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Abstract 

This Master Thesis was developed at the Laboratoire de Mécanique des Sols at the École 

Polytechnique Fédérale de Lausanne under the supervision of Dr. Alessio Ferrari and with 

the support of Prof. Lorenzo Sanavia in the period between March 2014 and July 2014.  

This work concerns the study and modelling of the mechanical behaviour of a particular 

shale, Opalinus Clay, when subjected to changes in the chemical composition of the pore 

liquid. The analysis begins from a series of six oedometric tests run in EPFL LMS 

laboratory on samples of Opalinus Clay. The tests were conducted with different stress 

paths, including mechanical loading at a constant osmotic suction and an increasing osmotic 

suction at a constant mechanical stress. Osmotic suction is the representative variable of the 

chemical composition of the pore liquid and it is controlled through the ion concentration of 

sodium chloride in the pore water. The experimental results evidence an influence of 

osmotic suction on the yield stress value, but no correlation with the oedometric modulus is 

observed. 

A constitutive model developed for a non-swelling illite has been calibrated for this case 

and simulations corresponding to the experimental test were run: in all cases the numerical 

results well reproduce the experimental evidences. 

Finally, a sensitivity analysis was performed to evaluate the impact of a variation of the 

input parameters on simulated results. 
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1. Introduction 

Shale is a fine-grained, laminated sedimentary rock consisting of silt- and clay-size 

particles. Accounting for roughly 70% of sedimentary rock in the crust of earth, it is the 

most abundant of this rock type. 

Several studies were conducted since the half of the last century to determine shales 

properties because of their essential role in many engineering applications, including 

nuclear waste disposal, shale gas  and wellbore stability. 

The nuclear waste disposal concerns the research of repositories suitable for containing 

nuclear waste. Over the last 10 years argillaceous rocks such as Opalinus Clay have gained 

acceptance as a potential host formation for geological disposal of nuclear waste [Corkum et 

al., 2006].  

Shale gas, the natural gas trapped within shale formations, has become a major source of 

fossil energy in the United States, and future growth in use of this source of energy is 

projected worldwide [Etminan et al., 2013]. Particularly, in the United States shale gas is 

predicted to become the source of 45% of all gas production by 2035 [AEO, 2011], 

especially considering that other fossil energy resources constitute larger threats for climatic 

shift, environmental pollution and potential risks for production/exploration. The renewed 

focus on rock sequences that have hitherto largely been ignored has necessitated the 

laboratory characterisation of rock properties and the development of methods and 

interpretation frameworks for characterising shales and understand their mechanical, 

chemical and thermal properties. 

A wellbore or borehole is a hole drilled with the aim of exploring or extracting natural 

resources such as water, gas or oil where a well may be produced and a resource extracted 

for a protracted period. The typical structure of a wellbore is represented in figure 1.1. 

The stability of tunnels and boreholes is a major problem: instability can lead to a partial or 

complete collapse of the wellbore or even loss of the well prior to reaching its target and to 

an increase of drilling costs of up to 15%  [Schmitt et al., 1994]. For example, in the oil and 

gas industry wellbore instability problems cost the industry many millions of dollars 

annually and it has been estimated that, on a world-wide basis, an excess of US$500 million 
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is lost each year because of wellbore instability[Chen et al., 1994]. In particular, being the 

drilled formations made up for over 75% of shales, 80% of borehole instability problems 

occur in shales [Schmitt et al., 1994]. These problems are mainly caused by the imbalance 

created between the rock stress and strength when a hole is drilled: the stress-strength 

imbalance starts as rock is removed from the hole, replaced with drilling fluid, and the 

drilled formations are exposed to drilling fluids. While drilling, shale becomes unstable 

when the effective state of the stress near the drilled hole exceeds the strength of the hole. A 

complicating factor is shale sensitivity to certain drilling constituents. The existence and 

creation of fissures, fractures and weak bedding planes can also destabilize shale as drilling 

fluid penetrates them.  

 

 

Figure 1.1: A wellbore 
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Water movement caused by hydraulic gradient is also present but, because of their very low 

permeability, hydraulic transport is not the dominant form of water movement into the shale 

sections. Water flow due to a hydraulic gradient can often be several times smaller than the 

contribution of the chemical and thermal gradients [Ghassemi et al., 2009].  

An important stabilization mechanism for boreholes drilled in chemically reactive shale 

formations with water-based drilling fluids relies on physicochemical interactions between 

the rock and the mud. In fact the pore pressure in the near-wellbore region can be reduced 

by an osmotic outflow of pore fluid from the reactive shale, which is triggered by an 

increased salinity of the drilling fluid [Sarout et al., 2011]. The petroleum industry has been 

investigating these phenomena since at least the early 1940s with research efforts eventually 

leading to recommendations for modifying the composition of drilling fluids in order to 

promote shale stability through oil emulsion and salinity balanced drilling fluids [Bunger et 

al., 2014]. 

This thesis work aims to integrate in this field and to reach a better knowledge of behaviour 

of a particular shale, Opalinus Clay, when subjected to changes in the pore liquid chemistry: 

particularly, the purpose is to evaluate the variation of the mechanical properties and the 

one-dimensional consolidation.  
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2. Mechanics of saturated soils 

Soils are generally defined as multi-phase systems composed by a solid phase, a liquid 

phase and/or a gaseous phase. The liquid and the gas are included into the voids located 

between the grains constituent the solid frame, as shown in fig. 2.1. 

 

Figure 2.1: Soil representation 

Starting from the schematization reported in fig.2.2, we can define: 

− Porosity: � � ��

�
 

− Void ratio: � � ��

��
 

− Water content: � � ��

��

  

− Degree of saturation: �� � ��

��
 

 

Figure 2.2: Soil schematization 
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The following relations can be easily verified: 

− � =  
�

��
 

− � =
�

��
 

− 	 = 1 + � 

The mass density of the mixture and the unit soil weight are expressed as follows: 

− Mass density of the mixture: 
 =
�

�
 ���
��
� 

− Unit soil weight: � =
��

�
� �

��
� 

2.1 Stress and strain 

In engineering applications soil is assimilated to three overlapping continuous media which 

fill the same volume. This assumption implies that the properties of a soil element, 

infinitesimal or finite, are the same, and that the concepts of stress and strain as defined in 

the continuum mechanics are valid also for soils.  

2.1.1 Stress definition 

The stress component �� can be introduced: 

�� = lim
��→�

�����

� 

where �� is the force in the direction j and �� is the area normal to the direction i. 

In three dimension the stress components are organized in a 3x3 tensor: 

� = � � �� �� ��� �� ��� 
The assumptions for the positive direction are shown in figure 2.3: particularly, the 

components �� are assumed positive when they are compressive. 
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Figure 2.3: Stress assumptions 

 

It can be proved that the stress tensor is symmetric,  that is: ��� � ��� 
The stress tensor has three invariants, quantities which don’t depend on the reference 

system: 

��� ������

�	�

� 	
��� 
�
� � 12���������

�	�

�

�	�

 

��� � 13��������������

�	�

�

�	�

�

�	�

�

�	�

 

The mean stress p, commonly used in soil mechanics, originates from the first stress 

invariant: 

� � 	 ���3 � ��� � �

 � ���3  

The stress tensor can be decomposed in two different tensors, the deviatoric stress tensor 

and the hydrostatic stress tensor: 

 

� � ��� � 13������ � �
��� � � ��
 ����
� �

 � � �
���� ��
 ��� � �� � �

� 0 00 � 00 0 �� 



2. Mechanics of saturated soils 

10 

 

where ��� is the Kronecker’s delta: 

��� � �0	��	� � �1	��	� � � 
The deviatoric stress q, common in soil mechanics, originates from the second invariant of 

the deviatoric stress tensor: 

� �  3�
 � !3������2 � !32 "#��� � ����$#��� � ����$% 
The deviatoric stress q becomes: 

� �  &���� � �

�
 � ���� � ����
 � ��

 � ����
 � 6���

 � ���
 � �
�
�( 
2.1.2 Strain definition 

Strains are defined starting from Cauchy’s theory: there are normal strains and shear 

strains.  

 

Figure 2.4: Strain definition 

Referring to the schematic representation in figure 2.4, let )* and *+ be two perpendicular 

segments, with length dy and dx respectively, belonging to a body in its original 

configuration. After the deformation of the body, the new positions of the two segments are )′*′ and *�+′, while )′′*′ and *′+′′ are the corresponding undeformed segments. If the 

function f, which associates to the position of every point of the body its displacement, has 
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sufficient characteristics of regularity and continuity, strains can be introduced. Let u and v 

be the displacements in the X and Y direction respectively; it is possible to derive: 

��� − ���� = ������� �� 

��� − ���� = ������
�

�� 

���� − ��� = ��	���� �� 

���� − ��� = ��	���
�

�� 

The specific dilation in the X direction is: 

�� − ��� + 
���� ����� = −

���� = �� 

that is the normal strain in the X direction. In the Y direction:  

�� − ��� + 
�	�� ����� = −

�	�� = �� 

Similarly it is possible to deduce � . These equations consider a reduction of length as a 

positive strain. 

The shear strain ��� is defined as the change in the angle between �� and �  before and 

after the deformation process: 

!
2

− " =

���� ���� +

�	�� ���� = ��� 

Similarly ��  and ��  are derived. 

In three dimensions, the strain state can be represented by a 3x3 tensor: 

# =

$%
%%
%& � 1

2
�� 1

2
��

1

2
�� ��� 1

2
���

1

2
�� 1

2
��� ��� '(

((
()
 

It can be proved that the strain tensor is symmetric,  that is: ��� = ��� 
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Similarly to the stress tensor, also the strain tensor possesses three invariants: 

*! = +����

�"

= ,�-#. 
*�! =

1

2
++�������

�"

�

�"

 

*�! =
1

3
++++�����#�#��

#"

�

�"

�

�"

�

�"

 

The volumetric strain ��, commonly used in soil mechanics, is equal to the first invariant: 

�� = *! = +����

�"

= � + ��� + ��� 

The strain tensor # can be divided into two symmetric tensors, the deviatoric strain tensor 

and the volumetric strain tensor: 

# = ��� +
1

3
���/�� =

$%
%%
%&� −

��
3

1

2
�� 1

2
��

1

2
�� ��� −

��
3

1

2
���

1

2
�� 1

2
��� ��� −

��
3 '(
((
()

+

$%%
%%
&��

3
0 0

0
��
3

0

0 0
��
3 '(
(((
)
 

The deviatoric strain �
 is defined from the second invariant of the deviatoric strain tensor: 

�
 =
2√3

3
1*�� =

√6

3
1������

=
√2

3
23-� − ���.� + -� − ���.� + -� − ���.� +

3

2
-��� + ���� + ���.4 

2.1.3 Triaxial configuration 

If the directions of the axis of the coordinate system are principle the stress tensor becomes 

diagonal (i.e. �� = 0 if 5 ≠ 6): 

� = � 0 0
0 � 0
0 0 �� 

In typical laboratory tests such as oedometric tests the stress state is triaxial, that is: 
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�
 � �� 

Consequently, the mean stress p and the deviatoric stress q become: 

� � �� � 2��3  

� � 	�� � �� 

The triaxial stress configuration is represented in figure 2.5. 

 

Figure 2.5: Triaxial Stress Configuration 
 

In the principal coordinates, the strain tensor is diagonal, i.e. -�� � 0	if � � �: 
. � �-� 0 00 -
 00 0 -�� 

Under triaxial configuration, the horizontal stress are equal (-
 � -��. It yields: -� � -� � 2-� 

-� � 23 �-� � -�� 
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2.2 Terzaghi’s principle 

Soil in engineering applications is assimilated to three overlapping continuous media which 

fill the same volume. In saturated conditions the gaseous phase is absent, and all the voids 

are filled with liquid. In order to apply the stress and strain concepts as previously 

presented, it is necessary to introduce a law which rules the interactions between the two 

remaining phases. The effective stress principle as stated by K. Terzaghi in 1936 can be 

introduced: �′�� � ��� � /���� 
where �′��,	��� and /� represent respectively the effective stress, the total stress and the 

pore pressure.  

Terzaghi’s principle attests that it is necessary to refer to two overlapping and mutually 

interacting continuous media to study the mechanical behaviour of a saturated soil; in every 

point the total stress tensor, the pore pressure tensor and, as a difference between them, the 

effective stress tensor are defined. The effective stress is presented as a mathematical 

concept, however a physical interpretation is possible: referring to the saturated soil element 

represented in figure 2.6, where the vertical direction is the referential one, �′�� can be seen 

as the ratio between the sum of the vertical components forces 0� transmitted by the grains 

separated by a surface which doesn’t cut any of them and the surface’s area . 

Mathematically:  

�′ � ∑ 0�,��)�  

 

Figure 2.6: Saturated soil element 
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This definition originates from the equilibrium of the element: 

�$,� = +��,� + �%(�$ − �&
�

) 

where �$,� is the total vertical external force applied to the element, �% is the pore water 

pressure and �& is the area of the intergranular contacts. 

Dividing by �$ we have: 

 =
�$,��$

= � + �% �1 −
�&�$

� 

Being �& ≪ �$:  = � + �% 

that is the effective stress principle for the vertical direction. 

The most important implications of Terzaghi’s principle are: 

− a change in effective stress involves a modification in soil resistance; 

− if effective stress is constant soil resistance does not change; 

− a volume change always corresponds to a modification in effective stress. 

2.3 Oedometric conditions 

The compressibility of a soil is usually evaluated in conditions of axial loading and absence 

of lateral deformation (�� = �� = 0): these conditions are called oedometric conditions. For 

example, oedometric conditions are present in a soil deposit for lacustrine sedimentation.  

It can be derived: 

�� =
∆77� =

∆88�

= �' 

being 7� and 8� the initial volume and height of a volume element in the neighbourhood of 

the considered point P, and ∆7 and ∆8 the respective variation.  

In geotechnical engineering the void ratio e �� =
��

��
� is the variable usually considered to 

compute volumetric changes: 

�� =
∆77� =

∆88�

=
∆�

1 + �� 

where �� is the starting void ratio corresponding to an absence of strains. 
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3.The ACMEG-C constitutive model 

3.1 Soil elasto-plasticity 

Elasto-plasticity is based on the decomposition of the total strain increment ���� into its two 

components, the elastic component �����  and the plastic component ����( . Within the small 

strain assumptions, it yields: 

 ���� =  ����� +  ����(  

The elastic part of the strain produced by a given loading is characterised for being fully 

recoverable through unloading; in contrast, the plastic component remains irrecoverable. In 

terms of work input per unit volume �9 of a material submitted to a strain increment ����: 
�9 = ′������ = ′������� + ′������( = �9� + �9( 

where �9� is the elastic energy recoverable upon unloading while �9( is the irrecoverable 

plastic work and coincides with the quantity of energy dissipated by the material during 

loading. The Prager’s condition of irreversibility (1949) sets that this value must be 

positive: 

�9( = ′������( > 0 

The yield criterion, also called loading surface or yield limit, is the fundamental condition 

that defines quantitatively the limit of elasticity and the beginning of plastic deformation 

under any possible combination of stresses. Points within this surface represent stress states 

which cause only elastic deformations. The limit is expressed in terms of the effective 

stresses ′�� and may depend on one or several internal variables !� . The general form can 

be expressed as: 

:;′��  !�< = 0 

Once the boundary between the elastic and the elasto-plastic domain is established in the 

stress space, it is necessary to specify the relative magnitude of the various components of 

the plastic strain when the boundary is reached and their direction (flow rule). A plastic 

potential = must be defined: 
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=;′��  !�< = 0 

The plastic component of the strain is calculated as: 

����( = >( �=�′��
 

where >( is a non-negative variable, the plastic multiplier, which establish the magnitude of 

the plastic strain, while 
)�

)*���
 defines its direction (corresponding to the one along which the 

potential gradient is maximum). The plastic flow rule is usually non-associated, which 

means that the yield limit f and the plastic potential g are not the same. In the particular 

event of the coincidence of the two potentials (: ≡ =), the plastic flow rule is called 

associated. 

The total strain increment can be re-written: 

���� = ����� +  ����( = ?���#� �′�# + >( �=�′��
 

where ?���#�  is the elastic modulus matrix.  

It is necessary to verify the uniqueness of the solution of the stress-strain relations: the 

uniqueness condition ( Prager, 1950) is automatically verified if the flow rule is associated. 

In case of non-associated flow rule, the incremental problem can be solved only under 

certain conditions. 

When the stress point reaches the yield limit, plastic strains occur for all stress paths directs 

towards the exterior of the yield limit. In any other case the material behaviour is elastic. 

Three possible conditions can be defined: 

− Unloading: :;′��  !�< = 0  and  
)�

)*���
�′�� < 0 

− Neutral loading: :;′��  !�< = 0  and  
)�

)*���
�′�� = 0 

− Loading: :;′��  !�< = 0  and  
)�

)*���
�′�� > 0 

This is the condition of continuity by Prager (1949).  

Being the exterior of the domain unattainable by definition, an evolution of the loading 

surface must counterbalance the condition 
)�

)*���
�′�� > 0 in order to guaranty the 

satisfaction of the yield criterion as long as the material is in a plastic state: this is the 
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condition of consistency (Prager, 1949). The evolution of the yield function f is called 

hardening and leads to a change in the characteristics of the elastic domain. If an expansion 

of the elastic domain does not change its shape, its centre and its orientation the hardening is 

said isotropic.  

The evolution of the yield function f  is: 

�: =
�:�′��

�′�� +
�:�!� �!� = 0 

Following Desai and Siriwardane (1984) ‘strain hardening’ hypothesis, it is assumed that 

the hardening depends on the plastic strain, and so the internal variables: 

:;′��  !�< = :;′��  ���(< 
It yields: 

�: =
�:�′��

�′�� +
�:��

��

(

����(�>( >( = 0 

Combining this equation with the total strain expression, it is possible to find the value of 

the plastic multiplier >(: 

>( =
18 �:�′��

?���#���# 
where the plastic modulus H is equal to: 

8 =
�:�′��

?���# �=�′�#
−

�:��
��

(

����(�>(  

3.2 Cam-Clay model 

In the field of the elasto-plastic modelling of geomaterials, it is possible to consider the 

influence of the mean stress imposing that the dimension of the section of the domain 

perpendicular to the hydrostatic axis ( = �� = ��) becomes greater moving in the 

direction of compression along the hydrostatic axis. Yield surfaces with this characteristic 

are those proposed by Drucker and Prager (1952), Drucker and Shield (1955). 
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Figure 3.1: Original Cam Clay yield limit (from ‘Thermo-Plasticity of Fine-Grained Soils at Various Saturation 

States: Application to Nuclear Waste Disposal’ by B. François, EPFL, 2008) 
 

The Cam-Clay constitutive model for saturated soils was developed in Cambridge in the 

‘60s and is based on the elasto-plasticity concepts previously presented. In this model the 

yield surface and the critical surface are distinguished for the first time. Two main versions 

of this model exist, differing from each other in their yield function equation: the “Original 

Cam-Clay” and the “Modified Cam-Clay”. The Modified Cam-Clay yield surface is 

elliptic, while the Original Cam-Clay is almond-shaped. The yield surface depends on void 

ratio e too: any densification of the material leads to a growth of the domain’s dimensions. 

In figure 3.1 the Original Cam-Clay yield limit is represented in the (p’, q, e) space: at any 

void ratio corresponds a given elastic domain. P’ is the mean stress p corresponding to the 

effective stress components �′��. 
In the Cam-Clay model the volumetric response of soil under isotropic loading (oedometric 

conditions are verified) can be divided into two main parts: the behaviour inside the elastic 

domain and on the yield limit. The behaviour into the elastic domain is governed by the 

unloading-reloading curve: 

� � �� � 2 ln �′�′� 

being �� and �′� the starting values of the void ratio and the mean stress and 2 a material 

parameter, the  swelling index (fig.3.2). 
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Figure 3.2: Cam Clay model prediction on isotropic compression  
 

The behaviour on the isotropic yield limit, where both plastic and elastic strains are 

produced, follows this law: 

� � �� � 5 ln �′�′� 

where 5 is the compression index, a material parameter. 

As presented in the oedometric conditions, the volumetric strain can be written in terms of 

void ratio e: 

-� � ∆77� � ∆88� � �� � �1 � �� 

The unloading-reloading curve becomes: 

9-�� � 9�′:���#�′ �′���⁄ $ 
where :��� is the reference bulk modulus at the unity mean effective stress �′���. 

:��� � 1 � ��2 �′��� 

In order to calculate the plastic component of the strain during the evolution of the isotropic 

yield, the swelling index k corresponding to the elastic deformation must be subtracted from 

the compression index 5. It yields: 

< � 1 � ��5 � 2  

This parameter intervene in the hardening equation, which describes the evolution of the 

critical pressure �′�� with the generated volumetric plastic strain -��: �′�� � �′����=��<-��� 
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As previously disclosed, there are two different Cam-Clay versions: the Original Cam-Clay 

(Schofield and Worth, 1968) and the Modified Cam Clay (Roscoe and Burland, 1968). 

Original Cam Clay 

The yield limit is: 

: = @ − AB′ C1 − ln
B′B′&�

D = 0 

where M is the slope of the critical state in the (p’, q) plane. If the Mohr-Coulomb failure 

criterion is adopted: 

A =
6 sin�′

3 − sin�′
 

The flow rule is the following: 

���( = >( �=�B′
= >( �A −

@B′
� 

��
( = >( �=�@ = >( 

being ��
( the increment of the deviatoric plastic strain. The dilatance rule is the following: ���(��



( = A −
@B′

 

Modified Cam Clay 

The yield limit of the modified Cam Clay model is the following: 

: = @� − A�B′� C2B′&�B′
− 1D = 0 

The consequent flow rule can be derived: 

���( = >( �=�B′
= >( CA� − �@B′

��D 

��
( = >( �=�@ = >(2@ 

The corresponding dilatance rule is: 

���(��



( =

A� − �@B′
��

2
@B′
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The expressions for the yield limit and the dilatance rule for both versions are based on two 

main assumptions: 

− Associated flow rule (g=f) 

− The plastic work is dissipated entirely by friction: 9>� � ��9-�� � �9-�� � ?�′9-�� 

The two yield functions are represented in figure 3.3. 

 

 

Figure 3.3: Original Cam-Clay and Modified Cam-Clay yield functions 

3.3 The ACMEG model 

The Cam-Clay model was improved during the years in order to obtain a constitutive tool 

able to predict soil response upon various mechanical loading. One of the results of these 

modifications is the ACMEG model, which stands for “Advanced Constitutive Model for 

Environmental Geomechanics”: it is a basic tool, whose improvements are due to several 

works (Hujeux, 1979; Hajal, 1984; Lassoudière, 1984; Michalski and Rahma, 1989; 

Piccuezzu, 1991; Modaressi and Laloui, 1997; Laloui and Cekerevac, 2008). 

 

Within the small strain assumptions, the total strain 9- can be split into the elastic and 

plastic component: 9-�� � 	9-��� � 	9-���  

Being the stress and strain tensor symmetric, in the following this notation will be used: . � �-��	-

	-��	@�
	@��	@
�	�� � � ��′��	�′

	�′��	�′�
	�′��	�′
�	�� 
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3.3.1 Non linear elasticity 

Within the elastic domain the stress-strain relation is, as usual in continuum mechanics: ����� = ?���#� �′�#  

where the contraction is assumed positive. ?���# is the mechanical elastic tensor: 

E =
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where K is the bulk modulus and G is the shear elastic modulus. 

Experimental tests evidence that the strains in the elastic domain are strongly non-linear 

because of a dependence of the elastic modulus on the mean stress. In Cam-Clay model a 

logarithmic stress-strain relationship of the swelling line is considered; the consequence, as 

previously illustrated, is a linear dependence of the bulk modulus on the mean stress p’: 

���� =
�B′����;B′ B′���⁄ < =

�B′�  

� = ����;B′ B′���⁄ < 
���� =

1 + ��G B′��� 

This expression for the bulk modulus may not be sufficient to reproduce some behaviours of 

stiff clay. In order to overcome this limitation, an additional exponent �� is added: 

� = ����;B′ B′���⁄ <�� 

As far as the elastic stiffness upon distortional path is concerned, the shear modulus is also 

affected by the mean effective stress. The same exponent  �� is adopted: 

� = ����;B′ B′���⁄ <�� 

where ���� is the shear modulus at the unity mean effective stress B′���. 

The volumetric and deviatoric components of the elastic strain increment are, respectively: 

���� =
�B′�  
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9-�� � 9�3A 

3.3.2 Plastic mechanisms 

Isotropic plastic mechanism 

The Original Cam-Clay model predicts a deviatoric component of the plastic strain in case 

of isotropic loading, whereas it should produce only volumetric strains. In the ACMEG 

model, in agreement with the work of Hujeux (1979), an isotropic yield mechanism is added 

to the Original Cam Clay deviatoric mechanism: ��� � �� � �′�
�� � 0 

where �′� is the preconsolidation pressure and 
�� is the degree of mobilization of the 

isotropic plastic mechanism (0 B 
�� B 1�. This parameter is introduced in the model to 

take in account the progressive mobilization of the plasticity before reaching the yield limit 

experimentally observed (fig. 3.4). 

 

Figure 3.4: Degree of mobilization of the plastic mechanism effect (from ‘Thermo-Plasticity of Fine-Grained 

Soils at Various Saturation States: Application to Nuclear Waste Disposal’ by B. François, EPFL, 2008) 
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During loading, 
�� is a hyperbolic function of the volumetric plastic strain induced by the 

isotropic mechanism: 


�� � 
��� � -��,��C � -��,�� 

where 
���  is the radius of the isotropic elastic nuclei inside which the strains are fully 

reversible and c is a material parameter. 

Its derivate is computed as: 

9
�� � �1 � 
��
�C 9-��,�� 

During unloading, in order to enable the progressive plasticity upon each isotropic loading, 
�� decreases to follow the decrease of effective mean pressure p’, while at reloading, 
�� is 

adjusted to keep a constant elastic nuclei (
��� ): 


�� � 
��� � �′����′� � -��,���,��C � -��,���,�� 

where �′��� is the evolving mean stress, �′� is the current preconsolidation pressure and 

-��,���,�� is the volumetric plastic strain produced by the isotropic mechanism since the 

change of direction of the solicitation. This mechanism is illustrated in figure 3.5: the 

unloading takes place elastically and doesn’t produce plastic strains. During the unloading 

A-B, 
�� decreases and consequently the position of the isotropic yield function changes.  

 

Figure 3.5: Response upon unloading-reloading path (from ‘Thermo-Plasticity of Fine-Grained Soils at Various 

Saturation States: Application to Nuclear Waste Disposal’ by B. François, EPFL, 2008) 
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The reloading is composed by two phases: the first inside the elastic domain (BC) and the 

second where the yield surface is activated and plastic strains are produced. 

The preconsolidation pressure B′& evolves with the volumetric plastic strain: B′& = B′&���B-���(. 
being B′&� the initial preconsolidation pressure and � the plastic compressibility. 

Deviatoric plastic mechanism 

The expression of the deviatoric yield limit is: 

:
�� = @ − AB′C1 − H ln
�B′B′&

D �
�� = 0 

This is the same expression of the Original Cam-Clay model yield limit with the supplement 

of three parameters: b, d and �
��. 

b is a material parameter defining the shape of the yield limit varying from 0 (corresponding 

to a Mohr-Coulomb model) to 1 (corresponding to original Cam-Clay model). The impact 

of this parameter on the yield surface is shown in fig. 3.6. 

 

Figure 3.6: Parameter ‘b’ impact on the yield surface  

 

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Mean effective stress, p' [MPa]

D
e

v
ia

to
ri

c
 s

tr
e

s
s
, q

 [
M

P
a

]

 

 

b=1

b=0.75

b=0.5

b=0.25

b=0



3.The ACMEG-C constitutive model  

28 
 

d is a parameter accounting for the ratio between the preconsolidation pressure B′& and the 

critical pressure B′&�: 

� =  
B′&

 B′&�
 

d is equal to 2.718 and 2 respectively in the Original Cam-Clay model and in the Modified 

Cam-Clay model. �
�� is the degree of mobilization of the deviatoric plastic mechanism (0 ≤ �
�� ≤ 1). Its 

evolution is governed by the deviatoric plastic strain �
(: 

�
�� = �
��� +
�
(I + �




( 

��
�� =
(1 − �
���)I ��
( 

where a is a material parameter and �
���  is the radius of the deviatoric elastic nuclei inside 

which the strains are fully reversible. 

M is the slope of the critical state line in the (p’-q) plane: 

A =
6 sin�′

3 − sin�′
 

In figure 3.7 the elastic domain of the ACMEG model is represented in the (p’-q) plane 

3.3.3 Flow rules 

The isotropic plastic mechanism, as it is conceived, must produce only volumetric strain, so 

the plastic potential =��	 and the isotropic yield function :��	 must be coincident: :��	 =  =��	 

The flow rule for the isotropic mechanism is associated: 

����(,��	 = >��	( �=��	�′��
=
>��	(

3
 

���(,��	 = >��	( �=��	�B′
= >��	(

 

If the Original Cam-Clay expression for dilatancy is kept, the consequent =
�� expression is 

different from the ACMEG :
�� expression because of the presence of the b parameter: the 

flow in non-associated.  
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Figure 3.7: ACMEG elastic domain 
 

The Original Cam-Clay plastic potential also fails to predict the volumetric changes during 

plastic straining: thus, an additional parameter J is introduced in order to catch the various 

volumetric responses: ���(��



( = J �A −
@B′
� 

The correspondent plastic potential for the deviatoric mechanism is as follows: 

=
�� = @ −
JJ − 1

AB′ �1 −
1J C�B′B′&

D+�� 
It can be proved that: 

lim
+→

=
�� = lim
+→

K@ −
JJ − 1

AB′ �1 −
1J C�B′B′&

D+��L = @ − AB′C1 − ln
�B′B′&

D 

Consequently, if J = H = 1 the flow rule is associated; if J = H = 1 and � = 2.71 the 

deviatoric mechanism is the same as the Original Cam-Clay model. 

The hardening rule is: 
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����(,
�� = >
��( �=
���′��
= >
��( 1AB′

M �@�′��
+ J �A −

@B′
� 1

3
/��N 

with: 

�@�′��
=

OPQ
PR 3

2@ -′�� − B′. 5: 5 = 6
3′��@                 5: 5 ≠ 6 

The volumetric and deviatoric plastic strains for the deviatoric mechanism are: 

���(,
�� = >
��( �=
���B′
= >
��( JAB′

3A −
@B′
4 

��
( = >
��( �=
���@ = >
��( 1AB′
 

3.3.4 Coupling between the mechanisms 

The isotropic and hardening mechanisms are coupled through the hardening variable ��(: the 

feature of the ACMEG model is that the total volumetric plastic strain increment is the sum 

of the volumetric plastic strain due to each mechanism.  

���( = ���(,��	 + ���(,
�� = >
��( �=
���B′
+ >��	( �=��	�B′

= >
��( 1AB′
+ >��	(

 

The two consistency equations must be verified simultaneously. It yields: 

ST =  
�T�′

∶ �� +
�T�! �!�>( >( = U ∶ �� − V ∙ >( ≤ 0; >( ≥ 0;ST ∙ >( ≥ 0 

ST = ��:��	�:
��� 

where �� is the stress vector and W the internal variable vector. U is: 

U =
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X, is the plastic multiplier vector: 

>( = C>��	(

>

��

( D 

V is the matrix of the hardening moduli: 
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V = 38-- 8-.8.- 8..
4 
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3.4 The ACMEG-C model 

The ACMEG model as previously presented does not take in account the modifications of 

the material’s behaviour due to a change in osmotic suction, the representative variable of 

the chemical composition of the pore liquid. 

3.4.1 Total suction and osmotic suction 

The total suction  ψ is the sum of the matric suction s and the osmotic suction π: 

− The matric suction s is the term that takes in account the capillary phenomena and 

adsorption mechanisms. In fact, it is well known that water and air phase form 

interphases of negligible thickness, which curve to form capillary menisci when in 

contact with the solid grains. As demonstrated through equilibrium considerations, 

menisci concave on the air side generate pore water pressures which are lower than 

the air pressure: the difference between the two pressures is named capillary pressure B&'(. This pressure can also be linked to the tensile pull generated along the 

boundary. The matric suction also groups the suction linked to water adsorption 

mechanisms, which is particularly important in clayey soils; 

− The osmotic suction π is due to the presence of dissolved ions in the pore water 

which cause a variation of pressure caused by osmotic effects (par. 4.1). 

As mentioned, the aim of this work is to study the consequence of a variation in the pore 

liquid composition. Previous studies and tests on this topic [Witteveen et al., 2013] proved 
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that matric suction can be neglected and, consequently, that the total suction can be assumed 

coincident with its osmotic component. It can be written: 

 ψ = π [MPa] 

3.4.2 The ACMEG-C model 

The ACMEG-C model introduces in the previous ACMEG model the osmotic suction as 

representative variable of the chemical composition of the pore liquid: the law which links 

osmotic suction and the ion concentration for dilute solutions is presented in a following 

paragraph. The variations introduced in ACMEG-C model are based on studies and 

experiments on a non-swelling illite carried on at EPFL LMS [Witteveen et al., 2013]. 

According on experimental results, the reference bulk modulus ���� is assumed to evolve 

with the osmotic suction following the power function: 

���� = ����,� � !!��
�/

 

being ����,� the bulk modulus at a reference osmotic suction !�. 

A dependence of the preconsolidation pressure on the osmotic suction value is also 

observed. The following logarithmic dependence is assumed: 

B′& = B′&���B-���(. �1 − �� log
!!�� 

being B′&� the preconsolidation stress at a reference osmotic suction !�, � the plastic 

compressibility, ��( the total plastic volumetric strain,  ! the current osmotic suction and �� 

the material parameter defining the variation of the yield limit with respect to the osmotic 

suction. The plastic compressibility � is also assumed to be influenced by the osmotic 

suction following a logarithmic dependence: 

� = �� �1 + �� log
!!�� 

where �� is the chemical evolution factor, ! is the current osmotic suction and �� is the 

plastic compressibility at the reference osmotic suction !�. 

The isotropic yield function expression becomes: 

:��	 = B� − B&����	 = B� − B&�� ��B 3�1 + �� log
!!�� ����(4 ∙ �1 − �� log

!!�� ���	  
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where the evolution of the mechanical hardening is expressed by the material parameters <� 

and c (within the 
�� expression) and the evolution of the chemical hardening is considered 

by the parameters @� and @�. 

The new expression for the deviatoric yield function is: 

���� � � �?�′ D1 � EF� �′9���� �=� GH1 � @� log KK�L <�-��M ∙ H1 � @� log KK�L 
��O 
��� 

The isotropic and deviatoric mechanisms are linked through the volumetric plastic stain -��: 

their coupling is shown in the following figure 3.8. 

 

Figure 3.8: Coupling of isotropic and deviatoric mechanisms (from ‘An experimental and constitutive 

investigation on the chemo-mechanical behaviour of a clay’, P. Witteveen, A. Ferrari and L. Laloui, 

Géotechnique, 2013) 
 

Following the experimental results, an increase in osmotic suction entails a decrease of the 

elastic domain dimensions. 
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4. Chemo-mechanical oedometric tests on shales 

To reach a better knowledge of shales behaviour when subjected to chemical variations 

similar to those of the drilling fluids, a set of six chemo-mechanical oedometric tests was 

performed in EPFL LMS laboratory on samples of a particular shale, Opalinus Clay. The 

tests were conducted in saturated and drained conditions: the consequence is the 

equivalence of the total stress and the effective stress of the material. 

4.1 Osmotic processes in shales 

Shales behaviour during drilling is attributed to osmotic effects. Osmosis is the transport of 

water molecules flow from low salinity side of a semi-permeable membrane to the high 

salinity side to equalize the concentration of the dissolved salts: figure 4.1 shows this 

phenomenon and allows a better understanding of osmotic suction. 

 

Figure 4.1: The mechanism of osmotic suction 
 

The presence of dissolved ions in the solution triggers the flow of pure water through the 

semi-permeable membrane. Simultaneously, if an external pressure is applied to the 

solution, a flow of water through the semi-permeable membrane towards the pure water 
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begins. When an equilibrium between these two mechanisms is reached, the pressure on the 

solution is equal to the osmotic suction π. 

Because of their wide distribution of the pore range, shales can act as a non-ideal, semi-

permeable membrane, which only restricts the passage of some of the solutes in the solvent.  

4.2 Chemo-mechanical oedometric tests 

A previous laboratory programme on a non-swelling illite carried on at EPFL LMS showed 

that, for this kind of experiments, the matric suction is negligible and that total suction can 

be assumed coincident with its osmotic component [Witteveen et al., 2013]. Moreover, a 

marginal influence of water content was observed in the experimental findings. 

4.2.1 Stress paths and experimental results 

The chemo-mechanical oedometric tests on shales studied in this work were conducted with 

different stress paths, including mechanical loading at a constant osmotic suction and an 

increasing osmotic suction at a constant mechanical stress. 

 

Figure 4.2: Stress Path 1 
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Figure 4.3: Test 1 experimental oedometric curve 

 

The first stress path (fig. 4.2) is composed by a mechanical loading at a constant osmotic 

suction (1 MPa) with a unloading-reloading appendage. The corresponding experimental 

results are reported in figure 4.3. 

The second stress path is represented in figure 4.4: it is similar to the first one, but with 

smaller vertical effective stress values. As shown in figure 4.5, it is also characterized by 

greater void ratio values. 

The third stress path (fig 4.6) is composed by an initial mechanical loading at a constant 

osmotic suction (1 MPa) followed by a reduction of the osmotic suction value until 0.5 

MPa. Then the shale sample is subjected to two unloading-reloading cycles ant to a final 

mechanical unloading.  

Figure 4.8 represents the fourth stress path: there is an initial mechanical loading at a 

constant value of osmotic suction (1 MPa), then an increase of osmotic suction to 15 MPa 

and, after a unloading-reloading cycle, a final mechanical unloading. 
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Figure 4.4: Stress Path 2 

 

Figure 4.5: Test 2 experimental oedometric curve 
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Figure 4.6: Stress Path 3 

 

Figure 4.7: Test 3 experimental oedometric curve 

0.8 6.2 12.5 25 50 97.7

0.5

1

Vertical effective stress, σ'
z
 [MPa]

O
s
m

o
tic

 s
u
c
tio

n
, 
π

 [
M

P
a
]

Initial Point

1 10 100
0.17

0.18

0.19

0.2

0.21

0.22

0.23

Vertical effective stress, σ'
z
 [MPa]

V
o
id

 r
a
tio

 e
 [
-]



4. Chemo-mechanical oedometric tests on shales 

40 
 

 
Figure 4.8: Stress Path 4 

 

Figure 4.9: Test 4 experimental oedometric curve 
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Figure 4.10: Stress Path 5 

 
Figure 4.11: Test 5 experimental oedometric curve  
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Figure 4.12: Stress Path 6 

 

Figure 4.13: Test 6 oedometric curve 
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The stress path represented in figure 4.10 has an initial variation of osmotic suction at a 

constant vertical effective stress, followed by a mechanical loading, a unloading-reloading 

cycle and a final mechanical unloading. 

The sixth and last stress path (figure 4.12) is composed by an initial mechanical loading at a 

osmotic suction of 1 MPa followed by a mechanical unloading, a change in osmotic suction 

from 1 MPa to 15 MPa, a mechanical loading and a final mechanical unloading at a constant 

osmotic suction of 15 MPa. 

4.2.2 Observations 

Some comments can be made starting from the experimental results: 

− all the tests show an important behaviour of Opalinus Clay: like shales in general, the 

so-called damage effect characterizes the oedometric curve. This effect is due to an 

internal reorganization when the sample is subjected to a mechanical stress, and leads 

to a greater slope of the unloading curve as the void ratio decreases and the 

deformation increases; 

−  the unloading-reloading cycles at constant osmotic suction are not observed to 

involve important quantities of plastic strains; 

− a variation in osmotic suction at a constant mechanical stress does not involve 

important strains in the test 3 and 6, while in the test 4 and 5 a variation of the void 

ratio of 0.09% and 0.18% respectively is registered; 

− the slope of the elasto-plastic part of the oedometric curve does not seem to be 

influenced by the osmotic suction value; 

− test 5 has a particular path in its first steps: there is an initial increase of osmotic 

suction from 1 MPa to 15 MPa, a following decrease from 15 MPa to 1 MPa and 

another chemical loading to 15 MPa. The experimental answer to this path is an 

initial deformation corresponding to the first stress paths and then an approximately 

constant void ratio.  
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4.3 Determination of the preconsolidation pressure 

A fundamental parameter to determine is the preconsolidation of the samples subjected to 

the oedometric tests. Two different methods have been used: the Casagrande’s graphic 

method and the Energetic method. 

4.3.1 Casagrande’s graphic method 

The Casagrande’s graphic method is the procedure commonly used in geotechnical 

applications to determine the preconsolidation pressure. It entails the following steps: 

− determination of the point of maximum curvature on the consolidation curve (point 

M in figure 4.14); 

− drawing of a horizontal line from M and of the tangent to the curve at point M; 

− drawing of the bisector of the angle between the two lines drawn; 

− the intersection of the bisector and the line traced following the last part of the 

consolidation curve identifies the preconsolidation pressure. 

The whole procedure is represented in figure 4.14. 

 

Figure 4.14: Casagrande’s graphic method 
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With this method the preconsolidation pressure is determined together with the 

corresponding void ratio e. Experimental results show that the line traced following the last 

part of the curve (a sort of experimental Normal Compression Line) is the same for the 

different tests, being the samples composed by the same material. This line depends only on 

osmotic suction, and a variation in osmotic suction modifies its position but not its slope. 

Two different lines were determined: one corresponding to an osmotic suction value of 1 

MPa, one of 15 MPa, respectively traced in test 1 (figure 4.15) and test 5 (figure 4.16). 

 

 
Figure 4.15: Experimental NCL corresponding to π = 1 MPa 
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Figure 4.16: Experimental NCL corresponding to π = 15 MPa 

4.3.2 Energetic method 

An alternative method to calculate the preconsolidation pressure is the energetic method, 

based on the determination of the energy necessary to deform a sample. In oedometric 

conditions, this energy can be calculated at any stage from the area underneath the stress-

strain curve: 

9 = Y ����*��

*�	

 

To compute the vertical strain the following equation is used: 

�� =
∆77� =

∆88�

=
∆�

1 + �� 

where �� is the starting void ratio corresponding to an absence of strains. 

The so-calculated cumulative work can be plotted against stress, as showed in figure 4.17: 

the preconsolidation pressure is determined as the vertical component of the intersection of 

the tangents to the initial and final part of the curve. The intersection also identifies the 

corresponding work value, easily convertible in strains and then in void ratio. 
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Figure 4.17: Energetic method 

4.3.3 Comparison of the results 

In the following table 4.1 the results obtained with the two methods are presented. In test 3 

the determination of the vertical effective yield stress with the energetic method is not 

practicable because of the change of osmotic suction in proximity of the beginning of the 

plasticisation. 

Test 

σ'c [MPa] 

e0 

e [-] 
π 

[MPa] 
Casagrande 

Method 

Energetic 

Method 

Casagrande 

Method 

Energetic 

Method 

1 10.07 11.90 0.223 0.221 0.222 1 

2 3.61 2.35 0.248 0.241 0.243 1 

3 10.56 
 

0.220 0.219 
 

1 

4 14.17 8.97 0.215 0.213 0.213 1 

5 10.91 11.11 0.222 0.216 0.218 15 

6/ π = 

1MPa 
6.02 7.98 0.239 0.230 0.235 1 

6/ π = 

15MPa 
14.38 25.80 0.215 0.211 0.211 15 

 

Table 4.1: The two methods results 
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Figure 4.18: Comparison of Casagrande Method and Energetic Method 
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increase of osmotic suction. 

In figure 4.19 the vertical effective yield stress are reported in a semi-logarithmic graph 

with the corresponding void ratio values. The points determined with Casagrande’s graphic 
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Figure 4.19: Comparison of Casagrande Method and Energetic Method 

4.4 Analysis of the experimental results 

Other comments can be made starting from the experimental results. 

4.4.1 Determination of �� 

�� is the material parameter introduced in the ACMEG model defining the variation of the 

yield limit with respect to the osmotic suction. In chapter 3 it was introduced in the 

preconsolidation pressure equation expressed in terms of mean effective yield stress: 

B′& = B′&���B-���(. �1 − �� log
!!�� 

being B′&� the preconsolidation stress at a reference osmotic suction !�, � the plastic 

compressibility, ��( the total plastic volumetric strain, and  ! the current osmotic suction. 

The available experimental data are expressed in terms of vertical effective stress ′� (or ′ , being z the vertical axis) and not in terms of mean stress p’: it is assumed that the 
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same form. Consequently the parameter �� can be calculated referring to the following law 

for the evolution of the yield limit stress with respect to the osmotic suction of pore water: 

& = �1 − �� log
!!�� &� 

being as usual &� the vertical yield stress at !�. 

The vertical effective yield stress depends on the void ratio e and on the osmotic suction !: 

to estimate �� it is necessary to refer to a constant void ratio.  

The choice is to assume the preconsolidation pressures calculated with Casagrande’s 

graphic method, the classical method used in geotechnical procedures, because of a more 

regular disposition. As explained in the 4.3.1 paragraph, two different “experimental” 

Normal Compression Lines corresponding to two different osmotic suction values (π = 1 

MPa and π = 15 MPa) have been assumed to develop the method; the lines are 

experimentally observed to be parallel. An equation can be associated to each one: 

NCL at π = 1 MPa:   � = 0.267 − 0.047 log ′  

NCL at π = 15 MPa:   � = 0.2645 − 0.047 log ′  

Consequently, assuming a given void ratio, the vertical effective yield stress is immediately 

determined. For � = 0.21 the two equations give: 

π = 1 MPa: ′& = 16.32 MPa 

π = 15 MPa: ′& = 14.44 MPa �� can easily be estimated from the equation: 

�� =
1 −

′&&�
log

!!�  

where &� is the vertical effective yield stress corresponding to the chosen reference osmotic 

suction !� of 1 MPa. Substituting the presented values it yields: �� = 0.098 

The graph reported in figure 4.20 shows the vertical effective yield stress variation with 

osmotic suction and void ratio; an “artificial” point characterized by a squared marker is 

added to better illustrate the osmotic suction impact. The black line represents the equation 

for the evolution of the yield limit stress with respect to the osmotic suction corresponding 

to � = 0.216 and �� = 0.098. 
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Figure 4.20: Vertical effective yield stress variation with osmotic suction 
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final part, two different Normal Compression Lines can be identify. The corresponding 

value of �� is bigger than 0.098, with a upper limit of 0.2: this characteristic will be 

considered for the numerical simulation of the six oedometric tests.  
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is possible particularly for two values, �′�,� ! � 25 MPa and �′�,� ! � 90 MPa, which are 

realized in a sufficient number of tests. 

 

Figure 4.21: Cc and Cs 
 

Form a practical point of view, the goal is to measure the slope C
s
 as presented in figure 

4.21 for a constant �′�,� !. The results are presented in table 4.2. 

�′�,��� = 25 MPa �′�,���= 90 MPa 

Test π [MPa] Cs Test π [MPa] Cs 

1 1 0.018 1 1 0.023 

2 1 0.016 4 15 0.019 

5 15 0.015 5 15 0.024 

6/π = 1 MPa 1 0.014 6/π = 15 MPa 15 0.022 

 

Table 4.2: Cs values 
 

The following figure 4.22 is a graphical representation of table 4.2: the assumption derived 

from the experimental data is that there is no dependence of C
s
 on the osmotic suction π. 

Particularly the two black lines state the two medium values of the parameter: 0.016 for �′�,� ! � 25 MPa and 0.022 for �′�,� ! � 90 MPa. 

C
s
 is the slope of the oedometric curve in the elastic domain: its value can be linked to the 

bulk modulus K if some hypothesis which will be presented in the following chapter are 

verified. The bulk modulus K dependence on osmotic suction in ACMEG-C model is, as 

previously presented: 
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���� = ����,� � !!��
�/

 

Consequently, if no dependence of C
s
 on osmotic suction is registered, it can be assumed: / = 0 

 

Figure 4.22: Cs variation with osmotic suction 

 

C
c
 is the slope of the “experimental” Normal Compression Line, which has been assumed 

independent from osmotic suction. As C
s
 is linked to the bulk modulus K, C

c
 is linked to the 

plastic modulus �, whose dependence on osmotic suction in ACMEG-C model is as 

follows: 

� = �� �1 + �� log
!!�� 

Being � independent from osmotic suction in this assumption, it can be assumed: �� = 0 

Consequently in this application osmotic suction has an impact only in the evolution of the 

preconsolidation pressure and of the elastic domain.  
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5. Numerical simulations  

In this chapter the numerical simulations of the oedometric tests’ results will be presented. 

The determination of the parameters of the model requests adjunctive assumptions and an 

initial calibration of the model referring to two tests.  

5.1 Model parameters 

5.1.1 Friction angle assumption and consequences 

One of the difference between the experimental results and the numerical model is that the 

last one is expressed in terms of mean stress p’ and not in terms of vertical effective stress ′ . The input parameters such as the initial stress state and the initial preconsolidation 

pressure must be converted. In order to answer this point, Jaky’s equations for normally 

consolidated soils (NC) and for overconsolidated soils (OC) are assumed (J. Jaky, 1948): ��,�� = 1 − sin�′ ��,0� = ��,�� ∙ Z [1� 

where OCR is the overconsolidation ratio and �′ is the friction angle. The parameter �� 

allows to determine the lateral stress using the following equation: ′2 = ��′� 

The mean stress p’ in oedometric conditions is: 

B′ =
′ + 2′�

3
=
′� + 2′2

3
 

Combining the two equations it yields: 

B′ = �1 + 2��
3

� ′� 

The fundamental parameter of this theory is the friction angle �′: it is assumed �� = 25° 

An identical value is assumed for Opalinus Clay in “The mechanical behaviour of weak 

mudstone (Opalinus Clay) at low stresses” by A.G.Corkum and C.D.Martin [Corkum et al., 

2006]. The consequence is that it can be assumed: ��,�� = 0.577 
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If this theory is assumed, a linear dependence of the mean stress p’ with respect to the 

vertical mechanical stress ′  is admitted. Therefore with these hypothesis the material 

parameter ��, calculated as 

�� =
1 −

′&&�
log

!!�  

is the same referring to mean stress instead of the vertical mechanical stress, as previously 

assumed. If the natural logarithm is used instead of the logarithm to the base 10, the value of �� must be divided by ln 10. 

Another consequence is that with these assumptions the slopes  &,  � are related 

respectively to the compression index > and to the swelling index k. It can be proved that: 

G =
 �

ln 10
 

> =
 &

ln 10
 

5.1.2 Parameters required for the model 

In this paragraph all the parameters required for the numerical simulation will be presented. 

 

����,� ����,� is the bulk modulus at a reference osmotic suction !� (in this case !� = 1MPa). 

Starting from the Normal Compression Line expression, the assumptions of the last 

paragraph and the bulk modulus definition, it can be derived: 

����,� = 2.303
1 + �� �� B′��� 

where �� is the starting void ratio corresponding to the undeformed state,  �� is the slope of 

the oedometric curve in the elastic domain at the reference osmotic suction !� (an 

independence of this value with respect of osmotic suction is assumed) and B′��� is the 

reference mean stress equal to 1 MPa. A linear dependence of the bulk modulus on the 

mean stress is admitted with this assumption. 
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���� 

Combining the oedometric conditions and Jaky’s equation, after some substitutions: 

���� =
3����,�-1 − ��.

2 + 4��  

The reference shear modulus, being dependent on the reference bulk modulus, has a linear 

dependence on the mean stress. 

 

��
 

This parameter permits the introduction of a non-linear dependence of the bulk modulus and 

the shear modulus on the mean stress:   

� = ����;B′ B′���⁄ <�� 

� = ����;B′ B′���⁄ <�� 

In agreement with the last assumptions: �� = 1 

 

�� 

The plastic modulus is assumed independent from the osmotic suction, so � is constant. The 

evolution of the mean effective yield stress with the plastic component of the volumetric 

strain is controlled by this parameter: B′& = B′&���B-���(. 
Coherently with the assumptions for the bulk modulus and the shear modulus, it can be 

determined as: 

�� = 2.303
1 + �� & −  �� 

where  & is the compression index. 

 

� J is an additional parameter introduced in order to catch the various volumetric responses: ���(��



( = J �A −
@B′
� 
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a 

It is a material parameter which controls the evolution of the degree of mobilization of the 

deviatoric plastic mechanism �
��: 

�
�� = �
��� +
�
(I + �




( 

��
�� =
(1 − �
���)I ��
( 

 

b 

b is a material parameter defining the shape of the deviatoric yield limit: 

:
�� = @ − AB′C1 − H ln
�B′B′&

D �
�� = 0 

 

c 

c controls the evolution of the degree of mobilization of the isotropic plastic mechanism: 

���	 = ���	� +
��(,��	\ + ��(,��	 

����	 =
(1 − ���	�)\ ���(,��	 

 

d 

d is a material parameter accounting for the ratio between the preconsolidation pressure B′& 

and the critical pressure B′&�: 

� =  
B′&

 B′&�
 

d is equal to 2.718 and 2 respectively in the Original Cam-Clay model and in the Modified 

Cam-Clay model. 

 �� 

The friction angle �′ is assumed equal to 25° coherently with previous studies. 
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���	
�

 

It is the radius of the isotropic elastic nuclei inside which the strains are fully reversible. 

Until the plastic mechanism is activated the degree of mobilization of the isotropic plastic 

mechanism ���	 is equal to ���	
�

. 

 

�
��
�

 �
���  is the radius of the deviatoric elastic nuclei inside which the strains are fully reversible. 

Until the plastic deviatoric mechanism is activated the degree of mobilization of the 

deviatoric plastic mechanism �
�� is equal to �
��
�

. 

 /, �� and �� 

These parameters were assumed coherently with the experimental results as explained in a 

previous paragraph. 

5.1.3 Model parameters assumption 

In the following table the parameters assumed for the numerical analysis are presented. 

����,� [MPa] 390 

����[MPa] 90 

�� 1 

�′[Degrees] 25 

�� 68 

� 1 

a 0.01 

b 1 

c 0.004 

d 2 

����
�  0.2 

���	
�  0.5 

� 0 

	
 0 

	� 0.042 

 

Table 5.1: Model parameters 
 

The last three parameters reported in table 5.1 were determined with the experimental 

analysis, while ����,�, ���� and �� were evaluated with the equations presented in the last 
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paragraph using medium values of ��,  �� and  &. These six common parameters are 

therefore estimated referring to the experimental data. �� is equal to 1 coherently with the assumptions for ����,� and ����, while � = 2 entails 

that the preconsolidation pressure B′& is the double of the critical pressure B′&�. Furthermore, J = H = 1 implies that the flow rule is associated. 

The calibration of the model has been verified with two test: test 1 and test 5. The first one 

does not present variation in osmotic suction and has been used to improve the simulation of 

the mechanical behaviour of the material, while test 5 is characterized by the initial collapse, 

that is the deformation due to a variation of osmotic suction. The fundamental parameters to 

evaluate with calibration were the two radius of the isotropic and deviatoric elastic nuclei 

and the material parameters a and c. Particularly, being the oedometric test characterized by 

an axial loading, the isotropic mechanism’s parameters play the most important role. 

In order to explain the chosen value for ���	�  it is necessary to illustrate how the model 

simulates the deformations consequence of a variation of osmotic suction (the collapse). 

The last consideration of chapter 4 was that a change in osmotic suction, with the 

assumptions for this model, has an impact only on the evolution of the preconsolidation 

pressure and, consequently, of the elastic domain. In other words the model, coherently with 

the experimental observations, does not contemplate strains caused by a variation of 

osmotic suction within the elastic domain. 

Furthermore, it is fundamental to consider that the position of the Normal Compression Line 

is unequivocally determined by the mean effective yield stress B′& of the sample. Therefore, 

in order to activate the plastic mechanism and make the model predict the collapse, the only 

parameter which can be adapted is the degree of mobilization of the isotropic plastic 

mechanism ���	. The radius of the isotropic elastic nuclei ���	�  is assumed small to 

“anticipate” the activation of the isotropic plastic mechanism :��	, while c is little in order to 

make the convergence of the degree of mobilization of the isotropic plastic mechanism ���	 

as rapid as possible.  
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5.2 Modification of the response under unloading-reloading path 

In the original ACMEG-C model, during unloading ���	 decreases to follow the decrease of 

effective mean pressure p’, while at reloading, ���	 is adjusted to keep a constant elastic 

nuclei (���	� ): 

���	 = ���	� +
B′&�&B′&

+
��(,&�&,��	\ + ��(,&�&,��	 

where B′&�& is the evolving mean stress, B′& is the current preconsolidation pressure and 

��(,&�&,��	 is the volumetric plastic strain produced by the isotropic mechanism since the 

change of direction of the solicitation.  

This mechanism was implemented in the numerical analysis to repeat the experimental 

observations on various typologies of clay. Being small the radius of the isotropic elastic 

nuclei ���	� , this effect would be even more relevant in this case. However, as observed, for 

Opalinus Clay the unloading-reloading cycles at constant osmotic suction are observed to 

involve negligible quantities of plastic strains. In order to make the model more adherent to 

the experimental observations, the mechanism of reinizialization  of the degree of 

mobilization of the isotropic plastic mechanism ���	 is deactivated. 

5.3 Numerical simulations 

In this paragraph the numerical simulations of the six oedometric tests will be presented and 

analysed. 

5.3.1 About the preconsolidation pressure 

The input mean effective yield stress for the simulations B′& is not coincident with the 

preconsolidation pressure determined starting from the experimental data because of the 

model formulation. The expression of the isotropic yield limit is: :��	 = B� − B′&���	 

The isotropic mechanism is activated when :��	 = 0: hypothesizing a unit value of the 

degree of mobilization of the isotropic mechanism ���	, it yields: B� = B′& 
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���	 is therefore introduced in the model to “anticipate” the activation of the plastic 

mechanism and to smooth the angular shape of the passage from the elastic to the elasto-

plastic deformation. The consequence is that the input preconsolidation pressure B′& is the 

point where the smoothed part of the curve joins the line of elasto-plastic deformation: as 

previously affirmed, the preconsolidation pressure unequivocally locates the Normal 

Compression Line. In figure 5.1 two oedometric curves differentiated only by the 

preconsolidation pressure are represented: the two different Normal Compression Line are 

easily recognisable. 

 

Figure 5.1: Two simulated oedometric curves differenced only by the preconsolidation pressure 

 

It is possible to esteem this value from the experimental data: graphically, it is identified as 

the point where the oedometric curve is aligned with the experimental Normal Compression 

Line. The stress component identified with this procedure is named B′�, obtained from the 

vertical mean stress ′� experimentally revealed converted using Jaky’s theory. 
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Test 
′�[MPa] 

1 10.5 

2 4.7 

5 10.1 

6 11.7 

 

Table 5.2: �′�values 

 

Table 5.2 reports the obtained results: only for four tests this operation is practicable, while 

the other two tests’ stress paths, characterized by a variation of osmotic suction after an 

initial mechanical loading, do not allow the fulfilment of this calculation. In this case the 

mean effective yield stress is a variable to evaluate after a calibration.  

Being the parameter d assumed equal to 2, the final input mean effective yield stress is 

equal to 
(�


�
. 

Test 
′[MPa] 

1 4.8 

2 1.5 

3 5.8 

4 8.6 

5 4.8 

6 2.5 

 

Table 5.3: �′�values 

 

Table 5.3 resumes the input mean effective yield stress B′& used for the simulations of the 

six oedometric tests. Test 3 and test 4 values were determined with a calibration, while the 

others were changed with respect to the experimental results. This variation was limited for 

test 1, test 2 and test 5 but relevant for test 6, because of the will to make the whole 

simulation more realistic. 

 

5.3.2 Numerical simulations and analysis 

The initial stress conditions of the simulations are: ′�,� = ′�,� = ′ ,� 

This situation corresponds to a unit value of the coefficient �� and is the more adherent to 

the experimental conditions. 
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Test 1 

This test has been used with test 5 to calibrate the model. In figure 5.2 the stress path of the 

test is reported with the initial and final position of the yield curve determined with the 

assumed radius of the isotropic elastic nuclei, while the simulation of the oedometric test is 

represented in figure 5.3. As observed, the simulated strain at the end of the mechanical 

unloading is quite different from the experimental one because of the damage effect. The 

difference in the prediction of the maximum volumetric strain is equal to 7%.  

Test 2 

Test 2 has a stress path similar to test 1 (figure 5.4), being characterized from the same 

constant osmotic suction of 1 MPa. However, differently from test 1, the initial void ratio is 

greater and the stress values are smaller. In this case, the difference in the prediction of the 

maximum volumetric strain is equal to 8%. 

Test 3 

Test 3 is characterized by a variation in osmotic suction from 1 MPa to 0.5 MPa after an 

initial mechanical loading (figure 5.6). The two unloading paths reveal a relevant difference 

between the simulated strain and the experimental strain, while the model well predicts the 

maximum volumetric deformation (figure 5.7). 

Test 4 

In this test after, an initial mechanical loading, the stress paths presents a variation in 

osmotic suction from 1 MPa to 15 MPa which causes a deformation of 75‰ (figure 5.9). 

The numerical simulation gives a great prediction of this strain, being the difference 

between the simulated and the experimental value equal only to 3%. An even better 

prediction regards the maximum volumetric strain (0.6%). In general the simulation of this 

test is adherent to the experimental results, except for the unloading-reloading paths because 

of the  damage effect. 

Test 5 

Test 5 has a particular path in its first steps (figure 5.10): an initial increase of osmotic 

suction from 1 MPa to 15 MPa is followed by decrease from 15 MPa to 1 MPa and by 

another chemical loading to 15 MPa. The experimental answer to this path is an initial 

deformation corresponding to the first stress paths and then an approximately constant void 

ratio. The model has a similar behaviour: the reason is that during the first step there is a 
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reduction of the preconsolidation pressure and a consequent deformation (the elastic 

domain’s dimensions does not change because of the increase of the degree of mobilization 

of the isotropic yield limit). Then a change of osmotic suction within the elastic domain 

does not cause any deformation, as observed. However, the simulated initial collapse is 

smaller than the experimental one for the 89%: this value could be improved with a greater 

value of ��. The maximum deformation is almost identical to the experimental one. 

Test 6 

The initial elastic strain of this test is really similar to the measured one, while the elasto-

plastic deformations are greater than the experimental values. This oedometric test is 

characterized by the variation of osmotic suction at the end of the unloading path: after the 

increase of osmotic suction the yield limit becomes smaller and the start of the elasto-plastic 

behaviour during reloading is anticipated (figure 5.13). Also in this case the simulation well 

predicts the maximum observed strain of the oedometric curve (difference equal to 0.8%). 
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Figure 5.2: Stress Path 1 with yield curves 
 

 

Figure 5.3: Simulation of the oedometric curve of test 1 
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Figure 5.4: Stress Path 2 with yield curves 

 

  
Figure 5.5: Simulation of the oedometric curve of test 2 
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Figure 5.6: Stress Path 3 with yield curves 

 

Figure 5.7: Simulation of the oedometric curve of test 3 
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Figure 5.8: Stress Path 4 with yield curves 

 

Figure 5.9: Simulation of the oedometric curve of test 4 
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Figure 5.10: Stress Path 5 with yield curves 

 

Figure 5.2: Simulation of the oedometric curve of test 5 
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Figure 5.3: Stress Path 6 with yield curves 

 

Figure 5.4: Simulation of the oedometric curve of test 6 
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5.3.3 Observations 

Five of the six numerical simulations present a common characteristic: a sudden change of 

the slope of the final mechanical unloading (for instance fig. 5.11). After an initial elastic 

behaviour governed by the bulk modulus K, whose slope is identical to the former 

unloading-reloading path, the incline suddenly increases with no apparent explanation. This 

behaviour is in fact not observed in the experimental data, whose final unloading points are 

approximately aligned.  

The cause of this behaviour is showed in figure 5.14: initially the unloading takes place 

within the elastic domain but in its final part the deviatoric plastic mechanism is activated. 

The consequence is a decrease of the dimensions of the elastic domain because of the 

decrease of the preconsolidation pressure B′& in order to respect Prager’s condition of 

consistency. 

It is necessary to highlight that this particular behaviour is only an artificial consequence of 

the model’s assumption which does not have any correspondence in experimental 

observations. 

 

Figure 5.5: Simulated oedometric curve in the p’-q graph 
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5.4 Sensitivity analysis 

A sensitivity analysis for the model has been performed with the aim of highlight the 

different role of the parameters in the simulations of the oedometric curves. This procedure 

regarded only a fraction of the model’s parameters, because of the univocity of the choice 

of some of them. Moreover, this analysis considers one parameter at a time, even if some 

parameters are linked each other as, for instance, ����,� and ����. For each parameter 

analysis the most convenient test in terms of impact of the parameter was used and the range 

of variation was chosen wide enough to provide a visible difference between the simulated 

results. 

 

Figure 5.15: Test 1 with different ����,� values 

5.4.1 	��,� 

����,� is the reference bulk modulus ���� at the reference osmotic suction !�, equal to 1 

MPa in this work. Its influence is related only to the elastic component of the deformation: a 

different bulk modulus cause greater or smaller initial strains (before the activation of the 

plastic mechanism) and a transfer of the whole curve. Also the unloading-reloading paths 

1 10 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Vertical effective stress, σ'
z
 [MPa]

V
o
lu

m
e
tr

ic
 s

tr
a
in

, 
ε
v

 

 

K
ref,0

 = 390 MPa

K
ref,0

 = 350 MPa

K
ref,0

 = 430 MPa



5. Numerical simulations  

74 
 

have different slopes depending on ���� value. In figure 5.15, being short the initial elastic 

deformation, a change of this parameter has limited consequences on the simulation results. 

5.4.2 
�� 

A variation of the reference shear modulus is not expected to have important consequences 

on the simulated results: this parameter controls only the deviatoric strains, which are not 

relevant in these tests. This deduction is confirmed by figure 5.16: only the final part of the 

simulated oedometric curve is influenced by a variation of the shear modulus. 

 

Figure 5.16: Test 1 with different ���� values 
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Figure 5.17: Test 1 with different �� values 
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Figure 5.18: Test 1 with different � values 

 

Figure 5.19: Test 1 with different a values 
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5.4.6 b 

b defines the shape of the deviatoric yield limit (figure 3.6): 

:
�� = @ − AB′C1 − H ln
�B′B′&

D �
�� = 0 

As shown in figure 5.20, its influence is very limited. 

 

Figure 5.20: Test 1 with different b values 
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5.4.7 c 

A sensitivity analysis has been conducted to understand the impact of the parameter c on the 

simulation results. As shown in figure 5.21, the evaluation of c has a great importance for 

the numerical analysis: an increase of this parameter leads to a less stiff behaviour of the 

material and to greater deformations. The cause is comprehensible looking at the following 

equation: 

����	 =
(1 − ���	�)\ ���(,��	 

A greater c value entails a smaller increment of the degree of the plastification of the 

isotropic yield limit for a given volumetric isotropic plastic increment. The consequences of 

a lower value of ���	 are greater plastic strains for a given vertical effective stress value. 

 

Figure 5.21: Test 1 simulations with different c values 
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5.4.9 ���
  

���	�  is the radius of the isotropic elastic nuclei inside which the strains are fully reversible. 

Until the plastic mechanism is activated the degree of mobilization of the isotropic plastic 

mechanism is equal to ���	� : 

���	 = ���	� +
��(,��	\ + ��(,��	 

A smaller value of ���	�  rounds the shape of the passage from the elastic to the elasto-plastic 

part of the oedometric curve “anticipating” the activation of the degree of mobilization of 

the isotropic plastic mechanism (figure 5.22). 

 

Figure 5.22: Test 2 simulations with different ���	
�  values 
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5.4.8 ��
  

�
���  is the radius of the deviatoric elastic nuclei inside which the strains are fully reversible. 

Until the plastic deviatoric mechanism is activated the degree of mobilization of the 

deviatoric plastic mechanism �
�� is equal to �
��
�

: 

�
�� = �
��� +
�
(I + �




( 

�
���  is not expected to play an important role in the simulation, being related to the 

deviatoric plastic mechanism which is activated only at the end of the final unloading. This 

statement is confirmed by figure 5.23. 

 

Figure 5.23: Test 1 simulations with different �
��
�  values 
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5.4.2 �� 

��, being the only parameter of the model which takes in account a variation of osmotic 

suction, plays a fundamental role in the efficiency of the simulation. As affirmed in the 

previous paragraphs, its value is not unequivocally defined: a value of 0.042 was assumed 

for the numerical simulations, but experimental data allow to assume a greater value, with a 

maximum of around 0.1.  

In figure 5.24 and 5.25, which represent test 4 and test 5, a value equal to 0.1 was assumed 

without a change of the other parameters of the model. The aim is to understand the impact 

of a variation of this value in the simulated results, and the two tests characterized by a 

deformation due to a variation of osmotic suction were chosen. The consequences of this 

new assumption are greater strains in correspondence of the collapse and a different position 

of the Normal Compression Line: being higher �� value, a greater reduction of the 

preconsolidation pressure takes place with the same variation of osmotic suction. In figure 

5.26 test 6 simulation with the two different �� values is reported: the last statement is 

confirmed, and a greater move of the Normal Compression Line is verified. 

 

Figure 5.24: Test 4 with different �� values 
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The following tables 5.4 and 5.5 report the simulated collapse strains corresponding to the 

two different �� values and the experimental results for test 4 and test 5. The smaller value 

of the parameter allows a more precise prediction of this phenomenon. 

Test 4  collapse 

 Experimental 
�
�

 

 
0.1 0.04 

Δ�(‰) 0.76 1.62 0.73 

Δ% 
 

-114.4 3.5 

 

Table 5.4: Test 4 experimental and simulated collapse 

 

Test 5  collapse 

 Experimental 
�
�

 

 
0.1 0.04 

Δ�(‰) 1.47 0.4 0.16 

Δ% 
 

72.8 89 

 

Table 5.5: Test 5 experimental and simulated collapse 

 

 

Figure 5.25: Test 5 with different �� values 
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Figure 5.26: Test 6 with different �� values 
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6. Conclusions 

The aim of this thesis is to understand if the ACMEG-C constitutive model, developed for a 

non-swelling illite, is suitable also for shales, and particularly if it is able to reproduce the 

different behaviour of the material due to the different chemical composition of the pore 

liquid. A set of experimental tests with different stress paths, including mechanical loading 

at a constant osmotic suction and a chemical loading at a constant mechanical stress, were 

performed in EPFL LMS structures to provide an experimental evidence on the this topic. 

The experimental findings were analysed in order to determine the characteristics of the 

material (Opalinus Clay); the preconsolidation pressure was evaluated with two different 

methods, Casagrande’s graphic method and the Energetic method, the first one traditionally 

used in geotechnical applications and the second one possessing a physical background. 

Casagrande’s graphic method was preferred for the greater regularity of its results.  

The successive step was the study of the influence of osmotic suction in the material’s 

behaviour: the experimental findings elaboration led to the conclusion that osmotic suction 

has an impact on the preconsolidation pressure. The behaviour during unloading-reloading 

and the slope of the Normal Compression Line are in fact observed independent from 

osmotic suction. A logarithmic dependence of the preconsolidation pressure on osmotic 

suction is assumed and the material parameter which governs this relation is determined. 

The ACMEG-C constitutive model is based on the ACMEG constitutive model and it was 

presented in “An experimental and constitutive investigation on the chemo-mechanical 

behaviour of a clay” (P. Witteveen, A. Ferrari and L. Laloui, Géotechnique, 2013). This 

model is able to take in account changes in the osmotic suction as well as the plastic 

deformation induced by that changes and the evolution of the elastic and plastic material 

parameters. The mechanical behaviour was calibrated with two oedometric tests and was 

then applied to the whole set of tests. In all cases the simulated results corresponds well 

with the experimental ones: the elasto-plastic behaviour of the material and the changes 

induced by a variation of osmotic suction are well reproduced by the model. Only the 

simulation of the unloading-reloading paths is quite different from the experimental findings 

because of the damage effect, which typically occurs in shales.  
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This lack does not reduce the great ability of the model to reproduce the chemo-mechanical 

behaviour of Opalinus Clay. 

Successive improvements could be made with other experimental tests on the same material 

to confirm the assumption for this study and to eventually improve the model. The 

particular behaviour of this material during mechanical unloading-reloading is not taken in 

account by the model, and a future improvement should consider this characteristic.  

 



Bibliography 

87 
 

Bibliography 

Websites: 

http://www.britannica.com/EBchecked/topic/538082/shale 

http://geology.com/rocks/shale.shtml 

http://www.claysandminerals.com/materials/shales 

http://geotecnica.dicea.unifi.it/ 

http://www.ing.unitn.it/~labgtec/corso_geotecnica/Dispense_Tarantino/ 

 

Scientific publications: 

 

Y.N. Abousleiman, S.K. Hoang, M.H. Tran. Mechanical characterization of small shale 

samples subjected to fluid exposure using the inclined direct shear testing device. 

International Journal of Rock Mechanics and Mining Sciences, 47(3): 355-367, 2010 

 

M. Bonini, D. Debernardi, M. Barla, G. Barla. The Mechanical Behaviour of Clay Shales 

and Implications on the Design of Tunnels. Rock Mechanics and Rock Engineering, 42(2): 

361-388, 2007 

 

A.P. Bunger, J. Sarout, J. Kear, C. Delle Piane, E. Detournay, M. Josh, D.N. Dewhurst. 

Experimental chemoporoelastic characterization of shale using millimeter-scale specimens. 

Journal of Petroleum Science and Engineering, 118: 40-51, 2014 

 

A. Carpinteri. Scienza delle costruzioni 1. Pitagora Editrice Bologna, 1992 

 

X. Chen, C.P. Tan, C.M. Haberfield. Numerical evaluation of the deformation behaviour of 

thick-walled hollow cylinders of shale. International Journal of Rock Mechanics and 

Mining Sciences, 37(6): 947-961, 2000 

 

 



Bibliography 

88 
 

A.G. Corkum, C.D. Martin. The mechanical behaviour of weak mudstone (Opalinus Clay) 

at low stresses. International Journal of Rock Mechanics and Mining Sciences, 44(2): 196-

209, 2007 

 

J. Eichenberger. Geomechanical modelling of rainfall-induced landslides in partially 

saturated slopes. PhD thesis, EPFL, 2012 

 

S.R. Etminan, F. Javadpour, B.B. Maini, Z. Chen. Measurement of gas storage processes in 

shale and of the molecular diffusion coefficient in kerogen. International Journal of Coal 

Geology, 123: 10-19, 2014 

 

V. Favero, A. Ferrari, L. Laloui. Experimental investigation of the thermo-mechanical 

behaviour of shales. American Rock Mechanics Association, 2014 

 

B. François. Thermo-Plasticity of Fine-Grained Soils at Various Saturation States: 

Application to Nuclear Waste Disposal. PhD thesis, EPFL, 2008  

 

A. Ghassemi, Q. Tao, A. Diek. Influence of coupled chemo-poro-thermoelastic processes on 

pore pressure and stress distributions around a wellbore in swelling shale. Journal of 

Petroleum Science and Engineering, 67(1-2): 57-64, 2009 

 

W. Gräsle. Multistep triaxial strength tests: Investigating strength parameters and pore 

pressure effects on Opalinus Clay. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-

18): 1898-1904, 2011 

 

S. Hsu, P.P. Nelson. Characterization of Eagle Ford Shale. Engineering Geology, 67(1-2): 

169-183, 2002 

 

M. Josh, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell. Laboratory 

characterisation of shale properties. Journal of Petroleum Science and Engineering, 88-89: 

107-124, 2012 



Bibliography 

89 
 

 

M. Lal, SPE, BP Amoco. Shale Stability. Drilling Fluid Interaction and Shale Strength. SPE 

Latin American and Caribbean Petroleum Engineering Conference, Venezuela, 21–23 

April 1999 

 

J. Sarout, E.Detournay. Chemoporoelastic analysis and experimental validation of the pore 

pressure transmission test for reactive shales. International Journal of Rock Mechanics and 

Mining Sciences, 48(5): 759-772, 2011 

 

L. Schmitt, T. Forsans F.J. Santarelli. Shale Testing and Capillary Phenomena. International 

Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(5): 411-

427, 1994 

 

Q. Wang, Z. Yingcao, G. Wang, H. Jiang, Y. Liu. A fluid-solid-chemistry coupling model 

for shale wellbore stability. Petroleum exploration and development, 39(4): 508-513, 2012 

 

P. Witteveen, A. Ferrari and L. Laloui. An experimental and constitutive investigation on 

the chemo-mechanical behaviour of a clay. Géotechnique, 63(3): 244-255, 2013 

 

 



 

90 
 



 

91 
 

Acknowledgements 

I would like to thank all the staff of the Laboratoire de Mécanique des Sols of the École 

Polytechnique Fédérale de Lausanne for their fundamental contribution to this Master 

Thesis. Particularly, I would like to acknowledge Prof. Lyesse Laloui for giving me this 

amazing opportunity, Dr. Alessio Ferrari for his advices and his constant support and Ing. 

Valentina Favero for her precious help. 

Vorrei poi ringraziare il Prof. Lorenzo Sanavia per la fiducia e la costante disponibilità. 

Vorrei inoltre ringraziare i miei genitori, Domenico e Carla, e mia sorella Francesca per 

l’incondizionato e insostituibile supporto durante tutto il mio cammino universitario. 

Un doveroso ringraziamento va infine a tutti gli amici che mi hanno accompagnato in questi 

anni: ognuno di voi ha lasciato un segno in maniera diversa e unica, e non posso che esservi 

grato per questo. 


