
Master Thesis in Computer Engineering - Artificial Intelligence and Robotics

A Lightweight CNN Architecture for Face
Recognition on Embedded Devices

Master Candidate

Vascellari Filippo
Student ID 2019155

Supervisor

Prof. Pretto Alberto
University of Padova

Academic Year 2021/2022
December 12, 2022

Abstract

In our daily life, faces are one of the most familiar and common biometric
features that allow to identify a person through the use of artificial intelligence
techniques. For this reason, in recent years the theme of Facial Recognition has had
a huge impact on several fields such as forensic investigations but also such as access
management to devices or entertainment applications. Although biometric facial
information is not ideal compared to other biometric traits, due to its practicality
and immediacy they are experiencing a very strong technological development.
Current face recognition applications are based on deep neural networks that
allow greater precision and adaptability to different uses, but require, at the same
time, great resources for training and inference making their use inaccessible in
those products that do not have large computing power. To compete in the
video intercoms market by providing additional services to the final consumer,
CAME S.p.a. commissioned the design and development of a lightweight neural
network for facial recognition well suited for the embedded systems of their video
intercoms. These embedded systems impose severe constraints on the available
computational capabilities, further limited by privacy laws that forbid the use of
delocalized infrastructures. In this thesis, we addressed the Facial Recognition
problem by proposing a lightweight pipeline that will be executed online in CAME
video intercoms. In particular, we will exploit a Multitask Cascaded Convolutional
Network (MTCNN) for the Face Detection step to detect faces in images and to
align the faces, and a Siamese Network based on the ResNet-18 architecture for
the Face Identification step whose training is based on a custom-built dataset. The
experiments showed reasonable results despite the lightness of the architecture.

i

Contents

1 Introduction 1
1.1 CAME S.p.a. 4

2 Background 7
2.1 Background Notions of Face Recognition 7
2.2 Multitask Cascaded Convolutional Network 10
2.3 Residual Network . 12
2.4 Siamese Network . 16
2.5 Contrastive Loss . 18
2.6 Triplet Loss . 20

3 Experimental Setup and Code 23
3.1 Constraints . 23
3.2 Environmental Setup . 26

3.2.1 Python . 26
3.2.2 Anaconda . 28
3.2.3 MATLAB . 29

3.3 Development . 30
3.3.1 Analisys . 30
3.3.2 Dataset . 36
3.3.3 Face Detection . 40
3.3.4 Backbone Network . 43
3.3.5 Face Identification . 51
3.3.6 Face Recognition . 59

4 Experiments Results 65
4.1 Siamese Network with Triplet Loss 65
4.2 Siamese Network with Contrastive Loss 70
4.3 Siamese Network with Triplet Loss and Classification Loss 74
4.4 Siamese Network with Contrastive Loss and Classification Loss . . . 75

iii

iv CONTENTS

4.5 Results on Test Database . 76

5 Conclusions and future works 81
5.1 Conclusions . 81
5.2 Future Works . 83

Acknowledgements 85

Bibliography 87

List of Figures

1.1 CAME’s Logo. 4

2.1 Stages of Face Detection and Landmarking of MTCNN [44]. 11

2.2 Architecture of CNNs in MTCNN[44]. 12

2.3 Example of Residual Mapping. 13

2.4 Gradient Pathways in Residual Network. 14

2.5 ResNet-34 Structure compared with VGG. 15

2.6 Example of Siamese Network. 16

2.7 Different Behaviour of Siamese Network. 18

2.8 Contrastive Loss setup[13]. 19

2.9 Representation of Triplet Loss behaviour[13]. 21

2.10 Triplet Selection based on margin. 22

3.1 BOXER-8221AI with NVidia Jetson Nano. 31

3.2 Neural Computing Stick 2. 31

3.3 LFW Pair Match Images. 37

3.4 IMDb Wrong Images. 38

3.5 Example of Detection and Alignment. 43

3.6 ResNet-18 common layers. 44

3.7 Training results of ResNet-18 on Pyhton. 49

3.8 Fine Tuning results on MATLAB. 50

3.9 ResNet-18 Architecture on Matlab. 50

3.10 Structure for Siamese with Contrastive Loss. 52

3.11 Structure for Siamese with Binary Cross Entropy. 53

3.12 Branched Subnetwork. 56

3.13 Example of one class in the final database. 60

3.14 Structure of Network during Inference. 61

4.1 Training Siamese Network. 67

v

vi LIST OF FIGURES

4.2 Training Siamese Network with FC 512, ReLU, FC 1024, ReLU, FC
512. 68

4.3 Training Siamese Network with ResNet-18 derived from ImageNet. . 68
4.4 Training Siamese Network with ResNet-18 on WebfaceSiamese. . . . 69
4.5 Training Siamese Network. 72
4.6 Train Siamese Network with FC 512, ReLU, FC 1024, ReLU, FC 512. 72
4.7 Train Siamese Network with ResNet-18 trained on ImageNet. 73
4.8 Training Siamese Network on WebfaceSiamese. 74
4.9 Training Siamese Network with Classification Loss. 75
4.10 Train Siamese Network with Contrastive and Classification Loss. . . 76
4.11 Report of the trade-off between FAR and FRR, the sc. 77

Listings

3.1 Code to import MTCNN. 28
3.2 Script for selecting images under some constraints 40
3.3 Code to import and modify the ResNet-18 45
3.4 Custom loop to train the ResNet-18 on Python 46
3.5 Code to train ResNet-18 on MATLAB 49
3.6 Custom loop to train the Siamese Network 54
3.7 Contrastive loss implementation . 55
3.8 Triplet Loss implementation . 55
3.9 Classification Loss implementation 58
3.10 Code for Face Recognition inference phase 62

vii

Chapter 1

Introduction

The deep evolution and transformation of technologies that we have witnessed
in recent decades, has led to the emergence of new needs and requirements in many
areas of daily life, not only for entertainment but also for the safety of people.

One of the most important and explored research areas is image analysis, a key
area for multiple applications of relevant importance. Over the last few years, the
analysis of images has undergone deep evolutions, observing a radical change in the
processing methods that nowadays are based on Deep Learning Networks. Deep
Learning is a concept of enormous importance that allows to obtain very accurate
results at the expense of a considerable amount of resources necessary both for the
training phase and for the application phase, also known as inference phase.

In particular, one of the most successful applications of image analysis is Face
Recognition, including the Face Detection phase and the Face Verification/Iden-
tification phase. This success comes from the technologies available after several
years of research and development, technologies suitable to meet the high resource
requirements needed by the methods developed and used by this field of research,
and the allurement that attracts researchers from different disciplines such as
image processing, neural networks, computer graphics, pattern recognition, etc.
Researchers aim to solve problems of common use, such as the identification of
a person from an image or a video for control purposes, i.e. identification of a
person following an illegal act through surveillance cameras, or as a method of
secure access to applications and sites protected by credential access through facial
biometric information, i.e. access to banking applications. Researchers also have to
take into account the advantages, but above all, the disadvantages deriving from
the methods and biometric information used.

1

2 CHAPTER 1. INTRODUCTION

From a methodological point of view the greatest challenges derive from the cost
of physical resources to implement the training and inference phase, the amount of
time required for training and the need of a training dataset that complies with the
required specifications. Nevertheless, these methods are now used also in simple
entertainment applications that people use every day unaware of the algorithms and
the tools necessary to perform certain tasks. These methods are deeply rooted in
everyday life so that the new products launched on the market, such as smartphones,
are influenced by these needs and consequently are produced by reserving some
specifications for the use of neural networks. All the tasks based on specific neural
networks are processed and computed into processors built specifically to enhance
the neural engine through hardware blocks capable of great computing power.

Facial recognition not only allows the entertainment of the people in various
applications and ensures greater security in different areas, it allows the product
that implements it to overcome the competition, giving to the manufacturer the ca-
pability to provide new services. From the need to compete in the already saturated
video intercom systems’ market by providing an additional feature, CAME S.p.a.
has requested the design and development of a neural network for face recognition
in video intercom based on embedded systems and developed on a platform based
on a single core processor.

The purpose of this thesis is to describe and analyze the entire training course
carried out during the Internship at CAME S.p.a, which allowed the design and
development of a neural network for the Face Recognition task fitting the needs
and addressing the problems that will be described in the next chapters. The goal
is the development of two neural networks, one for the task of Face Detection and
one for the task of Face Recognition.

The first task has found in the MTCNN (Multi-Task Cascaded Convolutional
Networks) the perfect candidate to identify faces in an image thanks to its high
accuracy, minimum demand for computational resources and ease of use because
it is implemented as Python library and it is widely used by researchers in this
context of applications.

The second task required the development from scratch of a Siamese network
capable of comparing pairs of input images in order to verify if they represent the
same person. This comparison is carried out based on the difference, computed as

3

Euclidean distance, of the images’ embeddings, known as features vectors, extrapo-
lated from the subnetwork on which this Siamese is based and on a discriminative
threshold computed through experiments. The subnetwork was developed starting
from a Residual Network, in particular a ResNet-18, modified in order to minimize
a loss function that is better suited to that network and this purpose. To search the
loss function that would allow the network to obtain the best accuracy, experiments
were carried out with different loss functions, in particular:

• Contrastive Loss;

• Triplet Loss;

• Contrastive Loss with Classification Loss;

• Triplet Loss with Classification Loss.

The result is the creation of a software that allows Face Detection through the
MTCNN neural network and Face Verification/Identification through the Siamese
neural network, respecting all the requirements imposed by an embedded system
and by the company itself, obtaining excellent results in Face Recognition task.

In the following paragraph, there will be a short description of the company
that allowed the design and development of this neural network and where the
Internship was carried out.

The second chapter will provide the notional background to understand the
choices made in the next chapter but also to understand the evolutionary leap made
by these systems over the last decades.

In the third chapter the implementation path will be presented, describing the
the entire development process, constraints, tools and choices that have been made
during development, providing implementation details and parts of code, as well as
the obstacles and problems that arose during the Stage.

The fourth chapter will contain the results of the experiments, with graphs and
values, obtained during the tests carried out on the various types of neural networks
and selected loss functions.

In the fifth chapter, the conclusions derived from this implementation will be
placed, there will be a description of all the future implementations and ideas that

4 CHAPTER 1. INTRODUCTION

are related to this development.

1.1 CAME S.p.a.

CAME1 is a leading brand and a global partner for integrated solutions, en-
gineered for automating, controlling and securing residential, public and urban
environments, resulting in intelligent and healthy living and working spaces for
people. The Group designs and produces entrance automation, video entry systems,
climate control systems, home automation, burglar alarm systems and sectional
doors, for residential and industrial environments. It also offers solutions for
large-scale projects and urban planning, systems for managing automatic parking
facilities, access control and the security of public areas. With a history of almost
50 years behind it, the CAME Group was founded by Paolo Menuzzo. From its
Headquarters in Dosson di Casier, in the province of Treviso, CAME coordinates 10
Research and Development centres and 11 production plants in Italy, France, Spain,
the United Kingdom, Turkey and Brazil. The company, which has around 1,750
employees, is present in the market with branches in 20 countries and operates in
118 countries worldwide through business partners and distributors.

Figure 1.1: CAME’s Logo.

One of CAME’s main objectives, and the basis of the company’s business
methodology, is the continuous improvement of production processes, safety and
relationships.

The Group invests in research and development, believing it to be an indis-
pensable tool for continuing to increase the innovation level of its projects and
global solutions: to date, the company has more than 50 patents. In addition, the
commitment to R&D has a positive impact on competitiveness and guarantees the
company’s ability to meet market challenges, generating value for all the people in

1https://www.came.com/global/en

1.1. CAME S.P.A. 5

the Group and the business system.

CAME offers integrated solutions for the automation, control and security of
residential, public and urban settings, which generate intelligent spaces for people’s
well-being. Safety, design and innovation are the main features of products designed
to be integrated into any type of residential and industrial building.

CAME offers different products to cover the following areas:

• Gate Automation;

• Video Entry Systems;

• Home Climate Control;

• Automation for Awnings and Shutters;

• Smart Home;

• Garage Door and Industrial Doors;

• Turnstiles and Pedestrian Access Control;

• Road Barriers;

• Parking Facilities;

• Bollards and Vehicle Access Control;

• Roadblocker.

Chapter 2

Background

In this chapter we will present some preliminary material on the Face Recognition
task, starting with a description of this task and its applications, focusing more on
the theory on which the implementation choices of Chapter 3 are based.

2.1 Background Notions of Face Recognition

Every human can distinguish different identities by exploiting the face biometric
characteristics that are different in each person. Humans have the ability to verify
the identity of a person or identify him by comparing these biometric features
of the face with images, videos, documents, and so on. The ability to replicate
this capability within a computer has involved many researchers over the past
three decades. This trend of growth of interest that the Face Recognition task has
obtained in recent years is due to the great demand in the legal, commercial, security
and entertainment sectors but also to the availability of technologies suitable for its
use.

Although faces are the most familiar and common biometric features, they are
not as ideal and precise as other biometric traits such as iris or fingerprints and can
be highly influenced by multiple factors such as cosmetics, accessories like glasses
or scarves and, finally, by light conditions or in general by atmospheric conditions if
this task is carried out outdoors. At the same time, this kind of biometric feature is
the least intrusive because it does not require physical contact or active involvement
of the subject.

Only in 1988 the first results of considerable interest in this area were obtained
with the combination of artificial intelligence and the weak theoretical tools of

7

8 CHAPTER 2. BACKGROUND

previous years making it, consequently, independent from any need of human
intervention. In the last 30 years, multiple methods have been developed that
exploit increasingly powerful tools to obtain Three-Dimensional Face Recognition
Approaches. To date different methods have been developed regarding approaches
for images in two dimensions:

• Holistic Approach (PCA [34], LDA [35],...): also called subspace-based al-
gorithms exploit the assumption that any collection of images contains re-
dundancies that can be removed with tensor’s decomposition generating,
consequently, a collection of basis vectors that represents a subspace that pre-
serves the information of the original set of images, in this way each face can
be reconstructed. Finally, the classification is carried out by computing the
distance between the image vector and the classes described in that subspace;

• Local Approach (EBGM [40], EGM [23], ...): these methods exploit the
positions, distances and angles of particular points, called landmarks, which
represent the salient points of a person’s face, geometric-based methods allow
to compute a salience map to locate them in space and classify faces;

• Local-Texture Approach (LBP [2], LPQ [29], ...): based on the distinctive
regions of the face such as mouth, nose, eyes, etc., these methods exploit
the geometric relationships between these facial points that are compared
through pattern recognition techniques and graph matching methods, they
are also called feature extraction algorithms as they compute local descriptors
for each pixel of the image;

• Deep Learning Approach (AlexNet [22], ResNet [15], ...): by exploiting the
great computational power of some tools, the new learning methods of machine
learning and employing subsequent Hidden-layers hierarchically organized to
process information, these methods that exploit deep neural networks are able
to classify a large number of unlabeled images in a robust and accurate way.

To date the fields of application of this task are many and companies such as
Microsoft, Google, IBM compete each other to provide the best facial recognition
technology. The main fields of current application are:

• Access Control: facial recognition has been adopted for access control mecha-
nisms in human-machine interaction such as Secure Login, outclassing older
biometric methods such as fingerprints and irises thanks to the less intrusive
approach;

2.1. BACKGROUND NOTIONS OF FACE RECOGNITION 9

• Surveillance: defined as close observation and monitoring criminals, these
systems are created to meet the security despite the challenging task to obtain
a fully automatic system;

• Entertainment: face recognition has been included in many applications of
daily use for mere entertainment for face modifications through filters or in
the most complicated virtual realities and human-machine interactions;

• Law Enforcement: face recognition is deeply use to identify criminals or to
find missing people for example investigating hours of video.

Despite its wide use, the Face Recognition task is subject to several challenges
that reduce its accuracy, these challenges are attributable to:

• Pose Variation: when the subject is in an uncooperative environment, changes
or rotation of that subject reduce the capability of the network to correctly
identify the face, for this reason multiple poses of the same person are collected
although this solution can be applied only in some real-world application;

• Illumination Variation: illumination with its random changes or lighting effects
are uncontrolled for machine intelligence due to skin reflectance properties,
multiple camera sensors, resolution effects and environmental conditions, these
led to a reduction of the classification precision;

• Occlusion: the presence of objects such as sunglasses, mask, helmet, etc
involves the occlusion of important facial features with the consequent and
drastic reduction of face recognition performances because some features are
not correctly identified;

• Aging: over the years, human faces undergo drastic changes in a nonlinear
and inconsistent way, making the recognition complicated.

When we talk about the Face Recognition task, we are actually talking about
an activity that is based on a pipeline of subfunctions with specific purposes:

• Face Detection: it is the first step that determines the presence of face(s)
within the image, sometimes providing some important information such as
bounding boxes or facial landmarks. These information are vital in order to
align the face in the image;

• Feature Extraction: it is the second step of the pipeline and consists in the
extraction of a feature vector called embedding or encode that best represents
the face identified in the previous phase;

10 CHAPTER 2. BACKGROUND

• Classification: the last step is divided into verification, i.e. the matching of
one face to another to verify an identity, or identification, i.e. comparison of
a face to several other faces in order to give an identity to the input one.

Although apparently they seem to be three distinct phases, sometimes they are
not separable because the features are used both in the Feature Extraction phase
and in the Face Detection phase, consequently many times they are performed
simultaneously. The accuracy of these steps is reduced due to the challenges
mentioned above but also due to the size of the database, the presence of noise or
blur in the images and other small factors. Each step of this pipeline is considered
a critical research issue because it needs continuous improvement and is essential
in several applications. For this reason, the execution of these steps is mainly
entrusted to particular deep learning techniques described below in this chapter
with reference to the Face Detection and Feature Extraction phases.

2.2 Multitask Cascaded Convolutional Network

Computer vision algorithms for Face Detection such as the algorithm proposed
by Viola and Jones that uses Haar-Like features and AdaBoost [36] to train cascaded
classifiers can achieve good performance even though they degrade due to the great
visual variation of human faces in real-world applications, better performances have
been obtained through deformable part models that require a lot of computation
resources. Recently Convolutional Neural Networks (CNNs) have been applied with
great success to different computer vision tasks but due to their complex structure
the approach through this tool is time costly (among others [24, 41]).

Another task of vital importance is the Face Alignment which involves an im-
provement in terms of precision for the network that implements Face Recognition,
this task can be carried out through regression-based methods or template fitting
approaches. While CNNs for Face Detection require the calibration of bounding
boxes and the correlation between them and the localization of landmarks that
involves a greater consumption of resources to be carried out, CNNs for Face
Alignment require as many resources without exploiting the strong correlation that
exists between the two tasks that requires the technique of hard sample mining to
strengthen the power of detector.

The purpose of the Multitask Cascaded Convolutional Network [44] is to propose
a framework to unify the two tasks and exploit a smaller number of resources by

2.2. MULTITASK CASCADED CONVOLUTIONAL NETWORK 11

using a unified cascaded CNNs by multitask learning consisting of three stages:
the first stage quickly produces a candidate through a shallow CNN that is re-
fined by a second and more complex CNN rejecting all the non-faces windows
in the image, finally it outputs the facial landmarks representing the positions of
the mouth, nose and eyes through the last CNN whose structure is the most complex.

Figure 2.1: Stages of Face Detection and Landmarking of MTCNN [44].

The Face Detection and Landmarking pipeline exploits a cascade of 3 lightweight
CNNs created specifically to require the least number of computational resources
and simultaneously exploit the online hard sample mining to improve detector
performance. A pre-processing is carried out on the input image to obtain a resize
to different scales so as to provide an image pyramid as input to the CNNs cascade.
The first stage uses the Proposal network (P-Net) that is a fully convolutional
network to obtain the candidate faces and their bounding boxes regression that
allow the final calibration of the candidates to whom are applied the non-maximum
suppression to merge the overlapped candidates. In the second stage the candi-
dates produced by the first network are provided as input to a second network, in
particular a CNN, called Refine Network (R-Net) that performs a refinement by
discarding false candidates or non-faces and performing again the calibration and
the non-maximum suppression. Finally, in the Output Network (O-Net) the same
refinement of the R-Net takes place but with more supervision in order to output
the bounding box and the 5 facial landmarks.

12 CHAPTER 2. BACKGROUND

The network structure uses 3x3 convolutional filters to obtain better perfor-
mance with less runtime and applies a PReLU as a nonlinear activation function
after the convolution and fully connected layers.

Figure 2.2: Architecture of CNNs in MTCNN[44].

2.3 Residual Network

Thanks to deep convolutional neural networks, the image classification task has
managed to achieve excellent accuracy results, but many studies have highlighted
the crucial importance of network depth which becomes an important challenge due
to the vanishing gradient problem that hinders convergence from the beginning.

During the back-propagation phase, the error and gradient value are computed
to update the weights of the next layer starting from the last layer up to the input
layer. During this process the gradient becomes smaller at each layer, it is possible
that the weights of the initial layer are updated slowly or remain the same making
their update useless and preventing the convergence of the network with consequent
degradation or saturation of accuracy.

This problem was addressed by normalizing initialization and intermediate
layers that allow networks to converge with Stochastic Gradient Descent and back-
propagation. Despite this resolution, as the depth of the networks increases the
accuracy saturates and degrades rapidly and is not caused by overfitting but by
the number of layers that makes complicated the optimization.

The aim is to achieve a deep neural network that performs well or at least
similar to shallower networks. For this purpose there is a construction solution

2.3. RESIDUAL NETWORK 13

that consists in using copies of the layers of the shallower network while the ad-
ditional layers are identity mapping, resulting in the existence of a network that
should produce a training error less or equal to the same network with a smaller
number of layers, but the current optimizers/solvers are not able to achieve this goal.

The problem is solved through residual learning that forces stacked layers to fit
a residual mapping which is easier to optimize than unreferenced mapping because
it is easier to push the residual to zero if an identity mapping is optimal instead of
fit its by a stack of nonlinear layers. To make this happen, feedforward shortcuts are
created to perform the identity mapping and their outputs are added to the outputs
of the stacked layers without increasing the number of parameters and without
requiring more computation, still allowing training with SGD and back-propagation.

The purpose of traditional networks like AlexNet [22] is to try to learn the output
functions directly. By computing the error and gradient, through back-propagation
the network learns to approximate these functions, but if "multiple nonlinear layers
can asymptotically approximate complicated functions, then it is equivalent to
hypothesize that they can asymptotically approximate the residual functions" [15].
In this way stacked layers can approximate a function that allows the reduction of
vanishing gradient.

Figure 2.3: Example of Residual Mapping.

The residual function, also named residual mapping, is the value that will be
added to the input of a specific function in order to best approximate the final
function, i.e. the difference between input and output of a residual block1. In this

1Residual block is composed by a certain number of layers and their weights.

14 CHAPTER 2. BACKGROUND

way stacked layers learn to approximate the residual function H(x)− x instead how
to approximate H(x) that is the final function of each layer. Learning the residual
value such that it approaches to zero means making the identity mapping optimal,
in this way the overall accuracy can be increased because every layer can produce
optimal feature maps.

During the propagation there are two ways for the transit of the gradient from
the output layer up to the input layer while traversing the residual block. When the
gradient pass from the path called Gradient-Pathway2 in Figure 2.4 there are some
weighted layers to be updated, the weights of the kernel are updated and a new
gradient is computed. Choosing this path until the input layer means there could
be the vanishing gradient, to solve this problem the gradient could pass through the
Gradient-Pathway1, i.e. the identity mapping, in this path it doesn’t encounter any
weight layer and it will not be updated, involving no computation of new gradient.
Without update the gradient, it can reach the input layer without the possibility to
vanish.

Figure 2.4: Gradient Pathways in Residual Network.

The typical structure of a Residual Network takes inspiration from VGG [33],
it is composed of residual blocks formed by at least two convolutional layers 3x3
following two rules: "(i) for the same output feature map size, the layers have the
same number of filters; and (ii) if the feature map size is halved, the number of
filters is doubled so as to preserve the time complexity per layer"[15]. Each network
ends with an average pooling layer to which is connected a fully connected layer
with output size 1000 to start the dimensionality reduction phase depending on
the task to be performed. Identity shortcuts can be used between residual blocks
with the same dimensions represented by solid line in Figure 2.5, or between layers

2.3. RESIDUAL NETWORK 15

with different dimension represented by dotted line. When the shortcut is between
two layers in which the dimension increase, the shortcut can still performing the
"identity mapping with extra zero entries padded for increasing dimensions"[15]
without including extra parameter, or the shortcut became a projection shortcut to
match dimensions by 1x1 convolutions. In both cases the stride performed is 2.

Figure 2.5: ResNet-34 Structure compared with VGG.

The network will be used in Chapter 3 is the ResNet-18 which is similar to the
one in Figure 2.5 where for each couple of 3x3 convolutional layer there is a shortcut
connection, in particular an identity mapping and zero-padding for increasing

16 CHAPTER 2. BACKGROUND

dimensions without adding extra parameters. Through the use of residual blocks,
the ResNet-18 obtain an accuracy 3% smaller compared to the ResNet-34 despite
is shallower, this indicates that the vanishing gradient has been accurately resolved
despite the ResNet-18 allows faster convergence.

2.4 Siamese Network

The Siamese network [28, 6] was created to address the problems related to
Classification and Regression neural networks that require a high amount of re-
sources especially for the training phase. The classification problems typical of
image processing require a trained model capable of classifying the images provided
as input in specific classes to which they belong, to obtain these results the model
needs labeled datasets that require considerable economic expenditure and as many
computational resources to train the model on millions of images.

Most of the time these resources are not available, for this reason a further type
of problem has been developed: the comparison problem. In this kind of problem
the demand for computational resources can be small because the goal is to obtain
a model trained on a specific similarity function that allows to measure how similar
or related are two objects, greater is the similarity value greater is the probability
that the two objects are similar.

Figure 2.6: Example of Siamese Network.

2.4. SIAMESE NETWORK 17

Tasks whose resolution is entrusted to classification models need new training
with each registration of a new class otherwise it will never be recognized. Many
classification tasks, however, can also be solved through comparison models that
do not require new training at each insertion because they are models trained to
extract a similarity value between pairs of images, without any need to compute
probabilities of belonging to unknown classes. To carry out this specific task it is
necessary a particular architecture that expects the analysis of multiple images in
parallel, this structure is identified in the Siamese network.

Siamese Neural Network is a class of neural network architectures created for
the task of Similarity Learning, their structure involves the use of two or more
identical subnetworks, or neural networks that share the same configuration, the
same parameters and the same weights. Each update of a parameter takes place
identical in all the subnetworks that form the Siamese network. This kind of
network are strongly used when we have to deal with One-Shot-Learning [10], or
when there is only one image on which train the network, or when there is a need
to verify similarity by comparing feature vectors for example in the comparison of
biometric data such as fingerprints, faces, etc.

Based on the embeddings that the subnetworks are able to extrapolate from the
images provided in input and exploiting comparison methods such as Euclidean
distance or cosine similarity, these networks aim to minimize a loss function in
order to obtain a refined parameter update for greater precision in comparison and
similarity between images.

The main other advantages that these networks bring are:

• More robust to class imbalance: a small number of images for each class is
sufficient for the network to correctly recognize and compare the images in
the inference phase;

• Learning from Semantic Similarity: the focus is on learning embeddings in
the deeper layer to gather together objects from the same class.

Although siamese network needs fewer resources because it is not subjected
to continuous training, it may take longer time in the only training to which it is
subjected with respect to a classification network because it involves quadratic pairs
to learn from. In the inference phase it can require fewer resources if its behavior is
modified: instead of comparing the embeddings produced by pairs of input images

18 CHAPTER 2. BACKGROUND

as can be seen in Figure 2.6, the network can be exploited a single time to extract
the feature vector of the input image and compare it with the embeddings produced
by other images in previous phases (Figure 2.7), in this way the expenditure of
resources necessary for the computation of N pairs of images is greatly reduced,
where N is the number of images into database with which to compare the current
image.

Figure 2.7: Different Behaviour of Siamese Network.

Finally, the loss function that the Siamese network learns to minimize must be
different from the Binary Cross Entropy typical of classification networks because
the type of this network does not produce probability vectors in output but feature
vectors or similarity values, for this reason are used loss functions that exploit the
comparison between images such as the Contrastive Loss, the Triplet Loss, N-pair
Loss, NCE, InfoNCE, etc.

2.5 Contrastive Loss

When it comes to the Siamese network, we need loss functions to be minimized
to train the weights of the layers of the network in order to perform optimally in the
task for which it was created. In particular, in the Face Recognition task the most
used loss functions are the Contrastive Loss [38] and the Triplet Loss [7] which are
part of Contrastive Learning.

With contrastive learning we refer to a paradigm of Machine Learning where
unlabeled data points are juxtaposed against each other to train the network model

2.5. CONTRASTIVE LOSS 19

to be capable to distinguish if couple of data point belongs from the same class
or not. Contrastive learning is based on d-dimensional feature vectors to compare
data points pushing toward each other in the embedding space if they belong to
the same distribution, on contrary they are pulled against each other.

Figure 2.8: Contrastive Loss setup[13].

In this way, using the contrastive learning the network can learn to compare
images based on the produced embeddings, its training is based on couple of images
that can belong from the same class or from different classes trying to learn how to
produce embedding that are very close each other when the images belong from
the same object or that are very far away when the images represent different objects.

Contrastive Loss is the simplest and oldest loss function that exploits only
couple of images. The purpose of this loss is to evaluates the bounty of a siamese
network in distinguishing between the input image pair and minimizing its with a
solver like Stochastic Gradient Descent in order to update the network to perform
better and better. The formula to be minimized is:

The Y value could be 0 or 1 if the input images belong respectively from different
classes or from the same class, in this way only one the two terms could be different
from zero depending also on the distance D between the embeddings and the margin
to select couples of images that are harder o simpler to be compared. In this way

20 CHAPTER 2. BACKGROUND

the network can push toward embedding of the same distribution and pull other
like in Figure 2.8.

2.6 Triplet Loss

One of the most popular loss function for metric learning or supervised similarity
is the Triplet Loss. The purpose of this loss function is to give to network the
capability to learn how to minimize L2-Distance between faces of the same person
and enforces a margin between the distance of faces of different people.

Differently to other loss function, the Triplet Loss uses three images allowing to
enforce the constraints. These three images are:

• Anchor: is the image used as the reference representing the main identity;

• Positive: is the image different from the anchor one but represent the same
identity;

• Negative: is the image represents an identity completely different from the
anchor one.

Using the embedding, that is a feature vector in a d-dimensional Euclidian space
living on a d-dimensional hypersphere, representing the image the loss ensure that
the anchor image of an identity is closer to all other images of the same person than
it is to any image of any other person exploiting a margin alpha to select specific
triplets. This is done over the set of all possible triplet and the mathematical
formula to be minimized is:

For every triplets in the batch, the network computes the distance between the
embeddings extracted from the input images Anchor, Positive and Negative; the
distance between couple of images can be computed using the Euclidian distance
or the cosine similarity. In order to minimize the loss function the network has to
compute embeddings where the L2-distance between Anchor and Negative must
be greater than the L2-distance between Anchor and Positive up to the margin value.

2.6. TRIPLET LOSS 21

Figure 2.9: Representation of Triplet Loss behaviour[13].

In the set of all possible triplets there are some of them that are easily satisfied, i.e.
the distance between Anchor-Positive and Anchor-Negative satisfy the constraint.
Those triplets would not contribute to the training and result in slower convergence,
for this reason is crucial to select hard triplets through an adequate selection method
but also with an adequate margin. Depending on the margin is possible to select
different types of triplets:

• Easy Triplets: d(a, n) > d(a, p) +m where the negative sample is sufficiently
distant to anchor sample with respect to the positive sample, in this case the
loss is 0 and the parameters aren’t updated;

• Hard Triplets: d(a, n) < d(a, p) the negative sample is closer to anchor than
the positive and the loss is positive;

• Semi-Hard Triplets: d(a, p) < d(a, n) < d(a, p) +m negative sample is more
distant to anchor with respect to positive sample but distance is no greater
than the margin, in this case the loss is positive and smaller than margin.

To ensure fast convergence is better select the triplets that violate the constraint
but it’s infeasible computing all the the couples with high distance between Anchor
and Positive or with low distance between Anchor and Negative, this also can lead
to poor training. For these reasons there are two selection methods[32]:

• Offline mining: these triplets are generated offline every N training step by
exploiting the latest newly updated weight values, i.e every N step the training
is stopped to compute the distances between couple of images to select the
hardest triplets;

• Online mining: using large batches, such as a few thousand images, the most
difficult triplets can be computed in real time selecting them from this big
batch.

22 CHAPTER 2. BACKGROUND

Figure 2.10: Triplet Selection based on margin.

Selecting the hardest triplets as the first inputs could lead to bad local minima,
for this reason is better to mitigate the problem starting from the selection of
semi-hard triplets.

Chapter 3

Experimental Setup and Code

In this chapter will be described all phases of the process to create the neural
network, starting from the constraints imposed by the client company and the
performance constraints of the processors used in order to understand the choices
made. All the tools necessary for the development and the creation of the environ-
ment will be described, as well as the implementation choices due to the obstacles
that have arisen in the development process and the solutions adopted. We will
also give space to some code examples.

3.1 Constraints

As already discussed in Chapter 1, the purpose of this thesis is the development
from scratch of a Siamese Neural Network based on ResNet-18 and on a custom
dataset, but these choices derive from important implementation constraints im-
posed both by the client company and by the application environment.

The neural network for Face Recognition arises from CAME’s need to be com-
petitive in the video intercom market, a market stalled for what concerns new
technologies, trying to providing to the customer additional services that will sup-
port additional features that will be implemented in the ecosystem of products
in the future, also the compatibility with external devices such as Alexa or other
home assistants could be integrated with the neural network in order to generate
additional value.

To date, the video door phones produced by the company are based on two
main products: the external video ring bell with the aim of recording and encoding
the video captured by camera and the internal device called intercom to which

23

24 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

the video is sent, whose purpose is not only to decode the video produced by the
external terminal allowing it to be viewed on its screen, but it is also to implement
all the functions of home automation and home control.

The video intercoms are based on embedded systems and develop their operation
around the IMX6 single core processor. IMX6 is a processor developed eight years
ago by the NXP company equipped with a Cortex - A7 CPU at 900MHz and 1GB
of RAM. This processor is built around a SoM created ad hoc directly by the
company, it allows the development of all the features described above, keeping
the acquisition and production costs of this customized SoM low, while they don’t
allow the training of a neural network due to lack of adequate resources such as a
dedicated graphic card or a tool created specifically for the neural engine, i.e. the
Intel’s Neural Computing Stick (NCS).

The lack of resources by the IMX6 processor that are necessary for the computa-
tion of a neural network, implies the need of a research to select the new generation
of processors with adequate computation capacity for processing the inference phase
of the neural network in well-defined timing. The choice of these processors is based
on the lapel of the implementation of the Face Recognition task according to the
computing needs, which provide a constraint on the choice of the network. This
constraint arises from the need that the cost of supplying of the new processor
from third-party companies must be below a threshold setted by the production
budget in order to not increase the cost of the final product for the customer, but
guaranteeing at the same time minimum performance for network inference and a
surplus value thanks to the new services that could be implemented at the expense
of a slight increase of the final price.

The low budget planned by the company limits the choice of possible processors,
identifying a priori in the Raspberry Pi4 the solution with more computational
power that could be within the maximum procurement costs, without taking into
account the costs of transporting the software from the current platform to the
new one. This processor, however, will limit the choice of the neural network to be
implemented imposing a very important constraint: the computing resources will
not be adequate to train the network when a new person to be classified will be
registered, removing a priori any Neural Network for classification that requires a
new training at each new registration, involving therefore the need to use a network
that wants only one initial training but allows the classification of any person
existing in its database even when it changes.

3.1. CONSTRAINTS 25

The need to discard a priori any deep neural network which requires continuous
training, from the Convolutional Neural Network to the most recent Residual
Network, is also dictated by the impossibility of using servers or clouds. Talking
about Face Recognition, in order to correctly identify people through their faces,
there is the need to have a database containing images of the face of those people
that must be classified and to process videos containing faces of strangers protected
by privacy rights.

While video intercoms encode and decode the video locally in the location site
without using delocalized tools or without the need of a database containing faces
of people, the classification neural network needs a database through which train
himself to obtain the best weights in its nodes in order to increase accuracy in the
inference phase. This could led to harm the privacy rights of the people involved
if the database is saved in the cloud or, in any case, delocalized. To overcome
this problem we can exploit a database locally created in the processor using its
memory that will be, consequently, limited compared to the needs of the size of
the dataset for network training, but this solution avoid the use of the cloud that
harms people’s privacy.

The use of delocalized tools for the phases of the network is always impossible
due to the privacy laws, for example the use of a server with adequate computing
capacity to allow continuous training will require to send from the local instrument
an image both in training and inference phases and also to obtain the classification
of the people. The image is extrapolated from the decoded video and contains the
face of a person: this person could already be saved in the database and conse-
quently he has provided the rights to use his image, but the image could contains
the face of a stranger who will not have provided such rights. The lack of rights
from a stranger consequently prevents the use of any delocalized tool necessary
both for saving, such as the cloud for database, and for classification, such as the
server containing the neural network for training and inference.

In order to design and implement an adequate neural network, the following
issues and needs must be taken into account:

• A low-performance processor due to procurement costs and budget;

• Restrictive privacy laws that do not allow the use of servers or clouds.

26 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

• A tighten request on execution times that must be less than two seconds;

• An image from poor quality video door phones (320p or 480p);

The network will have to take into account not only the poor computing
capacity of the instruments, but will have to face with a classification through
frames extrapolated from a video of relatively low resolution and in any weather
condition. The network will have also to process the image of a face cropped from
frames derived from a poor quality video trying to obtain the best possible accuracy.

3.2 Environmental Setup

In this paragraph we will describe the choices regarding the tools necessary
for the development of the neural network as well as the choice of programming
languages and the environments used. The entire development took place on
Windows platform installed on a Dell G3 15 laptop with i7-9750h CPU, 16GB of
RAM and an NVidia GTX 1660Ti Mobile graphic card.

3.2.1 Python

In the first phase, the main programming language was identified in Python both
for the creation of the neural network and for all the necessary scripts to support it.
The choice of this language is not random but is focused on a series of advantages
that it entails, starting from the fact that it is widely used in the embedded sys-
tem of video intercom for different purposes and therefore easy to use and implement.

Python is a high-level object-oriented language used by almost 60% of develop-
ers, it is characterized by simplicity dictated by its almost didactic use, its easy
learning and the consistency dictated by the concise and easily readable code. It is
also characterized by great flexibility, independence from a specific platform and a
large community for the support, allowing the programmer to focus only on the
problem and not on the technical nuances of the language.

The choice of Python was dictated by the multiple system libraries and frame-
works for Artificial Intelligence and Machine Learning that simplify the implemen-
tation of different features, the most important are:

• Keras, TensorFlow, and Scikit-learn for machine learning;

• PyTorch for deep learning;

3.2. ENVIRONMENTAL SETUP 27

• NumPy for high-performance scientific computing and data analysis;

• SciPy for advanced computing;

• Pandas for general-purpose data analysis.

TensorFlow is one of the most used libraries in Machine Learning because it
allows the acceleration of algorithm computation exploiting all the resources of the
available GPUs and using functions that allow the use of tensors, the creation and
manipulation of Convolutional Neural Network models are carried out by a Tensor-
Flow API called Keras. Keras is a library created to accelerate the development
and use of Machine Learning, but it does not support the use of a wide variety of
neural networks with respect to PyTorch.

PyTorch was developed as an optimized Deep Learning tensor library, it is
favored with respect to the previously mentioned libraries because it uses dynamic
computation graphs and it is completely Pythonic, it is able also to taking advantage
of GPUs and CPUs. The main features are the computation of tensors through
GPU acceleration and the creation and training of deep neural networks with
automatic differentiation, thus allowing the creation of custom loops and allowing
the choice of the optimizer that best suits the task. It also includes a much larger
set of pre-trained neural networks on popular tasks and datasets, such as ImageNet,
allowing easier and faster training through fine-tuning of the pre-trained network.
It provides the DataLoader function that allows an optimized loading of the dataset:
it combines the functions of the classic DataSet with those of a Sampler providing
an iterable value and supporting both map-styles and iterable-style datasets with
single or multi-processing loading.

In Python, moreover, there is the possibility of taking advantage of particular
libraries and tools that allows to have maximum performance by exploiting the
parallel calculation of GPUs. NVidia develops graphic cards with a particular
architecture for parallel computing, called CUDA (Compute Unified Device Archi-
tecture), which exploits cores similar to those existing in CPUs allowing, through
acceleration methods, the use of complex algorithms, very large datasets and, con-
sequently, deep neural networks.

In the end, the choice of Python is linked to the existence of a library created ad
hoc that contains one of the best and lightest neural networks for Face Detection
with respect to the inference phase. This is the MTCNN implemented in the library

28 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

called "facenet-pytorch" and easily imported as a function that allows the tracking
of multiple faces with different levels of confidence both in videos and images. Here
there is an example of how the network is imported:

from facenet_pytorch import MTCNN

Listing 3.1: Code to import MTCNN.

3.2.2 Anaconda

The development environment used for Python language has been identified
in Anaconda. Anaconda is an open-source package and environment management
system that runs on Windows, macOS, and Linux. Anaconda brings with it several
benefits compared to other environments for Python: it is free and open-source with
more than 1500 data science packages simplifying management and deployment, it
easily collects data using machine learning and AI techniques but, in particular,
it allows to easily create and manage the environments necessary for each project.
Finally, it allows to manage libraries, dependencies and environments through
"conda" from the command prompt or, much more easily, from the navigator that
it provides to be more user-friendly at the expense of the speed that could have a
normal "pip" call on Python.

The choice of Anaconda derives from the possibility of creating independent
virtual environments, each one with its own packages and specifications. The
environments can be easily selected from the GUI that Anaconda makes available.
In particular, it is possible to create an environment in which to install two vital
deep learning tools developed by NVidia: CUDA Toolkit and cuDNN. The first
tool includes libraries to accelerate the GPU, for debugging and other optimization
tools to develop applications with graphics acceleration of the graphic card, the
second instead provides highly tuned implementations for standard routines in
deep learning exploiting the GPU, in particular of the forward, backward, pooling,
normalization and activation layers.

Thanks to the help of Anaconda Navigator, the development environment was
created with all the libraries necessary for deep learning and graphic acceleration,
exploitable by the different coding environments, among these JupyterNotebook
was used for the possibility of dividing the code into blocks. This subdivision has
allowed a greater order of the code but, above all, has provided the possibility of
not executing some blocks allowing a better debugging and workflow in a first phase

3.2. ENVIRONMENTAL SETUP 29

of learning the code, also the kernel has the ability to keep active and keep data
and variables in memory even after the end of the execution of the last block.

3.2.3 MATLAB

At some point during the process, the development and the coding of the neural
network has brought the need of a different coding environment, this environ-
ment was identified in MATLAB. Although the community of programmers and
researchers is larger in terms of the Python programming language than MATLAB,
this platform provides vital tools in creating and debugging a neural network.

MATLAB is a programming platform designed specifically for engineers and
scientists to analyze and design systems and products that transform our world.
The heart of MATLAB is the MATLAB language, a matrix-based language allowing
the most natural expression of computational mathematics1.

After Python, MATLAB is the most suitable language for programming neural
networks thanks to the multitude of tools that are made available, due to this
fact it is a paid platform and not open-source like Pyhton, this comes from the
fact that it is used by engineers and scientists to develop, automate and integrate
deep learning models into their domain-specific workflows. The main purpose of
MATLAB is the development of workflows suitable for the creation and use of
systems that are based entirely on deep learning, these workflows are applied to
develop specific applications such as Image Processing using data preparation tools,
pre-trained network models such as GoogleNet and ResNet-50, simulation and test
environments such as Simulink, automatically generated and natively optimized
codes for different platforms including NVidia’s GPU’s.

There are several tools used in the development described below, from parallel
computing tools to machine learning tools. Among these there is a tool called Deep
Learning Toolbox which led to the choice of this platform. Through models for
neural networks, the converter for ONNX, etc. this tool provides a framework for
design and implement deep neural networks with algorithms, pre-trained models
and apps allowing to build CNN, LSTM, GAN and Siamese networks exploiting, in
particular, automatic differentiation, custom loops and shared weights. Thanks to
the Deep Network Designer, it is also possible to visualize the designed network in

1https://it.mathworks.com/discovery/what-is-matlab.html

30 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

graphic form and exploit the GPUs in parallel with the Parallel Computing Toolbox.

3.3 Development

This paragraph will describe the different phases of implementation and devel-
opment of the neural network, starting from the first phase of analysis of the neural
networks on the market until the implementation of the last script in the pipeline,
passing through the various phases of testing and design with the problems deriving
from lack of resources or lack of a small dataset specific for the purpose.

3.3.1 Analisys

As in any creation and development project, the first phase concerns the re-
search on other researchers’ studies on similar systems, applying to them the initial
constraints born from the economic and computational needs of the company in
order to adapt, if necessary, these systems to their needs.

The constraints (Section 3.1) previously mentioned were born in this phase of
research, giving rise to the computational and, above all, economic limits to deal
with in the production and development phase of a product to be launched on the
market in order to produce the greatest possible revenue while keeping competitive
in terms of price compared to other companies. These limits are dictated, as
well as by the market, also by the privacy laws that forbid the use of cloud or
server instruments, imposing the use of local tools that must be, at the same time,
economic and performing to guarantee the computation of the neural network at
least in the inference phase.

Neural networks, in general, require large amounts of resources in terms of
processing, mainly in the machine that allows their training phase, requiring compu-
tational resources such as highly performing graphic cards and equally performing
processors. The first constraint imposed was the limited computational capacity of
the machine that was used as the development environment, whose performance
depended on the NVidia GTX 1660Ti Mobile graphic card, the 16GB of RAM
memory and the Intel i7-9750h processor. The computational limitation of this
machine has set a unique direction of research, restricting the field of application
of neural networks only to those that allow the training with a limited number of
images with respect to the numbers that can be used on machines that exploit more

3.3. DEVELOPMENT 31

powerful GPUs. At the same time these neural networks must allow the training
with a considerable number of images in order to obtain results adapted to the
needs and expectations of the company in an amount of time involving a maximum
of 24 hours for the entire training phase.

Without initial budget impositions and being aware of the need for CAME to
select a new generation of processors to be installed in its products, but above
all having some test samples available, the first research was carried out around
devices that would allow the continuous training of a neural network even after
installation in a new product, those tools are Nvidia’s Jetson Nano graphic card,
in particular the BOXER-8221AI, and a Neural Computing Stick from Intel to be
applied in a Raspberry Pi4 B.

Figure 3.1: BOXER-8221AI with NVidia Jetson Nano.

The BOXER-8221AI is a compact AI@Edge system powered by 4GB of RAM,
16 GB of eMMC storage and by the NVIDIA Jetson Nano which is a chip of the
Jetson line dedicated to embedded and IoT products that want to take advantage
of artificial intelligence. The design of this SoM allows, as stated by NVidia, to
speed up processes up to 472 GFLOPs and process multiple neural networks in
parallel.

Figure 3.2: Neural Computing Stick 2.

The Neural Computing Stick 2 (NCS2), created by Intel, speeds up the devel-
opment of deep neural networks, artificial intelligence algorithms and computer

32 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

vision prototypes thanks to the Movidius Myriad X Vision Processing Unit (VPU)
flanked by the OpenVINO toolkit 2. Being developed as a USB stick, the NCS2
requires no additional hardware and can be easily used via plug and play on the
Raspberry Pi4.

Starting from the assumption that the number of people to be classified will be
limited only to the family involving the need for a relatively small database and
taking into account the great computing power declared, in particular for the Jetson
Nano, the direction on which the research initially focused was a Convolutional
Neural Network for the classification task. This kind of neural network is the most
reliable in terms of accuracy but requires continuous training that is carried out
whenever a new person is saved into the database, with its images, ready to be
classified.

There are many lightweight neural networks developed in recent years by re-
searchers such as LightQNet[4] and ShuffleFaceNet[27], it is a neural network deeply
modified to reduce the necessary resources derived from the famous ShuffleNet
V2[25]. These networks are built for the classification task exploiting computing
resources that are easy for anyone to access, usually they are trained on laptops and
gaming computers that take advantage of older internal GPUs, such as NVidia’s
1000 or 2000 series, and Intel’s fairly recent processors, such as the 7th and 9th
generations.

Although the networks mentioned were developed by their researchers to best
exploiting the low power available to them both in the training phase and in the
inference phase, the power provided by the Jetson Nano and the Neural Computing
Stick seemed not to be enough to allow continuous background training when a new
person to be classified is registered. To confirm this statement there are multiple
algorithms that do not exploit the final softmax layer of the classification neural
network to compute the probability of belonging to a certain class or person, but
there are neural networks trained to do Feature Extraction, or to extract an embed-
ding of a certain size for example 128 and 512, which represents the characteristics
of a face. Once an embedding is obtained for an input image into the network, this
is compared to an embedding resulting from another input image into the network
or to the embeddings of images saved into databases.

2An open-source toolkit for optimizing and deploying AI inference through processor acceleration

3.3. DEVELOPMENT 33

The behavior described above is the typical behavior of a Siamese network 2.4,
it is a neural network that allows the parallel inference of one or more Convolutional
Neural Networks used as a skeleton for feature extraction with the aim of comparing
the vectors of extracted features and providing a similarity value between the two
images provided as inputs, in other words network must be able to understand if
two images represent the same person with a certain accuracy.

The algorithms developed by the researchers[11] to best exploiting the computing
power of NVidia and Intel tools are based on the comparison of feature vectors using
deep neural networks as backbones for the feature extraction phase, such as the
ResNet-34[31] or the Inception ResNet V1 with 140 layers[18], finally the triplet loss
is used as a loss function 2.6. Although these algorithms are designed to exploit the
low computational power that is provided, the problem remains the training phase
which, in the case of loss functions such as the triplet loss, requires that at each iter-
ation, depending on the size of the batch, at least 3 images are provided as input to
the network that uses, for example, the ResNet-34 to extract the features. In parallel,
or sequentially depending on the computing possibilities, the features of the images
are extracted from the reference image called Anchor, of the image containing the
same person as the Anchor and called Positive and finally of the image containing
a person different from the Anchor called Negative, these features are extrapolated
in batches of 32, 64 or 128 triplets of images requiring a very expensive computation.

The strength of these networks exploits their ability not to learn how to diversify
faces according to the people on which they are trained, but they learn how to
extract features that characterize each face differently from that of a different
person, thus allowing to add new classes without the worry of having to carry out
further training, i.e. new people to be recognized in the database. In this case, the
inference phase can be speeded up by comparing the embedding extracted from
the input image with previously computed embeddings and saved into databases
with appropriate search algorithms, in order to use the backbone network once to
reduce the overall time and resources necessary for computation.

The need of high-power computational tools such as Jetson Nano and NCS2
derives mainly from the backbone networks that are exploited in these algorithms:
greater is the depth of the network in terms of number of layers, longer it will
takes to produce a response or an embedding. Greater is the depth of the net-
work, greater will be the accuracy of the extracted feature vector, regardless of
its dimensionality. In order to reduce the times that must be below a minimum

34 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

threshold in a face recognition task or in any other field of application, these compu-
tational tools are exploited to obtain an inference time estimated around 3-4 seconds.

The Face Recognition task carried out by a neural network built for classification
was impossible, i.e. the probabilistic selection of the class to which the input image
belongs. It is impossible even by exploiting the acceleration and deployment tools
of deep neural networks because it requires adequate tools that include, at least, an
NVidia GPU of the 1000 series.

After a economic and market deep analysis with the top management of the
Came Research & Development department concerning the possible procurement
and production costs of the new generation of processors that would allow the
implementation of neural networks in the inference phase, it appears necessary to
further limit the procurement budget. NVidia and Intel’s tools were too expensive
to purchase, thereby they will increase the final price of video intercom above the
threshold limit that would have made these products competitive in the market.
The further reduction of the budget led to the need to select a tool that could
simultaneously host the neural network and all the functions already present in the
videos intercoms trying, as far as possible, to ensure backward compatibility with
the products already installed at the customers.

As shown above, the final solution to the described constraints was a Raspberry
Pi4 B. This processor, within its computational limits, allowed several researchers
to implement pre-trained neural network models for the inference phase [30, 8, 19].
Aware of the capabilities and limitations of this tool, the research was directed
towards the use of a network with a behavior similar to a Siamese network that
exploited as a backbone a neural network with a limited number of layers but at
the same time allowing to obtain excellent accuracy and very fast computation,
finding in the ResNet-18 the ideal candidate.

Instead of using any CNN as the backbone of the network, it was decided to
use the shallower version of the neural network which won the ILSVRC 2015: the
Residual Network 2.3. This residual network tries to remove the vanishing gradient
problem that appears when the number of layers increases, through the identity
connection between layers, allowing greater accuracy than other convolutional
networks such as GoogleNet, VGG, AlexNet, etc. Validated by the results obtained
by several researchers in this area of application[5, 16], the ResNet-18 was the
best compromise between accuracy and resources required for computation in both

3.3. DEVELOPMENT 35

training and inference phases.

Once the network to be used as a backbone in the Siamese network to perform
the feature extraction is selected, the research has shifted the focus on the loss
function that the network must minimize during training in order to obtain final
embeddings. The embedding must have a small distance from the embeddings of
images containing the same person and a great distance from embeddings of images
containing different people. These functions have been identified in the Contrastive
Loss 2.5 and the Triplet Loss. In order to select the network with the loss function
that best suits the future purpose of use, the goal was to verify the differences
between these two loss functions by adding also the Classification Loss to make the
final weights of the network more tighten after training.

Once the best network for the Face Recognition phase was found, a step back
in the recognition pipeline was taken. Before the recognition of the face there is a
need for a process to select the appropriate method to identify the presence of a
person in the image, i.e. the method for the Face Detection phase. This phase was
left for last because it was less constrained than the computational needs of the
next steps.

For the Face Detection phase there are multiple methods that do not make use
of neural networks but are based on algorithms from Computer Vision, the most
famous is the Viola and Jones algorithm. These algorithms are based on features by
looking for distinctive features in images such as nose and mouth, or on templates
verifying if there is a match with a portion of the image, or on appearance through
the use of patches and cascades of classifiers. These algorithms make their simplicity
and low resource consumption their strength points, suffering of occlusions that
could occur in images or videos.

In particular, the cascade face detector proposed by Viola and Jones degrades
significantly in real-world applications due to the great variation of human faces,
even with the most advanced features and classifiers. Recently these methods have
been replaced by a Cascaded convolutional neural network known as MTCNN
(Multitask Cascaded Convolutional Network)2.2 which uses three convolutional
networks, namely P-Net (Proposal Network), R-Net (Refine Network) and O-Net
(Output Network) to output a face/non-face classification, a bounding box regres-
sion and a facial landmark localization.

36 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

Through multi-task learning, the network seeks to integrate both face detection
and face alignment by exploiting a three-stage convolutional network: the P-Net
to produce candidates that are refined by the R-Net, and the O-Net to provide as
output the bounding boxes and the positions of the face landmarks. The strength
of this multi-tasking network is its ease of use due to the implementation as a
library that can be easily imported into Python, but above all in its high accuracy
and speed thanks to its ability to exploit all the resources available, identifying it
as a perfect candidate in order to find the face with greater confidence in future
videos and allow the alignment of the faces in the database to slightly increase the
accuracy of the network for face recognition.

3.3.2 Dataset

Knowing the implementation constraints regarding the resources available for the
network’s training phase, the dataset had to comply with specific canons regarding
the size in order not to overload the GPU and not make the training very long. To
this end, it was decided to use a custom dataset derived from famous datasets online.

The creation of a customized dataset for specific objectives and resources from
scratch requires a considerable expenditure of resources in terms of timing because it
is necessary to collect a series of images with relative labels. Usually this collection
is taken from the web using the images of famous people, appropriately cropped
and resized in order to obtain a homogeneous dataset from a qualitative point
of view. Searching for images with specific qualities and in specific positions of
the face requires considerable effort as well as the phase of aligning the faces and
labeling the pictures which are time-consuming and sometimes expensive.

To overcome this problem, were used famous datasets already created by some
researchers and made available to the public. There are many datasets online such
as Labeled Face in The Wild (LFW), WebFace260M, CelebA, IMDb-Face, CASIA-
WebFace, etc, but each of them does not fully reflect the needs and constraints
imposed. In particular the network needs not only to have a dataset already aligned
but must be a compact dataset to avoid long training periods due to the need to
use all the images for a fixed number of times, called epochs. At each epoch, the
neural network uses the entire dataset to change its weights, usually the number of
these epochs can vary from a few to several hundred, resulting in times of several
hours to train depending on the size of dataset and computing power provided.

3.3. DEVELOPMENT 37

The datasets used in research areas with greater resources range in size from 42
million images of 2 million different people of the WebFace260M to 500,000 images
of 10,600 people of the CASIA-WebFace, dimensions that the computing power of
an NVidia 1660Ti Mobile GPU could not support without several weeks of training.
The ideal dataset was comparable to the Labeled Face in the Wild (LFW)[17] as it
presents about 13,000 images of 5750 different people of which 1680 have at least
two images representing them, all the images were aligned using the Viola and
Jones algorithm and manually refined at the end. Unfortunately LFW was not
suitable for certain purposes as only 610 people present more than 4 images making
it necessary a non-random division into train set and validation set for the training
of the network that will involve an overfitting, also because the real purpose for
which this dataset was created is the Pair Matching and the test of the performance
of the networks, not for training.

Figure 3.3: LFW Pair Match Images.

Although the purpose of LFW is different from the one of the needed custom
dataset, after appropriate changes in order to make it more suited to the needs
of the network, was verified the poor quality of LFW as a training dataset for
the pre-training of the ResNet-18 as a backbone network for feature extraction
on the classification task, obtaining results below the threshold of 70% during
validation. Not being able to exploit LFW for backbone network and Siamese
network training, it was necessary to customize an existing and free-to-use dataset
identified in IMDb-Face.

IMDb-Face comes from IMDb website from which the 1.7 million images of
59,000 different people were obtained. This famous dataset is one of the largest
freely available and easy to use and download for the public, it is also the one that
allowed the best customization. Since the images are directly downloaded from the

38 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

IMDb website, the images have not been refined and aligned, but they are very
rough thus allowing better processing for training purposes. In particular, IMDb
provides an Excel file containing the download URLs of the images, through a script
people can download and divide all the images into their classes, this script was
created in Python to allow a subsequent refinement with specific tools.

Figure 3.4: IMDb Wrong Images.

The images in the file provided by the creators of IMDb do not enjoy copyright
and being download URLs many of these links have expired and no longer contain
the downloadable images. Nevertheless, through the script it was possible to form
a rough dataset containing, for the purposes and constraints previously described,
about 55,000 images of 6000 people. These images are the result of a mere download,
they have not been processed and contain images from frames derived from the
characters’ films, from movie posters and sometimes even include several people in
the same image as can be seen from Figure 3.4 in which can be seen the presence
of an image even coming from a television program.

The raw dataset must be refined by eliminating all classes that contain a low
number of images that would not allow a good division into train and validation,
before obtaining this skimming it is useful to refine the images and eliminate the
unusable ones. Many of the images provided by the creators may have poor facial
quality, i.e. the face is not in a position appropriate to its detection and recognition,
they can also present different faces within the same image making them more
difficult to train and test. In order to eliminate all those images, a Python script
has been created ad hoc and it uses the MTCNN to select images that have only
one recognizable face and with a recognition confidence close to the value 1 that is

3.3. DEVELOPMENT 39

the maximum value, in this way the script can delete all the images in which more
people appear and those images containing faces too complicated to identify and
recognize.

By removing all classes that contain a limited number of images, the number of
people and images drops dramatically, considering also that many photos of movie
posters remain because there is a clearly visible face inside. Although the dataset
remains partially raw, it allows to obtain excellent results in the training phase in
the classification task of the backbone network with accuracy in the validation set
around 85%.

Aware of the existence of a dataset with which the network would have obtained
greater accuracy, the research shifted attention to a public dataset in particular: the
CASIA-WebFace. Currently this dataset tends to be the best for Face Verification
and Face Identification being able to take advantage of 494,414 images of 10,575 real
identities deriving, always, from IMDb website but reworked and optimized better
than the previous dataset. The creators of CASIA-WebFace have selected only
celebrities born between 1940 and 2014, they have labeled each face in the photos to
simplify the recognition phase and they selected celebrities with at least 15 images
removing all identities present in the LFW dataset to make it compatible with this
one in the test phase in order to avoid an overfitting due to a memory training by
the network, in addition each image has been subjected to a phase of face detection,
face landmarking and alignment to make the dataset as homogeneous as possible.

Being a large dataset, CASIA-WebFace still has a certain number of miss clas-
sified samples even if in a very small percentage, them do not greatly affect the
accuracy of the training and testing phase, accuracy that can drop by 1-2% in
the worst case. The dimensions do not match the constraints imposed by the
available computing resources, exploiting the script in Python with the MTCNN
network previously described, a refinement phase has been prepared to better define
the dataset and select only the classes with a minimum and adequate number of
images for a good random division into train set and validation set, obtaining a
dataset comprising 212 different identities with a total of 61,500 images, despite the
large number of images the training times are within the maximum terms imposed.
Finally, for the training phases, the dataset will be randomly divided so that the
train set has 80% of images and the remaining is divided equally between vali-
dation and test sets with the appropriate specific methods of Python and MATLAB.

40 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

Below there is a part of the script for the selection of images with specific canons
without image alignment because is not necessary in CASIA-WebFace:

from facenet_pytorch import MTCNN

#KEEP ONLY THE IMAGES THAT CAN BE LOADED AND HAVE ONLY 1 FACE DETECTED
#BY MTCNN WITH A CONFIDENCE >= 0.999

f o r c la s sPath in f i l e L i s t :
d e l e t eFo ld e r s (c la s sPath)
f i leRemoved = False
torch . cuda . empty_cache ()
f o r imgPath in glob . g lob (c las sPath + " /∗ . jpg ") :

torch . cuda . empty_cache ()
#I f an image can be read by CV2 keep , otherwi se remove i t
t ry :

image = cv2 . cvtColor (cv2 . imread (imgPath) , cv2 .COLOR_BGR2RGB)
except :

removeFi le (imgPath)
f i leRemoved=True

#Keep only images with only one f a c e detected by MTCNN and with a con f idence >= 0.999
boxes =[]
t ry : boxes , conf idence , landmarks = mtcnn . de tec t (image , landmarks=True)
except : removeFi le (imgPath)
i f boxes i s None :

removeFi le (imgPath)
f i leRemoved=True

e l i f l en (boxes) == 1 :
i f con f idence <=0.99899999:

removeFi le (imgPath)
f i leRemoved=True

e l i f l en (boxes) > 1 :
removeFi le (imgPath)
f i leRemoved=True

i f f i leRemoved == True :
d e l e t eFo ld e r s (c la s sPath)

Listing 3.2: Script for selecting images under some constraints

Pytorch has been used in Python through the functions of Dataset, which holds
the real set of images, and Dataloader, which allows you to manage and simplify
Machine Learning pipelines by iterating data, managing batches, etc. allowing rapid
use of loaded data. In MATLAB, on the other hand, ImageDataStore has been
used allowing a better management of the files, where each individual image fits in
memory but the entire collection of images does not necessarily fit, describing them
and specifying how to read them from the datastore that holds them in memory.

3.3.3 Face Detection

In anticipation of the application in video intercoms, the Face Detection phase
will have to take place by processing the frames of the decoded video coming from
the camera of the external system. The quality of these videos and, consequently,
the number of frames to be processed will depend on the camera installed in the
product depending on the price range: the video quality can range from 360p to
720p with a default number of fps (frames per second) of 25, although some product
can be configured with only 10 fps.

3.3. DEVELOPMENT 41

Faster is the processing of each frame in order to identify the face with better
confidence, sooner the identification phase with the Siamese network will be started.
To this end, the selection of a fast algorithm that uses few computing resources
is essential, discarding a priori any computer vision algorithm because it is liable
to occlusions that would make vain any attempt to detect the face. The only
plausible solution is a lightweight convolutional network that is able to verify the
presence of a face with great repeatability and speed, the solution is identified in
the aforementioned MTCNN.

This multitasking network allows not only to carry out face detection using
a easily importing library and processing a considerable number of images with
a fairly small amount of resources, but also allows to obtain as output at the
same time the landmarks that identify the pivotal points of the face as well as the
bounding box rectangle through which the face can be aligned, the same face will
be provided as input to the network for Face Identification.

Ahead of the future implementation in a product intended for sale, the face
detection phase must be active for the entire duration of the incoming encoded
video coming from the external intercom camera in order to identify when the
person will stand in front of the product and to detect his correct position and the
presence of a single face to be classified. The work that this network will carry out
will be parallelized as much as possible depending on the possibilities provided by
the processor, processes in parallel will allow the processing of a series of consecutive
frames for several reasons:

• to select the face only when the confidence is above a strong threshold, i.e.
when the person is in an ideal position to be identified, this is carried out
processing different images. In high-end quality products will be possible to
ask to the person to place himself in a specific position through a voice or an
image on the display;

• to improve the accuracy of the network by verifying the faces contained in
several consecutive images in order to provide an answer only if most of the
labels obtained as a response from the Face Identification network correspond
to a single person. In other words the identification will takes place for a fixed
number of images, if more than 50% of these identify a specific person, the
person in the encoded video will be labeled with the label of the most present
data called mode. This procedure, which can be defined as "Best Of", has

42 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

not yet received validation in terms of qualitative tests to verify the actual
gain in accuracy, but the choice of the network was based on the ability to
process the information that could be required by this technique.

Considering also that the video capturing device of the intercom encodes a video
of fixed duration that goes from 15 seconds to 180 seconds, but in most cases is
setted by default at 60 seconds, and knowing a priori the number of frames per
second and the total duration of recording, it is possible to speed up the detection
phase by avoiding providing a certain number of frames as input to the network.
The application cases are the following:

• Unidentified face: in case of absence of the person in front of the intercom
camera, even the subsequent frames coming from a fixed number of seconds
may not contain the face of the person. In the case of a number of identified
bounding boxes, or squared faces, equal to 0, will not be necessary to process
through the MTCNN the next N frames because the average reaction time
and movement in the desired position of the person is about 1-2 seconds. This
method allows to remove some frames, where the raw N frames correspond to
the average movement times multiplied by the frame rate of the video;

• Face identified with low confidence: if the face is identified but with a
confidence below a minimum restrictive threshold, it will mean that the
person is in an extreme profile position for the neural network or there could
be an occlusion. The average time to remove an occlusion, such as sunlight, or
for the repositioning/end of movement of the person is about 1 second, time
within the processed frames would have the same result as the previous one
or with a small difference, consequently N frames could be removed without
any consequence in the process;

• Face correctly identified: in this case in order to diversify even slightly the
position of the face or the facial expression of the person to obtain a different
embedding from the previous one in the face identification phase, it is useful
not to process the next series of frames in order not to obtain an identical
response. The average time for the change of facial expression and all the
key points of detection of the features is 0.5 seconds, these changes are due
to grimaces, sighs, blinking etc. and the methods allow to remove from the
process the frames in this time span;

• Other cases: they will be treated in the final implementation phase depending
on the capabilities of the system location device.

3.3. DEVELOPMENT 43

The frames selected according to the described procedure will undergo a pro-
cessing in order to identify the face in them and to be aligned according to the
positions of the landmarks and the bounding box provided in output from the
network, in this way the line joining the eyes will always be parallel to the ground
and the landmarks will be placed around the same point for each image allowing
an extraction of the features of greater accuracy.

Figure 3.5: Example of Detection and Alignment.

The alignment of the faces recognized in the frames of the video through the
multitasking network follows the specifications used by the creators of the training
dataset used in the Siamese network for the face identification phase, allowing the
extraction of the features in the surroundings of coordinates that are almost similar
for all images, providing greater precision. In this case the alignment refers to the
average measurements extrapolated from the images in the custom dataset derived
from CASIA-WebFace, these measures will also be applied to align the images that
will form the database of people to be recognized.

3.3.4 Backbone Network

The Siamese network that will perform the Face Identification task needs a
backbone network, i.e. a basic network which performs feature extraction on the
images provided as inputs. The accuracy of the Siamese network depends on this
backbone network because from the goodness of the extracted feature vectors will
depend the final accuracy of facial recognition.

This backbone network must respect the performance constraints imposed,
avoiding being formed by an excessive number of layers, i.e. avoiding the use of

44 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

deep neural networks of classification that count a large number of layers for the
available resources, but at the same time it must be deep enough to ensure adequate
embedding extraction. This implies the need to select an adequate and pre-existing
convolutional network with good accuracy verified by researchers in similar areas
of application and consequently removing the possibility of creating custom layer
sequences that would make the backbone network even shallower and faster both
in training and in inference at the expense of precision.

After a research of possible convolutional networks, the selected network was
the ResNet-18, or a Residual Network composed of 18 layers, this is the perfect
compromise between depth and accuracy. The initial goal was to create a ResNet-18
from scratch so that it would properly fit the needs. The problem of creating a
network from scratch consists in the need of a large dataset on which to be trained
to be able to obtain reasonable results, as well as the need of a very high number
of epochs because the weights are updated very slowly, for example the ResNet-18
created from scratch, in a first phase, was able to obtain an accuracy of 35% on the
LFW dataset during validation, results that were not adequate to the capabilities
of the network.

Figure 3.6: ResNet-18 common layers.

In order to limit the use of resources and training times and to improve the
results previously obtained, the next choice was to apply Fine-Tuning to a ResNet-18
already trained that simply needs an "improvement". The fine-tuning technique
consists in reusing the weights of a neural network trained on a similar task,
modifying only the bare minimum of the architecture and updating the weights
of some layers only. This technique is made possible by the fact that the first
layers of any neural network cannot extrapolate a large amount of information,
consequently the weights they use are not too binding for the accuracy in the
new task, in this way the weights of the pre-trained network can be used. The
so-called freezing of the layers is allowed, i.e. the parameters of a specific num-

3.3. DEVELOPMENT 45

ber of layers are made not learnable and not modifiable, usually this technique is
applied on the initial layers as the final ones strongly affect the result of the network.

Using a neural network pre-trained on a similar task allow to modify only some
layers and train the network with better results and with a smaller amount of
resources. In this case the fine-tuning is carried out on the ResNet-18 trained
on the object classification of 1 million images in the ImageNet database, those
images are classified into 1000 object categories. Due to the quite similar Image
Processing task and to the great accuracy of the network obtained by ImageNet,
is required an architectural modification of only the final classification layers to
obtain a result capable of classifying the 212 people in the custom dataset created
previously. The need to use the pre-trained ResNet-18 on ImageNet led to the use
of the Pytorch library being the only one to implement this pre-trained network,
requiring a custom loop for the training phase.

model = models . r e sne t18 (p r e t ra ined=True)

featuresNumber = model . f c . in_feature s

#Freeze l a y e r s ' parameters
f o r module , parameter in z ip (model . modules () , model . parameters ()) :

i f i s i n s t a n c e (module , nn . BatchNorm2d) :
parameter . requires_grad = False

#Modify ResNet−18 a r ch i t e c t u r e
headModel = nn . Sequent i a l (

nn . Linear (featuresNumber , 512 , b ia s = True) ,
nn .ReLU() ,
nn . Dropout (0 . 6) ,
nn . Linear (512 , datase t . numberOfClasses () , b i a s=True)

)
model . f c = headModel
model = model . cuda ()

#Se l e c t some t r a i n i n g parameters
c r i t e r i o n = nn . CrossEntropyLoss ()
opt imize r= optim .SGD(model . parameters () , l r =0.01 , momentum=0.9)
s chedu l e r = optim . l r_schedu le r . StepLR(opt imizer , s t ep_s ize =6, gamma=0.1)

Listing 3.3: Code to import and modify the ResNet-18

After importing the pre-trained network from Pytorch, architectural changes
were made to make it appropriate to the classification of the people that form the
custom dataset. The architectural infrastructure to be modified resided after the
Average Pooling layer, i.e. the sequence of Fully Connected layers for Dimensionality
Reduction, in particular for this structure it was decided to use a pair of Fully
Connected Layers interspersed with a Dropout layer, that randomly sets input units
to 0 with a frequency equal to te selected rate at each step during training time,
and the ReLU activation function, in order to obtain a final embedding of size 212,
which is a size equal to the number of classes in the dataset.

46 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

In order to measure the accuracy of the network, Cross Entropy was used as
the loss function that measures the performance of a classification model whose
output is a probability value between 0 and 1. The output embedding, which
is a 1x212 vector, is not characterized by probabilistic values between 0 and 1
as required because an additional Softmax layer is usually applied whose goal is
to transform a real vector into a vector in which the sum of its values is always
1. This Softmax layer would have come into conflict with the loss function im-
plemented in Pythorch nn.CrossEntropyLoss() which provides, as implemented
by its creators, to apply a mathematical formula equivalent to the LogSoftmax
and to obtain the desired probabilistic result without applying any additional layers.

Since Pytorch does not provide a training function, after adapting the network to
the required specifications the training loop was created allowing to train the network
for a fixed number of epochs using the entire training dataset, also for each epoch
the validation dataset is used to verify the accuracy of the network during test phase.

f o r epoch in range (epochs) :
f o r inputs , l a b e l s in tra inLoader :

#Set netwrok in t r a i n i n g mode , compute the l o s s and update weights
model . t r a i n ()
s t ep s += 1
inputs , l a b e l s = inputs . to (dev i ce) , l a b e l s . to (dev i ce)
i f l en (tra inSampler) % 2 == 0 :

l a b e l s= l a b e l s . squeeze_ ()
e l s e :

l a b e l s = l a b e l s . squeeze_ (1)
inputs= inputs . f l o a t ()
opt imize r . zero_grad ()
logps = model . forward (inputs)
l o s s = c r i t e r i o n (logps , l a b e l s)
l o s s . backward ()
opt imize r . s tep ()
ac tua lLos s += l o s s . item ()

#I f the e n t i r e t r a i n i n g datase t i s used , compute accuracy on va l i d a t i on s e t
i f s t ep s % va l i da t i onS t ep == 0 :

va l i da t i onLo s s = 0
accuracy = 0
model . eva l ()
with torch . no_grad () :

f o r inputs , l a b e l s in va l idat i onLoader :
inputs , l a b e l s = inputs . to (dev i ce) , l a b e l s . to (dev i ce)
i f l en (val id_sampler) % 2 == 0 :

l a b e l s= l a b e l s . squeeze_ ()
e l s e :

l a b e l s = l a b e l s . squeeze_ (1)
inputs= inputs . f l o a t ()
l ogps = model . forward (inputs)
batchLoss = c r i t e r i o n (logps , l a b e l s)
va l i da t i onLo s s += batchLoss . item ()

ps = torch . exp (logps)
_, c l a s s = ps . topk (1 , dim=1)
equa l s = c l a s s == l a b e l s . view (∗ c l a s s . shape)
accuracy += torch . mean(equa l s . type (torch . FloatTensor)) . item ()

s chedu l e r . s tep ()

Listing 3.4: Custom loop to train the ResNet-18 on Python

The code above is the code that develops the custom loop allowing to exploit all

3.3. DEVELOPMENT 47

the images of the dataset collected as a dataloader to speed up and better manage
their use. At each iteration, all the images of the trainSet are suitably adapted to the
GPU’s CUDA and to the necessary specifications of spatial dimensions and are used
by the network. The image embedding is obtained through the forward function
and its goodness is evaluated by the selected loss function. Based on the loss the
backward function will update the weights using the selected optimizer: SGD or
Adam. When the entire training dataset has been used, the accuracy of the network
is evaluated on the validation dataset selecting the index with the highest value of
the embedding produced by the Softmax function. The last step is to verify if the se-
lected index corresponds to the index of the real class from which the image belongs.

In order to obtain the best result in terms of accuracy of the network during
the classification phase, many combinations of parameters that Pytorch allows to
modify have been tested:

• Fully Connected Layers: the depth of the network has been modified by
adding FC Layers appropriately interspersed with ReLU and Dropout layers,
in order to allow the network to learn the appropriate weights to obtain the
best accuracy values;

• Learning Rate: the initial value of the Learning Rate has been appropriately
modified at each training, starting from the value of 0.01 up to 0.0001 that
are the most used values in deep learning, as well as the modification method
of the Learning Rate in real time, i.e. the drop factor depending on the steps
calculated by the optimizer;

• Optimizer: depending on the network could be used different optimization
functions, the best at the moment is Adam Update that manages to solve
the problems present in the other most famous optimizer like the Stochastic
Gradient Descent. Both optimizers have a different scheduler that leads to
the drop of the learning rate such as the StepLR that allows to drop the
learning rate of each parameter by a gamma factor depending on the number
of epochs;

• Freeze Layers: depending on the depth of the Fine-Tuning that wants to be
obtained, the layers were appropriately frozen starting from the output ones
and going back to the input ones, depending on the number of frozen layers
the network could train more specifically for the current task with respect to
the one on which it was previously trained.

48 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

There are other important parameters that can be modified in Pytorch that do
not have directly to deal with the architecture of the network, those are the number
of training epochs that also strongly affect the timing of the training, but especially
on the dataset used. All the tests were carried out using the different datasets of
the paragraph 3.3.2, the greatest variation between the different tests results in the
random division in terms of images provided to the train set and to the validation
set which could vary from 25% to 10%, but also on the augmentation provided to
diversify the dataset using translations, rotations, etc.

Below are the graphs that highlight the loss in the train set, the loss in the
validation set and the accuracy always on the validation set. For ease of reading,
the graphs show only the best training obtained with accuracy of 87% using the
following parameters:

• Learning rate: 0.01;

• Optimizer: Stochastic Gradient Descent with momentum=0.9;

• Scheduler: StepLR with gamma factor = 0.1 and number of epochs = 20;

• Frozen Layers: only the first two layers were frozen;

• Additional Layers: FC, ReLU, Dropout, FC;

• Accuracy: Top 1 Accuracy;

• Batch size: 64;

• Train and Test Split: 90%-10%;

• Dataset: custom dataset with 212 classes belonging to CASIA-WebFAce with
only RandomHorizontalFlip as augmentation parameter.

These results could be considered satisfactory given the shallow depth of the
network and the very small dataset due to the low computing capacity of the laptop
in which the training phase took place. The technique called "Top N Accuracy"
also used on ImageNet involves the selection of N indices of the highest values and
the identification if among these indices there is the index of the real class to which
the image belongs, this method is also used by the network to obtain, in the case
of Top 3 Accuracy, results over 93%, reaching 99% in the case of Top 5. Due to the
fact that Python, together with Pytorch, is an open-source code easily modifiable
as can be seen in the customization of the training loop, a series of errors could occur.

3.3. DEVELOPMENT 49

(a) Plot of Train and Validation Loss. (b) Plot of Validation Accuracy.

Figure 3.7: Training results of ResNet-18 on Pyhton.

In order to verify the real behavior of a classification network during Fine-Tuning,
we decided to use a code that could be defined "closed-source" and is identified in
MATLAB. Unlike Python, MATLAB provides specific functions that cannot be
customized for network training and fine-tuning classification. Once the dataset and
the pre-trained ResNet-18 on ImageNet are properly imported, the final architecture
was modified freezing the same number of layers as in Python in order to perform
very similar tests.

As for the training in Python, also in this case different tests were carried out
by modifying the available optimizers, the learning rate drop factor period and
its initial value, the layers following the average pooling were also modified in or-
der to obtain the best result which, thanks to MATLAB, is 90% in the validation set.

%Set the new network ' s a r c h i t e c t u r e
newLearnableLayer = [fu l lyConnectedLayer (512 , 'Name ' , ' in_fc ') , . . .

r e luLayer ('Name ' , ' r e l uF ina l ') , . . .
dropoutLayer (0 . 6) , . . .
fu l lyConnectedLayer (numClasses , 'Name ' , ' new_fc ')] ;

%Set the t r a i n parameters
opt ions = tra in ingOpt ions (' sgdm ' , . . .

I n i t i a lLea rnRat e =0.01 , . . .
LearnRateSchedule=' p i e c ew i s e ' , . . .
LearnRateDropFactor =0.1 , . . .
LearnRateDropPeriod=10, . . .
Val idat ionData = augmentedValidation , . . .
S hu f f l e= ' every−epoch ' , . . .
MaxEpochs=20, . . .
MiniBatchSize=64, . . .
Verbose = true , . . .
P lot s=' t ra in ing −prog r e s s ') ;

net = trainNetwork (augmentedTrain , lgraph , opt ions) ;

Listing 3.5: Code to train ResNet-18 on MATLAB

50 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

Figure 3.8: Fine Tuning results on MATLAB.

This small difference with Python is mainly due to the slight structural difference
of the network which, in MATLAB, expects the presence of the Softmax layer and
the Classification layer that allow to obtain the probabilistic embedding and to
select the highest probability index for the class matching . Another factor is that
MATLAB handles better the train and validation dataset augmentation, which
differs from augmentation parameters applied on Python both in precision and
applied modifications.

Figure 3.9: ResNet-18 Architecture on Matlab.

An excellent result of accuracy with a network in the classification task means
having a backbone network that is able to carry out the feature extraction phase
with excellent precision and it is able to obtain very accurate embeddings for each
image, these led to a simplification in vector comparison in the next phase of face
identification.

3.3. DEVELOPMENT 51

3.3.5 Face Identification

The entire Fine-Tuning procedure of the ResNet-18 served as a fundamental
step to obtain a backbone network with high precision in the classification task,
involving obtaining a neural network that carries out very well the job of the
feature extraction. The goal of the previous phase 3.3.4 was to obtain the weights
of all the layers between the input layer and the average pooling layer that are
needed to obtain excellent quality embeddings, these weights will therefore be made
unchangeable through the freezing of their parameters because they are already
optimized.

The purpose of this last phase is to make the network adequate for face identifi-
cation, i.e. to adjust the weights of the new layers that will be added so that the
network will be able to verify the similarity or dissimilarity between two images
provided as input, the method is based on what is the Siamese network behavior.
To this end, in this paragraph, we will describe the procedure for implementing and
training this neural network that bases its learning capacity on the minimization
of two main loss functions: the Triplet Loss and the Contrastive Loss. These loss
functions will also be flanked, for some tests, by the loss function obtained during
the classification phase starting from an untrained backbone network in order to
understand if the most restrictive constraint can benefit the accuracy of the network.

The development environment chosen to design such network is MATLAB.
This choice was imposed by the lack of a framework that allows communication
with Python and modification of the neural network. There is a unidirectional
communication from Python to Matlab, but not vice versa if not exploiting the
ONNX framework, this is a very powerful tool that allows communication between
the two languages allowing Python to execute a neural network only in the inference
phase as long as this is in a specific format. The final network for face identification
needs some architectural changes in order to complete the task for which it was
designed and the lack of the ability to make changes to the MATLAB network even
with ONNX has forced the use of the latter platform in which no researcher has
ever developed a Siamese network with triplet loss.

The goal is the creation of a network that is generally able to process two images
an to provide as output the encodes of a certain dimensionality for both, and based
on the similarity of these encodes, i.e. on the Euclidean distance or on the cosine
similarity, and on a threshold the network must be able to understand if the images

52 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

provided in input belong to the same person. This network is known as Siamese
and is based on the use of two subnetworks that share the same structure, the same
parameters and the same weights.

Figure 3.10: Structure for Siamese with Contrastive Loss.

The use of a Siamese network therefore requires a subnetwork, also called
backbone network, which has the ability to perform features extraction with ex-
cellent precision. Suitably modified and retrained this network is identifiable in
the pre-trained ResNet-18 on the custom dataset that was previously trained for
the classification task. In order to complete the classification task, a deep neural
network must be able, upstream of the problem, to extract the encode of the input
image with excellent precision, this is done through the weights provided to the
network before the average pooling layer, all subsequent layers are simply fully
connected layers for the dimensionality reduction task, that is, layers that are
needed to resize the embedding produced by the pooling layer to the required size,
but in the mean time they provide further refinement by making the network deeper
and with more weights to train to be more accurate.

This subnetwork will be shared in the different input branches of the Siamese
network, that is, in the different rectangles called Subnetworks visible in Figure
3.10. The number of branches depends on the number of images to be processed in
parallel, these subnetworks share weights, parameters and structure that will be
updated equally according to the loss function that want to be minimized.

Although MATLAB is a more closed-source code than Python, in the case
of training a Siamese network that uses batches formed by pairs or triplets of
images, custom training loops are required both for the technical code specifica-
tions of MATLAB but also to lighten the computational load of the machine in

3.3. DEVELOPMENT 53

which the execution takes place. The main purpose is therefore the implemen-
tation of a custom loop to train the network on pairs or triplets of images that
are provided in input to two or three subnetworks that perform their task in parallel.

Unlike Siamese neural networks that exploit Binary Cross Entropy as a loss
function, which need additional layers after the comparison of the encodes provided
by the subnetwork as can be seen from Figure 3.11, the only parameters that can be
trained in Siamese networks with triplet loss or contrastive loss are the parameters
in the layers of the subnetwork, in particular the layers that follow the average
pooling in the case of ResNet-18 pre-trained to classify faces.

Figure 3.11: Structure for Siamese with Binary Cross Entropy.

The choice on the architectural changes of the subnetwork depends on the
complexity of the comparison between the size of the extracted features vectors and
on the depth of the backbone network. These parameters will affect the processing
times but also the precision: larger is the size of the embedding, greater will be the
comparison accuracy but will involve a greater expenditure of resources and time,
vice versa smaller is the size, lower will be the precision but the resources required
will be less as well as the timing to complete the task. After various tests on the
trade-off between timing and precision, the final choice is to select the extraction of
a 512-dimensionality encodes favoring the already low accuracy due to the shallow
depth of the network. Following this choice, all layers subsequent to the average
pooling layer have been deleted from ResNet-18 except for the only Fully Connected
that will perform the Extraction feature with output size at 512.

When the structure of the subnetwork was reworked and all the layers before
to the pooling layer were frozen because they were already provided with weights
suitable for the extraction of the features, a method was needed to train the network
based on pairs or triplets of images. The custom training loop involves the choice
of the number of images equal to the size of the batch and the method to select
them based on the type of loss function used:

54 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

• Contrastive Loss: since contrastive loss is a greedy loss function, it randomly
selects a pair of images with 50% probability that belong to the same person
or to different people;

• Triplet Loss: this loss function requires 3 images named Anchor, Positive and
Negative whose choice is random, except for the Positive which must be part
of the Anchor class.

f o r i t e r a t i o n = 1 : numIterat ions
%Se l e c t couple o f images

[X1 ,X2 , pa i rLabe l s] = GetSiameseBatch (IMGS, miniBatchSize) ;
dlX1 = dla r ray (s i n g l e (X1) , 'SSCB ') ;
dlX2 = dla r ray (s i n g l e (X2) , 'SSCB ') ;

i f (executionEnvironment == "auto" && canUseGPU) | | executionEnvironment == "gpu"
dlX1 = gpuArray (dlX1) ;
dlX2 = gpuArray (dlX2) ;

end

% Evaluate the model g rad i en t s and the generator s t a t e us ing
% d l f e v a l and the modelGradients f unc t i on s
[l o s s , grad ientsSubnet] = d l f e v a l (@modelLoss , dlnet , dlX1 , dlX2 , pa i rLabe l s) ;

% Update the Siamese subnetwork parameters us ing the chosen opt imize r
[dlnet , tra i l ingAvgSubnet , tra i l ingAvgSqSubnet] = . . .

adamupdate (dlnet , gradientsSubnet , . . .
t ra i l ingAvgSubnet , trai l ingAvgSqSubnet , i t e r a t i o n , learningRate , gradDecay , gradDecaySq) ;

end

func t i on [l o s s , grad ientsSubnet] = modelLoss (net ,X1 ,X2 , pa i rLabe l s)

%Compute the l o s s
[F1 , F2] = ForwardSiamese (net ,X1 ,X2) ;

margin = 1 ;
l o s s = Contrast iveLoss (F1 , F2 , pa i rLabe l s , margin) ;

% Calcu la te g rad i en t s o f the l o s s with r e spe c t to the network l e a rnab l e parameters .
grad ientsSubnet = d lg rad i en t (l o s s , net . Learnables) ;
end

Listing 3.6: Custom loop to train the Siamese Network

Once the batch of images for the current iteration of the custom loop has been
selected and graphics acceleration is applied to the arrays that contain these images,
the relative loss function is computed through the mathematical function assigned
to it:

• Contrastive Loss: for each pair of images in the batch, the embeddings are
computed using the forward function of MATLAB, which is necessary because
there are Batch Normalization layers in the subnetwork that behave differently
depending on the training or inference phase. The embeddings thus found
are then compared with each other according to the mathematical formula,
the value of the margin used is 1 which allows to give greater emphasis to
the pairs of images that are more complicated to compare. Finally, the loss is
normalized according to the batch size and used in the dlgradient function to
compute the gradient of the function necessary for the optimizer to update

3.3. DEVELOPMENT 55

the network weights. The optimizer which gave the best results during the
tests is adamupdate;

Y1 = forward (dlnet , dlX1) ;
Y2 = forward (dlnet , dlX2) ;
d e l t a = 1e−6;
Y = abs (F1−F2) ;
d i s t an c e s = sq r t (sum((Y) .^2 ,1) + de l t a) ;

l o s s S im i l a r = pa i rLabe l . ∗ (d i s t anc e s .^2) ;

l o s sD i s s im i l a r = (1 − pa i rLabe l) . ∗ (max(margin − di s tances , 0) .^2) ;

l o s s = 0.5∗sum(l o s s S im i l a r + l o s sD i s s im i l a r , " a l l ") ;
l o s s=sum(l o s s) /numel (pa i rLabe l) ;

Listing 3.7: Contrastive loss implementation

• Triplet Loss: similarly to what happens for the previous loss, for each triplet of
Anchor, Positive and Negative images the embeddings are computed through
the forward function that can be flanked by a sigmoid function to obtain
values between 0 and 1 because there will be high values due to the square
distance that is needed in the triplet loss formula. For each pairs of the
Anchor-Positive and Anchor-Negative embeddings the Euclidean distance
is computed, even if it is possible to use the cosine similarity to check the
distances of the embeddings in order to minimize the distance between positive
couples and maximize the distance between negative couples. The loss is then
normalized and computed through its mathematical formula using a margin
of 0.8, and then it is used to compute the gradient for updating the network
weights with the adamupdate optimizer.

[F1 , s t a t e] = forward (dlnet , dlX1) ;
F1 = sigmoid (F1) ;

F2 = forward (dlnet , dlX2) ;
F2 = sigmoid (F2) ;

F3 = forward (dlnet , dlX3) ;
F3 = sigmoid (F3) ;

Y = abs (F1 − F2) ;
Z = abs (F1 − F3) ;

Y=sqr t (sum((Y) .^2 ,1)) ;
Z=sq r t (sum((Z) .^2 ,1)) ;

A=Y.^2−Z .^2 ;

l o s s=max(Y+margin , 0) ;
z=0;
f o r i = 1 : l ength (l o s s)

z=z+(l o s s (i)) ;
end

l o s s=z/numel (Y) ;

Listing 3.8: Triplet Loss implementation

56 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

In this way the custom training loop, which trains the network and the non-
frozen layers for a fixed number of iterations, has been defined to obtain the best
result in accuracy. The tests were carried out by modifying the main parameters
such as:

• Optimizer: the optimizers used for the training phase were AdamUpdate and
SGDMupdate which requires a few more steps to be computed;

• Learning rate: the learning rate has been appropriately modified between
values 0.01 and 0.0001 in order to test the most suitable value for the purpose
of the network;

• Batch Size: although with great limitations due to the computing power
available, depending on the loss used that could requires a greater number of
images, the batch size could reach up to 64 for the contrastive loss and 32 for
the triplet loss;

• Dataset: the main datset is the custom made dataset from CASIA-WebFace,
but an additional dataset from CASIA-WebFace has been used that contains
different people;

• Network architecture: the layers after the pooling layer have been modified
at each training to understand the possible performance increase with respect
to a deeper network;

Figure 3.12: Branched Subnetwork.

Finally, a further constraint has been added during training: the Classification
Loss. With the aim of making the training of the network more complicated to

3.3. DEVELOPMENT 57

obtain more refined weights, the Classification Loss has also been added to the loss
functions previously used requiring a rather complex architectural change. In order
to use the classification loss all the layers of the subnetwork must have their own
parameters with the possibility of being modified. In addition, having to perform
at the same time both the classification and extraction of features to minimize the
loss function, the subnetwork needs to be branched, doing so each branch is specific
for a given task.

As can be seen from the Figure 3.12, the subnetwork’s architecture has deeply
changed obtaining a branch immediately after the Fully Connected layer "in_fc".
From this layer the left branch keep the classification part of the ResNet-18 up to
the Softmax layer because the MATLAB dlnetwork (Deep Learning Network) does
not allow the use of output layers such as the classification layer, while in the other
branch the layers necessary for the feature extraction of the network have been
added. The same architecture has been used for both Contrastive Loss and Triplet
Loss.

While the training loop keeps almost identical to what was implemented for
the subnetwork without Classification Loss, in this case the mathematical formula
for computing the final loss changes. In both loss functions their mathematical
computation remains unchanged, to them will be added the contribution of the
classification loss that varies depending on the number of images that are used:

• Triplet Loss: in this case we continue to use batches but with smaller size
due to a greater demand for resources, these batches formed by triplets of
images must be classified using the left branch of the network. Through the
forward function of MATLAB it is possible to select the layer from which
obtain as output the desired encode for each image of the triplet, if these
encodes are provided by the feature extraction layer they will be computed
with the mathematical formula of the triplet loss, if they are provided by the
softmax layer through the help of the onehotencode function 3 they will be
computed by the binary cross entropy loss one for each of the three images in
i-th triplet in the batch. The sum of the classification loss of the three images
will be added to the triplet loss, triplet loss will give a contribution of 50%
because its importance in updating the parameters of the entire subnetwork
is less than the loss of classification[43]. The final loss given by the sum of

3OneHotEncode function replaces each element of a vector containing the labels with a numeric
vector of length equal to the number of unique classes in the label vector. The vector contains a 1
in the position corresponding to the class of the label and a 0 in every other position.

58 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

the previous losses will be used to compute the gradient necessary for the
optimizer to update the parameters;

• Contrastive Loss: the mechanism of operation is similar to the Triplet Loss,
except for the use of pairs of images, while the mathematical formulation
remains the same and the Contrastive Loss contribution is weighted only 50%
in the training phase.

[C1 , s t a t e1] = forward (dlnet , dlX1 , ' Outputs ' , ' prob ') ;
l a b e l s= onehotencode (labe l1 , 1) ;
l o s s 1 = cros s ent ropy (C1 , l a b e l s) ;

Listing 3.9: Classification Loss implementation

One of the biggest problems of using a custom loop in MATLAB with adamup-
date or sgdmupdate as optimizers is the presence of Batch Normalization layers.
Unfortunately, the optimizers developed by MATLAB are not able to update the
state, i.e. the TrainedMean and the TrainedVariance, of the Batch Normalization
layers whose behavior differs between the training phase and the inference phase.
Updating them is vital for good accuracy because when MATLAB’s predict function
is used to obtain the embedding in the inference phase, the last state in which the
Batch Normalization layers were updated is used, if this update was done in an
unbalanced way such as using only one image in the couple or triplet, the results of
the inference phase will be wrong.

Without using the classification loss this problem does not arise because the
state of the Batch Normalization layers remains the one obtained during the training
phase for the subnetwork classification task that is optimal for the prediction phase,
this is due to the fact that all the layers upstream the average polling are frozen.
Being that the state of the Batch Normalization layers derives from the forward
function and depending on the loss that is used, the need was to understand how
to compute the correct state and which forwards depended on because there will
be six forward employed in the worst case.

Since the state of the entire network upstream the pooling layer depends on the
classification of the images, to update the states of these layers a script has been
created that allows the computation of an average state determined by the forwards
of the classification during training leaving out the forwards of the Contrastive
Loss or Triplet Loss that have the purpose of updating only the right branch of the
network.

3.3. DEVELOPMENT 59

An additional MATLAB problem arises when the network is branched as one of
the branches cannot take advantage of GPU acceleration, requiring several days to
complete the necessary update iterations.

Despite the problems described above, different tests were carried out by modi-
fying the dataset, the learning rates and the subnetwork.

3.3.6 Face Recognition

The last step of the face recognition pipeline is to label the input image com-
paring it with the images in the database. For this purpose, in the first instance,
there is the need to create the reference database with images of the people that
must be recognized.

Considering the computing power available and the tight timing of the pipeline
that must be under 2 second, it was decided to limit the number of images repre-
senting each person to a minimum of 5 and a maximum of 10. The imposed limit is
necessary to have an adequate number of images for comparison but allowing, at the
same time, to cover all the positions of the face in the various profiles also allowing
the use of accessories such as glasses. Each person will have at least one image in
front and one for each side of the profile, if the person needs the aid of glasses the
three main templates will be duplicated to address the presence and absence of these
accessories, as can be seen from the Figure 3.13 in which there is one of the per-
son to be recognized in the various positions with the presence and absence of glasses.

During production phase, this database will be created directly by the cus-
tomer following the guidelines that will be imposed on him. The database will
be created using either the smartphone camera that will allow the final user to
connect, through the application, to the system where the neural network will
be implemented and upload the images or through the photo taken directly from
the video door phone to make the image resolutions equal to the one in the fu-
ture recognition. The image that will be used for the database will go, in the
background, through a script that uses the MTCNN to align the image and make
it similar to those used in the dataset coming from CASIA-WebFace during training.

The script expects to have an input image from which to extrapolate the in-
formation of the facial landmarks and bounding boxes coming from the MTCNN,
based on the landmarks of the eyes a rotation matrix is computed and through an

60 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

affine transform the rotation of the image is performed to have the line joining the
landmarks of the eyes parallel to the horizontal axis. Once the rotation is obtained,
the image is cropped according to the dimensions of the bounding box suitably
readjusted to obtain an image with the size and position of the face very similar to
the images in the training dataset, finally the image undergoes to a resize action
to obtain a common size suitable for the input dimensions of the networks, i.e.
224x224, keeping all the channels for RGB colors.

Figure 3.13: Example of one class in the final database.

In addition, the final database in use at the consumer will never include the
presence of more than 10/15 people to be identified imposing a maximum limit
on the number of images equal to 100, the images must be appropriately aligned.
During the test phase, the database was derived through the script described above
from the videos recorded directly from one of the video door phones available in
the company, each frame of the video was provided as input to the script and
appropriately modeled in case of presence of a face, the images in the final database
were manually selected according to the constraints emulating a user who manually
takes the correct pictures.

As known, the typical behavior of a Siamese network requires two input images
from which the embeddings are extrapolated, thus requires a considerable amount
of resources for the computation of each possible pair of images, in the case of a
production database containing 100 images will be inserted in input for 100 times
every possible pair "input image - image from database", requiring comparison

3.3. DEVELOPMENT 61

times and resources infeasible for the constraints described.

To overcome this problem, the final behavior of the network will emulate the
behavior of a Siamese network: the comparison between embedding pairs will
always be provided, but only one image will be provided as input to the network,
or the image coming from the encoded video, while the comparison embeddings
will derive from the database, in this way, for each input frame the network will
have to produce a single encode instead of 100 pairs. To this end, each image
that is used for the database is provided, in the background, to the final network
that will produce the embedding that will be saved, together with its label, in the
database resulting in a considerable saving of space as strings and vectors will be
saved instead of images.

Figure 3.14: Structure of Network during Inference.

With this method a great speed up to the entire process is allowed, requiring a
single inference phase for each selected frame. To speed up this phase even more
an excellent search algorithm could be used. In a first phase of testing a search
algorithm was used that aimed to reduce the comparison times, this algorithm
compares the embedding produced by the network with the first two embeddings
of each class in the database, if the distance between them was greater than a simi-
larity threshold appropriately identified by different tests based on the embeddings
produced by each type of backbone network, the remaining images would never
belong to that class and would therefore be discarded from comparison. In this
way a large number of images would have been discarded a priori making it faster
to select the most similar image if there is one, but reducing the accuracy of the
network in terms of False Positive and False Negative that vary depending on the
selected threshold.

62 CHAPTER 3. EXPERIMENTAL SETUP AND CODE

Since the selected threshold can be restrictive, it may happen that embeddings
that have a distance greater than the threshold close to 0.01 are discarded, i.e. with
threshold set to 0.24 if the distance of the first two database embeddings is 0.241
these are discarded while the third may have a distance lower than the threshold
but will never computed because it is discarded a priori. Considering therefore that
there will be a maximum of 100 images to be compared in the worst case and that,
through the CPU, the entire execution including the extraction of features and the
comparison with 62 images requires an average time of 0.04 seconds, it was decided
to eliminate any search algorithm that limits the number of comparisons in favor of
greater accuracy.

The final script compares all the embeddings present in the database with the
one extrapolated from the input image, selecting and saving in a variable that
contains the label and the numerical value of the distance all the embeddings that
have a distance less than the setted threshold. In a subsequent step, from this
variable, the label with the lowest distance is selected which will correspond to the
person identified in the process comparing the label with the selected one in order
to compute the number of False Positive and False Negative to understand the
accuracy of the network as the threshold changes.

f o r i =1:row
%Extract the emebedding from the input image

X1 (: , : , :) = test Images . readimage (i) ;
X = dla r ray (s i n g l e (X1) , 'SSCB ') ;
imageFeatures = pr ed i c t (siamese ,X) ;
f o r j =1: rowTest

%Compare with a l l the embedding in the database
datasetEmbedding = embedding{ j , 2} ;
Y = imageFeatures − datasetEmbedding ;
d i s t ance = sq r t (sum((Y) .^2 ,1)) ;
i f d i s t ance < thre sho ld
%I f d i s t ance < thre sho ld keep the db embedding

spCe l l=spCe l l +1;
searchPerson { spCel l , 1} = c e l l s t r (dbLabels (j)) ;
searchPerson { spCel l , 2} = ext rac tdata (d i s t ance) ;

end
end

%I f there isn ' t matches but the input image l a b e l i s Contained
%in the l a b e l s saved in database , there i s

%a False Negative
i f searchPerson {1,1}==""

i f ismember (t e s tLabe l s (i) , dbLabels)
FNMR=FNMR+1;

end
e l s e

%Compute the min d i s t ance to f i nd the l a b e l
mat = [searchPerson { : , 2 }] ;
[minimum , index] = min (mat) ;
person=s t r i n g (searchPerson (index , 1)) ;
boh=s t r i n g (t e s tLabe l s (i)) ;

%I f l a b e l s with min d i s t ance i s d i f f e r e n t from the one
%in the image there i s a False Po s i t i v e

i f s t r i n g (t e s tLabe l s (i))~=s t r i n g (searchPerson (index , 1))
FMR=FMR+1;

end
%Compute the mode to s e l e c t the l abe l , i f the re i s only one
%element f o r each labe l , take the l a b e l with min d i s t ance

3.3. DEVELOPMENT 63

matrix=[searchPerson { : , 1 }] ;
matrix=s t r i n g (matrix) ;
matrix=c a t e g o r i c a l (matrix) ;
[moda ,F ,C]=mode(matrix , ' a l l ') ;
i f F == 1

mat = [searchPerson { : , 2 }] ;
[minimum , index] = min (mat) ;
person=s t r i n g (searchPerson (index , 1)) ;
moda=s t r i n g (t e s tLabe l s (i)) ;

end
%Control the False Po s i t i v e

i f s t r i n g (t e s tLabe l s (i))~=s t r i n g (moda(1))
FMRModa=FMRModa+1;

end
end

Listing 3.10: Code for Face Recognition inference phase

A problem that can arise by selecting the minimum distance is the selection of a
wrong label due to an encode extracted incorrectly. Since the depth of the network
is reduced to comply with the constraints imposed, sometimes the precision in
the extraction of the features is not high, providing in very few cases, embeddings
that are more similar to different people than to the person we want to classify.
This error can occur with a frequency of 2-4% and can be avoided by exploiting
the mode: having saved in a previous phase all the embedding with distance less
than the similarity threshold, instead of selecting the label of the embedding with
minimum distance can be selected the most present label as it would be the one
with the greatest probability of matching the right identity. In the case that there
is only one element for each label the script selects the minimum distance, with
this technique it is possible to reduce the number of False Positives by over 50 %
without involving any additional cost.

With this script the Face Recognition pipeline ends, also in this case different
tests were carried out by calculating the curves representing the False Positive and
False Negative to determine the accuracy of the network when the threshold varies
for all networks with the different loss functions trained.

Chapter 4

Experiments Results

In this chapter we will describe, thanks to some graphs, the results obtained in
the various phases of training and testing of the neural network, divided according to
the selected loss functions. For each paragraph the results in the training phase and
in the test phase will be shown with the values assigned to the various parameters.
The result of subnetwork training on the classification task visible in Figure 3.7 and
Figure 3.8 of the paragraph 3.3.4 will be omitted.

4.1 Siamese Network with Triplet Loss

The first tests were carried out using the Triplet Loss as a loss function because
in the literature it is generally better performing than the Contrastive Loss. Since
the ResNet-18 used as backbone is pre-trained in majority of the tests, almost all
the trainings of the Siamese network for face identification were carried out with
frozen layer parameters up to the average pooling layer because they were assumed
to be optimal for feature extraction. In addition, the values of the loss functions
are computed through the use of a sigmoid that is required by the squared distance
between the couple Anchor-Positive and Anchor-Negative in the mathematical
formula.

The different tests were carried out by modifying the following parameters:

• Learning rate: the learning rate values used were 0.01, 0.001 and 0.0001;

• Dataset: as the main training dataset was used the custom dataset described
in the paragraph 3.3.2, for ease of use this dataset will be called Webface200,
for further verification a new dataset was created from CASIA-WebFace, this
dataset was called WebfaceSiamese and contains 56.515 images of 428 different
identities, these identities are completely different from the one contained in
the Webface200;

65

66 CHAPTER 4. EXPERIMENTS RESULTS

• Network Architecture: the sequence of layers after to the average pooling
layer has been adapted to the different tests that were carried out based on
the dimensionality of the feature vector that must be extracted;

• Other Parameters: in some tests the ResNet-18 was used without fine-tuning,
for this purpose the layers were not frozen.

During the entire training phase, the margin to compute the Triplet Loss was set
at 0.8 which was the best in a series of tests carried out but they are not reported
in this section. The results of all possible combinations will not be reported for
practical reasons as each training takes from 4 to 8 hours to be carried out in the
best case, only some combinations of the training parameters will be corroborated
giving more space to those that have obtained the best results.

Below will be reported the graphs of the training deriving from the different
combinations of the parameters that have been selected using the Siamese network
with triplet loss, the descriptions of the architectural changes will only concern
the structure following the average pooling layer, the descriptions upstream of this
layer will be deliberately omitted.

The training trends visible in Figure 4.1 derive from a Siamese network that uses
the same architecture, i.e. only one Fully Connected Layer after the Average Pooling
to extract features of dimension 512, but the learning rate parameter varies. The
figure shows an oscillating and non-parabolic trend of the computed loss function
value, which therefore represents the worst cases of training with the Triplet Loss.

In these graphs the loss function has a growth trend that is the opposite of
the expectations because the expectation is a decreasing or a constant trend. This
behavior is due to the fact that the single FC layer for feature extraction during the
various iterations uses triplets of images that are increasingly difficult to compare
and it fails to update its weights correctly, this led to increase the loss function
because the layer weights remain about the same with each update.

To solve this problem, the network structure has been deepened by adding some
Fully Connected layers to obtain a greater number of trainable parameters allowing
a greater refinement of the embeddings produced by the network. The network
whose training is visible in Figure 4.2(a) has excellent results in terms of the trend
of the loss function that tends to decrease in a smaller number of iterations than the
network whose training is visible in Figure 4.2(b). Both results of these networks

4.1. SIAMESE NETWORK WITH TRIPLET LOSS 67

(a) Learning Rate = 0.01 and one FC=512. (b) Learning Rate = 0.001 and one FC=512.

(c) Learning Rate = 0.0001 and one FC=512.

Figure 4.1: Training Siamese Network.

are excellent as the loss mean value is between 0 and 0.2 due to the random pick
up of triplets, these results make the Siamese network with learning rate = 0.0001
the optimal candidate for the next test phase as it tends less to overfitting thanks
to a longer and linear training to reduce the loss function.

In order to understand the lack of a parabolic trend typical of each loss func-
tion, other tests have been performed using the ResNet-18 not pre-trained on the
Webface200 dataset but with the weights deriving from ImageNet, another purpose
of the next series of trainings is to understand if the pre-training in a more specific
task applied to the backbone network can really increase the accuracy of the network.

In this case from the network were removed the unnecessary layers belonging
from the ResNet-18 coming from ImageNet such as the Softmax layer and the
classification layer, reusing the FC 1000 layer and adding the layers necessary for

68 CHAPTER 4. EXPERIMENTS RESULTS

(a) Learning Rate = 0.01 and sgdmupdate as
optimizer.

(b) Learning Rate = 0.0001 and adamupdate
as optimizer.

Figure 4.2: Training Siamese Network with FC 512, ReLU, FC 1024, ReLU, FC 512.

dimensionality reduction, these layers are the ReLU layer and the FC 5121 layer
to obtain the desired embedding. In this case the training dataset is Webface200,
the learning rate was set to 0.0001 and the optimizer was the adamupdate and the
parameters of the layers up to average pooling were not frozen because the network
does not have the specific weights for the task of classification of a face and it must
learn them. The combination of parameters comes from an analysis of the best
results obtained in previous trainings.

Figure 4.3: Training Siamese Network with ResNet-18 derived from ImageNet.

Through this subsequent series of training it was possible to understand that
the lack of the parabolic trend of the loss function is due to the pre-training phase
of the backbone network that allows an optimal extraction of the features. The
Siamese network that uses the pre-trained ResNet-18 succeeds with fewer training
iterations to learn the optimal weights for the next test phase.

1FC Dim means a Fully Connected Layer with output dimension equal to the number expressed
by Dim.

4.1. SIAMESE NETWORK WITH TRIPLET LOSS 69

A last series of trainings were carried out using the WebfaceSiamese dataset in
order to understand some specifics of the trends of the previous trainings. In this
case the network keeps the same parameters of the network visible in Figure 4.2(b),
keeping the learning rate equal to 0.0001 and the added layers or exploiting only
the FC 512. The results of these trainings show a network that manages to obtain
good performance even on an additional dataset thanks to the greater number of
layers that allows to obtain discrete weights and to the backbone network that
performs optimally.

(a) FC 512, ReLU, FC 1024, ReLU, FC 512. (b) Only on FC 512.

Figure 4.4: Training Siamese Network with ResNet-18 on WebfaceSiamese.

All trends are characterized by a particular vertical oscillation of the loss func-
tion. This oscillation arises from the random selection of the triplets that compose
the batches used at each training iteration. The composition of triplet in every
batch can be different at each iteration and their random choice can led to batches
without complicated triplets or batches with a considerable number of complicated
triplets. Greatest is the number of the complicated triplets in the batch, greatest
will be the final loss for the training in that iteration. The method to remove
these oscillations is hard mining, which is the technique to select first the most
complicated triplets to compare.

The most difficult triplets are those that have a distance between Anchor and
Negative less than the distance between Anchor and Positive, these triplets will
be the first to be used for training in order to learn heavier weights to reduce
the loss. The heavier weights allows the network to obtain the correct embedding
for the complicated triplets of images, i.e. the network has the capability to find
embeddings where the distance of the embeddings belonging from the same class

70 CHAPTER 4. EXPERIMENTS RESULTS

is small and the distance of embeddings belonging from different classes is high
with a small percentage of error. To overcame the problem there are two solutions:
Online mining and Offline mining 2.6.

While the online mining technique is impossible to use because the computing
capabilities of the machine where the training takes place allow to exploit batches
of maximum size of 32, the offline mining technique is more feasible. By means
of a suitably created script, each possible pair of images is supplied as input to
the network at the state of the i-th iteration to compute the matrix of distances
from which to select the possible Anchor-Positive and Anchor-Negative pairs that
represent triplets difficult to compare. The script was produced in MATLAB and
involves the computation of a matrix array of size 45.000x45.000 due to the limited
RAM of the machine and the need of an empty workspace to carry out the entire
computation for this phase. After the matrix computational phase, the triplets for
the hard mining technique would be selected in order to train the network for a
certain number of iterations beyond which the matrix must be recomputed using
the new update state of the neural network.

Unfortunately, the creation of the distance matrix took 48 hours to compute
the distances between the first 20 images and all the available combinations with
other 45.000 images despite the fact that the matrix was triangular and allowed a
faster computation. The lack of computation capacity has not allowed to exploit
the hard mining technique and consequently it does not allow the resolution of
vertical oscillations problem.

Finally, the best network in the training phase was the network in Figure 4.2(b)
thanks to its accuracy, training times and the fact that it provides excellent results
even on WebfaceSiamese dataset.

4.2 Siamese Network with Contrastive Loss

Similarly to what was done for the Siamese that implements the Triplet Loss,
different tests were carried out for the Siamese with Contrastive Loss exploiting
the different values of the training parameters. In the case of Contrastive Loss,
the sigmoid function was not used because the computed values remain within an
acceptable threshold for graphic display and the tests were carried out both using
the ResNet-18 pre-trained on Webface200 and the ResNet-18 pre-trained without

4.2. SIAMESE NETWORK WITH CONTRASTIVE LOSS 71

the Fine-Tuning.

The different tests were carried out by modifying the following parameters:

• Learning rate: the learning rate values used were 0.001 and 0.0001;

• Dataset: Webface200 and WebfaceSiamese were used as datasets;

• Network Architecture: the sequence of layers after to the average pooling
layer has been adapted to the different tests that were carried out based on
the dimensionality of the feature vector that must be extracted;

• Other Parameters: in some tests the ResNet-18 was used without fine-tuning,
for this purpose the layers were not frozen.

During the entire training phase, the margin to compute the Contrastive Loss
was set to 1 which was the best in a series of tests carried out but they are not
reported in this section. The results of all possible combinations will not be reported
for practical reasons because some trainings require multiple hours to be completed,
only some combinations of the training parameters will be corroborated giving more
space to those that have obtained the best results.

Below we will be report the graphs of the training deriving from the different
combinations of the parameters that have been selected using the Siamese network
with contrastive loss, the descriptions of the architectural changes will concern only
the structure after the average pooling layer.

The trends visible in Figure 4.5 derive from trainings that use the same structure
based on a single fully connected layer while the value of the learning rate changes
to produce an embedding of size 512. Unlike what happened for the Triplet Loss,
there is the typical parabolic trend of a loss function that decreases when the
iterations increase, starting from very high values due to the greedy nature of this
loss function caused by the random choice of the positive or negative pair of images.

The right trade-off between decreasing the value of the loss and the necessary
iterations make these trainings the optimal candidates to obtain the appropriate
weights of the Siamese network for face identification. Despite the rapid learning
resulting in a reduction in the value of the loss function, the training requires a
minimum number of 4000 iterations to refine the weights in order to obtain for all
results a final value of the loss close to 0.15. The different trend of this value, even

72 CHAPTER 4. EXPERIMENTS RESULTS

(a) Learning Rate = 0.01 and one FC=512. (b) Learning Rate = 0.001 and one FC=512.

(c) Learning Rate = 0.0001 and one FC=512.

Figure 4.5: Training Siamese Network.

if it is imperceptible, plays a decisive role in the selection of the best candidate that
has been identified in the training network visible in Figure 4.5(b).

Figure 4.6: Train Siamese Network with FC 512, ReLU, FC 1024, ReLU, FC 512.

4.2. SIAMESE NETWORK WITH CONTRASTIVE LOSS 73

In order to understand if the deeper architecture of the network could bring an
advantage in the training in terms of final loss value a new test was carried out
using a new and deeper structure, but as we can see in Figure 4.6 the network
goes into overfitting after only 100 iterations. This behavior is determined by the
rapid learning due to the random selection of image pairs without knowing a priori
if they represent the same person, in this way the network quickly learns how to
produce the correct emebedding but learns by heart with consequent low accuracy
performance in the inference phase with the test database.

Figure 4.7: Train Siamese Network with ResNet-18 trained on ImageNet.

A similar overfitting behavior has also been identified in training using ResNet-18
from ImageNet and without fine-tuning. As can be seen in Figure 4.7, the drop of
the loss function is almost instantaneous thanks to the learning rate = 0.0001 but
above all thanks to all the non-frozen layers of the backbone network, in this way
the network is completely free to update its weights adapting them too quickly for
the purpose of training with consequences of overfitting and poor performance in a
future inference phase. This network as well as the previous one has been deleted
from the pool of possible choices.

As for what happened for the triplet loss in order to have a complete compar-
ison, the result of the training of the Siamese network with contrastive loss on
the WebfaceSiamese dataset was verified both using only the FC 512 layer and
the additional structure composed of FC 512, ReLU, FC 1024, ReLU, FC 512.
In both cases visible in Figure 4.8 it is possible to observe a discrete trend of
descent of the value of the loss function, but it is still too rapid with respect to the
trend of Figure 4.5(b) resulting in discrete results but not excellent in the test phase.

The oscillation visible during the training with the triplet loss is not present,

74 CHAPTER 4. EXPERIMENTS RESULTS

(a) Learning Rate = 0.0001 and one FC=512. (b) Learning Rate = 0.001 with FC 512, ReLU,
FC 1024, ReLU, FC 512.

Figure 4.8: Training Siamese Network on WebfaceSiamese.

except in some cases, in the training with contrastive loss because the choice of
image pairs is random.

4.3 Siamese Network with Triplet Loss and Classi-

fication Loss

As described in Chapter 3, an additional constraint was imposed in the form of
classification loss in order to understand whether more restrictive training could
benefit the network in terms of accuracy.

The addition of the classification loss involves the possibility of learning and
modifying all the parameters of all the layers in the network, including the parame-
ters of the Batch Normalization layers requiring, in this way, the computation of
an average state exploiting the values present at each iteration. Classification loss
also involves the need to have a network with two branches to perform two tasks at
the same time with the consequent problem that, due to an internal programming
error of MATLAB, one of the two branches cannot exploit GPU acceleration.

The problems mentioned above resulted in training times that takes 1 hour
every 100 iterations, requiring a total of 130 hours per training. For this reason, the
number of trainings of the network has been reduced to the strictly necessary by
exploiting specific values of the training parameters. To this end, the tests carried
out involved the ResNet-18 pre-trained on Webface200 and on ImageNet without

4.4. SIAMESE NETWORK WITH CONTRASTIVE LOSS AND CLASSIFICATION LOSS75

fine-tuning, the value of the learning rate was set to 0.0001 and adamupdate was
used as optimizer. In addition, the number of images in each batch has been reduced
to 16 due to lack of computation resources capable of using training batches with
larger dimensions as happened in the previous phases.

(a) Learning Rate = 0.0001 and Resnet-18 fine
tuned.

(b) Learning Rate = 0.001 and ResNet-18 with-
out fine tuning.

Figure 4.9: Training Siamese Network with Classification Loss.

During the trainings the triplet loss contributed only 50% in the weight up-
date making the classification loss the main function of the weight changes of the
network itself. The need to classify Anchor, Positive and Negative simultaneously
has made the total loss values of the network high, not allowing training to go be-
yond the loss value of 1.3 both in the case of ResNet-18 with fine tuning and without.

Although the final loss value does not result in an improvement in the possible
results of the network due to its inability to correctly classify triplets of input
images at the same time, the constant decrease trend could suggest an ability to
learn more correctly if a dataset of adequate size was used to train a network of
this type.

4.4 Siamese Network with Contrastive Loss and

Classification Loss

Emulating what happened in the paragraph 4.3 with very similar problems,
even the network including the classification loss with the contrastive loss has been
trained.

76 CHAPTER 4. EXPERIMENTS RESULTS

Due to the lack of acceleration due to the network branch, the training required a
training time of 40 hours due to smaller computations thanks to the use of only pairs
of images instead of triplets. Using a network that uses only the FC 512, the learning
rate = 0.0001 and adamupdate as an optimizer, the training obtained excellent
results that are in line with the Siamese network equipped with only contrastive loss.

Figure 4.10: Train Siamese Network with Contrastive and Classification Loss.

In Figure 4.10 the graph was deliberately stopped at iteration number 2000 for
visual purposes. In this case the network has the ability to learn very quickly despite
the high value of the Classification Loss that is well rooted in the first iterations
and thanks also to the fact that the Contrastive Loss contributes only 50%. Despite
this, with a small number of iterations the network is able to drastically reduce the
value of the loss, proceeding very slowly in subsequent iterations until obtaining a
final value that oscillates between 0.03 and 0.08.

4.5 Results on Test Database

Using the face identification script, the capabilities of previously trained neural
networks were verified following the guidelines of the ISO/IEC 19795 standard
which establishes common measures for the evaluation of algorithms that exploit
biometric data. In particular, to understand the recognition accuracy of networks
developed around specific loss functions, the curve that compares the False Accept
Rate (FAR) and the False Reject Rate (FRR) will be exploited.

4.5. RESULTS ON TEST DATABASE 77

(a) Siamese with Contrastive Loss. (b) Siamese with Contrastive Loss and Classi-
fication Loss.

(c) Siamese with Triplet Loss. (d) Siamese with Triplet Loss and Classifica-
tion Loss.

(e) Siamese with Contrastive Loss trained on
WebfaceSiamese.

(f) Siamese with Triplet Loss trained on Web-
faceSiamese.

Figure 4.11: Report of the trade-off between FAR and FRR, the sc.

The scale of the graphs is not constant due to the different values of the thresh-
olds, the comparison of the best results can be seen in Table 4.1.

78 CHAPTER 4. EXPERIMENTS RESULTS

Loss Type Threshold FRR FAR

Contrastive 0.24 6 3
Contrastive+Classification 4.1 10 3

Triplet 12.2 10 1
Triplet+Classification 5.1 9 3

Contrastive WebfaceSiamese 1.7 7 5
Triplet WebfaceSiamese 3.85 6 3

Table 4.1: Results with selected threshold

The purpose of this graph is to highlight the capabilities of neural networks
through False Match Rate (FMR)2 and False Non-Match Rate (FNMR)3. Consid-
ering that there are no image acquisition failures thanks to the upstream MTCNN,
the number of Failure-To-Acquire Rate (FTA) indicated by the standard is always
considered to be equal to 0 matching the FAR with the FMR and the FRR with
the FNMR.

The choice of the best threshold in the FAR-FRR ratio is based on the trade-off
due to the increase of FRR when the threshold becomes very discriminative and the
increase of FAR when the threshold becomes less discriminative. The choice of the
optimal threshold is made based on the possibility of implementing the "Best of"
technique aimed at reducing the number of errors committed and on the reduction
of False Positives which are dangerous in the application context and therefore
must be minimized at the expense of False Negatives.

The graphs visible in Figures 4.11 represent the trend of FRR and FAR, or False
Negative and False Positive, as the threshold changes in the networks that were
better in training. Based on the distance that each network can produce between
pairs of positive and negative images, the threshold is selected and is verified within
a possible range of values, identifying the right trade-off between FAR and FRR.

Since the context of application requires a discriminative ability in which it is
preferable that the face is not recognized rather than that the face of an "impostor"

2Proportion of impostor attempts that are falsely declared to match a template of another
object.

3Proportion of genuine attempts that are falsely declared not to match a template of the same
object.

4.5. RESULTS ON TEST DATABASE 79

is matched with a database image, in choosing the optimal threshold it is preferable
not to select the one that allows to obtain the lowest number of False Positive and
Negative but the one that produces the least number of False Matches around the
point of incidence of the two curves.

The tests performed exploit a database containing images derived from the
videos produced by a video door phone in use at the company, the images are
appropriately aligned using the generated scripts exploiting the MTCNN. This
database contains 62 images of 8 different identities that will be compared with
100 input images extrapolated from different videos produced by the same video
door phone and aligned with the MTCNN or from another dataset in order to be
used as "impostors". In particular, the best networks deriving from each of the
various types of training with loss functions were selected during the test phase in
order to compare the accuracy of each Siamese to the variation of the loss used, the
accuracies are visible in Table 4.1 where are reported the best trained network of
each database and loss function. In particular in the table are reported the selected
values of FRR and FAR that best fit with the scope of application.

After verifying the accuracy of the best network for each loss function and for
each training dataset, the results obtained by the Siamese with Contrastive Loss
and with Triplet Loss trained on WebfaceSiamese dataset make them the best
networks in the face identification phase as we can see in Table 4.1, both with the
ability to correctly identify 91% of images and with an adequate threshold in order
to decrease as much as possible the number of False Positives that can be further
reduced using the aforementioned technique of the "Best Of".

Chapter 5

Conclusions and future works

5.1 Conclusions

In this work, we addressed one of the most current issues namely Face Recogni-
tion and its implementation process in an embedded system that supports all the
functions of home automation, control and video door entry that CAME provides
to the customer. In particular, the entire process of analysis, design and implemen-
tation of the neural networks to carry out the two tasks of Face Detection and Face
Identification was described.

The project started with an analysis on the Face Recognition pipelines and the
tools necessary for their development, then we focused on the two tasks separately
studying and implementing in detail the neural networks and all the tools and data
necessary for their operation.

Our pipeline starts with a neural network for Face Detection: for this task, we
have chosen the MTCNN architecture that allows not only a quick identification of
a face using three cascade CNNs, but also allows to process the image to align the
face with ones in the database through the help of facial landmarks and bounding
boxes provided by the network. This network is vital for creating the production
database and detecting an appropriate face for the identification phase.

All faces identified and accurately aligned by the Face Detection network are
supplied as input to the Siamese network for Face Identification which uses the
ResNet-18 as a backbone network for feature extraction. The network is trained to
compare the features vectors extracted from the input image to find, if it exists, the
most similar image in the database in order to find the face identity. This ability

81

82 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

comes from the training through the loss functions used: Triplet Loss, Contrastive
Loss and their combination with Classification Loss.

All the choices made in this development process derive from the constraints
imposed such as the privacy law that limits the use of delocalized tools,the low
computing power of the processors of the embedded system and of the machine in
which the training of the neural network was carried out. These constraints led to
the choice of a backbone network for the Siamese with a limited number of layers,
thus limiting the generality that the network can have in feature extraction; the
overall accuracy of the network is also limited by the quality of the images acquired
by the video intercom.

All the limitations that were imposed during the development process led to
the choice of a very small neural network for the most critical phase, i.e. for Face
Identification, and also required a very small dataset compared to the one used in
other approaches. The result of using this small dataset is the reduction of accuracy
performance compared to networks that exploit datasets containing millions of
images for training.

Despite a very small feature extraction network, the small training dataset, and
the comparison database with a limited number of images, the Face Recognition task
is executed with an accuracy of more than 90%. The accuracy of the network grows
as the number of comparison images in the test database increases, with a growth
trend of 0.5% for every 15 additional images representing the same number of people.

With this project, we wanted to demonstrate the possibility of implementing a
Face Recognition pipeline with good accuracy and relatively low resource consump-
tion that can be implemented in an adequate processor such as the Raspberry Pi4.

The results obtained in this development process provide a solid basis for a
possible improvement of neural networks for embedded systems in terms of accuracy
and speed; they also provide a comparison of the accuracy obtained from the
various tested loss functions and a custom-built code that implements Triplet
Loss in MATLAB in an alternative way. Furthermore, the results obtained allow
the company to have a clearer idea about the future directions in terms of new
processors for new products and for the services they will be able to provide in the
future.

5.2. FUTURE WORKS 83

5.2 Future Works

Thanks to the promising results obtained, the design of this neural network will
allow the company to develop new products and new functions to be integrated.
Before being able to proceed with the implementation of the neural network within
a prototype, a preliminary phase of adaptation of the entire ecosystem will be
needed, in particular, the next few months will be dedicated to a total redesign of
the Rest API for the configuration of video intercom and a re-work of the functions
to adapt them to the new processor and new performance.

Once the entire system has been adapted inside the Raspberry Pi4 B, we will
continue with the creation of the first working prototype using their high-end prod-
uct that allows the help of a touch screen and a high-resolution camera. Through
this prototype, it will be possible to carry out real field tests as well as a market
survey in order to understand the real potential of this development and the real
interest from the final customer.

In the prototyping phase, further details that cannot be known a priori will be
analyzed, such as implementation details, assumptions on people’s behavior, etc.
These measures will be used to give greater accuracy and speed to the network that
will be continuously analyzed and, if possible, improved in terms of performance
and precision.

If we proceed with the creation of a new line of products that implement this
"technology", a research and development phase will follow on how to guarantee
the backward compatibility of Face Recognition even with older products that are
based on the old IMX6 processors, backward compatibility that to date can only be
guaranteed through the creation of an external product to be added to the actual
system in order to intercept the video in the transition from video ring bell and
intercom, encode it and give an identity to the possible face of the person in that
video. To date, this backward compatibility is impossible because the inference of
the entire facial recognition pipeline within the IMX6 processor would require an
estimated time of over 10 seconds to obtain the label from a single frame of the video.

If the market response is proactive to the development of this new generation
of products or tools necessary for backward compatibility, new functions will be
designed for integration with all the systems that CAME develops and in particular
with home automation also through external home assistants.

84 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

There are many ideas born around this project, but for the near future the focus
is on prototyping a new product that natively implements the neural network and
verifies the progress of the market survey to understand if the mass production of
this product will be possible.

Acknowledgements

I want to spend a few words to thank all the people who have supported me
during this important journey.

First of all, I would like to thank my supervisor Alberto Pretto for the trust
placed in me and in this work, but above all for having guided, supported, helped
and motivated me in this path, and also for the enthusiasm he transmits to me.

Thanks to Francesco De Marco and Antonio Milici for following me in this
project, in particular for the great opportunity given to me and for the trust placed
in me for this important project. Furthermore I would like to thank the entire
CAME company for the support and for believing in me for a project that could
represent a technological step ahead applicable to a wide range of products, also to
my colleagues who took part in the tests and allowed me to consistently evaluate
the results.

Finally, I would like to express my deepest appreciation to my family who
believed in me since the first moment, allowing me economically and emotionally
to face this journey, for the continuous encouragement and support.

85

Bibliography

[1] Insaf Adjabi, Abdeldjalil Ouahabi, Amir Benzaoui, and Abdelmalik Taleb-
Ahmed. Past, present, and future of face recognition: A review. Electronics,
9(8):1188, 2020.

[2] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. Face recognition
with local binary patterns. In European conference on computer vision, pages
469–481. Springer, 2004.

[3] Waqar Ali, Wenhong Tian, Salah Ud Din, Desire Iradukunda, and Abdul-
lah Aman Khan. Classical and modern face recognition approaches: a complete
review. Multimedia Tools and Applications, 80(3):4825–4880, 2021.

[4] Kai Chen, Taihe Yi, and Qi Lv. Lightqnet: Lightweight deep face quality
assessment for risk-controlled face recognition. IEEE Signal Processing Letters,
28:1878–1882, 2021.

[5] Yixian Cheng and Haiyang Wang. A modified contrastive loss method for face
recognition. Pattern Recognition Letters, 125:785–790, 2019.

[6] Davide Chicco. Siamese neural networks: An overview. Artificial Neural
Networks, pages 73–94, 2021.

[7] Xingping Dong and Jianbing Shen. Triplet loss in siamese network for ob-
ject tracking. In Proceedings of the European conference on computer vision
(ECCV), pages 459–474, 2018.

[8] Oliver Dürr, Yves Pauchard, Diego Browarnik, Rebekka Axthelm, and Martin
Loeser. Deep learning on a raspberry pi for real time face recognition. In
Eurographics (Posters), pages 11–12, 2015.

[9] Mohamad El-Abed, Christophe Charrier, and Christophe Rosenberger. Evalu-
ation of biometric systems. New Trends and Developments in Biometrics, 11
2012.

87

88 BIBLIOGRAPHY

[10] Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object
categories. IEEE transactions on pattern analysis and machine intelligence,
28(4):594–611, 2006.

[11] Mohammad Basman Gh et al. A novel face recognition system based on
jetson nano developer kit. In IOP Conference Series: Materials Science and
Engineering, volume 928, page 032051. IOP Publishing, 2020.

[12] Hosseinali Ghiassirad and Mohammad Teshnehlab. Similarity measurement in
convolutional space. In 2012 6th IEEE International Conference Intelligent
Systems, pages 250–255. IEEE, 2012.

[13] Raúl Gómez. Understanding ranking loss, contrastive loss, margin loss, triplet
loss, hinge loss and all those confusing names. https://gombru.github.io/
2019/04/03/ranking_loss/. Accessed: 2019-04-03.

[14] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages
1735–1742. IEEE, 2006.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[16] Javier Hernandez-Ortega, Javier Galbally, Julian Fierrez, Rudolf Haraksim,
and Laurent Beslay. Faceqnet: Quality assessment for face recognition based
on deep learning. In 2019 International Conference on Biometrics (ICB), pages
1–8. IEEE, 2019.

[17] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller.
Labeled faces in the wild: A database forstudying face recognition in uncon-
strained environments. In Workshop on faces in’Real-Life’Images: detection,
alignment, and recognition, 2008.

[18] Lianfen Huang, Jia Guo, and Zhibin Gao. A face recognition system on
embedded device. J. Comput, 31:176–83, 2020.

[19] Nourman S Irjanto and Nico Surantha. Home security system with face
recognition based on convolutional neural network. International Journal of
Advanced Computer Science and Applications, 11(11), 2020.

https://gombru.github.io/2019/04/03/ranking_loss/
https://gombru.github.io/2019/04/03/ranking_loss/

BIBLIOGRAPHY 89

[20] ISO ISO. Iec 19795-1: Information technology–biometric performance testing
and reporting-part 1: Principles and framework. ISO/IEC, Editor, 1(3):5,
2006.

[21] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop,
volume 2, page 0. Lille, 2015.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, 2017.

[23] Martin Lades, Jan C Vorbruggen, Joachim Buhmann, Jörg Lange, Christoph
Von Der Malsburg, Rolf P Wurtz, and Wolfgang Konen. Distortion invariant
object recognition in the dynamic link architecture. IEEE Transactions on
computers, 42(3):300–311, 1993.

[24] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A
convolutional neural network cascade for face detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5325–5334,
2015.

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV), pages 116–131, 2018.

[26] Bishwas Mandal, Adaeze Okeukwu, and Yihong Theis. Masked face recognition
using resnet-50. arXiv preprint arXiv:2104.08997, 2021.

[27] Yoanna Martindez-Diaz, Luis S Luevano, Heydi Mendez-Vazquez, Miguel
Nicolas-Diaz, Leonardo Chang, and Miguel Gonzalez-Mendoza. Shufflefacenet:
A lightweight face architecture for efficient and highly-accurate face recognition.
In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019.

[28] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. Siamese network features for
image matching. In 2016 23rd international conference on pattern recognition
(ICPR), pages 378–383. IEEE, 2016.

[29] Ville Ojansivu and Janne Heikkilä. Blur insensitive texture classification using
local phase quantization. In International conference on image and signal
processing, pages 236–243. Springer, 2008.

90 BIBLIOGRAPHY

[30] Muhammad Owais, Aireen Amir Jalal, Muhammad Moiz Hassan, and Ammara
Shaikh. Facial recognition based attendance system using cnn and raspberry
pi. In 2020 4th International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT), pages 1–5. IEEE, 2020.

[31] Vishwani Sati, Sergio Márquez Sánchez, Niloufar Shoeibi, Ashish Arora, and
Juan M Corchado. Face detection and recognition, face emotion recogni-
tion through nvidia jetson nano. In International Symposium on Ambient
Intelligence, pages 177–185. Springer, 2020.

[32] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 815–823, 2015.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[34] Lawrence Sirovich and Michael Kirby. Low-dimensional procedure for the
characterization of human faces. Josa a, 4(3):519–524, 1987.

[35] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of
cognitive neuroscience, 3(1):71–86, 1991.

[36] Paul Viola and Michael J Jones. Robust real-time face detection. International
journal of computer vision, 57(2):137–154, 2004.

[37] Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie Chen, Chen Qian, and
Chen Change Loy. The devil of face recognition is in the noise. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 765–780,
2018.

[38] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2495–2504, 2021.

[39] Yi-Qing Wang. An analysis of the viola-jones face detection algorithm. Image
Processing On Line, 4:128–148, 2014.

[40] Laurenz Wiskott, Norbert Krüger, N Kuiger, and Christoph Von Der Malsburg.
Face recognition by elastic bunch graph matching. IEEE Transactions on
pattern analysis and machine intelligence, 19(7):775–779, 1997.

BIBLIOGRAPHY 91

[41] Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang. From facial parts
responses to face detection: A deep learning approach. In Proceedings of the
IEEE international conference on computer vision, pages 3676–3684, 2015.

[42] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation
from scratch. arXiv preprint arXiv:1411.7923, 2014.

[43] Jianming Zhang, Chaoquan Lu, Jin Wang, Xiao-Guang Yue, Se-Jung Lim,
Zafer Al-Makhadmeh, and Amr Tolba. Training convolutional neural networks
with multi-size images and triplet loss for remote sensing scene classification.
Sensors, 20(4):1188, 2020.

[44] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection
and alignment using multitask cascaded convolutional networks. IEEE signal
processing letters, 23(10):1499–1503, 2016.

	1 Introduction
	1.1 CAME S.p.a.

	2 Background
	2.1 Background Notions of Face Recognition
	2.2 Multitask Cascaded Convolutional Network
	2.3 Residual Network
	2.4 Siamese Network
	2.5 Contrastive Loss
	2.6 Triplet Loss

	3 Experimental Setup and Code
	3.1 Constraints
	3.2 Environmental Setup
	3.2.1 Python
	3.2.2 Anaconda
	3.2.3 MATLAB

	3.3 Development
	3.3.1 Analisys
	3.3.2 Dataset
	3.3.3 Face Detection
	3.3.4 Backbone Network
	3.3.5 Face Identification
	3.3.6 Face Recognition

	4 Experiments Results
	4.1 Siamese Network with Triplet Loss
	4.2 Siamese Network with Contrastive Loss
	4.3 Siamese Network with Triplet Loss and Classification Loss
	4.4 Siamese Network with Contrastive Loss and Classification Loss
	4.5 Results on Test Database

	5 Conclusions and future works
	5.1 Conclusions
	5.2 Future Works

	Acknowledgements
	Bibliography

