (f2 − f1)
. (2.12)

Figure 2.8 shows the non-ambiguity augmentation by using two signals with different

modulation frequencies. The phase can be unambiguously reconstructed from the point

where both phases are zero to the next point of the same condition [4].

Figure 2.8: The measurement with two frequencies allows the unambiguous extraction of

the phase within a significantly enhanced range compared to the single frequency distance

measurement.

2.4.3 Photon-shot noise

According to [3], because of the dark electron current and the photon-generated electron

current, the four acquired samples s0
R, s1

R, s2
R, s3

R are affected by photon-shot noise.

Whereby the dark current shot-noise component in the pixel can be reduced by lowering

the sensor temperature or by improving the technology, there is no way to eliminate

the photon-shot noise. Therefore, this noise is the most dominating noise source of CW

ToF cameras. Photon-shot noise describes the statistical Poisson-distributed nature of

the arrivals process of photons on the sensor and the generation process of electron

hole-pairs, hence it is statistically characterized by a Poisson distribution. However, as

reported in [32], the probability density function of the noise affecting the estimated

13
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distance d can be approximated by a Gaussian with standard deviation

σd =
c

4πfmod
√

2

√
B

A
. (2.13)

The precision (repeatability) of the measured distance is determined by the standard

deviation in Equation (2.13). This standard deviation depends on three factors: the

amplitude A, the offset B and the modulation frequency fmod. Clearly, the higher the

amplitude of the received signal A is, the better is the measurement precision (i.e.,

lower standard deviation of the measured distance). This means that the measurement

precision decreases with the distance. Differently, if the intensity B increases, the

measurement precision decreases. Since B = AR + BR, it may increase both with an

increment of the background illumination BR, which worsen the precision, or with an

increment of the received signal amplitude A, which gives a slight precision improvement

(considered the squared root dependence of B in Equation (2.13)). Last but not least,

the modulation frequency fmod is in inverse proportion with respect to the maximum

measurable distance but, at the same time is in direct proportion with respect to

the standard deviation of the distance measurements. In fact, if fmod increases σd

decreases, while the maximum measurable distance decreases (and vice-versa). For

all these reasons, the modulation frequency is the first fundamental parameter of ToF

cameras.

Usually, in the case of ToF cameras which allows to change the modulation frequency

of the signal (e.g., PMD[vision] R© CamCube 3.0 allows 4 choices of fmod between 18

and 21[MHz]), this parameter should be adjusted based on the desired maximum

measurable distance and precision. Moreover, the usage of more than one modulation

frequency allow the cooperation of multiple cameras.

2.4.4 Additional noise sources

Beyond photon-shot noise, phase wrapping and harmonic distortion, other noise sources

such as flicker noise, thermal noise and kTC noise need to be considered. These

noises are modeled as a constant noise floor N that is added to the demodulated signal

independently from the exposure time [3]. For this reason the offset component B in

Equation (2.13) can be written as

B = AR +BR +Bdark +N (2.14)
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where Bdark is the intensity of the dark electron current, which contributes, together

with N , to a constant offset of the demodulated signal. In order to operate at the

physical limitation given by the photon-shot noise, the main target of all the ToF

cameras manufacturers is to reduce these additional noise sources using high quality

components. Concerning the thermal noise, internal camera temperature affects the

depth processing, hence some cameras include an integrated fan. The measured depth

values suffer from a drift in the whole image until the temperature of the camera is

stabilized [7]. The general approach to reduce temperature depth errors is to switch on

the camera and wait until it takes a stable temperature before starting the acquisition.

In [38] the authors suggest to wait up to 40 minutes to obtain distance measurement

stability, both with the SR4000 and the CamCube 3.0. Especially in the case of the

CamCube 3.0, for which warm-up distance measurement variations up to 0.12[m] have

been founded (the test was performed on a white wall at a distance of 1[m] from the

camera).

As stated in [33] it is possible to further reduce the additional noise effects by av-

eraging distance measurements over several periods. However, the noise effects cannot

be completely eliminated. The averaging interval length is called integration time (IT )

and represents the length of time that the pixels are allowed to collect light. This is,

together with the modulation frequency, the second fundamental measurement param-

eter of ToF cameras. In fact, increasing the integration time (maintaining all other

factors constants, such as modulation frequency, distance of the object, room tempera-

ture, etc.) leads to better ToF distance measurement repeatability. Generally, a higher

integration time is recommended to achieve a high distance measurement accuracy. On

the other hand, long integration times introduce severe impact on the depth sensing

quality, which are explained in the next Subsection.

2.4.5 Amplitude-related errors and motion blur

Amplitude-related errors occur due to low or overexposed reflected amplitudes. In-

creasing the integration time can lead to saturation of the pixels due to the increase

in the amplitude of the measured signal. In fact, the longer is the integration time,

the higher is the number of collected photons. When the received photons exceed the

maximum quantity that the receiver can collect, saturation occurs. The saturation is

often reached due to surfaces with high reflectivity to the camera signal or due to the
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presence of high levels of background light (i.e., sunlight). While in the case of high

object reflectivity it could be sufficient to reduce the integration time, for background

light recent ToF cameras, such as the PMD CamCube 3.0, have introduced the Sup-

pression of Background Illumination (SBI ) modality, allowing the usage of the devices

also in outdoor applications. This technique allows precise 3D measurements even in

environments with huge uncorrelated signals at high temperatures thanks to additional

compensation sources. These sources inject additional charges in both quantum wells

in order to instantaneously compensate for the saturation effects of uncorrelated sig-

nals during the integration process. Another solution is to automatically adjust the

integration time, depending on the maximum amplitude present in the current scene,

using a suitable software for data acquisition. This is, for instance, the case for the

MESA SR4000 ToF camera. The opposite problem is the low amplitude error, which

is mainly due to low illumination of the scene with objects at different distances and

differences in object reflectivity’s (non-specular materials for example retain energy and

modify consequently the reflected light phase, depending on their refraction indices).

Low amplitude errors can be avoided by filtering pixels with lower amplitude than a

threshold [54], but this solution may discard a large region of the image [7].

The second phenomenon linked to the averaging over multiple periods is the motion

blur. This error is due to the physical motion of the objects or the camera during the

integration time used for sampling and leads to a blurring of the image across the

direction of the motion. In fact, a computed value does not correspond to the state

of the scene before nor after the event. Furthermore it is normally not between these

values, but lays somewhere in the available range. Longer integration times usually

allow higher accuracy of depth measurement so, for static objects, one may want to

decrease the frame rate in order to obtain higher measurement accuracies from longer

integration times. On the other hand, capturing a moving object at fixed frame rate

leads to the motion blur problem. This imposes a limit on the integration time. Device

manufacturers are trying to reduce the latency between the individual exposures for

the phase samples, which is mainly caused by the data readout from the chip, but the

problem still remains and might be solved by motion-compensated integration of the

individual measurements [37].
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2.4.6 Flying pixels

As explained in Section 2.2.1, since a sensor pixel is associated to a finite scene area

(Figure 2.9) and not to a single scene point, it receives the radiation reflected from all

the points of this area.

Figure 2.9: Finite size scene area (blue) associated to a ToF sensor pixel (red).

These approximations lead to the so-called problem of flying pixels, which are errant

3D data resulting from the way ToF cameras estimate the depth in edge areas. When

the acquired area is a flat region, the association of a scene area to a single pixel does

not introduces any artifact in the estimated depth. On the other hand, if the area

crosses a depth discontinuity the estimated depth Z (pT ) for the correspondent pixel

pT is a convex combination of the two different depth levels, where the combination

coefficients depend on the percentage of the area at closer depth and the area at farther

depth respectively reflected on pT . As shown in Figure 2.10, flying pixels lead to severe

depth estimation errors and they should be discarded from acquired data. However,

flying pixels elimination is a difficult task. One possible solution in presented in [18, 27],

where an heavy reduction of the flying pixels is achieved by exploiting the RGB acquired

data with an external digital camera associated to the ToF camera.

2.4.7 Internal scattering

Internal scattering effects arise due to multiple light reflections between the camera

lens and its sensor. This effect produces a depth underestimation over the affected pix-

els because of the energy gain produced by its neighboring pixels reflections [7]. The

underestimation is particularly strong when the weak signal from far objects (back-

ground) is affected by the strong scattering signal from foreground objects. Moreover,

the internal scattering is highly scene dependent. A schematic representation of this

effect is reported in Figure 2.11. The signal emitted by the illumination unit is reflected
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Figure 2.10: An example of flying pixels at the depth edge between object and back-

ground.

by the foreground object (red) and the background object (blue), which are positioned

at distances r1 and r2 from the sensor. Due to the high amplitude of the signal reflected

by the foreground object (S1), multiple internal reflections can occur between the lens

and the sensor (dotted red arrows in Figure 2.11). These reflections can superimpose

the signal reflected by the background object (S2), resulting in some changes in both

amplitude and phase [37]. However, this problem is negligible in some recent camera

models.

2.4.8 Multi-path propagation

One of the main errors sources of CW ToF cameras distance measurements is multi-path

propagation. Essentially, this problem occurs due to the so-called scattering, schemati-

cally represented in Figure 2.12, where the orange optical ray incident to a non-specular

surface is reflected in multiple directions (green and blue). In the ideal scenario, only

the green ray of Figure 2.12 exists and it returns to the camera sensor, so that the

total distance travelled by the light is twice the distance from the camera to the ob-

ject. However, also the others (blue) rays should be taken into account. In fact, these
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Figure 2.11: Schematic representation of the multiple internal reflections inside the cam-

era.

Figure 2.12: Scattering effect.
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rays could first hit others scene objects and then travel back to the ToF sensor: in

this case the light travels both by the direct and the indirect paths, affecting therefore

the distance measurements of others scene points. Hence, the apparent distance is a

weighted average of the path distances, where the weights depends on the strength of

signal returned via each path. The final result is an over-estimation of the distance

measurements. An example of multi-path phenomenon is showed in Figure 2.13. Since

Figure 2.13: Multi-path effect: the emitted ray (orange) hit the surface at point A and is

reflected in multiple directions (blue and red rays). The red ray reaches then B and travels

back to the ToF camera affecting the distance measured at the sensor pixel relative to B.

multi-path is a scene depend error, it is very hard to model. Hence, currently there is

no method for its compensation [33].

2.5 ToF camera PMD CamCube 3.0

The PMD[vision] R© CamCube 3.0 [39] is a phase shift based ToF camera composed

by two LEDs illumination units and a central camera unit with a sensor resolution of

200 × 200 pixels at frame rate 40 [fps]. The “crop utility” delivered by PMD allows

cropping of pixel columns and rows, therefore it is possible to get frame rate up to

80 [fps] at 160×120 pixels resolution. The CamCube 3.0 provides three types of images

all captured at once, namely intensity image, amplitude image and range image. The

reason for the low image resolution are the multiple detection units resulting into larger

pixels. The use of larger pixels is to enable the collection of a higher amount of incoming

light which increases the depth precision [46]. The camera is more robust to sunlight

than other ToF cameras based on phase shift measurements thanks to its PMD 41k-

S2 sensor with integrated SBI technology. The declared measurement repeatability is
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0.003 [m], while the working range with standard settings is [0.3, 7.0] [m]. Finally, the

field of view (FoV ) of the camera is increased up to 60◦ × 60◦ by using a different

optics.

In this thesis the camera is always used with a fmod = 20[MHz] which is a very

common modulation frequency that leads to a non-ambiguity range of 7.5[m]. There are

two reasons for choosing this frequency. Firstly, no high-power IR-LEDs are available

with higher modulation frequency at a low price tag. Secondly, the non-ambiguity range

suits most of the indoor and outdoor applications. However, the suggested measurement

range for this camera is [0.3, 7][m]. Eventually, the integration time is set to 1[ms].
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Chapter 3

Stereo Systems

A stereo vision system uses two standard cameras in order to simulate the human

binocular vision and estimate the depth distribution of an acquired scene. The basis of

this system is the passive triangulation principle: when a 3D object is viewed from two

coplanar cameras, the image as observed from one position is shifted laterally when

viewed from the other one. The offset between the points in the two images, known as

disparity, is inversely proportional to the distance between the object and the cameras.

This distance can be calculated from the estimated disparity when the intrinsic and

extrinsic parameters of the cameras are known. The hardware implementation of this

system is made by a pair of identical video-cameras (or a single camera with the ability

to move laterally) and an optional synchronization unit, used in case of dynamic scenes.

The final estimated depth is always relative to the point of view of one of the two

cameras, usually called reference camera, while the other one is called target camera

[33].

In this Chapter a detailed description of the camera model used for the modeling

of stereo vision systems is given in Sections 3.1 and 3.2. Then, Section 3.3 presents the

image rectification procedure and the definition of stereo disparity. Finally, in Section

3.4 the three main categories of stereo correspondence algorithms are described.

3.1 Pinhole camera model

The pinhole camera model defines the geometric relationship between a 3D point and

its 2D corresponding projection onto the camera. This model is described by its optical
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center C (also known as camera projection center) and the image plane I (also known

as focal plane). Let the optical center be the origin of an Euclidean coordinate system,

and let the upper left corner of I be the origin of the image coordinate system. The

image plane is located at a distance z = f from C, where f is the camera focal length.

With the pinhole camera model it is possible to map a point in world coordinates

W = (x, y, z)> onto a point in the image plane I. This projected point w = (u, v)>

lies where the line joining W and the camera center C meets the image plane. Using

these prerequisites along with similar triangles, it is possible to deduce the so-called

perspective projection mapping from world to image coordinates, showed in Figure 3.1

and described by

(x, y, z)> 7→
(
f
x

z
, f
y

z

)>
. (3.1)

This is a mapping from an Euclidian 3D-space R3 to an Euclidean 2D-space R2. The

line from the camera center perpendicular to the image plane is called the principal

axis or optical axis of the camera, whereas the intersection of the optical axis with the

image plane I is the so-called principal point p. Eventually, the origin of the camera

coordinate system (CCS ) with the principal point coordinates (uc, vc) is located at

the center of the image plane I. If the world and the image points are represented

Figure 3.1: Pinhole camera model. Projection of the point W on the image plane by

drawing the line through the camera center C and the point to be projected. Note that

the image plane is placed in front of the camera center for illustration purposes only [49].
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by homogeneous vectors, then the perspective projection can be expressed in terms of

matrices multiplication as
x
y
z
1

 7→
fxfy

1

 =

f 0
f 0

1 0



x
y
z
1

 , (3.2)

where (x, y, z, 1)> are the homogeneous coordinates of the 3D point, and (u, v, 1)>

are the homogeneous pixel coordinates of the image point. The matrix describing the

mapping is called the camera projection matrix P. It is a 3× 4 full-rank matrix with 3

degrees of freedom [13], and it can be written as

P = diag (f, f, 1) [I|0] (3.3)

where diag (f, f, 1) is a diagonal matrix, and [I|0] is the identity matrix I concatenated

with a null vector 0. With this notation, Equation (3.2) becomes

w = PW. (3.4)

The projection matrix P represents the simplest possible case, as it only contains infor-

mation about the focal distance f .

3.1.1 Intrinsic parameters

Equation (3.1) assumes that the principal point p corresponds to the origin of the

image coordinate system in the image plane I. In practice, this is not always true,

hence an offset vector (uc, vc)
> corresponding the principal point coordinates has to be

considered. Moreover, in the case of CCD cameras there is the possibility of having

non-square pixels. Therefore, the camera’s focal length in terms of pixel dimensions in

u and v directions has to be considered. For these reasons, the general formulation of

the central projection mapping is

(x, y, z)> 7→
(
kuf

x

z
+ uc, kvf

y

z
+ vc

)>
(3.5)

where ku and kv are the effective number of pixels per millimeter along the u and v-axes

of the image plane I, and (uc, vc) are the coordinates of the principal point. Now, the

camera projection matrix becomes

P =

fku uc 0
fkv vc 0

1 0

 . (3.6)
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From this formulation, it is possible to decompose P, using the QR factorization, in the

product of two matrices

P = K [I|0] , (3.7)

where

K =

αu uc
αv vc

1

 (3.8)

is the camera calibration matrix which encodes the transformation in the image plane

from the normalized camera coordinates to pixel coordinates. This matrix depends from

the so-called intrinsic parameters, which are the focal lengths αu = fku, αv = fkv in

horizontal and vertical pixels, respectively (f is the focal length in millimeters, ku and

kv are the number of pixels per unit distance in image coordinates), and the principal

point coordinates (uc, vc) in pixel. Moreover, there exists a further parameter, the skew

coefficient γ between the u and v-axes, but for high-quality build cameras it can be

approximated to zero.

3.1.2 Extrinsic parameters

In general, the camera coordinate system and the world coordinate system are different

Euclidean coordinates systems. These two systems are related via a 3 × 3 rotation

matrix R and a translation vector t, which are the so-called extrinsic parameters. If

W represents a point in the world coordinate system, and Wc is the same point in the

camera coordinate system then the relation between these two points in homogeneous

coordinates is

Wc =

[
R −RC
0 1

]
x
y
z
1

 =

[
R −RC
0 1

]
W, (3.9)

where C are the coordinates of the camera center in the world coordinate system, and

R is the rotation matrix that describes the position and orientation of the camera with

respect to the world coordinate system. With the notation t = −RC, the perspective

projection mapping of Equation (3.4) becomes

w = K [R|t] W = PW. (3.10)

This is the general mapping from a point W = (x, y, z)> in world coordinate system to

a point w = (u, v)> in the camera image plane. The new resulting camera projection
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matrix P = K [R|t] has 11 degrees of freedom: 5 for the intrinsic parameters in K (the

elements f , ku, kv, uc, vc), and 6 for the extrinsic parameters R and t [13].

3.1.3 Lens distortion

So far, the introduced camera model assumes that the acquisition process of the camera

can be described as a linear model. Therefore, the optical center, the world point and

the image point are collinear. This means that world lines are imaged as lines, but

for real (non-pinhole camera) lenses this assumption will not hold. In fact, a realistic

camera model must take into account some nonlinear distortions introduced by the

lenses (e.g., an imperfect centering of the lens components and other manufacturing

defects). The most significant distortion is generally a radial distortion, but there exists

also a tangential distortion. The effect is that incoming light rays are bended more or

less depending on the distance to the principal point p. The distortion becomes more

significant as the focal length, the FoV (and the price) of the lens decreases [13]. The

target of lens undistortion is to remove this error in order to obtain a camera that

works as a linear device. To do this, the pinhole camera model described in Section 3.1

is usually improved with an additional lens distortion model. The radial distortion is

modeled as a nonlinear transformation from the ideal (undistorted) pixel coordinates

(u, v) to the observed (distorted) pixel coordinates (û, v̂). In the implementation of [2],

the latter distorted pixel coordinates are

ŵd =
(
1 + ρ1r

2 + ρ2r
4 + ρ3r

6
)︸ ︷︷ ︸

radial distortion

w +

2%1ucvc + %2

(
r2 + 2 (uc)

2
)

%1

(
r2 + 2 (vc)

2
)

+ 2%2ucvc


︸ ︷︷ ︸

tangential distortion

, (3.11)

where ρ1, ρ1 and ρ3 are the radial distortion coefficients, %1 and %2 are the tan-

gential distortion coefficients, (uc, vc) are the coordinates of the image center, and

r =
√

(uc)
2 + (vc)

2.

3.2 Two-view geometry

The two-view geometry is essentially the intrinsic geometry of two different perspective

views of the same scene. The two perspective views may be acquired simultaneously,

for example in a stereo rig, or sequentially, for example by moving a single camera.
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From the geometric viewpoint the two situations are equivalent, but in the second case

the scene might change between successive acquisitions. Figure 3.2 shows a two-view

geometry, where each camera has his own camera projection matrix P1 and P2. Most of

the 3D scene points must be simultaneously visible in both the views. This is not true

in case of occlusions (i.e., points visible only in one camera). Each unoccluded 3D scene

point W = (x, y, z)> is projected to the image plane I1 in the point w1 = P1W, and to

the image plane I2 in the point w2 = P2W. These two points are called corresponding

points (or conjugate points).

Figure 3.2: Two-view geometry for a stereo camera rig. The points w1 and w2 are

corresponding points, as they are the projection of the same 3D point W [49].

3.2.1 Epipolar geometry

The epipolar geometry describes the geometric relationship between two perspective

views of the same 3D scene. The key point is that corresponding image points must

lie on particular image lines. Therefore, a point w in one image defines an epipolar

line `. With the epipolar geometry, instead of searching the corresponding point in the

whole 2D region of the other image, it is possible to reduce the search range to only

the epipolar line `. This is the reason why the epipolar geometry is widely used for the

search of corresponding points in stereo matching. Figure 3.3 illustrates the epipolar

constraint for the mapping w1 7→ `2 of image point w1 in the first view to the epipolar
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3.2 Two-view geometry

line `2 in the second view. The 3D point W, the two corresponding image points w1

and w2, and the camera projection centers C1 and C2 are coplanar and define a plane

π called epipolar plane. The conjugate epipolar lines `1 and `2 are the intersections of

the epipolar plane π with the image planes. The line connecting the camera centers C1

and C2 is called the baseline. The intersection of the baseline with the image planes

Figure 3.3: Epipolar constraint for the mapping w1 7→ `2. The camera centers, 3D point

W, and its images w1 and w2 lie in the common epipolar plane π [49].

I1 and I2 defines the two epipoles e1 and e2. For each view, all the epipolar lines `

intersect at the corresponding epipole e. As the position of the 3D point W varies, the

epipolar planes “rotate” about the baseline, therefore any plane containing the baseline

is an epipolar plane [13] (Figure 3.4).

3.2.2 Fundamental matrix

The fundamental matrix is the algebraic representation of epipolar geometry. Given

two corresponding points, w1 and w2, the fundamental matrix F describes the relation

between one point and the epipolar line on which his correspondent point on the other

image must lie. This means that, for all pairs of corresponding points w1 ↔ w2, the

fundamental matrix F is a 3× 3 matrix that satisfies the epipolar constraint

w1
>Fw2 = 0. (3.12)
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Figure 3.4: Epipolar geometry where any plane containing the baseline is an epipolar

plane π. The epipolar plane π intersects the image planes I1 and I2 at the corresponding

epipolar lines `1 and `2. Each epipolar plane for any point correspondence defines the

respective epipolar lines [49].

For any point w1 in the first image, the corresponding epipolar line is

`2 = Fw1. (3.13)

In the same way, for the image point w2 in the second image, the corresponding epipolar

line is defined by

`1 = Fw2. (3.14)

Geometrically, F represents the mapping from the 2D projective plane of the first image

to the pencil of epipolar lines through the epipole e2. Therefore, it must have rank

2 [13]. Moreover, F has 7 degrees of freedom hence it can be estimated given at least

7 points correspondences. If the fundamental matrix F represents the pair of camera

projection matrices {P1, P2}, then the transposed fundamental matrix F> represents the

camera projection matrices in the opposite order {P2, P1}. Another important property

is that the two epipoles e1 and e2 are, respectively, the right null-vector and the left

null-vector of F. Hence, they satisfy the relations

Fe1 = 0, (3.15)

F>e2 = 0. (3.16)
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3.3 Image rectification

3.2.3 Essential matrix

The essential matrix is the specialization of the fundamental matrix to the case of

normalized image coordinates for the corresponding points ŵ1 ↔ ŵ2, where ŵ = K−1w.

This matrix represents the epipolar geometry considering calibrated cameras

K−1P = [R|t] , (3.17)

where the camera matrix K−1P is called a normalized camera matrix. The relationship

between the two corresponding image points in normalized coordinates ŵ1 ↔ ŵ2 is

expressed by the defining equation for the essential matrix

ŵ>2 Eŵ1 = 0. (3.18)

From this equation it is possible to obtain the relationship between the fundamental

and the essential matrices

E = K2
>FK1, (3.19)

where K1 and K2 are the camera calibration matrices of the two cameras. Summing up,

the essential matrix is a 3× 3 matrix with only 5 degrees of freedom. This because of

the constraint that two of its singular values are equal and the third singular value is

zero [49]. For the rest, it shares the basic properties with the fundamental matrix F.

3.3 Image rectification

As explained in the previous Sections, for normal video-cameras the mapping between

a scene point W and his projection w on the two image planes is determined by the

cameras’ intrinsic and the extrinsic parameters. All the parameters of such model can

be estimated with a camera calibration procedure (described in Section 7.1.1). After

the calibration, the two images are usually rectified, in order to simplify the stereo

matching algorithm. Image rectification transforms each image plane such that pairs of

conjugate epipolar lines become collinear and parallel to one of the image axes (usually

the horizontal one). The rectified images can be thought of as acquired by a new stereo

rig, obtained by rotating the original cameras in order to generate two coplanar image

planes that are in addition parallel to the baseline. With this expedient, the search

domain of corresponding pixels is restricted from horizontal and vertical lines of the
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3. STEREO SYSTEMS

rectified images to only the horizontal lines (Figure 3.5). Image rectification also allows

to correct the projective distortion introduced by the camera lenses and compensate the

focal length differences between left and right camera; for more details see [9, 31, 50].

After the rectification both left image (reference image I1) and right image (target

Figure 3.5: The search space before (1) and after (2) rectification [55].

image I2) are referred to the 2D CCS of the reference image, with horizontal axis u and

vertical axis v. Hence a scene point W = (x, y, z)> expressed with respect to the left 3D

CCS, if visible from the two cameras, is projected to point w1 with coordinates (u1, v1)>

onto reference image plane and to point w2 with coordinates (u2, v2)> = (u1 − d, v1)>

onto target image plane. With this notation, the horizontal distance d between the

coordinates of w1 and w2 is called disparity and is expressed in pixel. Since the depth

information is inversely proportional the the corresponding disparity, the depth value

z of W can be computed as

z =
bf

d
, (3.20)

where b is the baseline in meters (i.e., the distance between the two camera nodal

points) and f is the focal length in pixel, which is assumed equal in both directions

(u, v) of the image plane and in both the cameras. High values of disparity d correspond

to low depth z (i.e., points close to the camera), whereas low values of d correspond

to high z. Usually the distance z = ∞ is associated with disparity d = 0. Moreover

it is customary to limit the range of values which d may take using the minimum and

maximum depth vales (zMIN and zMAX) of the scene, if they are known. With this

convention d can take values between dMIN = bf/zMAX and dMAX = bf/zMIN .
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3.4 Stereo correspondence algorithms

The accuracy of stereo vision systems decreases quadratically with respect to z, this

can easily proved by deriving Equation (3.20) with respect to d

∆z ∼= −
bf

d2
∆d, (3.21)

where ∆d is the estimation precision of d. Finally, the consequent depth estimation

error ∆z is obtained by combining 3.21 and 3.20

∆z ∼= −
z2

bf
∆d. (3.22)

Summarizing, neglecting the sign, the depth accuracy ∆z of a traditional stereo system

decreases quadratically with the distance, which means that the accuracy in the near

range far exceeds that of the far range.

The major problem to solve is the computation of the disparity map, this means

find a set of points in the reference image which can be identified as the same points

in the target image. For achieving this, points or features in I1 are matched with the

corresponding points or features in I2. This is the so-called correspondence problem,

which is treated in the next Section.

3.4 Stereo correspondence algorithms

Stereo correspondence has traditionally been one of the most heavily investigated topics

in computer vision. The goal of these algorithms is to provide, starting from two images

I1 and I2 taken by a stereo system, a disparity image DS . Since the focal length f and

the baseline b are known, this disparity image can be used to compute the depth of the

acquired scene with Equation (3.20). In order to detect conjugate points (w1, w2), for

every pixel w1 ∈ I1 a linear search along each horizontal line of I2 is performed. The

reliability of point matching is fundamental, because mismatching correspondences lead

to wrong depth estimation and gaps in the reconstruction. In literature many stereo

correspondence algorithms have been proposed, and they can be divided into three

main categories, described in the following Subsections.

3.4.1 Local methods

With local methods the disparity at a given point w1 of the reference image is computed

by exploiting the local similarity of the intensity values, within a finite window, in the
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correspondent row of the target image. One of the most used algorithm is the so-called

Fixed Window (FW ) stereo algorithm. With this technique, for each pixel w1 = (u, v)>

on the reference image its conjugate w2 = (u− d∗, v)> is searched using a window W1

of size (2n+ 1) (2m+ 1) pixel centered around w1. This window is compared with other

windows of the same size W i
2 centered around each possible candidate wi2 (u− i, v) with

i = 1, ..., dMAX − dMIN in the target image, as shown in Figure 3.6. The computed

Figure 3.6: Fixed Window stereo algorithm [33].

disparity is the shift associated at the maximum similarity between the values of each

pair of windows W1 and W i
2. In order to evaluate this similarity many cost functions

can be used, one of the most employed is the Sum of Squared Differences (SSD):

SSD(u, v, d) =
∑
(k,l)

(I1 (u+ k, v + l)− I2 (u+ k + d, v + l))2, (3.23)

where k ∈ (−n, n), l ∈ (−m,m) and I (u, v) is the gray-level of pixel k ∈ (u, v). Clearly

many other different measures can be used, common window-based matching costs

include Sum of Absolute Differences (SAD), Normalized Cross Correlation (NCC ) or

the census transform. Small values of SSD indicate that two image portions are similar.

For each pixel (u, v) the algorithm choses the disparity associated with the minimum

cost value by using

d∗ (u, v) = arg min
d

SSD(u, v, d). (3.24)

Thus, the computed disparity has a precision of one pixel, however it is possible to

obtain a sub-pixel precision by interpolating the cost function SSD in proximity of the

minimum. Such a local method considers a single pixel of I1 at the time, it performs a

Winner-Takes-All (WTA) strategy for disparity optimization and it does not explicitly

impose any model on the depth distributions. As most local algorithm, this approach

performs poorly in textureless regions. Another issue is that uniqueness of matches
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is only enforced for one image (the reference image), while points in the other image

might get matched to multiple points. However, the main limitation of FW algorithms

lies in selecting an appropriate windows size, which must be large enough to include

sufficient intensity variation for matching, but should be small enough to avoid the

effect of projective distortion. If the window is too small and does not cover enough

intensity variation, it gives a poor disparity estimation, because the ratio between

intensity variation and noise is low. On the other hand, if the window is too large

and include a scene depth discontinuity, then the position of minimum SSD may not

represent the correct matching due to different projective distortions in the left and

right images. For all these reasons, modifications of FW have been proposed, like using

multiple coupling windows for a single pair of candidate conjugate points [8] or select

the windows size adaptively depending on local variations of intensity and disparity

[21]. These variations of the classical FW approach lead to performance improvements,

especially in presence of depth discontinuity, but they cause a significant increase in

terms of computation time.

3.4.2 Global methods

In contrast to local methods, algorithms based on global correspondences overcome

some of the aforementioned problems. They compute the whole disparity image DS at

once by imposing smoothness constraints on the scene depth in the form of regularized

energy functions. The result is an optimization problem which typically has a greater

computational cost as compared to local methods. The target of global algorithms is

to find a disparity image DS that minimizes the global energy cost function

ÎD = arg min
D

E (DS) = (Edata (I1, I2, DS) + Esmooth (DS)) . (3.25)

The quantity Edata (I1, I2, DS), called data term, measures how well the disparity image

DS agrees with the input image pair (it is a cost function similar to the one of local

algorithms). The smoothness term Esmooth (DS) encodes the smoothness assumptions

made by the algorithm. To make the optimization computationally tractable, the

smoothness term is often restricted to only measure the differences between neighboring

pixels disparities. Other terms can be added to Equation (3.25), in order to consider

occlusions and other a-priori knowledge on the scene depth distribution.
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Once the global energy has been defined, a variety of algorithms can be used to find

a (local) minimum of Equation (3.25). Since a high number of variables are involved,

this minimization is not trivial, i.e., nrow×ncol disparity values of DS which can assume

dMAX − dMIN + 1 possible values within range (dMIN , dMAX). Therefore, there are

(nrows × ncol)dMAX−dMIN+1 possible configurations of DS , and a greedy search of the

minimum over all these configurations is not feasible [33]. Traditional minimization

approaches associated with regularization and Markov Random Fields (MRF ) including

continuation, highest confidence first, and mean-field annealing have been presented in

the past [45]. More recently, max-flow and graph-cut methods have been proposed to

solve a special class of global optimization problems [44].

As previously stated, global methods are computationally more expensive than local

methods, but the main advantage of these algorithms is that they are able to cope with

depth discontinuity and are more robust in textureless areas.

3.4.3 Semi-global methods

Semi-global algorithms use a global disparity model like the global methods, but they

impose constraints only on part of the scene, in order to reduce the computational cost.

In detail, for each point of DS , the minimization of the cost function is computed on a

reduced model. These algorithms offer a good tradeoff between accuracy and runtime,

therefore they are well suited for many practical applications.

One of the most classical semi-global algorithm is the so-called Semi-Global Match-

ing (SGM ) technique [16], which is based on the idea of pixel-wise matching by using

Mutual Information (MI ) as matching cost. This algorithm computes many 1D energy

functions along different paths (usually 8 or 16), then the functions are minimized and

finally their costs are summed up. For each point, the chosen disparity correspond to

the minimum aggregated cost. As compared to local and global methods, this algorithm

is very fast and works well even with textureless regions.
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Chapter 4

ToF Cameras and Stereo

Systems: Comparison and

Combination

From the previous Chapters it is clear that both ToF and stereo vision systems are

good techniques for depth estimation of a 3D scene. However, each one operates under

specific conditions, hence they are suitable for different applications. In this Chapter

a description of these two range cameras is provided, in order to show that they can

be considered complementary systems. Moreover, a review of literature regarding their

fusion is presented. Finally, in Section 4.4 the ideal model considered for test and

development of the super-resolution algorithms is described.

4.1 Stereo systems analysis

Stereo systems are the most common schemes for 3D image acquisition. Even if they

have been greatly improved during the last years, they still cannot handle all scene

situations. One first important parameter for their characterization is the accuracy,

that is the degree of closeness of measurements of a quantity to its actual (true) value.

Since stereo vision systems completely rely on the correct identification of correspond-

ing points, their accuracy depends on scene geometry and texture characteristics. For

example, in the FW algorithm the matching consists of searching the correspondent

conjugate pixel onto the epipolar line in the target image for every pixel in the reference
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image. This matching works well on textured scenes, but it has difficulties in homoge-

neous regions and when repetitive patterns along the epipolar line of the target image

introduce ambiguities. Non-textured and featureless regions of a scene are particularly

challenging for stereo system since there is an insufficient visual information for estab-

lishing a correspondence across the two cameras. This can lead to unknown disparity

pixels, where the value is simply propagated from the neighbor disparity. Another pa-

rameter that influences stereo matching accuracy is the illumination of the target scene.

Local stereo are the most scene-dependent algorithms, whereas global and semi-global

methods are less scene-dependent. On the other hand, global and semi-global methods

are characterized by very time-consuming algorithms and are not suited for real-time

applications.

The second parameter for stereo vision system evaluation is the precision, also called

reproducibility or repeatability, that is the degree to which repeated measurements

under unchanged conditions show the same result. As regards the FW algorithms, if

the same scene is acquired N times under the same conditions, the estimated disparity

images can change according to noise fluctuations in the acquired image pairs. In fact,

because of this noise, the same pixel w1 of the reference image can be matched with

different pixels wi2, with i ∈ {1, 2, ..., N}, in the target image for each acquisition. The

noise effect depends on the amount of texture in the acquired scene: high-textured

scenes are less noise affected with respect to low-textured scenes. In general, global

and semi-global methods are less noise-dependent as compared to local methods, due

to the imposed smoothness model.

Finally, the third evaluation parameter is the resolution, which is the smallest change

in the underlying physical quantity that produces a response in the measurement sys-

tem. There are two different resolutions for range image systems: spatial resolution,

i.e., the number of pixels in the sensor, and depth resolution, i.e., the smallest depth

variation detectable. The spatial resolution of a stereo vision system is simply the

number of pixels of one of the two cameras (e.g., 1920× 1080). However, usually some

pixels of the image cannot be matched, especially in presence of depth discontinuities

and occlusions. For these reasons the real spatial resolution of a stereo vision system is

less or equal than the total number of pixels. Regarding the depth resolution, as stated
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in Chapter 3 and in particular from Equation (3.22), this decreases quadratically with

the distance from the objects.

4.2 Time-of-flight cameras analysis

Differently from stereo vision systems, ToF cameras can extract depth information in

real-time and are not very sensitive at scene peculiarity such as textures. In fact, ToF

cameras excels on textureless surfaces for which stereo systems perform poorly. On the

other hand, they have in practice limited spatial resolution, limited accuracy due to

several noise sources and they are very sensitive to background illumination.

Accuracy on ToF cameras is strongly influenced by all the errors affecting the depth

measurement. As broadly described in Section 2.4, the measured depth is affected

by random errors, such as flying pixels and internal-scattering. Furthermore, also

systematic errors like harmonic distortion and phase wrapping are present. Although

the effect of all these noise sources can be mitigated, especially the one from systematic

errors, the accuracy of the measurement remains one of the main issue for these devices.

In fact, as stated in [19], accuracy can be up to some hundreds of millimeters (e.g.,

400[mm]).

Regarding the precision, noise on ToF cameras can be modeled to be Gaussian

[33] with standard deviation given by Equation (2.13). From that equation it can be

seen that the measurement precision increases as the amplitude of the received signal

A increases (i.e., high-reflective objects or closer distance). Moreover, both a lower

background illumination B and a higher modulation frequency fmod allow a precision

improvement. Although from the producer specifications the precision (repeatability)

of the CamCube 3.0 is less than 3[mm] (typical value, central sensor area at 4[m]

distance and 75% reflectivity), under normal conditions the precision is lower. In fact,

in Chapter 7 experiments performed with the CamCube 3.0 show that its precision is

about some centimeters.

Resolution is the last evaluation parameter. As explained in Section 2.2.1, spatial

resolution is one of the main limitation of ToF cameras. Currently, one of the ToF

cameras with highest spatial resolution is the PMD CamCube 3.0, which has a 200 ×
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200 pixel sensor, whereas the MESA SR4000 has 176 × 144 pixel. Regarding the

depth resolution, at first approximation it can be considered constant within the non-

ambiguity range (e.g., [0, 7500][mm] for the CamCube 3.0 with fmod = 20[MHz]).

However, many factors must be considered to estimate the real depth resolution of the

camera. The most important is the noise affecting the measurement, which increases

with the distance. For this reason depth resolution cannot be considered constant in

the whole range. Since the resolution of the CamCube 3.0 is not given from PMDTec,

the only way to estimate it is through some evaluation tests. For example, measuring

the depth of a plane object placed parallel to the camera and then moving the plane

closer to the camera until the measured depth change value. The difference between

these two values is the searched depth resolution.

4.3 Comparison and combination

ToF cameras and stereo vision systems compensate for each other deficiencies, hence

their combination aims at creating information that exceeds the quality of each indi-

vidual source. Compared to stereo systems the accuracy of ToF cameras is higher,

especially for flat and/or non-textured areas, in which a two cameras setup cannot

provide a reliable disparity estimation. Moreover, since ToF cameras are monocular

systems, they do not suffer from occlusions problem. On the other hand, details and

discontinuities in intensity and/or depth decrease the performance of the ToF depth

measurement, while they typically increase the performance of stereo. Furthermore,

traditional cameras have in common much higher spatial resolution and stereo setups

have a larger working range. In fact, stereo systems can work in both, indoor and

outdoor environment, whereas ToF is suited for indoor acquisition. Regarding the

depth resolution, stereo systems perform better than ToF for closer objects, whereas

ToF cameras depth resolution is less dependent on the object distance. The advantage

and disadvantage of the two systems are listed in Table 4.1. As it can be seen, they

complement each other.

Many approaches consider the fusion of ToF generated depth with a standard cam-

era image or a stereo vision system estimated disparity. In [41] a hardware-based

realization is presented. This setup combines a traditional CCD and a PMD chip in a
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Stereo ToF

Image resolution X X

Depth discontinuities X X

Flat areas X X

Occlusions X X

Depth resolution ∆z ∼= z2

bf∆d ∆z ∼ C ∈
[
0, c

2fmod

]
Table 4.1: Advantage and disadvantage of stereo and ToF cameras. The two systems can

be considered complementary.

monocular device using an optical splitter. Due to the resulting monocular camera, no

special mapping transformation between both images has to be done as both consist

of the same view. However, a know disadvantage of this approach consists in the used

beam splitter. The incoming optical signal is separated into two parts, and this leads

to using only half of the optical power for the PMD sensor, which influences the depth

estimation measurement process. In [27], a binocular camera setup is used, which com-

bines single high-resolution RGB images with PMD distance data in order to project

color information onto the depth image and refine it. Another binocular setup is pre-

sented in [57], where the authors, inspired by stereo matching, create a cost volume

from the depth map, filter it joint-bilaterally using the color images, and then extract

an improved depth map. This approach has unfortunately a high computation time. In

fact it takes several seconds per frame. Three cameras setups are proposed in [10, 11],

where ToF and stereo are combined by converting the ToF depth data into disparity

and then using it as an initialization for a hierarchical stereo matching algorithm. In

[33], fusion between ToF and stereo is achieved with a probabilistic method based on a

Maximum-a-Posteriori Markov Random Field (MAP-MRF ) Bayesian approach. This

global approach guarantees good results, at the expense of complexity and computation

time.

4.4 Ideal model for depth super-resolution

The target of this thesis is to combine the strength points of ToF and stereo vision sys-

tems in order to do super-resolution of a ToF depth image employing a local approach.

Depth image super-resolution is different from color image super-resolution. For color
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images blurry edges are perceptually tolerable and expected, but for depth images the

presence of blur in depth discontinuities indicates a wrong depth estimation and it is

not accepted. Moreover, the ToF estimated depth is very noisy, hence also a depth

noise reduction should be achieved together with the super-resolution. Simple interpo-

lation techniques for super-resolution such as Cubic, Lanczos or Bilinear interpolation

are prone to errors and suffer from annoying artifacts such as aliasing effect, halo, blur,

and other problems, around the edges due to their non-adaptive properties. The aim of

the developed algorithms it is to produce a high-resolution depth image starting from

a low-resolution ToF depth, by using a color image from a single camera or a disparity

map from two cameras. The resulting depth map must have sharp edges and smooth

flat regions. Therefore, the approach consists to use ToF information for flat areas and

one camera (color image) or two cameras (stereo disparity) information for edge areas.

The first algorithm is based on Compressive Sensing (CS ) theory [14] and allows to

obtain a dense disparity/depth map starting from a sparse disparity/depth map. More

in detail, starting from only about 25% of the total pixels, is possible to produce an

accurate result. Based on this algorithm, the proposed method uses information from

stereo disparity (which can be easily converted in depth by using Equation (3.20)) for

the edges and information from ToF depth map for flat regions.

After that, a second approach is presented, which is based on bilateral filtering [51].

More in detail, three different Joint Bilateral Filters (JBF ) [23] have been developed.

The aim of JBF is to combine a low-resolution ToF depth with a high-resolution color

image from a single additional video-camera, in order to obtain a high-resolution depth.

In this case edge information from the high-resolution color image is used to guide the

up-sampling of the depth.

Since the ground truth (i.e., a high-resolution depth image) is normally not avail-

able all the algorithms where first tested in an ideal scenario. For this purpose the

Middlebury 2006 Stereo dataset [17] was used, which is composed by 21 pairs of color

images representing different scenes and their corresponding ground truth disparity

images created using structured light technique. The images are rectified and radial

distortion has been removed. For each scene three resolutions are provided: “full-size”

(width: 1240..1396, height: 1110 pixel), “half-size” (width: 620..698, height: 555 pixel)
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and “third-size” (width: 413..465, height: 370 pixel). The algorithms have been tested

using a pair of “third-size” disparity and color images for each scene. An ideal model

is defined, which assumes a perfect mapping between ToF and video-camera images,

and a Gaussian ToF depth image noise. Therefore, it is possible to recover the ground

truth depth map starting from a down-sampled and noised version of the depth map,

which simulates the low-resolution ToF image, and from the original color or disparity

image which simulate the information from one or two standard cameras. All the super-

resolution algorithms have been tested with several levels of additive Gaussian noise

standard deviation, specifically σN ∈ {0, 0.5, ..., 10}[cm]. Then, the quality of each

algorithm can be evaluated by computing the Mean Absolute Error (MAE ) between

reconstructed depth DR and ground truth depth DGT

MAE =
1

N

∑
u,v

|DR (u, v)−DGT (u, v)| , (4.1)

where both the depth maps are composed by a matrix of NR×NC pixels, u ∈ [0, ..., NC ],

v ∈ [0, ..., NR] and N is the total number of pixels N = NC ·NR.
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Chapter 5

Compressive Sensing Depth

Super-Resolution

In this Chapter a super-resolution algorithm based on Compressive Sensing (CS ) theory

is described. Section 5.1 introduces the compressive sensing fundamentals. In Section

5.2 the reconstruction algorithm based on the work of Hawe et al. [14] is described.

Then, Section 5.3 presents the adaptation of the compressive sensing reconstruction for

depth images super-resolution purposes. Section 5.4 shows the experimental results,

whereas a summary is presented in Section 5.5.

5.1 Compressive sensing

Compressive Sensing (also known as Compressed Sensing, Compressive Sampling, or

Sparse Sampling) is a signal processing technique for efficiently acquiring and recon-

structing a signal, by finding solutions to underdetermined linear systems. Signals can

often be well-approximated as a linear combination of just a few elements from a known

basis. When this representation is exact the signal can be called sparse. Mathemat-

ically, a signal x is k -sparse when it has at most k nonzero entries. Typically, CS is

used for data compression, hence it deals with signals which are not themselves sparse,

but admit a sparse representation in some basis Φ. In this context, the aim of CS is

to recover a signal s ∈ Rn starting from a small number of noisy linear measurements

y = Φs ∈ Rm, with m < n. The focus is on the undetermined linear system, in which

the operator Φ ∈ Rm×n, called sampling basis, has unit norm columns and forms an
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5. COMPRESSIVE SENSING DEPTH SUPER-RESOLUTION

overcomplete basis considering that m < n [40]. The resulting problem is regularized

by considering that the unknown signal s is k -sparse, or compressible with k significant

coefficients in the signal x ∈ Rn. The corresponding linear transformation is

s = Ψx, (5.1)

where Ψ ∈ Rn×n is an orthonormal basis of Rn, called representation basis. Moreover,

with the sampling basis Φ, that converts the original signal s into the measurements

vector y, the relation becomes

y = Φs = ΦΨx. (5.2)

Now, the target of CS is to reconstruct s starting from the measurements y by comput-

ing x from Equation (5.2) and exploiting the sparse nature of x [14]. This means find

the sparsest vector x compatible with the acquired measurements y. Mathematically

this can be expressed with the following problem

arg min
x∈Rn

‖x‖0

subject to y = ΦΨx,
(5.3)

where ‖x‖0 is the `0-pseudo norm of x (i.e., the number of nonzero entries). Unfortu-

nately, as stated in [14] solving Equation (5.3) is computationally intractable, therefore,

under certain conditions on the matrix ΦΨ, it is possible to use the `1-norm instead of

the `0-pseudo norm, which leads to

arg min
x∈Rn

‖x‖1

subject to y = ΦΨx.
(5.4)

This is a computationally tractable regularized inverse problem, which can be solved

in polynomial time. With the CS, if the number of measurements m is big enough

compared to the sparsity factor k, it is possible to correctly solve Equation (5.4) and

to reconstruct the original signal s from the computed x using Equation (5.1).

5.2 CS for dense reconstruction

The concept of sparsity has been exploited in signal processing for compression and

denoising applications. In particular, CS can be used for image processing, since the

wavelet transform provides nearly sparse representation for natural images as shown in
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5.2 CS for dense reconstruction

Figure 5.1. In fact, the wavelet transform consists on recursively dividing the image

into its low and high-frequency components. The lowest frequency components provide

a coarse scale approximation of the image, while the higher frequency components fill-

in the details and resolve edges. The same concepts can be applied onto disparity

Figure 5.1: Sparse representation of an image via a multi-scale wavelet transform. From

left to right: original image; wavelet representation. Large coefficients are represented by

light pixels, while small coefficients are represented by dark pixels. Observe that most of

the wavelet coefficients are close to zero.

images. Following the method proposed in [14], let D ∈ Rh×w be a disparity map

having n = hw entries and assume that only m < n disparities are known. Usually,

disparity maps are composed by large homogeneous regions of equal disparity, which

correspond to flat areas of the scene and some discontinuities at the transitions between

those regions, which are the scene edges. In the wavelet transform of this disparity

map large homogeneous regions are represented by only a small number of wavelet

coefficients, whereas edge areas are linked to important coefficients cluster. In this

way it is possible to assume the wavelet transform of disparity maps to be sparse, and

reconstruct D starting from the wavelet transform of some of its samples.

With the notations of Section 5.1, let s ∈ Rn be the vectorized unknown disparity

map D and y ∈ Rm the disparity measurements. Furthermore, let denote with Ψ a

Daubechies Wavelet basis for the relation s = Ψx, with x ∈ Rn the sparse vector of

wavelet coefficients. Eventually, the sampling basis Φ depends on the measurement

yi itself, for example if p ∈ Nm is the vector containing the indices of the measured
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5. COMPRESSIVE SENSING DEPTH SUPER-RESOLUTION

disparities, the sampling basis can be written as

Φ =
[
ep(1)

, ..., ep(m)

]T
, (5.5)

where ei ∈ Rn is the standard basis vector corresponding to the measurement yi.

From the fact that in wavelet transform relevant coefficients coincide with disconti-

nuities, the sampling positions are exactly those disparities lying at the discontinuities.

In [14] the authors assume that disparity discontinuities coincide with image intensity

edges, which means finding the edges directly into the disparity map D by using a

Canny filter [5] and taking the positions of the detected edges as the sampling posi-

tions. By simply applying the same edge detector into one of the two color images also

texture edges can be detected. Unfortunately, texture edges not always correspond

to real depth edges, and consequently relevant wavelet coefficients. Regarding the re-

maining flat areas, some disparity values are selected, in order to control the minimum

sampling density.

5.2.1 Reconstruction algorithm

The chosen method for solving the convex optimization problem (5.4) is a first-order

method. Key point of this algorithm is the Total Variation (TV ) of the disparity map

D. This can be expressed as

‖D‖TV =
h−1∑
i=1

w−1∑
j=1

‖∇D(i, j)‖2 , (5.6)

where ∇D(i, j) is the local variation of D at entry (i, j)

∇D(i, j) = [D(i, j)−D(i, j + 1), D(i, j)−D(i+ 1, j)] . (5.7)

Total variation is often used in image processing, especially for image denoising, where

it is remarkably effective at simultaneously preserving edges whilst smoothing away

noise in flat region.

With these notations, it is possible to express the TV-norm of the unknown disparity

map s by means of two suitable matrices Gx, Gy ∈ Rn×n

‖s‖TV := ‖D‖TV =
n∑
j=1

√(
eT
j Gxs

)2
+
(
eT
j Gys

)2
. (5.8)
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5.2 CS for dense reconstruction

Moreover, in order to further reduce the number of measurements required, an

additional square diagonal weighting matrix W ∈ Rn×n for the wavelet coefficients is

introduced. Now the problem (5.4) can be expressed in the unconstrained Lagrangian

form

arg min
x∈Rn

1

2
‖Ax− y‖22 + λ (‖Wx‖1 + γ‖Ψx‖TV) (5.9)

where A = ΨΦ, λ is the Lagrange multiplier and γ ≥ 0 is a weighting parameter.

Then, Equation (5.9) is minimized by a first-order method which requires to compute

gradient. The authors propose a conjugate subgradient method. For the minimization

of ‖Wx‖1 the Euclidean norm is used, hence its sub-differential is the set ∂ ‖Wx‖ ⊂ Rn

with

∂ ‖Wx‖ (i) =


(Wx) (i)

|(Wx) (i)|
if (Wx) (i) 6= 0

[−1, 1] otherwise.

(5.10)

Regarding the subgradient for ‖Ψx‖TV, since the Euclidean norm is computationally

unfeasible, the TV-norm is approximated to

‖s‖TV ≈ ‖s‖ν,TV :=
n∑
j=1

hν

(√(
eT
j Gxs

)2
+
(
eT
j Gys

)2
)
, (5.11)

where hν is the Huber functional

hν =


|x| − ν

2
if |x| ≥ ν

x2

2ν
otherwise.

(5.12)

In this way, using the shorthand notation

r := ΨT
n∑
j=1

GT
x eje

T
j Gxs + GT

y eje
T
j Gys√(

eT
j Gxs

)2
+
(
eT
j Gys

)2
, (5.13)

the gradient of ‖Ψx‖ν,TV is given by ∇‖Ψx‖ν,TV with the entries

∇‖Ψx‖ν,TV (i) =

{
r(i) if |x| ≥ ν

r(i)2/ν otherwise.
(5.14)

Consequently, the subdifferential of the modified objective

f (x) =
1

2
‖Ax− y‖22 + λ

(
‖Wx‖1 + γ‖Ψx‖ν,TV

)
(5.15)

49



5. COMPRESSIVE SENSING DEPTH SUPER-RESOLUTION

is the set

∂f (x) = AT (Ax− y) + λ
(
∂‖Wx‖1 + γ∇‖Ψx‖ν,TV

)
. (5.16)

With the notation

b = λ−1AT (Ax− y) + γ∇‖Ψx‖ν,TV , (5.17)

it is possible to verify that the final subgradient with smallest Euclidean norm is given

by

g (x) = AT (Ax− y) + λ
(
∇‖Wx‖1 + γ∇‖Ψx‖ν,TV

)
, (5.18)

where

∇‖Wx‖1 (i) :=


(Wx) (i)

|(Wx) (i)|
if (Wx) (i) 6= 0

− sign (b (i)) min {|b (i) , 1|} otherwise.

(5.19)

The descendent method is initiated with x0 = ATy and iteratively updated

xi+1 = xi + αihi, (5.20)

where the scalar αi ≥ 0 is the line search parameter or the step length (set to 10−5)

and hi is the descent direction at the ith iteration. The chosen line-search technique for

computing αi is the background line-search, whereas the descent direction hi is updated

with the Hestenes-Stiefel formula

hi+1 = −gi+1 +
gT
i+1

(
gi+1 − gi

)
hT
i

(
gi+1 − gi

) hi, (5.21)

where gi := g(xi) and initial value h0 = −g0. Equations (5.20) and (5.21) are iterated

either until convergence is achieved, or a maximum number of iterations has been

reached. The stopping criterion is the norm of gi.

Eventually, the output of the algorithm are the reconstructed wavelet coefficients x

from which it is possible to compute the dense disparity map using Equation (5.1).

5.3 CS for depth super-resolution

The authors provide a Matlab code of the algorithm, available at [6], which starts

from a ground truth disparity image and samples it by taking ground truth edges

from a Canny edge detector and some random samples for flat areas. Then, from this
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5.3 CS for depth super-resolution

sparse disparity map (around 20% of the original pixels) the reconstruction algorithm

is applied, in order to obtain the dense disparity image.

From this code, it is possible to adapt the CS reconstruction for ToF depth and

stereo disparity combination. As stated in Chapter 4, ToF information can be used

for flat areas, whereas stereo disparity is useful for the scene edges. In the ideal model

case, simulations have been made by using the ground truth disparity maps DGT from

the Middlebury dataset. The original algorithm was planned to work with disparity

images, which means disparity values in units between 0 and 255. Therefore, instead

of convert this disparity in depth using Equation (3.20) the ground truth disparity is

considered as a depth with quantized values in the range [0, 255]. Therefore, from here

the ground truth disparity will be denoted as ground truth depth.

An overview of the framework for the CS super-resolution is provided in Figure

5.2. The algorithm starts from a low-resolution ToF depth DToF and a high-resolution

Figure 5.2: CS super-resolution framework.

stereo disparity, which is converted to the depth DSTEREO using Equation (3.20).

Then, these two depths are fused in order to obtain a new depth image DD with the

same resolution of the stereo disparity. The stereo depth is simulated by using the

“third-size” Middlebury depth images DGT (i.e., 427× 370 pixel), whereas ToF depth

is reproduced by down-sampling the same depth with a scale factor 2 (i.e., 214 × 185

pixel). The down-sampling for the generation of the ToF depth is accomplished by

dividing DGT in 2 × 2 non-overlapping tiles and copying only the upper left pixel in

the low-resolution DToF . Moreover, the ToF camera noise, which is supposed to be
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Gaussian in the ideal model, is generated by adding some Gaussian noise with different

standard deviation intensities to the down-sampled depths. In order to create the

starting sparse depth image DS , each pixel from the low resolution ToF depth has to

be mapped onto DS . Since the mapping is supposed to be perfect, starting from the

top-left position DS is divided into 2 × 2 non-overlapping tiles, and one of the four

positions is randomly selected. Then, a depth value from the ToF is copied to the same

position. This procedure, from now denoted by random tile-mapping, is repeated for

all the ToF pixels starting from the top-left one. The random tile mapping allows to

reproduce the behavior of the ToF sensor, which associates a single pixel depth value to

a finite scene area (see also Section 2.2.1). Figure 5.3 shows an example of random tile-

mapping. Afterwards, considering the assumption that depth discontinuities coincide

Figure 5.3: An example of random tile-mapping for four pixels. Dense ToF depth (left),

and sparse mapped depth DS (right).

with image intensity edges, stereo edge pixels are mapped by simply applying a Canny

edge detector to DSTEREO ≡ DGT . Then, the depth values corresponding to the edge

positions are written in the same locations onto DS , creating the new sparse depth map

with edges DSEDGES
. If one edge pixel corresponds to one of the previously copied ToF

depth values, the new stereo edge value overwrites the old pixel. Furthermore, a random

set of sparse samples of the flat areas is removed to keep constant the percentage of

the initial collection of pixels (from now denoted as starting pixels). Figure 5.4 shows

the three steps for the creation of DSEDGES
. Once the sparse depth image DSEDGES

is

made, the CS reconstruction algorithm is started, which provides the final dense depth

image DD.
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(a) DGT . (b) DS . (c) Canny edges. (d) DSEDGES .

Figure 5.4: Creation of the sparse depth map DS : (a) ground truth depth (blue pixels

are occluded areas), (b) random tile-mapping, (c) edges from Canny filter, (d) final sparse

depth DS .

5.4 Experimental results

The reconstruction algorithm was applied to the Middlebury dataset [17], by adding

to each ToF low-resolution depth a Gaussian noise with 21 different levels of standard

deviation σN ∈ {0, 0.5, ..., 10}[cm]. Note that the original Matlab code works with

values in the range [0, 255]. Therefore, after the noise addition and the creation of the

sparse depth, each sparse depth is converted in disparity, and then the CS algorithm

is applied to this image. Finally, the output dense disparity is converted again into

the depth DD. Because of the noise addition, after the first depth-disparity conversion

some pixels values are greater than 255 or less than 0, hence they are clipped to the

range [0, 255]. The percentage of pixels over 255 is at most the 2.2% for the aloe scene,

14.7% for the wood2 scene, and 4.9% for the baby1 scene.

For each reconstruction the maximum number of iterations was fixed up to 1000,

whereas the others parameters are the same of the original code. The algorithm’s

accuracy is then evaluated by computing the mean absolute error of the reconstructed

depth DD with respect to the ground truth depth DGT

MAE =
1

N

∑
u,v

|DD (u, v)−DGT (u, v)| , (5.22)

where N is the total pixels number of one depth image. It is important to specify that

occluded areas of the Middlebury depth images (i.e., the zero values) are not considered

in the MAE calculation.
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5.4.1 CS super-resolution without edges

In order to evaluate the performance of CS, the algorithm has been firstly tested starting

with the sparse depth DS , created with the random tile-mapping of the low-resolution

ToF depth without any stereo edge information (Figure 5.4(b)). Moreover, the same

low-resolution depth DToF is up-sampled with a scale factor 2 by using the well-known

Cubic and Lanczos3 interpolations. Visual and numerical results in Figure 5.5 and

5.6 respectively show that CS, thanks to the total variation minimization, produces

depth images that are much more accurate than the simple up-scaling using standard

interpolation techniques, especially for high levels of noise. Lanczos3 and Cubic scaling

blur depth images which results in greater differences, moreover these techniques cannot

reduce the noise in flat areas like the CS do.

5.4.2 CS super-resolution with edges

Once proved the effectiveness of CS, the stereo edge information has been added to the

sparse depth, to obtain the final sparse depth DSEDGES
as depicted in Figure 5.4(d).

Starting from this new sparse depth, the CS reconstruction is applied. The visual results

for three scenes of the Middlebury dataset are showed in Figure 5.7. Obviously, now

edges are more accurate than the previous reconstruction, and the numerical results

showed in Figure 5.8 prove it. From these plots it can be seen how the ground truth

edges decrease the final MAE of the reconstructed depth. In the aloe scene a greater

improvement is achieved because this scene has a lot of edges. In fact, among the 25%

of starting pixels in the sparse depth DSEDGES
, 15% are ground truth edges whereas

10% are noised flat areas samples. On the other hand, for the wood2 scene, only the

4% of the starting pixels are ground truth edges, and the remaining 21% pixels belongs

to flat areas. Therefore, in this case the improvement is less visible.

5.4.3 Starting pixels recomputing

Although Compressive Sensing reconstruction leads to good reconstruction results, its

main problem is that that the starting pixels of the sparse depth map DS are fixed,

hence they do not change during the algorithm iterations. Therefore, flat areas of recon-

structed depths are smooth except for the starting pixels, which are clearly noticeable

especially for high noise standard deviations. In this case the result is a dense depth
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5.4 Experimental results

(a) Ground truth. (b) CS. (c) Cubic. (d) Lanczos3.

(e) Ground truth. (f) CS. (g) Cubic. (h) Lanczos3.

(i) Ground truth. (j) CS. (k) Cubic. (l) Lanczos3.

Figure 5.5: Visual comparison of the super-resolution between CS, Cubic and Lanczos3

interpolations in case of noise σN = 2[cm]: (a), (b), (c) aloe scene; (d), (e), (f) baby1 scene;

(g), (h), (i) wood2 scene.
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(a) (b)

(c)

Figure 5.6: Numerical comparison of super-resolution with CS, Cubic, and Lanczos3

interpolation (σN = 0 means noise free samples). The images show the results for: (a) aloe

scene, (b) baby1 scene, (c) wood2 scene.
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(a) aloe. (b) baby1. (c) wood2.

Figure 5.7: Results of the super-resolution using CS with ground truth edges in case of

noise σN = 2[cm]: (a) aloe scene, (b) baby1 scene, and (c) wood2 scene.

with a salt and pepper noise as shown in Figure 5.7(b). For this reason, the depth

reconstruction has been improved by removing the starting pixels from the first dense

depth DD, obtaining a new sparse depth DS′ . Then, starting from DS′ , a new dense

depth map DD′ is created by using again CS algorithm and setting the iterations limit

to 200. The effect of this second CS reconstruction for the baby1 scene is clearly visible

in Figure 5.9. Moreover, Figure 5.10 shows the behavior of the final MAE as a function

of the noise standard deviation. With the exception of σN = 0, in which the results

are obviously almost the same, it can be seen that from the second level of noise the

starting pixels recomputing reconstruction gives a lower error. The advantage becomes

significant when the noise increases. The convergence of this second CS application is

reached after around 150 iterations.

5.5 Summary

In this Chapter the first depth super-resolution technique, based on Compressive Sens-

ing, was presented. Numerical results show that it is possible to achieve accurate

dense depth by using around 25% of the original depth, which means that a resolution

enhancement of scale factor 2 is possible. Moreover, with the starting pixels recompu-

tation the algorithm’s robustness to Gaussian noised ToF measurement is increased.

Unfortunately, even though the quality of the reconstruction has been improved with

the starting pixels recomputation, the CS super-resolution is an iterative and time-
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(a) (b)

(c)

Figure 5.8: Numerical comparison of super-resolution with CS and CS plus ground truth

edges (σN = 0 means noise free samples). The images show the results for: (a) aloe scene,

(b) baby1 scene, (c) wood2 scene.
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(a) (b)

Figure 5.9: Image crop on the baby1 scene to show the difference between the first

reconstruction (a) and the second reconstruction without the starting pixels (b). Noise

σN = 2[cm]

(a) (b) (c)

Figure 5.10: Numerical comparison of super-resolution with CS plus ground truth edges

with and without the starting pixels recomputing (σN = 0 means noise free samples). The

images show the results for: (a) aloe scene, (b) baby1 scene, (c) wood2 scene.
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consuming algorithm. In fact, the main problem of this approach is that it needs

around 500 iterations before convergence in the first reconstruction, depending from

the noise level of the starting sparse depth. Another limitation is that this approach

is restricted to the ideal model, which means that CS works only with a perfect edge

detection on the stereo disparity/depth map. Since edge detection is still one of the

open issues in image processing, in real conditions this algorithm can fail if the edge

detector finds an edge in a flat area of the disparity map, or if there are some errors in

the stereo disparity estimation. Moreover, this algorithm only considers stereo dispar-

ity and not color image from a single camera, an important information that should be

used for the super-resolution. In the next Chapter a new joint bilateral filter approach

will be presented. It will exploit all the available information (ToF depth, single camera

image, two cameras disparity) in order to increase the resolution of the starting ToF

depth image.
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Chapter 6

Joint Bilateral Filter Depth

Super-Resolution

The second super-resolution approach exploits bilateral filter techniques for up-sampling

the low-resolution ToF depth. Usually, up-sampling is achieved by convolving a low-

resolution image with an interpolator kernel, and by resampling the result on a new

high-resolution grid. Apply a normal up-sampling, such as Cubic or Lanczos interpola-

tion, on the low-resolution ToF depth leads to edges blurring, because of the smooth-

ness prior inherent in the linear interpolation filters. However, from the combination

of ToF camera and stereo camera, additional information are available in the form of

the high-resolution color image or of the high-resolution stereo disparity. A Joint Bi-

lateral Upsampling (JBU ) operation can use all these information in order to produce

a high-resolution depth image starting from the ToF data.

Section 6.1 introduces the bilateral filter theory. Then, in Section 6.2 the joint use

of low and high-resolution images for super-resolution is presented. Specifically, two

joint bilateral filters are described and a new weighted joint bilateral filter is proposed.

In Section 6.3 these up-sampling filters are tested and the results are compared with

the CS super-resolution of Chapter 5. Finally, a summary is given in Section 6.4.

6.1 Bilateral filter

Bilateral filtering is a technique with the purpose of smoothing images and, at the

same time, preserving edges. This technique was introduced by Tomasi and Manduchi
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in [52] as a non-linear filter utilizing both (spatial) domain and (intensity) range kernels

evaluated on the data values themselves. The key idea of the bilateral filter is that for

a pixel to influence another pixel, it should not only occupy a nearby location but also

have a similar value. More formally, an output pixel image BF [I]p is weighted average

of pixels q from input image Ip in a neighborhood S of pixel p. Mathematically

BF [I]p =
1

Wp

∑
q∈S

Gσs (‖p− q‖)Gσr (|Ip − Iq|) Iq, (6.1)

where Wp is the normalization factor that ensures pixel weights sum to 1

Wp =
∑
q∈S

Gσs (‖p− q‖)Gσr (|Ip − Iq|) . (6.2)

Function Gσs is the spatial filter kernel, such as a Gaussian centered over p that de-

creases the influence of distant pixels, whereas Gσr is the range filter kernel, a Gaussian

that decreases the influence of pixels q when their intensity values differ from Ip.

The bilateral filter is controlled by the two standard deviations σs and σr. Figure

6.1 illustrates their effects. As the range parameter σr increases, the bilateral filter

gradually approximates Gaussian convolution more closely because the range Gaussian

Gσr widens and flattens (i.e., is nearly constant over the intensity interval of the image),

whereas increasing the spatial parameter σs smooths larger features [35].

After the bilateral filter, Joint Bilateral Filter has been introduced. This is a filter

in which the Gaussian function is applied to a second guidance image (e.g., Ĩ), which

gives additional information in order to classify ambiguous regions. This information

can be used, for example, to combine the high-frequencies from one image and the

low-frequencies from another image [36]. Mathematically

JBF [I]p =
1

Wp

∑
q∈S

Gσs (‖p− q‖)Gσr
(∣∣∣Ĩp − Ĩq∣∣∣) Iq. (6.3)

The only difference respect to Equation (6.1) is that the range filter uses the guidance

image Ĩ instead of I. Clearly, also the normalization factor Wp is changed, in order to

ensure again that the pixel weights sum to 1.

To sum it up, bilateral filter techniques are an effective way to smooth an image

while preserving its discontinuities and also to separate image structures of different
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Figure 6.1: The bilateral filter’s range and spatial parameters provide more versatile

control than Gaussian Convolution (CG). As soon as either of the bilateral filter weights

reaches values near zero, no smoothing occurs. As a consequence, increasing the spatial

sigma will not blur an edge as long as the range sigma is smaller than the edge amplitude.

For example, note that the rooftop contours are sharp for small and moderate range settings

σr, and that sharpness is independent of the spatial setting σs [35].

scales. tinuities and also to separate image structures of different scales. These ap-

proaches have many applications, and their central notion of assigning weights that

depend on both space and intensity can be tailored to fit a diverse set of applications,

such as depth image denosing and super-resolution.

6.2 Joint bilateral filter for depth super-resolution

The bilateral filter was initially used for image denoising. However, in the last period

bilateral filter techniques have been developed for super-resolution purposes [22, 23].

6.2.1 Joint bilateral filter

In [23] the authors propose the usage of the joint bilateral filter for up-sampling a low-

resolution image D with the guidance of the original high-resolution image Ĩ. With the

random tile-mapping procedure described in Section 5.3, from the low-resolution depth

image DToF a sparse version DS is created. Then, this sparse depth is interpolated by

the JBF. A spatial filter is directly applied to DS , while a similar range filter is jointly
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applied on the high-resolution image Ĩ. With these notations, the up-sampled dense

image JBF [DS ]p can be written as

JBF [DS ]p =
1

Wp

∑
q∈S

Gσs (‖p− q‖)Gσr
(∣∣∣Ĩp − Ĩq∣∣∣)DS,q, (6.4)

where p and q denote the coordinates of pixels in Ĩ andDS , Wp is the new normalization

factor, and S is the filter aperture. This approach can be used to up-sample low-

resolution depth maps guided by their corresponding high-resolution color images.

6.2.2 Joint bilateral filter “Kim”

Direct application of JBF for depth super-resolution frequently exhibits artifacts in

reconstructed geometry that can be attributed to erroneous assumption about the

correlation of color and depth data. One of the possible artifacts is texture copying. This

happens when textures from the reference color image are transferred into geometric

patterns that appear in the up-sampled depth map, and thus reconstructed geometry.

In fact, the bilateral filter adaptively shapes its kernel weights depending upon the

values of neighborhood pixels. Hence, in presence of textures in the color image, the

Gaussian intensity difference term Gσr(·) of Equation (6.4) takes smaller weight even

within the same object and the same depth. To overcome this issue, in [22] the authors

propose an up-sampling JBF (from now denoted by JBFKIM ) which includes a depth

difference parameter in order to give different weights to the color intensity difference

term Gσr(·) and to the spatial distance term Gσs(·). This up-sampling filter can be

written as

JBFKIM [DS ]p =
1

Wp

∑
q∈S

(1− γ (∆S))Gσs (‖p− q‖) + γ (∆S)Gσr

(∣∣∣Ĩp − Ĩq∣∣∣)DS,q.

(6.5)

The novelty with respect to Equation (6.4) is the weighting factor γ, which belongs to

the interval [0, 1]. If γ is near 0 the filter’s response depends almost entirely from the

Gaussian depth difference, whereas if γ is around 1 the filter’s response depends from

the Gaussian color intensity difference. The idea is to interpolate pixels of flat areas

with the Gaussian depth difference, in order to avoid texture copying, and interpolate

pixels of edge areas with the Gaussian color intensity difference. This means that when

the pixel belongs to an edge area the weighting factor γ should be around 1; on the
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6.2 Joint bilateral filter for depth super-resolution

contrary, for a flat area γ should be about 0. For this reason the authors define in [22]

a blending function γ (∆S)

γ (∆S) =
1

1 + e−ε(∆S−τ)
(6.6)

where ∆S is the difference between the maximum and the minimum depth values in

the pixels neighborhood S. If the difference ∆S is under a certain value, the local

surface contained in S is most likely to be smooth and only the Gaussian σs should be

triggered (γ ≈ 0). On the other hand, if the max-min difference lies beyond that value,

the local surface S is most likely to be a real geometric edge, hence the Gaussian σr

is the appropriate choice (γ ≈ 1). The parameters ε and τ of Equation (6.6) are two

constants: ε controls the width of the transition area between the two cases, whereas

τ determines the min-max difference value at which the blending interval shall be

centered. In [22], the authors propose a fixed τ parameter, the value of which depends

on the characteristic of the employed depth sensor. Unfortunetly, experiments have

shown that with a fixed τ in the JBFKIM, when the noise standard deviation exceeds

a certain threshold (i.e., 2[cm]) the filter founds edge areas in the whole scene (i.e., γ

is always 1). Therefore the sparse depth map is interpolated by using only the color

intensity difference term Gσr(·) of Equation (6.5). In order to fix this problem, a

JBFKIM with a variable τ is proposed. Since with high levels of noise the threshold

for edge areas detection must be higher, τ increases together with the noise standard

deviation. The trend of τ has been funded by empirical tests. For some values of σN ,

the best threshold has been determined, this means that τ must allow to detect depth

discontinuities only at edge areas and not in flat regions. The procedure has been

done for baby1, aloe and wood2 [17]. The latter two can be considered complementary

images. In fact, aloe is a high-textured image rich of edges, whereas wood2 has a lot of

flat surfaces and only few textures (see Figure 6.5). The resulting τ is almost the same

in all the three images, hence its behavior as a function of the noise standard deviation

can be interpolated for the others values of σN , and used for the super-resolution of all

the sparse depth maps. The resulting function is showed in Figure 6.2.

6.2.3 Weighted joint bilateral filter

The proposed Weighted Joint Bilateral Filter (WJBF ) follows the approach of [22]. The

idea is to exploit the information from a high-resolution color image to up-sampling a
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6. JOINT BILATERAL FILTER DEPTH SUPER-RESOLUTION

Figure 6.2: Estimation of the parameter τ as a function of the noise standard deviation

σN .

low-resolution depth image with two different kernels, according to the area character-

istics. For flat areas a JBF with a relaxed range parameter σr,FLAT is used in order to

have smooth flat regions. On the other hand, for depth edge areas only a Gaussian color

intensity difference term with a small and very selective σr,EDGE parameter is applied

in order to maintain sharp edges. In fact, depth discontinuities usually coincide with

color image intensity edges. The formulation of the WJBF is

WJBF [DS ]p =
1

Wp

∑
q∈S

[
(1− α)Gσs (‖p− q‖)Gσr,FLAT

(∣∣∣Ĩp − Ĩq∣∣∣)+

+ αGσr,EDGE

(∣∣∣Ĩp − Ĩq∣∣∣)]DS,q

(6.7)

where Wp is the normalization factor, and Ĩ is the high-resolution color guidance image.

Now, the fundamental point is that the filter needs to be able to distinguish between

flat and edge areas. For this reason a new weighting factor called α is proposed. This

parameter is based on the standard deviation of the sparse depth image.

6.2.3.1 Weighting factor

Edge detection has always been an important discipline in image processing, especially

for depth images, where depth edges separate foreground objects from the background.

In order to perform a WJBF of the sparse ToF depth DS , these edge areas firstly have

to be found. This task is performed by using a filter that computes the local standard
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6.2 Joint bilateral filter for depth super-resolution

deviation image ΣS of DS . More precisely, for each pixel p of coordinates (u, v) in

the sparse image DS , the standard deviation ΣS (u, v) ≡ σS is calculated over all its

neighborhood non-zero pixels q within the filter aperture A

σS =

√
1

N − 1

∑
q∈A

(q− q̄)2, (6.8)

where N is the total number of non-zero pixels in A and q̄ is the mean value

q̄ =
1

N

∑
q∈A

q. (6.9)

From the computed standard deviation of DS , it is possible to derive the new weighting

factor α by means of the three-sigma rule [42]. This rule states that in a Gaussian distri-

bution, nearly all values lie within 3 standard deviations σ of the mean µ. Specifically,

about 68.27% of the values lie within 1σ of the mean, 95.45% of the values lie within

2σ of the mean and almost all (99.73%) of the values lie within 3σ of the mean. A

graphical explanation is showed in Figure 6.3. Considering the ToF noise as Gaussian,

Figure 6.3: Three-sigma rule: most of the values are between −σ and σ, almost all of

them are no farther than 2σ from µ and there are virtually no observations farther than

3σ from µ [42, 56].

this rule can be applied for the edge detection in sparse depth DS . For each standard

deviation value σS of the image ΣS the weighting factor α is calculated by comparing

σS with the standard deviation σN of the depth image Gaussian noise. If σS < 2σN

the depth variation can be considered due to the normal camera noise, hence α is set
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(a) DS . (b) ΣS . (c) α.

Figure 6.4: Creation of the weighting factor α image: (a) sparse depth DS , (b) standard

deviation image ΣS , and (c) α image.

to 0. On the other hand, if σS > 4σN most likely this high variation is due to a real

depth discontinuity, hence α is set to 1. Between 2σN and 4σN the weighting factor α

has a linear behavior. Figure 6.4 shows the two steps for the edge detection of a sparse

depth DS .

6.3 Experimental results

All the three up-sampling filters (JBF, JBFKIM and WJBF) have been tested for the

sparse depth map super-resolution using the Middlebury dataset [17], more precisely

on the scenes aloe, baby1 and wood2. The filters’ inputs are the random tile-mapped

sparse depth map DS and the guidance image, which is the color image C (see Figure

6.5). All the inputs images are normalized in the closed interval [0, 1]. As in Section

5.4, the starting sparse depth maps DS are affected by an additive Gaussian noise with

21 different levels of standard deviation σN ∈ {0, 0.5, ..., 10}[cm]. Then, in order to

compare the results with the CS reconstruction, the accuracy of the interpolation is

evaluated with the MAE of the output dense depth map DD. The filters’ parameters

for the super-resolution are:

• Joint Bilateral Filter: Filter size 15× 15 pixels, spatial parameter σs = 5 and

range parameter σr = 0.03.

• Joint Bilateral Filter Kim: Filter size 15×15 pixels, spatial parameter σs = 5

and range parameter σr = 0.03. Regarding the blending function of Equation
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6.3 Experimental results

(a) aloe. (b) baby1. (c) wood2.

Figure 6.5: The three guidance color images for the joint bilateral filter super-resolution.

(6.6), the parameter ε = 0.5 and τ is set to 15[cm]. The second value is based

on experimental tests performed on the sparse images DS without noise. With

τ = 15[cm] the detected edge areas correspond to real depth discontinuity.

• Weighted Joint Bilateral Filter: Filter size 15× 15 pixels, spatial parameter

σs = 5, range parameter for flat areas σr,FLAT = 0.1 and range parameter for

edge areas σr,EDGE = 0.03. For the calculation of the sparse depth map standard

deviation ΣD the same window size of the filter is used. From ΣD, the weight-

ing factor α is computed as explained in Section 6.2.3.1; when σN = 0[cm] the

thresholds are calculated using σN = 0.5[cm].

Figures 6.6, 6.7, and 6.8 show the three scenes up-sampled using the three filters with

four different levels of noise. From a visual inspection it can be seen how the proposed

WJBF outperforms the other two filters. In fact, the JBF tends to copy textures from

the color image to the up-sampled depth and this is increasingly clear as the noise level

raises. In like manner, for high noise levels the JBFKIM detect depth discontinuities

in flat areas, hence it transfers textures from the guidance color image in the final up-

sampled depth. With the WJBF the weighting factor α allows to distinguish between

edge and flat areas, hence flat regions are smoother than the other two filters. Moreover,

this filter is noise adaptive. Interestingly, for high levels of σN , the weighting factor α

used for the WJBF can not correctly detect edge areas anymore. In fact, the threshold

of 4σN is too high, hence the JBF term for flat area (i.e., the first term of Equation

(6.7)) is the dominant term in the depth super-resolution. Anyhow, for these borderline
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cases the result is an image with slightly blurred edges. The advantage of WJBF over

the others filters becomes significantly high when a high noise standard deviation is

applied.

The complete numerical results of the experiments are showed in Figure 6.9, which

compares the MAE of the up-sampled images DD as a function of the noise standard

deviation σN . The curves behaviors shows that JBFKIM and WJBF always perform

better than the normal JBF. Moreover, they give almost the same results for the first

5 levels of noise (i.e., until σN = 5[cm]), and then the WJBF starts to perform better.

This is because of the fixed τ in the JBFKIM. With the variable τ , although the

performance of the JBFKIM are improved, from the figure it can be seen that the

proposed WJBF still performs best. Finally, also the results of the CS super-resolution

are showed in Figure 6.9. Specifically, both the reconstructions with and without

ground truth edges (and with the starting pixels recomputation described in Section

5.4.3). For the aloe scene, the CS with ground truth edges is the best. This is because

this scene has a lot of edges (i.e., 14% out of the 24% of the starting pixels), which are

ground truth pixels in the CS reconstruction. In all the others scenes the WJBF gives

the best results. In fact, WJBF gives sharp edges and flat areas which are smoother

than the CS image.

6.4 Summary

In this Chapter it was presented a sparse depth super-resolution algorithm based on bi-

lateral filter theory. All the experiments have been done using the Middlebury dataset

[17]. Like in Chapter 5, the dense depth DD is reconstructed starting from the sparse

DS , with the 25% of the original depth. Moreover, it was presented a new up-sampling

filter, the Weighted Joint Bilateral Filter, and it was compared with the two already

existing filters: the JBF of [23] and the JBFKIM of [22]. Numerical results show that

the proposed WJBF outperforms the others for every level of noise. Furthermore, as

compared to the compressive sensing super-resolution, the bilateral filter techniques

give better results and allow a more general approach. In fact it is possible to combine

the low-resolution ToF depth with a single camera image. Moreover, the CS reconstruc-

tion is restricted to the ideal scenario, but usually is not always possible to detect the

image edges and consequently use the information from the stereo in these areas. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.6: Visual comparison of the aloe scene super-resolution. The figure shows: (a)

JBF σN = 0[cm]; (b) JBF σN = 2[cm]; (c) JBF σN = 5[cm]; (d) JBF σN = 10[cm];

(e) JBFKIM σN = 0[cm]; (f) JBFKIM σN = 2[cm]; (g) JBFKIM σN = 5[cm]; (h) JBFKIM

σN = 10[cm]; (i) WJBF σN = 0[cm]; (j) WJBF σN = 2[cm]; (k) WJBF σN = 5[cm]; (l)

WJBF σN = 10[cm]. Blue pixels represent occluded areas.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.7: Visual comparison of the baby1 scene super-resolution. The figure shows:

(a) JBF σN = 0[cm]; (b) JBF σN = 2[cm]; (c) JBF σN = 5[cm]; (d) JBF σN = 10[cm];

(e) JBFKIM σN = 0[cm]; (f) JBFKIM σN = 2[cm]; (g) JBFKIM σN = 5[cm]; (h) JBFKIM

σN = 10[cm]; (i) WJBF σN = 0[cm]; (j) WJBF σN = 2[cm]; (k) WJBF σN = 5[cm]; (l)

WJBF σN = 10[cm]. Blue pixels represent occluded areas.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.8: Visual comparison of the wood2 scene super-resolution. The figure shows:

(a) JBF σN = 0[cm]; (b) JBF σN = 2[cm]; (c) JBF σN = 5[cm]; (d) JBF σN = 10[cm];

(e) JBFKIM σN = 0[cm]; (f) JBFKIM σN = 2[cm]; (g) JBFKIM σN = 5[cm]; (h) JBFKIM

σN = 10[cm]; (i) WJBF σN = 0[cm]; (j) WJBF σN = 2[cm]; (k) WJBF σN = 5[cm]; (l)

WJBF σN = 10[cm]. Blue pixels represent occluded areas.
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(a) (b)

(c)

Figure 6.9: Comparison of the super-resolution algorithms JBF, JBFKIM with fixed τ ,

JBFKIM with variable τ , WJBF, CS and CS with ground truth edges. The images show:

(a) results for the aloe scene, (b) results for the baby1 scene, (c) results for the wood2

scene.
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execution time is also an important evaluation parameter. The CS is a global and iter-

ative approach which uses the whole image for the reconstruction. On the other hand,

the bilateral filtering super-resolution is a local and non-iterative approach. Therefore

the latter method requires less time and memory. For all these reasons the bilateral

filtering is the approach chosen for the real super-resolution framework.
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Chapter 7

ToF Camera Calibration and

Characterization

After the development and test of the super-resolution algorithms in the ideal model

conditions, the real model has to be considered. This means it has to be used a real ToF

camera and real video-cameras. Therefore a calibration procedure is needed, since the

cameras have different image planes. In this Chapter the procedure for the calibration of

the camera rig is described in Section 7.1. Then, Section 7.2 provides a characterization

of the ToF camera noise based on some experiments.

7.1 Camera calibration

Camera calibration refers to the problem of recovering the external and internal ge-

ometry of an optical acquisition device in order to have a complete description of its

image formation process and, therefore, to be able to make accurate 3D measurements

from 2D images. The external geometry of a camera is defined by the rotation matrix

R and the translation vector t , which relates the camera orientation and position to

the world coordinate system. The internal geometry refers to the camera calibration

matrix K which describes the geometric aberrations produced by the lens system of

the camera. Summarizing, the target of camera calibration is to estimate all these

parameters describing the cameras imaging process.
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7.1.1 Calibration procedure

For the calibration, the Sony’s toolbox from [49] has been used. The toolbox ensures

to calibrate the stereo camera and the ToF camera simultaneously within subpixel and

submillimeter accuracy, respectively, by using a 2.5D dot pattern for the intrinsic and

the extrinsic calibration. The used 2.5D dot calibration pattern is a modification of

the planar one proposed in [15] and it is represented in Figure 7.1. This planar pattern

is composed by 64 dots, uniquely placed in order to ensure their correct identification.

In fact, each dot can be identified by observing the closest neighbor dots. The dot

Figure 7.1: The planar dot pattern with 64 uniquely placed black dots.

pattern is suited for the standard camera calibration, but it does not work with low-

resolution ToF camera amplitude images (used for the calibration) which have a strong

light fall-off to the image border [49]. For this reason a 2.5D pattern was used, which

consists on holes instead of dots. The 2.5D dot pattern has a size of 800 × 600[mm],

whereas each hole has a diameter of 40[mm] in order to ensure the IR-rays of the ToF

cameras’s illumination unit passing through the hole. For the rest, the 2.5D dot pattern

has the same properties as the regular dot pattern. After the acquisition of the pattern

images, which had to cover the whole FoV of each camera, the cameras were intrinsically

calibrated. Eventually, the whole camera rig is calibrated extrinsically by finding the

intersection of the already known correspondence point sets. For more details see [49].

7.1.2 Camera rig

Figure 7.2 (a) shows the scene in front of the camera rig. The background and the

tables are covered with black sheets. Moreover, additional lights are used to illuminate
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both the scene and the calibration pattern. Figure 7.2 (b) shows the camera rig used for

the acquisition. The rig is composed by the PMD CamCube 3.0 ToF camera indicated

by 4©, and three Lux Media Plan (LMP) HD1200 [28] CMOS video-cameras indicated

by 1©, 2©, 3©. The ToF camera is positioned on the top of the central standard camera

2©. All the cameras are synchronized by an hardware trigger.

Figure 7.2: Scene in front of the camera rig (a), which is mounted on a tripod. The

camera rig (b), composed by the ToF camera and the three standard cameras [49].

7.2 ToF camera noise characterization

As stated in [38], the CamCube 3.0 has a measurement precision of some centimeters.

The noise of the ToF camera can be modeled to be Gaussian [33] with standard devi-

ation given by Equation (2.13), and this standard deviation has been estimated with

some experimental measurements. A flat panel was placed parallel in front of the ToF

camera. More precisely, it was used the planar dot pattern of Figure 7.1 (without holes),

since it has both white and black areas which reflect the light differently. In this way it

is possible to have a more reliable noise estimation, as black and white areas lie at the

same depth but give different depth measurements. The acquisition was carried out at

six distances between 0.5[m] and 2.5[m] with a step of 0.5[m] in order to estimate the

noise standard deviation as a function of the distance. A higher range of measurements

was not possible because of the space limitations in the laboratory. According to [38],

before starting the acquisitions a warm-up period of about one hour was performed for

the ToF camera, in order to obtain distance measurement stability. After the acqui-

sitions a square central area in the center of the panel was selected for each distance.

Moreover, since the camera and the panel cannot be perfectly parallel, the depth values
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Figure 7.3: Setup for ToF noise standard deviation estimation: ToF camera, laser meter

and the flat panel at several distances between 0.5[m] and 2.5[m].

in the selected area have been pre-processed with the Matlab function detrend. This

function removes the mean value or the linear trend from the matrix representing the

panel area. In this way, errors due to the non-perfect parallelism between camera and

panel are eliminated. After the data detrending, the standard deviation of the selected

area is computed. The noise standard deviation σToF (d) behavior is showed in Figure

7.4. From the figure it can be seen that for distances in the range 0÷1[m] the standard

Figure 7.4: Standard deviation σToF (d) as a function of the distance d.

deviation is around 10[cm], probably because of the multi-path propagation already

described in Section 2.4.8. Therefore, for acquisitions in this range the ToF camera

is completely unreliable. After one meter of distance, σToF decreases until less than

1[cm], then it slightly increases as the distance raises.
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During the acquisitions, for each distance a ground truth distance value camera-

panel was measured by using a laser distance meter (Leica DISTO X310 [26]) placed

on the edge of the ToF main body. This laser distance was compared with the ToF

value and an offset measurement was founded. Furthermore, in order to test the ToF’s

SBI effectiveness, the acquisitions have been done both with and without additional

lights. Numerical results in Table 7.1 shows that the depth value do not depends on

the illumination conditions. By interpolating the offset values it is possible to correct

Laser distance ToF distance ToF distance

[m] (light off) [m] (light on) [m]

0.52 0.38 0.38

0.99 1.13 1.13

1.49 1.59 1.60

1.99 2.08 2.08

2.49 2.59 2.59

Table 7.1: ToF and laser depth measurements comparison. Light on means an illumina-

tion intensity value on the panel from 2100 to 420 lux (depending from the distance to the

light sources), whereas light off means about 20 lux of illumination intensity.

the ToF measurement for each distance in the range 1 ÷ 2.5[m]. Regarding the range

0÷ 1[m], as previously said, the measured depth is not reliable hence the offset is not

considered.

Figure 7.5: CamCube 3.0 distance offset: difference between the ToF measured depth

and the ground truth laser depth.

81



7. TOF CAMERA CALIBRATION AND CHARACTERIZATION

82



Chapter 8

ToF Depth Super-Resolution

The goal of this thesis is the super-resolution of the 200 × 200 depth image provided

by the ToF camera. Figure 8.1 gives an overview of each step in the super-resolution

framework. Firstly, the offline cameras calibration procedure described in Section 7.1

Figure 8.1: Overview of the ToF depth super-resolution framework.

is carried out in order to obtain the intrinsic and the extrinsic parameters of all the

four cameras in the rig. Then, the sensors fusion for the depth super-resolution is

accomplished. This procedure increases the depth resolution and refines it up to the

video-camera resolution, by combining information from both the cameras. The first

step presented in Section 8.1 is the pre-processing of the ToF raw depth image, the

purpose of which is to reduce the camera noise and detect the flying pixels. Section 8.2

describes the pre-processing for the three video-camera color images. Then, Section 8.3

presents the mapping from the ToF to one of the video-cameras. The fusion between

the two sensors is explained in Section 8.4. This allows to reach a depth image with

a resolution of 1920 × 1080 pixel. In Section 8.5 is proposed a post-processing stereo
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technique for the final super-resolved depth refinement. Section 8.6 shows some results.

Concluding, the possible applications of the super-resolution algorithm are discussed

in Section 8.7.

8.1 ToF pre-processing

The ToF depth image pre-processing is the first step of the super-resolution frame-

work. A detailed description of this Section is provided in Figure 8.2. Firstly, the

Figure 8.2: Scheme of the ToF depth pre-processing to correct lens distortion, reduce the

noise, and find the flying pixels.

undistortion of the raw 200 × 200 ToF depth is applied in order to remove the errors

introduced by the camera lens. The undistortion is a fundamental operation in the ToF

data pre-processing, especially because the used sensor has a wide FoV of 60◦ × 60◦.

The undistortion is done by using the radial distortion coefficients estimated with the

calibration procedure and the Matlab toolbox from Bouguet [2]. Moreover, the esti-

mated offset correction is also applied. After this, the undistorted image is filtered with

a bilateral filter (Equation (6.1)), which uses a range standard deviation parameter σr

adaptively selected with the depth. Specifically, σr = 3σToF (d), where σToF (d) is the

ToF noise standard deviation estimated at the distance d (see Section 7.2). In fact, as

explained in Section 6.2.3.1, if the depth variation inside the filter aperture is under

3σToF is not possible to differentiate between depth discontinuity or noised flat area.

This approach allows to reduce the noise of the depth image and at the same time

preserve depth discontinuities. Figure 8.3 shows the effect of undistortion and bilateral

filtering onto the raw ToF depth of the acquired scene, from now called Pyramid. The

last step of the ToF pre-processing is the flying pixels detection. The standard deviation

of the filtered depth is calculated, then flying pixels are detected with the procedure

described in Section 6.2.3.1. Only the pixels having a standard deviation higher than

4σToF are classified as flying pixels. Then the binary flying pixels map is eroded of
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(a) (b)

Figure 8.3: Pyramid scene ToF depth image pre-processing: (a) is the raw ToF depth

image; (b) is the image after undistortion and bilateral filtering. Note: scale in meters.

one pixel, in order to select only the flying pixels. In fact, in case of an ideal depth

discontinuity the peak of the standard deviation is very narrow (see Figure 8.4(a)). On

the other hand, a depth discontinuity in a real ToF image presents the trend showed

in Figure 8.4(b), hence the resulting standard deviation peak is much larger. Then,

the region corresponding to the flying pixels area can be detected as the two peaks

difference, which corresponds to the erosion process.

8.2 Color image pre-processing

As for the ToF camera, also the RGB images from the video-cameras needs an undis-

tortion correction. Therefore, the Matlab toolbox from Bouguet [2] used for the

undistortion of the ToF depth image is applied to each camera with the correspond-

ing radial distortion coefficients. In this case, the resulting image is almost equal to

the original, due to the high quality of the used video-cameras. Figure 8.5 shows the

resulting RGB color image.

8.3 Mesh mapping

Once the calibration is made, the intrinsic and extrinsic parameters of each camera are

available. Therefore, it is possible to project all the pixels from the pre-processed ToF
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(a)

(b)

Figure 8.4: Comparison between the standard deviation of an ideal depth discontinuity

(a), and the standard deviation of a ToF depth discontinuity (b).
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8.3 Mesh mapping

Figure 8.5: Pyramid scene high-resolution RGB image from the central video-camera.

depth onto each video-camera image plane. Let (u, v) be the coordinates in the ToF

image plane of the pixel pToF, which has the depth value zToF . In order to find the

corresponding coordinates onto the video-camera image plane the pixel pToF is first

projected in world coordinates by de-normalizing its coordinates (multiplication by

zToF ) and by using the inverse of the ToF camera calibration matrix KToF
−1. Through

this, the ToF pixel becomes a 3D point in the space consisting on the homogeneous

coordinates P = (x, y, z, 1)> referred to the ToF camera coordinate system. Later,

the point P is transformed into the coordinate system of the video-camera by using

the roto-translation matrix [R|t] between the ToF and the video-camera. Finally, the

color image coordinates (xRGB, yRGB) are obtained by projecting the 3D point onto the

video-camera image plane. This last step is done by using the video-camera calibration

matrix KRGB and normalizing the resulting coordinates into homogeneous coordinates.

The entire mapping procedure is summarized in the matrices multiplication:

xRGByRGB
1

 =

x′RGB/zRGBy′RGB/zRGB
1

 = KRGB [R|t]

KToF−1

u · zToFv · zToF
zToF


1

 . (8.1)
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8. TOF DEPTH SUPER-RESOLUTION

Let assume a mapping from the ToF camera 4© to the color image of the central camera

2© (from now called reference camera) of the rig in Figure 7.2. Since cameras 4© and 2©

have different viewpoints, each one can see into areas which are occluded in the other

camera’s view. Hence, the simple mapping from ToF to the reference camera leads to

errors due to the sparsity of the projected pixels. In the case of cameras 4© and 2©,

the main problem is due to the big vertical occlusion, which causes the overlapping

between background areas which are visible only from the ToF, and foreground areas

which are visible from both ToF and camera 2©. This problem has been solved by the

introduction of the mesh mapping. Starting from the top-left pixel of the 200×200 ToF

depth, a square mesh of four pixels is selected (blue pixels in Figure 8.6). Then the

four pixels are mapped onto the camera 2© image plane in the form of a mesh where

the central area is filled with the mean value of the four vertices (red mesh in 8.6).

After the mapping, all the meshes which are composed by at least two flying pixels are

Figure 8.6: Graphical representation of the mesh mapping: four neighbors ToF pixels

(blue pixels) are mapped onto the reference camera image plane as a mesh (red mesh).

eliminated. The final result is a sparse depth map with the FoV of the chosen reference

camera 2©. Because of the different FoVs not all the ToF pixels are mapped inside the

color image. This high-resolution sparse depth map has to be refined. To do this, in

the next Section it is explained a method which exploits the correlation between color

image and mapped depth.

8.4 Bilateral depth super-resolution

The super-resolution block is the core of the proposed algorithm. The inputs of this

Section are the sparse 1920×1080 mapped depth map and its corresponding 1920×1080

color image. From these, it is possible to refine the sparse depth map by using the
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8.5 Stereo refinement

weighted joint bilateral filter of Equation (6.7), which exploits the information of the

guidance image Ĩ. The output of the WJBF is the refined 1920 × 1080 depth map,

called dense depth map. Figure 8.7 shows the resulting super-resolved depth image

obtained from the low-resolution ToF depth of Figure 8.3. Please note the blue areas

on the object borders. These pixels are still undetermined after the super-resolution.

The reason and the solution to this issue will be explained in the next Section.

Figure 8.7: Pyramid scene super-resolved depth image referred to the central camera

(scale in meters).

In addition to the WJBF, the code allows to choose between the JBF of Equation

(6.4) and the JBFKIM of Equation (6.5) for the sparse depth map interpolation.

8.5 Stereo refinement

The last part of the super-resolution framework is the stereo refinement. This is an

optional refinement proposed in order to exploit the information coming from the ad-

ditional video-cameras. The stereo refinement leads to fill the pixels that are still

undetermined after the super-resolution. In fact, during the interpolation of some pix-

els (usually in edge areas) it could happen that the filter cannot find similar color
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8. TOF DEPTH SUPER-RESOLUTION

intensity values within its aperture. Therefore, if the filter’s coefficients lies under a

certain threshold, the filter will not interpolate the pixel. The idea is to fill these unde-

termined areas by using an approach similar to the local stereo matching described in

Section 3.4.1. A graphical explanation of this post-processing procedure is provided in

Figure 8.8. Specifically, the purpose of the algorithm is to try to find, for each undeter-

Figure 8.8: Stereo refinement. From left to right: depth map window in an edge area

(undetermined pixels in white); mapping of the reference camera block with the five unique

and available depth values (in this case z4 is undetermined, z5 and z7 are duplicate depths);

refined depth map window.

mined pixel pR with coordinates (xR, yR) in the 1920× 1080 reference color image, its

conjugate pL in the 1920× 1080 target color image provided by another video-camera

(e.g., from reference camera 2© to target camera 1©). Differently from the normal local

stereo approaches, the search is limited to the comparison between a window (or block)

in the reference image and only few possible windows in the target image. These target

windows are defined from the mapping of pR onto the target image by using Equation

(8.1). Since a depth value zToF is needed to use this formula, the mapping is performed

by assigning to p all the possible depths z1, z2, ..., z8 from the neighbors pixels in a win-

dow centered in p (see Figure 8.8). More precisely, only the unique and available depth

values are considered. Then, the similarities between the reference block and all the

target blocks are calculated with the SSD (Equation (3.23)). The target block with the

lowest SSD gives the match, hence the depth value used to find that block is assigned

to the undetermined pixel p. The procedure is applied to all the undetermined pixels.

This final post-processing refinement is used only if a second video-camera is avail-

able. Otherwise, an alternative refinement can be done by simply applying a JBF to
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8.6 Experimental results

the super-resolved depth. This single-camera post processing is called bilateral refine-

ment. Concluding, the final result is a high-resolution depth map, with smooth flat

areas due to the filtering, and a good fitting between depth edges and image edges as

a result of the color image usage in the super-resolution algorithm. Figure 8.9 shows

the 1920× 1080 super-resolved depth for the pyramid scene.

Figure 8.9: Pyramid scene super-resolved depth image after the stereo refinement (scale

in meters).

8.6 Experimental results

In this Section some results are presented. Different scenes have been acquired with the

camera rig of Figure 7.2. Some scenes have a black background, whereas others have a

white background. The super-resolution is done using the WJBF. For each scene are

provided:

• The 200× 200 raw ToF depth image.

• The 1920× 1080 super-resolved depth image.

• The 1920× 1080 reference video-camera color image.
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8. TOF DEPTH SUPER-RESOLUTION

8.6.1 Pyramid

The super-resolution of this image was already showed during the description of the

algorithm, in particular for the case of WJBF. In this scene it is possible to see that the

reconstruction of all the objects is good, the depth discontinuities are well defined and

without flying pixels. One problem of the super-resolution algorithm can be noticed

looking to the top of the brown box. In fact, because of the additional illumination,

there is a color saturation of this part of the box, which results white as the background.

Therefore the filter assigns the background depth values to this area. Nevertheless,

looking at the ToF raw data (Figure 8.10(a)) it can be seen that the top part of

the box has a width of only 3 pixels, which are all flying pixels. Therefore the ToF

information of this area is not reliable and further information are necessary. Figure

8.10 shows the result of the WJBF super-resolution presented before.

8.6.2 Elk

The Elk scene shows a box with an elk toy model on its top. The result of the super-

resolution is accurate, especially on the elk’s horns and scarf. Like for the other ac-

quisitions all the area around the background is out of range for the ToF camera.

Therefore, this part should not be considered for the evaluation. Only a small error is

visible, between the elk’s legs. This is due to the stereo refinement. In fact, after the

super-resolution the background area between the two legs is undetermined, but the

pixels in the blocks used by the stereo refinement have only foreground values. There-

fore the area is filled with these values. Figure 8.11 shows the result of the WJBF

super-resolution.

8.6.3 Objects

The Objects scene represents some objects with a black background. With this config-

uration it is possible to see that the head of the Buddha is not perfectly reconstructed.

This because of the dark colors of the Buddha, which are quite similar to the black

background. Anyhow, looking at the raw ToF data, it can be seen that the Buddha’s

head is composed by only few pixels, and after the flying pixels removal almost all the

depth information in that area is lost. As for the other scenes, Figure 8.12 shows the

result of the WJBF super-resolution.
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8.6 Experimental results

(a) ToF raw depth image.

(b) Super-resolved depth image (stereo refinement).

(c) Color image.

Figure 8.10: Super-resolution of the Pyramid scene (scale in meters).
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8. TOF DEPTH SUPER-RESOLUTION

(a) ToF raw depth image.

(b) Super-resolved depth image (stereo refinement).

(c) Color image.

Figure 8.11: Super-resolution of the Elk scene (scale in meters).
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(a) ToF raw depth image.

(b) Super-resolved depth image (stereo refinement).

(c) Color image.

Figure 8.12: Super-resolution of the Objects scene (scale in meters).

95



8. TOF DEPTH SUPER-RESOLUTION

8.7 Applications

The presented super-resolution algorithm allows to obtain a high-resolution depth im-

age starting from a low-resolution ToF depth. One possible application is to use this

high-resolution depth for scene segmentation. Scene segmentation is the problem of

identifying all the different elements in a scene. The main drawback of image segmen-

tation is that the information carried by a single image may not suffice to completely

understand the scene structure. Therefore, with the fusion of depth and color image it

is possible to overcome this problem and enhance the existing segmentation techniques.

An example of depth image usage for segmentation purposes can be found in [33].

The super-resolved depth image can be further improved by using a stereo disparity

approach. As explained in Section 7.2, the standard deviation of the ToF camera noise

is about 1[cm]. Therefore, the depth resolution of the acquired image is about few

centimeters. Moreover, with the bilateral approach the final depth resolution can be

even worse. On the other hand, as previously explained in Section 4.3 the depth

resolution of stereo vision systems depend on the distance, and for closer objects is

better than ToF. Therefore, it can be possible to identify, for each distance, which

system has the most accurate depth resolution. For areas where stereo is more precise

than ToF, stereo matching should be used to refine the disparity. Then, for background

areas where ToF has a better depth resolution, the disparity value from the super-

resolved depth should be considered. The textures level is also an important indicator,

since for textureless areas a stereo system cannot give a reliable disparity estimation,

and the information from ToF should be used.
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Chapter 9

Conclusion

The aim of this thesis was to combine the information from a ToF camera with a stereo

vision system in order to obtain high-resolution depth images. Two super-resolution

approaches have been developed: the first based on compressive sensing, the second

based on joint bilateral filtering. The two approaches have been tested in an ideal sce-

nario, with a perfect mapping between ToF and video-camera, and a Gaussian noise for

the ToF camera measurement. The performed experiments showed that the bilateral

filtering approach was the most suitable for the super-resolution purposes. Therefore

this method was chosen for the real ToF depth image up-sampling. The entire super-

resolution framework was presented. The first part is a camera rig calibration to obtain

the intrinsic and extrinsic parameters. Then a ToF depth image pre-processing proce-

dure based on some camera noise measurements is performed, in order to reduce the

noise of the acquired depth map and to detect the flying pixels. Finally, it is possible

to increase the ToF resolution up to 1920 × 1080 pixel by exploiting the correlation

between the depth and the color image from one video-camera. The final result is a

high-resolution depth image, with a strong reduction of the noise thanks to the filtering

procedure, and sharp edges thanks to the additional information coming from the color

image.
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