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Abstract

Residual Current Circuit Breaker (RCCB) is a safety device that will protect human or electri-
cal wiring from electrical fault. One of the most important task in manufacturing the RCCB
is the calibration process. In order to optimize the calibration algorithm, several parameters
need to be adjusted to achieve faster and more efficient calibration process. However, at the
moment adjusting the calibration parameters is a risky task. This is due to the fact that if the
calibration parameters that is adjusted does not bring improvement or even worse makes the
calibration process even slower. It will impact directly on the production line that are manu-
facturing thousands of RCCB devices everyday. Therefore it is a very risky task and we need
to be very careful when adjusting these parameters.

In order to solve this problems, we will create a digital twin application that will simulate
the calibration process of RCCB device. A digital twin is a digital copy of the physical object,
in this case is the RCCB calibration process. With this digital twin application the engineers
can safely calibrate the calibration parameters without any risk in the real production process.
The other benefit is that there will be greater freedom for the engineers to experiment various
calibration parameters, because they can simulate the result first before implementing it in the
real production process.

One of the most important task in the calibration process is to find the demagnetization
voltage that will calibrate the RCCB device into the correct residual current. Currently, this is
achieved by calculating using a static mathematical expression. However the limitations of this
approach is the mathematical formula is fixed unable to act according to the real condition in
the calibration process. In order to overcome this limitations, this project will build a artificial
neural network for predicting the demagnetization that will be used in the calibration process.
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1
Introduction

1.1 Background

Residual Current Circuit Breaker (RCCB) is a safety device designed to break electric circuit
when there is earth fault. It has a critical function to prevent death risk to someone and protect
electrical devices.

One of the most important process in the manufacturing of the RCCB devices is the cal-
ibration process. Before calibration, the RCCB has residual current higher than the desired
operating residual current. Therefore it has to be calibrated until it reaches the desired operat-
ing residual current.

In this digital era, many industries are eager to create digital twin of their production process.
A digital twin is a virtual model designed to accurately reflect a physical object.[1]

The main objective of creating a digital twin is to simulate the process of a certain object
digitally without running the physical object. The benefit of using a digital twin we can make
some adjustment to the digital object and simulate the results without risking the real object.

In this project we will build a digital twin that will simulate the calibration process of a
RCCB (Residual Current Circuit Breaker)
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1.2 Current Situation

The calibration process of RCCB could take longer than usual. Therefore calibration parame-
ters need to be adjusted to reduce the calibration time.

Currently the calibration parameters need to be adjusted directly into the production line.
Therefore there is a risk that if the calibrationparameter is not correctly adjusted, the calibration
result will get even worse. This means it took longer time to calibrate the RCCB devices.

1.3 Research Goals

There are three goals in this project. The first goal is to identify the behaviors of the device
during the calibration process. The second goal is to design and create a digital twin application
that simulate the training process of theRCCB. The third goal is to implement artificial neural
network model to predict the value of demagnetizing voltage (Vx) based on the input residual
current Ix.

1.4 Outline of the Thesis

This document consists of nine chapters. Chapter one is this chapter which is the introduc-
tion. Chapter two is Literature Review which consist of the theoretical aspect of the thesis
project. Chapter three explains about several behaviors of the device during the calibration
process. Chapter four explains about the design and implementation of the digital twin appli-
cation. Chapter five, six, and seven explains several models that are used to simulate the cali-
bration process of the RCCB device. Chapter eight explains artificial neural network model
to predict the demagnetizing voltage (Vx). The last chapter is conclusion which explain the
summary and future development of the project.
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2
Literature Review

2.1 RCCB

A Residual Current Circuit Breaker is a safety measure device in the protection of electrical
circuit. It functions as a current sensing device, which automatically measure and disconnect
the electrical circuit whenever a fault is detected[2].
Function of RCCB:

1. Provide safety and protection against earth fault.

2. Provide protection against leakage current

3. Automatically disconnects the electrical circuit when the current exceeds the rated sen-
sitivity.

Terms related with RCCB according to IEC 62873 [3]:

Earth fault current is a current flowing through the electrical equipment and eventually to
the earth due to insulation fault of the electrical equipment.

Earth leakage current is current that is flowing from the live wire of the installation system
to the earth without flowing through the electrical equipment.
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Circuit breaker is a mechanical switching device, capable of breaking currents under normal
circuit conditions and also carrying for a specified duration and breaking currents under
specified abnormal circuit conditions such as those of shor-circuit.

Residual current device (RCD) is a mechanical switching device or association of device de-
signed to make, carry and break currents under normal service conditions and to cause
the opening of the contacts when the residual current attains a given value under speci-
fied conditions.

Residual current operated circuit breaker without integral overcurrent protection (RCCB)
is a residual current operated circuit breaker designed to perform the functions of pro-
tection against overloads and/or short circuits.

Break time (of an RCD) is a time which elapses between the instant when the residual oper-
ating current is suddenly attained and the instant of are extinction in all poles.

RCCB provides accurate protection of people and electrical equipment against leakage cur-
rent. RCCB detects an imbalance of the electrical flow and trip when the current flowing ex-
ceeds the rated sensitivity. This safety mechanism reduces the risk of death or serious injury. It
also prevents the risk of fire which is normally caused by faulty wiring. RCCB is a safety device
to detect and trip against electrical leakage currents. It ensures protection against electric shock
caused by indirect contacts.

The main purpose of RCCB is to protect people from direct and indirect contacts. Direct
contact happens when a person accidentally in contact with live phase which is under tension.
This is normally due to broken socket, stripped cable, etc. Indirect contact means when a per-
son is in contact with a normally insulated metal mass (e.g. casing of a household appliance)
which comes into contact with a phase due to a fault. In both cases there is current imbalance
between the power supply line and the neutral line. This imbalance is detected by the sensing
devices.

4



Figure 2.1: Direct Contact

In order for electrocution to occur, there is passage of current through the human body
where the circuit constituted by the human body be closed which mean there is a way for the
current to return. This path is usually the earth, which has zero potential, reached by feet rest-
ing on the ground or a hand touching awall or ametal object connected to the ground. Humid
environments and bare feet increase the dangers of direct contact while dry environments and
rubber shoes will reduce the risk.
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Figure 2.2: ABB F200 Residual Current Circuit Breaker

The figure 2.2 shows theRCCBofmodel F200 and its features from the internal ABBdocu-
mentation [2]. Rated current is the desired residual current that will trip the RCCB. Indicator
of contact position shows the status of the RCCB. Green colour indicates that the RCCB is in
off position. Red colour indicates that the RCCB is in on position.

2.2 Operation Principle of RCCB

According to the principle of operation, RCCB can be represented as the following schematic
[2]. Input terminals is connected to the electrical system that will be protected by the RCCB.
Mechanical contact is the switch that is used to turn on or off the RCCB.

6



Figure 2.3: RCCB Schema

2.2.1 Differential Current Sensor

The role of differential current sensor is to measure amount of the residual current that is flow-
ing through the circuit. The sensor consist of a toroidal core made of magnetic material, a pri-
mary winding, and a secondary winding. The primary winding physically consists of several
windings of wire throughout the magnetic core with the same number of turns and winding
directions. When there is no earth leakage, the sum of the current in the conductors is zero.
Therefore, the corresponding contributions to the magnetic flux in the magnetic core cancel
out each other. In case there is earth leakage, therewill be current flowing on themagnetic core,
hence generating magnetic flux and induces a voltage on the secondary winding. The primary
current is the earth leakage differential current where if it exceeds a certain value will trigger the
RCCB to open.

2.2.2 Differential Transformer

The residual current I∆ between the neutral wire and live wire generates a magnetic field. The
variation of magnetic flux in the core induces a voltage in the secondary winding which pro-
duces current I2 that will then flow into the filter circuit.

Figure 2.5 shows the core winding of the differential transformer. The core is made of high
permeability materials and is characterized by a constant cross section. The parameters that

7



characterized the core are internal diameter (Di), external diameter (De), and height (h).

Figure 2.4: Differential Transformer Winding

Figure 2.5: Differential Transformer
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2.2.3 Filter Circuit

Figure 2.6: Filter Circuit

The filter circuit is an electronic board that is located between the differential transformer and
the electromechanical relay. The filter circuit will act as a low-pass filter that prevents high
frequency signal from the external components before entering the electromechanical relay[4].
The diodes D1 and D2 will have a role to protect the device against electric shocks.

2.2.4 Electromechanical Relay

The figure 2.7 shows an electromechanical relay which is part of the RCCB[5]. The main
function of the electromechanical relay is to break the circuit when the residual current ex-
ceeds a predetermined value. The electromechanical relay works when there is residual current
detected by the differential transformer. Then the current from the secondary coil flows into
filter circuit. Finally, the current will then flow into the electromechanical relay. The current
will enter the magnetic coil. The magnetic coil will produce a force that will attract the float-
ing anchor. If the force is larger than the magnetic force of the permanent magnet that attract
the floating anchor on the other side, the release pin will be activated. This pin will force the
RCCB switch to trip.

9



Figure 2.7: Electromechanical Relay

In normal working operation, the vectorial sum of all currents is zero. When there is an
unbalanced condition due to a ground fault, a magnetic flux in the magnetic core is produced
and electromotive force is present in the secondary winding [6].

The magnetic core is specifically fabricated with composition of 50%Ni and 50%Fe alloy
called PERMENORM and it has a complicated asymmetric shape that has been designed to
provide an appropriate magnetic field distribution. The magnetic core is made of two parts
with a small air gap in between. Themain role of the air gap is to provide two different paths to
the magnetic flux. The permanent magnet that is used to produce the DC Flux is a SIMAGx-
tregistered magnet made of AlNiCo 19/11 material [5].

2.3 RCCBCalibration System

The calibration system consists of Voltage Generator, Calibration Coil, RampCurrent Gener-
ator, the RCCB device, Current Measurement, Calibration Algorithm. Figure 2.8 shows the
calibration system of the RCCB at ABB production plant in Santa Palomba.

10



Figure 2.8: RCCB Calibration System

2.4 Machine Learning

Machine learning is a field of inquiry devoted to understanding and building methods that
’learn’, that is, methods that leverage data to improve performance on some set of tasks[7]. It
is a branch of Artificial Intelligence (AI) and computer science that focus on using data and
algorithms to imitate the way that humans learn and gradually improving its accuracy.

Machine learning is a field that devote to build a method that leverage data to improve the
performance of some tasks. Machine learning build a model based on sample data, known as
training data. Then it will use this data tomake predictions or decisionwithout being explicitly

11



programmed to do so.
Modern-day machine learning has two objectives. First is to classify data based on models

which have been developed.[8] Second is tomake predictions for future outcomes based on the
models. For example, a machine learning algorithm for stock trading may inform the trader of
future potential predictions.

In this project we will use machine learning for predictions purpose. We are going to use
machine learning to predict the value of demagnetization voltage (Vx) based on the value of
initial residual current (I0) and residual current (Ix). We are going to train themachine learning
model using the real calibration data from the production line.

2.5 Deep Learning

Deep learning (also known as deep structured learning) is part of a broader family of machine
learning methods based on artificial neural networks with representation learning. Learning
can be supervised, semi-supervised or unsupervised.[9]
The figure 2.9 shows where Deep Learning is part of Machine Learning which is also part

of Artificial Intelligence. Deep Learning is a class of machine learning algorithms that uses
artificial neural network for classification and prediction purpose.

Figure 2.9: Artificial Intelligence
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2.6 RCCBCalibration Process

Each RCCB devices will be calibrated before they are shipped to customer. The RCCB will
be calibrated according to each model and its specification. This section will explain the steps
on how the RCCB is calibrated.

2.6.1 Working Principle of Electromechanical Relay

Figure 2.10 shows themain components of an electromechanical relay. Electromechanical relay
has a role of converting electric force into mechanical force in order to start the opening of the
circuit breaker [6].

In the figure 2.10, the permanent magnet C preloads the magnetic circuit A in order to
maintain the floating anchor B closed by compensating the attractive force of the spring D. In
normal conditions, the floating anchor is attached to the magnetic circuit due to the attractive
foce originated by the magnetic flux of the permanent magnet. During fault conditions, the
coil E is energized. An alternated magnetic flux is superimposed to the DC flux of the magnet.
When themechanic force of the spring exceeds themagnetic force, the anchormoves the release
F and causes the tripping of the circuit breaker [6].

At the beginning before the calibration process started, the permanent magnet has magneti-
zation level higher that the desired magnetization level. The system calibrate the residual cur-
rent device by applying damped alternatingmagnetic field to demagnetize the permanentmag-
net. As a result the magnetic field in the electromechanical relay is reduced. Therefore the
magnetic force that keeps the relay closed is also reduced. Finally, this condition the residual
current that is need to initiate the trip becomes lower. The main objective of the calibration
process is to find a suitable demagnetization or magnetization voltage until we can find the
desired residual current that will trip the residual current device [2].

13



Figure 2.10: Electromechanical Relay

2.6.2 Calibration Algorithm

In the previous section we have seen that in order to calibrate the RCCB we need to find the
correct demagnetization or magnetization voltage. In order to find the right demagnetization
ormagnetization voltage, we need to know the relationship between the voltageVx and residual
current I. According to the ABB documentation, the equation that describe this relationship
is described below [10]

I = I0 −
(
eAV − 1

)
K (2.1)

K is a constant value, where it is determined based on the rated residual operating current.
While the constant valueA is determined according to the combination of the sensing elements
such as the transformer, filter, electromechanical relay, and the calibration stage. I0 is the ini-
tial residual current of the RCCB during the first step of the calibration. This mathematical
expression is derived using data driven approach. By finding the expression that will best fit
the calibration data. When we have defined that constant values and fixed the model, we can
use this model to estimate the voltage Vx that will calibrate the RCCB to the desired tripping
current.
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Figure 2.11: RCCB Calibration Algorithm

Figure 2.11 shows the calibration algorithm of the RCCB [11]. The first step of the calibra-
tio is to measure the initial residual current I0. Then based on the value of this initial residual
current I0, the algorithm will perform magnetization shot if I0 is less than the defined mini-
mum current Imin. If I0 is greater tha Imin demagnetization shot is performed. The value of
demagnetization voltage is computeed using the mathematical expression 2.1. The constant
parameter A and K are calculated according to the past calibration data with similar condi-
tion. Next, after demagnetization shot is performed, we measure again the residual current I.
If the value residual current I is within the predefined minimum and maximum value. Then
the system has found the correct tripping current and therefore the calibration process is com-
pleted. If the value of residual current I is higher than the predefined maximum value Imax,
then the systemwill perform demagnetization shot again. This cycle will continue until the de-
sired residual current is obtained. If the value of residual current I is lower than the predefined
minimum value Imin, the the system will perform magnetization shot to increase the residual
current I. Then the systemwill performdemagnetization shot until the desired residual current
is obtained.
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3
Device Behaviors

In the previous chapter we have seen the calibration process of the RCCB (Residual Current
Circuit Breaker) and the technology that are used. In this chapter we are going to identify
several behaviors of the RCCB device during the calibration process. Identifying the device
behaviours will be useful to design the Digital Twin which will simulate the devices during the
calibration.

Thedevicebehavior thatwe are going to identify is deviceF200with service code405030017303.
We will identify the behavior based on the calibration data that is obtained from the database.

3.1 Observing the Calibration Dataset

The following graph in figure 3.1 shows the relationship between residual current and demag-
netization voltage of several devices with the same service code: 405030017303.

Service Code 405030017303
Machine Key AM3116-1-5
Serial Number 001RMG9S

Duration 458990 ms
Result Good

Table 3.1: Calibration Information of Device 001RMG9S
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Figure 3.1: Calibration Graph of Device 001RMG9S

Infigure 3.1we can see the calibrationprocess of F200devicewith serial number 001RMG9S.
This calibration process consists of 5 cycles. In the first cycle the initial current is usually larger
than the initial current in the next cycle. In the first cycle the initial current is around 55.3 mA,
while the initial current of the second until fifth cycle is around 34 mA.

Service Code 405030017303
Machine Key AM3116-1-1
Serial Number 001RMG5C

Duration 226351 ms
Result Good

Table 3.2: Calibration Information of Device 001RMG5C

18



Figure 3.2: Calibration Graph of Device 001RMG5C

In figure 3.2, we can observe that if we apply low demagnetization voltage around 100 – 200
Volts, the residual current (Ix) will increase instead of decreasing.

Service Code 405030017303
Machine Key AM3116-2-1
Serial Number 001RMG1P

Duration 292459 ms
Result Good

Table 3.3: Calibration Information of Device 001RMG1P

19



Figure 3.3: Calibration Graph of Device 001RMG1P

Service Code 405030017303
Machine Key AM3116-2-6
Serial Number 001RMG6Q

Duration 238836 ms
Result Good

Table 3.4: Calibration Information of Device 001RMG6Q

Figure 3.4: Calibration Graph of Device 001RMG6Q
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During calibrationprocess the algorithmwill performdemagnetizationuntil thedevice reach
the correct residual current. If the calibration overshoots the good range, the algorithm must
perform magnetization. This is done in order to bring the residual current of the device back
to the initial residual current. However, the magnetization process takes longer time and after
magnetization process the algorithm perform calibration slower than before.
In the above figure 3.4, we can observe that after the magnetization process, the calibration

process takes a lot of steps to reach the correct residual current. Therefore, we should aim to
avoid magnetization process.

Service Code 405030017303
Machine Key AM3116-1-4
Serial Number 001RMG60

Duration 236108 ms
Result Good

Table 3.5: Calibration Information of Device 001RMG60

Figure 3.5: Calibration Graph of Device 001RMG60

21



Service Code 405030017303
Machine Key AM3116-1-4
Serial Number 001RMFV7

Duration 113579 ms
Result Good

Table 3.6: Calibration Information of Device 001RMFV

Figure 3.6: Calibration Process of 001RMFV7 and 001RMG36

Theabovefigure 3.6 shows the calibrationdiagramof twodeviceswith serial number001RMFV7
and 001RMG36. Both devices have similar initial current during the first cycle of the calibra-
tion which is around 44 mA. However, the initial currents at the second cycle are different.
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Figure 3.7: Calibration Process of Several Devices

In the above figure 3.7 we can observe that when we only slightly increase the demagnetiza-
tion voltage, the residual current might increase instead of decreasing.

In the figure 3.7 above we can also observe that when residual current is close to the good
range, it can be more challenging to calibrate. As we can see on the diagram above it requires
many steps to complete the calibration even though the first shot is close to the good range.
This is also due to the next demagnetization process may increase the residual current instead
of decreasing it. As a result overall calibration time will increase if the repeated current mea-
surement is unstable.
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Figure 3.8: Devices with similar initial current

The above figure 3.8 shows the calibration process of several devices with the same service
code 405030017303. These devices has similar initial current around 31 mA. Based on this
diagram,we canobserve that for the similar initial current value, the valueofVdemagnetization
may not be the same.

The figure 3.9 below shows the repeated current measurement of several devices with the
same service code 405030017303. Based on this diagramwe can observe that the next repeated
current measurement might increase instead of decreasing.
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Figure 3.9: Devices with repeated current measurement
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Figure 3.10: Calibration process of multiple devices with service code 405030017303

The figure 3.10 above shows the relationship between the residual current and demagneti-
zation voltage of several devices with the same service code: 405030017303.

Based on several diagrams that we have seen above, we can conclude several behaviors of the
device as the followings:

1. After the firstmagnetization, the new initial current ismost likely lower than the original
initial current

2. Applying V demagnetization between 0V – 200V will increase the residual current in-
stead of decreasing it.

3. If the device is not rearmed, the current measurement will be equal to the minimum I
ramp.

4. The algorithm become slow after it encounter magnetization. As a result, the total cali-
bration time will increase.

5. When we only slightly increase the demagnetization voltage, the residual current might
increase instead of decreasing.

26



6. The value of residual current normally will decrease after repeated current measure-
ments. However, there is a percentage of probability that the value of residual current
will increase after repeated current measurements.

3.2 Inaccuracy of CurrentMeasurement

Optimizing The I ramp I ramp is a current generated by the Basetta. The purpose of this cur-
rent is to trip the device (RCCB). I ramp has a starting and ending current. These values are
set by the Quality Control team. For example at the beginning the I ramp will start at 15mA
andwill end at 80mA.At themoment, the time taken from the starting current until it reaches
the ending current is fixed to 5 seconds.

Figure 3.11: Ramp current
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In the future we can dynamically adjust the time required from the starting current until it
reaches the ending current. This is because, at the beginning of the calibration process, we do
not need high accuracy to measure the initial current I0, because the value of I0 is big. There-
fore, we can increase the I ramp quickly. As the calibration process approach the good range
of the I∆, then we can slow down the increment of the I ramp. Therefore, we will get a more
accurate measurement of I∆.
The generated I ramp has frequency of 50Hz, which means it took 20ms to complete one

cycle.

ratio =
Iend − Istart

time
=

80mA− 15mA
5s

13
mA
s

= 0.013
mA
ms

In one cycle

20ms × 0.013
mA
ms

= 0.26mA

The device requires at least three cycles to trip

3× 0.26mA = 0.78mA
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4
Digital TwinModel

4.1 Digital Twin Implementation

The main purpose of the Digital Twin is to simulate the behavior of the RCCB device during
the calibration process. Therefore, we can safely adjust the calibration parameters and predict
the calibration results using the Digital Twin, without directly risking the production process.
If we adjust the calibration parameters directly to the production line, it will be very risky if the
result is not as we expected.

In this section we are going to take a look at the implementation of the Digital Twin Ap-
plication. We will look at the design pattern of the Digital Twin. Then we will look at several
models that we will use for predicting the residual current values.

4.1.1 Digital Twin Design

Before we design the digital twin application, we will look at the calibration process in the real
system. The figure 2.1 below shows the calibration process in the real systems. The first step is
the SCADAwill ask to theABB.algorithmwhat is the action that needs to be carried out. Next
the ABB.algorithm will give the action that should be carried out. The SCADAwill then give
instruction to the Machine based on the action that is given by the ABB.algorithm. These ac-
tions could be rearm, current measurement, demagnetization, and magnetization. Then then
machine will carry this command to the Device. The machine will then give feedback to the
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SCADA based on the command executed on the Device. The SCADA will then return the
feedback to the ABB.algorithm to decide what is the next action. Then the loopwill start again
from the first step until the calibration is completed.

Figure 4.1: Calibration process in the real system

The real system can be represented as several objects in Digital Twin application. The figure
2.2 below shows the calibration process inside Digital Twin application. Basically, the process
is similar with what is happening in the Real System. The difference is in the Digital Twin
application, all the processes are happening inside a software.

The SCADA is represented by a Test Manager object. The Calibration Machine is repre-
sented with Machine Digital Twin object. The real RCCB Device is represented with De-
vice Digital Twin object. The first step is the Test Manager will request the next action to the
ABB.algorithm. The ABB.algorithm will then give the action to the Test Manager. Then the
Test Manager will convey the action to the Machine Digital Twin. Next, the Machine Digital
Twinwill perform the action onto theDeviceDigital Twin. TheDeviceDigital Twinwill then
give the feedback to theMachineDigital Twin and forward it to theTestManager. Finally, The
TestManager will give the feedback to theABB.Algorithm to decide the next action. This loop
process will continue until the target calibration status is achieved.
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Figure 4.2: Calibration process in the digital twin

4.1.2 Calibration Dataset

In the previous section we have define the design pattern of the Digital Twin. In this section
we will look at the dataset which we will use to train a Model for predicting the calibration
behavior.

The dataset that we will use is a calibration data that is extracted from the database with ser-
vice code 405030017303. The table below shows the detail information about the calibration
data. The calibration data was taken on 16 June 2022. There are around 362 pieces of devices.
The average calibration time is around 45 seconds.

Service Code 405030017303
Number of pieces 362 pieces
Average Time 44906 ms

Table 4.1: Calibration Information of Device 001RMG9S
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Figure 4.3: Calibration process of several devices with different serial number

The 4.3 above shows the plot of the calibration data from several devices with different serial
number. We will then use this dataset to create several models for predicting the calibration
behavior.

4.1.3 PredictionModel

In the previous sections we have seen the Digital Twin Implementation and the calibration
dataset. In this section we will see how theModel that will be used to simulate the behavior of
the RCCB device during calibration process.
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Figure 4.4: Model for predicting the residual current

Wewill create aModel for predicting the value of residual current (Ix) based on the value of
demagnetization voltage (Vx). Therefore, the input to the Model will be Vx and the output is
Ix. We will then use the dataset to train the Model.

There are several Model that we can use to predict the value of Ix. The Model that we will
use in this project are Exponential Model, Polynomial Model, MLNET Model, and Neural
NetworkModel. The implementation of these Models will be explained in the next following
chapters.

4.2 Digital Twin ExponentialModel

In the section 4.1 we have seen how the Digital Twin program is design and implemented in
.NET framework using C#. In next following sections we are going to see the model that will
be used to predict the behavior of the RCCB calibration. In this chapter we will use the expo-
nential model to simulate the behavior of the RCCB calibration. The formula that we will use
is as follow.

I = I0 −
(
eAV − 1

)
K
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4.2.1 Finding parameter for the exponential model

Wewill train the model using the calibration dataset that is mentioned in the previous chapter.
We need to find the correct parameter that will best fit the calibration data.

In order to find the parameter for the exponential model, we are going to use MATLAB.
Below is the result of curve fitting using MATLAB.

Figure 4.5: Curve fitting of the exponential model

Result of curve fitting using MATLAB
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There are three parameters that we use a, b, and c. According to the exponential formula,
a corresponds to I0, b corresponds to A, and c correspond to K. Therefore I0 = 34.72, A =
0.003291, K = 0.9352

4.2.2 Evaluation Result of ExponentialModel

Here we run the Digital Twin simulation based on the followings parameter to simulate device
with service code: 405030017303.

Device parameter

• Probability of successful rearm is 98%

• Initial current = 34.72 mA (with 5% variance)

• a avg = 0.003291

• k avg = 0.9352

Ramp parameter

• Number of cycles to trip = 3 cycles

• Period of the ramp wave = 20 ms

• I start = 15 mA

• I end = 80 mA

• I ramp time = 5 s

Algorithm parameter

• I residual = 30 mA

• I buono max = 23.5 mA

• I buono min = 21.5 mA

• Vmagnetization = 950 mA
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The diagram in figure 4.6 below simulates the behavior of the device based on the exponen-
tial model of the digital twin. We can compare the digital twin graph with the graph of real
calibration data in figure 3.3. According to these graphs we can see that the graph of the real
calibration data in figure 3.3, the residual current is increasing at the beginning of the calibra-
tion between 0V to 300V. While the graph of the digital twin simulation on figure 4.6, the
residual current is generally decreasing as the demagnetization voltage increases.

Figure 4.6: Plot of the digital twin result using exponential model
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Figure 4.7: Plot of the real calibration data of service code 405030017303

Below data show the summary of the digital twin simulation. According to this data, we can
see that the average calibration time is around 44,5 seconds.
First Trial

• Buoni:362

• Scarti:0

• Smagnetizza:1207

• Riarma:2980

• MisuraCorrente:2980

• Magnetizza:90

• Tempo di taratura stimato (sec):15.991,0

• Tempo di taratura medio (sec):44,2

Second Trial

• Buoni:362
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• Scarti:0

• Smagnetizza:1213

• Riarma:2964

• MisuraCorrente:2964

• Magnetizza:84

• Tempo di taratura stimato (sec):15.915,0

• Tempo di taratura medio (sec):44,0

Third Trial

• Buoni:362

• Scarti:0

• Smagnetizza:1239

• Riarma:2976

• Magnetizza:101

• Tempo di taratura stimato (sec):16.126,0

• Tempo di taratura medio (sec):44,5

4.3 Digital Twin PolynomialModel

In the previous section we have seen the Exponential Model for predicting the RCCB calibra-
tion. In this section we will see the implementation of Polynomial Model for predicting the
value of residual current Ix. In order to find the parameter for the polynomial model, we are
going to use the real calibration data with the following information.
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Service Code 405030017303
Number of pieces 362 pieces
Average Time 44906 ms

Result Good

Table 4.2: Calibration Information of Device 001RMG9S

Then we performed curve fitting on these data using MATLAB to find the parameters for
the polynomial models. We are going to compare several polynomial models and choose the
suitable model for our Digital Twin application.

4.3.1 PolynomialModel Degree 5

In this section we will use polynomial with degree 5 as a Model to simulate the RCCB calibra-
tion process. Below figure 4.8 is the result of curve fitting usingMATLAB and the calibration
dataset.
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Figure 4.8: Curve Fitting of Polynomial Degree 5

Result of curve fitting using Matlab:
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4.3.2 Polynomial degree 8

In this section we will use Polynomial degree 8 as the Model for predicting the value of the
residual current Ix based on the value of the demagnetization voltage Vx.

Figure 4.9: Curve Fitting of Polynomial Degree 8

The graph of Polynomial 8 in figure 4.9 fits better the dataset compare to the graph of Poly-
nomial 5 in figure 4.8 The Polynomial degree 8 has lower error compare to the Polynomial
degree 5.

Result of curve fitting using Matlab:
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4.3.3 Evaluation Result of Polynomial Degree 8Model

Device Parameter:

• Probability of successful rearm is 96

• Probability that the next repeat current measurement will decrease = 92

• p1 = -1.86e-20

• p2 = 5.58e-17

• p3 = -6.434e-14

• p4 = 3.506e-11

• p5 = -8.554e-09

• p6 = 4.805e-07

• p7 = 5.307e-05

• p8 = 0.0131

• p9 = 32.14

Ramp parameter

• Number of cycles to trip = 3 cycles
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• Period of the ramp wave = 20 ms

• I start = 15 mA

• I end = 80 mA

• I ramp time = 5 s

Algorithm parameter

• I residual = 30 mA

• I buono max = 23.5 mA

• I buono min = 21.5 mA

• Vmagnetization = 950 mA

Below graph in figure 4.10 shows the results of the digital twin simulation using the polyno-
mial 8 model. Based on the graph, we can see that the residual current is increasing between
demagnetization voltage 0V until 200V. This behavior represents the real behavior in the real
calibration data in figure 4.11

Figure 4.10: Plot of the digital twin result using polynomial 8 model
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Figure 4.11: Plot of the calibration data of service code: 405030017303

The data below shows several calibration summary of the digital twin simulation. As we can
see from the summary, the average calibration time is around 45 seconds.
First Trial:

• Buoni:362

• Scarti:0

• Smagnetizza:1351

• Riarma:3042

• MisuraCorrente:3042

• Magnetizza:54

• Tempo di taratura stimato (sec):16.491,0

• Tempo di taratura medio (sec):45,6

Second Trial:

• Buoni:362

44



• Smagnetizza:1269

• Riarma:2797

• MisuraCorrente:2797

• Magnetizza:63

• Tempo di taratura stimato (sec):15.310,0

• Tempo di taratura medio (sec):42,3

Third Trial

• Buoni:362

• Scarti:0

• Smagnetizza:1352

• Riarma:2985

• MisuraCorrente:2985

• Magnetizza:71

• Tempo di taratura stimato (sec):16.351,0

• Tempo di taratura medio (sec):45,2

4.4 Digital TwinML.NETModel

In this sectionwewill useML.NET to create aModel for predicting the behavior of theRCCB
calibration process.

ML.NET is an open source and cross-platform machine learning framework developed by
Microsoft. In this project we will use the Model Builder to build the machine learning model.
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4.4.1 Creating theMLModel

In this sectionwe are going to analyze the performance ofML .NET for predicting the residual
current. Themachine learningmodelwill be trained using real datasetwith below information.

Service Code 405030017303
Number of pieces 362 pieces
Average Time 44906 ms

Table 4.3: Calibration Information of Device 001RMG9S

Below are the steps of using the Model Builder to create the machine learning model.

1. First, we choose value prediction for the scenario, because we are going to predict the
value of the residual current Ix based on the value of demagnetization voltage Vx. There-
for Vx is our training feature and Ix is our training label.

2. Then we choose the local CPU for the environment.
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3. Next, we upload the training dataset in csv format. The demagnetization voltage Vxwill
be the input to the machine learning model. The residual current Ix will be the output
of the machine learning model.
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4. Then, we train the data for 10 seconds. According to the guideline fromMicrosoft, the
training time will be based on how big the data is. Below are the guideline table from
Microsoft documentation.
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Below is the result of training the machine learning model. Based on the result, the best
model is LightGbmRegression.

5. Evaluation After we have trained the model. Next, we can use the model to predict the
value of the residual current based on the value of demagnetization voltage Vx that we
input to the model.

Below we input 200V as a value of V demagnetization. Then we get 34,44 A as a result.
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If we plot the residual current results, we will get below graph.

Figure 4.12: Graph of ML.NET Model after training

There are several behaviors that we can conclude based on the graph.

1. As we can see on the graph, the model produces stepped line graph.
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2. The model will give constant value within a certain range of V demagnetization. For
example, when demagnetization voltage is within 408V – 531Vwe get constant value of
residual current which is 31,65A.

3. After 900V the model assumes that residual current is zero.

Figure 4.13: Sampling the result of ML.NET Model after training

The graph in figure 4.13 above is obtained by plotting the ML.NET model using Device-
Sampling.cs program. As we can see from the graph the result of ML.NETmodel is like a step
function. We also notice that after demagnetization voltage reach 900V, the residual current is
always zero.

ImplementedML.NETModel in Digital Twin Application using 10 seconds training time.
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Figure 4.14: Digital Twin simulation using ML.NET model

The above figure 4.14 shows the simulation results of the Digital Twin using the ML.NET
model. We can compare the graphs with below graph in figure 5.4 which is the calibration data
of the real device.

Figure 4.15: Plot of real calibration data of service code 405030017303
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Service Code 405030017303
Number of pieces 362 pieces
Average Time 44906 ms

Table 4.4: Calibration Information of Device 001RMG9S

Then we run the calibration for several times, and we obtained below results. According
to the data, the MLNET model is able to predict the average calibration time quite accurate
which is around 45 seconds.

First Trial:

• Buoni:362

• Scarti:0

• Smagnetizza:1316

• Riarma:2990

• MisuraCorrente:2990

• Magnetizza:53

• Tempo di taratura stimato (sec):16.173,0

• Tempo di taratura medio (sec):44,7

Second Trial:

• Buoni:361

• Scarti:1

• Smagnetizza:1205

• Riarma:2840

• MisuraCorrente:2840

• Magnetizza:52

• Tempo di taratura stimato (sec):15.235,0
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• Tempo di taratura medio (sec):42,1

Third Trial:

• Buoni:362

• Scarti:0

• Smagnetizza:1159

• Riarma:2869

• MisuraCorrente:2869

• Magnetizza:55

• Tempo di taratura stimato (sec):15.228,0

• Tempo di taratura medio (sec):42,1

Fourth Trial:

• Buoni:362

• Scarti:0

• Smagnetizza:1444

• Riarma:3180

• MisuraCorrente:3180

• Magnetizza:69

• Tempo di taratura stimato (sec):17.397,0

• Tempo di taratura medio (sec):48,1
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5
Neural NetworkModel for Predicting

Demagnetization Voltage

In the previous chapter we have seen the implementation of Digital Twin Application using
several Model such as Exponential, Polynomial, ML.NET, and Neural Network. In this chap-
ter wewill design aNeuralNetworkModel for predicting the value of demagnetization voltage
Vx based on multiple inputs. One of the input is the residual current Ix. The other input will
be based on the model design.

The neural network model will consist of three model. Model 0 will accept 2 input which
are I0 and Ix to predict the value of Vx. Model 1 will accept 4 input which are I0, I1, V1, and
Ix to predict Vx. Model 2 will accept 6 inputs which are I0, I1, V1, I2, V2, and Ix to predict the
value of Vx.

Model 0 will be used at the beginning of the calibration process after the initial residual
current is measured which is the first shot. If after the first shot the residual current is still not
within the good range,Model 1will be used to predict the demagnetization voltage Vx that will
be used in the second shot. Then if after the second shot, the residual current is still not within
the good range, Model 2 will be used to predict the demagnetization voltage Vx that will be
used in the third shot.

In order to train the Model we will use dataset from service code 405030017303. Below is
the detail information about the dataset.

55



Service Code 405030017303
Number of pieces 362 pieces
Average Time 44906 ms

Table 5.1: Calibration Information of Device 001RMG9S

The graph in figure 6.1 below shows the preview of the dataset that we will use to train the
neural network model.

Figure 5.1: Graph of calibration dataset with service code 405030017303

5.1 Model 0

TheModel 0 will accept two inputs which are I0 and Ix. Our goal is to predict the value of Vx
that will be used by the algorithm to find the target residual current of the device.
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Figure 5.2: Design of Model 0

5.1.1 Dataset

Below is the preview of the dataset. I0 and Ix are the input to the model and Vx is the output.
The dataset consists of 165 rows.

The chart below shows the mean value and standard deviation of each data.
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Then we will split the data into training set and test set. First, we will shuffle the data ran-
domly, then we will split the data. The training set will consist of 80% and the test set is 20%.
We will use the training set to train the model. After the training is completed, we will use
the test set to verify the accuracy of the model. Figure 7.3 below shows the distribution of the
dataset after splitting them. There are 132 data that goes into training set and there are 33 data
that goes into test set.

Figure 5.3: Split the dataset into train and test set

5.1.2 Normalization of the data

The next step is to normalize the data before we use them for training the model. The main
purpose of normalization is to ensure that the training process will be stable. We will shift and
scale the inputs into a distribution centered around 0 with standard deviation 1. Below is an
example of the I0 and Ix after being normalized.
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5.1.3 Design ofModel 0

Model 0 will consist of 3 layers as shown in figure 6.4. The first layer is the input layer which
receives two inputs I0 and Ix. The second layer is the hidden layer which consists of two hidden
layers. The first and second hidden layers consist of 64 neurons. The third layer is the output
layer which is the demagnetization voltage Vx.
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5.1.4 Training Process

Before we can use the model for predicting the demagnetization voltage Vx. We need to train
the model using the dataset. Our goal is to minimize the error of the model as small as possible.
Therefore we can increase the accuracy of the model. To calculate the error of the model we
will use a loss function. The loss function that wewill use to train this model isMeanAbsolute
Error.

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |e1|
n

Our goal is to find the lowest MAE. In order to find the lowest MAE we need to optimize
the model multiple times until we found the Lowest MAE. The optimizer that we will use is
Adam. Adam optimization is a stochastic gradient descent method. The learning rate that we
will use in this Adam optimizer is 0.001.

The training will consist of 1000 epochs, whichmeans that themodel will undergo training
cycle for 1000 times. We will use 20% of the training data for validation. Validation is useful to
monitor when the model is overfitting. If the loss is much lower that the validation loss, then
the model is overfitting.

Figure 5.4: Training loss and validation loss of Model 0

After the training process is completed, the next step is to evaluate the model performance.
We will use the test set to evaluate the performance.
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Figure 5.5: Test set for evaluating Model 0

The result of the evaluation is shown below. The average error of the model after we com-
pleted the training is around 23.870

The diagram below shows the accuracy of the model in predicting the value of Vx. It com-
pares predicted Vx against the true Vx. The closer the predicted value to the line, the higher the
accuracy.

Below diagram in figure 5.6 shows the prediction error of Model 0.
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Figure 5.6: Prediction error of Model 0

5.2 Model 1

In the previous section we have seen the implementation of Model 0. In this section we will
look at the implementation of Model 1. This Model 1 will accept four inputs which are I0, I1,
V1, and Ix. Our goal is to predict the value of Vx (demagnetization voltage) that will be used
by the algorithm to find the correct residual current of the device.

Figure 5.7: Design of Model 1
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5.2.1 Dataset

Below is the preview of the dataset. I0, I1, V1, and Ix are the input to the model. Vx is the
output. The dataset consists of 129 rows.

The chart below shows the mean value and standard deviation of each input.

5.2.2 Normalization of the data

The next step is to normalize the data before we use them for training the model. Below is
preview of the data before and after normalization.

63



5.2.3 Design ofModel 1

Model 1 consist of three layers will consist of two hidden layers. The first and second hidden
layer will consist of 64 neurons.

Figure 5.8: Design of Neural Network Model 1

5.2.4 Training Process

The training process of Model 1 is similar with the training process of Model 0. The loss func-
tion that we will use in this model is Mean Absolute Error. The optimizer that we will use is
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Adam with learning rate of 0.001.
The training will consist of 1000 epochs. We will use 20% of the training data for valida-

tion. Below graph in figure 7.11 shows the training loss and validation loss during the training
process from the first epoch until the 1000th epoch.

Figure 5.9: Training loss and validation loss of Model 1

Afterwe have completed the training process, next step is to evaluate themodel performance.
We will use the test set to evaluate the performance.

The diagram in 5.10 below shows the accuracy of themodel in predicting the value of Vx. It
compares predictedVx against the trueVx. The closer the predicted value to the line, the higher
the accuracy.
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Figure 5.10: Accuracy of Model 1

Below diagram in figure 5.11 shows the error distribution of the predictions. As we can see
on the diagram the distribution of the error is mostly around zero.

Figure 5.11: Prediction Error of Model 1
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5.3 Model 2

The Model 2 will accept six inputs which are I0 and Ix. Our goal is to predict the value of Vx
which will be used by the ABB.algorithm to find the target residual current of the device.

Figure 5.12: Design of Model 2

5.3.1 Dataset

Below is the preview of the dataset. There are six inputs to the Model which are I0, I1, V1, I2,
V2, and Ix, which will be the features. The output is Vx which will be the label. There are total
118 rows in the dataset.
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The chart below shows the mean value and standard deviation of each data.

Then we will split the data into training set and test set. The training set will consist of 80%
and the test set is 20%. Therefore, the training set consists of 94 rows of data and the test set
consists of 24 rows of data.

5.3.2 Normalization of the data

The next step is to normalize the data before we use them for training the model. Below is
preview of the data before and after normalization.

5.3.3 Design ofModel 2

Model 2 consists of 3 layers as shown in figure 7.14. The first layer is the input layer which
receives six inputs I0, I1, V1, I2, V2, and Ix. The second layer is the hidden layer which consists
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of two hidden layers. The first and second hidden layers consist of 64 neurons. The third layer
which is the output layer which is the label Vx.

Figure 5.13: Design of Neural Network Model 2
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5.3.4 Training Process

The training process ofModel 2 is similar with the previous training process ofModel 0 and 1.
The loss function that we will use in this model is Mean Absolute Error. The optimizer that
we will use is Adam with learning rate of 0.001.

The training will consist of 1000 epochs. We will use 20% of the training data for validation.
Below graph in figure

Figure 5.14: Model 2 Training and Validation Loss

Afterwe have completed the training process, next step is to evaluate themodel performance.
We will use the test set to evaluate the performance.

The diagram in 5.15 below shows the accuracy of themodel in predicting the value of Vx. It
compares the predicted value of Vx against the true value of Vx. The closer the predicted value
to the line, the higher the accuracy.
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Figure 5.15: Accuracy of Model 2

Below diagram in figure 5.16 shows the error distribution of the predictions. As we can see
on the diagram the distribution error is mostly scattered around zero.

Figure 5.16: Prediction Error of Model 2
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6
Conclusion

In the previous chapter we have seen the result of Model 0, 1, and 2. In the first shot of the
calibration, the algorithm will use Model 0 to predict the demagnetization voltage Vx. Then,
in the second shot of the calibration, the algorithm will use Model 1 to predict the demagne-
tization voltage Vx. Finally in the third shot of the calibration, the algorithm will use Model
2 to predict the demagnetization voltage Vx. After the third shot, if the algorithm still unable
to calibrate the device into the good range of residual current, the algorithmwill continuously
use Model 2 to find the demagnetization voltage Vx.

Below table shows the summary of the performance ofModel 0, 1, and 2 based on the evalu-
ation that we have done in chapter 3. As we can see in the table below the error of each model
continue to decrease as we have more inputs. The error of Model 0 is around 23.87. Then the
error of Model 1 decrease significantly to around 9.73. Finally the error of Model 2 further
decrease to 6.57.
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Figure 6.1: Evaluation Result

In the table above, we can see that the prediction accuracy fromModel 0 to Model 2 is im-
proving steadily.

Therefore, based on the information above, we can conclude that we can use Artificial Neu-
ral Network (ANN) for predicting the demagnetization voltage during calibration. The accu-
racy of the ANNmodel will keep increasing as we provide more input to the ANNmodel.
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Conclusion onDigital Twin for Simulating RCCBCalibration

In the Part 1, we have seen a list of behaviors of the RCCB Devices. Then based on these
behaviors we create a Digital Twin application that could simulate the behavior of the device
during the calibration process. The software design and implementation of the Digital Twin
has been discussed in Part 2.
With the Digital Twin application that is developed in C#, we can apply several models to

simulate the behavior of theRCCB calibration process. In Part 2we have tried 3model for this
simulation that is Exponential Model, Polynomial Model, andML.NETModel. All the mod-
els can predict the average calibration time that is close to the real calibration time. However,
the shape of the calibration graph is different across each model.
Based on the graphical results of eachmodel. We can conclude that the Polynomial model is

the model that best represent the calibration behavior of the real data in terms of visual graph.

With this Digital Twin application, now we can safely optimize the calibration algorithm
and simulate the results without risking the production process. Meanwhile before the Digital
Twin is created, we must adjust the calibration algorithm and implemented it directly in the
production to see the results. Which can be very risky for the production if the adjustment
parameters make the calibration process even slower than before.
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ConclusiononNeuralNetworkModelforCalibratingtheRCCB

Chapter 6 has discussed about the use of neural network model for predicting the value of Vx
that the ABB.algorithm will use to calibrate the RCCB. Based on the results, we can conclude
that we can use these models for predicting the value of Vx. The higher the model that we use
the higher the accuracy.

Figure 6.2: Evaluation Result

Further Development

There are several ideas to further develop the current Digital Twin application.
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The Digital Twin can be further developed by adding more devices with different service
code. Therefore, we can simulate the calibration process of more devices.
Currently theDigitalTwin application that is developed is a console-based application. There-

fore, if we want to simulate different device model, we have to edit directly using Visual Studio.
In the future, we can add user interface within the application. This user interface will enable
the user of the Digital Twin to modify the simulation parameters directly on the application.
Therefore, a user who doesn’t have software development skills can use this Digital Twin Ap-
plication.
The next development that we could add to the current Digital Twin Application is a graph

visualization. Currently the output of the Digital Twin is the value of current and voltage
which in .csv format. Therefore, if we want to visualize the result, we have to plot it manually
using MS Excel. In the future, we can add feature in the Digital Twin application for visual-
izing the graph result of the calibration process simulation. Therefore, we can perform graph
visualization within the Digital Twin application without the need of other software like MS
Excel.
Further Development of the Neural NetworkModel for calibrating the RCCB
TheNeuralNetworkModel thatwe currently trained is for oneRCCBdevice. In the future,

we can add more RCCB device model to the Neural Network Model. Therefore, the model
capable of predicting the Vx for many RCCB devices.
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