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Abstract

Dynamical systems can be loosely regarded as systems whose dynamics is entirely determined
by en evolution function and an initial condition, being therefore completely deterministic
and a priori predictable. Nevertheless, their phenomenology is surprisingly rich, including
intriguing phenomena such as chaotic dynamics, fractal dimensions and entropy production.
In Climate Science for example, the emergence of chaos forbids us to have meteorological
forecasts going beyond fourteen days in the future in the current epoch and therefore
building predictive systems that overcome this limitation, at least partially, are of the
extreme importance since we live in fast-changing climate world, as proven by the recent
not-so-extreme-anymore climate phenomena.
At the same time, Machine Learning techniques have been widely applied to practically
every field of human knowledge starting from approximately ten years ago, when essentially
two factors contributed to the so-called rebirth of Deep Learning: the availability of larger
datasets, putting us in the era of Big Data, and the improvement of computational power.
However, the possibility to apply Neural Networks to chaotic systems have been widely
debated, since these models are very data hungry and rely thus on the availability of large
datasets, whereas often Climate data are rare and sparse. Moreover, chaotic dynamics
should not rely much on past statistics, which these models are built on.
In this thesis, we explore the possibility to study dynamical systems, seen as simple proxies
of Climate models, by using Neural Networks, possibly adding prior knowledge on the
underlying physical processes in the spirit of Physics Informed Neural Networks, aiming to
the reconstruction of the Weather (short term dynamics) and Climate (long term dynamics)
of these dynamical systems as well as the estimation of unknown parameters from Data.
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Chapter 1

Introduction

1.1 Problem Statement

The importance of Numerical Weather and Climate forecasting [Lynch, 2008] in our society
is unquestionable. Though the Atmosphere is a very complex system, dissipative, chaotic
and out of equilibrium, there are several and well studied toy models that capture the most
important processes in a coarse grain way in low dimensional spaces. It is for example the
case of [Lorenz, 1963], which simplifies the description of the convective motions of a fluid
in a gravitational field between two horizontal plates kept at a certain distance and with
a certain temperature difference. Another paradigmatic model is given by [Lorenz, 1995],
a coarse grained model defined in a ring that describes three important processes for a
generic atmospheric quantity: advection, convection and forcing. Thus, in order to better
understand the Atmosphere, it is natural to start studying these simplified chaotic systems
first.

Chaotic dynamics has been pioneered in the 19th Century by Henri Poincaré, who was mainly
interested in the motion of three celestial bodies under mutual gravitational attraction
(the so-called three body problem). Poincaré, rather than studying single trajectories,
considered the behaviour of may trajectories starting from an ensemble of initial conditions,
showing that strange and complicated orbits, that we now call chaotic, were possible.
A deeper comprehension of Chaos, however, came only in the 20th Century, even if we had
two wait the second half of the Century to appreciate chaotic systems by using computer
simulations, as done by [Lorenz, 1963]. Roughly speaking, a system is chaotic when it
exhibits the so-called sensitive dependence of initial conditions. This effect is reported in
popular culture also as "butterfly effect": a butterfly flapping its winds in Japan can cause a
hurricane in the United States. Moreover, for a lucky coincidence, [Lorenz, 1963] attractor,
one of the most famous examples of chaotic systems, is loosely resembling a butterfly. The
exponential rates of growth of perturbation of neighbouring orbits are called characteristic
or Lyapunov exponents. Therefore, a system exhibiting sensitive dependence on initial
conditions has at least one of the Lyapunov exponents positive and in general we can also
say that autonomous continuous dynamical systems have the intermediate characteristic
exponents zero, since it is the growth rate along the flux of the system.

The theory beyond chaos theory is the one of dynamical systems, which can be referred as
mathematical models in which the future evolution is entirely determined by the initial state.
This formulation is very important, because dynamical system are indeed deterministic
systems and the future evolution is perfectly known if the initial conditions is perfectly
known. The problem in this assertion is that in real world application the state of the a
system is never perfectly known, because inevitably measurements errors are committed,
leading to diverging behaviour, in the sense of sensitive dependence, of trajectories. Even
though weather prediction equations are deterministic, every weather forecast suffer from
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this sensitivity which ultimately prevents us from having good forecasting beyond 14 days
in the future, with the current computational power. For this reasons, we have to abandon
the idea to have definite trajectories and instead focus on a Statistical description.

Nowadays, Machine Learning techniques are used in practically every field of human
knowledge. Even if the first Machine Learning models date back to the late 1950s, when
Perceptron was introduced [Rosenblatt, 1958], it was only at the beginning of the 2010s that
we observed an exponential increasing of the usage of Neural Networks. This is essentially
due to two factors. First, the progress in computational power the last year has been
impressive and nowadays everyone on his own domestic computer can train sufficiently deep
networks for a great variety of tasks. Secondly, we live in the era of Big Data, where large
datasets are pubblically available on the Internet. Deep Learning models especially are
very data hungry and require a large amount of data to have good performances and not
lead to overfitting. The more our computers improve, the deeper are the networks we can
train, which will create the need of larger datasets to have better performance. However,
the question whether Machine Learning is able to replicate dynamical systems and being
therefore useful in Weather and Climate forecasting has been long debated, since Machine
Learning models are data driven models that look only on past statistics and therefore
it may fails in reproducing characteristic not previously seen by the algorithm, which is
especially true in a contest in which measures are rare and sparse, as it often happens with
Climate data. See [Schultz et al., 2021] for an overview of the problem.

From the methodological point of view, it would be thus much appreciate if Neural Networks
were able to learn a chaotic dynamics. Therefore, in this thesis we intend to fill this gap by
studying the applications of Machine Learning techniques, in particular Neural Networks,
to Chaotic Dynamical systems, with particular focus on dynamics reconstruction and
parameter estimation.

1.2 Research Hypothesis and Objectives

In thesis we focus on the following three questions:

1. Are Neural Networks capable of reproducing the short term dynamics, also known
as Weather, at least in a temporal horizon dictated by the inverse of first Lyapunov
exponent?

2. Are Neural Networks as well capable of learning and reproducing the statistical
properties of the long term dynamics, known as Climate, of such systems?

3. Are Neural Networks able to retrieve the unknown parameters of a supposed underlying
model?

It is clear that if the answer to the first question is affirmative, then it would in principle
be possible to improve the current horizon of Weather predictions, keeping anyway in mind
that since we are talking about chaotic systems, trajectories will eventually diverge.
The answer to the second question would lead to modelling long term behaviour of these
systems, which could be applied to estimate for example the probability of extreme events.
Lastly, Neural Networks can be used to infer hidden properties of the system, which are
not directly observable. To be more precise, our goal is to see if the it is possible to learn
the parameters of some paradigmatic models, such as [Lorenz, 1963], not comparing with
the true values, with which the dynamics is supposed to be generated, but relying only on
a dynamical ansatz equation, which loosely resembles Phsyics Informed Neural Networks
(PINNs), see [Raissi et al., 2019].
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1.3 Solution Approach

To answer to the questions above mentioned in section 1.2, we try different neural network
architectures and methodology, applied to some well known and studied low dimensional,
such as [Lorenz, 1963] and [Rössler, 1976], and high dimensional, like [Lorenz, 1995], chaotic
systems.

1.3.1 Dynamics Reconstruction

To address the first two questions, we study Recurrent Neural Networks (RNN) and Feed-
Forward networks to learn low dimensional models in the sense of Weather and Climate.
The robustness of this approach derives from the fact that RNN are indeed dynamical
systems, whose dynamics takes place in a higher dimensional space and so its effectiveness
is guaranteed by classic embedding theorems, see [Takens, 1979]. We will make use of Long
Short Term Memory (LSTM) networks ( [Hochreiter and Schmidhuber, 1997]) and Reservoir
Computers ( [Maass et al., 2002,Jaeger, 2001] ), showing that the two first questions can
be successfully answered.
While recurrent networks are already dynamical systems, standard Feed-Forward Net-
works [Haykin, 1994] are efficient learners of functions [Cybenko, 1989], while Convolutional
Networks [LeCun et al., 1989] can impressively learn complex spatial correlations. Therefore
these models are not made to use a direct Data Driven loss, but instead they can applied to
model its evolution function by comparing it to the ground truth in a similar way to how
PINNs work [Raissi et al., 2019]. This approach could in principle allow us to try to answer
the three questions together, since PINNs can learn the equations and the parameters of
the model at the same time.

With regards to Dynamics Reconstruction, we will thus show that:

• The Weather and the Climate of low dimensional chaotic dynamical system can
successfully be learned by LSTM, Reservoir Computers and Feed-Forward, even
though for the last two architectures the results are heavily dependent on 1) the
system that has been used and 2) on manual fine-tuning of hyper-parameters.

1.3.2 Parameters Estimation

To retrieve models’ parameters, we will implement Autoencoders [Kramer, 1991] in order to
learn the parameters of the model in the encoded space. Autoencoders, as the name suggests,
learn to encode high-dimensional data in a low dimensional space while maintaining the
maximal information content. Not by chance, they were first used by [Kramer, 1991] to
perform non-linear Principal Components Analysis (PCA) [Pearson, 1901].

With regards to Parameters Estimation, we will thus show that:

• Autoencoders can learn the parameters of low dimensional chaotic models with
regularized with both a purely Data-Driven and a Physics-Informed loss. Even
though less efficient, the latter regularization loss is more robust since in experimental
situations the true parameters are not known and one makes only guess about the
dynamical equation.

• Autoencoders can successfully learn a chaotic phase transition in high dimensional
models in a complete unsupervised way (no regularization used).
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1.4 Related Work

1.4.1 Dynamics Reconstruction

In the recent years, many applications to dynamics reconstruction have been performed
starting from [Pathak et al., 2017], who first used Reservoir Computers [Maass et al.,
2002,Jaeger, 2001] to 1) predict the short term dynamics of [Lorenz, 1963] further than the
timescale given by the first Lyapunov exponent and 2) and replicate the chaotic nature of the
system. Later Reservoir computer were applied to Multi Variate Time series [Bianchi et al.,
2018] and with a multi reservoir approach [Freiberger et al., 2020]. Moreover, in the contest
of Data Assimilation [Park and Xu, 2016] Reservoir Networks have been applied with rare
and sparse updates in enlarge the predictive horizon [Fan et al., 2020] and [Haluszczynski
and Räth, 2021] used this approach to integrate out perturbation and controlling dynamical
systems. Reviews on methods that combine data assimilation techniques with Machine
Learning can be found in [Sonnewald et al., 2021] and [Gottwald and Reich, 2021].
However, these models are very sensible to the choice of the hyper-parameters and it is
not clear if [Pathak et al., 2017] are able to give consistent results in the whole attractor,
since [Lorenz, 1963] is notoriously heterogeneous, i.e. some regions are more chaotic than
others.
Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] have achieved im-
pressive results in the field of Natural Language Processing [Wang and Jiang, 2016,Murthy
et al., 2020] and they were the state-of-the-art model for this task till the advent of Trans-
formers [Vaswani et al., 2017]. In literature, we have found some works on the applications
of LSTM to dynamics reconstruction; for example [Vlachas et al., 2018] use LSTM to
forecast high dimensional chaotic systems and [Barzegar et al., 2022] implement stacks of
LSTM to analyse multi-variate fast changing time series. Instead [Yeo and Melnyk, 2019]
worked on the pdf approximation of by using LSTM.
Another interesting approach is to train the network to reproduce the evolution function by
means of an efficient integrator scheme, such as Runge-Kutta methods, like in [Raissi et al.,
2018], or to use directly Residual Networks, which are networks in which connections may
skip some layers, to build cells that resemble those integration schemes, as done by [Fablet
et al., 2018]. [Raissi et al., 2018] approach has been further developed by [Teng and Zhang,
2019] to include Convolutional networks and LSTM.
Autoencoders [Kramer, 1991] have been used to: deep reconstruction of strange attractors
from lower dimensional time-series by [Gilpin, 2020]; variational reconstruction of systems
from noisy and sparse data by [Nguyen et al., 2020]; recognize chaos from the recurrence
plot of the Lyapunov exponents by [Nam and Kang, 2021].

1.4.2 Parameters Estimation

For what regards parameter estimation, [Brunton et al., 2016] published SInDy, a general
algorithm that allows to retrieve the correct equations, and so the correct parameters,
directly from data by using a suitable dictionary of candidate functions, whose weights
are learnable. Following this, [Vortmeyer-Kley et al., 2021] proposed a new loss function
consisting in the sum of the the norm of the difference of the predicted dynamics with the
true value, plus a term that takes into account the angular differences between vectors.
We are not aware of direct applications of PINNs to dynamical systems, meaning results in
which the dynamics equation is learned as only function of time by exploiting the power of
automatic differentiating packages [Baydin et al., 2017] to compute derivatives. However,
an indirect approach has been implemented by [Rackauckas et al., 2020], who used Neural
Networks as Universal Differential Equation (UDE) approximator. This method permits to
insert some prior physical knowledge in the equations by leaving some uncertain part to be
learned by a Neural Network.
In this contest, Autoencoders have been exploited to: directly analyse single parameters time-
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series by [Almazova et al., 2021]; recognize phase transitions in a completely unsupervised
way by [Wetzel, 2017]; learning summary statistics to enhance Approximate Bayesan
Computation (ABC) by [Albert et al., 2022].
We conclude by citing an comprehensive work the replication of the Local Lyapunov
Exponents (LLE) time-series by using different neural networks architectures in [Ayers
et al., 2021].

1.5 Structure of this Thesis and Code Availability

This thesis is structured as follow:

• In chapter 2 we present the basic theory on dynamical systems, exposing the most
interesting properties that could be useful when analysing such models with Neural
Networks.

• In chapter 3 we present the learning framework under which Neural Network operates,
discussing also the details of the architectures that we will make use of.

• In chapter 4 we present the results of our experiments, trying to address the three
questions mentioned earlier in section 1.2.

All the code can be found at https://github.com/lupoalberto98/Machine-Learning-
Dynamical-Systems.git.

https://github.com/lupoalberto98/Machine-Learning-Dynamical-Systems.git
https://github.com/lupoalberto98/Machine-Learning-Dynamical-Systems.git
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Chapter 2

Dynamical Systems

2.1 Introduction

In this chapter, we will discuss the fundamental features of dynamical systems. We first
start giving some basic definitions and properties in section 2.2. Then we will discuss,
giving a precise definition, the concept of attractor in section 2.3 and we will proceed by
discussing in more detail some important dynamical system in section 2.4, such as the
Logistic Map, defined in Equation 2.17, the [Lorenz, 1963] and the [Lorenz, 1995] systems.
In section 2.5 we will expose the statistical theory applied to chaotic systems, which is
necessary due to the fast forgetting times that such systems undergo. In section 2.6 we
discuss the concept of dimension by giving some examples that are important to deal
with systems that have non-integer dimensions. In section 2.7 we define what the delays
method is and why dynamics embeddings are important. Thus, in section 2.8 we will define
what Characteristic (or Lyapunov) exponents are, presenting an algorithm for numerical
computation. Then we briefly discuss the concepts of Stable and Unstable Manifolds in
section 2.9. In section 2.10 we will present two definitions of entropies in the context of
dynamical systems and we will then conclude by giving two definitions of metrics that will
be later used to asses the reconstruction power of Neural Networks of the Weather and the
Climate of paradigmatic models in section 2.11.

2.2 Basic Definitions

With dynamical systems we mean every mathematical system or model whose future
evolution is characterized by the initial value. These systems may be be continuous in time,
and we will call them continuous dynamical systems, or may be dependent on a discretized
time, and in that case we will call them maps. In case of continuous time, we will focus our
attention on autonomous dynamical systems, characterized by the dynamic equation

ẋt = g(xt) , (2.1)

where g : RN → RN is the evolution function and xt = (x
(1)
t , x

(2)
t , . . . , x

(N)
t ) ∈ RN . The

space of all points x is called phase space Γ and can be either RN , as we have set, or more
generally a Hilbert space E or more commonly a compact manifold M. The path followed
by the system in phase space is called orbit or trajectory.
In this thesis restrict our attention to smooth dynamical systems, i.e. the ones for which
the stability matrix

Lij :=
∂g(i)(x)

∂x(j)
(2.2)

exists for any i, j and any x in the phase space. For such systems, the theorem of existence
and uniqueness of the solution holds, corroborating then the statement that the dynamics

7
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is known by fixing the initial condition.
For continuous dynamical systems, it is useful to introduce the flow f t(x) : R×RN → RN ,
in analogy with fluids, defined as

f t(x0) ≡ xt : t ≥ 0, ẋt = g(xt) , (2.3)

i.e. f t(x0) is the trajectory xt at time t, knowing that the initial point x0. We will call it
also integrator operator, since it integrates a trajectory starting at x0 for a time t.

The evolution of the properly normalized probability density function (pdf) ρt : Γ→ [0, 1]
in phase space is determined by the equation [Lasota and Mackey, 1985]:

∂ρt(x)

∂t
+∇ ·

(
ρt(x) g(x)

)
= 0 , (2.4)

which can be expanded as

∂ρt(x)

∂t
+ ρt(x) ∇ · g(x) + g(x) · ∇ρt(x) = 0 . (2.5)

It follows that we can distinguish two kind of systems.
If ∇ · g(x) = 0, Equation 2.1 describes the evolution of an ensemble of points advected by
an incompressible velocity field g(x) and therefore the volume in phase space is conserved.
We say them conservative dynamical systems.
If instead If ∇ · g(x) < 0, the phase space volume contracts and we speak of dissipative
dynamical systems. The set of points of a dissipative system evolves in a space whose
dimension is d < n, smaller than the original dimension n, and it is called attractor. Instead,
the dynamics of conservative systems occupy all the phase space and they do not have an
attractor. We do not consider systems for which ∇ · g(x) > 0 since it leads to unbounded
and uninteresting trajectories.
A class of conservative dynamical systems is given by Hamiltonian systems, see [Goldstein
et al., 2002]. Given the 2N generalized position-momentum coordinates (q(i), p(i)) for
i = 1, 2, . . . , N and the Hamiltonian function H(q,p, t), the equation of motion (Hamilton
equations) read

q̇(i) =
∂H

∂p(i)
,

ṗ(i) = − ∂H

∂q(i)
.

(2.6)

By the identification: x(i) = q(i); x(i+N) = p(i) and g(i) = ∂H/∂p(i); g(i+N) = −∂H/∂q(i)
for i = 1, 2, . . . , N , Hamilton equations can be rewritten as

ẋ = J ∇H(x, t) (2.7)

where

J =

(
0 IN
−IN 0

)
(2.8)

is the symplettic unit.
It is clear that

∇ · g =

2N∑
i=1

∂g(i)

∂x(i)
=

N∑
i=1

(
∂

∂q(i)
∂H

∂p(i)
− ∂

∂p(i)
∂H

∂q(i)

)
= 0 , (2.9)

and thus the system is conservative. Their attractor is the energy shell.
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In case that the evolution depends explicitly on time, then the system is non-autonomous
and can be written as

ẋt = g(xt, t) . (2.10)

An example of non-autonomous dynamical system is given by the forced damped pendulum
equation

d2θ

dt2
+ v

dθ

dt
+ sin θ = T sin(2πft) , (2.11)

where θ is the angle with respect to the vertical, the pivot friction is represented by the
second term controlled by v (friction coefficient), the second term represent gravity and the
RHS represent a sinusoidal forcing of frequency f . The system can be seen either as a 2d
non-autonomous dynamical system by defining the variables x(1) = dθ/dt and x(2) = θ, or
a 3d autonomous system by setting also x(3) = 2πft. In the latter case, Equation 2.11 can
be rewritten as

dx(1)/dt = T sinx(3) − sinx(2) − vx(1) ,
dx(2)/dt = x(1) ,

dx(3)/dt = 2πf ,

(2.12)

which, for some choice of the parameters (T, f, v) exhibits the so-called sensitive dependence
on initial condition characterizing chaos, for which two bounded trajectory that slightly
differ at some time t, will eventually be very far apart as time goes on, even though
the system is deterministic and can be thus completely reconstructed given the initial
condition, see Figure 2.1. A trajectory is said to be bounded if there exists a ball in
phase space, such that x(t) < R < ∞, ∀t ∈ R. This condition is required in order to
exclude trivial example in definition of chaos. For instance, the system dx/dt = x will
trivially exhibit divergence of nearby orbits if we let them go to infinity, even if is not chaotic.

Figure 2.1: Separation of two orbits generated with initial conditions differing of ∆x(1) = 10−6

for Lorenz 63 system, see later subsection 2.4.2 where the model is discussed in detail. We can
appreciate how trajectories negligibly separable at the beginning, eventually will exhibit a divergence
of the same order of magnitude of the dynamics.

Notice that any N -dimensional non-autonomous dynamical system can be rewritten as a
N + 1 dimensional dynamical system by defining x(N+1) = t and g(N+1) = 1. Therefore,
for the sake of simplicity, we will restrict our analysis to autonomous dynamical systems.
A natural question arise: what is the minimum phase space dimension n for which chaos
will come out? We state that the answer [Ott, 2002] is

N ≥ 3 (2.13)



10 CHAPTER 2. DYNAMICAL SYSTEMS

for continuous time dynamical systems.
Discrete time dynamical systems are also called maps and are defined by evolution equation

xt+1 = m(xt) , (2.14)

where again we assume that the evolution function m has continuous first order derivatives.
Also in this case, the dynamic is fully known once the evolution map and the initial condition
x0 are given, meaning that the system is deterministic. In this case we recursively write

xt = m(xt−1)) = m(m(xt−2)) = (m ◦m ◦ · · · ◦m)︸ ︷︷ ︸
t times

(x0) . (2.15)

Again, we can define a discrete flow f t(x) : N× RN → RN as

f t(x0) ≡ xt : t ≥ 0, xt+1 = m(xt) . (2.16)

In case of maps, the minimum dimension required to have chaos depends on whether the
map is invertible or non-invertible. We say that a map is invertible if, given xt+1, we can
write xt = m−1(xt+1) and we call m−1 the inverse of m. For example, the 1d logistic map,
defined as

xt+1 = rxt(1− xt) , (2.17)

where r is a positive constant, is not invertible, because there are two possible values of xt

given xt+1 being the evolution function quadratic. On the other hand, the 2 dimensional
map defined by

x
(1)
t+1 = f(x

(1)
t )− Jx(2)t ,

x
(2)
t+1 = x

(1)
t ,

(2.18)

which is clearly invertible as long as J ̸= 0 [Ott, 2002]. The dimensionality requirement for
invertible map to have chaos [Ott, 2002] is

N ≥ 2 , (2.19)

while if the map is non-invertible we can have chaos also for N = 1, as what happen for the
logistic map. Thus we have seen that dimensionality plays an important role when talking
about chaos.

A N -dimensional continuous time dynamical system can be reduced to N − 1 dimensional
map by using Poincaré sections, which map a N dimensional flow to a N − 1 dimensional
one. The construction is done as follow: for a generic N -dimensional system, take a generic
N − 1 dimensional surface in the phase space and observe the intersection of the orbit with
the surface, as shown in Figure 2.2 for N = 3.

Points A and B represents two consecutive crossing points. We point out that B is
distinctively determined by A, since it is the evolved dynamics by fixing A as initial
condition. Viceversa, A is uniquely determined by B by reversing the time flow. Therefore,
Poincarè sections allow us to build N − 1 dimensional invertible maps, in the example of
Figure 2.2 building a map that transform the coordinates (x(1)t , x

(2)
t ) to (x

(1)
t+1, x

(2)
t+1). In this

way, chaos dimensionality requirement stated by Equation 2.13 for continuous dynamical
system is linked to invertible maps by Equation 2.19, [Ott, 2002]
Another way to build maps from continuous system is to sample a continuous trajectory xt

and discrete time steps and consider the forward integrator

xt+1 =

∫ t+δt

t
g(xτ ) dτ ≡m(xt) , (2.20)
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Figure 2.2: 2 dimensional Poincarè section of a 3d continuous dynamical system (figure taken
from [Ott, 2002])

which from a N dimensional continuous system yields a N dimensional invertible map,
since the Equation 2.1 can be integrated backwards in time.

2.3 Attractors

In many cases the evolution of a dynamical system seems to converge asymptotically to a
certain a set in the phase space, called attractor. As an example of attractor, let us consider
the damped harmonic oscillator

d2x

dt2
+ v

dx

dt
+ ω2t = 0 , (2.21)

where v controlo the friction term and ω is the frequency. It can be considered a 2d
dynamical system with the choice x(1) = x, x(2) = dx/dt. As the dynamics goes on, the
system asymptotically reaches the point x(1) = 0, x(2) = 0, and therefore the attractor is
constituted by only one point and thus have dimension zero.

An example of an attractor of dimension one is given by Van der Pol equation [van der Pol,
1920], describing simple vacuum oscillator circuits:

d2x

dt2
+ (x2 − η)dx

dt
+ ω2t = 0 , (2.22)

where η is a constant. In this case, the dynamics does not asymptotically tend to a limiting
point, but rather to limiting cycle, as showed in Figure 2.3, where the trajectory converges
both staring from the inside (point A) and the outside (point B).
More formally, we can define an attractor as follow:

Definition 1 (Attractor). Given a continuous or discrete dynamical system, with flow
f t(x), the attractor is the smallest subset A of the space phase such that:

• It is invariant under the forward dynamics, i.e.

A = f t(A) , ∀t ≥ 0 . (2.23)

• There exists a neighbour set of A, called basin of attraction B, such that for every
open set O ⊃ A, ∃ T > 0 such that ∀t > T , f t(B) ⊂ O.
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(a) (b)

Figure 2.3: Generated Phase diagram for the damped harmonic oscillator (a) and the Van der Pol
equation (b), starting respectively from points A and B. The attractor is colored in red.

We have shown examples of systems with having attractors of dimension 0 (a point) and 1
(limiting cycle). However, in many situations the shape of the attractor is very complicated
and its dimension is not even integer. They are called fractals, a definition first given by
Mandelbrot for objects that look similarly no matter the scale at which they are observed.
Some author refer to fractal attractor as strange attractors [Ott, 2002], while following [Eck-
mann and Ruelle, 1985,Ruelle, 1989] we call strange attractors only those that display a
chaotic behaviour, hence paying more attention on the strangeness of the trajectory, rather
than on that of its shape.

An example of 3d strange attractor is given by [Rössler, 1976] system:

ẋ(1) = −x(2) − x(3) ,
ẋ(2) = x(1) + ax(2) ,

ẋ(3) = b+ x(3)(x(1) − c) ,

(2.24)

where a, b, c are positive constant. By choosing the constants a = 0.37, b = 0.2 and c = 5.7
the attractor, shown in Figure 2.4, is fractal. However, we remark that this model does not
have a direct physical interpretation unlike [Lorenz, 1963] and it was introduced just to
study chaos with one circulation roll.

Another interesting example in 2d is given by the Hénon map [Hénon, 1976]:

x
(1)
t+1 = 1 + x

(2)
t − a(x

(1)
t )2 ,

x
(2)
t+1 = bx

(1)
t ,

(2.25)

where a, b are constants for which the attractor is both fractal (Figure 2.5) and sensitive
dependent on initial conditions for the choice a = 1.4, b = 0.3. In Figure 2.5 we can
appreciate how Hénon attractor is composed by many different lines that can look singular
from a large scale, but reveal to be divided in many other lines as the scale becomes
arbitrarily small [Ott, 2002].

A similar behaviour occurs in the force damped pendolum Equation 2.12, by choosing
f = 1/2π, v = 0.22 and T = 2.7, as shown in Figure 2.6.

However, there may be for instance systems which have a fractal attractor which is thus
strange regarding its shape, but they do not manifest sensitive dependence on initial
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Figure 2.4: Rössler 76 attractor.

Figure 2.5: Hénon attractor. The fractal nature of this object (which however does not exhibit a
perfect self-similarity) is evident as we zoom in different portion of the dynamics, revealing more
details the more we zoom.

conditions. This is the case of Feigenbaum attractor, resulting from the logistic map
Equation 2.17, which for 0 ≤ r ≤ 4 maps the interval [0, 1] into itself. As r varies, the
behaviour of logistic map undergoes a variety of regimes, converging to a fixed point for
r < 3, which as r increases becomes unstable until the system manifest a sequence of
period doubling, or bifurcations (on which we will come later), eventually leading to chaos.
Then number of unstable periodic orbits becomes infinite for r ≈ 3.57, for which value the
attractor, shown in Figure 2.7, is fractal but not chaotic.
We conclude by noting that mathematically is very difficult to prove that some attractors
are strange. In case of the [Lorenz, 1963], it was proven only very recently by [Tucker,
2002].
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Figure 2.6: Generated stroboscopic plot of the forced damped pendolum in phase space taken at
snapshot time t = 0, 2π, 4π, 6π, . . . for v = 0.22 and T = 2.7.

Figure 2.7: Fractal attractor (Feigenbaum attractor) for the logistic map when r ≈ 3.57. The plot
is generated by computing a long trajectory 10000 with a generic initial condition and neglecting
the first 1000 values.

2.4 Examples of Dynamical Systems

In this section, we will go deeper into the details of some important and pragmatic dynamical
systems, like the 1d logistic map in Equation 2.17 and the model introduced by [Lorenz,
1963], Equation 2.43.

2.4.1 The Logistic Map

Let us come back to the logistic map Equation 2.17. A continuous version was first proposed
by Verhulst in 1838, which inspired by the work of Malthus on population dynamics (An
essay on the Principle of Population, 1798). Malthus first proposed a simplistic exponential
growth xt = x0e

rt, which is unreasonable for r > 0 since it would lead to an unbounded
number of individuals for a finite-resource environment.

Verhulst generalization instead came by the introduction of a carrying capacity term,
accounting for the fact that a limited environment can supporting only a (finite) maximum
number of individuals: dx/dt = rx(1− x). This system possesses two fixed points: x∗ = 0,
which is unstable for r > 0 and x∗ = 1, which is the stable limit that the system reaches
asymptotically. However, this continuous equation does not sustain chaos, as already seen
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for one dimensional continuous systems.
On the other hand, the discretized version Equation 2.17, which is still a reasonable model,
may generate chaotic trajectories, being a one-dimensional non-invertible map.
Its erratic behaviour was first understood by [Ulam and von Neumann, 1947], who proposed
to use the logistic map for r = 4, called Ulam point, to generate random numbers, even if a
complete understanding came later thank to the work of [Stein and Ulam, 1964] and [Ricker,
1954], later summarized by [May, 1976].
We will now present qualitatively the behaviour of the logistic map varying r, understandable
in the framework of linear stability theory, not developed in this thesis. A detailed analysis
can be found in any dynamical systems theory book, such as [Ott, 2002] or [Cencini et al.,
2009].
For r < 1, there exists only one fixed point x∗ = 0, which is stable, while for 1 < r < 3,
x∗1 = 0 becomes unstable and another stable fixed point appears at x∗2 = 1− 1

r . Therefore,
in this regime all the orbits starting in a generic x0 will asymptotically converge to x∗2,
meaning that the system support a finite positive number of individuals.
As r > r1 = 3 further increases, the system undergoes the so-called period bifurcations.
For r = 3.2, also x∗2 becomes unstable and two other stable fixed points appear: x∗3,4 =

r+1±
√

(r+1)(r−3)

2r , which is understood by studying the second iteration f
(2)
r of fr(x) =

rx(1− x). As a consequence, all the trajectories are attracted by a period-2 orbit bouncing
back and forth between x∗3 and x∗4, which is the discrete version of a limiting-cycle. This
orbit is stable for r1 < r < r2 ≈ 3.448.
Once r > r2 a period-4 orbit becomes attractive and stable. As r increases, a sequence of rk
values appear, such that for rk < r < rk+1 the dynamics converge to a stable periodic orbit
of period 2k [May, 1976]. Interestingly, this sequence has a limit limk→∞ rk ≈ 3.57 = r∞,
where no stable periodic orbits exist. At this point, the limiting dynamics becomes fractal
(see Figure 2.7) and the invariant measures becomes singular with respect to Lebesgue
measure. However, there is no sensitive dependence on initial conditions. Instead, there are
an infinite number of unstable periodic orbits, eventually giving raise to chaos at the Ulam
point r = 4, corroborating Ulam’s intuition that at this point the system can be used to
generate pseudo-random numbers [Ulam and von Neumann, 1947].
The behaviour of the logistic map for r > r∞ is a bit more complicate than it may look,
as it is evident from the bifurcation diagram in Figure 2.8, made by generating a long
trajectory discarding the first 10000 iterations, and plot the successive 200 points, for 1000
r values in [2.5, 4]. Clearly, this allows only periodic orbits up to a period of P = 200 to be
identified. Remarkably, for r > r∞, there are several windows of regular period separated
by chaotic regions. For instance, it is clearly visible a period-3 stable orbit at r ≈ 3.828,
which eventually bifurcates into period-6, 12, . . . orbits. Thus behaviour can be understood
by studying the graphs of f (3)r , f (6)r and so on.

How the logistic map give birth to sensitive dependence on initial condition at the Ulam
point can be studied by the topological conjugation of the logistic map at r = 4 with the
tent map, which is the map (Figure 2.9) mapping [0, 1] in [0, 1] defined as

yt+1 =

{
2yt 0 ≤ yt ≤ 1/2

2(1− yt) 1/2 ≤ yt ≤ 1 ,
(2.26)

which can be written also as yt+1 = m′(yt) = 1− 2|yt − 1/2|.

Definition 2. (Topological conjugacy) Let us consider for the sake of simplicity a 1d
map xt+1 = m(xt), being the evolved dynamics given by

xt = f t x0 . (2.27)

Let consider the invertible change of variables x→ y = h(x), where dh/dx does not change
sign. The evolution of y can be written as yt = f̃ ty0, where the dynamics of y is given by
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Figure 2.8: Bifurcation diagram for logistic map, obtained by generating orbits of P = 200 iterations
after a transient of D = 10000 is discarded, for 1000 points in the interval [2.5, 4].

yt+1 = m′(yt), where the function m and m′ are related by h(x) as

m′(y) = h(g(h(−1)(y))) , (2.28)

where h(−1) is the inverse of h. In such case, we say the the maps x and y are topologically
conjugated and there is a one-to-one correspondence between the properties of the two
systems [Eckmann and Ruelle, 1985].

First, it easy to build the change of variable h(x) from the logistic map to the tent map, by
setting

x = h(−1)(y) = sin2(πy/2) = [1− cos(πy)]/2 . (2.29)

By substituting it in Equation 2.17 with r = 4, we obtain sin2(πyt+1/2) = sin2(πyt), which
yields

πyt+1/2 = ±πyt + kπ , (2.30)

where k is an integer. By setting yt ∈ [0, 1], we retrieve the tent map.Therefore, by
topological conjugation, if the tent map exhibits sensitive dependence on initial condition,
so must the logistic map do.
To understand how it works for the tent map, let us consider as a warm up the Bernoulli
shift map, which is topologically conjugated with the tent map through a complicated
non-differentiable function [Beck and Schlögl, 1997]:

yt+1 =

{
2yt 0 ≤ yt ≤ 1/2

2yt − 1 1/2 ≤ yt ≤ 1 ,
(2.31)

or also yt+1 = 2yt mod 1, see Figure 2.9.

Let us indicate points in binary notation, i.e. the dynamics starts at

y0 =

∞∑
i=1

ai
2i

= 0.a1 a2 a3 . . . , (2.32)

where ai = 0, 1. Bernoulli shift map translate the entire sequence one digit to the left at
each iteration, removing the most significant, like

y0 = 0.a1 a2 a3 . . . → y1 = 0.a2 a3 a4 . . . → y2 = 0.a3 a4 a5 . . . , (2.33)
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Figure 2.9: Tent (left) and Bernoulli shift (right) maps. The diagonal is denoted with the lighter
dotted line. Since the derivative of these maps are always larger that 1, due to linear stability
theory there cannot be fixed stable points, see [Cencini et al., 2009].

such that yt is simply y0 with the first t−1 digits removed. It is clear that small perturbations
are amplified by a factor 2 at each iteration, so that any difference in the most insignificant
digits will be amplified as

δyt = δy0 2
t = δy0 e

t ln 2 , (2.34)

being the Lyapunov exponent ln 2 (see section 2.8).
In case of the Tent map, it acts as a shift when yt < 1/2 and as a bit negation when
yt > 1/2. We indicate the negation operator as ¬(at), i.e. ¬(0) = 1 and ¬(1) = 0. Since
the sequence yt is invariant if yt < 1/2, it is negated if yt > 1/2 and ¬2 is the identity
operator, the action of the Tent map can be written as

yt = m(n)(y0) = 0.¬a1+a2+···+an(an+1) ¬a1+a2+···+an(an+2) . . . , (2.35)

being therefore Equation 2.34 still valid and so the same holds for the logistic map.

2.4.2 The Lorenz 63 Model

[Lorenz, 1963] introduced his famous model by a simplification of the equations involved in
Rayleigh-Bénard convection, a problem of fluid mechanics that was first posed by Bénard
(1900) and later developed by Rayleigh (1916).
Consider a fluid in a gravitational field g directed along the z-axis and contained between
two infinite horizontal plates perpendicular to the z-axis and separated by a distance H.
The density of the fluid is a function of the temperature and thus if the temperature in the
upper plate TU equals the temperature in the bottom plate TB, the density is constant. If
TU > TB the fluid stratifies and temperatures varies linearly with the altitude from being
cold at the bottom and hot at the top [Monin and Yaglom, 1975]:

T (z) = TB + z
TU − TB

H
. (2.36)

This is the so-called conduction state.
On the other hand, if TU < TB the fluid is unstable due to buoyancy, since light hot fluid
is pushed to the top, while heavy cold fluid sinks due to the gravity field. The process is
contrasted by viscous forces and if the temperature difference ∆T = TB − TU exceeds a
certain threshold the conduction state is broken and the fluid enters in a convective state, in
which the fluid is organized in counter-rotating vortices (or rolls) that bring up the light hot
fluid and push down the heavy cold fluid. This state, called Rayleigh-Bénard convection, is
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controlled by the Rayleigh number

Ra =
ρ0gαH

3|TU − TB|
kν

, (2.37)

where k is the coefficient of thermal diffusivity and ν is the viscosity. The average density
is ρ0, while α is the thermal dilation coefficient, relating the density with the temperature
as ρ(T ) = ρ(T0)[1− α(T − T0)], which is valid when the temperature differences are not
too large.
If the Rayleigh number exceeds the critical value Rac separating the stable conduction
state with the convection state for too much, the fluid becomes unstable and undergoes an
erratic and irregular convective motion: we are in presence of chaos.
If the temperature difference TB − TU is not too large, the equation of motions under the
Boussinesq approximation [Monin and Yaglom, 1975] are:

∂tu+ (u · ∇)u = −∇p
ρ0

+ ν∇2u+ gαΘ ,

∂tΘ+ (u · ∇)Θ = k∇2Θ+
TU − TB

H
uz ,

(2.38)

where u is the velocity field supplemented with the incompressibility condition ∇·u = 0 and
∇2 denotes the Laplacian. The first is the Navier-Stokes equation where p is the pressure field.
The second is the advection diffusion equation for the deviation Θ of the temperature field
T (r, t) from the conduction state in Equation 2.36, i.e. Θ(r, t) = T (r, t)−TB−z(TU−TB)/H.
A first simplification consist to study the 2-dimensional problem in the plane x − z, by
mean the so-called stream function ψ(x, z, t), defined by

ux =
ψ

∂z
, uz = −

ψ

∂x
, (2.39)

in order to ensure the incompressibility assumption. Already Rayleigh found solutions of
the form

ψ = ψ0 sin

(
πax

H

)
sin

(
πz

H

)
,

Θ = Θ0 cos

(
πax

H

)
sin

(
πz

H

)
,

(2.40)

where ψ0 and Θ0 are constants and a is the horizontal wave-length of the rolls. However,
this solutions become unstable if the Rayleigh number exceeds the critical value

Rac =
π4(1 + a2)3

a2
, (2.41)

making them hard to be studied analytically.
A possible overcome is to consider a Fourier expansion in which the time dependency is put
on the coefficients, i.e.

ψ(x, z, t) =

∞∑
mn,n=1

ψmn(t) sin

(
mπax

H

)
sin

(
nπz

H

)
,

Θ(x, z, t) =

∞∑
mn,n=1

Θmn(t) cos

(
mπax

H

)
sin

(
nπz

H

)
.

(2.42)

However, this substitution into the original PDE give raise to an infinite number of
ODEs. The assumption made by [Lorenz, 1963] was to consider the simplest possible



2.4. EXAMPLES OF DYNAMICAL SYSTEMS 19

Figure 2.10: Lorenz 63 attractor.

truncation with retains only three coefficients, namely the amplitude of the convection
motion ψ11(t) = x

(1)
t , the temperature difference between the ascending and descending fluid

currents Θ11(t) = x
(2)
t and the deviation from the linear temperature profile Θ02(t) = x

(3)
t ,

ending up with:

ẋ(1) = ρ(x(2) − x(1)) ,
ẋ(2) = x(1)(σ − x(3))− x(2) ,
ẋ(3) = x(1)x(2) − βx(3) ,

(2.43)

where σ = Ra
Rac

is the normalized Rayleigh number, ρ = ν/k is the Prandtl number and
β = 4(1 + a2)−1 a generic geometric coefficient related to the vortices wave length.The
physical time unit is π2H−2(1 + a2)k. For the common choice of the constants ρ = 10,
σ = 28 and β = 8/3 the system exhibits both a chaotic behaviour and a fractal attractor
with dimension with the typical butterfly shape in Figure 2.10.

The Jacobian of the system or stability matrix of Equation 2.43 is

L =

 −ρ ρ 0

σ − x(3) −1 −x(1)
x(2) x(1) −β

 . (2.44)

We observe that

∇ · g =

3∑
i=1

∂

∂x(i)
ẋ(i) = Tr(L) = −(ρ+ β + 1) < 0 , (2.45)

meaning that the phase space volume exponentially converges to a subset having zero
measure. The system is thus dissipative. Moreover, trajectories do not explore the whole
space, but they remain confined in a bounded region. To show that, let us perform the
change of variable X(1) = x(1), X(2) = x(2) and X(3) = x(3) − σ − ρ. Equation 2.43 can be
rewritten as

Ẋ(i) =
∑
jk

aijk X
(j) X(k) +

∑
j

bij X
(j) + ci , (2.46)

where aijk, bij and ci are constants. Furthermore, we notice that
∑

ijk aijk X
(i) X(j) X(k) =

0 and
∑

ij X
(i) X(j) > 0. If we define the energy function as Q = 1

2

∑
ij (X

(i))2 and denote
with ei the roots of the linear equation

∑
j(bij + bji)ej = ci, from the equations of motion

we have
Q̇ =

∑
ij

bijeiej −
∑
ij

bij(X
(i) − ei)(X(j) − ej) < 0 , (2.47)



20 CHAPTER 2. DYNAMICAL SYSTEMS

and therefore trajectories are bounded.

Let us come back to the study of stability of the system. The fixed points are simply the
solutions of g(x∗) = 0, i.e.

x∗
0 = (0, 0, 0) , x∗

± = (±
√
β(σ − 1),±

√
β(σ − 1), σ − 1) , (2.48)

where the first represents the conduction state, while x∗
±, which are real for σ ≥ 1, correspond

to the counter-clockwise and clockwise of the convective vortices. The solution of the secular
equation det(L(x∗)− λI), yields [Cencini et al., 2009]:

• For 0 < σ < 1, x∗
0 is the only fixed point, which is stable being all the eigenvalues

negative.

• For σ > 1 one of the eigenvalues of x∗
0 becomes positive, while x∗

± have one real
negative and two complex conjugated eigenvalues corresponding to convection. If σ is
greater than a critical value

σc =
ρ(ρ+ β + 3)

(ρ− β − 1)
, (2.49)

steady convection is unstable. Since to have a physical meaning ρ, σ and β must be
positive number, then Equation 2.49 yields a relevant condition only when ρ > (β+1).

Linear stability regime fails when ρ > (β + 1) and σ > σc, therefore a numerical analysis of
Equation 2.43, as did by Lorenz himself, is necessary in this domain. Following him, in this
thesis we use the combination of parameters ρ = 10, β = 8/3 and σ = 28 > σc ≈ 24.74. In
this regime, trajectories converge to the strange attractor seen in Figure 2.10, where orbits
with similar random duration circulate around the two unstable steady convection states
x∗
± = (±6

√
(2),±6

√
(2), 27). Physically, it means that convection switches irregularly from

clockwise to counter-clockwise rotation.

As already noted by [Lorenz, 1963], the chaotic behaviour of Equation 2.43 cane be
understood by deriving one dimensional chaotic map, called return map. By comparing
the evolution of the time sequences x(1) and x(2) versus x(3), we can appreciate how the
random switches between clockwise and counter-clockwise rotation seem to appear when
x(3) reaches local maxima. Lorenz thus supposed that the chaotic dynamics of the system
may be encoded on the sequence of local maxima of x(3). Therefore, he plotted x(3)t+1 against
x
(3)
t and the pattern shown in Figure 2.11 is very interesting. We can notice that the points

are not randomly distributed, but they are organized in a smooth one-dimensional curve.
Moreover, such a curve is not invertible, so that chaos is possible, and its derivative is
always larger than 1, which in linear stability theory means that there cannot be stable
fixed points neither for the map itself, nor for its k-th iterations.

2.4.3 The Lorenz 96 Model

We briefly describe the system introduced by [Lorenz, 1995], a simple toy model describing
three typical processes happening in the Atmosphere for a generic atmospheric quantity:
transfer, advection and external forcing. Consider N sites dislocated on a ring with periodic
boundary conditions. The model is described by the system of differential equations in
terms of the generic atmospheric quantities {x(i)}Ni=1

ẋ(i) = x(i−1)(x(i+1) − x(i−1))− x(i) + F , (2.50)

where F is the external force.
It is immediate to see that xn = F is a constant solution of the system. Moreover, it is
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(a) (b)

Figure 2.11: a) Dynamics of Lorenz 63 system up to time 20, generated with δt = 0.002 from a
random point inside the attractor. Maxima of x(3) are highlighted. b) Return map of maxima of
x(3), i.e. x(3)t+1 against x(3)t . The diagonal is denoted with the lighter dotted line.

known that solutions are stable for 1
2 < F < 8

9 , while as F increase periodic solutions begin
to appear, as for F = 2. By increasing again F , the system enters in a chaotic regime,
where regular waves break and the trajectories are irregular, see Figure 2.12 where we plot
the Hovmöller plot [Persson, 2017] for different values of the force F . From the plot, we
can notice that if F is small a regular pattern appear, and the system supports waves
propagation with spatial period around 9. However, for large F these waves are broken
and the system undergoes a chaotic regime.

Figure 2.12: Hovmöller plot for Lorenz 96 system for different values of the force F . The plots are
generating by intergrating a long trajectory with time step δt = 0.002 and discarding the first 200
time units of the dynamics.

For detailed analysis on wave propagation see [van Kekem and Sterk, 2018a] and [van
Kekem and Sterk, 2018b]. The reader is further referred to [van Kekem and Sterk, 2019] for
a study on the symmetries of the model and to [Galias and Tucker, 2008] for an analysis on
the short periodic orbits. For some generalization of the model see [Vissio and Lucarini,
2020] and [Kerin and Engler, 2022].

2.5 Probabilistic Approach

Dynamical systems are fully determined by the choice of initial condition. However,
sensitive dependence to initial conditions makes chaotic systems very irregular and therefore
a statistical description is needed even if the number of degree of freedom is small. The
reason is that chaotic systems loose very quickly memory on the initial condition due to
the irregularities of a chaotic dynamics. Let us clarify this point by computing the time
correlation function, assuming stationarity, defined as

C(τ) = ⟨xt+τ xt⟩ − ⟨xt⟩2 , (2.51)
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where ⟨x⟩ = limT→∞
∫ T
0 xt dt, for the Lorenz 63 system Equation 2.43, see Figure 2.13.

The correlation function measures how distant points are "related" to each other. In case
periodic or quasi-periodic motion, the correlation function cannot relax to zero, because
motion repeats itself. However, in case of irregular motion, such as chaotic or stochastic
systems, C(τ) approaches zero for large τ . The characteristic decay time is given by

τc :=

∫ ∞

0
dτ C(τ)/C(0) , (2.52)

when 0 < A =
∫∞
0 dτ C(τ) <∞, measuring the scale at which the system looses memory

from the past. Moreover, it is correlated to the energy density content of the system by
Wiener-Kinchin theorem [Wiener, 1930,Khintchine, 1934], being the power spectrum density
the Fourier transform of the correlation function.

(a) (b)

Figure 2.13: Rescaled correlation function for the x(1) variable of a) the chaotic Lorenz 63 system
with standard parameters ρ = 10, σ = 28 and β = 8/3. b) Same for non-chaotic Lorenz 63 with
ρ = 10, σ = 100 and β = 8/3. We notice how correlation decades exponentially fast in the chaotic
system, while when the system is not chaotic it does not decay.

We see that in case of chaos, the past is rapidly forgotten and trajectories appear to be
random. Therefore, the idea of trajectory must be abandoned to embrace a statistical
mechanics description of chaotic systems.
Let us come back to the Logistic map Equation 2.17. Operationally, the probability density
is built point-wise considering trajectories in the phase space xt, starting at x0

ρ(x;x0) = lim
T→∞

1

T

∫ T

0
δ(x− xt) dt , (2.53)

which may in principle depend also on the initial condition x0. In computer simulations,
this density is computed by dividing the interval (0, 1) in N bins of equal size 1/N and
measuring the number of times a long trajectory with duration T passes though the bins,
dividing by T and then taking the limit as T →∞.
Consider the problem to find the conditional probability given the probability of initial
condition ρ0(x), i.e. we are interested in the time evolution of the probability density as
ρ0(x), ρ1(x), . . . , ρt(x), . . . . The natural questions that come up are: 1) does ρt(x) have a
limiting distribution ρ∞(x) = limt→∞ ρt(x) and, if so, how fast is it approached? 2) How
does the limiting distribution depend on the initial condition?
It is clear that the limiting distribution ρt(x), if it exists, should be invariant under the time
evolution, i.e. ρ∞(x) = ρinv(x), see Figure 2.14. As an example for continuous systems, in
Figure 2.15 we report the projected invariant measures of [Lorenz, 1963].

The problem of assessing if the invariant pdf depends on initial condition is less than trivial.
For r = 4 the logistic map has infinite number of unstable periodic orbits. Now, let supposed
to choose as initial condition x0 a point belonging to a periodic orbit (x0, x1, . . . , xn−1) of
period n. Thus, Equation 2.53 becomes

ρ(x;x0) =
δ(x− x0) + δ(x− x1) + · · ·+ δ(x− xn−1)

n
, (2.54)
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(a) (b)

Figure 2.14: a) Invariant pdf for the logistic map at Ulam point r = 4, made by evolving the
dynamics for 107 step with a generic initial point in [0, 1]. b) The evolution of the pdf, created by
taking 106 points uniformly distributed in [0, 1] at t = 0. We notice how the convergence to the
invariant pdf is very fast and it is already almost indistinguishable at t = 3.

which is trivially invariant, since points just exchange each other as time goes on. This
reasoning can be applied to any other unstable periodic orbit and in addition we have
that any normalized linear combination of such invariant densities is still an invariant
density. However, in physical situation, as in Figure 2.14, the system "chooses" naturally an
invariant density, known as natural or physical measure, which cannot be expressed as linear
combination of other invariant densities. Moreover, in many cases we cannot even speak
about probability densities, because measures can be singular with respect to Lesbegue
measure, as it happens in case of the Feigenbaum attractor (i.e. the attractor of logistic
map for r = 3.57 . . . .) Figure 2.7, and therefore cannot be written as dµ(x) = ρ(x) dx. For
that reason, in the following we use the term invariant measure µinv instead of density.
Given a map or a continuous system characterized by the evolution operator f t, invariant
measure is defined by

µinv(f
−t(B)) = µinv(B) ∀t ≥ 0 , (2.55)

where B is any measurable set. An invariant measure µ is said to be ergodic if it cannot be
linearly decomposed into invariant measures, i.e. we cannot write

µ = pµ1 + (1− p)µ2 , 0 < p < 1 , (2.56)

where µ1 and µ2 are other invariant measures.

Figure 2.15: Invariant measures of the three projections along coordinates axis for Lorenz 63,
generated from a dataset of 100000 samples with δt = 0.002 by counting the frequency that the
trajectory visit squares of side 1.

2.5.1 Time evolution of probability density

The time evolution of the probability density of a map xt+1 = m(xt) is described by the
linear Perron-Frobenius transfer operator [Ruelle, 2004,Baladi, 2000]:

ρt+1(x) = LPFρt(x) =

∫
dy ρt(y) δ(x−m(y)) =

∑
k

ρt(yk)

|detL(yk)|
, (2.57)
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where m(yk) = x and Lij = ∂mi/∂xj .
For a continuous time dynamical system ẋ = g(x), we have

ρt(x) = Lt
PF ρ0(x) , (2.58)

where the family {Lt
PF }t≥0 satisfies the semi-group properties, i.e. Lt+s

PF = Lt
PF +Ls

PF and
L0
PF = I.

Perron-Frobenius operator is the adjoint of the evolution operator f t =
(
Lt
PF

)† or flow,
such that

〈
f t O

〉
ρ0

= ⟨O⟩ρt , for any observable O.
Assuming strong continuity and boundedness of the semi-group family {Lt

PF }t≥0, we can
introduce the generator LL of the unperturbed Perron-Frobenius operator LPF = et LL ,
which allows us to rewrite Equation 2.4 as

∂tρ = LLρ = −∇(gρ) . (2.59)

The connection with dynamical systems with stochastic processes is established by the
introduction of a noise term in Equation 2.1, see [Feller, 1968], getting the Langevin
equation:

ẋ = g(x) + ηt , (2.60)

where ηt is white Gaussian noise, i.e. ⟨ηt⟩ = 0 and ⟨ηt ηt′⟩ = Qδ(t− t′), where the covariant
matrix Q is positive-definite [Chandrasekhar, 1943]. In this case the evolution equation
of the probability density is substituted by Fokker-Planck equation [Fokker, 1914,Planck,
1917](in Ito prescription):

∂ρ

∂t
= LL ρ+

1

2

∑
ij

Qij
∂2ρ

∂x(i)∂x(j)
, (2.61)

where Q is independent of x. The Liouville operator is thus substituted by Fokker-Planck
operator [Gardiner, 2004]:

LFP = LL +
1

2

∑
ij

Qij
∂2

∂x(i)∂x(j)
. (2.62)

As we have seen, there may be invariant measures in the dynamics, but not all are physically
relevant. In common situation, it is the system itself that "choose" the most suitable
physical measure. Indeed, in real world scenarios, the dynamics given by Equation 2.1 is
not reasonable, since we have to deal with noise and instead the dynamics may be described
by Equation 2.60. This approach remains valid also in computer simulation, since round off
errors due to computer operations are source of noise. Therefore, assuming that it exists,
we say that the physical measure chosen by the system is the limit

ρ = lim
η→0

ρη , (2.63)

where ρη is the measure of the stochastic dynamics, and it is typically the one computed by
running a long trajectory and counting the number of points lying in each boxes by which
space is divided.

It is clear that the invariant density satisfies

LPFρinv(x) = ρinv(x) . (2.64)

More generally, Perron-Frobenius operator admits an infinite number of eigen-functions
Ψk(x), i.e.

LPFΨ
k(x) = αkΨ

k(x) , (2.65)
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where the eigenvalues αk are in general complex.
A generalization of Perron-Frobenius theorem asserts the existence of a real eigenvalue
equal to unity α1 = 1, while the other eigenvalues are |αk| ≤ 1, k ≥ 2. Therefore, all its
eigenvalues belong to unitary circle in the complex plane.
If the eigenfunctions {Ψk}∞k=1, any initial density can be factorised as

ρ0(x) = ρinv(x) +

∞∑
k=2

Ak Ψk(x) , (2.66)

where Ak are such that ρ0 is real and non-negative in all the domain. The time evolution is
thus:

ρt(x) = ρinv(x) +
∞∑
k=2

Ak αk Ψk(x) = ρinv(x) +O

(
e
−t log

∣∣ 1
α2

∣∣)
, (2.67)

therefore being the rate of convergence to the invariant measure determined by the second
largest eigenvalue of the Perron-Frobenius operator.
In case of the logistic map, for r < 3 there is a unique fixed point x∗, and thus

ρt(x)→ δ(x− x∗) . (2.68)

For rn−1 < rn, the trajectories are attracted by periodic orbit (x1, x2, . . . , x2n) of period
2n, such that after a transient time

ρt(x) =

2n∑
k=1

ck(t) δ(x− xk) , (2.69)

where ck(t) are coefficient evolving in a cyclic way, i.e. c1(t+ 1) = c2n(t), c2(t+ 1) = c1(t)
and so on. For n→∞, we come back to the Feigenbaum attractor case.

We conclude by giving the exact invariant probability density for the logistic map Equa-
tion 2.17 at the Ulam point r = 4, by exploiting the property of topological conjugacy with
the tent map, see 2. It easy to argue, see [Cencini et al., 2009], that evolution of the pdf
density of the tent map satisfies

ρt+1(y) =
1

2
ρt

(
y

2

)
+

1

2
ρt

(
1− y

2

)
, (2.70)

because small intervals centered in y, whose measure is the probability to lie in that interval,
are the pre-images of two intervals whose centers are y/2 and 1− y/2.
Since the tent map and the logistic map are topologically conjugated, the invariant pdf are
related by the change of variable in Equation 2.29 as

ρ
(y)
inv(y) =

∣∣∣∣dhdx
∣∣∣∣−1

ρ
(x)
inv(x = h(−1)(y)) , (2.71)

and since ρ(y)inv(y) = 1, we get

ρ
(x)
inv(x) =

1

π
√
x(1− x)

, (2.72)

which is exactly the pdf numerically found in Figure 2.14-(a).
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2.5.2 Ergodicity

In Figure 2.14 we have obtained the pdf of the logistic map Equation 2.17 by iterating
the Perron-Frobenius operator. Such systems, for which the time evolution visit all the
phase-space, are called ergodic. Ergodic systems are very interesting, because ensemble
averages can be computed with time averages, therefore simplifying a lot the computation.
The problem to asses if a system satisfy the ergodic hypothesis goes under the name of the
modern ergodic problem.
In abstract terms, a continuous time or a discrete dynamical system can be defined by the
triad (Γ, f t, µ), where Γ is the phase-space, f t : Γ→ Γ is the time evolution operator, such
that

x0 → xt = f t x0 , (2.73)

where for maps it assumes discrete time steps, and µ is the invariant measure under the
evolution of the time evolving operator f t , i.e.

µ(B) = µ(f−tB) , (2.74)

for any measurable set B ⊂ Γ.
Notice that we speak of measure and not invariant pdf, because for dissipative systems the
invariant measure is typically singular with respect to the Lebesgue measure, see Figure 2.7.

A system (Γ, f t, µ) is said ergodic, with respect to the (ergodic) invariant measure µ, if for
any integrable (measurable) function O(x), we have

Ō := lim
T→∞

1

T

∫ t0+T

t0

dt O(xt) =

∫
Γ
dµ(x) O(x) =: ⟨O⟩µ , (2.75)

where xt = f t−t0x0 for almost all (with respect to µ) the initial conditions x0.

We first remark that all the definitions are done with respect to the measure µ, thus possibly
failing for sets of 0 µ measure, which are not null with respect to another measure.
Secondly, ergodicity is not a peculiar property of chaos. Let consider the map on the torus
[0, 1]× [0, 1] {

x
(1)
t = x(1)(0) + ω1 t mod 1

x
(2)
t = x(2)(0) + ω2 t mod 1 ,

(2.76)

for which the Lebesgue measure dµ(x) = dx(1)dx(2) is invariant. It can be proven, see
[Cencini et al., 2009] for example, that if the fraction ω1/ω2 is rational, the motion of
Equation 2.76 is periodic and non-ergodic with respect of the Lebesgue measure; however
for ω1/ω2 irrational the motion is quasi-periodic and ergodic with respect to the Lebesgue
measure.

2.6 Dimensions

Roughly speaking, the dimension of a geometrical object is the information needed to
specify its points accurately [Eckmann and Ruelle, 1985,Ott, 2002]. We have seen examples
of attractors constituted by single points (so zero dimensional) and limiting cycles (curves
in space are one dimensional). The peculiarity of dynamical systems, however, is the fact
the typically their attractors have a dimension that cannot be described by an integer
value: they are thus fractals, a term first coined by [Mandelbrot, 1982] who first started
systematically studying the geometric properties of those objects. Fractals exhibits a a fine
structure at arbitrary small scale and the determination of their dimension can provide
information on the mathematical space needed to describe such objects.
In this section, we address this question by giving the definition of the most used concept
of dimensions in dynamical systems.
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2.6.1 Box Counting Dimension

Let us first introduce the so-called counting box dimension, also known as capacity. Let
S ∈ RN be a compact set. We say that a set of cubes of edge ϵ, {Bi(ϵ) : i ∈ I}, where I is
countable indexes set, covers the set S if S ⊂

⋃
i∈IBi(ϵ). Let Ñ(ϵ) = |{Bi(ϵ) : i ∈ I}| the

the numbers of cubes needed to cover the compact set S. The capacity of S is defined as

D0 = lim
ϵ→0

Ñ(ϵ)

ln(1/ϵ)
. (2.77)

This definition is very simple and indeed straightforward to apply in numerical implementa-
tions. It is clear that, no matter how large ϵ is, only one cube is needed to cover a single
point and therefore its capacity is 0. More generally, the capacity of a finite discrete set of
points is still zero, because for a sufficiently small ϵ the number of cubes needed to cover
the set is the number of points. For a line, like in Figure 2.3(b), the number of boxes scale
generally with ∼ l/ϵ, where l is the length of the curve, and therefore Equation 2.77 yields
D0 = 1. Likewise, for a surface we would have Ñ(ϵ) ∼ A/ϵ2, where A is the surface, and
therefore D0 = 2. However, this definition requires only a rough estimation of the number
of boxes to cover the set, since ∀K ∈ R, if Ñ(ϵ) = Kϵ−d, then D0 = d independently of K.
We have seen how box counting dimension can reproduce the expected intuitive dimension
of common geometrical object. However, we have seen how there are objects that manifest
a fine structure at arbitrarily small scale and therefore its dimension cannot be trivially
inferred by the dimension of the space in which they are embedded. For example, Lorenz
butterfly Figure 2.10 seems to be a surface, but detailed analysis show that its fractal
dimension is D0 ≃ 2.06, meaning that it is more than a surface but less than a volume and
this is a consequence of its fine structure.
An interesting example of 1d fractal, in which the capacity happens to be not integer, is
given by Cantor set, defined as follow: from the closed interval [0, 1] remove the middle
open interval (13 ,

2
3) of length 1/3, leaving the two closed intervals [0, 13 ], [

2
3 , 1] From the two

remaining parts, remove again their third middle open intervals (19 ,
2
9) and (79 ,

8
9), which

leave four closed intervals, namely [0, 19 ], [
2
9 ,

1
3 ], [

2
3 ,

7
9 ] and [89 , 1]. If we repeat this operation

to infinity, we are left with the Cantor set C. At step n, staring from n = 0, we remove 2n

intervals of length 1/3n+1 and therefore Cantor set has a null Lebesgue measure, since the
total length removed is

∑∞
n=0

2n

3n+1 = 1. Topologically C is a closed, since the complement
of a countable union of open sets, subset of R (and bounded) and therefore is complete due
to Heine-Borel theorem. Moreover, C is uncountable. To see that, let us build a bijective
function with real numbers. At each interaction of the construction of Cantor set, we are
left with a subset that either goes to the left or to the right. Thus, we associate a 1 if a
point lies in the right interval and 0 if it is the left part. Therefore, in the limiting process
we can associate each point with a distinct sequence in {0, 1}N and since these sequence
are in bijective correspondence, through binary representation, with the numbers on the
interval [0, 1], we conclude that its cardinality is non numerable. Cantor set has the same
number of points of the original interval in a sense, with zero measure though.
Let us compute its box counting dimension. Since at each iteration we are left with 2n

intervals of length 1/3n, if we choose the sequence ϵn = 1/3n, which obviously yields
limn→∞ ϵn = 0, then we need Ñ(ϵn) boxes to cover the set and therefore

D0 =
ln 2

ln 3
= 0.63 . . . , (2.78)

meaning that Cantor set is "something" more that a discrete set of points (and indeed is
uncountable as already seen), but not enough to be counted as full interval in the real line,
with dimension 1. Indeed, it is easy to see that Cantor set have self-similarity, since every
little interval of length 1/3n can put in bijective correspondence with [0, 1] through an
affine function (it looks exactly equal no matter the "lens" we use to observe it). However,
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we point out that self similarity does is not always manifest in fractal objects [Ott, 2002]
(that are merely defined with a non integer dimension) and indeed it does not appear in
force damped pendolum attractor in Figure 2.6.

2.6.2 Dq Dimension

Box counting dimension is build by looking at the number of cubes that cover an attractor.
However, it is not obvious that all the cubes should count equally to the dimension counting,
since a trajectory can spend more time in a box than in another, and this is particularly
true for fractal attractors, and therefore we would like to look at the frequencies at which
trajectories visit the the various cubes covering the attractor. We say that these frequencies
are natural if they are independent on the initial condition, expect at most for a set of zero
Lebesgue measure, and they are defined as

µi = lim
T→∞

η(Ci,x0, T )

T
, (2.79)

where η(Ci,x0, T ) is the time time spent by an orbit originating at x0 and lasting a time T
in the cube Ci. We call typical points the ones for which the limit Equation 2.79 gives the
same results expect at most for a set of zero Lebesgue measure.
By keeping that definition in mind, one may define the Dq dimension as [Hentschel and
Procaccia, 1983,Grassberger, 1983]

Dq =
1

1− q
lim
ϵ→0

ln I(q, ϵ)

ln(1/ϵ)
, (2.80)

where

I(q, ϵ) =

Ñ(ϵ)∑
i=1

µqi , (2.81)

where Ñ(ϵ) are again the number of cubes of side ϵ needed to cover the attractor. This
definition depends on a continuous parameter q, which measures the weight of the visiting
frequencies: for q > 0 cubes with larger frequencies count more. For q = 0, I(q, ϵ) = Ñ(ϵ)
and therefore we retrieve the box counting dimension. Moreover, it is easy to see that we
get again D0 independently of q also in the case that all frequencies are equal, since in that
case I(q, ϵ) = (1− q)Ñ(ϵ). By defining D1 = limq→1Dq, from L’Hospital’s rule we get

D1 = lim
ϵ→0

∑Ñ(ϵ)
i=1 µi lnµi

ln ϵ
, (2.82)

which is nothing than the information dimension [Eckmann and Ruelle, 1985] and [Balatoni
and Renyi, 1956].
In general Dq decreases when q increase, expect for the cases when µi ∼ 1/(ϵ) for which
Dq = D0,∀q, and it can be proved that

Dq1 ≤ Dq2 q1 > q2 . (2.83)

Numerically, Dq can be estimated by running a long trajectory and computing the time the
trajectory spend in each cube varying ϵ, as it has been done for several fractal attractors
in [Russell et al., 1980] by plotting I(q, ϵ) against ln ϵ which can be linearly interpolate for
a wide range of ϵ values. However, this method gives a good estimate only in the case that
the total time of the orbit T is small than the typical roundoff induced computer period,
since due to finite machine precision, computer orbits repeat them self after a certain time.
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2.6.3 Hausdorff Dimension

We briefly mention a more difficult to define and yet useful definition of dimension is given
by Hausdorff dimension [Gneiting et al., 2012,Hausdorff, 1919]. Let us first introduce the
concept of Hausdorff measure. The diameter of a metric space A is defined as the maximum
distance between its points

|A| = sup
x,y∈A

d(x,y) , (2.84)

where d : A × A → R+ is the metric. Let us consider a countable sequence of metric
spaces Si with diameter ϵi less or equal a certain threshold δ, such that they cover A, i.e.
A ∈

⋃
i Si. Hausdorff measure is defined as

Γd
H = lim

δ→0
inf
Si

∞∑
i=1

ϵdi . (2.85)

If for example A is a surface in an euclidean space, Γ2
H is just the area of the set, while for

d < 2, Γd
H = ∞ and Γd

H = 0 for d > 2. More generally, it can be proved that Hausdorff
measure is infinite if d is smaller than some critical value and 0 if it is greater. Hausdorff
dimension is defined as this critical value

DH = min{d : 0 < Γd
H <∞} . (2.86)

2.6.4 The Pointwise Dimension

Another important concept useful to study strange attractors and invariant sets is the
pointwise dimension Dp(x). Let Bϵ(x) an N dimensional ball centered in x with radius ϵ.
The pointwise dimension of a probability measure µ at x is defined as

Dp(x) := lim
ϵ→0

lnµ(Bϵ(x))

ln ϵ
. (2.87)

If the invariant measure is ergodic, then Dp(x) assumes a single common value D̄p(x) for
all points x except a set of zero µ- measure. As proved by [Young, 1982], in this case the
pointwise dimension is connected to the Information dimension ( [Eckmann and Ruelle,
1985] and [Balatoni and Renyi, 1956]) and the single common value is

D̄p(x) = D1 . (2.88)

Let us consider for simplicity the case of invertible maps x′ = m(x). To show that the
pointwise dimension assumes the same common value, we want to first prove that

Dp(x) = Dp(x
′) . (2.89)

Since the measure is invariant, then µ(Bϵ(x)) = µ(m(Bϵ(x))). Assuming that the map
is smooth and ϵ sufficiently small, then the ball Bϵ(x) is mapped to an elipsoidal region
centered in x′ = m(x). Thus, we can find constants r1 > r2 such that the ball Br1ϵ(x

′)
contains m(Bϵ(x)) that contains Br2ϵ(x

′) (see [Cencini et al., 2009]). Therefore

µ(Br1ϵ(x
′)) ≥ µ(m(Bϵ(x))) = µ(Bϵ(x)) ≥ µ(Br2ϵ(x

′)) . (2.90)

From Equation 2.87, we have

Dp(x
′) = lim

ϵ→0

lnµ(Br1,2ϵ(x
′))

ln r1,2ϵ
= lim

ϵ→0

lnµ(Br1,2ϵ(x
′))

ln ϵ
, (2.91)

and from Equation 2.90 it immediately follows that Dp(x
′) ≥ Dp(x) ≥ Dp(x

′), i.e.
Dp(x) = Dp(x

′).
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Now, suppose by absurd that Dp(x) is not the same for almost every x with respect to the
ergodic measure µ. Thus, there exists some value dp and a set S−, such that Dp(x) ≤ dp
for almost every x ∈ S− and another disjoint set S+ such that Dp(x) > dp for almost every
x ∈ S+. Moreover, µ(S±) > 0. Since Dp(x) = Dp(x

′), the two sets S± are invariant. But
this is not possible because the measure is ergodic and would be otherwise be divided into
two parts, one never visiting the other.

2.7 Delay’s Method, Embeddings and Data Assimilation

In real world applications we usually have sparse and rare measurements, often a scalar
sequence which can be either one of the coordinates of a higher dimensional system or more
generally a function of the state vector

gt = G(xt) . (2.92)

Even though the information provided by the scalar sequence is incomplete, we could learn
properties of the system from which is was generated by using M dimensional delayed
coordinates [Takens, 1979] y = (gt, gt−τ , gt−2τ , . . . , gt−(M−1)τ ).
Since in principle we can integrate backward Equation 2.1, xt−jτ can be seen as a function
of xt

xt−jτ = f−j(xt) , (2.93)

therefore also the vector yt can be thought as function of xt, though an operator as

yt = H(xt) . (2.94)

It can be shown that if M is sufficiently large, then delayed method reveals more and more
details of the underlying dynamical system, as it is shown in Figure 2.16 for Lorenz 63.

(a) τ = 1 δt (b) τ = 2 δt (c) τ = 5 δt

(d) τ = 7 δt (e) τ = 10 δt (f) τ = 20 δt

Figure 2.16: Delayed plots (x(i)t vs x(i)t−τ ) of coordinates of Lorenz 63 system, corresponding to
different multiples of sampling time step δt = 0.01.

To give a meaningful result, Equation 2.94 must be such that for x ̸= x′, we have

H(x) ̸= H(x′) , (2.95)

and in such case we say the H is an embedding of the N -dimensional space x into the
M -dimensional space y.
So a natural question arizes: how large M should be in order to reproduce correctly the
unknown dynamical system? For example, let us consider the system dx/dt = ω, where
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x is considered an angle, i.e. module 2π. If we consider a 3-dimensional embedding
y = (G(xt), G(xt−τ ), G(xt−2τ )), the orbit would result in a limiting cycle as shown in
Figure 2.17-(a). Instead, if we build a 2-dimensional embedding y = (G(xt), G(xt−τ )), the
trajectory would intersect itself, as shown in Figure 2.17-(b), being not a dynamical system,
because the knowledge of y would not allow us to know the future evolution.

Figure 2.17: a) 3-dimensional versus b) 2-dimensional embedding of ẋ = ω, with x module 2π. We
can notice how the dimension of the embedding should be m ≥ 3 to ensure to have a dynamical
system. Image taken from [Ott, 2002].

Coming back to the minimum dimension required to have an embedding, [Takens, 1979]
showed that

M ≥ 2N + 1 (2.96)

is sufficient.

The operator H can be seen more generally as the operator that acts to the real state vector
xt, supposed to be unknown, in the act of measure the state of the system and therefore it
goes under the name of data assimilation. More generally, a measure is also characterized
by noise and thus we would have

yt = H(xt) + ηt , (2.97)

where ηt is zero mean Gaussian noise, i.e. E(ηt) = 0, ∀t and the correlation matrix Ct is
defined as

E[ηtη⊺t′ ] = δ(t− t′) Ct
1 . (2.98)

The goal of Data Assimilation (DA) is to combine theory with experiments in order to
retrieve the most of information coming from usually sparse and rare measures. Moreover,
since the dynamics is chaotic, it is necessary to continuously correct the trajectories with
new data coming from observations. For a fundamental review on DA methods the reader
is referred to [Park and Xu, 2016].

2.8 Characteristic Exponents

Characteristic exponents, also known as Lyapunov exponents, answer to the question of
what is the response of the system when a slightly perturbation is added to the dynamics,

1Dirac delta is replaced with Kroeneker delta in case of maps.
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which is useful in real world scenarios since measurement errors always arise. We will review
the basic theory following [Ayers et al., 2021]. We refer to [Pikovsky and Politi, 2016] for a
more exhaustive treatment. Let us consider the time evolution of a tiny perturbation δxt,
where δx0 is small compared to the dynamical variable, ||δx0|| ≪ ||x0||.
The idea behind Lyapunov exponents is to look for the exponential growth factor of the
perturbation, hence

||δxt||
||δx0||

= etλt ⇒ λt ≡
1

t
ln
||δxt||
||δx0||

. (2.99)

However, this definition yields only the characteristic exponents only along a particular
direction dictated by δx, it is explicitly dependent on time and the initial condition.
Lyapunov exponents generalize the. previous notion to perturbation along any direction,
by looking at the eigenvalues of some matrix of interest. Operationally, they determine the
growth rate of spheres in the phase space. Indeed, if we look how a N -dimensional sphere
(resembling for N independent perturbations) evolves in the phase space according to the
dynamical system, some directions may eventually shrink, other diverge or remain neutral
resulting in an elipsoid and therefore in a sense Lyapunov exponents are simply the fraction
between the axis of this elipsoid with respect to the radius of the sphere. This idea lies also
behind the notion of stable, unstable and neutral manifolds, on which we will com back
later.
Geometrically, Lyapunov exponents thus measure the time evolution of linear, surface and
volume elements [Eckmann and Ruelle, 1985]. The growth rate of the perturbation δx
is given by the largest Lyapunov exponent λ(1). The growth rate of a surface element
δσt = δ1xtδ2xt is given by the sum of the two largest Lyapunov exponents λ(1) + λ(2)

and in general the evolution of the k-volume element is given by the sum of the largest
k characteristic exponents. For instance, for a dynamical system in RN , the growth rate
of the N -dimensional volume is given by the determinant of the Jacobian |J | = |∂g∂x |
and is it thus λ(1) + λ(2) + · · · + λ(N). If the map g has a constant jacobian, we have
ln |J | = λ(1) + λ(2) + · · · + λ(N). Thus, in dissipative systems the sum of Lyapunov
exponents is negative. For example, for the Lorenz 63 system [Lorenz, 1963], we have
d|J(t)|/dt = −(ρ+ 1 + b) = λ(1) + λ(2) + λ(3) and since λ(2) = 0, which is generally true
(the middle Lyapunov exponents of continuous and smooth dynamical systems is always
zero, since it measures the evolution of perturbations along the flow of the system), we can
determine λ(3) from λ(1) and viceversa.
The analysis of characteristic exponents relies on the Multiplicative Ergodic Theorem
proved by Oseledet in 1968 [Ruelle, 1979,Ruelle, 1989,Eckmann and Ruelle, 1985,Oseledets,
1968,Pikovsky and Politi, 2016], which states:

Theorem 1 (Multiplicative Ergodic). Let ρ be a probability measure on space M of
dimension N (either RN or a Hilbert space or a compact manifold) and f : M → M a
measure preserving map such that ρ is ergodic 2 . Moreover, let T : M → Mat(N,R) a
measurable map such that

∫
ρ(dx) ln+ ||T(x)|| <∞ , (2.100)

where ln+(u) = max(0, lnu) is the positive part.
By defining the matrix Tt

x ≡
∏t−1

k=0T(fk(x)), for almost all x with respect to ρ, the following
limit exists:

lim
t→∞

(
Tt ⊺

x Tt
x

)1/2t
= Px DP⊺

x , (2.101)

where Px is the eigenvector matrix and the diagonal matrix D does not depend on the
initial condition x and the natural logarithms of its elements are the Lyapunov exponents
λ(1) ≥ λ(2) ≥ · · · ≥ λ(N) (possibly repeated with multiplicity), ρ-almost everywhere constant.

2An invariant measure is ergodic is if it cannot be linearly decomposed by other invariant measures.
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Now, let us assume that the characteristic exponents are no longer repeated with multiplicity
and and we call mi the multiplicity of λ(i). Let us define

Ei
x ≡ {λ ∈ D : λ ≤ eλ(i)} . (2.102)

Then we have RN = E1
x ⊃ E2

x ⊃ . . . and the following

Theorem 2. For almost all x with respect the measure ρ, the following limit holds:

lim
t→∞

1

t
ln ||Tt

xu|| = λ(i) , u ∈ Ei
x/Ei+1

x . (2.103)

2.8.1 Continuous Systems

The evolution of the perturbation vector δx takes place in the tangent boundle of the
mainifold and thus is determined by the equation

d δx

dt
= Jg(xt)δx , (2.104)

where Jg(xt) is the Jacobian of the evolution function g computed at the point xt = f t(x0),
since in principle it can be dependent also on the initial condition. This definition can be
generalised further [Pikovsky and Politi, 2016], even though here we consider only smooth
and continuous systems.
The solution of Equation 2.104 can be found using a fundamental matrix T [Ayers et al.,
2021], denoted coherently with the hypothesis of Oseledets theorem, defined as a solution
of the fundamental equation

Ṫt = Jg(xt)T
t . (2.105)

Given a solution of the fundamental matrix Tt, any solution of Equation 2.104 can be
written as δxt = Ttc, for some vector c ∈ RN . Without loss of generality, we can assume
that detT0 ̸= 0, since for any constant matrix P, we can write another fundamental matrix
At = Tt(Tt)−1P such that A0 = P. The solution of Equation 2.104 is given by δxt = Atc′,
where c′ = P−1T0c. For simplicity, we set T0 = IN so that c = δx0. Coming back again
to the example of the largest perturbation only, Equation 2.99 can be rewritten as

eλt =

(
||δxt||
||δx0||

)1/t

=

(√
δx⊺

0(T
t)⊺Ttδx0√

δx⊺
0δx0

)1/t

. (2.106)

We are interested in the limit:

lim
t→∞

ln

(√
δx⊺

0(T
t)⊺Ttδx0√

δx⊺
0δx0

)1/t

= lim
t→∞

ln
(
δx⊺

0(T
t)⊺Ttδx0

)1/2t
. (2.107)

The analysis of the latter limit relies on the Multiplicative Ergodic Theorem, for which the
limit

Wx0 ≡ lim
t→∞

[
(Tt

x0
)⊺Tt

x0

]1/2t (2.108)

exists and depends on the initial condition x0. However, Wx0 can be diagonalized as

Wx0 = Px0 DP⊺
x0
, (2.109)

where Px0 is the matrix of the orthonormal eigenvectors. The eigenvalue matrix D is not
dependent anymore on the initial condition and the Lyapunov exponents in descending
order λ(1) ≥ λ(2) ≥ . . . λ(N) are the natural logarithms of its diagonal elements

λ(i) = lnDii . (2.110)
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2.8.2 Discrete Maps

In case of discrete maps, the perturbation δxt obeys the equation

δxt+1 = Jm(xt)δxt . (2.111)

The perturbation can be obtained from the initial point x0 as

δxt = Jm(xt−1)δxt−1 = Jm(xt−1)Jm(xt−2)δxt−2 =

= Jm(xt−1)Jm(xt−2) . . . Jm(x0)δx0 =
t−1∏
k=0

Jm(xk)δx0 .
(2.112)

Therefore, we write the map T in the hypothesis of Theorem 1 as

Tt
x0

=
t−1∏
k=0

Jm(xk) . (2.113)

Again the characteristic exponents are defined as the natural logarithm of the eigenvalues
of the limit there defined.

2.8.3 An Algorithm for Numerical Computation

The computation of the fundamental matrix for both continuous systems Equation 2.8.1 and
discrete maps Equation 2.113 accumulates numerical errors and instability in the asymptotic
limit, in which we are interested [Pikovsky and Politi, 2016]. Instead of computing a large
time limit, we propagate perturbation for a short time and then we re-normalize orthogonal
perturbations, computing the Local Lyapunov Exponents (LLE). If then the system is
ergodic, the aritmetic mean of local Lyapunov exponents converge to the true characteristic
exponents. We present the method developed by [Benettin et al., 1980] based on QR
decomposition [Gottwald and Reich, 2021] and recently used by [Ayers et al., 2021] to learn
Local Lyapunov exponents with supervised machine learning.
Given a trajectory {xt : t ∈ [0, T ]}, we initialize a perturbation matrix Q0, such that its
columns are orthogonal and normalized even though the latter assumption is not strictly
necessary). Then we repeat the following operations for M iterations, staring with iteration
j = 1:

• At step j ≥ 1, we propagate perturbation along the trajectory {xt : t ∈ [(j− 1)τ, jτ ]}.
where δt << τ << T . At each iteration j, the algorithm generates N local exponents
λ
(i)
j , i = 1, 2, . . . , N :

– First, we numerically integrate Equation 2.8.1 or propagate Equation 2.113 to
get the fundamental matrix Tτj , by setting the initial condition as the identity
T(j−1)τ = IN .

– We propagate the perturbation as Vj = TτjQj−1.

– We orthogonalize Vj , a crucial operation since the dynamical evolution mixes
perturbation along different directions, by means of QR decomposition [Gottwald
and Reich, 2021]:

QjRj = Vj , (2.114)

such that Rj is an upper triangular matrix with positive coefficients on the
diagonal and Q is an orthogonal matrix.
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– The diagonal elements r(i)j of Rj are the norm of the orthogonalized v
(i)
j and

since the columns qj−1 of Qj−1 are normalized, those are just the ratios that we
need. The N Lyapunov Exponents (LE) at time (j − 1)τ are thus

λ
(i)
j =

1

τ
ln r

(i)
j , (2.115)

where the order of LLE must be chosen once and for all (possibly discarding the
first k entries in order to achieve convergence).

• In then end, global characteristic exponents are computed as

λ(i) =
1

m− k

m∑
j=k

λ
(i)
j . (2.116)

In general, this algorithm relies on the idea to compute Lyapunov exponents by calculating
the ration between the axis of a elipsoid perturbation trough the tangent operator given
by M with respect the initialized sphere of infinitesimal perturbations [Ayers et al., 2021].
However, is difficult that the leading perturbation q0 is mapped exactly in the leading
axis of the elipsoid, raising to a poor estimate of the Lyapunov exponents in the first
iterations, therefore needing to discard the first k local exponents in order to achieve better
estimation. The Local Lyapiunov exponents distribution for [Lorenz, 1963] and [Rössler,
1976], computed from a dataset of 100000 points generated starting from a generic initial
condition and a time step δt = 0.002 and with τ = 4, is reported in Figure 2.18, while the
estimated Lyapunov Exponents are reported in Table 2.1. For a complete analysis on the
computational cost of the algorithm see [Ayers et al., 2021].

Lo
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63

(a) µ = 0.908 , σ = 4.232 (b) µ = 0.003 , σ = 2.32 (c) µ = −14.578 , σ =
3.824

R
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(d) µ = 0.211 , σ = 3.056 (e) µ = 0.004 , σ = 2.664 (f) µ = −4.39 , σ = 5.65

Figure 2.18: Distributions of Local Lyapunov Exponents (LLE) with mean µ (dashed line) and
standard deviation σ (shaded area is between a σ deviation from the mean), computed from a
dataset of 100000 samples with δt = 0.002 and τ = 4 and discarding the first 1000 values. We do
not assist to significant different results for τ in the range [1, 40].

2.8.4 Lyapunov Dimension

Lyapunov exponents are also useful to compute along the dimension of the attractor. Let
K be the largest integer such that the sum of the K largest Lyapunov exponents is greater
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λ(1) λ(2) λ(3)

Lorenz 63 0.908 ± 0.046 0.003 ± 0.020 -14.578 ± 0.026
Rössler 76 0.211 ± 0.013 0.004 ± 0.031 -4.39 ± 0.22

Table 2.1: Computed Lyapunov exponents (LE) from LLE. They are estimated by dividing LLE
into four equal parts and computing the mean as the average of the mean values and error as the
standard deviation of the mean values. For both system, the middle Lyapunov exponent should be
theoretically zero, since it corresponds to perturbations along the flow of the system for which we
do not expect neither decay nor explosion.

than zero
K∑
i=1

λ(i) ≥ 0 . (2.117)

Kaplan and York [Kaplanand and Yorke, 1979] conjectured that we can use Lyapunov
exponents to give a dimension for typical fractal attractors. The Lyapunov dimension is
defined as

DL ≡ K +
1

|λ(K+1)|

K∑
i=1

λ(i) . (2.118)

The conjecture states that Lyapunov dimension is equal to information dimension, at least
for typical attractors

D1 = DL , (2.119)

even though is has not been proved yet.
For example, in for the Hénon map we have λ(1) ≃ 0.603 and λ(2) ≃ −2.34 and thus
DL = 1 + 0.603

2.34 ≃ 1.26.

2.8.5 Time Reversal Dynamics

Let us briefly examine the properties of a system whose dynamics reverses in time. If such
a system is such that its evolution map (or flow) is defined also for negative times, we
call f̂ t = f−t the time reversal flow. If ρ is an invariant (ergodic) map for the forward
time evolution (discrete or continuous), it is invariant (ergodic) also for the time reversal
dynamics. Moreover, its Lyapunov exponents are the same of the original system, but with
opposite sign (which is intuitive, since trajectories that diverge in the forward dynamics
will collide backward in time and viceversa). Accordingly, we have a sequence of subsets
Ê1
x ⊂ Ê2

x ⊂ . . . for almost all x, such that

lim
t→−∞

1

|t|
ln ||T t

xu|| = −λ(i) , if u ∈ Êi
x/Êi−1

x . (2.120)

2.9 Stable and Unstable Manifolds

From Multiplicative Ergodic theorem Theorem 1 we know that there exist linear subspaces
RN = E1

x ⊃ E2
x ⊃ . . . , such that

lim
t→∞

1

t
ln ||Tt

xu|| = λ(i) , u ∈ Ei
x/Ei+1

x , (2.121)

meaning that vectors in Ei
x/Ei+1

x are expanded exponentially with rate given by λ(i)

[Eckmann and Ruelle, 1985].
By looking to a non-linear analogous of these subspaces, we can define a local stable manifold
tangent to the subspace Ei

x at x and with the same dimension. Consider contraction λ < 0
and ϵ > 0, then we define

Vs
x(λ, ϵ) = {y : d(f t(x), f t(y)) ≤ ϵeλt), ∀t ≥ 0} (λ(i−1) > λ > λ(i)) , (2.122)
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where d is the metric of the space on which the system is defined.
If the dynamical system is defined also for negative times, we can define global stable
manifolds as

Vs(i)
x ≡ {y : lim

t→∞

1

t
ln d(f t(x), f t(y)) ≤ λ(i)} =

⋃
t>0

f−t(Vs
x(λ, ϵ)) , (2.123)

with λ < 0 and λ(i) < λ < λ(i−1). Therefore we have a set of stable manifold corresponding
to the negative characteristic exponents. By taking the largest of those, we can define the
global stable manifold as

Vs
x ≡ {y : lim

t→∞

1

t
ln d(f t(x), f t(y)) ≤ 0} . (2.124)

The analogous of the stable manifolds for positive Lyapunov exponents are unsatble maini-
folds and they can be either obtained for a system whose dynamics is defined also for
negative times, by replacing t with −t in the above definitions (since Lyapunov exponents
of the time reversal dynamics are minus the Lyapunov exponents of the original system) or
one can assume that the flow f t(x) and its space derivative ∂f t(x)/∂x are both injective,
meaning that

f t(x) = f t(y)

(
∂f t(x)

∂x
=
f t(y)

∂y

)
⇒ x = y . (2.125)

In the latter case, the definition of local unstable manifold, global unstable manifold and
global unstable manifold are respectively (λ > 0 and ϵ > 0):

Vu
x(λ, ϵ) ≡ {y : ∃ y−t | f t(y−t) = y, and d(x−t, y−t) ≤ ϵeλt, ∀t ≥ 0} ,

Vu(i)
x ≡ {y : ∃ y−t | f t(y−t) = y, and lim

t→∞

1

t
ln d(x−t, y−t) ≤ −λ(i)} =

=
⋃
t>0

f t(Vu
x(λ, ϵ)) ,

Vu
x ≡ {y : ∃ y−t | f t(y−t) = y, and lim

t→∞

1

t
ln d(x−t, y−t) ≤ 0} .

(2.126)

2.10 Entropies

Another way to describe chaotic systems is to look at the information production rate.
Since infinitesimal neighbouring trajectories diverge due to the positiveness of the largest
Lyapunov exponent, entropy is produced in the system. The reason is that if two trajectory
cannot be distinguished at time 0 with finite precision, they will eventually become suffi-
ciently distinct to be told apart. Similarly, the insignificant digits in decimal representation
of a point will become more and more relevant as the orbit moves forward.
Following [Ott, 2002], we will give two definition of entropy, metric entropy, also called
Kolmogorov-Sinai entropy [Kolmogorov, 1958, Sinai, 1959, Sinai, 1959], and topological
entropy.

2.10.1 Kolmogorov-Sinai Entropy

Metric entropy is based on Shannon entropy, which measures the amount of information
contained in a probabilistic event. Let p1, p2, . . . , pm be a discrete probability distribution,
i.e. pi ≥ 0, ∀i and

∑m
i=1 pi = 1. Shannon entropy is defined as

H(p1, p2, . . . , pm) = −
m∑
i=1

pi ln pi , (2.127)
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where as usual we define 0 ln 0 = 0. For example, if one of the event was certain, i.e.
pj = 1 for a certain j and pi = 0 for i ̸= j, thus the information contained in that event
would be zero. On the other hand, the greatest lack of information on the system, if
we did not have other prior knowledge, would be the case of a uniform distribution, i.e.
pi = 1/m, ∀i = 1, 2, . . . ,m and Shannon entropy would be lnn. More generally, we have
0 ≤ H(p1, p2, . . . , pm) ≤ lnm.
Let ρ an invariant measure for the dynamical system with compact support. Let W =
{W1,W2, . . . ,Wr} be a finite partition of the support of ρ. We can define the entropy of
the partition as

H({Wi}) = −
r∑

i=1

ρ(Wi) ln[ρ(Wi)] . (2.128)

Now, let us build a sequence {W(n)
i } of smaller and smaller partitions by considering the

sets f−t(Wi), i.e. the backward evolution of steps t = 1, 2, . . . , n of the partition set Wi.
At the first step, for each pair j, k = 1, 2, . . . , r, we form the r2 intersections

Wj

⋂
f−1(Wk) , (2.129)

and we say that all of those non empty intersection are the second partition {W(2)
i }. The

next partition {W(3)
i } is built by taking all the non empty intersections among the r3

intersections, which for indexes j, k, l = 1, 2, . . . , r are

Wj

⋂
f−1(Wk)

⋂
f−2(Wl) . (2.130)

Therefore, at stage n, we have

{
W(n)

i

}
≡

{
Wi1

⋂
f−1(Wi2)

⋂
f−2(Wi3)

⋂
· · ·

⋂
f−(n−1)(Win) ̸= ∅ :

: (i1, i2, . . . , in) ∈ {1, 2, . . . , r}n
}
.

(2.131)

By taking the limit for n→∞ and the sup over all possible partitions of the support of ρ,
the metric entropy (density) of the invariant measure ρ is defined as

h(ρ) = sup
{Wi}

lim
n→∞

1

n
H
({

W(n)
i

})
. (2.132)

We stress that this definition holds for discrete maps as well as continuous systems. In the
latter case, f−1 is simply the unit time reversed map.

In general, there is an interesting bound proved by [Ruelle, 1978] connecting the Kolmogorov-
Sinai entropy with the sum of positive Lyapunov exponents.

Theorem 3. Let f a differentiable map on a finite dimensional manifold and ρ an ergodic
measure with compact support, then the following inequality holds:

h(ρ) ≤
∑

λ(i)>0

λ(i) . (2.133)

In many situations, the latter inequality is often an equality, as it was proven to hold more
generally by Pesin for typical Hamiltonian systems [Pesin, 1976]:

h(ρ) =
∑

λ(i)>0

λ(i) , (2.134)
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which was later generalized to Axiom A systems [Ruelle, 1989](which are systems whose
attractor is hyperbolic and with dense periodic orbits).
[Young, 1982] proved that metric entropy for an ergodic invariant measure ρ on a smooth
two dimensional invertible map with Lyapunov exponents λ(1) > 0 > λ(2) is related to
information dimension as

D1 = h(ρ)

(
1

λ(1)
+

1

|λ(2)|

)
, (2.135)

where λ(1), λ(2) are the Lyapunov exponents for almost all x with respect to ρ.
Given Equation 2.135, for this kind of maps [Kaplanand and Yorke, 1979] conjecture is
equivalent to

h(ρ) = λ(1) , (2.136)

as experiments for example on Hénon map confirm.

2.10.2 Topological Entropy

Topological entropy, introduced by [Adler et al., 1965], is built similarly to metric entorpy.
Given a map m, we build the same finer and finer partitions that we did to define h(ρ),
starting from a partition {Wi} and constructing the succession {W(n)

i } as before. We define
N (n)({Wi}) as the number of non-empty components of the partition {W(n)

i } derived from
{Wi} and let

hT (m) = sup
{Wi}

lim
n→∞

[
1

n
lnN (n)({Wi})

]
. (2.137)

In general we have that
hT ≥ h(ρ) , (2.138)

and that the topological entropies of m and its inverse m−1 are the same

hT (m) = hT (m
−1) . (2.139)

The same is true for any map derived from m thorugh any continuous, invertible change of
phase space variable.

2.11 Metrics to Asses Performances

Whereas there are several metrics to asses the skills of dynamical system, in this thesis we
will make use of the Wasserstein Distance [Kantorovich, 1939] for the Climate and the R2
score [Heinisch et al., 1962] for the Weather assessment. The aim is to assess the goodness
of Machine Learning predictions against the ground truth dynamics.

2.11.1 Long Term (Climate) Dynamics: the Wasserstein Distance

Wasserstein distance is distance between probability density functions that measures what
is the cost to move a cloud of points with a certain mass to another cloud and for that
reason it is included in the optimal transport problems, first formalized by [Monge, 1781].
The term was first attributed to [Vaserstein, 1969], even though the first that defined it
was [Kantorovich, 1939]. Recently, it has been used by [Vissio et al., 2020] to assess the
performance of certain climate models against ground truth references and by [Vissio and
Lucarini, 2018] to evaluate the stochastic parametrization for fast-slow systems.
The power of Wasserstein distance above other measures of distances between probability
distributions comes from the fact that Wasserstein distances take into account all the
momenta of these measures, while for example the simple L2 of the difference of two
measurable functions in RN is not a suitable metric to asses distances between probability
measures. Therefore, we will use Wasserstein Distance to asses the power of Machine
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Learning models to reproduce the long term dynamics of dynamical systems, also known as
Climate. Numerical method to compute it can be found in [Santambrogio, 2015].
The optimal cost is defined as the minimum effort to move a set of mass points into
another [Villani, 2019]. Let us consider to point mass distributions of n1, n2 points
respectively in a M -dimensional space as

µ =

n1∑
i=1

µi δxi , ν =

n2∑
i=1

νi δyi , (2.140)

where δxi , δyi are the Dirac delta measure associate to points xi,yi and (µi, νi) are the
respective masses, subject to the normalization condition

∑n1
i=1 µi =

∑n2
i=1 νi = 1.

The quadratic Wasserstein distance is defined as

W2(µ, ν) =

(
inf
γ

∑
i,j

γi,j d(xi,yj)
2

)1/2

, (2.141)

where γij is the transfer protocol specifying how mass is transported form µ to ν and d(x,y)
is the Euclidean distance in RN .
The transport couplings γij are subject to the conditions:∑

j

γij = µi ∀i ,
∑
i

γij = νj ∀j . (2.142)

In case we deal with multidimensional probability distributions, such as those arising from
dynamical systems, we first have to compute the invariant measures by discretizing the
space with small boxes of side ϵ small and counting the fraction of points lying in those
boxes, giving us the mass weights. The distances are taken as the distances of the centroids
of those cubes. Finally, following [Vissio et al., 2020], we divide Equation 2.141 by the
geometric mean of discretization points

√
n1n2 such that the Wasserstein distance in a m-

dimensional space is bounded by
√
m. Our numerical implementation is based on the work

of G. Peyré, available at the link: https://nbviewer.org/github/gpeyre/numerical-
tours/blob/master/python/optimaltransp_1_linprog.ipynb.

2.11.2 Short Term (Weather) Dynamics: the R2 Score

To asses the performance of our model in reproducing the short term dynamics (Weather)
we compute point-wise accuracy of a ML algorithm as the R2 score between the ground
truth dynamics and reproduced dynamics starting at the same point. This metric asses the
short term predictive power of our model. To do so, R2 scores will be computed only for a
time comparable with the inverse of the largest Lyapunov exponent of the model, because
for larger times trajectories are anyway expected to diverge due to the chaotic dynamics.
R2 score, also known as coefficient of determination, between a target output {yi}i=1,...,d

and a model prediction {ŷi}i=1,...,d, is defined as

R2
[
(yi, ŷi), i = 1, . . . , d

]
:= 1−

∑d
i=1(yi − ŷi)2∑d
i=1(yi − ȳ)2

∈ (−∞, 1] , (2.143)

where ȳ is the mean of target outputs. A perfect score is 1, while a score of 0 means
that the predictor is as good as predicting the mean of the target sequence every time.
We notice that computing the R2 score is more meaningful than simply calculating the
mean square displacement of the prediction from the target, which is the numerator of
Equation 2.143, because it has also to balance the intrinsic variability of the target sequence,
the denominator of Equation 2.143. Therefore a low mean square displacement of the
prediction from the target in a region where the target has a very low variance, is not an
indication of a good prediction. On the other hand, if the model can reproduce the target
with some error and this error is still small compared to the variance of the target in the
region of interest, then the prediction shall be considered good.

https://nbviewer.org/github/gpeyre/numerical-tours/blob/master/python/optimaltransp_1_linprog.ipynb
https://nbviewer.org/github/gpeyre/numerical-tours/blob/master/python/optimaltransp_1_linprog.ipynb


Chapter 3

Machine Learning

3.1 Introduction

In this chapter we will expose the basic Machine Learning theory and the fundamental
architectures. In section 3.2 we encapsulate the learning problem into the realm of Statistical
Learning in the contest of supervised learning. In section 3.3 we will discuss the concept of
Uniform Convergence and its connections with the learning framework. We will proceed by
presenting the Bias-Complexity trade-off in section 3.4, which is essential to understand
the concept of overfitting, and how to pick the best learning algorithm in section 3.5.
In section 3.6 we will discuss the importance of Regularization techniques to reduce the
complexity of networks in order to avoid overfitting. In section 3.7 we start analysing the
most used neural networks architectures, from Multi Layer Perceptron (or Feed-Forward
networks) and we will present the most used training algorithm in section 3.8. Furthermore,
ee will present and give detailed information of Recurrent Neural Networks in section 3.9,
Autoencoders in section 3.10 and Convolutional Neural Networks in section 3.11. We will
then conclcude with a brief exposition on Physics Informed Neural Networks in section 3.12.

3.2 A Formal Learning Framework

Machine Learning is a set of methods that allow computers to "learn" from data. The are
three kind of Machine Learning domains:

• Supervised Learning
Labels are provided to the learning algorithm, such that the task is usually to classify
inputs to have the correct labels.

• Unsupervised Learning
Data are not labelled, the learning algorithm is asked to capture the probability
distribution of data without any human supervision.

• Reinforcement Learning
While in the first two types of learning, the data are provided before the learning
phase and the environment is fixed, in Reinforcement learning framework the learning
algorithm, also known as agent, is asked to learn from the environment by interacting
and modify it and adapt its action according to a reward that is gained for each
action. In this way, the agent is able to find causal relations in data, which would
otherwise be hidden, by actively modify the environment.

While Reinforcement learning is more similar to how human learn and it is a filed of intense
research, it has not achieved the same level of maturity of supervised and unsupervised
learning and most framework are still strongly dependent on human supervision in fine-
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tuning.

Since out goal is to analyse dynamics systems, in this thesis we will focus primarily on
unsupervised learning. We will now state the learning framework in the case of supervised
tasks, which is better formalised and offers many tools to understand the best practices to
make machines learn. We will follow [Shalev-Shwartz and Ben-David, 2014].
In case of unsupervised tasks, in which we do not have a labels set, but we can see the
input dataset itself as the label set and therefore most of the definitions are similar. In
case of sequences, our goal is to predict the next element of the sequence by the current
state. Since element of the sequence are not statistically independent, we have to feed into
the models sequences of length greater than 1 in order to learn the dynamical equations.
However, we may assume that different sequences are statistically independent and this is
approximately true if the sequence lengths are greater that the typical correlation time.
In this case, the label can be consider the same input set and the goal is to minimize the
distance between prediction and true values. In case of autoencoders, as we will see, the
goal is to reconstruct the trajectory and therefore the expected output would be the exact
same sequence fed into the input.

In the next sections, we will develop the basic theory on Statistical Learning, a framework
that allows establish the statistical background that allows machine to learn from the data.
An comprehensive textbook on statistical learning basis is [James et al., 2013]. Standard
book focusing on general Machine Learning are [Bishop, 2006,Murphy, 2013]. While Ma-
chine Learning is referred to any problem that is learnable by computers, especially in the
domain of Neural Networks the state of the art is Deep Learning. Deep Neural Networks
are simply Neural Networks with many layers one after another. The bible reference book
on Deep Learning is [Bengio et al., 2015]. A great review for physicist on deep learning
techniques can be found in [Mehta et al., 2019].

In the basic statistical learning framework, the learner has access to the following elements:

• Domain set X

The set of all points to make predictions about. They can be everything, from images
in case of the famous MNIST dataset [Deng, 2012], to sequences of real features, such
financial data or dynamical system as we are focusing on this thesis.

• Labels set Y

The set of all possible classes in which the domain dataset is divided. In case of
unsupervised learning, notice that we do not have classes, but instead we may think
to the domain set itself as the label set. In case of binary classification, we would
have Y = {0, 1}.

• Training set
A finite sequence of labelled (in case of supervised learning) domain points in X× Y

S = ((x1, y1), (x2, y2), . . . , (xm, ym)). Elements of the training set are often referred
as training samples.

• Prediction rule f̂ : X→ Y

It is the learner’s output, also called hypothesis or classifier. We call A(S) the
hypothesis that a learning algorithm A returns when trained on a training dataset S.

• Data generation model
We assume that instances are generate according to a probability distribution D

over X , which is not known by the learning algorithm. Labelled are supposed to be
generated by a true function f : X→ Y , not known by the learning algorithm, such
that ∀xi ∈ S, yi = f(xi).
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• Measure of success
We define the prediction error of a classifier the probability that it does not predict
the correct label over random generated points according to the above mentioned
distribution:

LD,f (f̂) := Px∼D[f̂(x) ̸= f(x)] , (3.1)

which is often also called generalization error, true loss or true risk and depends on
both the data distribution D and the labelling function f .

3.2.1 Empirical Risk Minimization

The goal of the learning algorithm is to output an algorithm f̂S : X→ Y once it receives
as input a training dataset S generated according to D and labelled with f . Since they
are not directly available to the learner, the generalization error is not calculable. The
fundamental question of Machine Learning is thus: how can a learning algorithm minimize
the true error when it has the availability of only a small fraction of possible data in the
training dataset, which. can be considered a window though the true world? We are in the
so-called Empirical Risk Minimization (ERM) framework.
The answer to this question is not trivial. Since the learner has available only a snapshot
of the real world, it is natural for it to minimize the training error, i.e. the error that the
classifier encounters in the training dataset:

LS(f̂) :=
|{i : f̂(xi) ̸= f(xi), 1 ≤ i ≤ m}

m
=

# wrong predictions

# training samples
. (3.2)

Even if Empirical Risk Minimization is a good strategy, yet it can lead to bad learning
algorithm in real situation. It may happen that the training set is not representative of
true data and therefore the algorithm could perform very well on the training dataset, but
very bad on generalization data: this condition goes under the name of overfitting.
For example, let us suppose to have binary classify the dataset reported in Figure 3.1-(a),
where instances are randomly generated on the square and labelled 0 if lie in the upper
plane and 1 if lie below (red vs blue).

(a) (b)

Figure 3.1: Balanced dataset (a) vs. unbalanced dataset (b) that can lead to overfitting. Figure
taken from the slides of the "Machine Learning" course of the master degree in "Physics of
Data" given by Prof. Pietro Zanuttigh at University of Padua in the a.y. 2021/2022, https:
//elearning.unipd.it/dfa/enrol/index.php?id=1106.

Let us consider the predictor

f̂S(x) =

{
0 if x in left side

1 if x in right side ,
(3.3)

https://elearning.unipd.it/dfa/enrol/index.php?id=1106
https://elearning.unipd.it/dfa/enrol/index.php?id=1106
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applied to the training dataset in Figure 3.1-(b). In this case we would have LS(f̂) = 0,
meaning that the classification would be perfect on the training dataset, but the true error
would be LD,f (f̂) = 1/2, exactly the same as random guess!

This example show it is important to look for the condition under which the learning
algorithm perform well on the training set, then it performs well also on the underlying
data distribution. To do so, it is useful to restrict ERM over a limited search space, called
hypothesis class H. Each f̂ ∈ H is a function mapping X to Y . The restriction on the
hypothesis class is equivalent to make assumption (prior) on the problem at hand. For a
given hypothesis class H and a training set S, the ERM procedure outputs a prediction f̂
that has the lowest possible error over the training datasets, more formally:

ERMH ∈ argmin
f̂∈H

LS(f̂) , (3.4)

since there can be multiple optimal solution, without loss of generality.

3.2.2 Probably Approximate Correct Learning

The question is then become which hypothesis class does not lead to overfitting. Let us
suppose that the hypothesis class is finite, i.e. |H| <∞ and let f̂S the output of ERMH,
i.e. f̂S ∈ argminf̂∈H LS(f̂).
Let us further assume the following two properties:

1. Realizability: there exist f̂∗ ∈ H, such that LD,f (f̂
∗) = 0, i.e. there exist an optimal

solution with zero generalization error.

2. i.i.d.: all samples in the training dataset are identically and independently distributed
accorded to D, i.e. xi ∼ D, ∀ xi ∈ S.

With this two assumption we can only have predictors that are approximately correct with
a certain probability, i.e. Probably Approximate Correct (PAC). The following theorem
holds:

Theorem 4. (PAC learning) Let H be a finite hypothesis class. Let δ ∈ (0, 1), ϵ ∈ (0, 1)
and m ∈ N such that:

m ≥
log

( |H|
δ

)
ϵ

. (3.5)

Then, for any f and any D for which the realizability assumption holds, with probability
≥ 1− δ we have that for every ERM hypothesis f̂S, computed on a training dataset S of
m samples generated i.i.d. according to D, we have:

LD,f (f̂S) ≤ ϵ . (3.6)

The message of the theorem is clear. Issues arise only with critical datasets, for which
LS(f̂) = 0, but LD,f > ϵ. Moreover, if H is a finite hypothesis class, ERM will not lead to
overfitting, if the training dataset is sufficiently big. How big it should be depends on the
grade of accuracy and with which probability we want to get that solution.
The definition of PAC learnability is then:

Definition 3. (PAC learnability) An hypothesis class H is PAC learnable if there exists
a function mH : (0, 1)2 → N and a learning algorithm such that ∀ δ, ϵ ∈ (0, 1), for every
distribution D over X and for every labelling function f : X → Y, if the realizability
assumption holds with respect D,H, f when running an algorithm on m ≥ mH(ϵ, δ) i.i.d
samples generated with D and labelled with f , the algorithm returns an hypothesis f̂ such
that, with probability ≥ 1− δ over the choice of m samples:

LD,f (f̂) ≤ ϵ . (3.7)
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From this definition and the previous Theorem 4, we have the following:

Corollary 1. Every finite hypothesis class H is PAC learnable with sample complexity

mH(ϵ, δ) ≤

⌈
log

( |H|
δ

)
ϵ

⌉
. (3.8)

3.2.3 Agnostic PAC Learning

In practical situations, the realizability assumption, which states the existence, in the
hypothesis class, of perfect learners, is too strong. Besides, it is not realistic to assume the
existence of a true labelling function f and thus we assume that D is now a probability
distribution over X× Y, i.e. z = (x, y) ∼ D. The true risk for classification becomes

LD(f̂) := Pz∼D[f̂(x) ̸= y] . (3.9)

Since again the data generating distribution is not known to the algorithm, the predictor
computes the training error over the training dataset as

L(f̂) =
|{i : f̂(xi) ̸= yi, 1 ≤ i ≤ m}|

m
. (3.10)

The idea of Agnostic PAC learning is drop the requirement of having a perfect predictor,
but not going too far from it:

Definition 4. (Agnostic PAC learning) An hypothesis class H is Agnostic PAC learnable
if there exists a function mH : (0, 1)2 → N and a learning algorithm such that ∀ δ, ϵ ∈ (0, 1)
and for every distribution D over X× Y, when running an algorithm on m ≥ mH(ϵ, δ) i.i.d
samples generated with D, the algorithm returns an hypothesis f̂ such that, with probability
≥ 1− δ over the choice of m samples:

LD(f̂) ≤ min
f̂ ′∈H

LD(f̂
′) + ϵ . (3.11)

3.2.4 Generalized Loss Function

So far we have had in mind the case of binary or multi-class classification, defining the
loss function as the fraction of misclassified samples. However, according to the problem
at hand different loss function are possible. Given an hypothesis class H and a domain
Z = X× Y, a (generalised) loss function is any function l : H × Z→ R+.
The true risk is defined as the expectation value of the loss of an hypothesis H with respect
a distribution D over Z:

LD(f̂) := Ez∼D[l(f̂ , z)] . (3.12)

The predictor is trained to minimize the error over the training dataset S = (z1, z2, . . . , zm):

LS(f̂) :=
1

m

m∑
i=1

l(f̂ , zi) . (3.13)

There are several types of labelling functions and the choice depends on the kind of problem
taken at hand. Sometimes, multiple choices are possible. For multi-class classification,
the natural choice is to use cross entropy loss, even if L2 loss is also possible. In case of
sequences, we make use of L2 loss. The most used loss functions are:

⋄ 0-1 loss
Commonly used in binary or multi-class classification, it is defined as

l0−1(f̂ , (x, y)) =

{
0 if f̂(x) = y

1 if f̂(x) ̸= y .
(3.14)
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⋄ Cross entropy loss
Also used in classification. Loss function reads

lCE(f̂ , (x, y)) := − log f̂(x) , (3.15)

so that the predictor is trained to output a probability distribution condition to
the data to have certain values. It is easy (and we do not report it) to prove that
Cross Entropy minimization is equivalent to Maximum Likelihood Estimation (MLE),
see [Bengio et al., 2015].

⋄ L2 loss
It can be used for regression, but it is generally used for regression and other tasks.
It is defined as:

lL2(f̂ , (x, y)) := |f̂(x)− y|2 . (3.16)

⋄ L1 loss
Used in regression, it penalized small errors:

lL1(f̂ , (x, y) := |f̂(x)− y| . (3.17)

There are of course many more, see [Wang et al., 2022] for a systematic comparison.
With a generalized loss function. the definition of Agnostic PAC learnability becomes:

Definition 5. (General Agnostic PAC learning) An hypothesis class H is Agnostic
PAC learnable respect to a set Z and a loss function l : H × Z → R+, if there exists a
function mH : (0, 1)2 → N and a learning algorithm such that ∀ δ, ϵ ∈ (0, 1) and for every
distribution D over Z, when running an algorithm on m ≥ mH(ϵ, δ) i.i.d samples generated
with D, the algorithm returns an hypothesis f̂ such that, with probability ≥ 1− δ over the
choice of m samples:

LD(f̂) ≤ min
f̂ ′∈H

LD(f̂
′) + ϵ , (3.18)

where LD(f̂) = Ez∼D[l(f̂ , z)].

3.3 Learning from Uniform Convergence

We have seen that a learning algorithm receives as input a training set S, the learning
algorithm evaluate the error of each element of the hypothesis class H and selects the one
with the lowest possible empirical error. The question was under which conditions to asses
if the predictor with the best empirical error minimized also the true error. A sufficient
conditions would be to require that all members of H give a good approximation of the
true risk. It is useful to introduce the concept of ϵ-representativeness.

Definition 6. A training set is called ϵ-representative with respect a domain Z, a hypothesis
class H, a loss function l and a distribution D if

∀ f̂ ∈ H : |LD(f̂)− LS(f̂)| ≤ ϵ . (3.19)

For ϵ/2-representative sets we have the following:

Theorem 5. Let S be a ϵ/2-representative set with respect a domain Z, a hypothesis
class H, a loss function l and a distribution D. Then, any output of ERMH(S), i.e. any
f̂S ∈ argminf̂∈H LS(f̂), satisfies:

LD(f̂S) ≤ min
f̂∈H

LD(f̂) + ϵ . (3.20)
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We are now in position to state the definition of Uniform Convergence.

Definition 7. (Uniform Convergence) An hypothesis class H has the Uniform Conver-
gence property with respect to a set Z and a loss function l : H × Z→ R+, if there exists a
function mUC

H : (0, 1)2 → N such that ∀ δ, ϵ ∈ (0, 1) and for every distribution D over Z, if
S is a set of m ≥ mUC

H (ϵ, δ) i.i.d samples generated from D, then with probability ≥ 1− δ,
S is ϵ-representative.

The connection of Uniform Convergence with PAC learning is expressed by the following

Theorem 6. If a class H has the Uniform Convergence property with a function mUC
H ,

then:

1. The class is Agnostic PAC learnable with sample complexity mH(ϵ, δ) ≤ mUC
H (ϵ/2, δ) .

2. The ERMH paradigm is a successful Agnostic PAC learner for H .

In case of finite hypothesis classes, we can sate the following

Proposition 1. Let H be a finite hypothesis class, Z a domain set and l : H × Z→ [0, 1]
be a loss function. Then:

• H has the Uniform Convergence property with sample complexity

mUC
H (ϵ, δ) ≤

⌈
log

(2|H|
δ

)
2ϵ2

⌉
. (3.21)

• H is agnostic PAC learnable using ERM algorithm with sample complexity

mH(ϵ, δ) ≤ mUC
H (ϵ/2, δ) ≤

⌈
2 log

(2|H|
δ

)
ϵ2

⌉
. (3.22)

3.4 Bias-Complexity Trade-Off

The learning problem was formulated to find a function f̂ , given a training set S and a
loss function l, for which the generalization error LD(f̂) is small. In general, a training
algorithm A that given S produces a good predictor f̂ need two components:

1. A hypothesis class H.

2. A procedure to pick f̂ from H.

Given that, we might ask if there exists an universal learner, i.e. an algorithm A that pre-
dicts the best output f̂ for every distribution D. Moreover, what happens if for hypothesis
class we pick all the function from X to Y?

The two questions are answered by the following theorem and its corollary in case of binary
classification.

Theorem 7. (No-Free Lunch) Let A any algorithm for the task of binary classification
with respect to the 0-1 loss over the domain X. Let m < |X|

2 , representing a training set S.
Then, there exists a distribution D over X× {0, 1} such that:

1. There exists a function f : X→ {0, 1}, such that LD(f) = 0.

2. With probability ≥ 1/7 over the choice of S we have

LD(A(S)) ≥
1

8
. (3.23)
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This means that, roughly speaking, for every ML algorithm there exists a task in which
it fails, even if there is another algorithm that solves it. The key idea, similarly to what
seen in the example of Figure 3.1, is that we do not have information on half of domain, so
that there exists a function that works well on the other half and contradicts our estimated
labels.
In case of infinite domain set, we have the following:

Corollary 2. (No-Free Lunch) Let X an infinite domain set and let H the set of all
functions from X to {0, 1}. Then, H is not PAC learnable.

The demonstration idea is that since X is infinite, |X| > 2m, ∀m.

Therefore, even if in principle the hypothesis class H should be infinite, it is not a good
idea to pick a too big one, because of the risk of overfitting. Let us think at the case of
polynomial regression, in which data are generated with a polynomial of degree two with
some noise and we aim to learn that function by putting a polynomial prior on it, see
Figure 3.2. Our hypothesis class correspond to the degree of polynomial used. If we allow
it to be to large, i.e. we pick infinitely large polynomial degree, we will end up for sure
with overfitting. That is because given n+ 1 points, there a polynomial of grade n fitting
them. In then end, by choosing the hypothesis class too large, we will fit the noise, which
the worst case scenario, even when the true model is simply quadratic.
On the other hand, picking a hypothesis class too small will lead to a poor approximation
probabilities. This problem is expressed as bias-complexity trade-off. H should be chosen in
between to have good approximation (LS small) and generalization (LD small) capabilities.

Figure 3.2: The typical scenario encountered in polynomial regression. By allowing H to be too
large, we seriously risk to learn noise. Figure taken from the slides of the "Machine Learning"
course of the master degree in "Physics of Data" given by Prof. Pietro Zanuttigh at University of
Padua in the a.y. 2021/2022, https://elearning.unipd.it/dfa/enrol/index.php?id=1106.

Given an ERMH hypothesis f̂S , the generalization error, our unknown minimization target,
can be decomposed as

LD(f̂S) = ϵappr + ϵest , (3.24)

where:

• ϵappr = minf̂∈H L(f̂) is the approximation error, which is the minimum true risk
reachable by the predictor in H. It thus depends on H, but not on the training
algorithm S and it is zero when the realizability assumption holds.

• ϵest = LD(f̂S)−minf̂∈H L(f̂) is the estimation error, i.e. the difference between the
true error of ERM and the best error achievable in H. It depends in S and decreases
when the hypothesis class is small.

A visualization of bias-complexity trade-off can be found in Figure 3.3.

https://elearning.unipd.it/dfa/enrol/index.php?id=1106
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Figure 3.3: Illustration of bias-complexity trade-off. The best complexity of the hypothesis class H

should be chosen in between to have a good approximation error (small inductive bias) and a still
small estimation error (low complexity). Figure taken from the slides of the "Machine Learning"
course of the master degree in "Physics of Data" given by Prof. Pietro Zanuttigh at University of
Padua in the a.y. 2021/2022, https://elearning.unipd.it/dfa/enrol/index.php?id=1106.

3.5 Model Selection and Validation

To give a more reliable estimate of the generalization error, it is often used a test dataset,
which must be different from the training dataset. However, we must be careful at not to
look at the final estimate until the final hypothesis is picked. In practical situations, the
training dataset is further divided into a training set and a validation set and the latter is
then used either to pick the best hyper-parameters of an algorithm, or to evaluate the error
during training. Hyper-parameter of the model are those which are not directly trained, but
anyway influence the finale performance. Examples of hyper-parameters are the polynomial
degree in case of polynomial regression, the umber of layers in a Neural Network (on which
we will come back later) and the learning rate of Gradient Descent.
With validation set, the training procedure is then:

1. Select Hyper-parameters values.

2. Train the model on the training dataset.

3. Evaluate the performance on the validation dataset.

4. Repeat from step (1).

5. Pick hyper-parameters combination with the smallest validation error.

6. Evaluate the generalization error of the chosen configuration on the test dataset.

With validation set, the following theorem holds.

Theorem 8. Let V be a validation dataset with mV samples and let f̂ be a predictor, for
example chosen with ERM rule on a hypothesis class H. Then ∀δ ∈ (0, 1), with probability
≥ 1− δ over the choice of V , the validation loss LV (f̂) satisfies:

|LD(f̂)− LV (f̂)| ≤

√
log

(
2
δ

)
2mV

. (3.25)

https://elearning.unipd.it/dfa/enrol/index.php?id=1106
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The use of a validation set on different combinations of hyper-parameters gives us a general
procedure for model selection in case of different candidates in the hypothesis class, that
are in a certain way "augmented" by considering different set of hyper-parameters for each
one of them:

1. For each hyper-parameter set or algorithm, there is a different hypothesis class

Hi = {f̂i1, f̂i2, . . . , f̂iI}, I = |Hi| . (3.26)

2. Train the algorithm in each hypothesis class independently and call f̂ERM
i the optimal

predictor found.

3. Collect the solutions f̂ERM
i on a new super hypothesis class

H′ = {f̂ERM
1 , f̂ERM

2 , . . . , f̂ERM
r } . (3.27)

4. Pick the best predictor in H′ as the one f̂∗ which minimizes the validaition error.

The use of an output predictor set H′ is similar to a case in which the hypothesis class is
not fixed ahead, but depends on the training set. In this case we have:

Proposition 2. Let H′ = {f̂ERM
1 , f̂ERM

2 , . . . , f̂ERM
r } be an arbitrary set of predictors with

loss in [0, 1]. Assume that the validation dataset V , of size mV is sampled independently of
the training set. Then, with probability ≥ 1− δ over the choice of V , we have

|LD(f̂)− LV (f̂)| ≤

√
log

(2|H′|
δ

)
2mV

, ∀f̂ ∈ H′ . (3.28)

The estimate on the true risk is given by the error on the test set, which must not be seen
by the training procedure and so it is no involved in the best predictor f̂∗. The guarantees
thus come from the proposition on LD(f̂

∗) for one class.

K-fold Cross Validation

In case we have a small amount of data, we cannot afford to drop a part of the training dataset
creating a validation set. Therefore, it is useful to perform K-fold Cross Validation [Stone,
1974,Mosteller and Tukey, 1968]. The idea is to divide the training dataset into k folds,
and at each iteration per discard the first fold and perform the training on the remaining
k − 1, using the excluded one as validation set. Then, we discard the second, we perform
the training on the remaining ones and we estimate the error on the selected fold. We
repeat the procedure for all the folds. Finally, the estimate error is the average of the errors
evaluated on each fold. A graphical explanation is given in Figure 3.4.

In this thesis, we will use Cross Validation to perform Hyper-parameter selection using
the Bayesan optimization library [Akiba et al., 2019]. Once the hyper-parameters are
chosen, training will be performed on large datasets using an independent validation dataset
consisting of 20 % of the training samples, which it will be used as an estimation of the
true error. Training is performed either by looking visually to the convergence to a plateau,
or by using Early Stopping [Zhang and Yu, 2005], which consists in stopping training when
the validation error does not improve for a a consecutive number of epochs called patience.

3.6 Regularization

Often Machine Learning models tend to overfit data because are too complex. Let our
hypothesis f̂ be characterized by a parameter vector θ ∈ Rd. In case of neural networks,
the parameters vector includes all weights and all biases of all layers; it is just a short hand
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Figure 3.4: Splitting of the training dataset into k-fold to perform Cross Validation in case of
rare data. Figure taken from the slides of the "Machine Learning" course of the master degree in
"Physics of Data" given by Prof. Pietro Zanuttigh at University of Padua in the a.y. 2021/2022,
https://elearning.unipd.it/dfa/enrol/index.php?id=1106.

notation to easily refer to all of them.
The idea of regularization is to jointly minimize the training error with a function R : Rd → R
of the parameters, which measures in some sense the "complexity" of the model. Therefore,
the regularised ML problem becomes

argmin
θ

(
LS(f̂) +R(θ)

)
. (3.29)

One of the most used regularization techniques in Deep Learning is L2 regularization [Nowlan
and Hinton, 1992,Krogh and Hertz, 1991], also known as Tikhonov regularization, where

R(θ) = λ||θ||2 = λ

d∑
i=1

θ2i , (3.30)

where λ is a parameter controlling the strength of regularization. In Neural Networks, L2
regularization will push weights towards zero, improving stability and statistical efficiency,
being multiplied at each iteration of Stochastic gradient Descent by 1 − λ. That is the
reason why it is also known as weight decay. Another used regularization technique is
L1 [Nowlan and Hinton, 1992], where

R(θ) = λ

d∑
i=1

|θi| , (3.31)

which promotes sparsity instead.
Nowadays, the most used form of regularization of deep networks, among L2, is dropout
[Srivastava et al., 2014], which consists in randomly drop (set to zero) some neurons
according to a probability p, in order to avoid that they "co-adapt" much and that the
output is too dependent on some neuron in particular. Since dropout removes randomly
neurons during training, it practically behaves as L2 regularization because it is all averaged
and it is preferred over it in modern applications. Another regularization used, which
reduces the need for dropout, is Batch Normalization [Ioffe and Szegedy, 2015], that consists
in normalizing batches at each layer and then perform a (learnable) affine transformation
in order to fasten convergence and improve stability.

The importance of weight decay regularization lies in the fact that it makes the al-
gorithm stable with respect small changes on the training data. In this section we
focus on the On-Average-Replace-One-Stable (OAROS) algorithms, based on the re-
placement of one element zi with z′ in the training datasets, i.e. the new dataset
isS(i) = {z1, . . . , zi−1, z

′, zi+1, . . . , zm}.

https://elearning.unipd.it/dfa/enrol/index.php?id=1106
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Definition 8. (OAROS) Let ϵ : N → R a monotonically decreasing function. We say
that a learning algorithm A is On-Average-One-Replace-Stable with rate ϵ(m) if for every
distribution D, we have

E(S,z′)∼Dm+1,i∼U(m)

[
l(A(S(i)), zi)− l(A(S), zi)

]
≤ ϵ(m) , (3.32)

where U(m) is the Uniform distribution over m integers elements.
OAROS stable algorithms do not overfit, due to the following:

Theorem 9. If an algorithm A is OAROS with rate ϵ(m), then:

ES∼Dm

[
LD(A(S))− LS(A(S))

]
≤ ϵ(m) . (3.33)

It can be proved that Tikhonov regularization is a stabiliser for ρ-Lipschitz continuous loss
function.

Definition 9. (Lipschitzness) Let C ∈ Rd. A function f : Rd → Rk is said to be
ρ-Lipschitz over C if ∀θ1,θ2 ∈ C, we have

||f(θ1)− f(θ2)|| ≤ ρ||θ1 − θ2|| . (3.34)

Of course, if f is differentiable and its derivative is bounded by ρ in C, then it is ρ-Lipschity
continuous.

It follows the followeing theorem for convex and ρ-Lipschitz continuous loss functions.

Theorem 10. Assume that the loss function is convex and ρ-Lipschitz continuous. Then,
the regularized ML rule with regularizer λ||θ||2 is OAROS with rate 2ρ

λm . It follows from
Theorem 9 that

ES∼Dm

[
LD(A(S))− LS(A(S))

]
≤ 2ρ

λm
. (3.35)

The consequences are intuitive. On the one hand, the size of the training dataset acts as
regularizer. On the other, also the strength of Tikhonov regularization will lead to not
overfit data.

To see how regularization influence the learning algorithm, let us decompose the true error
into two parts, as:

LD(A(S)) = Ls(A(S)) +
[
LD(A(S))− LS(A(S))

]
, (3.36)

where LS is the training error and the difference LD − LS in square parenthesis controls
measures overfitting, see Figure 3.5.

3.7 Neural Networks

Even if there are several Machine Learning models, spacing from Support Vector Machines
(SVM) [Cortes and Vapnik, 1995] to Random Forests [Breiman, 2001], in this thesis we
focus on deep Neural Network models only, which have become the predominant and most
powerful Machine Learning tools in the last ten years.
Neural Networks have a history much more ancient than people usually think, being the
first model ever published by [Rosenblatt, 1958]. Perceptron neuron loosely resemble a
brain neuron and it was designed to find separating hyperplanes in linearly separable
data. In our brain dendrites bring different output to the neuron body, called soma, which
integrates them to produce an output. If the activation of the neuron is greater than a
certain threshold, the potential action start and the neuron sends its output thorough the
axon. Perceptron is the correspondent artificial of a neuron. It receives some inputs, it
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Figure 3.5: The qualitative impact of the regularization constant λ on training curves. Figure
taken from the slides of the "Machine Learning" course of the master degree in "Physics of
Data" given by Prof. Pietro Zanuttigh at University of Padua in the a.y. 2021/2022, https:
//elearning.unipd.it/dfa/enrol/index.php?id=1106.

Figure 3.6: Schematic view of Perceptron neuron.

sums then together, possibly adding a bias, and then it returns an output after passing the
post-sinaptic signal to an activation function, Figure 3.6.

Perceptron offers good performance on simple datasets, while to deal with more complex
data we had to wait the second Renaissance of Deep Learning in the early 2010s. The
recent improvement Deep Learning models, which are essentially Neural Networks with
many layers, has been driven by the availability of large datasets, for which is more difficult
to encounter overfitting issues, and the improvement of computational power. We will
now present the basic theory regarding neural networks, in particular fully connected ones,
along with the basic function of Stochastic Gradient Descent (SGD) [Robbins and Monro,
1951] and Backpropagation (BackProp) [Rumelhart et al., 1986] to perform training error
minimization. In the next sections, we will take into consideration more advanced models
which will be used later on in this thesis, but for now we focus on standard FeedForward
networks.

FeedForward Neural Networks (FFNN) are essentially built putting together many Percep-
tron neurons to build a layer and many layers one after another. For that reason, they are
also known as Multi Layer Perceptrons (MPL). The first applications date back to 1990s,
but it was only in the last ten years that the started giving impressive performances. A
historical review can be found in [Schmidhuber, 2015].
A FFNN is defined by means of graph G = (V,E) and a function w : E → R, where V are
the neurons of the network, E the edges and w the function that maps the edges to weights

https://elearning.unipd.it/dfa/enrol/index.php?id=1106
https://elearning.unipd.it/dfa/enrol/index.php?id=1106
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in R. The neurons can be seen as the union of R+ 1 disjoint layers as V =
⋃R

r=0 Vr, where
Vr are the dr + 1 neurons in the r-th layer 1. The input layer is V0, while the output is VR.
We indicate the i-th neuron in the r-th layer as v(r)i and therefore in compact homogeneous
notation v(r) = {1, v(r)1 , v

(r)
2 , . . . , v

(r)
dt
}. The activation function of layer r is denoted with

σ(r).

There exists several possible activation functions and the use of one with respect to the
other could depend on the problem at hand. Systematic reviews on the possible activation
functions are [Lederer, 2021] and [Szandała, 2021]. The most common ones are reported in
Figure 3.7.

Figure 3.7: The most used activation functions with graphical visualization.

Another important activation function, which seems to have been introduced in ML
by [Bridle, 1989], is the Softmax:

Softmax
(
aj
)
=

eaj∑
i e

ai
, (3.37)

which is often used in classification problems in the output layer to convert linear activation
in probabilities to learn conditional distributions by mean of Cross Entropy Loss.

The output of a FFNN is computed recursively starting from the first layer by first
multiplying each layer r by the weight matrix w(r+1) (so that it links layer r with layer
r + 1) whose rows are

w
(r+1)
j =

(
w

(r+1)
0,j , w

(r+1)
1,j , . . . , w

(r+1)
dr−1,j

)⊺
, j = 0, 1, . . . , dr . (3.38)

This produces the activation of the next layer a(r+1)
j = w

(r+1)
j · v(r). The activation is then

passe through the activation function to computed the neurons in the next layer as

v
(r+1)
j = σ(r+1)

(
a
(r+1)
j

)
. (3.39)

A typical FFNN is reported in Figure 3.8.

From now on we indicate all the weights and biases of a network with θ and therefore the
Machine Learning ansatz predictor will be denoted with f̂θ. In case of Neural Network,

1We incorporate the bias into a constant neuron to simply the notation, also known as homogeneous
notation.
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Figure 3.8: Typical FFNN with three hidden layers.

the hypothesis class HG,σ becomes its architecture (comprehensive of weights, biases and
activation functions). The forward pass pseudo Algorithm is 1.

Algorithm 1 Forward pass of a standard FFNN.
Input: x = (x1, x2, . . . , xd)

⊺

Output: prediction f̂θ

v(0) = (1, x1, . . . , xd)
⊺

for r=1 to R do
a(r) = (w(r))⊺v(r−1)

v(r) = (1, σ(r+1)
(
a(r)

))⊺
end for

return v(R)

The power of FF Neural Networks, due to strong approximation theorems [Kolmogorov,
1961,Hornik, 1991]. In case of Lipschitz functions, an interesting result is due to [Cybenko,
1989] in case of sigmoid activation function.

Proposition 3. For every fixed ϵ > 0 and every Lipschitz function f : [−1, 1]d → [−1, 1] it
is possible to construct a (FF) Neural Network such that for every input x ∈ [−1, 1]d, the
output of the Neural Network satisfies:

f̂θ(x) ∈ [f(x)− ϵ, f(x) + ϵ] . (3.40)

This beautiful result however comes to a cost on the number of neurons needed, namely:

Proposition 4. Let ϵ ∈ (0, 1) fixed. For every d, let s(d) be the minimum integer such that
there exists a graph G = (E, V ) with |V | = s(d), such that HG,σ, with σ = sigmoid, can
approximate with precision ϵ every 1-Lipschitz function f : [−1, 1]d → [−1, 1]. Then, s(d)
grows exponentially with d.

3.8 Stochastic Gradient Descent and Backpropagation

The aim of learning for a Neural Network is to minimize a cost function, i.e. the training
loss LS(f̂θ) with respect to the parameters θ of the model. In this sense, ML with Neural
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Network can be seen as a parameter regression over a very complex parameter space, which
can be rich of local minima and saddle points and almost never a convex optimization
problem.
Gradient Descent (GD) and its variants are the most important optimization algorithm in
modern Deep Learning, performing surprisingly well in many different tasks. GD is not the
only possibility, though. For example, Boltzmann Machines [Hinton and Ackley, 1985], a
popular unsupervised model often used in Recommendation Systems [Salakhutdinov et al.,
2007], can be trained with GD, but the best performance are obtained with Contrastive
Divergence [Hinton, 2002]. A review on optimization techniques in ML can be found
in [Bottou et al., 2018].
The idea of GD is to update the weights along the direction of maximum variation given
by the gradient of the loss function with respect to the weights, namely Algorithm 2.

Algorithm 2 Gradient Descent

Initialize θ(0)

for t=0 to T-1 do
θ(t+1) = θ(t) − η ∂LS(f̂θ(t) )

∂θ(t) ,
end for

where η is a hyper-parameter controlling the convergence velocity called learning rate.
The algorithm is not stopped until convergence. The parameter initialization is usually
performed with small random number, to improve convergence and break the symmetry of
weights. There are several more sophisticated schemes, such as Xavier (Glorot) [Glorot and
Bengio, 2010] or He [He et al., 2015] initialization methods. A review on various techniques
can be found in [Narkhede et al., 2022].
Computing the entire gradient, i.e. over the entire training dataset at each iteration, is
computationally demanding and therefore it is preferred to perform Stochastic Gradient
Descent (SGD), whose godfathers can be considered [Robbins and Monro, 1951]. Instead
to compute the gradient along the entire dataset, we randomly sample an element vS at
iteration such that its expectation value given the actual weights is the gradients. More
precisely Algorithm 3.

Algorithm 3 Stochastic Gradient Descent

Initialize θ(0)

for t=0 to T-1 do
Choose randomly a vector v(t), such that E(v(t)|θ(t)) =

∂LS(f̂θ(t) )

∂θ(t)

θ(t+1) = θ(t) − ηv(t) ,
end for

A choice for v(t) that satisfies the requirement is

v(t) =
∂l(f̂θ(t) , zi)

∂θ(t)
, (3.41)

where zi = (xi, yi) is uniformly sampled from the training dataset. Its consistency relies
on the fact that the gradient of the loss function l(θ(t), z) is an unbiased estimate of the
gradient of the true risk:

E[v(t)|θ(t)] = Ez∼D[∇l(θ(t), z)] = ∇Ez∼D[l(θ
(t), z)] = ∇LD(θ

(t)) . (3.42)

The advantage of SGD compared to normal GD is certainly the speed. However, it is more
noisy at can lead to local minima, since gradients are computed considering one sample at
a time. Therefore, it is often preferred Mini-Batch Gradient Descent, where the gradient is
average over a set of B samples, called batch size, of the training dataset, being thus half
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way between GD (B = m) and SGD (B = 1).
There several ways to improve stability and speed convergence up. One way could be to
design adapting learning rate schedulers, in which learning rate changes according to a
determined schedule, for example ηt = 1

λt . See for example [Xu et al., 2019], where they
proposed a Reinforcement Learning strategy.
The most used approach nowadays is to make use of momentum, see Figure 3.9. Let us
think at our optimization problem as a ball that runs down the hill made by training loss.
As the ball moves down, it accumulates speed, converging faster towards the minimum. So,
SGD with momentum instead of updating the weights according to the current gradient, it
calculates an average of previous gradients, weighting more the most recent ones, through
moving averages. Gradient is updated as:

v(t) = γv(t−1) + (1− γ)∂LS(f̂θ(t))

∂θ(t)
,

θ(t+1) = θ(t) − ηv(t) .

(3.43)

In this way, the statistical fluctuations of gradient are averaged out and the components
towards the minima are preferred.

Figure 3.9: SGD with or without momentum. Figure taken from https://cedar.buffalo.edu/
~srihari/CSE676.

Another approach is too adapt the learning rate independently for each parameter with
Adagrad, see in [Duchi et al., 2011] also for a systematic review of SGD variants. Improved
versions of Adagrad are Adadelta [Zeiler, 2012] and RMSProp. The most efficient and
more utilized algorithm available nowadays, which adapts learning rate for each parameter
combining Adagrad with momentum, is Adam [Kingma and Ba, 2014]. We refer to [Ruder,
2016] for another review on SGD variants.

So far we have seen algorithms to update the weights of a Neural Network, but how is
this updating performed? Since we have to compute the gradient of the loss function with
respect all the parameters in the network, we have to save all the activation during the
forward phase and then backpropagate the gradients from the last layer to the first using
the chain rule. For this reason the training algorithm is known as Backpropagation. We
now see how it works in case of MLP.
The updating rule of the weight element i, j of layer r, at iteration t is:

w
(r)[t+1]
ij = w

(r)[t]
ij − η ∂LS

∂w
(r)[t]
ij

, (3.44)

where the loss is the average over a mini-batch (Mini-batch GD), a single example (SGD)
or the average over the entire training set (GD).
Let us call δ(r) the gradient of the loss function wit respect to the activation, i.e. δ(r) = ∂LS

∂a(r) .

https://cedar.buffalo.edu/~srihari/CSE676
https://cedar.buffalo.edu/~srihari/CSE676
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By recalling that

a
(r)
j =

dr−1∑
k=0

w
(r)
kj v

(r−1)
k , (3.45)

we have

∂LS

∂w
(r)
ij

=
∂LS

∂a
(r)
j

∂a
(r)
j

w
(r)
ij

= δ
(r)
j

∂

w
(r)
ij

[dr−1∑
k=0

w
(r)
kj v

(r−1)
k

]
= δ

(r)
j v

(r−1)
i ,

δ
(r)
j =

∂LS

∂v
(r)
j

∂v
(r)
j

∂a
(r)
j

=
∂LS

∂v
(r)
j

σ(r)
′(
a
(r)
j

)
.

(3.46)

where
∂LS

∂v
(r)
j

=

dr+1∑
k=0

∂LS

∂a
(r+1)
k

∂a
(r+1)
k

∂v
(r)
j

=

dr+1∑
k=0

w
(r+1)
jk δ

(r+1)
k , (3.47)

and therefore

δ
(r)
j = σ(r)

′(
a
(r)
j

) dr+1∑
k=0

w
(r+1)
jk δ

(r+1)
k . (3.48)

So it. is clear that to compute all the gradient, one has to start from the last layer, where
δ(R) can be compute fro the loss, and then error is backpropagated along the chain as:

v(0) ← v(1) ← v(2) ← · · · ← v(R) . (3.49)

We conclude mentioning some of the many Machine Learning frameworks available nowadays.
For standard model, such as SVM and Random Forests, Sci-kit Learn [Pedregosa et al.,
2011] is still the most popular choice. For Neural Networks, the most common library in
research is Pytorch [Paszke et al., 2019], while Tensorflow/Keras [Abadi et al., 2015,Chollet,
2015] and Theano [Al-Rfou et al., 2016] are mostly used for industrial applications.

3.9 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a kind of networks in which the dependencies of time
series of data a carried through the computational graph. In this way, they are suitable
to analyse temporal series. They have obtained a great success in the field of Natural
Language Processing (NPL) and time series forecasting. Good explanatory works can be
found in [Goodfellow et al., 2016,Sherstinsky, 2020].
While standard machine learning techniques require that the input data are independent
sampling from the same distribution, which then is aimed to be approximated in the
learning phase, recurrent neural networks allow the analysis of data which are correlated,
for example by means of an ordinary differential equation. The typical example, which is
also the framework in which we have been working in this thesis, is given by autonomous
dynamical systems in Equation 2.1.
At time t we feed into the network not only the input vector at time t, but also a hidden
state at previous time ht−1 supposed to carry on the information on the sequence from
previous time-steps. Notice that this hidden state dimension of the feature dimension, but
according to the problems can be smaller, if we want to compress information, or larger if a
small hidden space is not sufficient to correctly reproduce the data. How this hidden state
is computed depends on which information fro the past we want to retrieve. The hidden
state evolves according to a dynamical equation as

ht = g̃(ht−1,xt;θ) , (3.50)
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where xt is the current input and θ are the networks parameters. Notice that the RNN
network itself a dynamical system.
Once the current hidden state is computed from the previous one and the current input
vector of the sequence, the network output is defined to be a function of this hidden state,
whose dimension m can be different from both the input and the hidden state dimension

ŷt = o(ht) . (3.51)

In the language of neural networks, the functions g̃ and o, which map the input to the
hidden state and the hidden state to the output respectively, consist of linear feed-forward
layers . The model equations read, for suitable activation functions σh and σo, as

ht = σh(Wh[ht−1,xt] + bh) ,

ŷt = σo(Woht + bo) ,
(3.52)

where [·, ·] stands for the concatenation of vectors, while W are the weight matrices and b
the bias vectors.

The computational graph and the unfolded version in case of no outputs is shown in
Figure 3.10.

Figure 3.10: The computational graph of a recurrent neural network without outputs. On the left
there is the compact representation, while on the right the unfolded one. Figure taken from [Bengio
et al., 2015].

There are two main advantages of this kind of neural networks:

• The input size is always the same, regardless of the sequence length

• The function g̃ is always the same for every time step, meaning that the parameters
θ are shared through the computational graph, allowing faster training.

In general, the output sequence length Ly does not need to be equal to the input sequence
length Lx, therefore we can distinguish different kind of networks, according to the differences
in the input and output sequence length: many to many, one to many, many to one and so on.

The most common cases are many to many, when Lx = Ly and the network is trained to
predict the next element of a sequence and many to one, in which examples are fed to the
network and only after that a prediction is made. In both cases, it is the hidden vector that
is passed as input in the next step, as well as the next input vector, as show in Figure 3.11.
However, we could also have architectures in which the predicted output is fed as hidden
state in the next step [Goodfellow et al., 2016], but we will not treat them here.

Training is performed by minimizing the discrepancy between the predicted output ŷt and
the ground truth yt. In the context of Natural Language Processing (NPL) for example,
the input vector is a word that has to be translated (after being encoded in a useful
representation through embeddings), while the ground truth is the corresponding translated
word. Since in machine translation words in a phrase do not correspond in different



60 CHAPTER 3. MACHINE LEARNING

(a) a (b) b

Figure 3.11: Two types of recurrent neural networks. Many to many (a), with Lx = Ly and many
to one (b), where Ly. In both cases, the recurrent state h is passed to the next step. Figure taken
from [Bengio et al., 2015].

languages, it is necessary that the predicted sequence (translated phrase) is presented to
the network and only after that the network is run without input in order to reproduce
the translated phrase, which thus does not necessarily have the same number of elements.
On the other hand, in the case of temporal sequences coming from weather forecasting or
financial series, the aim of the network is to predict the next element of the sequence and
therefore the output is computed at each time step and then compared with the next input
element, which becomes the ground truth. Training is minimizing the total loss over time
steps, which is L =

∑Tx
t=1Lt(yt, ŷt) in the case Lx = Ly. If a Mean Square Error (MSE) is

used, the each terms read
Lt(yt, ŷt) = ||yt − ŷt||22 . (3.53)

Stochastic Gradient Descent is performed over batch sample of lengthB, so that by exploiting
the parallel computational power of tensor, tensor of size (B,Lx, N) are fed to the network at
each training step. However, the Backpropagation step called Backpropagation through
time needed to compute gradients cannot run in parallel through time, because it must be
completed sequentially for each time step.
One of the main problem that arises with standard recurrent neural network is that of
vanishing or exploding gradient. Since in order to analyze long sequences Backpropagation
must run very deep in the past, eventually the information coming from the first elements
of the sequence become more and more irrelevant or powerful since its gradient either tends
to diverge or go to zero. Therefore, standard RNN fail to pay sufficient attention to the
first elements of the sequence they are analyzing, making difficult to predict long term
behaviours.
Once training is completed, the network is used to make sequence prediction. By starting
with a initial condition x0, the output of the first prediction will be used as input in the
next step, until a stopping condition is met.
Training can be performed either by feeding the ground truth into the network at every
time steps or using the predicted output as a next input. The first case scenario, called
teacher forcing, the current example will be shown at every time steps, making difficult
to make long previsions, since we use predictions as inputs in the feed-forward phase.On
the other hand, to make better predictions, we could either compute the error after m > 1
forward steps in the training phase, or implement some curriculum strategies [Bengio
et al., 2015].

3.9.1 Reservoir Computers: Echo State Networks

Reservoir computers [Lukoeviius and Jaeger, 2009] originates from an idea born indepen-
dently in two papers [Maass et al., 2002,Jaeger, 2001]. Recent summary reviews can be
found in [Nakajima, 2020,Tanaka et al., 2019]. The key point is to couple a recurrent neural
network with a physical reservoir, usually a large and sparse random matrix, while the
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training is performed only on the last layer through linear regression, possibly with Tikhonov
or noise regularization. In this way, the the dynamics of a lower dimensional system is
mapped into a higher dimensional space on which linear regression perform better, allowing
to training a reduced number of parameters. However, the gaining in performance due to
the fact that only the output layer is trained, makes reservoir networks highly sensitive to
hyper-parameters, being necessary therefore a heavy fine-tuning phase. Different kind of
reservoirs are possible and the power of this kind of networks has been proved in the years
for mechanical [Coulombe et al., 2017,Hauser et al., 2011], memristive [Tran and Teuscher,
2019,Demis et al., 2015,Donahue et al., 2015], spintronic [Torrejon et al., 2017,Nakane et al.,
2018], biological [Jones et al., 2007] and photonic resevoirs [Larger et al., 2012, Smerieri
et al., 2012]. Moreover, reservoir networks have been successfully applied a to dynamical
system in predicting the evolution of the state 5%6 Lyapunov times in certain regions of
the attractor [Pathak et al., 2017], as well as with sparse and random input updates [Fan
et al., 2020], multi deep reservoir trained with Backpropagation [Freiberger et al., 2020]
and multi-variate time series [Bianchi et al., 2018].
At each iteration, the hidden state of the reservoir is update taking into account the previous
hidden state, the current input and the current target output, while the update is performed
through a linear layer applied to the current hidden state, possibly extended with the
current input. While many types or reservoirs are possible, we can choose it to be a large
random square matrix W of dimension nreservoir with fixed spectral radius ρ in analogy
with [Maass et al., 2002,Jaeger, 2001] or an Erdòs-Reny graph consisting only of 0 and 1.
Possibly, we allow the reservoir to be sparse, meaning that a fraction s of connections are
removed. These sparse Reservoir Networks are called Echo State Networks (ESN). Time
is discretized every δt time for continuous systems, while for discrete maps we simply put
δt = 1. The input sequence at time t is denoted with x(t) ∈ Rnin , while we call the output
sequence y(t) ∈ Rnout Reservoir hidden state is update according to

h(t) = tanh
[
W h(t− δt) +Win fin(x(t)) +Wout fout(y(t− δt))

]
+ η , (3.54)

where Win is a nreservoir × nin matrix coupling the input with the reservoir, Wout is a
nreservoir × nout coupling the output with the reservoir and fin, fout are scaling function
acting on input and output respectively, while η is a regularization noise. By inserting also
the wanted output in computed the evolution of the hidden state, we insert also the true
information which then differentiate significantly the training phase from the predictive
one and comes under the name of teacher forcing, allowing during training to "anticipate"
the solution. Here we choose a standard Gaussian noise with zero mean and specified
standard deviation as regularizer, while other authors preferred instead to use Tikhonov
regularization [Tikhonov and Arsenin, 1977], for example [Pathak et al., 2017].
Once the hidden state is update, the output is computed from

ŷ(t) =Wout z(t) , (3.55)

where we extend the hidden state with the input state and therefore

z(t) =

[
h(t)
x(t)

]
. (3.56)

The output matrix Wout, which is thus a nreservoir × nreservoir nin matrix, is optimized
with linear regression as

W ∗
out = (S†D)⊺ , (3.57)

where the symbol † indicates the Moore-Penrose pseudo-inverse [Moore, ,Penrose, ,Bjer-
hammar, 1951]. S is the collection matrix of extended states, meaning the i-th row of S
is z(i δt). In the same manner, D is the collection matrix of desired outputs. Training is
performed by the collection of a dynamics of T seconds, possibly discarding the first 10%
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entries in order get rid of the effects of random initialization. The optimization formula
Equation 3.57 is equivalent to the minimization of the objective function∑

t0≤t≤0

||Wout z(t)− y(t)||2 , (3.58)

where t0 = min(T/10, 100).
On the other, in the case of Tikhonov regularization, which is not considered in this thesis,
the objective function would be∑

t0≤t≤0

||Wout z(t)− y(t)||2 + β ||Wout||2 , (3.59)

where ||Wout||2 is the sum of the squares of the elements of Wout and β > 0 acts as the
regularization constant instead of the variance of the Gaussian noise η.Equation 3.59 can
be solved with standard linear regression techniques [Puntanen, 2010].

Once trained, we want to use our network to make predictions. Instead of filling as input the
true input at each prediction step, we want to feed directly the predict output. Therefore,
in prediction phase the network differ significantly from the training epoch, since no new
information is put into the network.

3.9.2 Long Short Time Memory

Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] networks were first
introduced to limit the problem of exploding/vanishing gradient in long sequences. Instead
of having only information encoding the previous time steps in the hidden state ht, they
have an additional state, called cell state ct which encode the long term information of the
network. Because its ability to analyze deeper sequences, LSTM networks have had a great
success in NLP [Sak et al., 2014], until at least the advent of Transformers [Vaswani et al.,
2017].
How long and short term information are propagated through time depends on a series of
"gates", called forget gate, update gate and output gate.
At each time the network perform different operations:

• Forget gate
The current element of the sequence xt and the previous time step hidden state ht−1

are concatenated and the passed through a linear layer and a sigmoid activation
function σ to determine the forget gate, with elements in [0, 1], which will determine
how much long term information coming from the cell state ct−1 will be forget:

Γf = σ(Wf [ht−1,xt] + bf ) . (3.60)

• Input gate
This gate determines how much information coming from long term dependencies is
worth to be remembered and passed through the next step:

Γu = σ(Wu[ht−1,xt] + bu) . (3.61)

• Proposed cell state
This steps computes the proposed long term information to pass at next step, selecting
relevant features and neglecting less useful ones:

c̃t = tanh(Wc[ht−1,xt] + bc) , (3.62)

where we use the tanh activation function in order to mitigate the impact of bad
components in the next cell state.
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• New cell state
The update cell state at time step t will be a weighted balance between the previous
cell state through the forget gate and the proposed one through the input gate:

ct = Γu. ∗ c̃t + Γfct , (3.63)

where ∗ is the Hadamard product 2

• Output gate
This gate determines the new hidden state and as before is given by a sigmoid
activated linear layer

Γo = σ(Wo[ht−1,xt] + bo) . (3.64)

• New hidden state
The next hidden state is simply the Hadamard product of the output gate with the
new cell state:

ht = Γo ∗ ct , (3.65)

which will then be used to compute the predicted output of the network ŷt at time
step t (e.g. through another learnable linear layer or directly through an activation
function like a softmax in case we want to classify with probabilities).

The complete computational scheme of one block is reported in Figure 3.12.

Figure 3.12: The schematic representation of operation involved in a block of a LSTM network.
Intersecating lines stand for concatenation, while operations to be performed are represented
with circles. Figure taken from https://amr-khalil.medium.com/what-is-long-short-term-
memory-lstm-cdd8c669a73e.

3.10 Autoencoders

Autoencoders are a class of neural networks for unsupervised learning which aim to compress
the data and then reconstruct it minimizing the information loss. They are composed by two
parts: encoder and a decoder. Input data x are fed into the encoder part, which transform

2When dealing with RNNs, we usually work with tensor of shape
(batch_size, sequence_length, feature_dim) and the Hadamard product is simply the element-wise
product between tensors of equal shape.

https://amr-khalil.medium.com/what-is-long-short-term-memory-lstm-cdd8c669a73e
https://amr-khalil.medium.com/what-is-long-short-term-memory-lstm-cdd8c669a73e


64 CHAPTER 3. MACHINE LEARNING

data and return an embedded representation e = E(x), usually living lower dimensional
space called hidden space. The encoded representation is then fed to the decoder, which
tries to reconstruct data by minimizing the loss between input and reconstructed data,
usually given by L2 loss x̂ = D(e) = D(E(x)), as shown in Figure 3.13:

Lrec(θ) = E(|x− x̂|2) . (3.66)

In some applications, however, also a binary cross entropy.
Since we do not use labels, these models go under the class of unsupervised learning
algorithms, which aim to capture the probability distribution of the environment without
having labelled it before and compress the high dimensional features of input data, of which
many of them may be useless, in a low dimensional representation that forces only relevant
information to pass.
Once the Autoencoder is trained, it could be either used to compress input data for
dimensionality reduction or to generate new data starting from samples in the hidden space.
In this sense, it goes under the category of generative models.

Figure 3.13: General structure of an autoencoder. The information is first compressed into a latent
space, also known as hidden space, that carries the relevant information and then reconstructed to
minimized the information loss.

The information compressed, however, should be sufficient to reconstruct the input in the
most precise manner, unless we use some regularization for the encoded space, on which we
will come back later.
The Encoder and Decoder network can be any type of network, from Multi Layer Perceptron
(MLP), Convolutional Networks, LSTMs or Boltzamann Machines. In many applications,
the Decoder is simply the symmetric image of the Encoder network, even though this
requirement is not strictly necessary and the overall structure would learn anyway, even
with more freedom on its parameters.
In case that both the Encoder and the Decoder are MLP (a.k.a. Feed-forward networks),
the Autoencoder would simply perform Principal Component Analysis (PCA) [Pearson,
1901], when the activation functions would be linear. The structure of the Encoder and
the Decoder will depend on the kind of data that we aim to analyse. If we want to find a
lower dimensional codification of images, for example, we would rather use Convolutional
networks, as shown in [Deng, 2012].

In standard autoencoders, the hidden space is not regularized and the networks has only
the constraint to minimize the loss between input and reconstructed samples. This means
that encoded samples in the hidden space can be organized arbitrarily and not in the
needed way. Passing from linearity, when the autoencoder behaves similarly to PCA, to
non linear architectures, an autoencoder becomes more and more powerful eventually being
able to compress data into a hidden space of dimension 1. However, this reconstruction
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power comes at the cost of interpretability and structure of the hidden space. Moreover,
without regularizing the hidden space an autoencoder could in principle bring to zero the
reconstruction loss resulting in overfitting. For example, in the case of MNIST dataset
[Deng, 2012], the Autoencoder cold learn well how to reconstruct images, but their hidden
representation could be very messy. It could happen that two 1s are represented very far
apart, even though we would expect that similar digits are compressed in points close
to each other since they have similar features. On the other hand, it could happen that
between two 1s, we could find a 6 in the hidden representation, meaning that similar
samples do not transform continuously between each other. Therefore, we would need to
regularize the hidden space in order to have:

• Continuity: two close input samples should be compressed into closed point in the
hidden space.

• Completeness: a chosen point in the hidden space should give a meaningful content
once decoded.

Therefore, instead of compress information into single points in the hidden space, we
would better encode information into probability distributions over the encoded space. By
requiring that the encoded probability distributions are independent standard Gaussian,
we build (Gaussian) Variational Autoencoders. The output of the encoder are the mean µ
and the standard deviation σ vectors of the Gaussian of hidden space variables. In order
to build the hidden representation e, we need to sample each component according to a
Gaussian with mean µi and standard deviation σi, ei ∼ N(µi, σi). However, if we sampled
directly e, we could not calculate the gradients since they are determined stochastically.
Instead, we make use of the so-called reparametrization trick, by sampling ϵ according
to a normal Gaussian with zero mean and unitary standard deviation ϵ ∼ N(O, I), then
computing

e = µ+ σ ∗ ϵ , (3.67)

where ∗ is Hadamard element-wise product.
In this way, we can compute gradients and make flow backpropagation through the en-
coder/decoder bottleneck.
The error is the sum of two terms. The first term is given by the reconstruction loss Lrec(θ),
which is again the L2 loss between the reconstructed and the input sample; minimizing it
would push the network to optimize as much as we can the reconstruction capabilities. The
regularization loss is given by the Kullback-Leibler divergence (KL divergence) [Kullback
and Leibler, 1951] between the encoded probability distribution and the target probability
distribution, which in case of Gaussian depends only on the means and standard deviations.
The Kullback-Leibler divergence between distributions P and Q is a pseudo-metric (it is
not symmetric and does not satisfy triangular inequality) measuring the excess of surprise
that we have when approximating Q with P . In case of Gaussian targets, KL divergence
loss is given by

LKL(θ) = −
1

2

denc∑
i=1

[
1 + lnσ2i − µ2i − σ2i

]
. (3.68)

By minimizing the KL divergence between the encoded probability distribution and a
standard Gaussian, we enforce the covariance matrix to be an identity, such that the
encoded samples lie close to each other and overlap as much as possible, satisfying the
requirement of continuity and completeness, as shown schematically in Figure 3.14.

3.11 Convolutional Neural Networks

Convolutional Neural Networks (CNN), first introduced by [LeCun et al., 1989], are
neural networks that employ a convolutional operation instead of standard matrix vector
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Figure 3.14: A schematic view on how KL regularization help to organize the hidden space
in order. Figure taken from https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73.

multiplication used in standard (Feed-Forward) networks [Bengio et al., 2015,Mallat, 2016].
They are the state of the art models for a great variety tasks, such as image classification
with thousands of complex classes [Krizhevsky et al., 2012], speech recognition [Hinton
et al., 2012], biomedical applications [Leung et al., 2014], natural language understanding
[Sutskever et al., 2014] and many other fields.
Let supposed to have a continuous signal x(t), the convolution operation is simply an
integral that weights that signal for different temporal regions according to a weight function
w(t)

s(t) = (x ∗ w)(t) =
∫
x(a) w(t− a) da , (3.69)

which in Fourier space becomes simply the product of the two Fourier transforms. In order
for w to be a valid density function, it should be 0 for all negative arguments in order not
to look at the future statistics and preserve causality. The signal x(t) is often referred as
the input, the weight function w(t) as the kernel and the output as feature map.
In Machine Learning applications, we work with discrete data and so the convolution
operation becomes

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) . (3.70)

The latter formula can be further generalized to multi dimensional inputs, such as images,
as

S(i, j) = (I ∗K)(i, j) =
∑
m,n

I(m,n)K(i−m, j − n) , (3.71)

which satisfy the commutation relation by performing a simple flipping of the kernel

S(i, j) = (K ∗ I)(i, j) =
∑
m,n

I(i−m, j − n)K(m,n) , (3.72)

which is simpler to implement because of the less variation of the indices m,n. However,
usually machine learning libraries implement cross− correlation [Bengio et al., 2015], as
simple as

S(i, j) = (K ∗ I)(i, j) =
∑
m,n

I(i+m, j + n)K(m,n) , (3.73)

which is the same as convolution, but without flipping the kernel. Since then in machine
learning application the kernel filters will be learnable functions, the learned convolution
flipping filter will learn a kernel that is flipped with respect cross correlation, but usually
convolutional networks perform many other operations to extract features from data and
therefore it is not relevant which of the two is used and we will reference both as convolution,
following [Bengio et al., 2015].
Usually, indexes run over a restricted set of possibilities in order to capture local information

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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of the so-called receptive fields, which may be defined as the input neurons that determine
the output of a given neuron in the next layer. In case that we have an image, we might
expect that the pixels are correlated in a small range and so the kernel filters would be
small (compared to the size of the image) rectangles of sides m,n. This property goes
under the name of sparse interaction and it is useful to detect small properties, like tiny
edges, of an image, which may have thousands of pixels, helping to reduce memory storage
and improve statistical efficiency. Therefore these filters are usually (much) smaller than
input. Of course, we might apply different kernels to the same image in order to extract
different information and thus have multiple channels.
Roughly speaking, a kernel is simply a (learnable) matrix that that "slides" along the input
in its different dimension, each pixel of the window "covered" by the kernel is multiplied
by the corresponding image pixel and all are summed together, possibly adding a bias, to
give the pixel output. Due to convolution, the resulting image is shrinked with respect to
the original one, as shown in Figure 3.15. Doing so, pixels near the edges of the images
will count less with respect central pixels, since they will have a weight in less pixels of the
output. Therefore, it is often useful to extend the input on the border by adding some
padding pixels, consisting of 0s. In this way, border pixels will have a greater impact on the
final output, which will be at the same time less shrinked.
The way in which kernels are move across the input in the various direction is another
control parameter that goes under the name of stride. For example, if the stride of the
convolutional filter is (1, 2) it means that the kernel moves of one step at each time on the
x direction, and of 2 at the y direction.
In the end, dimensionality reduction of a Hin ×Win image after applying a convolutional
filter will be

Hout =
Hin + 2× padding[0]− dilation[0]× (kernel[0]− 1)− 1

stride[0]
+ 1 ,

Wout =
Win + 2× padding[1]− dilation[1]× (kernel[1]− 1)− 1

stride[1]
+ 1 ,

(3.74)

where dilation is another hyper-parameter controlling the spacing between kernels.

Let us come back to the image example and try to see better how convolution there works
in order to extract spatial information. If we wanted to analyze pictures by using standard
Feed-Forward neural networks, we would need to flatten the input. However, in this way
we would loose all the information coming from the fact that some pixels are "near" to
others and therefore might be correlated (the same reasoning apply to time series, in which
the "image" would simply be the sequence length times the number of features). Instead,
convolution use the information coming from the proximity of some pixel to the other on
order to useful classification for other tasks, such recognizing edges efficiently, as shown in
Figure 3.16.

Another important aspect of convolutional networks is parameter sharing. In standard Feed
Forward networks, each layer is multiplied by a weight matrix and thus each element of the
matrix is used only one time when computing the output. On the other hand, convolutional
networks have filters that run over the entire image and thus they are reused at every
position of the input, trying to detect the same patters in different parts of the input.
Moreover, the use of the same parameters reduce the memory storage and the statistical
efficiency, even though it does not gain computational speed.
Convolutional networks are also characterized by equivariance to translation, meaning that
the output change in the same way as the input. A function f(x) is equivariant to a function
g(x) if f(g(x)) = g(f(x)). For example if I is the function measuring the image brightness
at each integer coordinate and g a generic image mapping function, such that I ′ = g(I)
with I ′(i, j) = I(i− 1, j), meaning that shift each pixel of I one unit to the right. In this
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Figure 3.15: An example of application of a 2× 2 convolutional filter to a 3× 4 images without
flipping. We notice how the kernel. slides across the input image, being the resulting output pixels
the sum of the element-wise product of the kernel matrix with the window currently "observed" by
the kernel. The figure is taken from [Bengio et al., 2015].

Figure 3.16: The figure is made by subtracting to each pixel of the left picture its neighbouring left
pixel, thus applying the convolutional filter [−1, 1], making evident the impact of vertical oriented
edges. Figure taken from [Bengio et al., 2015].

case equivariance to translation means that if we applied this transformation to I, then
applying the convolution, the result would be the same as first applying the convolution to
I ′ and then transformation g to the output. Convolution build a map showing where certain
features appear in the input. If the input is translated, then the convolution output map
will be translated of the same amount. However, convolution is not naturally equivariant
to other kind of transformation, such as rotation or dilation and therefore other means of
data handling are required.
Usually, a convolutional layer can be seen as a more complex layer performing other opera-
tions. The first of course is a set of convolution filters applied in parallel to get a linear
activation. The linear activation is then passed to a non-linear activation function, such
as the Rectified Linear Unit (ReLU), in a process also known as detector stage. The last
process is to apply a pooling layer.
A pooling operation simply replies the output with a summary statistics of the nearby
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outputs. A commonly used layer is maxpool, in which the output is replaced with the
maximum output in a rectangular window centered in the output [Zhou and Chellappa,
1988]. Another popular choice is average pooling, in which the output is replaced with
the average of nearby outputs. A theoretical work guiding on the usage of different kind
of pooling can be found in [Boureau et al., 2010]. In both cases, the final result is further
shrinked with respect to the original input, again reducing memory requirements and
computational power. Moreover, pooling layers act as noise suppressing.
In all cases, pooling makes the representation approximately invariant with respect transla-
tion, because we sometimes are more interested in the presence of some feature and not
maybe exactly where this feature appear in the input. When detecting eyes, for example,
we do not need to know exactly where to find an eye, but we may want only to know that
there is an eye in the upper left side of the image and another in the upper right part.
The pooling operation can be seen as putting a strong prior on the fact that learned
functions must be invariant to translation of the input, thus improving statistical efficiency.
But this is not limited to spatial translations, which arise when we pool over spatial regions.
Indeed, if we perform pooling over the outputs of different convolutional filters, the features
can learn to which transformation to be invariant to.

As we have seen, convolutional layers, seen as complex layers with many operations
(convolutional filters, non-linear activations and pooling) are very efficient in extracting local
information, learn invariant features, reducing memory storage and increasing statistical
efficiency. Standard convolutional networks are composed by many of these complex layers,
in order to learn different features at different depth levels. For example, if we want to
classify complex images coming from real worlds, such as planes, trees, cars etc., we might
need to detect vertical or horizontal edges in the deepest layers, while the surface one may be
learning more complex features, such as the presence of wheels, useful to tell apart vehicles
for examples, or plane wings. Therefore, after convolutional layers it is common practice
to insert fully connected layer in order to learn high level functions helping classifying the
various classes. In this case, having various classes the common choice would be to apply
a softmax activation in the last layer in order to make the network output probabilities
and then use cross-entropy loss as loss function. In this case, a trained network would
output the probability that a given input belong to the different possible classes. A typical
example of full convolutional network for classification is reported Figure 3.17.

Figure 3.17: A typical convolutional networks used to classify one channel inputs into 5
classes, consisting of one convolutional layer, max pooling and 2 fully connected classifica-
tion layers. Figure taken from https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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3.12 Physics Informed Neural Networks

We briefly describe Physical Informed Neural Networks (PINN) [Raissi et al., 2019,Zhang
et al., 2020], a kind of networks designed to solve a general partial differential equation
by using also the physical information that comes with the model. In this way, PINNs
can approximate a generic function by exploiting the approximation power of neural
networks [Kolmogorov, 1961, Hornik, 1991] and the computational tools for automatic
derivation [Baydin et al., 2017] using the prior knowledge directly available with the
equation that one wants to solve, such the partial differential equation constraint, boundary
loss, initial condition loss etc.
Let us consider a general partial differential equation of the function u(x, t), depending on
time and position:

∂u(x, t)

∂t
+N(u, λ) = 0 , x ∈ Ω, t ∈ [0, T ] ,

u(x, 0) = h(x) , x ∈ Ω ,

u(x, t) = g(x, t) , x ∈ ∂Ω, t ∈ [0, T ] ,

(3.75)

where Ω ⊂ RD and N is a generic differential operators acting on u, the true hidden
solution of the problem, and depending parametrically on λ, which can be a generic vector
of parameters. Equation 3.75 encapsulate many problems from physic and mathematics,
like the Schrödinger equation and Navier-Stockes equation. For example, in the case of
Shcrödinger equation, we would simply have N(u, λ) = i

ℏĤu, where u is the wave function
and Ĥ the Hamiltonian operator.
Let us suppose to build a neural network that aims to approximate the true hidden solution
u(x, t) with its output fθ(x, t), which depends parametrically by θ, the network’s parameters.
Let us define the residual function

rθ(x, t) ≡
∂fθ(x, t)

∂t
+N(fθ(x, t), λ) , (3.76)

where derivatives with respect to space and temporal coordinates an be computed with high
precision using automatic differentiation techniques available with modern deep learning
softwares [Baydin et al., 2017].
Trained is performed with Stochastic Gradient Descent by minimizing the composite loss
function

L(θ) ≡ Lr(θ) +
∑
i

λiLi(θ) , (3.77)

where the residual loss is computed as

Lr(θ) =
1

Nr

Nr∑
i=1

rθ(xi, ti)
2 , (3.78)

for a set of collocation points {(xi, ti);0}Nr
i=1 placed randomly inside the domain Ω.

The terms Li(θ), which are weighted for certain factors λi, can have different nature, like
they can be boundary loss, initial condition loss or training loss if we had also example of
the true hidden solution to show to the network. In the case of a initial condition problem
with only physical driven loss, we would have two terms

Lub
=

1

Nb

Nb∑
i=1

(fθ(x
b
i , t

b
i)− gbi )2 ,

Lu0 =
1

N0

N0∑
i=1

(fθ(x
0
i , 0)− h0i )2 ,

(3.79)

for a set {x0
i , h

0
i }

N0
i=1 of initial points and {xb

i , g
b
i}

Nb
i=1 of boundary points.



Chapter 4

Experiments

4.1 Introduction

In this chapter we perform several experiments with Machine Learning techniques applied
to the paradigmatic models of [Lorenz, 1963], [Rössler, 1976] and [Lorenz, 1995].
In section 4.2 we will make use of LSTM, ESN and Feed-Forward neural networks to learn
the dynamics of low dimensional systems, i.e. [Lorenz, 1963] and [Rössler, 1976] by using
a purely Data-Driven and a Physics-Informed loss. We will assess the performance of
the model in Weather and Climate reconstruction against the ground truth given by an
independent test dataset, thus trying to answer to question 1 and 2 of section 1.2. At the
end of the section, we will also try to infer the model parameters with the Physics Informed
kind loss, but without getting good results. In any case, we will see that the best model
to reconstruct both the Weather and the Climate are LSTM, even though results are a
little bit worse for [Rössler, 1976] system, which is notoriously difficult due to the rare and
random jumps that x(3) undergoes. For both models analysed with LSTM, we assist to a
decisive improvement when using optimized hyper-parameters and the Physics Informed
loss. In case of ESN, we will get always worse results, being the model able to reconstruct
both Weather and Climate only using sparse Random Matrices and only for Lorenz 96.
The use of Erdos-Reny graphs worsen the performance.
In section 4.3 we will try to address to the 3rd question in section 1.2 by learning the
parameters of Lorenz 63 and Rössler 76 with regularized Convolutional and Feed-Forward
Autoencoders. Single dynamics (single model parameters combinations) will be fed to the
architectures and the regularization loss will be wither purely Data-Driven (i.e. pretending
to know the true parameters) or Physics-Informed (i.e. relying only on the dynamical
equations). However, the results are worse for Physics-Informed loss kind.
Finally, in section 4.4 we will change prospective in addressing question 3 of section 1.2,
by trying to learn the forcing of [Lorenz, 1995] in a completely unsupervised way by
feeding to Convolutional Networks not dynamics inputs, but directly images with varying
forcing. We will see that the model is able to capture the chaotic phase transition for
both layer normalized and non-normalized inputs. However, experiments with Variational
Autoencoders did not give any result and so we decided not to show them.
The supporting figures are reported in Appendix A.
All the models that we will present are trained either on a home computer or on the free
Google Colab account. For practical reasons, considered the number of models trained and
the many experiments that were performed, we could train for a maximum of 2%3 hours
each model, paying however attention to make the loss to reach a plateau.
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4.2 Dynamics Reconstruction

4.2.1 Problem Statement and Datasets Specification

In this section, we explore the power of neural networks to replicate the dynamics of Lorenz
63 [Lorenz, 1963] and [Rössler, 1976] systems. The models are given by the set of ordinary
differential equations in Equation 2.43 and Equation 2.24. As already mentioned, by the
standard choice of the parameters (σ = 28, ρ = 10, β = 8/3) and (a = 0.37, b = 0.2, c = 5.7)
the systems exhibits chaotic behaviour, meaning that two trajectories that starts with
very tiny different initial conditions will eventually be very distant apart. In other terms,
at least one of the Lyapunov exponents, defined as the exponential growth rate of small
perturbations, is positive. Moreover, in this setting both systems are dissipative and
have a strange attractor of fractal dimension. More generally, let us consider to have and
autonomous dynamical system, defined by the differential equation

ẋt = g(xt) , (4.1)

where x ∈ RN and g : RN → RN is the evolution function. Given an initial condition
x0 ∈ RN , we define the flow of the system as f : R→ RN , returning the trajectory point at
time t that started at x0 at time 0. Therefore we indicate trajectories as the set of points
{f t(x0) : t ∈ R≥0}.
It has already been proved that recurrent neural networks, in like Reservoir Networks [Pathak
et al., 2017], can effectively replicate the short term dynamics (weather) of the systems
much further than the time scale given by the inverse of the largest Lyapunov exponent
and the long term dynamics (climate).
We design a network f̂θ that will be trained to replicate the time step integrator

xt+δt = xt +

∫ t+δt

t
g(xτ ) dτ (4.2)

as x̂i+1 = f̂θ(xi), where xi ≡ x(iδt).
First, we numerically integrate the systems Equation 2.43 and Equation 2.24 to build train,
test and validation datasets, as specified in Table 4.1. We also build a optimization datasets
which will be used later to perform hyperparameter optimization.

δt Train Validation Test Optimization Discarded
0.002 100000 20000 100000 5000 5000

Table 4.1: Dataset specification

Train, validation and optimization datasets are generated starting from a random point
and neglecting the first 5000 entries, while test datasets is generated starting from the last
point of the training dataset 1.
Loss is simply the L2 between the predicted output and the true state:

L(θ) = E
(
||xi+1 − f̂θ(xi)||2

)
, (4.3)

where averages are done over sequences and batches.

For models trainable with SGD, training is performed with Adam optimizer [Kingma and
Ba, 2014] until convergence, which is evaluated with Early Stopping [Zhang and Yu, 2005]
with patience of either 100 or 200 iterations. For Echo State Networks, training is performed
as specified in subsection 3.9.1.

1This is done to better analyze Reservoir Networks, which require a continuation state. However, it
does not change anything for the other models, since trajectories are still attractors.
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To assess the performances of our models, we compute the Wasserstein Distance (WD)
of the 2d projections between the reproduced dynamic and the test dataset for the long
term dynamics, while to asses the performance in short term, we compute the R2 scores
(see section 2.11) between the predicted dynamics and the test dataset for 500 time steps,
i.e. t = 1 for the Lorenz 63 system and for 2500 steps (t = 5) for Rössler 76, which are
the typical times dictated by the inverse of the first Lyapunov exponents. This is done by
sliding a window along the predicted dynamics by starting the prediction every 10 steps in
order to computed the computational time, which takes about ≈ 6 minutes for Lorenz 63
and ≈ 50 minutes for Rössler 76.

We conclude remarking that the training phase significantly differ from the prediction phase,
because of teacher forcing. In all the model that we will explore, during training batches of
sequences long from 1 to 2500 time steps are fed into the network at each iteration, and all
are randomly sampled from the training dataset. The network is trained to predict only
the next step, in case it acts an integrator, or the evolution function at that time step. On
the other hand, in the prediction phase, the output is fed into the input in the next time
step, starting from the last point of the training dataset.

4.2.2 LSTM

LSTM have achieved great results in sentiment analysis [Murthy et al., 2020] and natural
language processing [Wang and Jiang, 2016], even if we are only aware of applications to
dynamical systems in [Vlachas et al., 2018], [Barzegar et al., 2022] and [Yeo and Melnyk,
2019].
In this thesis, we first build a LSTM (see subsection 3.9.2) with standard configuration for
both Equation 2.43 and Equation 2.24 systems, as specified in Table 4.2. We came up with
this architecture after several trials of manual fine-tuning of the hyper-parameters. We
refer at this architectures as Standard models. We notice that at least 2 LSTM layers are
needed to replicate correctly the dynamics, but with more we do not increase sufficiently
the performance to justify the computational cost. In line with reservoir networks, the
recurrent dimension of the LSTM layers must be chosen much higher than the dimension
of the dynamics, in order to properly embed the system [Takens, 1979]. Here we choose
100 hidden units. We prefer Dropout with probability p = 0.3 as regularizer [Srivastava
et al., 2014], instead of L2 regularization [Krogh and Hertz, 1991] and [Nowlan and Hinton,
1992], following the latest trend in Deep Learning community. However, we have also tried
also experiments with a standard weight decay of 0.1, but gaining worse results than using
dropout.

Hidden units Number of layers Dropout Sequence length
LSTM 100 2 0.3 500

Table 4.2: LSTM standard architectures.

For each train epoch, the network is fed with input tensors x of size (B,S,N), where
we choose the batch size B = 20, the sequence length of S = 500, while N = 3 is the
dimension of the system. We choose 500 time steps because is at the order of magnitude
of the fisrt Lyapunov time, defined as the inverse of the greatest Lyapunov exponent 2,
which is the time at which we expect to observe a chaotic behaviour. The statistical results
are reported in Table 4.3, while losses in Figure A.4 in Appendix A. We report also the
predicted attractors colored with Local Lyapunov Exponents (LLE) in Figure 4.1 and the
distribution of LLE computed from the dynamics in Figure A.1. Lorenz return map is shown
in Figure 4.2. Examples of short reconstructed trajectories are reported in Figure A.5.

From Figure 4.1 we can see that LSTM succeed in reproducing the attractor for both Lorenz

2Remember that λ1 ≈ 0.9 for Lorenz 63 and ≈ 0.2 for Rössler system.
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System Lorenz 63 Rössler 76

WD (·10−4)
x(1) − x(2) 25.8919 49.9143
x(1) − x(3) 27.65010 28.3855
x(2) − x(3) 18.2429 32.5581

R2

x(1) 0.24 ± 1.89 0.74 ± 0.26
x(2) 0.31 ± 1.41 0.65 ± 0.37
x(3) 0.63 ± 0.69 -24 ± 190
< 0 14.24 % 17.47 %

Table 4.3: Statistics of standard LSTM models. We report the Wasserstein Distance (WD) of the
2d projections of the invariant measure against the test dataset, the R2 scores for the short term
dynamics along with the global percentage of those smaller than zero, see text.
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Figure 4.1: Standard LSTM models. Predicted attractor colored with Local Lyapunov Exponents.

(a) Lorenz 63 (b) Rössler 76

Figure 4.2: Standard LSTM. Lorenz return map of maxima of x(3) for Lorenz 63 (a) and Rössler 76
(b). Values computed from test dataset are shown in orange, while the LSTM results are shown in
blue. The dashed line is the principal diagonal.

and Rössler systems. From Table 4.3 we see that the long term dynamics is better replicated
for Lorenz 63, while the R2 scores are better for Rössler 76 in the first two variables (x(1)

and x(2)). The networks evidently fail to reproduce the short term behaviour of x(3) for
Rössler 76. This model is notoriously difficult, due to the very erratic and unpredictable
"jumps" on the plane x(3) that Equation 2.24 undergoes. However, in both models the
percentage of R2 scores below zero, which correspond to very bad predictive performance,
are relatively small. From Figure 4.2 we can appreciate that the chaotic behaviour of x(3)

encoded is correctly reproduced for Lorenz 63, but not quite well for Rössler 76.

Hyper-Parameters Optimization

We perform a Bayesan optimization procedure with Optuna [Akiba et al., 2019]. We make
use of a independently generated dataset of 5000, see items Table 4.1, corresponding to
a dynamics of 10 seconds (δt = 0.002). The optimization target are the learning rate of
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Adam optimizer [Kingma and Ba, 2014] and the sequence length with which dataset is
divided. Since the dataset is small, at each epoch we split the dataset into 3 folds and thus
conduct a 3-fold cross-validation [Stone, 1974,Mosteller and Tukey, 1968], see section 3.5,
for 2000 epochs with Early Stopping [Zhang and Yu, 2005] with patience of 100 epochs.
Found hyper-parameters are reported in Table 4.4, while the parallel coordinate plot is
reported in Appendix A in Figure A.6. Training losses are in Figure A.4 in Appendix A.
The other hyper-parameters is the same as reported in Table 4.2. As done before, we report
the Wassersetein Distance (WD)and the R2 scores (see section 2.11) in Table 4.5. Again, we
report the reproduced attractors colored with Local Lyapunov exponents in Figure 4.3 and
the complete distribution of predicted LLE from the reproduced dynamics in Figure A.2.
Lorenz return map is shown in Figure 4.4. Examples of short reconstructed trajectories are
reported in Figure A.5.

System Lorenz 63 Rössler 76
Learning rate 0.00036 0.0018

Sequence length 117 893

Table 4.4: Best hyper-parameters found for LSTM.

System Lorenz 63 Rössler 76

WD(·10−4)
x(1) − x(2) 8.3805 31.38937
x(1) − x(3) 11.6156 17.53575
x(2) − x(3) 9.5591 20.0740

R2

x(1) 0.81 ± 0.81 0.85 ± 0.27
x(2) 0.77 ± 0.83 0.76 ± 0.38
x(3) 0.89 ± 0.29 -47 ± 216
< 0 3.76 % 11.55 %

Table 4.5: Statistics of optimized LSTM models. We report the Wasserstein Distance (WD) of the
2d projections of the invariant measure against the test dataset, the R2 scores for the short term
dynamics along with the global percentage of those smaller than zero, see text.
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Figure 4.3: Optimized LSTM models. Predicted attractor colored with Local Lyapunov Exponents.

Also for the optimized LSTM models, as we expect, we successfully succeed in replication
the chaotic attractor of both the model taken into consideration, as it is evident from
Figure 4.3. Comparing Table 4.5 with Table 4.3, we can appreciate the better performance
of the optimized LSTM models. We can see that for both models, the Wasserstein Distances
decrease, symptom that the Climate is better replicated, but also the R2 scores (along
with the percentage of scores below zero) are significantly better. This is expected, but
also surprising in a certain measure, because the optimization procedure was 1) done on
a very small dataset, in which the chaotic properties of the system could not evidently
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(a) Lorenz 63 (b) Rössler 76

Figure 4.4: Optimized LSTM. Lorenz return map of maxima of x(3) for Lorenz 63 (a) and Rössler
76 (b). Values computed from test dataset are shown in orange, while the LSTM results are shown
in blue. The dashed line is the principal diagonal.

emerge) and 2) the target of the optimization is the L2 losses between the true and the
replicated trajectories of a given length. Indeed, as we can see from the optimized value of
these lengths in Table 4.4, we can notice that the best value for Lorenz 63 is well below the
typical chaotic time scale (≈ 1), while for Rössler it increases. In both cases, the fraction
between the found value and the chaotic time scale is significantly greater than 1, which is
a symptom that the LSTM internally encode somehow the dynamics of the systems and
thus require less time steps to be fed of, being able to replicate the Climate as well. In line
with this, we can notice from Figure 4.4 that the return map is successfully reproduced for
Lorenz 63, but again not quite well for Rössler 76.

Physics Informed Loss

In this section, we analyse the case in which the network is trained to learn the evolution
function g if the dynamical system in Equation 2.1, similarly to what done by [Raissi et al.,
2018] and loosely resembling Physics Informed Networks [Raissi et al., 2019]. The loss is
thus

L(θ) = E(||RK4[g(xt)]−RK4[ĝθ(xt)]||) , (4.4)

where g(xt) is the true evolution function evaluated on the training sample, while ĝθ(xt) is
the neural network ansatz. In both cases, the Runge-Kutta 4 (RK4) operator acts as

k1 = ĝθ(xt) ,

k2 = ĝθ(xt + δt k1/2) ,

k3 = ĝθ(xt + δt k2/2) ,

k4 = ĝθ(xt + δt k3) ,

RK4[ĝθ(xt)] = (k1 + 2k2 + 2k3 + k4)/6 .

(4.5)

The latter Equation 4.5 operator can be directly substituted by a residual network, as done
by [Fablet et al., 2018].

Training is performed again with Adam optimizer [Kingma and Ba, 2014] with learning
rate 0.001. The dataset is the same as before in Table 4.1. We compare LSTM and
Feed-Forward. Results for the latter model are reported only for Lorenz 63, because we did
not succeed in obtaining any good result to show for Rössler 76 with Feed-Forward networks.

However, we point out that this is not the canonical Physics Informed Neural Network
(PINN), since they are usually trained by only relying on the dynamical equations and not
see data. Our approach only resemble PINN because we make use of the true evolution
function. However, a true PINN would learn the dynamical equation by only having the
time as input, thus learning the map t→ xt of the dynamical system.
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We build a LSTM model equal to the standard case analyses in the previous sections, i.e.
Table 4.2. Statistical results are reported in Table 4.6, reproduced attractor colored with
Local Laypunov Exponents (LLEs) in Figure 4.5, while Figure 4.6 the return maps for
the maxima of x(3). Losses are reported in the last row of Figure A.4, while the complete
distribution of LLE is reported in Figure A.3.

System Lorenz 63 Rössler 76

WD(·10−4)
x(1) − x(2) 6.6412 21.2067
x(1) − x(3) 7.5863 11.4657
x(2) − x(3) 5.5518 13.2375

R2

x(1) 0.85 ± 0.55 0.9945 ± 0.0095
x(2) 0.80 ± 0.64 0.992 ± 0.021
x(3) 0.90 ± 0.25 0.95 ± 0.10
< 0 3.32 % 0.06 %

Table 4.6: Physics Informed LSTM models statistics. We report the Wasserstein Distance (WD) of
the 2d projections of the invariant measure against the test dataset, the R2 scores for the short
term dynamics along with the global percentage of those smaller than zero, see text.
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Figure 4.5: Physics Informed LSTM models. Predicted attractor colored with Local Lyapunov
Exponents.

(a) Lorenz 63 (b) Rössler 76

Figure 4.6: Physics Informed LSTM. Lorenz return map of maxima of x(3) for Lorenz 63 (a) and
Rössler 76 (b). Values computed from test dataset are shown in orange, while the LSTM results
are shown in blue. The dashed line is the principal diagonal.

By comparing Table 4.6 with the Standards (Table 4.3) and Optimized (Table 4.5) LSTM
models with purely Data-Driven loss, we can appreciate the better results for both Equa-
tion 2.43 and Equation 2.24. Not only the model with Physics Informed loss is able
to perform better than the corresponding architecture trained with data-driven loss in
Equation 4.3, but also better than the optimized data-driven model, in both the long term
dynamics (expressed by the Wasserstein Distances), but also for the short term dynamics
in the chaotic time scale (R2 scores). Moreover, we can also see how the return map in
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Figure 4.6 is better replicated. Examples of short reconstructed trajectories are reported in
Figure A.5.

Models Parameters Physics Informed Learning

PINNs can be either used to learn a dynamical equations (more often PDEs) as well as the
parameters of such equations, see [Raissi et al., 2019]. This is known as the inverse problem.
Inspired by this, we try to infer the parameters of Lorenz 63 model by using our Physics
Informed loss kind of Equation 4.4, by adding these parameters in the computational graph
of the Networks and thus allowing Backpropagation to update them too. However, after
some trials the model did not converge as show in Figure 4.7.

Figure 4.7: Physics Informed learning of the dynamics and parameters of Lorenz 63 system. The
architecture is the same as Table 4.2 and the loss is Equation 4.4. We can see that the parameters
loss (L2 loss between learned and true parameters) converges but not to 0.

4.2.3 Echo State Networks

In this section, we study the dynamics reproductive power of Echo State Networks (ESN),
see subsection 3.9.1. Our architecture is slightly different from that used by [Pathak et al.,
2017], which can be considered the pioneer in studying the possibility of chaotic dynamics
reconstruction with Recurrent Networks. First, [Pathak et al., 2017] did feed the teacher
forcing into the recurrent Equation 3.54. Secondly, regularization is done with Tikhonov
procedure like Equation 3.59, while instead we prefer to add some noise, and the prediction
output is not computed by extending the hidden state with the input. Moreover, [Ott,
2002] introduced an affine transformation to the recurrent state before applying the output
matrix to take into account the x → −x, y → −y symmetry of Lorenz 63, as discussed
in [Lu et al., 2017]. Since this transformation is specifically designed to account for a
symmetry in a specified model, we do not use it in order to compare different models with
the same architecture. We leave this to further works.
In this thesis, we focus on the impact of sparsity in ESN and we analyze the case in which
the recurrent matrix W is substituted with an Erdos-Reny graph, i.e. a sparse matrix
consisting of only 0s and 1s. We refer to the first architecture as ESN1 and the second as
ESN2, whose hyper-parameters are reported in Table 4.7 and Table 4.9 respectively. Notice
that an Erdos-Reny graph does not have a spectral radius, since the elements of W are not
rescaled.
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Random Graph

In this section, we study the ESN1, i.e. a sparse random matrix with given spectral radius.
After several attempts, we succeeded in build a model capable of learning the dynamics
of Lorenz 63 system, reported in Table 4.7. However, this model fails in reproducing the
attractor of Rössler 76, as visible in Figure 4.8. The summary statistics are reported in
Table 4.8. Lorenz return maps are shown in Figure 4.9. Examples of short reconstructed
trajectories are reported in Figure A.7.

Reservoir nodes Spectral radius Sparsity Noise
500 1.5 0.9 0.1

Table 4.7: ESN1 (Random matrix W ) hyper-parameters.

System Lorenz 63 Rössler 76

WD(·10−4)
x(1) − x(2) 27.6676 53.52177
x(1) − x(3) 28.6293 24.3787
x(2) − x(3) 18.9467 26.4659

R2

x(1) 0.80 ± 0.71 0.19±0.96
x(2) 0.75 ± 0.74 -0.24± 1.9
x(3) 0.85 ± 0.51 (-6.8 ± 31)·103
< 0 4.18 % 42.27 %

Table 4.8: ESN1 random matrix statistics comparing Lorenz 63 with Rössler 76 systems. We
compute as usual the Wasserstein Distance (WD) between 2d projected measures, the R2 scores
along with the global percentage of those smaller than zero and the global percentage of those
smaller than zero.
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Figure 4.8: ESN1 Random matrix predicted attractor colored with Local Lyapunov Exponents.

(a) Lorenz 63 (b) Rössler 76

Figure 4.9: ESN1 Random matrix. Lorenz return map of maxima of x(3) for Lorenz 63 (a) and
Rössler 76 (b). Values computed from test dataset are shown in orange, while the LSTM results
are shown in blue. The dashed line is the principal diagonal.
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From the statistics in Table 4.8 and the reproduced attractors in Figure 4.8 we can see that
the model gives good results only for Lorenz 63, even though they are far worse than those
obtained with LSTM in the previous sections. Moreover, it quite fails in reproducing the
return map in Figure 4.9. This bad results, worse compared to those obtained by [Pathak
et al., 2017] can be explained by considering that we did not perform the aforementioned
affine transformation to take into account the x→ −x, y → −y symmetry of the systems.
[Pathak et al., 2017] claim to have reproduced the short term behaviour of Lorenz 63,
reproducing the dynamics beyond the first Lyapunov time. However, we are not aware of a
systematic analysis of the short term prediction of the dynamics of such systems in the
whole attractor, as we did.

Erdos-Reny Graph

We compare the two models Equation 2.43 and Equation 2.24 with a ESN network whose
random matrix W is substituted by an Erdos-Reny graph [Erdös and Rényi, 1959], i.e. a
random matrix consisting of only 1s and 0s, with a given sparsity. We call it ESN2. Now,
matrix elements are not rescaled by the maximum eigenvalue, so that the spectral radius
does not make sense. The complete architecture is reported in Table 4.9. Notice that the
other hyper-parameters are equal to those of ESN1, see Table 4.7.

Reservoir nodes Sparsity Noise
500 0.9 0.1

Table 4.9: ESN2 architecture.

Statistical results are reported in Table 4.10 while the reader can find the predicted attractors
in Figure 4.10 and the computed distribution of local Lyapunov exponents in Figure A.9.
Lorenz return maps are reported in Figure 4.11. Examples of short reconstructed trajectories
are reported in Figure A.7.

System Lorenz 63 Rössler 76

WD(·10−4)
x(1) − x(2) 6.3884 228.7312
x(1) − x(3) 11.58499 232.1972
x(2) − x(3) 9.5545 255.0022

R2

x(1) -3.0 ± 7.3 -0.4 ± 1.6
x(2) -2.5 ± 5.5 -2.6 ± 6.2
x(3) -11 ± 30 -208 ± 600
< 0 51.25 % 50.41 %

Table 4.10: ESN2 Erdos-Reny graph statistics comparing Lorenz 63 with Rössler 76 systems. We
compute as usual the Wasserstein Distance (WD) between 2d projected measures, the R2 scores
along with the global percentage of those smaller than zero and the global percentage of those
smaller than zero.

Again, we can observe that the results are worse than LSTM models. Moreover, even if the
Erdos-Reny graphs are able to replicate the attractor in Lorenz 63 system, they completely
fail the R2 scores Table 4.10 and the return maps in Figure 4.11.

4.2.4 Feed-Forward Network

We apply a Feed-Forward Neural Network to Equation 2.43 with loss expressed in Equa-
tion 4.4, which is more robust since this kind of network are good at predicting functions
and they are not dynamical systems. Direct application of these architecture to the problem
at hand with loss given by Equation 4.3 does not give good results. The reasons are that
these are not dynamical systems and the prediction phase differs substantially from the
training phase, being outputs fed into the input in a loop way, while during training the
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Figure 4.10: ESN2 Erdo-Reny graph. . Predicted attractor colored with Local Lyapunov Exponents.

(a) Lorenz 63 (b) Rössler 76

Figure 4.11: ESN2 Erdos-Reny graph. Lorenz return map of maxima of x(3) for Lorenz 63 (a) and
Rössler 76 (b). Values computed from test dataset are shown in orange, while the LSTM results
are shown in blue. The dashed line is the principal diagonal.

net learn only how to reproduce correctly the next time step. The architectures details are
show in Table 4.11.

Sequence length Hidden Layers Neurons Dropout Hidden Operations
1 5 64 0.3 BN1d/ReLU/DO(O.3)

Table 4.11: Feed-Forward network architecture with Physics Informed kind loss. Input sequences
are chosen to be of length 1 to give better results. BN mean Batch Normalization, while DO stands
for DropOut.

We have tried also Convolutional Neural Networks with many different hyper-parameters
combinations, but the results were not at all satisfactory. Statistical results are reported
in Table 4.12. We decide to show only those for Lorenz 63, since the model does not give
anything useful for Rössler 76, which is notoriously harder. In Figure 4.12 we show the
reconstructed attractor colored with LLEs and in Figure 4.13 the Lorenz return map.

System Lorenz 63

WD(·10−4)
x(1) − x(2) 15.6915
x(1) − x(3) 23.7877
x(2) − x(3) 14.19848

R2

x(1) 0.09 ± 1.0
x(2) -0.06 ± 1.1
x(3) -0.09 ± 0.66
< 0 38.05 %

Table 4.12: Physics Informed Feed-Forward network statistics. We report the Wasserstein Distance
(WD) of the 2d projections of the invariant measure against the test dataset, the R2 scores for the
short term dynamics along with the global percentage of those smaller than zero, see text.
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Figure 4.12: Physics Informed Feed-Forward network. Predicted attractor colored with Local
Lyapunov Exponents.

Figure 4.13: Physics Informed Feed-Forward network. Lorenz return map of maxima of x(3) for
Lorenz 63. Values computed from test dataset are shown in orange, while the LSTM results are
shown in blue. The dashed line is the principal diagonal.

From Table 4.12 and Figure 4.12 we can see that the network learn to reconstruct the
attractor, the long term dynamics, but it completely fails in predicting the short term
behaviour as well as the chaos of the maxima of x(3), which as pointed out by [Lorenz,
1963] plays an important role in studying the chaotic properties of this system.

4.3 Parameter Estimation with Regularised Autoencoders

In this section, we compare the power of Autoencoders directly applied to the dynamics
to reconstruct the attractors and estimate models parameters by regularizing either the
encoded space with a Physics Informed (PI) kind loss or a Data Driven (DD) loss, in which
parameters are directly learned by the encoded representation. Denoted with ê the encoded
representation of input (sequence) x, the encoder part will compress the information of
this sequence in order to extract the relevant parameters of the model. Therefore there is a
one-to-one correspondence between input sequences in the batches fed to the encoder with
the encoded parameters.
In the first case, we compute the regularization loss as

Lreg = ||xt+1 − xt − δt gê(xt)||2 , (4.6)

where gê is the dynamical system evolution function Equation 2.1 when computed with the
output of the decoder part.
In the second case, parameters are learned by direct minimization with the ground truth
parameters denoted by e, supposed to be known, with which the training dataset has been
generated. Regularization loss is thus:

Lreg = ||ê− e||2 . (4.7)

In both cases, the total training loss is

LS = Lrec + γLreg , (4.8)

where γ is a hyper-parameter controlling the strength of regularization loss in the spirit of
β − V AEs [Higgins et al., 2017]. A different γ for Physics Informed and Data Driven loss
is needed, since Equation 4.6 is at the order of magnitude δt, while DD regularization loss
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is at the order of Lrec and therefore if we trained the autoencoders with the same γ = 1,
the PI regularized would not learn any parameter in the encoded space.
As we have seen in section 3.10 an autoencoder acts as dimensionality reduction and
therefore it can be used to learn summary statistics from high dimensional data in the
spirit of [Jiang et al., 2017] and [Albert et al., 2022]. Of course a Neural Network could be
trained to correctly learn the model parameters in a supervised way, but in this case the
autoencoder has to balance the reconstruction loss with parameter learning loss, therefore
acting as bottleneck to learn the most relevant features for reconstruction.
The motivation to compare this two regularization losses is clear. In most physical situations
we do not know the parameters of the model, but only we can make clever guesses on
the nature of the equations that govern the observed data and therefore a procedure that
extract this information in a Physics Informed way is highly desirable.

A schematic comparison between the the two regularization procedures are reported in
Figure 4.14.

(a) (b)

Figure 4.14: Schematic autoencoders architectures with a) Physics-Informed and 2) Data-Driven
losses.

We compare two paradigmatic low dimensional chaotic models, namely Equation 2.43
and Equation 2.24, with two different architectures, i.e. a fully symmetric Convolutional
Autoencoder and a fully symmetric Feed-Forward Autoencoder. The details of the architec-
tures are reported in Table 4.13 (Feed-Forward autoencoder) and Table 4.14 (symmetric
Convolutional autoencoder). After each layer, except output/input and encoded space
layer, along with Dropout [Srivastava et al., 2014] and a ReLU activation function (see
section 3.7), we perform Batch Normalization [Ioffe and Szegedy, 2015], which consist in
normalizing data batch for batch with a given (learnable) mean and standard deviation in
order to speed training up.

Input Layer Operations Output Shape
Input Sequence / (B, 500, 3)

Input Sequence Flatten / (B, 1500)
Flatten FC1-Enc BN1d-DO(0.1)-ReLU (B, 512)
FC1-Enc FC2-Enc BN1d-DO(0.1)-ReLU (B, 256)
FC1-Enc Enc Space / (B, 3)
Enc Space F1C-Dec BN1d-DO(0.1)-ReLU (B, 256)
FC1-Dec FC2-Dec BN1d-DO(0.1)-ReLU (B, 512)
FC2-Dec FC3-Dec / (B, 1500)
FC3-Dec Unflatten / (B, 500,3)

Table 4.13: Detailed architecture of the Feed-Forward autoencoder. The batch size B is 20. After
each layer, except the input, output and the encoded space, 1d Batch Normalization (BN1d),
DropOut (DO) with probability p = 0.1 and a ReLU activation function are sequentially applied.

Training is performed with Adam Optimizer [Kingma and Ba, 2014] with learning rate
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Input Layer Kernels Operations Output shape
Input sequence / / (B, 1, 500, 3)

Input sequence 2dConv1 (5,3) BN2d-ReLU-DO(0.1) (B, 16, 496,1)
2dConv1 2dConv2 (5,1) BN2d-ReLU-DO(0.1) (B, 16, 492,1)
2dConv2 2dConv3 (5,1) BN2d-ReLU-DO(0.1) (B, 32, 488,1)
2dConv3 Flatten / / (B, 15616)
Flatten FC-Enc / BN1d-ReLU-DO(0.1) (B, 256)
FC-Enc Enc Space / / (B,3)

Enc Space FC1-Dec / DO(0.1)-ReLU-BN1d (B, 256)
FC1-Dec FC2-Dec / / (B, 15616)
FC2-Dec Unflatten / DO(0.1)-ReLU-BN2d (B, 488,1)
Unflatten 2dUnConv1 (5,1) DO(0.1)-ReLU-BN2d (B, 492,1)

2dUnConv1 2dUnConv2 (5,1) DO(0.1)-ReLU-BN2d (B, 496,1)
2dUnConv2 2dUnConv3 (5,3) / (B, 500,3)

Table 4.14: Detailed architecture of symmetric Convolutional (symm-Conv) autoencoder. Batch
size B is again 20, while BN stand for Batch Normalization and DO for DropOut (with probability
p = 0.1).

lr = 0.001 until the reach of a plateau. Training and validation losses (including also
regularization losses) are reported in Figure A.10 in Appendix A. The regularization
strength for Physic Informed loss (left column) is chosen to be γ = 100 for Lorenz 63
and γ = 1000 for Rössler 76 in order to make the regularization loss of the same order of
magnitude of the reconstruction loss.

To compare the performances of the models, in Table 4.15 for Lorenz 63 and Table 4.16
for Rössler 76 are reported the mean and the standard deviation of the distribution of the
learned parameters, along with the compatibility λ between the predicted value and the
true value. In general, given two noisy measures of the same quantity x1 = µ1 ± σ1 and
x2 = µ2 ± σ2, the compatibility λ1,2 between then is defined as

λ1,2 :=
|µ1 − µ2|√
σ21 + σ22

. (4.9)

To asses the reconstruction power, we report the Wasserstein Distance (WD) (see sec-
tion 2.11) between the 2d projected distributions of the reconstructed attractor and the
validation dataset, see Table 4.1.

From the compatibility with the true values in Table 4.15 we can see that in the Data
Driven loss (DD) performs better in retrieving the model’s parameters in the Convolutional
Autoencoder, while for the Feed-Forward autoencoder the results are similar. However, this
comes to a cost on the reconstruction loss, as we can see from the Wasserstein Distance
(WD), typical for an autoencoder. Comparing the two architectures, we can see that
the FeedForward autoencoder performs better in parameter retrieving with PI loss (with
however a very spread distribution) and slightly worse in DD loss, while the symm-Conv is
generally better in reproducing the attractor.

For Rössler 76 (Table 4.16), we can notice that Physics Informed (PI) regularization loss
systematically fails, except for a, in retrieving the parameters, even if the Wassersetein
Distances (WD) are substantially good. In this case, the symmetric Convolutional autoen-
coder seems to perform worse in both tasks. We notice that the Feed-Forward autoencoder
is worse in reproducing the attractor and generally better in estimating the parameters.

From Table 4.15 and Table 4.16 we can argue that autoencoders succeed in parameters re-
construction while being able to replicate the attractor, see Figure 4.15. However, a Physics
Informed regularization, more credible in research situations, seems to work generally worse.
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System Lorenz 63
Loss PI DD

Sy
m

m
-C

on
v

PAR
σ 22.2 ± 9.1 (λ = 0.64 ) 27.6 ± 2.1 (λ = 0.19 )
ρ 6.3 ± 5.7 (λ = 0.65 ) 9.8 ± 1.2 (λ = 0.17 )
β 2.4 ± 1.6 (λ = 0.17 ) 2.72 ± 0.94 (λ = 0.06 )

WD (·10−4)
x(1) − x(2) 3.2823 7.0069
x(1) − x(3) 4.6435 9.6255
x(2) − x(3) 3.4329 8.1743

Fe
ed

Fo
rw

ar
d

PAR
σ 26.4± 4.8 (λ = 0.33 ) 27.5 ± 1.8 (λ = 0.28 )
ρ 10.3 ± 2.5 (λ = 0.12 ) 9.79 ± 0.84 (λ = 0.25 )
β 2.69 ± 0.88 (λ = 0.03 ) 2.60 ± 0.64 (λ = 0.10 )

WD (·10−4)
x(1) − x(2) 7.9489 11.3697
x(1) − x(3) 12.7950 16.5170
x(2) − x(3) 10.4477 13.5823

Table 4.15: Lorenz 63 system. Mean and standard deviations of the distribution for learned
parameters (PAR) and the Wasserstein Distances (WD) between the 2d projections of the invariant
measure of the reconstructed attractors and the test dataset Table 4.1, comparing Physics Informed
(PI) and Data Driven (DD) losses for the symmetric Convolutional (Symm-Conv) and the Feed-
Forward autoencoders; in parenthesis we report the compatibility with the true value λ, see text.
The true values are σ = 28, ρ = 10 and β = 8/3 ≈ 2.667.

System Rössler 76
Loss PI DD

Sy
m

m
-C

on
v

PAR
a 0.44 ± 0.67 (λ = 0.10 ) 0.30 ± 0.44 (λ = 0.16 )
b -0.6 ± 1.9 (λ = 0.42 ) 0.23 ± 0.49 (λ = 0.06 )
c 2.6 ± 1.4 (λ = 5.93 ) 5.46 ± 0.83 (λ = 0.29 )

WD (·10−4)
x(1) − x(2) 16.5676 15.5188
x(1) − x(3) 6.0772 6.1758
x(2) − x(3) 7.2552 5.4430

Fe
ed

Fo
rw

ar
d

PAR
a 0.38 ± 0.53 (λ = 0.02 ) 0.36 ± 0.32 (λ = 0.03 )
b -1.0 ± 1.0 (λ = 1.20 ) 0.18 ± 0.28 (λ = 0.07 )
c 4.19 ± 0.61 (λ = 2.48 ) 5.68 ± 0.35 (λ = 0.06 )

WD (·10−4)
x(1) − x(2) 19.5620 27.2989
x(1) − x(3) 11.8809 12.1241
x(2) − x(3) 13.3956 12.6825

Table 4.16: Rössler 76 system. Mean and standard deviations of the distribution for learned
parameters (PAR) and the Wasserstein Distances (WD) between the 2d projections of the invariant
measure of the reconstructed attractors and the test dataset Table 4.1, comparing Physics Informed
(PI) and Data Driven (DD) losses for the symmetric Convolutional (Symm-Conv) and the Feed-
Forward autoencoders; in parenthesis we report the compatibility with the true value λ, see text.
The true values are a = 0.37, b = 0.2 and c = 5.7.

Further study will analyse deeper models in order to see if the results are more robust with
more powerful methods.

In Figure 4.15 the reconstructed attractors are reported, while we refer to Appendix A
for the learned parameters distribution in 3d Figure A.12, the full distributions in Fig-
ure A.13 (Lorenz 63) and Figure A.14 (Rössler 76) and the projected 2d invariant measures
Figure A.11.
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Figure 4.15: Reconstructed attractors for different Autoencoder models and systems

4.4 Unsupervised Learning of Forcing in Lorenz 96

In the previous section, we have addresses question 3 of section 1.2 by inferring the
parameters of low dimensional models, i.e. [Lorenz, 1963] and [Rössler, 1976], by adding a
regularization term in the encoded space. We have concluded that it is therefore possible to
make parameter estimation in such way while maintaining the reconstruction capabilities of
the autoencoder, even though we observed that a Physic Informed regularization kind is so
far less efficient than the direct comparison with the true values. However, this approach is
more meaningful in physical situations, where we do not know the true parameters.
In this section, we want to address question 3 in a complete unsupervised way, by using
autoencoders to estimate the forcing term of a simple high dimensional dynamical system
in Equation 2.50 that mimic the typical processes in the atmosphere [Lorenz, 1995]. We
will see that, similarly to what done by [Wetzel, 2017] for the Ising 2d model [Onsager,
1944], autoencoders are able to learn a chaotic phase transition.

4.4.1 Normalized Input

As first experiment, we study directly the dynamics with normalized inputs. To do so, we
generate a dataset of 1455 samples of Equation 2.50 with n = 36 sites with forcing equally
spaced in the range F ∈ [1, 15], well beyond in the chaotic regime. We divide the dataset
as specified in Table 4.17. The time step to generate the dynamics is δt = 0.002 and the
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first 200 time units (i.e. 200/0.002 = 100000 samples) are discarded to assure to reach
the attractor of the system. We take the successive 10 time units (5000 samples) as the
training sample.

Total samples Training Validation Test δt
1455 1018 218 219 0.002

Table 4.17: Dataset division for experiment 2. The 1455 samples in the forcing interval [1, 15] are
randomly divided into a training, validation and test dataset with proportions 70/15/15%.

However, the complete dynamics information coming from samples of shape (5000, 36) is
too big to be reasonably fed into home networks. Therefore, data are reduced by a bi-linear
interpolation along the time axis to have shape (56, 36) and therefore be treated as images
with one channel in the training algorithm. Samples are then normalized in the interval
[0, 1] to improve numerical stability, even though the dynamics has different length scale as
F increases, being the maximum values roughly proportional to F . Random examples of
the training dataset are reported in Figure A.15

We build a symmetric convolutional autoencoder with encoded space dimension of 1 in
order to see if the model is able to capture the chaotic phase transition which occurs around
F = 5. The model architecture is reported in Table 4.18. Training is performed with
Adam [Kingma and Ba, 2014] with learning rate of 0.001 till convergence, monitored with
Early Stopping with patience 100.

Input Layer Kernels Operations Output shape
Input sequence / / (B, 1, 56, 36)

Input sequence 2dConv1 (7,7) BN2d-ReLU-DO(0.1) (B, 32, 50, 30)
2dConv1 MaxPool1 (2,2) / (B, 32, 25, 15)
MaxPool1 2dConv2 (4,4) BN2d-ReLU-DO(0.1) (B, 64, 22, 12)
2dConv2 MaxPool2 (2,2) / (B, 64, 11, 6)
MaxPool2 Flatten / / (B, 4224)
Flatten FC1-Enc / BN1d-ReLU-DO(0.1) (B, 512)
FC1-Enc FC2-Enc / BN1d-ReLU-DO(0.1) (B,256)
FC2-Enc Enc Space / / (B, 1)
Enc Space FC1-Dec / DO(0.1)-ReLU-BN1d (B, 256)
FC1-Dec FC2-Dec / DO(0.1)-ReLU-BN1d (B, 512)
FC2-Dec Unflatten / DO(0.1)-ReLU-BN2d (B, 64, 11, 6)
Unflatten UpSampling1 (2,2) / (B,64, 22,12)

UpSampling1 2dUnConv1 (4,4) DO(0.1)-ReLU-BN2d (B, 32, 25,15)
2dUnConv1 UpSampling2 (2,2) / (B, 32, 50,30)

UpSampling2 2dUnConv2 (7,7) / (B, 1, 56,36)

Table 4.18: Detailed architecture of symmetric convolutional autoencoder. Batch size B is 16, while
BN stand for Batch Normalization and DO for DropOut (with probability p = 0.1).

In Figure 4.16 the encoded representation of the test dataset is reported in function of the
forcing F , while in Figure 4.17 the reader can find generated samples from the encoded
representation in the interval [−20, 120].

Reconstruction samples taken randomly from the test dataset, see Table 4.17, are reported
in Figure 4.18.In Figure A.16 we report the convolutional filters of the first layer.

From Figure 4.16 and Figure 4.17 it is evident how the model is able to separate the
ordered phase, in which the model exhibits travelling waves, with the chaotic phase, while
maintaining a good reconstruction power, see Figure 4.18. However, the model is not
quite able to tell the magnitude of F in the chaotic regime, arguably because data were
normalized in the unit interval and thus all the information coming form the different scales
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Figure 4.16: Normalized Inputs. Encoded representation of the test dataset in function of the
forcing F . Values are colored according to the magnitude of F .

Figure 4.17: Normalized Inputs. Samples generated from the encoded space representation in the
interval [−20, 120]. We can appreciate a transition between order (left) and chaos (right).

Figure 4.18: Normalized Inputs. Reconstruction of random samples of the test dataset. In the first
and third columns the original images are reported, while in columns second and fourth one can
find the corresponding reconstructions.

of the dynamics has been lost.
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4.4.2 Non-Normalized Inputs

Now, we do not normalized input samples in the interval [0, 1], but rather in the interval
[−0.5, 0.5] by scaling every image by the maximum values reached by the various dynamics
for F ∈ [1, 15], such that the relative sizes matter. The architecture is the same as Table 4.18
and the other hyper-parameters specification are the same. As before, we report the encoded
space representation in Figure 4.19, the generation of samples starting from the encoded
representation in Figure 4.20 and some random reconstructed samples in Figure 4.21. In
the appendix we report the first convolutional filters in Figure A.16.

Figure 4.19: Non-normalized Inputs. Encoded representation of the test dataset in function of the
forcing F for the dataset rescaled by the maximum values attained by the dynamics in the whole
forcing interval. Values are colored according to the magnitude of F .

Figure 4.20: Non-normalized Inputs. Samples generated from the encoded space representation in
the interval [−10, 20]. We can appreciate a transition between order (left) and chaos (right).

From Figure 4.19 and Figure 4.20 we can appreciate a phase separation, with an increased
attention towards larger values of the forcing F . However, even though at large F the model
seem to have attained a larger variability, we cannot clearly notice a neat proportionality
between the encoded variable and the forcing. Furthermore, even the reconstruction in
Figure 4.21 seems worse, since numerically there is more instability due to the chosen
scaling of the dataset.
We conclude by remarking that experiments with Variational Autoencoders, see section 3.10,
did not give meaningful results.
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Figure 4.21: Non-normalized Inputs. Reconstruction of random samples of the test dataset for the
model with samples rescaled by the maximum values attained by the dynamics in the whole forcing
interval. In the first and third columns the original images are reported, while in columns second
and fourth one can find the corresponding reconstructions.



Chapter 5

Conclusions and Future Work

In this thesis, we have studied the applications of Neural Networks to the realm of dynamics
systems, being particularly interested to answer to the three questions of section 1.2.
In chapter 2 we have exposed the basic theory of dynamical systems, focusing more attention
on the chaotic properties of such systems and giving the fundamental tools the one needs
to study them. Moreover, we analyse some examples in detail, such the Logistic Map of
Equation 2.17 and Lorenz 63 system Equation 2.43.
In chapter 3 we have exposed the basics theory of Machine Learning, with particular
attention to develop a formal learning framework. Even if this was done with respect
supervised learning, which is not the main target of this thesis, most conclusion remains
still valid. In particular, we have seen the importance of dividing the dataset into a training
and validation part in order to avoid overfitting, which is one of the main issues in Machine
Learning. Moreover, we have presented some typical architectures often used in the Deep
Learning community, justifying how they can be used to analyse dynamical sequences.
In chapter 4 we have conducted experiments with different Machine Learning models,
such as Recurrent Neural Networks (LSTM and ESN), standard Feed-Forward networks,
Convolutional Networks and Autoencoders. We were interested into the three questions
mentioned in section 1.2 in the Introduction, which we believe they have been successfully
answered. We have shown that Neural Networks can:

1. Reproduce the Weather (short term dynamics) of chaotic dynamical systems.

2. Reproduce the Climate (long term dynamics) of these systems.

3. Be used to retrieve the parameters of the model from data.

4. Learn a chaotic phase transition.

In particular, the main conclusions that we got to are:

• LSTM are efficient learners for both the model taken at hand and are very reliable
because they do not need an excessive fine tuning.

• Echo State and Feed-Forward networks can in principle be used to reproduce a chaotic
dynamics, but they are very sensitive to the choice of the hyper-parameters.

• A Physics-Informed kind of loss is more efficient and robust that a purely Data-Driven
loss for LSTM models for both the low dimensional systems taken into consideration.

• Physics Informed regularization can be used to learn models parameters in Convolu-
tional and Feed-Forward symmetric Autoencoders, maintaining good reproduction
capabilities. Even though Physics-Informed regularization is more useful in situations
where we cannot access the true parameters, Data-Driven regularization seems to
work better.

91
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• Convolutional symmetric Autoencoders can successfully learn a chaotic phase transi-
tion in Lorenz 96 model, when trained in a completely unsupervised way. The latent
space is organized to separate low forces against larger forcing. However, the model
cannot tell the exact magnitude of the forcing.

These results were obtained by training the networks either on a home computer or on the
free Colab account, which does not reserve very powerful GPUs. Moreover, training did not
take more than 2%3 hours for each model. Therefore, we believe that the first way to im-
prove the results of the thesis is to train the model on more powerful devices or for more time.

Other lines of future research shall include:

• An analysis of ESN with Erdos-Reny graph by taking into account the symmetries of
the model as done by [Pathak et al., 2017].

• A purely Physics-Informed approach to learn the chaotic systems, i.e. feeding into
the networks only the time step and relying only on the dynamical equations, without
seeing any generated data.

• An extension of Autoencoders analysis to the case of sparse and rare data, which is
much more common in practical situations.

• An study on the applications of Autoencoders to Linear Response Theory. in the
context of dynamical systems.

• Decoupling the effect of slow variable from fast variable in high dimensional models
that include more than one atmospheric quantity, like [Vissio and Lucarini, 2020].
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Appendix A

Supporting Figures

This appendix reports the supporting figures for chapter 4. In section A.1 ee report the
training losses of LSTM models of subsection 4.2.2, the parallel coordinate plot for Optuna
optimization. We report the full distribution of Local Lyapunov Exponents (LLE), along
with the mean and the standard deviation, and the short term reconstructed trajectories for
LSTM and ESN models. We do not report those for the FFNET, because they have been
lost due to a technical error. In section A.2 we report the training losses, the 2d projected
learned invariant measures and the full distribution for autoencoders learning problem in
section 4.3. Lastly, in section A.3 we report the dataset examples for section 4.4 and the
first learn convolutional filters.

A.1 Dynamics Reconstruction

A.1.1 LSTM
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(d) µ = 0.28 , σ = 4.58 (e) µ = 0.039 , σ = 4.00 (f) µ = −3.04 , σ = 5.40

Figure A.1: Standard LSTM models. Distributions of Local Lyapunov Exponents (LLE) with mean
µ and standard deviation σ. They are computed following the algorithm reported in subsection 2.8.3
with τ = 4. The continuous red line indicates the true value computed from the test dataset, while
the dashed red line is the average of the distribution and the colored red area is the displacement
from the mean of 1σ.
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(a) µ = 2.11 , σ = 4.41 (b) µ = −0.81 , σ = 1.59 (c) µ = −14.96 , σ = 3.91
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(d) µ = 0.25 , σ = 2.36 (e) µ = −0.15 , σ = 2.51 (f) µ = −3.94 , σ = 5.21

Figure A.2: Optimized LSTM models. Distributions of Local Lyapunov Exponents (LLE) with mean
µ and standard deviation σ. They are computed following the algorithm reported in subsection 2.8.3
with τ = 4. The continuous red line indicates the true value computed from the test dataset, while
the dashed red line is the average of the distribution and the colored red area is the displacement
from the mean of 1σ.
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(a) µ = 0.96 , σ = 4.26 (b) µ = −0.16 , σ = 2.28 (c) µ = −14.47 , σ = 3.96
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(d) µ = 0.23 , σ = 3.75 (e) µ = 0.0019 , σ = 3.15 (f) µ = −4.04 , σ = 5.86

Figure A.3: Physics Informed LSTM models. Distributions of Local Lyapunov Exponents (LLE)
with mean µ and standard deviation σ. They are computed following the algorithm reported in
subsection 2.8.3 with τ = 4. The continuous red line indicates the true value computed from the
test dataset, while the dashed red line is the average of the distribution and the colored red area is
the displacement from the mean of 1σ.
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Figure A.4: LSTM training losses for Standard and Optimized Optuna models with Data-Driven
loss and for Physics-Informed loss, see section 4.2. Training loss is in blue and validation loss in
orange.
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Figure A.5: Short dynamics reconstruction for LSTM models. We compare the two systems, Lorenz
63 and Rössler 76, in the short term by comparing the reconstructed trajectories (blue) with the
test dataset (orange) starting at the same initial point.
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(a) (b)

Figure A.6: Hyperparameter optimization parallel coordinate plot for LSTM, see section 4.2.

A.1.2 Echo State Networks

Lorenz 36 Rössler 76
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Figure A.7: Short dynamics reconstruction for ESN models. We compare the two systems, Lorenz
63 and Rössler 76, in the short term by comparing the reconstructed trajectories (blue) with the
test dataset (orange) starting at the same initial point.
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(a) µ = 0.95 , σ = 4.10 (b) µ = −0.091 , σ = 1.92 (c) µ = −14.53 , σ = 3.65
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(d) µ = 0.40 , σ = 2.37 (e) µ = −0.162 , σ = 2.89 (f) µ = −5.79 , σ = 4.48

Figure A.8: ESN1 Random matrix. Distributions of Local Lyapunov Exponents (LLE) with mean µ
and standard deviation σ. They are computed following the algorithm reported in subsection 2.8.3
with τ = 4. The continuous red line indicates the true value computed from the test dataset, while
the dashed red line is the average of the distribution and the colored red area is the displacement
from the mean of 1σ.
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(a) µ = 1.26 , σ = 3.95 (b) µ = −0.864 , σ = 2.07 (c) µ = −14.06 , σ = 3.96
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(d) µ = 0.12 , σ = 0.18 (e) µ = 0.10 , σ = 0.32 (f) µ = −5.263 , σ = 0.84

Figure A.9: ESN2 Erdo-Reny graph. Distributions of Local Lyapunov Exponents (LLE) with mean
µ and standard deviation σ. They are computed following the algorithm reported in subsection 2.8.3
with τ = 4. The continuous red line indicates the true value computed from the test dataset, while
the dashed red line is the average of the distribution and the colored red area is the displacement
from the mean of 1σ.
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A.2 Parameter Estimation with Regularised Autoencoders
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Figure A.10: Training (blue), validation(orange), train regularization (green) and validation
regularization (red) losses for Autoencoders models. The regularization strength for Physic Informed
loss (left column) is chosen to be γ = 100 for Lorenz 63 and γ = 1000 for Rössler 76 in order to
make the regularization loss of the same order of magnitude of the reconstruction loss.
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Figure A.11: Projected invariant measures of reconstructed attractors for different Autoencoder
models and systems.
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Figure A.12: Distributions of learned parameters in parameters space for different Autoencoder
models and systems. The true set of parameters is denoted with the red dot.
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Figure A.13: Distribution of learned parameters for Lorenz 63 system. The mean is denoted by the
dotted red line, while the true value is the continuous red line. The shaded red area is included in
a σ displacement from the mean.
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Figure A.14: Distribution of learned parameters for Röessler 76 system. The mean is denoted by
the dotted red line, while the true value is the continuous red line. The shaded red area is included
in a σ displacement from the mean.
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A.3 Unsupervised Learning of Forcing in Lorenz 96

Figure A.15: Examples of the training dataset for the second experiment of this section.

(a) Normalized Inputs. (b) Non-Normalized Inputs.

Figure A.16: Learned convolutional filters of the first layer for a) the Normalized Inputs encoder
and b) Non-Normalized. We can appreciate that the filters seem to have learned horizontal and
vertical edges as well as little islands, which happen in the chaotic regime.
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