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Introduction

The absolute stability problem constitutes one of the milestones in the history of nonlinear con-
trol and still represents one of the most interesting topics of in the subject, bridging the classic
and well established linear system theory to the more complex and less known nonlinear one.
Alongside its theoretical interest, the versatility of its formulation apply to a large number of
modelling problem, justifying almost a century of research.
The recent advances in the field of contraction theory and the introduction of the stability anal-
ysis in non Euclidian norms pose a new challenge in the absolute stability theory, opening the
possibility to a new view of the notion of stabilization. On the other hand, one of the most
relevant subjects in control theory is the employment of data in order to reconstruct the relevant
characteristics of a unknown system, and assuring desired features. On this direction, the idea
of obtaining a control law for an unknown dynamical system directly from the data represents
an interesting prospective.
In light of those considerations, this thesis has been dedicated to review the absolute stabiliza-
tion problem and to study its extension to a data-driven approach. Starting from a classical
approach based on quadratic Lyapunov functions we studied how to solve the absolute stabil-
ity problem resorting uniquely to a data-based knowledge of the system. Subsequently, after
considering a detailed review of the stability analysis in non Euclidean spaces, we proposed its
extension to the data driven design problem.
The purpose pursued during our studies has been to obtain a novel data driven design approach,
which, exploiting contractive theory results on general spaces, is able to propose a novel solu-
tion to the absolute stability problem.
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1
The Absolute Stabilization problem

The first chapter of the thesis is dedicated to introduce the problem of the Absolute Stability and
the notion of Lur’e System, alongside to some of the most common solutions to the problem.
It will be first presented the original problem statement, together with its solution, as initially
proposed by A.I. Lur’e and based on the construction of a modified quadratic Lypunov function,
moving to the statement of the criteria based on frequency analysis and the ideas behind their
proofs. Due to its influence in the history of absolute stability, we will also briefly review the
Aizerman and Kalman conjectures.
In the second section of the chapter we will consider the well-known S-Lemma, which will
have a fundamental role in course of the thesis, both in formulating the classical solution of the
absolute stability problem in a data-driven fashion and in the extension of Lyapunov stability
analysis to non-Euclidean spaces. Given its importance in the nonlinear control field and in the
results presented in the following chapters it will be presented a complete proof of the lemma.

1.1 Lur’e systems and problem formulation

Historically, the problem of absolute stability and the concept Lur’e system was introduced for
the first time by A.I. Lur’e in V.N. Postnikov in 1944 in the paper [1], where it is studied the
global asymptotically stability of the origin for a third order linear system in feedback connec-
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tion to a non linear transformation of the system output. The problem has been then formalized
and extended to systems of arbitrary order in 1951 by Lur’e in his first book [2].
The book of Lur’e is considered to be the first book to be entirely devoted to the topic of non-
linear control [3].
Formally, a Lur’e system is described by the following equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Bφ(y(t))
y(t) = Cx(t) + rξ(t)
ξ̇(t) = −φ(y(t))

(1.1)

where A ∈ Rn×n , B ∈ Rn , C ∈ R1×n , r ∈ R.
The nonlinearty, which is the function φ(⋅), can be indeed both linear or nonlinear. In its
first formulation it has been assumed to be time-invariant and to satisfy the so-called sector

conditions:
0 ≤ yφ(y) ≤ κy

2
∀y ∈ R\{0}

φ(0) = 0
(1.2)

for some κ > 0.
The sector condition has originally been introduced to model the friction effect affecting the
actuators dynamics in a mechanical engine, from which it follows the positiveness and bound
conditions on the product yφ(y), see [2].
As shown later in the introduction of the Circle Criterion, the problem can be extended to the
case of time-varying nonlinearities.
Even if will be not explicitly mentioned we will always assume the nonlinearity to be at least
Lipschitz continuous, in order to satisfy the conditions of existence and uniqueness of solution
in the ODE in (1.1). Such requirement will be still assumed fulfilled in the extension to the
time-varying and multi-dimensional case.
As already mentioned, a Lur’e system can be essentially described as a system divided in two
main blocks: a linear time invariant subsystem and a function of the system output, the latter
considered as a linear combination of the state variables and the derivative of the function itself,
related together by a feedback connection.
The nonlinearity models a part of the dynamic which doesn’t have a simple analytical form or
some uncertainties present in the model description.
Examples of dynamics modeled by Lur’e type systems can be found in the analytical descrip-
tions of linear system for which the actuator limitations introduce some non linear features,
when some part of the dynamics cannot be approximated with sufficient precision in the range
of values in which the linear system operates or in dynamics affected by friction.
The solution of the absolute stability problem consists in finding conditions on the linear time
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invariant system, and on the sector constraint (1.2), in order to guarantee that the origin is glob-
ally asymptotically stable for all nonlinearities that satisfy (1.2).
The problem was initially solved by A.I. Lur’e and V.N. Postnikov using a modified Lypunov
function composed by a quadratic term of the state variables x plus a weighted integral of the
nonlinearity

V (x, ξ) = 1

2
x
T
Hx + β ∫

y

0

φ(ζ) dζ (1.3)

with H positive definite, β > 0; by condition (1.2) the integral term is assured to be non-
negative. Exploiting the controllability of the system together with some others ad hoc adjust-
ments for the given problem considered in [1] it was possible to prove the time derivative of
(1.3) to be negative definite.
A Lypunov function of type (1.3) is also known a Lur’e-Postnikov function.

Remark.
Frequently it is considered the slightly different definition of the sector condition (1.2)

κ1 ≤
φ(y)
y ≤ κ2 ∀t ∈ R\{0}, φ(0) = 0 (1.4)

for some real κ1, κ2. However, as we will show in Chapter 4, (1.4) can always be rewritten in

the same form of (1.2).
We point out moreover, for reason that will be clarified in the study of the S-Lemma in the next

section, that (1.4) can be rewritten using the quadratic form

(φ(y) − κ1y)(κ2y − φ(y)) ≥ 0 (1.5)

1.2 Stability criteria

The implications, both theoretical and applicative, that the introduction of the absolute stabil-
ity concept had in the field control theory rapidly attracted the interest of a large number of
researcher from mathematicians to engineers. For over a decade the problem of extending the
applications of a Lypunov function in the Lur’e-Postnikov form has been investigated, leading
to numerous hypotheses and conjectures, of which the most famous has been the ones by Aiz-
erman and Kalman.[4] [3].
Besides the employment of the classical Lyapunov approaches, some of the most outstanding
results to guarantee the absolute stability of Lur’e-type systems were found in the frequency
domain, which connected the existence of Lyapunov functions to some conditions related to the
linear time invariant system transfer function, avoiding the explicit construction of such Lya-
punov function.
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The first frequency domain version was discovered and published by the Romanian mathemati-
cian V.M Popov in 1961[5].

Theorem 1.1 (Popov Criterion).
Consider a Lur’e system of the form (1.1) with φ satisfying the sector condition (1.2), and let

h(s) be the transfer function of its linear time invariant part, namely h(s) = c(sI − A)−1B.

Assume the following conditions holds

(1.) A is Hurwitz stable

(2.) (A,B) is controllable, (A,C) is observable

Then system (1.1) is absolute stable if there exists m > 0 such that Re(1 + jωm)h(jw) >

0 ∀ ω ∈ R.

The theorem was proven by using a Lur’e-Postnikov type function of the form

V (x) = x
T
Px + α(y − C

T
x)2 + β ∫

y

0

φ(ζ) dζ (1.6)

where α, β are positive real numbers, and P = P
T
≻ 0 is a positive definite matrix.

In the same article [5] Popov proved that the existence of a function (1.6) is sufficient to as-
sure that the conditions of his theorem are satisfied. The necessity of Popov conditions for the
existence of Lur’e Postnikov function, which can be reduced on the existence of a negative
definite matrix and a vector satisfying a linear quadratic equality, was proved in 1962 by V.A.
Yakubovich and extended by R.Kalman the same year [6] [7].
The solution of such matrix equality were linked to a frequency condition on the transfer func-
tion of the linear system, as formalized by the celebrated Kalman-Yakubovic-Popov lemma:

Theorem 1.2. [Kalman-Yakubovic-Popov Lemma]

Given a number γ > 0 two vectors B ∈ Rn and C ∈ R1×n and an n × n Hurwitz matrix A, if

the pair (A,B) is controllable, then a symmetric matrix P and a vector q satisfying

−qq
T
= PA − A

T
P

√
γq = PB − C

T
(1.7)

exist if and only if

2γ +Re[CT (iωI − A)−1b] ≥ 0 ∀ω ∈ R (1.8)

Moreover the set {x ∶ xT
Px = 0} is the unobservable subspace of the pair (C,A)

It is possible to prove in fact that the the conditions of the Kalman-Yakubovich-Popov
lemma implies the one of the Popov criterion, and assure the existence of a Lur’e Postnikov
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Lyapunov function of the type (1.6) (a detailed proof can be found in [8][9]).
Besides the outstanding result of linking the existence of a Lur’e-Postnikov Lyapunov function
to a system of linear matrix equality, the applications of the Kalman-Yakubovic-Popov exceed
the one related to the absolute stability problem: indeed, it is possible to prove that the condi-
tions of Theorem (1.2) are equivalent to the passivity property[8][10].1

Lastly we give the statement of the circle criterion, which represents an extension of the previ-
ous results to the time varying case.

Theorem 1.3. [Circle Criterion]

Consider system
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + bφ(y(t))
y(t) = Cx(t) + rξ

ξ̇ = −φ(t, y(t))
(1.9)

with φ(t, y(t)) satisfying sector condition (1.4) for some µ1, µ2 If the following condition holds

(i) the matrix A has no purely imaginary eigenvalues.

(ii) exists κ0 ∈ [κ1, κ2] such that the linear system obtained by setting φ(t, y(t) = κ0y is

Hurwitz stable.

(iii) Re[(κ2C(iωIn − A)−1B − 1)(1 − κ1C(iωIn − A)−1B)] < 0 ∀ω ∈ [−∞,+∞]

Then then the origin is exponential stable for system (1.9).
Moreover, under conditions (i-ii) condition (iii) is necessary and sufficient for the existence of a

quadratic Lypunov function V (x) = x
T
Px with time derivative V̇ (x) < 0 for all systems (1.9)

with φ(t, y) satisfying (1.4) for some µ1, µ2.

The circle criterion (1.3), proved the same year by Yakubovich and E.N. Rosenwasser in [11]
and [12], follows the idea that time-varying nonlinearities can be better treated by truncating
the integral part in (1.3): such an idea, already considered by Rosenwasser in [13], is related
to the fact that the time derivative of the integral component in the Lur’e-Postinikov function,
when considered a time varying function, would introduce a time varying component in the
time derivative of V (x)

d

dt
(∫

y

0

φ(ζ, t) dζ) = dy

dt
φ(y) + ∫

y

0

∂φ(ζ, t)
∂t

dζ (1.10)

which would make the problem of more difficult.

1The property of passivity can shortly be introduced by stating that in a passive system the product of the system
input and output uT

y is always non-negative. Intuitively a passive system is one that dissipate power.
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As a matter of fact, in the stability analysis presented in the next chapters, which will be fo-
cused on the absolute stability problem for time varying nonliearities, we will find a stabilizing
solution resorting to quadratic Lyapunov functions.

Remark. The formulations of the Lur’e system adopted in the previous results and statements

have been chosen for historical reasons.

However, in the course of the thesis we will consider the following different formulation of Lur’e

system with respect to the one already presented

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Bω(t)
y(t) = Cx(t)
ω(t) = φ(t, y(t))

(1.11)

Nonetheless (1.11) and (1.1) are equivalent: indeed, if we rewrite the Lur’e system (1.1) in the

augmented state x̃ = (x ξ)T , defining the matrices

Ã = (A 0

0 0
) B̃ = (B

−1
) C̃ = (C r) (1.12)

we obtain that the descriptions the two system are equivalent.

It is easy to note, that controllability and observability properties of system (1.1) are preserved.

1.3 Aizerman and Kalman conjectures

Right after that the formulation of a sufficient condition to absolute stability has appeared, the
natural interest arose about defining also the necessary conditions.
The research in this direction led to a series of hypothesis and counterexamples for which the
aforementioned Aizerman and Kalman conjectures represent the most influential ones.
Proposed in 1949 in [14] the Aizerman’s hypothesis suggested that a Lur’e system of the form
(1.1) is absolute stable for all nonlinearities satisfying the sector condition (1.2) if it is stable
for all linear systems obtained by replacing the nonlinearity with a linear output feedback of the
form φ(y) = µy ∀ µ ∈ [0, κ].
The hyphotesis however was proven to be false by 1958 by V. Pliss which constructed a third
order system counterexample[15]. However, under the stronger assumptions that the Lur’e sys-
tem considered is positive, the conjecture holds true[16]. We will show an equivalent proof of
the last statement in chapter 4.
In 1957 Rudolf Kalman tried to extend Aizerman’s hypothesis to a rigid condition on the non-
linearity: he suggested that if the derivative of the function φ(y) lies on the sector [0, κ] and
the system is asymptotically stable for all φ(y) = µy, µ ∈ [0, κ] then the Lur’e system (1.1)
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is absolute stable.
Kalman’s conjecture has proved to be true for system system up to the third order, while for sys-
tems of higher order there are effective methods for construction of counterexamples[17][18].

1.4 S-Lemma

The S-Lemma (also known as S-procedure) is one of the most popular and important result in
the field of nonlinear control theory. The procedure, introduced by M.A Aizerman in [19] and
already used in the early days of the absolute stability theory development, was formally stated
and proved as we know nowadays by V.A. Yakubovich in his seminal paper [20].
The objective of the S-Lemma is to find conditions which guarantee that a sign condition on a
quadratic function implies another sign condition to a second quadratic function.
In the absolute stability problem such question arises naturally when the first quadratic inequal-
ity is the sector condition expressed as a quadratic inequality (1.5), while the second one is the
time derivative of a quadratic Lyapunov function: indeed, consider the a Lur’e system described
by equations (1.11) and a quadratic Lyapunov function in the state variables V (x) = x

T
Px

where P = P
T
≻ 0; the time derivative of V (x) is given by

V̇ (x, ω) = ẋ
T
Px +X

T
Pẋ = (Ax +Bω)TPx + x

T
P (Ax +Bω)

= (xT
ω
T) ( A

T
P + PA PB

B
T
P 0

)(x
ω
)

(1.13)

where we have neglected the time dependency of x(t) and ω(t) for notational reasons.
We will call the quadratic form induced by V̇ (x, ω) as F(x, ω). Let G(x, ω) = (ω−κ1y)(κ2y−

ω)∣y=Cx.
We observe that

G(x, ω) = κ2ωy − ω
2
− κ1κ2y

2
+ κ1yω

= ωκ2Cx − ω
2
− κ1κ2(Cx)(Cx) + κ1Cxω

= ωκ2Cx − ω
2
− κ1κ2x

T
C

T (Cx) + κ1x
T
C

T
ω

= (xT
ω
T) ( −κ1κ2C

T
C κ1C

T

κ2C −1
)(x

ω
) ≥ 0 for all (x, ω)
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where we have exploited the fact that Cx is a scalar, so that Cx = (Cx)T = x
T
C

T .
For proving the stability of the system we need to detemine wheter

V̇ (x, ω) < 0 for all (x, ω) s.t. (ω − κ1Cx)(κ2Cx − ω) ≥ 0 (1.14)

that is equivalent to

{(x, ω) ∶ F(x, ω) < 0} ⊆ {(x, ω) ∶ {G(x, ω) ≥ 0} (1.15)

In such context the S-Lemma proves that (1.15) is equivalent to having that ∃ τ ≥ 0 such that

F(x) + τG(x) < 0 (1.16)

In fact, the implication (1.14) its true if and only if (1.16) has solution, as proven in Theorem
(1.7).
Before proceeding in the statement and the proof of the S-Lemma for a single quadratic con-
straint we give the definition of quadratic form and mention two preliminary results.

Definition. A real quadratic form is a polynomial with only terms with degree two

qA(x1, . . . , xn) =
n

∑
i=1

n

∑
j=1

aijxixj aij ∈ R xi ∈ R ∀ i, j = 1, . . . , n (1.17)

Equivalently a real quadratic form can be expressed as

qA ∶ Rn
⟶ R

x ⟼ x
T
Ax

for some real matrix A

Theorem 1.4 (Dines).
Let us consider RN, and assume F(x), G(x) to be quadratic forms on RN.

Consider the map
η ∶X ⟶ R2

x ⟼ (F(x),G(x))
(1.18)

Then, the image η(RN) of RN through the map η, is a convex cone, i.e.

∀ x, y ∈ η(RN) and ∀ a, b positive scalars, the sum ax + by belongs to η(RN)

8



Theorem 1.5 (Hahn Banach).
Let Q and P be two convex sets in Rn s.t. Q ∩ P = ∅; then there exist h ∈ Rn, h ≠ 0 and

c ∈ R for which h
T
q ≤ c, ∀q ∈ Q and h

T
p ≥ c , ∀ p ∈ P .

Theorem 1.6. [S-Lemma for non-strict inequalities]

Consider F(x) and G(x) to be two real quadratic quadratic forms defined on a RN and define

F−
0 ≔ {x ∈ X ∶ F(x) ≤ 0} G+

0 ≔ {x ∈ X ∶ G(x) ≥ 0}

Assume moreover there exist x̃ ∈ X s.t G(x̃) > 0.

Then the following conditions are equivalent

(i) F−
0 ⊇ G+

0

(ii) ∃ τ ≥ 0 s.t. F(x) + τG(x) ≤ 0 ∀ x ∈ RN

Proof.

(ii) ⇒ (i) is an obvious implication: in fact if ∃τ ≥ 0 such that F(x) ≤ −τG(x) for all
x ∈ η(RN) , if x is such that G(x) ≥ 0 than consequently F(x) ≤ 0

(i) ⇒ (ii): Let us start by showing that if (i) is true than there exist τ1 and τ2 s.t. τ1F(x) −
τ2G(x) ≥ 0 ∀ x ∈ P , where P = η(RN) and η is the map defined as in Theorem (1.4).
We already know from the same theorem that P is a convex cone.
Consider now the set Q ⊂ R2

Q ≔ {(η1, η2) ∈ R2
∶ η1 > 0, η2 ≥ 0}

It straightforward to observe that P ∩ Q = ∅. Indeed assume by contradiction that exist
η
0
= (η01, η02) ∈ P ∩ Q: since η0 belongs to P exist x that satisfies F(x) = η

0
1 , G(x) = η

0
2 .

Belonging to Q, η02 ≥ 0, which implies η01 ≤ 0 by hypothesis (i). This means η0 cannot belong
to Q, giving a contradiction.
Since P and Q are convex sets, by Theorem (1.5) there exist an straight line that strictly sepa-
rates them, which means that exist τ1 and τ2, (τ1, τ2) ≠ (0, 0) such that :

τ1η1 − τ2η2 ≥ 0 ∀(η1, η2) ∈ P (1.19)

τ1η1 − τ2η2 ≤ 0 ∀(η1, η2) ∈ Q (1.20)

Take now (η11, η12) = (1, 0) ∈ Q and (η21, η22) = (ϵ, 1) ∈ Q, with ϵ > 0; by substituting them
in (1.20) we obtain

τ1η
1
1 − τ2η

1
2 = τ1 ≤ 0 ⇒ τ1 ≤ 0

τ1η
2
1 − τ2η

2
1 = ϵτ1 − τ2 ≤ 0

9



where the last inequality is satisfied for ϵ arbitrary small, so taking the limit ϵ → 0
+ we obtain

τ2 ≥ 0.
We prove by contradiction that τ1 ≠ 0. If we assume τ1 = 0 then τ2 ≠ 0 (τ1,τ2 cannot be both
zero) and since τ2 ≥ 0 then we conclude that τ2 > 0. By hypothesis there exists x̃ such that
G(x̃) > 0.
Take (F(x̃),G(x̃)) ∈ P. Then

0 ≤ τ1F(x̃) − τ2G(x̃) = −τ2G(x̃) < 0 for η̃ ∈ P (1.21)

that is a contradiction. Lastly, dividing by (1.19) by τ1 and calling − τ2
τ1

= τ (observe that divide
for a negative number change the verse of the inequality) we obtain that

η1 + τη2 ≤ 0 ∀ (η1, η2) ∈ P

which is equivalent to (i) ⇒ (ii).

By extending Theorem (1.6) we obtain the S-Lemma corresponding to strict inequalities,
which will be used in Chapter 3.

Theorem 1.7. [S-Lemma for strict inequalities]

Consider F(x) and G(x) to be two real quadratic forms defined on RN and define

F−
≔ {x ∈ X ∶ F(x) < 0} G+

0 ≔ {x ∈ X ∶ G(x) ≥ 0}

Assume moreover there exist x̃ ∈ RN s.t G(x̃) > 0.

Then the following conditions are equivalent

(i) F−
⊇ G+

0

(ii) ∃ τ ≥ 0 s.t. F(x) + τG(x) < 0 ∀ x ∈ RN \ {0}

Proof. (ii) ⇒ (i): as in the previous theorem.
(i) ⇒ (ii): define the set S = {x : ∥x∥ = 1, G(x) ≥ 0}, which is bounded, closed and non
empty since there exists x̃ ∈ RN such that G(x̃) > 0. From hypothesis (i) it follows that
F(x) < 0 for x ∈ S. Therefore, by Weierstrass theorem since S is compact and F is continu-
ous, we argue that supx∈S F(x) = e < 0. Hence, F(x) − e ≤ 0 ∀ x ∈ S. If we choose x ≠ 0

such that G(x) ≥ 0, then, x

∥x∥ = 1 ∈ S, and so F(x/∥x∥) − e ≤ 0, i.e. F(x) − e∥x∥2
≤ 0

for x s.t. G(x) ≥ 0.
That is, (F(x)−e∥x∥2) is a quadratic form which assumes nonpositive values for all x s.t. G(x) ≥
0. By the previous theorem, exists τ ≥ 0 that satisfies F(x)− e∥x∥2 + τG(x) ≤ 0, ∀ x ∈ RN .
Observing that e∥x∥2

< 0 for all x ≠ 0 we have F(x) − τG(x) ≤ e∥x∥2
< 0 for all

x ∈ RN \ {0}

10



Remark 1.
Theorems (1.6) and (1.7) can be extended to the case of generic quadratic functions, i.e. F(x) =
x
T
Afx + b

T
f x + cf , G(x) = x

T
Agx + b

T
g x + cg, as showed in [21]

Remark 2.
Theorems (1.6) and (1.7) can be extended to the case in which multiple quadratic constraints

are considered: consider the following conditions

(i) F−
0 ⊆ ⋂h

i=1 G
+
0i

(ii) ∃ τi ≥ 0 i = 1, . . . , h s.t. F(x) −∑n

i=1 Gi(x) ≥ 0 ∀x ∈ X

we have that (ii) ⇒ (ii) , where F−
0 is the same as the previous theorems and G+

0i = {x ∈ X ∶

Gi(x) ≥ 0}.

The implication showed above has immediate proof; however the inverse implication is not true

in general, since the map

η ∶X ⟶ Rh

x ⟼ η(x) = (F(x),G1(x), . . . ,Gh(x))

can be proven to have convex image only for h = 2. For h > 2 the proof of Theorem (1.6) fails

when it comes to find a straight line which separates the sets P and Q.
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2
Data-Driven Control

In this chapter we will be present survey on the Data-Driven approach to control design for
linear time invariant systems.
Despite not being directly used in the the stability analysis to Lur’e systems presented in the
next chapters, the results considered here have the purpose of introducing the subject of direct
data-driven control and of developing the intuition behind this approach. We will present the
Willems Fundamental Lemma in its state-space form and we will discuss its role in obtaining
a representation of both open and closed loop dynamics of a linear time invariant system by
exploiting a collection of sample data from the system itself. We will show and how to relate
such results to the design of a stabilizing controller.
Finally we will consider the case in which the data are affected by disturbances, and we will
discuss sufficient conditions under which is still possible to assure stability of the closed loop.
Given the illustrative nature of the chapter, we will omit the proofs of the presented results.

2.1 Introduction: Direct Data-Driven control

Learning from data is an essential component in engineering: the ubiquitous presence of distur-
bances, modeling errors and uncertainties require the constant adjustment from updating new
data of the employed model, and consequently of the implemented control law, in order to guar-
antee that the behaviour of the controlled system satisfies the required performances. As matter
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of facts, part of the effort in the control design phase relies in guaranteeing the stability of the
controlled system in case its dynamics differs from the the nominal one, due to the presence
of unknown dynamics. Some of the most remarkable fields based on data-dependent control
design can be found in adaptive and model reference control [22] [23].
Moreover, despite the existing results in the field of control theory which resort to of a mathe-
matical model of the system, the case in which the actual system is not known and requires to
be identified from collected samples are not uncommon.
Nowadays, fields like deep and statistical learning, which usually exploit contexts where the
amount of data available is humongous for obtaining a description of the data-generative model,
have obtained considerable performance and relevance in several applications [24][25].
As a natural consequence, data-driven paradigms have been widely pursued the direction of
control design One of the most recognized and prolific paradigm is the identification field [26].
In the system identification paradigm a system dynamics estimate is obtained using only sam-
ples collected during some experiments previous to the design phase. In such paradigm, also
defined as indirect method [27], the synthesis of the controller is performed after the estimation
of the system dynamics.
Different approaches, such as Reinforcement Learning, relies on the employment of Machine
Learning tools, in which the controller learn an optimal policy by recurring to a trial and error
oriented method [28].
However, such methods present the major drawback to be time consuming and could suffer for
the large number of iteration required to reach desired system model, in particular in the case
of systems of large dimension or with dynamics which does not allow a simple mathematical
representation. Moreover, despite being well established paradigms, the possibility of a wrong
identification of the system to be controlled has a non trivial impact on its stability.
The aim of the direct data-driven approach is then to overcome such drawbacks, by obtaining
the controller directly from the data, avoiding the system identification phase.
In recent years this field of study has achieved many relevant results, which span from control
design to optimal and nonlinear control[29] [30],[31] to model predictive control[32] and set
invariance [33].
The indirect data driven control finds its cornerstone in the Willems et al’s fundamental lemma,
which states that all trajectories that can be generated by a linear system can be represented by
a linear combination of a finite set of the system trajectories, provided that the input used to
generate such trajectories is sufficiently exciting. By a modeling point of view this allows to
represent the open loop dynamics with a singular measured trajectory, which can be considered
equivalent to be able to reconstruct the system from the data, and consequently it can be con-
sidered a sufficient condition for the effectiveness of the system identification procedure[34].
Nonetheless, what appears surprising is the fact, by exploiting a sufficiently exciting single in-
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put/output trajectory, it is also possible to represent the closed loop dynamics of the system in
presence of a state feedback input.
As pointed out in the next section, this allows to obtain a design method for a stabilizing feed-
back matrix which does not require the knowledge of the internal state of the system, and so
allows to neglect the estimation part. We refer to this control paradigm as model free design.
As we will see in the following, under suitable assumptions, the model free design can be ex-
tended to the case of noisy measured trajectories, giving robustness to the procedure, which, as
pointed out above, is a necessary requirement in control .

2.2 State space Willems Fundamental Lemma and data-driven
representation

Before presenting the main result of the chapter, the State Space Fundamental Lemma, we
introduce the notation used in the following.
Consider a signal z ∶ Z → Rn, we denote by z[k,k+T ], k ∈ Z, T ∈ N the restriction in vectorized
form of z to the interval [k, k + T ] ∩ Z, i.e.

z[k,k+T ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(k)
⋮

z(k + T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We define Hankel matrix associated to the signal z[i,j] as

Zi,t,N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(i) z(i + 1) . . . z(i +N − 1)
z(i + 1) z(i + 2) . . . z(i +N)

⋮ ⋮ ⋮

z(i + t − 1) z(i + t) . . . z(i + t +N − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

where the first subscript denotes the time at which the first sample of the signal is taken, the
second one the number of samples per each column, and the last one the number of signal
samples per each row. We say that the sequence z[0,T−1] ∈ Rn is exciting of order L if its
Hankel matrix of depth L the matrix

Z0,L,T−L+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(0) z(1) . . . z(T − L)
z(1) z(2) . . . z(T − L + 1)
⋮ ⋮ ⋮

z(L − 1) z(L) . . . z(T − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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has full row rank nL.
We observe that, in order to have a sequence that is z[0,T−1] persistently exciting of order L, the
length of the sequence must satisfy T ≥ (n + 1)L − 1.
As showed in the next theorem, the notion of persistent excitability plays a central role in
representing system trajectories by means of input/output samples: in fact a persistent exciting
input signal guarantee that the description obtained by means of the input/output samples carries
enough information on the internal dynamics to be equivalent to the analytic one, at least for
trajectories with length T .
For the moment we will focus on the fundamental lemma and its application for the case of
discrete time systems. A the end of the chapter we will briefly discuss how to extend the result
presented to the continuous time case.

Theorem 2.1 (State Space Fundamental Lemma). [35][36]

Consider the following linear time-invariant system

x(k + 1) = Ax(t) +Bu(k)
y(k) = Cx(k) +Du(k)

(2.2)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. Assume moreover that the pair (A,B) is

controllable.

Consider the following input/state/output samples measured during an experiment

U0,t,T−t+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

um(0) um(t − 1)(1) . . . um(T − t)
um(1) um(1) . . . um(T − t + 1)

⋮ ⋮ ⋮

um(t − 1) um(t) . . . um(T − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0,t,T−t+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ym(0) ym(t − 1)(1) . . . ym(T − t)
ym(1) ym(1) . . . ym(T − t + 1)

⋮ ⋮ ⋮

ym(t − 1) ym(t) . . . ym(T − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X0,T−t+1 = [xm(0), . . . , xm(T − 1)]

where the subscript ”m” indicates that we are considering measured signals.

The following statements hold:

(a) if the input um,[0,T−1] is persistently exciting of order n + t, then

rank [ U0,t,T−t+1

X0,t,T−t+1

] = n + tm (2.3)
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(b) if um,[0,T−1] is persistently exciting of order n+ t, then any t-long input-output trajectory

of system (2.2) can be represent by

[ u0,t−1

y0,t−1
] = [ U0,t,T−t+1

Y0,t,T−t+1

] g (2.4)

for some g ∈ RT−t+1.

On the other hand, any g ∈ RT−t+1 the linear combination

[ U0,t,T−t+1

Y0,t,T−t+1

] g (2.5)

is a t-long input/output trajectory of system (2.2)

Theorem (2.1) shows that for a sufficient long sequence, it is possible to represent every
system trajectory using only a measured trajectory, that is, a basis for all trajectories of the LTI
system (2.2) is formed by time-shifts of a single measured trajectory, given that the respective
input signal is persistently exciting[34].
We show now, as outlined in the introduction of the chapter, how the relationship between ex-
citability and linear representation obtained in the Fundamental Lemma can be exploited to give
a data-dependent (or model free) representation of both open loop and closed loop trajectories.

Theorem 2.2. [35] Consider again the system (2.2) and take t = 1; assume moreover to have

collected the following sampled data matrices

X0,T = [xm(0), . . . , xm(T − 1)]
X1,T = [xm(1), . . . , xm(T )]
U0,1,T = [um(0), . . . , um(T − 1)]

(2.6)

where um[0, T − 1] persistently exciting of order n + 1 so that the following condition holds

rank [ U0,1,T

X0,T

] = n +m (2.7)

Then, system (2.2) admits an open loop representation of the form

x(k + 1) = X1,T [ U0,t,T−t+1

Y0,t,T−t+1

]
†

[ u(k)
x(k)

] (2.8)

where † denotes the right-inverse.

Under the same hypothesis, consider again system (2.2) with applied input u = Kx, for some
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matrix K.

Then the closed loop dynamics can be rewritten as

x(k + 1) = X1,TGKx(k) (2.9)

where GK ∈ RT×n satisfies

[ K

In
] = [ U0,1,T

X0,T

]GK (2.10)

In particular we have K = U0,1,TGK

Notice that theorem (2.2) gives a design method for finding a stabilizing state feedback
matrix K. In fact, by considering Lyapunov stability conditions, the origin is asymptotically
stable for system (2.2) if and only if ∃P ∈ RN×N

≻ 0 such that

(A +BK)P (A +BK)T − P ≺ 0 (2.11)

for which, by using the data driven representation given by Theorem (2.2), is equivalent to

X1,TGKPG
T
KX

T
1,T − P ≺ 0 (2.12)

As showed in [35], by introducing the change of variables Q ≔ GKP and rewriting condition
(2.11) as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X1,TQP
−1
Q

T
1, T

T
− P ≺ 0

X0,TQ = P

K = U0,1,TQ(X0,TQ)−1
⟺

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X1,TQ(X0,TQ)−1QT
1, T

T
−X0,TQ ≺ 0

X0,TQ ≻ 0

K = U0,1,TQ(X0,TQ)−1
(2.13)

the problem can be reduced to find a matrix Q by means of a linear matrix inequality, as sum-
marized in the next theorem.

Theorem 2.3. Consider the discrete time system (2.2), and assume to have access to the sam-

pled data (2.6) which satisfy condition (2.7). Then for any matrix Q ∈ RT×n which satisfies

( X0,TQ X1,TQ

X
T
1,TQ

T
X0,TQ

) ≺ 0 (2.14)

the states feedback matrix obtained as K = U0,1,TQ(X0,TQ)−1 stabilizes system (2.2).

We observe that the data driven approach to the stabilization problem of LTI system can be
obtained directly by the data exploiting a linear matrix inequality, for which the solution can be
found by efficient algorithms.
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Guarantee the efficiency in solve the Lyapunov stability problem will be of central interest in
the extension of data driven control to the stabilization of Lur’e systems presented in the next
chapters.

Remark. We observe that for control design purpose in order to obtain a data driven descrip-

tion of a continuous time system closed loop dynamics it is sufficient to choose a input sequence

persistently exciting in the a discrete time sense.

In fact, consider the continuous time system

x(k + 1) = Ax(t) +Bu(k)
y(k) = Cx(k) +Du(k)

(2.15)

by sampling system (2.15) with arbitrary sampling period ∆ we can collect the following in-

put/state samples
X0,T = [xm(0), xm(∆) . . . , xm(∆(T − 1))]
X1,T = [ẋm(∆), . . . , ẋm(∆T )]
U0,1,T = [um(0), um(∆), . . . , xm(∆T − 1)]

(2.16)

One can notice, as discussed in [35], that if the sequence um(0), um(∆), . . . , xm(∆T − 1)
is persistently exciting of order n + 1 (in the discrete time sense), then the application of the

zero-order hold signal obtained from the input samples ensures that the condition

rank [ U0,t,T−t+1

X0,t,T−t+1

] = n + tm (2.17)

is satisfied, allowing the same closed loop data-driven representation as the one obtained for

discrete time systems.

Similarly on what done for discrete time case, the controller synthesis can be then obtained by

using the continuous time Lyapunov matrix equation for stability

(A +BK)TP + P (A +BK) ≺ 0

for which, applying the data driven representation we obtain

X1,TGKP + PG
T
KX

T
1,T ≺ 0

In complete analogy with the discrete time case it follows that any matrix Q that satisfies

{
X1,TQ +Q

T
X

T
1,T ≺ 0

X0,TQ ≺ 0
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is such that the matrix K = U0,1,TQ(X0,TQ)−1 is a stabilizing feedback gain.

2.2.1 Controller design in presence of measurements disturbances

As discussed in the introduction of the chapter, to obtain a control law which is able to coun-
teract the effect of modeling uncertainties is a necessity in control. In a data driven framework,
since the control law is obtained by means of combination of state/output sampled data, the no-
tion of robustness translates into stability guarantees in the case of the samples of the measured
system trajectories are corrupted by noise.
Given the vastness of results in this subject we will limit ourselves to a basic case which will
help the intuition on the results presented in the in the next chapter.
Consider a linear time invariant system of the form

x(k + 1) = Ax(tk) +Bu(k) + ω(k)
y(k) = Cx(k) +Du(k)

(2.18)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and ω(⋅) is an unknown measurement
noise, for which it is not assumed any particular statistics.
In presence of the signal ω(⋅) the state measurements becomes equal to

Z0,T = X0,T +W0,T

Z1,T = X1,T +W1,T

(2.19)

where
W0,T = [ωm(0), . . . , ωm(T − 1)]
W1,T = [ωm(1), . . . , ωm(T )]

(2.20)

are the (unknown) noise measurements.
Before presenting the noise counterpart of theorem (2.3), we give the following assumptions

Assumption 1. The matrices

[ U0,1,T

Z0,T

] , Z1,T (2.21)

have full row rank.

Assumption 2.
R0,TR

T
0,T ⪯ γZ1,TZ

T
1,T (2.22)

for some γ > 0, where R0,T ∶= AW0,T −W1,T .

Theorem 2.4. Suppose assumptions 1 and 2 hold. Then, if there exists Q ∈ Rn×T and α > 0
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such that

(Z0,TQ − αZ1,TZ
T
1,T Z1,TQ

Z
T
1,TQ

T
Z0,TQ

) ≺ 0

( IT Q

Q
T

Z0,TQ
) ≺ 0

(2.23)

with γ < α
2/(4 + 2α).Then K = U0,1,TQ(Z0,TQ)−1 is a stabilizing controller

We spend few words on Assumption 1 and 2. Both of them are equivalent to requiring that
the loss of information caused by the presence of noise is small enough.
We can in fact observe that Assumption 1 is the noise case equivalent of condition (2.7), which
allow the possibility of represent the closed loop dynamics. However, it is intuitive that such
condition is not sufficient to guarantee that the stability of the closed loop, since such assump-
tion can be verified even in presence of a noise that is so large that the data does not carry any
useful information.
In this prospective, Assumption 2 plays the role of a matrix equivalent signal to noise ratio con-
dition. Indeed, even if one can notice that, when Assumption 1 holds, Assumption 2 is always
satisfied for a sufficiently large γ. However, in order to get closed loop stability it is necessary
to restrict the magnitude of γ, as showed in the previous theorem. In such sense, the value of α
represents a way to quantify the required SNR to guarantee the stability of the closed loop.
More refined approaches to deal with the presence of measurement noise can be implemented
exploiting Lyapunov stability theory [37] or the S-Lemma [38].
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3
Multivariate Lur’e System and Data-Driven

absolute stabilization

In this chapter we will consider the problem of the absolute stabilization of a multivariate Lur’e
system, which is a natural multi-input/multi-output extension of the problem considered in
chapter one.
It will however assume that the dynamics of the system to stabilize is partially unknown. In-
spired by the approaches illustrated in chapter 2, we will resort to a data driven representation
of the system dynamics to synthesize a stabilizing feedback controller. The solution of the
problem will be obtained by exploiting a quadratic Lypunov function together with the strictly
inequality S-Lemma. Such result will be extended to the case in which the internal dynamics is
completely unknown by including the action of the nonlinearity in the controller design. Finally
we will consider the problem in the case of the presence of disturbances in the data collecting
phase. We will refer to [39],with the exception of the second theorem presented which is an
original formulation inspired by the same article.
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3.1 Problem Framework

Consider a Lur’e system of the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Bu(t) + Lω(t)
y(t) = Hx(t)
ω(t) = φ(t, y(t))

(3.1)

where x(t) ∈ Rn is the internal state of the system, y(t) ∈ Rp is the output, u(t) ∈ Rm is the
control input and φ(⋅, ⋅) ∶ R × Rp

→ Rq is a memoryless and possible time-varying function,
which in line with Chapter 1, will be called nonlinearity. Consequently, we have A ∈ Rn×n,
B ∈ Rn×m, L ∈ Rn×q, H ∈ Rp×n.
We require moreover that the nonlinearity satisfies the following quadratic inequality

(yT ω
T) ( Q̂ Ŝ

Ŝ
T

R̂
)(y

ω
) ≥ 0 (3.2)

for all ω = φ(t, y) and for all pairs (t, y) in R × Rp.
We assume Q̂ = Q̂

T
∈ Rp×p, Ŝ ∈ Rp×q and R̂ ≺ 0 ∈ Rq×q. In the course of the analysis we will

sometimes also require the constraint to be regular, which means we will assume the existence
of a pair (t̄, ȳ) such that (3.2) holds with strict inequality.
Note that considering R̂ ≺ 0 implies φ(t, 0) = 0 ∀ t ∈ R, assuring the origin to be an
equilibrium: in fact evaluating (3.2) in x = 0 we have

(yT ω
T) ( Q̂ Ŝ

Ŝ
T

R̂
)(y

T

ω
T)

∣
x=0

= (Hx
T

ω
T) ( Q̂ Ŝ

Ŝ
T

R̂
)(Hx

T

ω
T )

∣
x=0

= ω
T
R̂ω∣x=0 = φ(t, 0)T R̂φ(t, 0) ≥ 0

(3.3)

which under the assumption R ≺ 0 can satisfied if and only if φ(t, 0) = 0 ∀ t ∈ R.
We observe that (3.2) represents an extension of the quadratic constraints (1.5) considered in
chapter one: in fact, if we consider K1, K2 ∈ Rq×p the function φ(t, y) satisfies the (multi-
dimensional) sector constraint (see [10], definition 2.6) if the inequality (φ(t, y)−K1y)T (K2y−

φ(t, y)) ≥ 0, is fulfilled for any (t, y) ∈ R×Rp. In such case, we have Q̂ = −KT
2 K1 −K

T
1 K2,

Ŝ = K
T
1 +K

T
2 and R̂ = −2Iq.

Condition (3.2) can be used to model more general constraints on the function φ(t, y): for
example by taking Q̂ = −ℓIn, Ŝ = 0 and R̂ = −Iq for ℓ ≥ 0 it is possible to model norm

bounded nonlinearities, which satisfies the inequality φ(t, y)Tφ(t, y) ≤ ℓy
T
y. Constraints of

this type are considered in robust nonlinear control and absolute stability theory[40],[41].
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Figure 3.1: Block scheme of the multivariate Lur’e system (3.1)

In this framework we will assume that the matrices A and B, which regulate respectively the
state and the input dynamics in equation (3.1), are unknown, whereas we assume to know the
matrix L, which regulates the effect of the nonlinearity in the state dynamics, and the matrix H ,
which regulates the output dynamics.

3.2 Data-Driven absolute stabilization

Following the ideas presented in chapter 2, to overcome the lack of knowledge in the dynamics,
we exploit an analogous representation of the system based on data: it is in fact assumed we are
able to collect the following matrices containing data-samples from an experiment conducted
previous to the controller synthesis

U0 ∶= [u(0) ... u(T − 1)]
X0 ∶= [x(0) ... x(T − 1)]
X1 ∶= [ẋ(0) ... ẋ(T − 1)]
F0 ∶= [ω(0) ... ω(T − 1)]

(3.4)

where X0, X1 ∈ Rn×T , U0 ∈ Rm×T and L0 ∈ Rq×T .
We remark that having access to F0 implies that the action of the non linear block must to be
physical detached from the state dynamics, as illustrated in figure (3.1). In order to guarantee
the possibility of describe the system dynamics using the data, we make the assumption that the
the matrix

W0 = [U0

X0

] ∈ R(m+n)×T (3.5)

is full row rank.
We point out however that, differently from the linear case, there is no guarantee that such re-
quirement is met, even when the applied input is a persistently exciting signal of order equal or
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greater than n + m. As consequence, the rank condition on (3.5) is considered to be an hard
assumption.
The problem to be solved is then to find, under the assumption that W0 has full row rank, a
state feedback controller assuring the global asymptotically stability of the origin for all nonlin-
earities φ(t, y) which obey condition (3.2). In order to solve the absolute stability problem of
system (3.1), we consider a quadratic Lyapunov function of the type

V (x) = x
T
Px (3.6)

When the applied control input is u(t) = Kx(t), the time derivative of V (x(t)) is

V̇ (x, ω) = ẋ
T
Px +X

T
Pẋ = ((A +BK)x + Lω)TPx + x

T
P ((A +BK)x + Lω)

= (xT
ω
T) ( (A +BK)TP + P (A +BK) PL

L
T
P 0

)(x
ω
)

(3.7)

We need V̇ (x, ω) to be negative ∀ (x, ω) ≠ 0 with ω satisfying conditions (3.1).
We observe the matrix obtained in (3.7) represents the state-feedback analogous of the one
encountered in the discussion about the application of the S-lemma (see (1.13)).
Since the matrices A and B are unknown, similarly to what we did in the linear case, we exploit
the collected data (3.4). By the assumption that W0 is full row rank, for each K ∈ Rn×m there
exists a matrix G ∈ RT×n such that

[K
In
] = [U0

X0

]G (3.8)

The following representation of the closed loop dynamics holds

A +BK = [B A] [K
In
] = [B A] [U0

X0

]G

= AX0G +BU0G = (AX0 +BU0 + LF0 − LF0)G
= (X1 − LF0)G = XLG

(3.9)

where we exploit X1 = AX0 +BU0 + LF0.
By using the representation (3.9) the time derivative (3.7) becomes

V̇ (x, ω) = (xT
ω
T) ((XLG)TP + PXLG PL

L
T
P 0

)(x
ω
) (3.10)
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We reformulate the constraints (3.2) in order to make explicit the dependence on the system
state, for which we obtain

(yT ω
T) ( Q̂ Ŝ

Ŝ
T

R̂
)(y

T

ω
T) = (Hx

T
ω
T) ( Q̂ Ŝ

Ŝ
T

R̂
)(Hx

ω
) =

(xT
ω
T) (H

T
0

0 I
)( Q̂ Ŝ

Ŝ
T

R̂
)(H 0

0 I
)(x

ω
) =

(xT
ω
T) (Q S

S R
)(x

ω
) ≥ 0

(3.11)

where we have defined the matrices Q = Q
T

= H
T
Q̂H ∈ Rn×n, S = H

T
Ŝ ∈ Rn×p and

R = R̂ ∈ Rq×q. With some abused of notation we identify with 0 the matrices containing all
zero elements of adequate dimension; we will apply the same notation through the course of the
chapter.
The relationship between V̇ (x, ω) in (3.7) and its data driven representation (3.10) lead to the
following stability theorem

Theorem 3.1. Consider a Lur’e system of the form (3.1), with ω satisfying the sector conditions

(3.2).
Under the data-driven representation (3.9), the origin is a globally asymptotically stable equi-

librium of system (3.1) if exist two matrices P = P
T
≻ 0 ∈ Rn×n and G ∈ RT×n such that

(xT
ω
T) ((XLG)TP + PXLG PL

L
T
P 0

)(x
ω
) < 0 (3.12)

for all (x, ω) such that

(xT
ω
T) (Q S

S R
)(x

ω
) ≥ 0

Therefore, the problem of finding a stabilizing matrix K such that the origin is globally
asymptotically stable reduces to finding two matrices P and G for which Theorem (3.1) is
satisfied.
Before presenting the next theorem, in which it is displayed a solution to the problem, we remind
the definition of Schur Complement and its use in characterize negative definite matrices, which
will be the key of the proof.

Definition. Let M ∈ Rn×n be a 2 × 2 block matrix

M = (A B

C D
)
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where A and D are respectively p × p and q × q matrices, with n = p + q, and consequently B

and C are respectively p × q and q × p matrices.

Assuming D invertible, the Schur complement of the matrix M is defined as

M/D ≔ A −BD
−1
C

Proposition. For any 2 × 2 symmetric block matrix M

M = ( A B

B
T

C
)

if C is invertible, then M ≺ 0 if and only if C ≺ 0 and A −B
T
C

−1
B ≺ 0.

We are now ready to state the following theorem.

Theorem 3.2. Consider a Lur’e system of the form (3.1) with nonlinearity ω satisfying the

sector conditions (3.2) and assume that the matrix W0 defined in (3.5) has full row rank. Assume

moreover that the constraint (3.2) to be regular.

We have the following cases

(i) if Q ⪰ 0, the two matrices P , G satisfying Theorem (3.1) exist if and only if there exists a

matrix Y ∈ RT×n which satisfies

⎛
⎜⎜⎜⎜
⎝

Y
T
XL +XLY L +X0Y S X0Y Q

1/2

(L +X0Y S)T R 0

(X0Y Q
1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.13)

(ii) if Q = 0, the two matrices P , G satisfying Theorem (3.1) exist if and only if there exists a

matrix Y ∈ RT×n which satisfies

(Y
T
XL +XLY L +X0Y S

(L +X0Y S)T R
) ≺ 0 (3.14)

(iii) if Q ⪯ 0, the two matrices P , G satisfying Theorem (3.1) exist if there exists a matrix

Y ∈ RT×n which satisfies the same matrix inequality (3.14). In such a case regularity of

the constraint (3.2) is not required

In all three cases the stabilizing matrix K is given by K = U0Y (X0Y )−1

Proof. As stated in Theorem (3.1) the desired condition is that the inequality

(xT
ω
T) ((XLG)TP + PXLG PL

L
T
P 0

)(x
ω
) < 0 (3.15)
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is fulfilled for all (x, ω) such that

(xT
ω
T) (Q S

S R
)(x

ω
) ≥ 0 (3.16)

We know by the strict-inequality S-Lemma (Theorem (1.7)) that the inequality (3.15) is satisfied
for all pairs (x, ω) for which (3.16) holds if and only if there exists τ ≥ 0 such that

((XLG)TP + PXLG + τQ PL + τS

L
T
P + τS

T
τR

) ≺ 0 (3.17)

We note that τ must be greater than zero: indeed, since a if τ = 0 then matrix in (3.17) cannot
be negative definite having the lower diagonal block equal to zero.
It is therefore possible remove τ from the inequality by diving by τ itself and rename, with
some abuse of notation, P

τ
= P

τ ((XLG)T P

τ
+ P

τ
XLG +Q LP

τ
+ S

P
T P

τ
+ S

T
R

) ≺ 0 (3.18)

((XLG)TP + PXLG +Q PL + S

L
T
P + S

T
R

) ≺ 0 (3.19)

where diving by τ does not change the sign of the inequality since it is a strictly positive number.
Case 1: Assume Q ⪰ 0

Consider the matrix (3.19). By Schur complement, that matrix is negative definite if and only if
(3.19)

⎛
⎜⎜⎜⎜
⎝

(XLG)TP + PXLG PL + S Q
1/2

L
T
P + S

T
R 0

(Q1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.20)

where Q
1/2 is the square root of Q, that exists because Q ⪰ 0.

By right and left multiplying for diag(P−1
, I, I) we obtain

⎛
⎜⎜⎜⎜
⎝

P
−1
G

T
X

T
L +XLGP

−1
L + P

−1
S P

−1
Q

1/2

L
T + S

T
P

−1
R 0

(Q1/2)TP−1
0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.21)

By defining Y = GP
−1, we obtain that X0P = X0GP

−1
= P

−1 which allows us to substitute
P

−1 with X0Y and reducing the original problem in the two variables G and P to a problem in
one variable Y , which lead to (3.13). Finally,considering that relation K = U0G, given (3.8),
and that G = Y P we obtain K = U0G = U0Y P = U0Y (X0Y )−1.
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Case 2: assume Q = 0; the proof is identical to case 1 up to condition (3.19), which now must
hold without the matrix Q, i.e.

((XLG)TP + PXLG PL + S

L
T
P + S

T
R

) ≺ 0 (3.22)

By right and left multiplying by diag(P−1
, I) and using the same change of variables as in case

1 we obtain the statement in (3.14). The equivalence K = U0Y (X0Y )−1 s given again by the
change of variables adopted
Case 3: assume Q ⪯ 0; it is straightforward to observe that condition if condition (3.22) holds,
than

((XLG)TP + PXLG +Q PL + S

L
T
P + S

T
R

) =

((XLG)TP + PXLG PL + S

L
T
P + S

T
R

) + (Q 0

0 0
) ≺ 0

(3.23)

since Q ⪯ 0. Using again the same change of variables we obtain that (3.14) is a sufficient
condition to (3.23) to hold.

Remark. In the proof case 3 we have neglected the regularity hypothesis: that is a consequence

of the sufficiency implication in Theorem (1.7). In fact, by calling F(x, ω) the quadratic form

obtained from matrix (3.10) and G(x, ω) the one from the last equality in (3.11) we are exploit-

ing the following implication

if ∃τ ≥ 0 s.t F(x, ω) + τG(x, ω) < 0 ∀(x, ω) ≠ 0

then G(x, ω) > 0 ⇒ F(x, ω) < 0
(3.24)

which is an obvious consequence. The regularity assumption must be valid to prove that the

opposite implication holds, that is:

if G(x, ω) > 0 ⇒ F(x, ω) < 0

then ∃τ ≥ 0 s.t F(x, ω) + τG(x, ω) < 0 ∀(x, ω) ≠ 0
(3.25)

as showed in the proof of the S-Lemma.
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3.2.1 Relaxing prior knowledge in the system dynamics

We notice that the previous solution to the absolute stabilization problem rely on the prior
knowledge of the matrices H and L. Indeed, to apply the strict-inequality S-Lemma, we had
to make explicit the relationship between the nonlinearity and the state, while in order exploit
the data-driven formulation (3.9) it is necessary describe the influence of the nonlinearity on the
state represented by L.
In the case the nonlinear function φ(t, y) can be measured for each instant t, then is possible to
include the additional information in the design of the controller, discarding the prior knowledge
on the matrix and L.
Such assumption appears reasonable under the hypothesis that the non linear block is physically
detached from linear time invariant system, which has been already considered to assure the
possibility of collect sample data of such a block.
In this case the feedback input becomes then

u(t) = Kx(t) +Mω(t) (3.26)

where K and M are the feedback gains to be designed.
We reformulate then assumption (3.5) by consider the case in which the matrix

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

F0

U0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(m+n)×T (3.27)

has full row rank.
Under assumption (3.27) for any matrix [K M] ∈ Rm×(n+q) exists a matrix G = [G1 G2] ∈

RT×(n+q), where G1 has n columns and G2 has q columns such that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0n×q

0q×n Iq

K M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

F0

U0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[G1 G2] (3.28)

from which follows the representation holds

[A +BK∣L +BM] = [A L] +B [K M] = [A L B]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0 0n×q

0q×n Iq

K M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [A L B]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

F0

U0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[G1 G2] = X1 [G1 G2]

(3.29)
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where we have exploited X1 = AX0 +BU0 + LF0.
In the next theorem we address how to find a stabilizing controller [K M] by using a the data
driven description of the closed loop dynamics depicted above; we will show the proof only for
the case in which Q ⪰ 0, since similarly to the previous proof the others are similar.
Before giving the statement of the theorem, we rewrite the on the time derivative of the quadratic
Lyapunov function V (x) = x

T
Px under the input u = Kx +Mω

V̇ (x, ω) = ẋ
T
Px +X

T
Pẋ

= ((A +BK)x + (L +BM)ω)TPx + x
T
P ((A +BK)x + (L +BM)ω)

= (xT
ω
T) ( (A +BK)TP + P (A +BK) P (L +BM)

(L +BM)TP 0
)(x

ω
)

(3.30)

which, under the representation (3.29), becomes

(xT
ω
T) ( G

T
1X

T
1 P + PX1G1 PX1G2

G
T
2X

T
1 P 0

)(x
ω
) (3.31)

for which the desired condition is that (3.31) is negative for all (x ω), with ω satisfying the sec-
tor conditions; similar to what done in the previous chapter we summarise such considerations
in the following theorem

Theorem 3.3. Consider a Lur’e system of the form (3.1) with ω satisfying the sector conditions

(3.2), and consider a quadratic Lyapunov function x
T
Px for some,P ∈ Rn×n, P = P

T
≻ 0.

Under the data-driven representation (3.29) the origin is a globally asymptotically stable equi-

librium of system (3.1) if exist two matrices P ∈ Rn×n and G ∈ RT×n such that

V̇ (x, ω) = (xT
ω
T) ( G

T
1X

T
1 P + PX1G1 PX1G2

G
T
2X

T
1 P 0

)(x
ω
) < 0 (3.32)

for all (x, ω) such that

(xT
ω
T) (Q S

S R
)(x

ω
) ≥ 0

We are now ready to present the next result

Theorem 3.4. Consider a Lur’e system of the form (3.1) and assume that the matrix Ψ in (3.27)
has full row rank. Assume moreover the constraint (3.2) to be regular and that Q ⪰ 0.

Then there exist two matrices P , G satisfying Theorem (3.3) if and only there exist Y1 ∈
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RT×n,Y2 ∈ RT×q and W ∈ Rn×n such that the conditions

⎛
⎜⎜⎜⎜
⎝

Y
T
1 X

T
1 +X1Y1 X1Y2 +WS WQ

1/2

Y
T
2 X

T
1 + S

T
W R 0

(Q1/2)TW 0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.33)

[X0Y1 −W X0Y2

F0Y1 F0Y2 − Iq
] = 0 (3.34)

are satisfied.
Moreover,the stabilizing controllers K and M are given respectively by K = U0Y1(X0Y1)−1

and M = U0Y2.

Proof. Similarly to the previous proof, we apply the non strict S-Lemma to the quadratic in
(3.31), from which we obtain the condition

( G
T
1X

T
1 P + PX1G1 + τQ PX1G2 + τS

G
T
2X

T
1 P + τS

T
τR

) ≺ 0 (3.35)

Using the same argument used for the proof of point (i) in Theorem (3.2), we can assume τ to
be positive, and so remove from the formulation.
By the Schur complement, we argue that (3.35) implies

⎛
⎜⎜⎜⎜
⎝

G
T
1X

T
1 P + PX1G1 PX1G2 + S Q

1/2

G
T
2X

T
1 P + S

T
R 0

(Q1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.36)

By right and left multiplying by diag(P−1
, I, I) we finally obtain a result similr to the one in

(3.21)
⎛
⎜⎜⎜⎜
⎝

P
−1
G

T
1X

T
1 +X1G1P

−1
X1G2 + P

−1
S P

−1
Q

1/2

G
T
2X

T
1 + S

T
P

−1
R 0

(Q1/2)TP−1
0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.37)

By defining W ≔ P
−1, Y1 ≔ G1P

−1 and Y2 ≔ G2 we obtain the first part of the statement. We
now consider the condition

[ In 0n×q

0q×n Iq
] = [X0

F0

] [G1 G2] = [X0G1 X0G2

F0G1 F0G2

] (3.38)

imposed in (3.28). By taking the transpose and multiplying both matrices on the left by the
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block diagonal matrix diag(P−1
, Ip) we obtain

[P
−1

0n×q

0q×n Iq
] = [P

−1
G

T
1X

T
0 P

−1
G

T
1 F

T
0

G
T
2X

T
0 G

T
2 F

T
0

]

[ W 0n×q

0q×n Iq
] = [Y

T
1 X

T
0 Y

T
1 F

T
0

Y
T
2 X

T
0 Y

T
2 F

T
0

]
(3.39)

which follows by recalling that we defined P
−1

= W . By subtracting to each terms the left
hand side of the equation, and taking the transpose again we obtain the constraint on equation
(3.33). Finally, we have K = U0G1 = U0Y1P = U0Y1(X0Y1)−1 and M = U0Y2

3.3 Stabilization in presence of disturbed data

We now examine now the case in which the system is affected by disturbances during the
process of collecting data. Hence, we introduce the presence of noise in system (3.1), namely
we focus on a system described by the equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Bu(t) + Lω(t) + Ed(t)
y(t) = Hx(t)
ω(t) = φ(t, y(t))

(3.40)

where d(t) ∈ Rs is an unknown signal which represent the disturbances affecting the dynamics
during the data-collecting phase, while E ∈ Rn×s is a known matrix that models how the
disturbance enters the system state.
In presence of the disturbance d(t), alongside the data collected in (3.4)

U0 ∶= [u(0) ... u(T − 1)]
X0 ∶= [x(0) ... x(T − 1)]
X1 ∶= [ẋ(0) ... ẋ(T − 1)]
F0 ∶= [ω(0) ... ω(T − 1)]

(3.41)

we must consider matrix containing the noise samples

D0 ∶= [d(0) ... d(T − 1)]

which is unknown.
Accordingly we have X1 = AX0 +BU0 + LF0 + ED0.
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We observe that assuming the matrix W0 defined in (3.5) to be still full row rank, so that

[K
In
] = [U0

X0

]G

Then the closed loop representation (3.9) becomes

A +BK = [B A] [K
In
] = [B A] [U0

X0

]G

= AX0G +BU0G = (AX0 +BU0 + LF0 − LF0 + ED0 − ED0)G
= (X1 − LF0 − ED0)G = (XL − ED0)G

(3.42)

and, in result of that, the data-driven representation of the time derivative of V (x) = x
T
Px in

(3.10) translates to

V̇ (x, ω) = (xT
ω
T) (G

T (XL − ED0)TP + P (XL − ED0)G PL

L
T
P 0

)(x
ω
) < 0 (3.43)

Retracing the same steps as in Theorem (3.2) we obtain that the closed loop system is absolute
stable if there exists Y ∈ RT×n for which the two following matrix inequalities are satisfied,
respectively for the cases of Q ⪰ 0

⎛
⎜⎜⎜⎜
⎝

Y
T (XL − ED0)T + (XL − ED0)Y L +X0Y S X0Y Q

1/2

(L +X0Y S)T R 0

X0(Y Q
1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.44)

and in the case Q = 0, Q ⪯ 0

(Y
T (XL − ED0)T + (XL − ED0)Y L +X0Y S

(L +X0Y S)T R
) ≺ 0 (3.45)

However such condition cannot be actually checked, due to the presence of the unknown vector
D0.
To get rid from the dependence D0 we introduce the following condition on the disturbance
matrix:

D0 ∈ D ≔ {D ∈ Rn×T
∶ DD

T
≺ ∆∆

T} (3.46)

where ∆ is some known matrix.
We make the following observation.

Remark. For every matrices Γ ∈ Rk×n and Θ ∈ Rn×T , where k is arbitrary, and for every
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ϵ > 0, D0 ∈ D we have that

(ϵΓD0 −Θ
T )(ϵΓD0 −Θ

T )T = ϵ
2
ΓD0D

T
0 − ϵΓΘ − ϵΘ

T
D0Γ

T
+Θ

T
Θ ⪰ 0 (3.47)

From this it follows that

ϵ
2
ΓD0D

T
0 Γ

T
+Θ

T
Θ ⪰ ϵΓΘ + ϵΘ

T
D0Γ

T (3.48)

finally, dividing by ϵ and exploiting condition (3.46) we obtain

ϵΓ∆∆
T
Γ
T
+ ϵ

−1
Θ

T
Θ ⪰ ΓD0Θ +Θ

T
D0Γ

T (3.49)

Before state the solution of the absolute stabilization problem with noisy measurements we
give the noise equivalent of Theorem (3.1)

Theorem 3.5. Consider a Lur’e system of the form (3.1), with ω satisfying the sector conditions

(3.2).
Under the data-driven representation (3.9), the origin is a globally asymptotically stable equi-

librium of system (3.1) if exist two matrices P = P
T
≻ 0 ∈ Rn×n and G ∈ RT×n such that

(xT
ω
T) (((XL − ED0)G)TP + P (XL − ED0)G PL

L
T
P 0

)(x
ω
) < 0 (3.50)

for all (x, ω) such that

(xT
ω
T) (Q S

S R
)(x

ω
) ≥ 0

We now give the solution to the absolute stability problem in the case of disturbed collected
data. Again, since the proofs of the three items follow the same arguments, we will present only
the one for the first case.

Theorem 3.6. Consider a Lur’e system of the form (3.40) nonlinearity ω satisfying the sector

conditions (3.2) and assume that the matrix W0 defined in (3.5) has full row rank. Assume

moreover that the constraint (3.2) to be regular.

We have following cases

(i) if Q ⪰ 0, the two matrices P , G satisfying Theorem (3.5) exist if and only if there exists a
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matrix Y ∈ RT×n and a scalar ϵ > 0 which satisfies

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Y
T
XL +XLY L +X0Y S X0Y Q

1/2
Y

T

(L +X0Y S)T R 0 0

X0(Y Q
1/2)T 0 −I 0

Y 0 0 −ϵI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≺ 0 (3.51)

(ii) if Q = 0, the two matrices P , G satisfying Theorem (3.5) exist if and only if there exists a

matrix Y ∈ RT×n and a scalar ϵ > 0 which satisfies

⎛
⎜⎜⎜⎜
⎝

Y
T
XL +XLY L +X0Y S Y

T

(L +X0Y S)T R 0

Y 0 −ϵI

⎞
⎟⎟⎟⎟
⎠
≺ 0 (3.52)

(iii) if Q ⪯ 0,the two matrices P , G satisfying Theorem (3.5) exist if there exists a matrix

Y ∈ RT×n and a scalar ϵ > 0which satisfies the same matrix inequality above (3.14). In

such case the regularity of constraint (3.2) is not required

In all three cases the stabilizing matrix K is given by K = U0Y (X0Y )−1

Proof. We start by rewriting the condition from stability in presence of disturbed data from
(3.44)

⎛
⎜⎜⎜⎜
⎝

Y
T
X

T
L − Y

T
D

T
0 E

T +XLY − ED0Y L +X0Y S X0Y Q
1/2

(L +X0Y S)T R 0

X0(Y Q
1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜
⎝

Y
T
X

T
L +XLY L +X0Y S X0Y Q

1/2

(L +X0Y S)T R 0

X0(Y Q
1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
+
⎛
⎜⎜⎜⎜
⎝

−Y T
D

T
0 E

T − ED0Y 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

(3.53)

By calling Γ = −E, we have −Y T
D

T
0 E

T − ED0Y = ΓD0Y + Y
T
D

T
0 Γ

T .
Exploiting the matrix inequality (3.49) we obtain

⎛
⎜⎜⎜⎜
⎝

−Y T
D

T
0 E

T − ED0Y 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠
⪯

⎛
⎜⎜⎜⎜
⎝

ϵ
−1
Y Y

T + ϵE∆∆
T
E 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

(3.54)
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which leads to

⎛
⎜⎜⎜⎜
⎝

Y
T
X

T
L − Y

T
D

T
0 E

T +XLY − ED0Y L +X0Y S X0Y Q
1/2

(L +X0Y S)T R 0

X0(Y Q
1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠
⪯

⎛
⎜⎜⎜⎜
⎝

Y
T
X

T
L +XLY + ϵ

−1
Y Y

T + ϵE∆∆
T
E L +X0Y S X0Y Q

1/2

(L +X0Y S)T R 0

X0(Y Q
1/2)T 0 −I

⎞
⎟⎟⎟⎟
⎠

(3.55)

By Schur complement the matrix (3.55) is negative definite if and only if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Y
T
XL +XLY L +X0Y S X0Y Q

1/2
Y

T

(L +X0Y S)T R 0 0

X0(Y Q
1/2)T 0 −I 0

Y 0 0 −ϵI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≺ 0 (3.56)

holds true.
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4
Non polynomial S-Lemma and absolute

stability in non Euclidean spaces

In this chapter we will discuss the extension of the S-Lemma to non Euclidean spaces, i.e. finite
dimension vector spaces (e.g. Rn) equipped with general ℓp norms, and how the result applies
to stability analysis of a single-input/single-output Lur’e system when the Lyapunov function
considered can be non quadratic.
We will give an introduction of the mathematical tools used to study stability in non Euclidean
spaces, alongside with a detailed derivation of the derivation of the non polynomial S-Lemma,
followed by its application to absolute stability.
We consider as references [42] [43] [44] [45].

4.1 Mathematical Preliminaries

We start our analysis by giving the definitions of Log norms and pairings, which will be essential
in extending the classical Lyapunov stability theory to non Euclidean spaces.
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4.1.1 Log Norms and Pairings on normed spaces

Definition. Let ∥⋅∥ denote both a norm on Rn or an operator norm on matrices, depending on

the context. The log norm of a matrix A ∈ Rn×n is defined as

µ(A) ∶= lim
h→ 0+

∥In + hA∥ − 1

h
(4.1)

Remark. A matrix norm is a vector norm in the space of matrices. The matrix norm induced

by a (finite) vector space ℓp norm is defined as

sup
x≠0n

∥Ax∥p

∥x∥p

where 0n identifies the vector in which all entries are zeros.

The log-norm, despite its name, does not represent a norm, since it can assume negative
values. The log norm can be considered to represent a measure on the action of the matrix A

when interpreted as an operator on Rn. More precisely, a one side derivative of the map ∥⋅∥
applied to the point I in the direction of A [46].

Remark. Beside the applications considered in the course of this chapter and the following

one, the log-norm provides an upper bound to the trajectories of an autonomous system of the

form

ẋ(t) = Ax(t)

Where A is an n × n matrix. In fact, for a given norm, it holds

∥x(t)∥ ≤ e
µ(A)∥x(0)∥

Moreover, we have that

µ(A) = min{b ∈ R ∶ ∥x(t)∥ ≤ e
b∥x(0)∥ for all t > 0,∥x(0)∥ ∈ Rn}

Definition. A pairing on Rn is a map [[⋅, ⋅]] ∶ Rn × Rn
⟶ Rn satisfying the following

properties

i) (Subadditivity and continuity of first argument) : [[x1+x2, y]] ≤ [[x1, y]]+[[x2, y]] ∀x1, x2, y ∈

Rn and [[⋅, ⋅]] is continuous in the first argument,

ii) (Weak homogeneity) : [[αx, y]] = [[x, αy]] = α[[x, y]] ∀x, y ∈ Rn
, α ≥ 0; moreover

[[−x,−y]] = [[x, y]],

iii) (Positive definiteness) : [[x, x]] > 0 ∀x ≠ 0n,
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iv) (Cauchy-Schwarz inequality ) : ∣[[x, x]]∣ ≤ [[x, x]]1/2[[y, y]]1/2 ∀x, y ∈ Rn

A pairing [[⋅, ⋅]] is said to be compatible with a norm ∥⋅∥ if [[x, x]] = ∥x∥2 for all x ∈ Rn.

The notion of pairing can be though as a weakened version of a inner product: indeed, it allows
to connect the product of two vector to a general ℓp norm, overcoming the fact that general ℓp
spaces do not admit inner products induced by a norm.

In the following we will consider pairings satisfying certaing properties, i.e. the Lumer’s equal-
ity and the curve norm derivative. Such properties will be the key in the derivation of the non
polynomial S-lemma and in the application of non quadratic Lyapunov functions.

Definition (Non polynomial 2-forms).
Given a pairing [[⋅, ⋅]], compatible with the ℓp norm ∥⋅∥, p ≠ 2 and a matrix P ∈ Rn×n we

define a non polynomial 2-form as

p(x) = [[Px, x]]

Definition. A pairing [[⋅, ⋅]] satisfies the Lumer’s equalities if ∀ A ∈ Rn×n it holds

µ(A) = sup
∥x∥=1

[[Ax, x]] = sup
x≠0n

[[Ax, x]]
∥x∥2

(4.2)

Definition. We say that the pairing [[⋅, ⋅]] satisfies the the curve norm derivative formula if for

every differentiable curve x ∶ (a, b) → Rn and for almost every t ∈ (a, b) the right upper Dini

derivative of ∥x(t)∥2 satisfies

D
+∥x(t)∥2

∶= lim sup
h→0+

∥x(t + h)∥2 − ∥x(t)∥2

h
= 2[[ẋ(t), x(t)]] (4.3)

The right upper Dini derivative represents a generalization of the notion of derivative used
to study a continue but not differentiable function: indeed the right upper Dini derivative is well
defined for almost all functions, even for function that are not conventionally differentiable.
Obviously the upper Dini derivative coincides with the usual time derivative in the case of
continuously differentiable functions.
In the following it will be used to study a Lyapunov function of the type ∥x(t)∥2

p.
In the table in Figure 1 we report some examples of pairings together with their compatible
norms and log-norms; it can be shown that the pairings presented satisfy both the Lumer’s
inequality and the curve norm derivative, and we will refer to them as strong pairings. As we
can observe in Figure (4.1) a general ℓp norm is continuous but not everywhere differentiable in
the usual sense, which requires the notion of differentiability inducted by the Dini derivative.
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Figure 4.1: Table of norms, strong pairings, and log norms for ℓp norms.
Here the symbol ”◦” denotes the Hadamard (or entrywise) product between vectors, ∣y∣ the
entrywise absolute value of the vector y and I∞(x) is the set of indices s.t. the entry of vector
x have max absolute value, i.e. I∞(x) = {i ∈ {1, ...n} ∶ ∣xi∣ = ∥x∥∞}

4.2 Non-polynomial S-Lemma

Consider a strong pairing [[⋅, ⋅]] on Rn compatible with a norm ∥⋅∥ on vectors and log norm
µ(⋅) on matrices.
Consider also a family of s + 1 matrices P0, . . . , Ps ∈ Rn×n from which we define the functions
pi(x) = [[Pix, x]], i = 0, ..., s.
Given a constant vector ρ ∈ Rs, we define the primal optimization problem

α = sup
x∈Rn

p0(x)

subject to ∥x∥ = 1, p1(x) ≤ ρ1, ..., ps(x) ≤ ρs

(4.4)

Another optimization that we will see being related with the previous one is
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β = inf
τ∈Rs

µ(P0 −
s

∑
j=1

τjPj) + τ
⊤
ρ

subject to τ ≥ 0

(4.5)

where the inequality τ ≥ 0 has to be intended elementwise, i.e. τi ≥ 0 i = 1, . . . , s.

Theorem 4.1. [Non polynomial S-Lemma]

Let ∥⋅∥ be a norm on Rn, compatible with the strong pairing [[⋅, ⋅]]. Given P0, . . . , Ps ∈ Rn

and ρ ∈ Rs.

For an arbitrary.pairing [[⋅, ⋅]], let α and β be respectively the supremum in (4.4) and the

infimum in (4.5). Then α ≤ β.

Proof.

For each vector x ∈ Rn satisfying the constraints in the primal optimization problem (4.4) and
for all τ ≥ 0 we have

[[P0x, x]] =[[P0x −
s

∑
j=1

τjPjx +
s

∑
j=1

τjPjx, x]]

≤ [[P0x −
s

∑
j=1

τjPjx, x]] + [[
s

∑
j=1

τjPjx, x]]

≤ [[(P0 −
s

∑
j=1

τjPj)x, x]] +
s

∑
j=1

τj[[Pjx, x]]

≤ µ(P (τ)) +
s

∑
j=1

τjρj

(4.6)

Where in the first inequality we have exploited the subadditivity property of the pairings, while
in the second one we have written [[∑s

j=1 τjPjx, x]] ≤ ∑s

j=1 τj[[ Pjx, x]] by using weak homo-
geneity and subadditivity again. Finally the last inequality comes from the fact that the domain
of primal problem is the unit sphere, and so for all x such that ∥x∥ = 1

[[P0x −
s

∑
j=1

τjPjx, x]] ≤ sup
∥x∥=1

[[P0x −
s

∑
j=1

τjPjx, x]] = µ(P0x −
s

∑
j=1

τjPj)

while ∑s

j=1 τj[[Pjx, x]] ≤ ∑s

j=1 τjρj = τ
T
ρ comes from the inequality constraints. By taking

supremum of [[P0x, x]] over all the feasible points x ∈ Rn on the left and hand side and the
infimum over all τ ≥ 0 on the right hand side in the last inequality of (4.6) we obtain the claim
and concludes the proof.
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Remark. If the pairing [[⋅, ⋅]] is linear in its first argument, then the optimization problem (4.5)
is the Lagrangian dual problem of (4.4).
Indeed, we can show this fact by defining the Lagrangian function L ∶ Rn × Rs

→ R as

L(x, τ) = −p0(x) +
s

∑
j=1

τj(pj(x) − ρj)

= −[[P0x, x]] +
s

∑
j=1

τj[[Pjx, x]] −
s

∑
j=1

τjρj = −[[P (τ)x, x]] − τ
T
ρ

(4.7)

where we have exploited the linearity hypothesis of the pairing and defined P (τ) = P0 −

∑s

j=1 τjPj .

If we consider now the Lagrangian dual function, for a fixed τ we have

g(τ) = inf
x∈Rn,∥x∥=1

L(x, τ) = inf
x∈Rn,∥x∥=1

−τ
T
ρ − [[P (τ)x, x]]

= −τ
T
ρ + inf

x∈Rn∥x∥=1
−[[P (τ)x, x]] = −τ

T
ρ − sup

x∈Rn∥x∥=1
[[P (τ)x, x]]

= −τ
T
ρ − µ(P (τ))

(4.8)

where we have taken the infimum over the the domain of the primal problem, i.e. the unit sphere

∥x∥ = 1, and in the last step we have exploited Lumer’s equality (4.2).
Finally, by taking the Lagrangian dual problem of (4.4)

γ = inf L(τ)
subject to τ ≥ 0

(4.9)

we obtain

sup
τ∈Rs,τ≥0

g(τ) = sup
τ∈Rs,τ≥0

−τ
T
ρ − µ(P (τ)) = inf

τ∈Rs,τ≥0
τ
T
ρ + µ(P (τ)) (4.10)

which shows that γ = β.

A review of the notions of Lagrangian function and Lagrangian dual function, alongside with a

slight more detailed derivation of (4.7) and (4.10) can be found in Appendix A.

The result in theorem (4.1) can be strengthened in the case of Metzler matrices and ℓ1 norm,
as stated in the next lemma, whose proof is omitted.

42



Lemma 4.1. Consider the primal optimization problem

sup
x∈Rn

[[P0x, x]]

subject to ∥x∥1 = 1, x > 0n [[P1x, x]] ≤ ρ1, ..., [[Psx, x]] ≤ ρs

(4.11)

Assume that the matrices P0, −P1, . . . ,−Ps are Metzler. Then the supremum α in (4.11) and

the solution β to its dual problem (4.5) coincide.

4.2.1 Connection with the classical S-Lemma

In the case of p = 2, i.e. [[⋅, ⋅]] is an inner product and considering the number of constraints
to be s = 1 and ρ1 = 0, under the further assumption that exists x̃ such that [[P1x̃, x̃]] < 0 the
Non-Polynomial S-Lemma is equivalent to the strict inequalities S-Lemma (Theorem (1.7)).
We start by observing that in Theorem (1.6) and Theorem (1.7) the quadratic form which de-
scribes the sector condition is non negative, which is equivalent to consider the quadratic form
induced by −[[P1x, x]], so that the constraint p1(x) = [[P1x, x]] ≤ 0 becomes −p1(x) =

[[P1x, x]] ≥ 0. Since the constraint −[[P1x, x]] > 0 is satisfied in one point x̃, it is also satis-
fied for some x inside the unit sphere ∥x∥2 = 1, due to the homogeneity of the inner product:
indeed, if −[[P1x̃, x̃]] > 0 then − 1

∥x̃∥2
2
[[P1x̃, x̃]] = −[[P1

x̃

∥x̃∥2
, x̃

∥x̃∥2
]] > 0. That is, the existence

of a solution inside the unit sphere guarantee that the problem (4.4) is feasible and that the
supremum α exists. Since set of feasible points in (4.4) is a compact non-empty set and [[⋅, ⋅]]
is continuous being an inner product, from Weierstrass theorem we can assure the existence of
a maximum.
As consequence the supremum in the primal optimization problem can be substituted with a
maximum.
We observe that again for the homogeneity of the inner product for each x s.t. −p1(x) =

−[[P1x, x]] > 0 we have [[P0x, x]] − α∥x∥2
2 = p0(x) − α∥x∥2

2 ≤ 0. From the non strict
inequalities S-Lemma (Theorem (1.6)) we know that exists τ∗ ≥ 0 such that p0(x) − α∥x∥2

2 +

τ
∗(−p1(x)) = p0(x) − α∥x∥2

2 − τ
∗
p1(x) ≤ 0 for all x.

Hence we obtain
µ2(P (τ)) = sup

∥x∥2=1

(p0(x) − τ
∗
p1(x)) ≤ α

On the other hand we know from the Non-Polynomial S-Lemma that µ2(P (τ)) = β ≥ α for all
τ ≥ 0, implying α = β.
In the case of the classical S-Lemma the condition searched on the objective function [[P0x, x]]
is negative for all x satisfying the constraint −[[P1x, x]] ≥ 0. This turns out to be equivalent to
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require that the supremum of [[P0x, x]] over the set of feasible points is negative, that is

α = sup
x∈Rn

p0(x)

subject to ∥x∥ = 1, −p1(x) ≥ 0

is negative.
Since in the case of p = 2 with s = 1 and ρ1 = 0, we have α = β, it follows that the quadratic
form induced by [[P0x, x]] is negative over the set of x such that −[[P1x, x]] ≥ 0 if and only if
exists τ∗ such that

β = inf
τ∈R

µ(P (τ))

subject to τ ≥ 0

is negative.
We observe that

µ(P (τ)) = sup
∥x∥=1

(P (τ)) = sup
∥x∥=1

[[(P0 − τP1)x, x]]

= sup
∥x∥=1

[[P0x, x]] − τ[[P1x, x]] = sup
∥x∥=1

[[P0x, x]] + τ[[−P1x, x]]

where in the last equality we have exploited the linearity of the inner product. This implies that
β < 0 is equivalent to the existence of a τ

∗
≥ 0 such that

sup
∥x∥=1

[[P0x, x]] − τ
∗[[P1x, x]] < 0

i.e. there exists τ∗ such that the quadratic form induced by

[[P0x, x]] − τ
∗[[P1x, x]] = [[P0x, x]] + τ

∗[[−P1x, x]]

is negative for all x, which is the statement of the non strict inequalities S-Lemma.
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Figure 4.2: Block scheme of an autonomous Lur’e system (4.12)

4.3 Sufficient conditions for stability using pairings

Consider an autonomous Lur’e system in of the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Lω(t)
y(t) = Cx(t)
ω(t) = φ(t, y(t))

(4.12)

with A ∈ Rn×n, L ∈ Rn×1, C ∈ R1×n.
We will consider both the cases in which the function φ(y, t) satisfies the constraint

κ1 ≤
φ(t, y)

y ≤ κ2 ∀y ≠ 0 (4.13)

Equivalently, by using the notation φ(t, y) = ω(t) we have that (4.13) is equivalent to

κ1y
2
≤ ωy ≤ κ2y

2 (4.14)

for all t ∈ R.
We allow the possibility of κ1 = +∞ or κ2 = −∞, disregarding however the trivial case in
which both equalities hold at the same time.
However, without loss of generality, through the course of the chapter we will restrict ourselves
to the case in which κ1 = 0.

0 ≤ ωy ≤ κy
2 (4.15)

with κ > 0.
We show in fact that its always possible to trace back constraints (4.14) to (4.15): indeed,

by defining the matrices A′
= A+κ1BC, B ′

= B, we obtain the following dynamic description
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of x(t) as a function of v(t) ∶= ω(t) − κ1y(t)

ẋ = A
′
x + Lv = Ax + κ1LCx + L(ω − κ1y)

= Ax + Lω + κ1Ly − κ1y) = Ax + Lω

for which the sector and slope constraints can be rewritten as

0 ≤ ωy − κ1y
2
≤ κ2y

2
− κ1y

2
⟶ 0 ≤ vy ≤ κy

2

where we have defined κ = κ2 − κ1.
In the case κ1 = −∞ we can apply similar transformations by denoting v(t) ∶= κ2y(t), A′

=

A − κ1LC, L′
= L, κ = +∞.

We then rewrite the constraints on the nonlinearity in the quadratic forms

ω(κ−1
ω − y) ≤ 0

∆ω(κ−1
∆ω −∆y) ≤ 0

(4.16)

which are equivalent, to (4.15).
We next prove that fact. Observe that

ω(κ−1
ω − y) = ω

2
κ
−1

− ωy ≤ 0 ⇒ κ1ωy ≥ ω
2 (4.17)

which implies that ωy ≥ 0 is greater than zero and hence that ω and y have same sign. By
dividing by ω and multiplying by y both sides of (4.17) we obtain the second inequality in
(4.15).
On the other hand, if it holds

0 ≤ ωy ≤ κy
2

it is straightforward observe that ω and y have the same sign. Subtracting κy
2 from each side

we obtain
ωy − κy

2
= (ω − κy)y ≤ 0

Since y and ω have the same sign we can divide by y and multiply by ω without change the
direction of the inequality. Finally, we divide by κ > 0, obtaining (4.16).
We define now the Lyapunov condition, which guarantees sufficient condition for exponential
stability

Definition. Fixed c > 0, consider (4.12) the Lyapunov condition holds, respectively for the
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sector constraints and the slope condition, if

[[Ax + Lω, x]] ≤ −c∥x∥2

for all ω ∈ R and x ∈ Rn s.t. ω(κ−1
ω − Cx) ≤ 0

(4.18)

If condition (4.18) holds for a strong pairing [[⋅, ⋅]] it is possible to use V (x) = ∥x∥2 as
Lyapunov function, providing the following estimate

∥V (x(t))∥ ≤ c∥x0∥e−ct

Indeed, if condition (4.18) hold we have

D
+(∥x(t)∥2) = 2[[ẋ, x]] = 2[[Ax + Lω, x]] ≤ 2( − c∥x(t)∥2) = −2cV (x) (4.19)

Where we have exploited the curve norm derivative formula in (4.3). We observe moreover
that, since the Lyapunov function obtained by means of non Euclidean norms is in general only
continuous, but not everywhere differentiable, the time derivative of V (x) holds only in the
Dini derivative sense.

Remark.
Since φ(t, y) ≡ 0 respect the sector constraints (4.14), the Lyapunov condition (4.18) can hold

if and only if [[Az, z]] ≤ −c∥z∥2 for all z ∈ Rn. Since for every strong pairings the Lumer’s

equality (4.2) is satisfied, the latter inequality is equivalent to µ(A) ≤ −c < 0. Consequently,

a necessary condition for having Lyapunov inequality (4.18) is µ(A) < −c. Note that this

condition implies A is an Hurwitz matrix, since, when Lumer’s equality holds, the log norm is

an upper bound on the spectral abscissa.

4.4 Stability analysis via pairings and Non-Polynomial S-Lemma

In order to apply the Non Polynomial S-Lemma to the stability analysis of system (4.12) we aim
to obtain a description of the Lyapunov inequality using non-polynomial 2-forms associated to
a pairing.
We start by defining augmented state z and the matrices P0 and P1

P0 = (A + cIn L

01×n 0
) P1 = (0n×n 0n×1

−C κ
−1 ) z = (x

ω
) ∈ Rn+1

We have

P0z = ((A + cIn)x + Lω

0
) and P1z = ( 0n

κ
−1
ω − Cx

)
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We will use the matrices P0, P1, together with the augmented state space x to represent the
Lyapunov inequality and the sector constraint using the pairings, as showed by the following
lemma.

Lemma 4.2. Consider p ∈ [1,∞); the following equivalences hold:

i) ω and Cx satisfy the sector condition ω(κ−1
ω − Cx) ≤ 0 if and only if [[P1z, z]] ≤ 0

ii) for a fixed c > 0, the inequality [[Ax+Lω, x]] ≤ −c∥x∥2 holds if and only if [[P0z, z]] ≤
0

If p = ∞ we have instead:

i) ω and Cx satisfy the sector condition ω(κ−1
ω − Cx) ≤ 0 implies [[P1z, z]] ≤ 0; the

converse implication holds when ∣ω∣ > ∥z∥2
∞

ii) if ∣ω∣ < ∥x∥∞ or x = 0, for a fixed c > 0 the inequality

[[Ax + Lω, x]] ≤ −c∥x∥∞ holds if and only if [[P0z, z]] ≤ 0

Proof. The proof of the lemma comes directly form the inspection of the product [[P0z, z]]p
and by the definitions of the strong pairings in figure (4.1.1). We present the proof only for the
case p ≠ 1,∞.

i) The proof come directly by evaluating [[P1z, z]]

[[P1z, z]]p = ∥z∥2−p
p (z ◦ ∣z∣p−2)TP1z

= ∥z∥2−p
p [sign(x) ◦ ∣x∣p−1 sign(ω)∣ω∣p−1] [ On

−Cx + κ
−1
ω
]

= ∥z∥2−p
p ∣ω∣p−1sign(ω)(−Cx + κ

−1
ω)

(4.20)

where ∥z∥2−p
p ∣ω∣p−1sign(ω)(−Cx + κ

−1
ω) ≤ 0 if and only if ω(κ−1

ω − Cx) ≤ 0.
ii) Consider two vectors x1

, x
2
∈ Rn and a scalar ω1. Define

z
1
= [x

1

0
] z

2
= [x

2

ω
]

z
1
, z

2
∈ Rn+1.

We starting by proving the that following equivalence

[[z1, z2]]p ≤ 0 ⟺ [[x1
, x

2]]p ≤ 0 (4.21)
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holds.
In fact, by evaluating the pairing between[[z1, z2]]p one can notice

[[z1, z2]]p = ∥z2∥2−p
p [sign(z2) ◦ ∣z2∣p−1] z1

= ∥z2∥2−p
p [sign(x2) ◦ ∣x2∣p−1 sign(ω)ω] [x

1

0
]

= ∥z2∥2−p
p (sign(x2) ◦ ∣x2∣p−1)Tx1

= k[[x1
, x

2]]p ≤ 0

for some k > 0.
We show now that the inequality [[Ax + Lω, x]]p ≤ −c∥x2∥2

p is equivalent to [[Ax + cIn +

Lω, x]]p ≤ 0

Indeed, by the subadditivity property of the pairings it holds

[[(A + cIn)x + Lω, x]]p ≤ [[Ax + Lω, x]]p + c[[x, x]]p

From this fact it follows

[[Ax + Lω, x]]p ≤ −c[[x, x]]p ⇒ [[(A + cIn)x + Lω, x]]p ≤ 0

Calling x
1
= (A + cI)x + Lω, x2

= x and ω
2
= ω and considering z

1, z2 defined as above, by
exploiting the equivalence (4.21) we obtain the statement.

We finally show how to exploit the representations showed in the last lemma together with
the Non-polynomial S-Lemma to obtain a procedure that allow us to guarantee the exponential
stability of the origin when the norm employed in the analysis is an arbitrary ℓp norm.

Theorem 4.2. Consider a Lur’e system with sector constraint defined by (A,L,C, κ), such as

in (4.12). Fix c > 0 and a norm ℓp, p ∈ [1,∞], with log norm µp and a compatible strong

pairing [[⋅, ⋅]]p. If p = ∞ then also assume κ∥C∥∞ < 1. The following statements hold:

i) the Lyapunov inequality (4.15) holds if

[[P0z, z]]p ≤ 0 for all z ∈ Rn+1
s.t. [[P1z, z]]p ≤ 0 (4.22)

furthermore for p < ∞ (4.18) and (4.22) are equivalent

ii) the Lyapunov inequality holds if

∃τ ≥ 0 s.t. µp(P (τ)) ≤ 0, where P (τ) = P0 − τP1 = (A + cIn L

τC −τκ−1) (4.23)
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furthermore for p = 2 or if p = 1, A Metzler and L,C are non negative, (4.18) and (4.23)
are equivalent.

Proof.

i): in the case of p < ∞ the proof comes directly from lemma (4.2).
In the case of p = ∞ we start by observing that, whenever the sector conditions (4.15) are
satisfied, we have

ω(ωκ−1
− κCx) ≤ 0 ⇒ ω

2
≤ κCxω ⇒ ∣ω∣ ≤ κ∣Cx∣

By the assumption κ∥C∥∞ < 1, we obtain ∣ω∣ ≤ κ∣Cx∣ ≤ κ∥C∥∞∥x∥∞, which implies
∣ω∣ < ∥x∥∞, unless ω = ∥x∥ = 0.
By the previous Lemma we have that [[P0z, z]]∞ ≤ 0 implies the Lyapunov condition (4.18),
while [[P1z, z]]∞ ≤ 0 implies the sector condition (4.15). However (4.22) is only sufficient for
p = ∞.
ii) The proof comes directly by taking as primal problem the supremum of [[P0z, z]] over the
set ∥z∥ = 1, [[P1z, z]] ≤ 0, and then using the upper bound given by from Theorem (4.1).
In the case of p = 2 the equality between the optimal solution of the primal problem (4.4) and
the dual formulation (4.5) comes from the considerations made in section 4.2.1, from which we
obtain α = β.
In the case of p = 1 the equality between the optimal values of the primal and dual problem
come from Lemma (4.1) by noticing that P0 and −P1 are Metzler when A Metzler and L,C are
non negative.

For p = 2 condition (4.23) can be expressed in analytical form.
As showed in figure (4.1), for an arbitrary square matrix M , µ2(M) = λmax(M s), where M s is
the symmetrized matrix obtained from M , i.e. M s ∶= M+MT

2
and λmax its greatest eigenvalue

(which is always real since M
s is symmetric). That is, condition µ2(P (τ)) ≤ 0 holds if the

symmetrized version of P (τ) is negative-semidefinite.
In the next corollary we state, without proof, an equivalent analytical condition to µ2(P (τ)) ≤
0, which will be exploited later in chapter 5.

Corollary 4.1.
Inequality (4.23) with p = 2 and κ < ∞ holds if and only if

∃ τ > 0, c > 0 s. t.
A + A

T

2
+ cI +

κ

4τ
(L + τC

T )(Lt
+ τC) ⪯ 0 (4.24)

We notice that we must have τ ≠ 0 coherently with the results obtained in the course of
chapter 3.
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Theorem 2 can be generalized to the weighted norm case, by introducing a new variable x̃ = Rx.
Calling [[⋅, ⋅]]p,R the pairings of norm ℓp applied together with the change of variable x̃ = Rx,
the Lyapunov condition (4.18) holds for [[⋅, ⋅]]p,R if and only if it holds for [[⋅, ⋅]]p with matri-
ces Ã = RAR

−1
, L̃ = RL, C̃ = CR

−1.
Indeed, this could be seen by noticing that the change of variables x̃ = Rx is equivalent to
consider a system whose dynamics is described by the matrices above

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

˙̃x = Ṙx = RAR
−1
Rx +RLω = Ãx̃ + L̃ω

y = CRx = C̃x

ω(t) = φ(t, y(t))
(4.25)

so that if the Lyapunov condition (4.18) holds for system (4.12) with [[⋅, ⋅]]p,R, it must hold for
system (4.25) with [[⋅, ⋅]]p.
Introducing as R̃ = diag(R, 1) we have the following corollary:

Corollary 4.2. Consider [[⋅, ⋅]]p,R where 1 ≤ p ≤ ∞, if p = ∞ assume κ∥CR
−1∥∞ < 1; the

Lyapunov condition (4.18) holds if there exist c > 0, τ ≥ 0 s.t.

µp,R̃(P (τ)) = µp (
RAR

−1 + cIn RL

τCR
−1 −τκ−1) ≤ 0 (4.26)

In synthesis, we can guarantee that system (4.12) is asymptotically stable if

inf
c,τ

µp,R (A + cIn L

τC −τκ−1) subject to c > 0, τ ≥ 0

is non positive.
Lastly, we provide a sufficient condition for ensure that condition (4.26) is satisfied for an
arbitrary p ∈ [1,∞] and for some arbitrary diagonal matrix R.
We define as now ⌈A⌉ the Metzler version of A, i.e.

(⌈A⌉)i.j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

aii if i = j

∣aij∣ if i ≠ j

and ∣L∣, ∣C∣ the vectors with elements that are the absolute values of the entries of L and C.
Using a weighted norm allows us to state the following corollary

Lemma 4.3. Consider the Metzler matrix Ω(κ) = ⌈A⌉ + κ∣L∣∣C∣ If α(Ω(κ)) < −c, where

α(A) is the maximum real part of the eigenvalues of A, then for every p ∈ [1,∞], τ > 0 there
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exist a diagonal matrix R = R(p, τ) ≻ 0 such that (4.26) holds; in the case of p = ∞, it holds

κ∥CR
−1∥∞ < 1

Remark. Lemma (4.3) shows that the Aizerman conjecture is true when we consider positive

systems, i.e. when A is a Metzelr matrix and L and C are positive vectors. Indeed, we recall

from Chapter 1 that the conjecture state that a Lur’e system is absolute stable if the linear

version of the system obtained by substituting the nonlinearity φ(y) with γy, γ ∈ [0, κ] is

stable, or equivalently if the matrix A + Lγy = A + γLC is Hurwitz for all γ ∈ [0, κ].
In the case of a positive system Ω(κ) = ⌈A⌉ + κ∣L∣∣C∣ coincides with A + κLC. In fact if

⌈A⌉+γ∣L∣∣C∣ = A+γLC is Hurwitz for all γ ∈ [0, κ] by the previous corollary there exists a

matrix R such that µp,R((P (τ)) ≤ 0, assuring exponential stability and consequently proving

that the Aizerman hypothesis is correct for positive systems.

On the other hand, for general systems, the Hurwitz condition on the matrix⌈A⌉ + κ∣L∣∣C∣
does not imply the Hurwizness property on A + κLC, meaning that there could exist systems

for which A + γLC is Hurwitz for all γ ∈ [0, κ], but such that α(Ω(κ)) ≥ 0, so that the linear

version of the Lur’e system absolute stability is attained for all γ ∈ [0, κ] but not by the actual

system.
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5
Data Driven absolute stabilization via non

polynomial Lyapunov function

In this chapter we will consider the application of the stability results in non Euclidean spaces
introduced in the previous chapter to the problem of designing a stabilizing feedback controller
for a system whose dynamics is partially unknown.
We will perform the stability analysis using the ℓ1 and ℓ∞ norms, which better suit the de-
sign problem due to the existence of a computable closed form for their respective log-norms.
Then, drawing inspiration from the approach used in chapter 3, we will extend these design
approaches to the case in which the system dynamics is given by a data-driven representation.
Finally, we will show how to solve the design problem by means of a linear programming tech-
niques and discuss how the introduction of a data-based approach does not change the problem
structure, increasing nonetheless the number of computations required.
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5.1 Problem Framework

Consider a single-input/single-output Lur’e system of the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Bu(t) + Lω(t)
y(t) = Cx(t)
ω(t) = φ(t, y(t))

(5.1)

with A ∈ Rn×n, B and L ∈ Rn×1, C ∈ R1×n.
We assume that the nonlinearity φ(y, t) = ω(t) satisfies the sector constraints

0 ≤ ωy ≤ κy
2 (5.2)

We consider again the assumptions made in chapter 3, in which we suppose to have no prior
knowledge of the matrices A and B, whereas we assume that the matrices L and C are known.
We assume moreover we are able to collect the following samples from an experiment con-
ducted before the controller synthesis

U0 ∶= [u(0) ... u(T − 1)]
X0 ∶= [x(0) ... x(T − 1)]
X1 ∶= [ẋ(0) ... ẋ(T − 1)]
F0 ∶= [ω(0) ... ω(T − 1)]

(5.3)

where it holds that X1 = AX0 +BU0 + LF0.
The problem considered is to find a state feedback controller capable of stabilize the nonlinear
dynamics for all functions φ(t, y) such that conditions (5.2) are satisfied using the prior knowl-
edge on the matrices C and L and of the collected data (5.3) from the system.
Again, by following the same approach of chapter 3, we will make the assumption that the
matrix

W0 = [U0

X0

] ∈ R(1+n)×T (5.4)

is full row rank.
Applying as input u = Kx for some K ∈ R1×n system (5.1) becomes then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = (A +BK)x(t) + Lω(t)
y(t) = Cx(t)
ω(t) = φ(t, y(t))

(5.5)
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We remark that since system (5.5) is an autonomous system with state matrix (A + BK), the
stability results obtained in the previous chapter still hold.
Tracing back the considerations of chapter 3, to obtain a data driven representation of the sys-
tem dynamics we can exploit the data samples (5.3) and the full row rank assumption on W0,
obtaining the representation

A +BK = [B A] [K
In
] = [B A] [U0

X0

]G

= AX0G +BU0G = (AX0 +BU0 + LF0 − LF0)G
= (X1 − LF0)G = XLG

(5.6)

where we recall that XL
∆
= X1 − LF0.

The existence of a matrix G ∈ RT×n such that for any matrix K ∈ R1×n the following equality
holds

W0G = [U0

X0

]G = [K
In
] (5.7)

is assured by the rank condition on W0.
Using the data-based representation exposed above, we provide a design method for a stabi-
lizing controller based on the exponential stability results presented in the previous chapter for
norms ℓ1 and ℓ∞.

Theorem 5.1. (ℓ1 norm)

Consider system (5.5) for some K ∈ R1×n, and the sector constraints (5.2),ı̀ with κ < +∞.

Suppose moreover that Assumption 1 holds, and define τ
∗
= κ∑n

i=1 ∣Li∣.
Then origin is exponentially stable for system (5.6) if there exists a matrix G ∈ RT×n such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X0G = In
n

∑
i=1
i≠j

∣(XLG)ij∣ + (XLG)jj + τ
∗∣Cj∣ < 0 ∀ j = 1, .., n

(5.8)

Moreover the stabilizing controller is given by K = U0G.

Proof. Consider the matrix

P (τ) = (A +BK + cI L

τC −τκ−1) (5.9)

We know from Theorem 4.2 that, for a chosen norm ℓp, the closed loop feedback is exponen-
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tially stable if exist c > 0 and τ ≥ 0 such that µp(P (τ)) ≤ 0.
According to the table in Figure (4.1) we have µ1(P (τ)) ≤ 0 if

max
j∈1,...,n+1

P (τ)jj +∑
i≠j

∣P (τ)ij∣ ≤ 0 (5.10)

If we consider the last column of P (τ) in (5.9), condition (5.10) yields

n

∑
i=1

∣Li∣ − τκ
−1

≤ 0 ⟺ τ ≥ κ
n

∑
i=1

∣Li∣ (5.11)

where Li is the i-th element of the column vector L. Hence (5.11) holds for all τ ≥ τ
∗.

Consider now condition (5.10) for j = 1, ..., n. We have that such condition holds if ∃ c > 0,
τ ≥ 0 and K ∈ R1×n such that

∑
i≠j

∣(A +BK)ij∣ + (A +BK)jj + c + ∣τCj∣ ≤ 0 (5.12)

Since we need that τ ≥ τ
∗, this condition hold only if holds for τ = τ

∗.
If we consider now representation (5.6), the, (5.12) becomes equivalent to finding a matrix

G ∈ RT×n satisfying X0G = In such that for all j = 1, ..., n

∑
i≠j

∣(XLG)ij∣ + (XLG)jj + τ
∗∣Cj∣ < 0 (5.13)

In fact, choosing c as

c
∗
= −min

j
{∑

i≠j

∣XLG∣ij + (XLG)jj + +τ
∗∣Cj∣} > 0

we obtain that the sum in (5.10) is non positive for all j.
Finally, we observe that by definition of G we have K = U0G.

Theorem 5.2. (ℓ∞ norm)

Assume that the same hypotheses of the previous theorem hold true; moreover assume κ∥C∥∞ <

1.

Then system (5.5) is asymptotically stable if there exist a matrix G ∈ RT×n such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X0G = In
n

∑
j=1
j≠i

∣(XLG)ij∣ + (XLG)ii + ∣Lj∣ < 0 ∀ i = 1, .., n (5.14)
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The stabilizing controller is given by K = U0G.

Proof. Consider again

P (τ) = (A +BK + cI L

τC −τκ−1) (5.15)

for some c > 0 and τ ≥ 0.
According to the table in Figure (4.1) we have µ∞(P (τ)) ≤ 0 if

max
i∈1,...n+1

P (τ)ii +∑
j≠i

∣(P (τ))ij∣ ≤ 0 (5.16)

Similarly to the previous theorem we start by considering the last row of P (τ) for which (5.16)
yields

n

∑
i=1

∣τCi∣ − τκ
−1

≤ 0 ⟺ κ
n

∑
i=1

∣Ci∣ ≤ 1 or τ = 0 (5.17)

where we have used the fact that τ ≥ 0 and where Ci is the i-th element of the row vector C.
That is, we can always assure that the last row of matrix (5.15) has negative matrix measure
accordingly to the ℓ∞ log norm.
Consider (5.16) for j < n+ 1: we have that such condition holds if ∃ c > 0 and K ∈ R1×n such
that

∑
j≠i

∣(A +BK)ij∣ + (A +BK)ii + c + ∣Li∣ ≤ 0 (5.18)

If we consider again representation (5.6) the problem becomes equivalent to finding a matrix
G ∈ RT×n satisfying X0G = In such that for all i = 1, ..., n

∑
j≠i

∣(XLG)ij∣ + (XLG)ii + ∣Lj∣ < 0 (5.19)

In fact, similarly to the previous theorem, if condition (5.19) is satisfied, we can choose

c
∗
= −min

i
{∑

j≠i

∣XLG∣ij + (XLG)ii + ∣Li∣} > 0

in order that (5.16) is non positive for all i.
Finally by definition of G we have K = U0G.

The representation used in the previous theorem can be applied to Corollary 4.3 when it is
considered Ω(κ) = ⌈XLG⌉ + κ∣L∣∣C∣.
Then we can state the following corollary, which is a data driven version of Corollary 4.3
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Corollary 5.1. Consider XL defined as in Theorem 5.1 and 5.2, if exist G ∈ RT×n such that to

X0G = In and α(Ω(κ)) < −c for some c > 0, then for every p ∈ [1,∞], τ > 0 there exist a

diagonal matrix R = R(p, τ) ≻ 0 such that

µp,R (XLG + cIn L

τC −τκ−1) ≤ 0 (5.20)

In the case of p = ∞, it holds moreover that κ∥CR
−1∥∞ < 1.

Remark. From the representation (5.6), the existence of a matrix G such that α(Ω(κ)) < −c

is equivalent to the existence of a diagonal matrix R = R(p, τ) ≻ 0 and c > 0, τ > 0 such that

µp,R (A +BK + cIn L

τC −τκ−1) ≤ 0 (5.21)

which ensures that the origin is exponentially stable for the closed loop system.

5.2 Numerical Examples

Example (Application of Theorems 5.1 and 5.2).
Consider a dynamical systems described as in (5.1), with

A = (−2.1 1.2

−1.9 1
) , B = (0

1
)

C = (0.95 0.91) , L = (0.2
0.5

)

and ω = 0.3y + 0.1 sin(y)2; we note that the eigenvalues of A are −0.9 and −0.2, making A

Hurwitz, while as κ we can simply choose 1.

It is worth noting that even if the matrix A is Hurwitz the system is unstable, in fact, taking as

x0 = [4, 5] the state of the system, and the output, diverge, as shown in figure (5.2).
In order to obtain a data driven representation of the system, we collect the following in-

put/state pairs of length T = 6, where we took as input u = sin(t) + sin(3t/4) and used a

sample time of St = 0.1

U0 = [0 0.1748 03481 0.5186 0.6849 0.8457]

X0 = [0 0.0004 0.0028 0.0092 0.0214 0.0408

0 0.0091 0.0375 0.0867 0.1581 0.2527
]
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Figure 5.1: Comparison between κy
2 and ωy

We can observe that

W0 = [U0

X0

]

is full row rank.

We can solve the problem using both Theorem 5.1 and Theorem 5.2, and obtain the following

matrices

G1 = 10
3
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1.8638 −0.3538

−1.7950 0.2704

0.5804 −0.0683

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G∞ = 10
3
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1.8638 −0.3293

−1.7950 0.2579

0.5804 −0.0654

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which lead respectively to the controllers K1 = [1.9,−3.1] and K∞ = [1.9,−1.7].
We can see by the phase diagrams below that both method lead to an asymptotically stable

closed loop system.

Example.
To stress how the norm used in the stability analysis could lead to different stability outcomes,

we show some examples in which the existence of a solution to the stabilization problem using

the Non Polynomial S-Lemma depends on the chosen norm.

Disregarding the data driven representation, we firstly propose a problem for which a stabilizing

feedback matrix which makes the origin exponential stable exists for the ℓ∞ norm, but not for

the ℓ1 norm, i.e. we can find K ∈ R1×n such that µ∞(P (τ)) ≤ 0 but not µ1(P (τ)) ≤ 0, where
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Figure 5.2: Output of the free response obtained using x0 = [4, 5]

we remind that the matrix P (τ) is defined as

P (τ) = (A +BK + cI L

τC −τκ−1)

for some c > 0. Consider in fact a Lur’e system of the type (5.1) with

A =

⎛
⎜⎜⎜⎜
⎝

−2 0 1

0 −3 1

1 1 −1

⎞
⎟⎟⎟⎟
⎠
, B =

⎛
⎜⎜⎜⎜
⎝

0

1

1

⎞
⎟⎟⎟⎟
⎠

C = (1 0 0.5) , L =

⎛
⎜⎜⎜⎜
⎝

0.23

0.58

0.4

⎞
⎟⎟⎟⎟
⎠

and κ = 0.9. By applying as input u = Kx we obtain

A +BK =

⎛
⎜⎜⎜⎜
⎝

−2 0 1

0 −3 1

1 1 −1

⎞
⎟⎟⎟⎟
⎠
+
⎛
⎜⎜⎜⎜
⎝

0 0 0

k1 k2 k3

k1 k2 k3

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

−2 0 1

k1 −3 + k2 1 + k3

1 + k1 1 + k2 −1 + k3

⎞
⎟⎟⎟⎟
⎠

(5.22)
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Figure 5.3: Phase diagrams for closed loop systems using ℓ1 and ℓ∞ in the analysis

We know by the definition of ℓ1 log-norm that µ1(P (τ)) ≤ 0 if

n

∑
i=1
i≠j

∣(A +BK)ij∣ + (A +BK)jj + τ
∗∣Cj∣ < 0 (5.23)

for all j = 1, . . . , n.

By simply inspecting the condition (5.23) obtained with A+BK as above, we can see that there

is no matrix K such that µ1(P (τ)) ≤ 0. Since we need to have

−2 + ∣k1 + 1∣ + ∣k1∣ + τ
∗
< 0

where τ
∗
= κ∑3

i=1 ∣Li∣ = 1.089, and k1 is the first element of the matrix K. We can see that

the sum is always positive for all values of k1.

Let us consider now the analysis with norm ℓ∞. Again, by applying the definition of the ℓ∞ log

norm to the matrix P (τ), we have µ∞(P (τ)) ≤ 0 for τ = 0 if

n

∑
j=1
j≠i

∣(A +BK)ij∣ + (A +BK)ii + ∣Lj∣ ≤ 0

for all i = 1 . . . n, which translates into

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2 + ∣1∣ + 0.23 < 0

∣k1∣ − 3 + k2 + ∣1 + k3∣ + 0.8 < 0

∣1 + k1∣ + ∣1 + k2∣ − 1 + k3 + 0.4 < 0

Where we have not considered the summation τ(∑n

i=1 ∣Ci∣ − κ
−1), becouse we take τ = 0.
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Figure 5.4: Summation (5.23) in function of k1

Choosing K = [−1,−1,−1] we have all the inequalities satisfied, and so we can guarantee the

exponential stability of the origin.

We propose now a case in which the design of a stabilizing controller lead exponential stability

when considering the analysis with the ℓ1 norm, but not when considering the ℓ2 norm.

Consider a Lur’e system of the type (5.1) with

A =

⎛
⎜⎜⎜⎜
⎝

−1.3 0 0

1 −0.2 0

0 1 −0.3

⎞
⎟⎟⎟⎟
⎠
, B =

⎛
⎜⎜⎜⎜
⎝

1

0

1

⎞
⎟⎟⎟⎟
⎠

C = (1 3 2) , L =

⎛
⎜⎜⎜⎜
⎝

0.2

0.1

0

⎞
⎟⎟⎟⎟
⎠

with κ = 0.2.

To prove that system above is not exponentially stabilizable by means of a state feedback matrix

designed using the ℓ2 norm we have exploited corollary (4.1).
In order to prove that there does not exist K ∈ R1x3 such that the matrix inequality

(A +BK) + (A +BK)T
2

+ cI +
κ

4τ
(L + τC

T )(Lt
+ τC) ⪯ 0 (5.24)

holds, we have used the numerical solver CVX [47]. However we can give a more intuitive

explanation behind this fact. The last term in (5.24) can be rewritten as

κ

4τ
(L + τC

T )(LT
+ τC) = κ

4τ
LL

T
+

κ

4
LC +

κ

4
C

T
L +

κ

4
C

T
C
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Despite the presence of the term κ

4
LC + κ

4
C

T
L, which could be both positive and negative

semidefinite, the terms κ

4τ
LL

T , κ

4
C

T
C are both positive semidefinite and possess eigenvalues

sufficiently large for making the overall matrix summation positive semidefinite. Since the action

of the controller does not influence the totality of the dynamics (due to the zero element in the

first and second entry of the matrix B), it is not possible to obtain exponential stability of the

origin i.e. to make the summation negative semidefinite.

However, following the same steps as the previous examples, it is possible to show that, choosing

the controller K = [0,−1, 0] the origin is exponentially stable in the sense of ℓ1 log norm

approach.

Remark. The Non Polynomial S-Lemma provides only a sufficient condition on the solution to

the exponential stabilization problem, with the exception of positive systems, for which the sta-

bility analysis made using the ℓ1 norm, for which the condition imposed by the Non Polynomial

S-Lemma are also necessary. As consequence an exponential stabilizing controller, at least for

general norms ℓp, could exist in the case it doesn’t exist K such that µp(P (τ)) ≤ 0. We point

out, moreover, that in the last example the analysis has been made considering as quadratic

Lyapunov function the identity In; the results found does not exclude the existence of a stabiliz-

ing matrix K when we consider as Lyapunov function V (x) = x
T
Rx for a generic symmetric

positive definite matrix R.

To find classes of problems for which the the condition imposed by the Non Polynomial S-

Lemma are also necessary, alongside with classes of problems for which the Non Polynomial

S-Lemma better suits the design of controllers for exponential stabilization with respect the

classical methods in the ℓ2 norm is still an open problem.

5.3 Computational Analysis

One important feature of the data driven approach presented in chapter 2 and chapter 3 is that the
the stabilizing solution can be found by means of a linear matrix inequality, which can be solved
by using some convex program solvers, like the aforementioned CVX. Moreover, we noticed
that the dual problem (4.5) introduced for the statement of the Non Polynomial S-Lemma in
Chapter 4 is a convex problem.
As a consequence, it is of our interest to understand if the design of a stabilizing feedback matrix
can still be obtained by means of a convex program, and, in such a case, if the introduction of
the data-based approach does not changes the structure of the solution design. We dedicate
the next section to answer this questions and to study the convexity of the problem both in a
model based and in a data driven approaches, providing an actually implementable solution to
the problem.
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5.3.1 Problem Convexity

We start our analysis by considering the original formulation of the optimization problem

inf
c,τ

µp,R (A + cIn L

τC −τκ−1) subject to c > 0, τ ≥ 0 (5.25)

where we assume the weigh matrix R to be equal to the identity. We show that the problem is
convex in in τ ≥ 0 and in c > 0.
To do so we exploit the properties of subadditivity and positive homogeneity of the log-norm
(see [48]), i.e.

Subadditivity
∀ P1, P2 ∈ Rn×n

µ(P1 + P2) ≤ µ(P1) + µ(P2)

Positive homogeneity

∀ P,∈ Rn×n and ∀ a ∈ R µ(aP ) = ∣a∣µ(sgn(a)P )

Observe that for ∀ λ ∈ [0, 1]

(A + [λc1 + (1 − λ)c2]In L

τC −τκ−1) =

(λA + λc1In λL

λτC −λτκ−1) + ((1 − λ)A + (1 − λ)c2In (1 − λ)L
(1 − λ)τC −(1 − λ)τκ−1)

By calling

P (λc1 + (1 − λ)c2) = (A + [λc1 + (1 − λ)c2]In L

τC −τκ−1)

and

λP (c1) = (λA + λc1In λL

λτC −λτκ−1) ,

(1 − λ)P (c2) = ((1 − λ)A + λ(1 − λ)c2In (1 − λ)L
(1 − λ)τC −(1 − λ)τκ−1)

If we consider the log-norm as a function of the parameter c (i.e. µ(c)), since λ > 0, (1−λ) > 0
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we have
µ(λP (c1) = µ∣λ∣(P (sgn(λ)c1) = λP (c1)
µ((1 − λ)P (c2) = ∣1 − λ∣µ(P (sgn(1 − λ)c2) = (1 − λ)P (c2)

We have

µ(λc1 + ((1 − λ)c2)) = µ(P (λc1 + ((1 − λ)c2))) = µ(λP (c1) + (1 − λ)P (c2))
≤ µP (λc1) + µ((1 − λ)P (c2)) = λµ(P (c1)) + (1 − λ)µ(P (c2)) = λµ((c1) + (1 − λ)µ((c2))

The convexity in τ ≥ 0 can be proven similarly.
We observe moreover that c > 0 and τ ≥ 0 define convex sets.

We consider now the problem of stabilizing the system in (5.1) by introducing the state
feedback matrix K ∈ R1×n as variable in the optimization problem (5.5), that can be translated
into the optimization problem

inf
c,τ,K

µp (
A +BK + cIn L

τC −τκ−1)

subject to c > 0, τ ≥ 0

(5.26)

We use the same argument as above to show that the problem is still convex in K.
We start again by considering the log-norm as function of K, µ(K) = µ(P (K))

P (K) = (A +BK + cIn L

τC −τκ−1)

P (λK1 + (1 − λ)K2) = (A + λBK1 + (1 − λ)BK2cIn L

τC −τκ−1) =

(λA + λBK1 + cλIn λL

λτC −λτκ−1) + ((1 − λ)A + (1 − λ)BK2 + c(1 − λ)In (1 − λ)L
(1 − λ)τC −(1 − λ)τκ−1)

= λP (K1) + (1 − λ)P (K2)
Using again subadditivity and positive homogeneity of the log-norm we obtain

µ(λK1 + (1 − λ)K2) = µ(P (λK1 + (1 − λ)K2)) = µ(λP (K1) + (1 − λ)P (K2))
≤ λµ(P (K1)) + (1 − λ)µ(P (K2)) = λµ(K1) + (1 − λ)µ(K2)

That proves the convexity in K.
By using the same argument as above, it is possible to show that the data-driven representation
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of problem (5.26)

inf
c,τ,G

µp (
XLG + cIn L

τC −τκ−1) (5.27)

subject to c > 0, τ ≥ 0, X0G = In

is still convex in the matrix G.
We notice moreover that the constraint introduced by the equality X0G = In is a linear con-
straint, and so it is convex.

Remark. It is possible to show that the optimization problem (5.25) is not convex in the weight

matrix R, making the research for a weighted non polynomial Lyapunov function which gives

exponential stability hard to solve.

5.3.2 Linear programming formulation

In this section we show how the solution of the absolute stability problem presented in the last
sections can be obtained by means of a linear programming approach.
Since the problems in ℓ1 and ℓ∞ norm are similar we will make our analysis considering the ℓ1

norm, adding some considerations on the adaptations to the ℓ∞ norm of the results proposed at
the end of the section.
We start by observing that in Theorems (5.1) we have been able of getting rid of the presence of
the constant c > 0 and the optimization variable τ ≥ 0, reducing the stability problem to finding
a state-feedback matrix such that

n

∑
i=1
i≠j

∣(A +BK)ij∣ + (A +BK)jj < −∣τ∗Cj∣ (5.28)

The state-feedback matrix K which minimize each sum and assure exponential stability of the
origin with maximum rate of convergence can be found then by solving the following optimiza-
tion problem

minimize
K∈R1xn

n

∑
j=1

(∑
i≠j

(∣(A +BK)ij∣ + (A +BK)jj)

subject to
n

∑
j=1

∣(A +BK)ij∣ + (A +BK)jj < −∣τ∗Cj∣ ∀ j = 1, . . . , n

(5.29)

Indeed, since introduction of the inequality (5.28) in the constraints of the problem guarantees
that the conditions for exponential stability are met, the minimization of the overall summation
is equivalent to minimize each single summation that satisfy the constraints. We observe that
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∣Cj∣ are known, since we assume to know the vector C ∈ Rn.
In order to transform problem (5.29) into a linear programming problem we associate to each
element ∣(A+BK)ij∣ in the sum an auxiliary variable tij that for all i, j = 1, . . . , n i ≠ j must
satisfy

tij ≥ (A +BK)ij = (aij + bikj)
tij ≥ −(A +BK)ij = −(aij + bikj)

where aij, bj, kj are the entries of the matrices A,B and K.
After the introduction of the auxiliary variables, we obtain the following optimization problem

minimize
kj , tij

i,j=1...n i≠j

n

∑
j=1

(
n

∑
i=1
i≠j

tij + (ajj + bjkj))

subject to tij ≥ (aij + bikj)
tij ≥ −(aij + bikj)
n

∑
i=1
i≠j

tij + (ajj + bjkj) < −∣τ∗Cj∣ ∀ j = 1, . . . , n

(5.30)

The constraints guarantee that tij ≥ max((A+BK)ij,−(A+BK)ij) = ∣(A+BK)ij∣; at the
optimal solution it must hold the condition must be satisfied with an equality, for otherwise tij

could further decrease.
We observe however that the optimization problem presented in (5.30) differs from a standard
linear program due to the presence of the strict inequality in the constraints.
In order to avoid the presence of the strict inequalities we can introduce the variable cj =

∣τ∗Cj∣+ ϵ, with ϵ > 0 arbitrary small, so that the constraint becomes ∑n
i=1
i≠j

tij + (ajj + bjkj) ≤

−cj .
Rewriting the problem constraints as

− tij + bikj ≤ −aij

− tij − bikj ≤ aij
n

∑
i=1
i≠j

tij + (ajj + bjkj) ≤ −cj ∀ j = 1, . . . , n
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we obtain the following linear program formulation of problem (5.29)

minimize
kj , tij

n

∑
j=1

(
n

∑
i=1
i≠j

tij + (ajj + bjkj))

subject to − tij + bikj ≤ −aij

− tij − bikj ≤ aij
n

∑
i=1
i≠j

tij + (ajj + bjkj) ≤ −cj ∀ j = 1, . . . , n

(5.31)

To give a better intuition behind the transformation of problem (5.29) into the linear program
(5.30) we show the procedure for a general system of dimension two.

Example. Given the matrices

A = (a11 a12

a21 a22
) B = (b1

b2
)

C = (C1 C2) K = (k1 k2)

we obtain the optimization problem

minimize
K∈R1×n

2

∑
j=1

(
2

∑
i=1
i≠j

(∣(aij + bikj)ij∣ + ((ajj + bjkj))jj)

subject to
2

∑
i=1
i≠j

(∣(aij + bikj)∣ + ((ajj + bjkj)) < −∣τ∗Cj∣ ∀ j = 1 . . . n

Defining the augmented decision variable x = (k1, k2, t12, t21), and the constants cj = ∣τ∗Cj∣+
ϵ, j = 1, 2 the optimization problem becomes

minimize
kj , tij

i,j=1...n i≠j

t12 + a22 + b2k2 + t21 + a11 + b1k1

subject to t12 ≥ a12 + b2k1, t12 ≥ −(a12 + b2k1)
t21 ≥ a21 + b1k2, t21 ≥ −(a21 + b1k2)
(a11 + b1k1) + t12 ≤ −c1, t21 + (a22 + b2k2) ≤ −c2

(5.32)
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We rewrite the constraints as

− t12 + b2k1 ≤ −a12, − t12 − b2k1 ≤ a12

− t21 + b1k2 ≤ −a21, − t21 − b1k2 ≤ a21

b1k1 + t12 ≤ −c1 − a11, t21 + b2k2 ≤ −c2 − a22

Defining

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b2 0 −1 0

−b2 0 −1 0

0 b1 0 −1

0 −b1 0 −1

b1 0 1 0

0 b2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a12

−a12
a21

−a21
−c1 − a11

−c2 − a22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

k1

k2

t12

t21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

m = (b1 b2 1 1) n = a11 + a22

c1 = ∣τ∗C1∣ + ϵ c2 = ∣τ∗C2∣ + ϵ

we obtain the following linear program

minimize
x

m
T
x + n

subject to Fx ≤ h
(5.33)

where x is the augmented variable defined before.

We consider now the case in which the stability analysis is made using the ℓ∞ norm. We
start by observing that he problem objective is to find a state-feedback matrix K ∈ R1×n such
that the condition

n

∑
j=1
j≠i

∣(A +BK)ij∣ + (A +BK)ii + ∣Li∣ < 0

is satisfied for all i = 1, . . . , n.
Similarly to what done in the case of the ℓ1, norm we can rewrite such condition as

n

∑
j=1
j≠i

∣(A +BK)ij∣ + (A +BK)ii < −∣Li∣

Defining li = ∣Li∣ + ϵ, for ϵ > 0 arbitrary small, we can substitute the strict inequalities with
non-strict ones.
Using the same augmented objective function used for the analysis in the ℓ1 norm we obtain the
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optimization problem

minimize
kj ,tij

i,j=1...n i≠j

n

∑
i=1

(
n

∑
j=1
i≠j

tij + aii + bikj)

subject to tij ≥ (aij + bikj)
tij ≥ −(aij + bikj)
n

∑
j=1
j≠i

(tij + aii + biki) ≤ −li ∀ i = 1, . . . , n

(5.34)

Rewriting again the constraints we obtain

minimize
kj ,tij

i,j=1...n i≠j

n

∑
i=1

(
n

∑
j=1
j≠i

tij + aii + bikj)

subject to − tij + bikj ≤ −aij

− tij − bikj ≤ aij
n

∑
j=1
j≠i

(tij + aii + biki) ≤ −li ∀ i = 1, . . . , n

(5.35)

that is a linear program.

Remark. Due to the structure of the problem, the minimization of the rate of convergence in the

ℓ1 norm can be obtained in an alternative way. One can notice in fact that, when the analysis

is made by using the ℓ1 norm, then for each j = 1, . . . , n the summation

n

∑
j=1
j≠i

∣(A +BK)ij∣ + (A +BK)jj =
n

∑
j=1
j≠i

∣aij + bikj∣ + (ajj + bjkj)

only depend on the j-th element of the matrix K, that is, the problem can be solved separately

for each column, obtaining n disjointed unconstrained optimization problems

minimize
kj∈R

n

∑
j=1
j≠i

∣aij + bikj∣ + (ajj + bjkj)

for j = 1, . . . , n In fact, if exists j such that the minimum obtained is a positive value, we can

conclude that does not exist K which makes the origin exponential stable.
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Rewriting the problem using the auxiliary variables tij we obtain

minimize
kj

tij i=1,...,n

n

∑
i=1
i≠j

tij + (ajj + bjkj)

subject to tij ≥ (aij + bikj)
tij ≥ −(aij + bikj)

for each j = 1, . . . , n

Finally, we point out that the problem can be reformulated such that the optimization con-
sists in research of the minimum norm feedback matrix K which stabilize the system

minimize
K∈R1xn

∥K∥2
2

subject to
n

∑
i=1
i≠j

∣(A +BK)ij∣ + (A +BK)jj + τ
∗∣Cj∣ < 0 ∀j = 1, ..., n

(5.36)

Since that both the objective function ∥K∥2
2 and the constraints are convex, the problem can be

solved again by means of a convex program.
By following a similar approach to the previous optimization problem and by introducing aux-
iliary variables and constraints, it is possible to transform the problem to the following one

minimize
kj ,tij

i,j=1,...,n i≠j

∥K∥2
2

subject to
n

∑
i=1
i≠j

tij + (A +BK)jj ≤ −cj

tij ≥ (aij + bikj), tij ≥ −(aij + bikj)
∀ j = 1, ..., n

Similar considerations holds in the ℓ∞ norm substituting the row and column indices and
the constants cj with li, giving the optimization problem

minimize
kj ,tij

i,j=1,...,n i≠j

∥K∥2
2

subject to
n

∑
j=1
j≠i

tij + (A +BK)ii ≤ −lj

tij ≥ (aij + bikj), tij ≥ −(aij + bikj)
∀ i = 1, ..., n

(5.37)
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5.3.3 Data-driven representation

We now show how the formulation of the optimization problems proposed in the previous sec-
tion changes using a data-driven approach.
We start by considering again the optimization problem (5.29)

minimize
K∈R1×n

n

∑
j=1

(
n

∑
i=1
i≠j

(∣(A +BK)ij∣ + (A +BK)jj)

subject to
n

∑
i=1
i≠j

∣(A +BK)ij∣ + (A +BK)jj < −∣τ∗Cj∣ ∀ j = 1, . . . , n

Using representation (5.6), where XL ∈ Rn×T and G ∈ RT×n, the problem becomes

minimize
G∈RT×n

n

∑
j=1

(
n

∑
i=1
i≠j

(∣(XLG)ij∣ + (XLG)jj)

subject to
n

∑
i=1
i≠j

∣(XLG)ij∣ + (XLG)jj < −∣τ∗Cj∣ ∀ j = 1, . . . , n

T

∑
s=1

X0G = In

(5.38)

Similarly to the solution obtained in the model based case, we can reformulate (5.38) to a linear
program by introducing the auxiliary variables

tij ≥ (XLG)ij =
T

∑
h=1

(XL)ih Ghj

tij ≥ −(XLG)ij = −
T

∑
h=1

(XL)ih Ghj
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from which we obtain

minimize
G∈RT×n

tij i,j=1...n i≠j

n

∑
j=1

(
n

∑
i=1
i≠j

tij +
T

∑
h=1

(XL)jh Ghj)

subject to tij ≥
T

∑
h=1

(XL)ih Ghj

tij ≥ −
T

∑
h=1

(XL)ih Ghj

n

∑
i=1
i≠j

tij +
T

∑
h=1

(XL)jh Ghj < −∣τ∗Cj∣ ∀ j = 1, . . . , n

T

∑
s=1

(X0)isGsj = {
1 i = j

0 i ≠ j

(5.39)

Again, if we rewrite constraints of the problem as

− tij +
T

∑
h=1

(XL)ih Ghj ≤ 0

− tij −
T

∑
h=1

(XL)ih Ghj ≤ −0

n

∑
i=1
i≠j

tij +
T

∑
h=1

(XL)jh Ghj < −cj ∀ j = 1, . . . , n

T

∑
s=1

(X0)isGsj = {
1 i = j

0 i ≠ j
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with cj is defined in the previous section, we obtain the linear program

minimize
G∈RT×n

tij i,j=1...n i≠j

n

∑
j=1

(
n

∑
i=1
i≠j

tij +
T

∑
h=1

(XL)jh Ghj)

subject to − tij +
T

∑
h=1

(XL)ih Ghj ≤ 0

− tij −
T

∑
h=1

(XL)ih Ghj ≤ −0

n

∑
i=1
i≠j

tij +
T

∑
h=1

(XL)jh Ghj < −cj ∀ j = 1, . . . , n

X0G = In

(5.40)

Using similar arguments, the linear program obtained when the stability analysis is made on ℓ∞

is

minimize
G∈RT×n

tij i,j=1...n i≠j

n

∑
i=1

(
n

∑
j=1
j≠i

tij +
T

∑
h=1

(XL)ih Ghi)

subject to − tij +
T

∑
h=1

(XL)ih Ghj ≤ 0

− tij −
T

∑
h=1

(XL)ih Ghj ≤ −0

n

∑
j=1
j≠i

tij +
T

∑
h=1

(XL)ih Ghi < −lj ∀ i = 1, . . . , n

T

∑
s=1

(X0)isGsj = {
1 i = j

0 i ≠ j

(5.41)
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Example (continuation of the previous example).
Consider again the case of a general two dimensional system presented in the last section.

Adopting a data-based approach the optimization problem (5.32) becomes

minimize
G, tij

2

∑
j=1

(∑
j≠i

tij +
T

∑
h=1

(XL)jh Ghj)

subject to t12 ≥
T

∑
h=1

(XL)1h Gh2 t12 ≥ −
T

∑
h=1

(XL)1h Gh2

t21 ≥
T

∑
h=1

(XL)2h Gh1 t21 ≥ −
T

∑
h=1

(XL)2h Gh1

∑
i≠j

tij +
T

∑
h=1

(XL)jh Ghj < −∣τ+Cj∣ ∀ j = 1, . . . , n

T

∑
s=1

(X0)isGsj = {
1 i = j

0 i ≠ j

(5.42)

We can rewrite the constraints as

− t12 +
T

∑
h=1

(XL)1h Gh2 ≤ 0 − t12 −
T

∑
h=1

(XL)1h Gh2 ≤ 0

− t21 +
T

∑
h=1

(XL)2h Gh1 ≤ 0 − t21 −
T

∑
h=1

(XL)2h Gh1 ≤ 0

tij +
T

∑
h=1

(XL)jh Ghj < −∣τ∗Cj∣ i, j = 1, 2 i ≠ j

We assume that T = 3, (that is, the minimum sample length for which the matrix W0 defined in

(5.4) can be full row rank).

As done in the previous example, we define

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 X
L
11 X

L
12 X

L
13 −1 0

0 0 0 −XL
11 −XL

12 −XL
13 −1 0

X
L
21 X

L
22 X

L
23 0 0 0 0 −1

X
L
11 X

L
12 X

L
13 0 0 0 1 0

0 0 0 X
L
21 X

L
22 X

L
23 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

0

−c1
−c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c1 = ∣τ∗C1∣ + ϵ c2 = ∣τ∗C2∣ + ϵ

and obtain the linear program in the augmented objective variable x, given by the vectorization
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of the matrix G and the auxiliary variables tij

minimize
x

2

∑
j=1

(∑
i≠j

tij +
T

∑
h=1

(XL)jh Ghj)

subject to Fx ≤ 0

X0G = In

(5.43)

We conclude that the introduction of the data driven approach does not modify the structure
of the problem.
Nonetheless, we spend some words on how the introduction of a data-based model impact the
number of computations required.
Consider again the previous examples: to solve the problem we introduced an augmented deci-
sion variable composed by the original decision variables kj , the component of the controller to
be synthesized, and the auxiliary variables tij , which are used to avoid the presence of absolute
values and obtain a linear optimization problem. Despite being presented for a two dimensional
system such procedure can be generalized for a system of arbitrary dimension.
In the model based approach the dimension of the augmented decision variable is n2, since we
have n decision variables for the controller entries and one for each non diagonal term of the
matrix A+BK, i.e. n2−n (since each term (A+BK)ij, i ≠ j appears in absolute values, and
requires an auxiliary variable). On the other hand, in the data-based approach, the augmented
decision variable is composed by the entries of the matrix G and the auxiliary variables. While
we can see that the number of auxiliary variables tij remains equal to n

2 −n, since we consider
again the absolute value of each non diagonal term of XLG, which has dimension n × n, the
vectorization of the matrix G require Tn variables (we recall G ∈ RT×n), where T ≥ n+) is
the length of the data samples. That is, the augmented optimization variables pass from having
n
2 elements to Tn + (n2 − n) ≥ 2n

2.
We can make a similar considerations on the matrix F , which is used to the describe the linear
constraints in the optimization problem, when considered the augmented optimization variable.
In the model-based approach the matrix F has dimension (2n2 − n) × (n2 + n), where the
number of rows 2n2−n corresponds to the 2(n2−n) constraints used to model the presence of
an absolute value (each non diagonal term of the matrix A + BK has been considered twice in
the constraints of the auxiliary variables), plus n constraints to guarantee that each summation
on the columns (or the rows) of the matrix P (τ) to be negative.
In the data-based approach the dimension of the matrix F becomes (2n2−n)× (n2+Tn−n),
due to the fact that number of constraints (which defines the number of rows of F ) remain the
same, but the augmented increases in dimension, having at least 2n2 components.
Moreover in the data based approach we must add the additional constraint X0G = In to guar-
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antee the effectiveness of the representation (5.6), which consists in a linear system of n2 equa-
tions.
We conclude that, applying a data-driven approach to the solution of the exponential stability
problem using the ℓ1 or ℓ∞ norm does not change the structure of the problem, increasing how-
ever the number of computations required.
As the last observation we show a data driven version of problems (5.36) and (5.37), which
consists in finding the minimal norm K ∈ R1×n for which exponential stability is assured.

These are, in the ℓ1 case

minimize
G∈RTxn

∥U0G∥2
2

subject to ∑
i≠j

∣(XLG)ij∣ + (XLG)jj+ ≤ −cj ∀j = 1, ..., n

X0G = In

(5.44)

and in the ℓ∞ case

minimize
G∈RTxn

∥U0G∥2
2

subject to ∑
j≠i

∣(XLG)ij∣ + (XLG)ii ≤ −li ∀i = 1, ..., n

X0G = In

(5.45)

Since the constraints are convex, by introducing some auxiliary variable its possible to see that
these are both convex problems.
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Conclusions

In this thesis we studied how to solve the absolute stability problem for Lur’e system recurring
to a data driven approach, first considering the classical Lyapunov stability theory, then propos-
ing a novel solution using the notion contractivity for general ℓp spaces. We have studied the
effect of the introduction of a data-based approach on its efficiency, observing that a data driven
formulation of the problem does not change its convexity, increasing however the computational
buden required to solve the problem.
In both analysis we have proposed a solution that can be actually be implemented by means of
LMI or convex programs. In particular, we have proposed a solution which aims to maximize
the rate of convergence using a linear program.
Nonetheless, the research in this field is far from being exhausted. The application of Lyapunov
stability theory to general ℓp spaces has the potentiality to establish a new paradigm of stability
analysis and control design. However, in order to materialize the possibility of application of
the non polynomial 2-forms in control system theory it is necessary to comprehend if there exist
classes of problem which the classical stability methods in the Euclidian space provide poorer
performances than the ones obtained by studying the problem with general ℓp spaces.
On the other hand, with specific regards to the results we proposed, our data driven extension
lacks a formal design procedure which guarantee robustness in the presence of disturbances.
Such arguments will be the subject of future research.
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A
Notions in Convex Optimization

We provide here a review of some definitions and procedures used in formulating or solving
convex optimization problems. We consider as references [49], [50].

A.1 Optimization problems

An optimization problem is a problem of the form

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

which, in words, consists in minimize the value of f0(x) among all x that satisfy the the condi-
tions fi(x) ≤ 0, i = 1, . . . ,m and hi(x) = 0, i = 1, . . . , p. The function f0 ∶ R

n
→ R is called

the objective or cost function, while the inequalities fi(x) ≤ 0 and the equalities hi(x) = 0

are called he constraints of the problem, while the functions fi ∶ R
n
→ R and hi ∶ R

n
→ R

are the corresponding inequality and equality functions. In the case there are no constraints the
problem is said to be unconstrained. We will refer to x as the optimization variable. The points
where the optimization problem is defined is called the domain of the problem, and it is defined
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as

D ≔

m

⋂
i=1

domfi ∩
p

⋂
i=1

domhi (A.1)

where domfi and domhi are the points where the functions fi i = 1 . . .m and hi i = 1 . . . p are
defined.
A point x ∈ Rn is said to be feasible if satisfies the equality and inequality constraints of the
problem; similarly, an optimization problem is said to be feasible if there exists at least one
feasible point.
We define the optimal value as

p
∗
= inf{f0(x)∣fi(x) ≤ 0 i = 1, . . . ,m; hi(x) = 0 i = 1, . . . , p}

which is allowed to take as values ±∞. In the case in which the problem is infeasible we will
assume p

∗
= +∞.

A class of particularly relevant optimization problems consists in the convex optimization prob-

lems, that is, problems in which both the cost function and the inequality constraint functions
are convex, while the equality constraint functions are affine.
Before presenting the standard form of a convex optimization problem, we review the defini-
tions given above.

Definition (Convex Set). A set C ⊆ Rn is said to be Convex if the line segment between any

two points of C lies in C, i,e. :

∀ c1, c2 ∈ C,∀ θ ∈ [0, 1] θc1 + (1 − θ)c2 ∈ C

Definition (Convex Function). A function f ∶ Rn
→ R is said to be Convex if its domain is a

convex set and if for all x1, x2 ∈ dom f the line segment between (x1, f(x1)) and (x2, f(x2)),

lies above the graph of f i.e. :

∀ x1, x2 ∈ dom f, ∀ θ ∈ [0, 1] f(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 − θ)f(x2)

We provide some noteworthy examples of convex sets, which will be useful in defining a
convex optimization problem in standard form.

Example.
The unitary open ball in Rn: B = {x ∶ ∥x∥ < 1} is a convex set.

In fact, if x and y belongs to B we have, for all θ ∈ [0, 1]

∥θx + (1 − θ)y∥ ≤ θ∥x∥ + (1 − θ)∥y∥ < θ + 1 − θ = 1 (A.2)
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Example.
Sublevels sets of a convex function Cα = {x ∈ dom f ∶ f(x) ≤ α} are convex sets.

The proof is immediate by observing that for all x, y in dom f and for all θ ∈ [0, 1] the sum

θx + (1 − θ)y ∈ dom f , and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ≤ α

Example.
Hyperplanes H = {x ∶ aTx = b}, with a ∈ Rn and b ∈ R are (obviously) convex sets.

A convex optimization problem is a problem of the form

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

a
T
i x = bi, i = 1, . . . , p

(A.3)

where f0, f1, . . . , fm are convex functions.
We can notice that the set of all feasible point is a convex set, since the domain of the problem
∩m

i=0dom fi is convex and the feasible set is the intersection of m level set of convex functions
and p hyperplanes, which are convex sets.
Convex optimization problems are of particular interest for several reasons: first of all if the
solution of the problem exists, any local minimum is also a global minimum; moreover if the
objective function is strictly convex, the optimal solution, whenever it exists, is unique.
Another remarkable reason behind the interest in convex optimization problem is the fact that
they can be solved by efficient algorithms.

Remark. Concave problems are of the type

maximize
x∈Rn

f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

a
T
i x = bi i = 1, . . . , p

(A.4)

where the objective function f0(x) is concave and the inequality functions fi(x) i = 1, . . . ,m

are convex: as a matter of fact it is immediate so observe that problem (A.4) is equivalent

to problem (A.3), if we consider to minimize the convex objective function −f0(x). All the

properties presented for convex problems also hold for concave problems.
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A.1.1 Linear optimization problems

In the case of which the objective and constraints functions are all affine the problem is referred
as a linear program.
A linear program is expressed as

minimize
x∈Rn

c
T
x + d

subject to Gx ≤ h

Ax = b

(A.5)

where G ∈ Rm×n, h ∈ Rm and A ∈ Rp×n, b ∈ Rm. In this framework the inequality Gx ≤ h

must be interpreted elementwise, i.e. (Gx)i ≤ hi ∀ i = 1, . . .m.

Remark. A linear program is said to be in standard form if is written as

minimize
x∈Rn

c
T
x + d

subject to Ax = b

x ≥ 0

(A.6)

A.1.2 Quadratic optimization problems

An optimization problem in which the objective function is a quadratic function and the con-
straints are affine is called quadratic program

minimize
x∈Rn

1/2xT
Px + q

T
x + c

subject to Gx ≤ h

Ax = b

(A.7)

where P is a symmetric n × n matrix, G,A ∈ Rn×n and q, h, b ∈ Rn.
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A.2 Duality

Duality is a principle which allows to obtain a lower bond on the optimization problem consid-
ered by exploiting the Lagrangian function and the Lagrangian dual function.
We start by considering again a general optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(A.8)

where we assume the domain D = ⋂m

i=0 fi ∩ ⋂p

i=0 hi to be non-empty; we do not make the
assumption that problem (A.8) is convex. We now give the notions of Lagrangian function and
Lagrangian dual function.

Definition (Lagrangian Function).
The Lagrangian function associated with problem (A.8) is defined as

L ∶ Rn
× Rm

× Rp
⟶ R

L(x, λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x)

where dom L = D × Rm × Rp. The vectors λ and ν are called Lagrange multiplier associated

with problem (A.8).

Definition (Lagrangian Dual Function).
The Lagrangian dual function g ∶ Rm × Rp

→ R is defined as

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x))

As already mentioned, the Lagrangian dual function yield a lower bound on the optimal
value p

∗
= inf{f0(x)∣fi(x) ≤ 0 i = 1, . . . ,m; hi(x) = 0 i = 1, . . . , p}: indeed, chosen an

arbitrary λ ≥ 0, for any feasible x̃ we have

m

∑
i=1

λifi(x̃) +
m

∑
i=1

νihi(x̃) ≤ 0

Since on a feasible point fi(x̃) ≤ 0 and hi(x̃) = 0, then

L(x̃, λ, ν) = f0(x̃) +
m

∑
i=1

λifi(x̃) +
m

∑
i=1

νihi(x̃) ≤ f0(x̃)
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from which we obtain

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ inf
x∈D

L(x, λ, ν) ≤ f0(x̃) ≤ p
∗

that is, g(λ, ν) is always smaller than the oprimal value p
∗.

The Lagrangian Dual Problem consists in finding the optimal multipliers λ∗ and ν
∗ which min-

imize the gap between the optimal value p
∗ solution of the primal optimization problem (A.8),

and the lower bound obtained by the Lagrangian dual function. Equivalently the Lagrangian
Dual problem can be written as

maximize g(λ, ν)

subject to λ ≥ 0
(A.9)

It can be seen that the Lagrangian function is always concave, and since the constraint of prob-
lem (A.9) are convex, the Lagrangian Dual problem is a convex optimization problem.

Remark (On the Lagrangian function in the proof of Non-Polynomial S-Lemma).
In the proof of the Non-Polynomial S-Lemma we have considered as Lagrangian function

L(x, τ) = −[[P0x, x]] +
s

∑
j=1

τj[[Pjx, x]] −
s

∑
j=1

τjρj (A.10)

The reason behind negative sign in the Lagrangian function relies on the fact that the primal

problem considered in (4.4) is a maximization problem instead of minimization one

sup
x∈Rn

p0(x)

subject to ∥x∥ = 1, p1(x) ≤ ρ1, ..., ps(x) ≤ ρs

(A.11)

Since the Lagrangian function has been defined in relation to minimization problems, in
order to be coherent with the definition we must consider the equivalent problem of minimizing
−p0(x) which allows us to consider the usual definition of Lagrangian function and leads to the
Lagrangian function considered in (4.7).
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[21] Imre Pólik and Tamás Terlaky. A survey of the s-lemma. SIAM review, 49(3):371–418,
2007.
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