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Abstract 

 
Green chemistry is a recent branch of chemistry that refers to the invention, design, and 

application of chemical products and processes to reduce or to eliminate the use and generation 

of hazardous substances. Green Chemistry’s popularity is in continuously increasing because it 

is recognized as a fundamental tool for design and attainment of sustainable development. The 

objective of this thesis is to synthesize different types of disperse materials, such as bimetallic 

structures with high surface-to-volume ratio, to be applied as catalysts in cyclohexane and 1-

phenylethanol oxidation reactions which are of great industrial interest. Moreover, a core-shell 

(CS) structure and a metal-organic framework (MOF) were synthesize and applied as catalysts 

in the mentioned reactions. In addition, biomass derived catalysts supports, deriving from 

coffee wastes, will be applied in the heterogeneous 1-phenylethanol oxidation. 

The general process scheme of the developed research consists in two main phases.  

The first phase involve the synthetic routes applied, based on the Green Chemistry principles, 

to the preparation of the catalysts and their subsequent characterization. The catalytic systems 

prepared were either bi-metallic catalysts, metal organic frameworks or core-shell structures 

(CS). Besides the mechanochemical methods (planetary ball milling), wet impregnation was 

also applied to produce the supported catalyst. The characterization of all the synthesized 

catalysts was performed by SEM-EDS, FTIR-ATR and Elemental analysis. 

In the second phase, all the catalysts have been tested in the oxidation of cyclohexane and 1-

phenylethanol as model reactions, by using ball milling (BM) and microwave irradiation (MW) 

as an alternative reactional method or heating source, respectively. The reactions were operated 

under mild and environmentally acceptable conditions, namely involving solvent free reactions, 

and using K2S2O8, TBHP or even O2 as oxidants.  

 



 

 

 



 

Riassunto 

 
La Chimica Verde è una recente ramo della chimica che fa riferimento all'invenzione, alla 

progettazione e all'applicazione di prodotti e processi chimici per ridurre o eliminare l'uso e la 

generazione di sostanze pericolose. La popolarità di tale materia è in continua crescita perché 

viene sempre più riconosciuta come uno strumento fondamentale per la progettazione e il 

raggiungimento di uno sviluppo sostenibile. A tale proposito, l'obiettivo di questa tesi è quello 

di sintetizzare diversi tipi di materiali (strutture bimetalliche con elevato rapporto superficie-

volume o strutture metallorganiche) aventi micro o nano dimensioni ed applicarli come 

catalizzatori nelle reazioni di ossidazione del cicloesano e del 1-feniletanolo, essendo reazioni 

chimiche molto importanti a livello industriale.  

La tesi è articolata in un’introduzione, tre capitoli, le conclusioni e tre appendici. 

Nel Capitolo 1 vengono descritti i metodi industriali che sono utilizzati attualmente per le 

reazioni di ossidazione del cicloesano e del 1-feniletanolo. Allo stesso tempo, vengono messe 

in luce le applicazioni dei prodotti derivanti da tali reazioni, i quali spaziano dall’uso nella 

produzione dei precursori per le polimerizzazioni di Nylon 6 e Nylon 6,6 ad essere impiegati 

nella preparazione di fragranze nei profumi. Successivamente, viene spiegata la distribuzione 

mondiale di produzione di sostanze chimiche, evidenziando la visione che l’Europa, a partire 

dal XXI secolo, ha intrapreso a tale riguardo, ovvero, quella di promuovere la 

produzione/utilizzo di sostanze chimiche in modo più eco-sostenibilmente possibile. Infine, il 

capitolo termina con una spiegazione delle tecniche green utilizzate in questo elaborato per 

sintetizzare i catalizzatori e come forme alternative di energia durante le reazioni catalizzate, 

collegandole ai 12 principi della Chimica Verde. 

Il Capitolo 2 illustra la preparazione di materiali dispersi in condizioni green attraverso un 

trattamento meccanochimico, sviluppato con il mulino a biglie. Le strutture sintetizzate, 

contengono diversi tipi di ossidi metallici o sali metallici. La scelta dei materiali si basa 

principalmente su due ragioni: la loro riconosciuta attività catalitica e le proprietà specifiche 

che possono essere attivate durante la preparazione meccanochimica (cioè magnetismo o 

cambiamento nello stato di ossidazione). I metalli testati sono: rame (Cu), vanadio (V), ferro 

(Fe) e renio (Re). In secondo luogo, una struttura core-shell viene preparata dalla riduzione dei 

https://it.wikipedia.org/wiki/XXI_secolo


                                                                                                                                                                 

sali metallici secondo un metodo di impregnazione ad umido. Le nanoparticelle core-shell 

(CSNPs) hanno ricevuto maggiore attenzione per le loro proprietà catalitiche e la loro ampia 

gamma di applicazioni. Inoltre, per quanto riguarda l'approccio meccanochimico, si propone un 

metodo alternativo per la sintesi di strutture metallorganiche (MOFs), seguendo la procedura 

descritta da Maria Klimakow et al (1). 

Il Capitolo 3 illustra il lavoro sperimentale riguardante l’ossidazione catalitica del cicloesano 

(cicloalcano) e del 1-feniletanolo (alcool secondario). Gli ossidanti impiegati sono 

perossidisolfato di potassio (K2S2O8), ter-butile idroperossido (soluzione 70% in acqua) o O2. 

Le reazioni sono condotte in condizioni miti ed ecologicamente accettabili, sottoponendole a 

due diverse forme alternative di energia: radiazione a microonde oppure mescolamento 

meccanochimico. Viene studiata l'influenza dei parametri di reazione come il tipo di 

catalizzatori e le quantità, gli additivi e le condizioni operative (temperatura e tempo di 

reazione). L’ultima parte del Capitolo è focalizzata sull’ossidazione del 1-feniletanolo nel 

reattore a microonde, utilizzando come catalizzatori sali metallici supportati da biomassa 

derivante da residui del caffè. Questi catalizzatori sono sintetizzati mediante un metodo di 

impregnazione ad umido o mediante mescolamento meccanochimico. 

Le Appendici contengono le caratterizzazioni spettroscopiche della maggiore parte dei 

catalizzatori sintetizzati (Appendice A), l’elenco dettagliato delle reazioni di ossidazione del 

cicloesano (Appendice B) e l’elenco dettagliato delle reazioni di ossidazione del 1-feniletanolo 

con i catalizzatori metallici supportati da biomassa (Appendice C). 
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Introduction  

In our days, one of the most important challenges that Chemistry and Technology are facing is 

the preparation, characterization, and application of dispersed materials with high surface-to-

volume ratio, since most of the new developments in these fields require an extensive 

knowledge of the behaviour of the materials and their reactivity. Also, factors as engineering 

simplification and cost efficiency must be taken in account during the preparation (2).  

In this view, mechanochemical and similar dry synthetic methods can be pursed since they do 

not require the use of VOC solvents, which can influence the preparation and characterization 

of this new dispersed materials. Furthermore, such methods can lead to micro- or nano-

compounds in one step thus, saving energy, time and money. For this reason, the ball milling 

technique will be used as a fast, simple and eco-friendly method of preparation of dispersed 

catalyst (2-3). At the same time, wet synthetic methods will be tested to produce core-shell 

structures and biomass catalysts. 

Besides the Introduction and Conclusion, the thesis is structured in three Chapters and starts 

with an introductory chapter concerning the industrial methods and applications of the reaction 

of interest and a brief introduction to Green Chemistry principles to highlight the positive 

aspects that can be achieved by using ball milling and microwave irradiation.  

Chapter 2 illustrates the preparation of dispersed materials under nontoxic green conditions that 

are of vital importance to address growing concerns on the overall toxicity of these compounds 

for technological applications. The composites that will be synthesized, contain different types 

of metal oxides or metal salts. The choice of the starting materials is mainly based on two 

reasons: their specific properties that can be activated during the mechanochemical preparation 

(i.e. magnetism, changing in the oxidation state) and for their recognized catalytic activity in 

alkanes and alcohols oxidation.  Independently on the chosen metal oxide or metal salt, the 

metals that are going to be tested are: Copper (Cu), Vanadium (V), Iron (Fe), and Rhenium 

(Re). Secondly, a core-shell structure will be prepared by the reduction of metal salts, according 

to the wet impregnation method. Core-shell nanoparticles (CSNPs) received increased attention 

due to their interesting properties and broad range of applications in catalysis. Regarding the 

mechanochemical approach is proposed as an alternative synthetic green route for metal 

Organic frameworks (MOFs), following the procedure described by Maria Klimakow et al (1). 
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Moreover, the MOF compounds will be supported with other transition metals (core-shell, core 

and titanium isopropoxide) and tested in oxidation reaction. 

In chapter 3, the catalytic activity and selectivity of the synthesized particles will be screened 

for the oxidative functionalization of organic substrates such as cyclohexane (alkane) and 1-

phenylethanol (alcohol). Oxidants will be K2S2O8, TBHP or even O2 and the reactions will 

operate under mild and environmentally acceptable conditions, namely involving green solvent 

such as water or solvents free reactions using microwave and mechanochemistry. The influence 

of reaction parameters such as catalysts type and loadings, additives, and operating conditions 

(temperature and reaction time) will be described and studied. The end of the chapter deals with 

the optimization of the operating conditions of 1-phenylethanol oxidation using metal salts 

supported in biomass as catalysts. These latter catalysts are synthesized by a wet impregnation 

method or by mechanochemical technique.  

Finally, the results will be compared with the aim of finding out the best possible solution in 

terms efficiency and catalytic activity in green conditions.  

 
Figure 1.1. Scheme of the procedure followed in this work.                                                 
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Figure 1.1 shows the general procedure followed in this work. The objective is to propose 

greener routes to carry out cyclohexane and 1-phenylethanol oxidations, which are the model 

reactions in this work due to their importance in the global market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

CHAPTER 1 

From industrial cyclohexane and  

1-phenylethanol oxidation to a green 

chemistry alternative 

 

Chapter 1 deals with an explanation of the importance that acetophenone and 

cyclohexanol/cyclohexanone have from an industrial point of view and the industrial methods 

that are commonly used to produce them. Finally, a brief explanation of Green Chemistry 

principles is presented, mainly focusing on green approaches that are applied in this work such 

as the ball milling and the microwave irradiation as synthetic route and heating source, 

respectively. 

 

1.1 Cyclohexanol and cyclohexanone production and applications 

In the past years, cyclohexanol and cyclohexanone have attracted the attention of numerous 

industries, as well as researches, in order to improve its oxidation process and to investigate 

new possible routes to produce them. The reason why these compounds are important is linked 

to their various applications, in particular in the production of plastics. The main plastics that 

are produced by these compounds are Nylon 6 which is made starting from caprolactam while 

Nylon 6,6 requires adipic acid and hexamethylenediamine. World adipic acid production is 

around 2 million tons/year and the 93% of this capacity comes from the oxidation of cyclohexane. 

More precisely, Figure 1.1 presents worldwide consumption of cyclohexane and this figure states 

the importance of cyclohexanone and cyclohexanol (4).
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Figure 1.1. Chart of cyclohexane world use (4). 

 

In this view cyclohexanone and cyclohexanol mixture, known as KA oil, are mainly used as 

precursors for the production of adipic acid and caprolactam, respectively. More precisely, most 

cyclohexanol and cyclohexanone (over 95%) is consumed captively on site for the production 

of adipic acid and caprolactam, so only a small amount (4%) enters the world’s trade markets 

which is used as solvents for paints and dyes, in pesticides, and as an intermediate for 

pharmaceuticals, films, soaps, and coatings. Indeed, cyclohexanone is an excellent solvent for 

DDT and organic phosphorous pesticides and insecticides. Cyclohexanone is also used for the 

synthesis of cycloamines, pharmaceuticals, rubber chemicals, dyes, plasticizers, herbicides, and 

plant growth regulators, among others. Instead, cyclohexanol undergoes all expected normal 

reactions for a secondary alcohol. By oxidation it gives cyclohexanone, which in turn is 

converted into the corresponding oxime, intermediate in caprolactam production. By 

esterification, it will be transferred into dicyclohexyladipate and dicyclohexylphthalate, two 

plasticizers and finally, by heating in the presence of acidic catalysts, cyclohexanol undergoes 

dehydration and is converted to cyclohexene.  

 

1.1.1 Cyclohexane oxidation to KA oil 

The industrial cyclohexane oxidation usually occurs in liquid phase reactors which are placed 

in series, with temperatures that range between 140°C and 180°C and pressure between 0.8 and 

2 MPa. Since the oxidation occurs in the liquid phase, the residence time can vary until one 

hour due the mass transfer of oxygen that has to be solubilized in the organic phase. In our days, 

the most applied catalysts are cobalt naphthenates which are soluble in the reaction mixture.

Percentages of cyclohexane use

Caprolactam 35% Adipic acid 58% Other 7%
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 Nevertheless, there are other methods that employ boric acid or vanadium-, molybdenum- and 

chromium-based catalysts. 

In Figure 1.2, the DuPont process scheme is shown. The first reactor is fed with recycled 

cyclohexane together with some fresh one and air while the following reactors receive the 

output of the first reactor and fresh air. In the second step, the product exits from the last reactor 

and is washed with water, creating a biphasic system and left in a decantation vessel. The aim 

is to remove the aqueous phase in this way the water produced during the reaction is separated 

from the organic phase. Subsequently, the solution is washed with a caustic solution in order to 

remove the acid by-products and to decompose the unreacted hydroperoxides (hydroperoxide 

cyclohexyl). Cyclohexane is recovered from the top of this column and recycled to the first 

reactor. Instead, the bottom product feeds another column, from which the KA oil exits on the 

top (5). 

 

Figure 1.2. DuPont process scheme for cyclohexane oxidation to KA oil (5). 
 
 
The reaction, as all oxidation reactions, is exothermic, with an enthalpy of -70 Kcal/mol, and it 

is composed by two steps: first, the formation of an intermediate, the cyclohexyl hydroperoxide 

(2.1), then, the KA oil formation, with other by-products (carboxylic acids, esters, aldehydes, 

oxidized compounds). The catalyst is responsible for the peroxide decomposition (2.2).  
 

            𝐶6𝐻12 + 𝑂2 → 𝐶6𝐻11𝑂𝑂𝐻                                                                                              (1.1)  
 

          3𝐶6𝐻11𝑂𝑂𝐻 → 2𝐶6𝐻11𝑂𝐻 + 𝐶6𝐻10𝑂 + 𝐻2𝑂 + 𝑂2                                                        (1.2)   
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1.2 Acetophenone production and applications 

Acetophenone (also known as phenyl methyl ketone, acetlylbenzene and hypnone) is the 

simplest form of the ketones containing both an aromatic and aliphatic group. Acetophenone is 

present in the heavy oil fraction of coal tar boiling at 180°C and it is also found in nature. The 

worldwide production of acetophenone has been increasing in the last years. America and China 

are the world top suppliers of acetophenone while Italy is one of the European top suppliers. 

Regarding Europe, the countries that import major quantitates of acetophenone are Belgium (3 

thousand tons/year), Germany (1.7 thousand tons/year) and the Netherlands (759 tons/year), 

stating the importance of acetophenone in the market. In Figure 1.3 the total value of imports 

shows that America and China are the countries that import the highest amounts of 

acetophenone.  

 

 
Figure 1.3. Chart of total percentage of world imports. 

 

The major use of acetophenone is as a catalyst for the polymerization of olefins; in organic 

synthesis, especially as a photosensitizer and as a specialty solvent for plastics and resins.  It is 

also approved as a synthetic flavouring substance and adjuvant in food. It is used as a flavouring 

agent in non-alcoholic beverages, ice cream, candy, baked goods, gelatines, puddings, tobacco, 

and chewing gum. It is used to impart an orange-blossom fragrance in soaps, detergents, creams, 

lotions, and perfumes. Moreover, acetophenone market is set to witness notable gains from 

pharmaceutical industry because of the rising demand for hypnotic and anticonvulsant.

Total percentage of world imports 
(USD) 

China 80.6% United States 10.5% Italy 3.3%

Germany 2.5% France 1.8% Others 1.3%
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Since the first synthesis of acetophenone that was carried out in 1857, a number of alternative 

routes for its synthesis have been developed. However, because of thigh cost, low yield and 

other factors, only a few of these syntheses have attained commercial status (6). Among the 

most known reactions are: 

• Catalytic dehydrogenation of ethylbenzene to styrene (acetophenone found as a by-

product) 

• Benzene and acetyl chloride in presence of aluminium chloride 

• Benzene and acetic anhydride in the presence of aluminium chloride 

• Benzoyl chloride and dimethyl zinc 

As a new development, acetophenone may be made available as a by-product from the phenol 

to cumene process. 

 

1.3 Chemical Industry in our days 

Since the 1980s, the global chemical industry has grown by 7% annually, reaching €2.4 trillion 

in 2010. Starting from the 1990s the growth has been driven by Asia, which now owns almost 

half of the global chemical sales (7). Meanwhile, in Europe the growth is expected to be less 

than 1% causing by 2030 a 30% loss of workforce in this sector, as Figure 1.4 shows.  

 

 
Figure 1.4. Sales in € billion; 2030 is calculated at 2010 prices and exchange rates (7).  

 

The competitive advantage of the European chemicals industry appears to decline, as the US 

and Asia develop low-cost production for chemicals. In addition, stringent regulations in the 

European chemicals industry, heavy green taxes and slow take up of alternate feedstock
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 technology (shale, etc.) contribute to the slow growth of the industry. Indeed, the regulatory 

cost in Europe has doubled during 2004-2014 as well as labour cost per employee that is 

increased during 2002-2014, as it is shown in Figure 1.5. Furthermore, the emission and 

industrial process legislation costs index quadrupled between 2004 and 2014. Additionally, 

rigid labour laws in the European manufacturing industry make layoffs difficult for companies 

experiencing an economic down cycle, forcing them to absorb the cost burden.  This burden is 

worsened for the major European producers (Germany, the Netherlands and Italy) that have a 

high cost of laying off tenured employees (8).  
 

 
Figure 1.5. Regulatory costs index in European chemicals industry (8). 

 

Even tough strict regulations are placed in the European continent, investments in chemical 

industry have not been weighted down. What paves the way to future chemicals, which facilitate 

safety of employees and consumers, is the sustainable view of the industry. Sustainable 

chemistry has already reduced greenhouse gas emissions by approximately 60% in the 20 years. 

Sustainable chemicals and processes are the way for chemicals tomorrow, and European 

chemicals have taken that direction such as alternative feedstock (bio and renewable feedstocks, 

energy sources (shale gas, solar thermal and wind energy), intelligent materials (nano materials 

and functional textiles) and improved energy storage (fuel cells).  

These green alternatives, together with other eco-friendly approaches, are part of a new branch 

of chemistry, known as Green Chemistry which provides a unique approach of innovative 

research on the development of alternative sustainable technologies.



Chapter 1 – From industrial cyclohexane and 1-phenylethanol oxidation to a green chemistry alternative        11 

 In this view Green Chemistry is becoming every year a more known and respected discipline 

because it is recognized as a fundamental tool for design and attainment of sustainable 

development. With multi-disciplinary scientific know-how, such a field produces benefits in all 

areas concerning sustainable development: environment, economy and society. The term 

‘’Green Chemistry’’ has been validated in the beginning of the 21st century by the IUPAC 

Working Party on Synthetic Pathways and Processes in Green Chemistry that agreed to adopt 

the following definition: “The invention, design, and application of chemical products and 

processes to reduce or to eliminate the use and generation of hazardous substances.” 
 

 

1.4 Green Chemistry Principles 

Every year more severe regulations are placed on chemical industries due to the long-term 

negative effects of the processes used in factories and laboratories, promoting pollution which 

is threatening the survival of fauna and flora and subsequently of human health (where cancer 

and diseases are becoming every day more common). This awareness inspired scientist, by the 

mid-20th century, to explore eco-friendly methods to carry out reactions and improving the 

quality of life in general.  

These environmental issues are now addressed by a new branch of chemistry known as Green 

chemistry. Green chemistry is a vast and multifield area of chemistry and chemical engineering 

focused on the designing of products and processes that minimize the use and generation of 

hazardous substances. In the 1990s, Paul Anastas and John Warner postulated the 12 principles 

of Green chemistry (9), still in use today, that rely on the minimization of raw materials and 

secondary products waste, use of safe and environmental benign solvents and design of energy 

efficient processes. The principles are reported in Table 1.1 together with a brief description of 

each of them.
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Table 1.1. Green Chemistry principles by Paul Anastas and John Warner (9). 

N° Principles Description of the Principles 

1 Prevention 
It concerns the prevention of waste generation. It is better 
to avoid generating waste than to treat it after its 
generation. 

2 Atom Economy 
The final product of a reaction should be planned in order 
to incorporate as much of the reagents used during the 
process to minimize secondary products. 

3 
Safer chemical 

synthesis 

The final product should be achieved by a chemical 
synthesis that avoids reagents or by-products harmful for 
human life. 

4 
Safer chemical 

design 

Attention should be given to the toxicity of the designed 
chemicals. They should obviously fulfil their functions, 
but should also present the lowest possible toxicity. 

5 
Use of safer 

solvents 
Avoid the use of solvent or other reagents. If not possible 
then innocuous substances are demanded. 

6 
Design of energy 

efficiency 

Try to conduce the reaction at standard temperature and 
pressure. If not possible optimize the energy 
requirement. 

7 
Use of renewable 

feedstocks 

Whenever it is economically and technically feasible, 
renewable raw materials should be used instead of non-
renewable. 

8 
Reduce 

derivatives 
Unnecessary derivatization steps require the use of 
reagents and so waste is produce. 

9 Catalysis 
Use of catalysts is highly recommended if it allows to 
carry out reactions in a more selective way and at lower 
operating conditions. 

10 
Design for 
degradation 

Chemicals should be designed so that at the end of their 
function they decompose into harmless degradation 
products and do not persist in the environment. 

11 

Real-time analysis 
for pollution 
prevention 

Analytical methods should be analysed in rea-time thus 
avoiding the creation of substances that may pollute. 

12 

Inherently safer 
chemistry for 

accident 
prevention 

Substances and the form of a substance used in a chemical 
process should be chosen to minimize the potential for 
chemical accidents, including releases, explosions, and fires. 
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These principles propose eco-friendly actions to minimize the environmental and human 

hazards in industrial activities. Moreover, in Table 1.1 it is stated that the main concept of 

sustainable chemistry is to promote the use of chemical skills in order to reduce or eventually 

eliminate the use of hazardous substances during the planning, manufacturing and application 

of chemicals in order to minimize threats to the health of operators and the environment (10). In 

this view, the 12 principles are clearly linked to each other. Also, it demonstrates that the 

atomic, catalytic and energy economies occupy prominent places due to the fact that by 

optimizing them, most of the green principles are, at least in part, achieved. 

Although major efforts have been done in the last 20 years, there is still several fields in 

chemistry that need continuous ameliorations, in order to improve the life quality without 

sacrificing the environment and putting at risk the resources available for future generations.   

 

1.4.1 Ball milling as an alternative energy system  

Green chemistry deals with several principles such as minimize raw materials and secondary 

products waste, use of safe and environmental benign solvents, design of energy efficient 

processes and use of renewable materials feedstocks. 

The thrust for finding alternative energy sources for enhanced chemical transformations under 

mild reaction conditions led to the discovery during the years of the following alternative energy 

systems: 

 

• Light induced-photochemistry 

• Microwave-assisted irradiation 

• Sonochemistry—ultrasonic irradiation 

• Mechanochemical mixing 

 

One of the possible ways to promote chemical reactions is by applying mechanochemical 

energy, as in this case. The most obvious advantage is that reactions can be performed under 

solvent-free conditions indeed, many catalysts and reagents can be very sensitive towards water 

or other types of solvents and reactions that require hazardous solvents could be made safer by 

using solvent-free conditions, in line with Green Chemistry principles. 

By applying the ball milling technique, the crystalline structure order is braked several times
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during the grinding treatment, causing the production of new surfaces and cracks. Indeed, the 

total area available for the oxidation increases and this enhances conversion. Moreover, at the 

points where nanoparticles collide, an increase in temperature appears, forming hot dots where 

molecules may rich higher energy states leading to bond breakage (11). These random processes 

occur in without thermal equilibrium between the phases and in a period between micro – and 

nanoseconds. This range time is defined as plasma phase and it is followed by a post plasma 

phase that lasts the more or less as the previous phase, in which relaxation processes dissipate 

the accumulated energy following the Maxwell-Boltzmann distribution. These high energy 

release, are responsible of the products formed during ball milling treatment. Nevertheless, the 

energy accumulation may lead to slow down rate of reactions and therefore chemical 

transformations. Hence, ball milling reactions can significantly differ from those performed by 

microwave reactor (12). 

 

1.4.2 Microwave-assisted irradiation as an alternative energy system 

The application of a second type of alternative energy system such as microwave is one of the 

ways, according the Green chemistry principles, to perform chemical transformations under 

mild reaction conditions. In this view, reactions are performed in solvent-free ambient.  

The combination of solvent-free reaction conditions and microwave irradiation (wavelengths 

of 1 mm to 1 m) may lead to reducing reactions time and enhance conversions as well as yields. 

The origins of the microwave effects results from a material-wave interaction leading to thermal 

effects and specific effects. The first effects are related to dipolar polarization as a consequence 

of dipole-dipole interactions between polar molecules and the electromagnetic field. This 

interaction will induce energy dissipation as heat due to friction and agitation between 

molecules. Therefore, the dissipation of heat energy, from the core to the outside, brings a more 

homogeneous distribution of heat in the sample (13). 

In the same frequency range, the charge space polarization can intervene and may be of extreme 

importance in chemical reactions because it concerns solid materials which contain free 

conductive electrons, as catalysts. This induces a second thermal effect, known as hot spots, 

that is the creation of localized microscopic high temperatures spots. 

However, the utilization of microwave is not always advantageous due to its complicated 

relation to the composition mixture, reaction mechanism, reactions rate and other factors. 

Regarding the reaction rate connection with the microwave effects, the relationship is rather
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 complicated since thermal and specific effects have an active part in rate of reactions values. 

For instance, the velocity rate constant (k) is determined by the Arrhenius Equation: 
 

        k = Ae
−𝐸𝑎
RT                                                                                                                                         (1.3) 

 

First of all, the pre-exponential factor (A) which is representative of the probability of the 

molecular impacts can be effectively influenced by the orientation of the polar molecules 

involved in the reaction, Ea (J·mol-1) is the activation energy required for the reaction, R is the 

universal gas constant (J·mol-1·K-1) and T (K) the temperature. At the same time, the activation 

energy term can also be effectively influenced because of the entropy contribution due to 

dipolar polarization. Temperature can change during the experiment undergoing hot spots that 

could increase it in localized areas.  

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 



 

 

CHAPTER 2 

 Synthesis details 

The main objective of Chapter 2 is to illustrate the preparation procedure of composites by ball 

milling, using greener evolutions. Two different types of ball billing equipment, which are 

described in this chapter, are used to produce dispersed materials. Before the description of the 

experimental synthesis, a brief explanation of different methods that are used to synthesize core-

shell composites is added. The synthetized catalyst will be then characterized by performing 

conventional techniques such as FTIR, elemental analysis, SEM-EDS and the magnetic 

properties were determined using a Gouy balance.  

 

 
Figure 2.1. Synthesis scheme that is followed in this work. 
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In Figure 2.1 the experimental synthesis carried out in this work are shown. The image remarks 

that not all compounds have been fully characterized with FTIR, elemental analysis, SEM-EDS. 

 

2.1 The ball milling unit PM 100 

During the milling treatment, the commercial salts or oxides are mixed mechanically in a PM 

100, Retsch GmbH, planetary ball mill reactor which is shown in Figure 2.2.  

 

 
Figure 2.2. PM 100 by Retsch GmbH website. 

 

The grinding jar is fixed eccentrically on the sun wheel of the planetary ball mill and the 

grinding jars direction is exactly opposite to the one of the sun wheel, as Figure 2.3 shows. 

Furthermore, the number of grinding balls can be chosen depending on the purpose of the 

experiment thus changing the total energy in the system, since they are made to rotate within 

the jars and their movements are linked to Coriolis forces. Indeed, the balls are subjected to 

different speed with respect to the grinding jar causing the release of high dynamic energies 

produced by interactions between impact and fractional forces.



Chapter 2 - Synthesis details                                                                                                                                   19 
 

 

 
Figure 2.3. PM 100 by Retsch GmbH website. 

 

The interplay between these forces produces the high and very effective degree of size reduction 

of the planetary ball mill. Since it is a planetary mill with a single grinding station a 

counterweight for balancing purposes is need. In the Ball Mill PM 100 this counterweight can 

be adjusted on an inclined guide rail. In this way, the different heights of the grinding jars can 

be compensated in order to avoid disturbing oscillations of the machine. 

 

2.1.1 The ball milling unit Emax 2000 

During the milling treatment, the commercial salts or oxides are mixed mechanically in an 

Emax 2000, Retsch GmbH, ball mill equipment (Figure 2.4).  

 

 
Figure 2.4. Emax 2000 by Retsch GmbH website.
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Thanks to the high energy input, the oval shape of the jars and their movement, the Emax allows 

a novel size distribution of the particles reducing their size. Indeed, the interplay of jar geometry 

and movement causes strong friction between grinding balls, sample material and jar walls as 

well as a rapid acceleration which lets the balls impact with great force on the sample at the 

rounded ends of the jars. This significantly improves the mixing of the particles resulting in 

smaller grind sizes and a narrower particle size distribution. 

Nanogrinding is favoured thanks to the high rotational speed that the machine can reach (2000 

RPM) and the cooling system, integrated in the machine, making the control of temperature 

possible and therefore improving of the reaction parameters.  

 

2.2 Core-shell synthesis for oxidation purposes 

Core-shell nanoparticles are composite nanostructures that are made of an internal core coated 

with a shell and can be composed of different particles. Both the core and the shell can be made 

of inorganic (metal oxides or silica) or organic materials. Core-shell nanoparticles (CSNs) 

received increasing attention due to their interesting properties and broad range of applications 

in catalysis, biology, materials chemistry and sensors. By rationally tuning the core as well as 

the shell of such materials, a range of core-shell nanoparticles can be produced and can play 

important roles in various catalytic processes and offer sustainable solutions to current energy 

problems (13). 

Typical preparation techniques of metallic core-shell structures are: microwave synthesis, 

micelle-controlled growth, spray pyrolysis, reduction of metal salts, Stober method, sol-gel 

method and solvothermal precipitation. Due to nanoparticles properties (metallic properties and 

the high surface area-to-volume ratios), there are a countless number of articles that employ 

classical methods and modifications of them in order to synthesize this type of composites.  

 

2.2.1 Reduction of metal salts 
There are two types of classical reduction processes known as one-step or two-step processes 

that require a suitable reducing agent. The reduction mechanism involves electrons transfer 

process by means of a reduction reaction and a complementary oxidation one. In the one-step 

or simultaneous reduction process, nanoparticles are simultaneously reduced together with the 

precursor. In this case, it is not possible to control the shell growth and it is suitable for core-

shell structures based on zirconium, silver or titanium. Meanwhile, the two-step or successive 

reduction process, the core is prepared at first and then the shell is coated onto the core through
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successive reduction using a suitable agent for both steps. Dung Chinh Trinh et al (2015) 

propose a one-pot method to create Cu-Ag core-shells using Polyvinyl pyrrolidone (PVP) as 

capping agent, and ascorbic acid (C6H8O6) and sodium borohydride (NaBH4) as reducing 

agents. The article describes how it is possible to optimize the molar ratio between Cu and Ag 

in order to obtain stable composites and more important it suggests a promising strategy to 

improve Cu oxidation resistance since several strategies have been already but none of them 

seems to have solved this issue. 

Another interesting publication that illustrates an alternative and greener method to synthesize 

CSNPs was published in 2014 by Zhenyang Wang (14). The technique described by the author 

employs an irreversible solid-gas reaction cycle that promotes the metal salt reduction and 

oxidation in a one-pot mechanism. In this view, the process does not require specific coatings 

but the use of a gas-solid reaction therefore avoiding issues regarding the treatment of waste 

water solutions that is instead used in the conventional techniques (cost reduction). By applying 

the briefly described method, the author compares Al2O3-Fe2O3 core-shell and TiO2- Fe2O3 

powder which are subjected to the same cyclic reactions (reduction with H2 and oxidation with 

O2). In the following image, taken from the article, the cyclic process is represented in which 

50 cycles of reduction and oxidation are repeated at 900°C. 

 
Figure 2.5. Synthesis procedure of an Al2O3-Fe2O3 or TiO2- Fe2O3 catalyst (14). 
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The processed mixtures were analysed by SEM and EDX and in the case of the titanium oxide 

no core-shell structure was formed by mixing TiO2 and Fe2O3, where O2- becomes the main 

oxidation specie in the cycles, which causes sintering (15).  

 

2.2.2 Solvothermal method 

In the case of solvothermal to synthesis of CSNPs, an article published in 2011 by Fei Mi et al 

that describes a novel core-shell structure, which is then used in the 1-phenylethanol oxidation 

to acetophenone (16). The authors report a facile method to support gold nanoparticles on the 

MgAl-LDH surface of Fe3O4-MgAl-LDH core-shell composite whereas, the previous articles 

employed synthesis routes that needed multi-step and sophisticated procedures (16,17). The 

procedure, shown in Figure 2.6, is mainly divided in two steps which involve the deposition of 

a carbonate–MgAl–LDH layer on top of the Fe3O4 negatively charged spheres that are 

previously synthesized using a surfactant-free solvothermal method. The layer that coats the 

magnetic nanoparticles is obtained via electrostatic attraction followed by nucleation and 

crystal growth under addition of salts and alkaline solutions (16). The second main step is the 

addition of gold nanoparticles in the shell structure by a deposition-precipitation method. 

 

 
Figure 2.6. Synthetic procedure of an Fe3O4@ MgAl-LDH@Au catalyst (16). 

 

Finally, oxidation results demonstrate that the Au nanoparticles supported on the shell layer 

enhances the conversion (99%) of the substrate under O2 atmosphere without additives. In 

addition, the magnetic properties of the catalyst allow a simple separation and then recycling 

(5 cycles are reported) without decreasing the yield.  

 

2.2.3 Stober method 
The Stober method (1968) is a chemical process used to prepare silica particles of controllable 

and uniform size and remains to our days the most widely used wet chemistry synthetic 
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approach for the production silica particles. There are two types of Stober classical processes 

known as one-step or two-step processes. In the classical one-step process, silica precursor 

tetraethyl orthosilicate (TEOS) is hydrolysed in alcohol (typically methanol or ethanol) in the 

presence of ammonia as a catalyst and condensation occurs in the same vessel. On the other 

hand, hydrolysis is completed in acid solution (pH 1-4) before the condensation reaction is 

initiated by the addition of sodium fluoride. The two-step procedure includes the addition of a 

anionic surfactant template thanks to which the diameter and shape of the product particles as 

well as the pore size are determined solely by the reaction kinetics. In this view, a modified 

Stober method is applied in Ali Maleki and Tooraj Kari article (2107), as a synthetization 

method to create a core-shell super magnetic catalyst in this form: Fe3O4@SiO2@mTiO2–

HN(CH2CH2NH2)2/Pd.  

Selective oxidation of alcohols is known to still be a challenge in organic chemistry due to the 

lack of efficient methods that operate in green conditions. Different articles have been recently 

published regarding alcohols catalytic oxidation by means of core-shell composites (18). 

Palladium-based nanomaterials are known to be, in presence of an oxidant, efficient catalysts 

in terms of selectivity for the oxidation of alcohols to their corresponding carbonyl compounds 

(19).  
 

 
Figure 2.7. Synthetic procedure of Fe3O4@SiO2@mTiO2–HN(CH2CH2NH2)2/Pd catalyst (19). 

 

In Figure 2.7, synthetic steps are shown in the preparation of a novel nanocatalyst containing 

Fe3O4 as a core, coated by a thin layer of SiO2, a mesoporous TiO2 shell, functionalized with 

diethylenetriamine substituents and palladium nanoparticles dispersed on the surface and 

coordinated to organic groups.

https://en.wikipedia.org/wiki/Precursor_(chemistry)
https://en.wikipedia.org/wiki/Tetraethyl_orthosilicate
https://en.wikipedia.org/wiki/Hydrolysis
https://en.wikipedia.org/wiki/Methanol
https://en.wikipedia.org/wiki/Ethanol
https://en.wikipedia.org/wiki/Ammonia
https://en.wikipedia.org/wiki/Catalyst
https://en.wikipedia.org/wiki/Sodium_fluoride
https://en.wikipedia.org/wiki/Nonionic_surfactant
https://en.wikipedia.org/wiki/Porosity
https://en.wikipedia.org/wiki/Reaction_kinetics
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Figure 2.8. Alcohols oxidation results (19). 

 

In Figure 2.8 the results of different alcohols oxidation in a quartz vessel and stirred under O2 

flow (1 atm, purity >99%) at 80 °C under UV irradiation (365 nm light from a 200 W Hg lamp) 

are shown. The results are interesting due to their high selectivity in all cases and conversion 

which his higher for alcohols with electro donating groups rather than electro-withdrawing 

groups. Thanks to the catalyst magnetic properties, the authors points out that the catalyst can 

be reused for 10 consecutive times without any significant reduction in selectivity and 

conversion. 

 

2.2.4 Microwave synthesis  
Regarding the microwave as a method to synthesize core-shell composites, Alexander G. R. 

Howe et al published in 2018 in which the microwave is used to prepare core-sell Au/Pd 

composites (20). The authors synthesize a series of 1 wt% supported Au, Pd and Au/Pd 

nanoalloy catalysts via microwave assisted reduction of PdCl2 and HAuCl4. Moreover, the 

CSNPs show excellent stability during the hydroperoxide synthesis from H2 and O2 and non-

catalytic deactivation is mentioned after 4 cycles of the recovered CSNP sample. Regarding the 

core-shell preparation, 1 wt% Pd, 1 wt% Au and bimetallic Au/Pd catalysts are prepared using 

a CEM Discover SP reactor. Moreover, TiO2 is used as the support an aqueous stock solution 

of PdCl2 and HAuCl4 are prepared in 0.2 M HCl.  The mixture undergoes to microwave 

treatment for 15 min at 150°C and stirred at 1200 RPM using a magnetic stirrer (20).
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Figure 2.10. Representative STEM-HAADF image of 0.5Au–0.5Pd/TiO2 (20). 

 

In Figure 2.10 it is shown the 0.5Au–0.5Pd/TiO2 catalyst morphology thanks to STEM X-ray 

energy dispersive spectroscopy (X-EDS) in which it is clearly distinguished the gold core (B) 

and the palladium rich shell (A).  

 

2.2.5 Sol-gel Method  
The sol-gel method is one of the most used techniques to produce nanomaterials. In general, 

this method can be divided into two main steps. In the first step the metal salt or oxide are 

hydrolysed in solution to produce a colloidal suspension and in the second step, and that 

involves condensation and gelation, a 3d network is produced with an increased viscosity 

becoming a gel. Afterwards, the gel is processed by various drying methods to produce 

nanoparticles. By modifying the sol-gel method a serious of core-shell structures can be created.  

In this view, Hyun Sik Chae et al (2016), describe a sol-gel method based on a two-step process 

to synthetize iron oxide-silica in a core-shell structure. The structure and properties of this 

CSNP are fully characterized showing that the composite is a soft magnetic material. 

Furthermore, a magnetorheological (MR) suspension was prepared based on the synthesized 

Fe3O4@SiO2 nanoparticles dispersed in silicone oil and mechanical properties were studied (21).  

The magnetic core is synthesized by means of a solvothermal method in which hydrated iron 

chloride and sodium acetate are dissolved in ethylene glycol and then transferred in a stainless-

steel autoclave which is heated at 200°C for 12 h.
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Figure 2.11. Synthetic procedure of Fe3O4@SiO2 catalyst (21). 

 

Once the particles were washed and dried, the sol-gel method is applied to coat the core with 

silica. More precisely, 4 g of Fe3O4 particles and 4 mL tetraethyl orthosilicate are added into 40 

mL of deionized water and mixed using ultrasonication until it became a stable emulsion. 

Afterwards, the emulsion was added into a mixture of ethanol and ammonium hydroxide 

solution. The reaction solution was stirred at 400 RPM at room temperature for 4 h (21). TEM 

images are reported in Figure 2.12 where it is clearly visible that the Fe3O4@SiO2 nanoparticles 

are of core-shell structure, in which the Fe3O4 nanoparticles have a mean diameter of roughly 

200 nm and the average thickness of SiO2 shell is approximately 40 nm. 

 

Figure 2.12. TEM image of Fe3O4@SiO2 (21). 

Regarding the sol-gel method to produce core-shell structures, a recent article reports a surface 

treatment process to synthesize, in situ, Fe3O4@SiO2 (22). As in the previous article, the core is 

made with the same solvothermal method in which starting reagents are iron chloride and 

sodium acetate. Afterwards, the iron oxide nanoparticles are treated with an acid or a base 
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causing changes in the shape of the spherical particles. More precisely, nanoparticles are 

dispersed in 500 mL of distilled water. This dispersion was sonicated for 30 min and once 

separated from the solution is stirred in various amounts of 2 N aqueous ammonia solution or 

a hydrochloric acid solution. In Figure 2.13 the FE-SEM images are shown to put in evidence 

that the morphological changes in the nanoparticles depend upon the acid or base concentration. 

Due to the described treatment, magnetic properties also change depending on the acid/base 

concentration. 

 

 

Figure 2.13. FE-SEM images of (a) as-prepared Fe3O4 nanoparticles, (b) 0.5 M acid, (c) 1 M acid, (d) 3 M acid,  

(e) 5 M acid, (f) 0.5 M base, (g) 1 M base, (h) 3 M base and (i) 5 M based-treated Fe3O4 nanoparticles (22). 

 

Furthermore, the authors established the optimum surface treatment conditions for silica 

deposition on nanoparticles using a sol-gel reaction without undergoing a washing procedure 

in order to remove the organic residuals. Finally, to coat the nanoparticles 3 mL of tetraethyl 

orthosilicate are dissolved in 100 mL of ethanol. This precursor solution was charged into a 

suspension containing the surface treated nanoparticles and in Figure 2.14 the core-shell 

structure is shown.
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Figure 2.14. HR-TEM images of Fe3O4@SiO2 (22). 

About 8 nm of a single coating layer was homogeneously formed due to excellent initial 

dispersibility of Fe3O4 nanoparticles according to the modified surface characteristics. 

 

2.3 Experimental synthesis of copper based catalysts 

The materials that are used as reagents to produce different types of catalyst are commercial 

salts and oxides. None of the reagents are significantly sensitive to air or moisture and therefore 

they were handled in normal ambient/lab conditions without any previous purification steps. 

Table 2.1 reports the reagents that were used. Reagents were weighted and directly added to the 

grinding jars.
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Table 2.1. Main characteristics of the reagents used in this work. 

Compound Colour Purity Molecular 

Weight 

[g/mol] 

STATE Firm 

Pentahydrate 
copper (II) 
sulphate  

 
CuSO4·5H2O 

 

 
 

Blue 

 
 

99.5% 

 
 

249.69 

 
 

Solid 

 
 

Carlo Erba 
 
 

 
Vanadium 

oxide 
 

V2O5 

 
 

Grey with 
metallic 
lustre  

 

 
 

100% 

 
 

181.88 

 
 

Solid 

 
 

Sigma 
Aldrich 

 

Hexahydrate 
iron (III) 
chloride 

 
FeCL3·6H20 
 

 
 

Yellow 

 
 

97% 

 
 

270.3 

 
 

Solid 

 
 

Alfa Aesar 

 
 

Activated 
carbon 

 

 
 

Black 

 
 

100% 

 
 

12.01 

 
 

Solid 

 
 

Panreac 

 
 

Graphite 
 

 
 

Black 

 
 

100% 

 
 

12.01 

 
 

Solid 

 
 

Sigma 
Aldrich 

 

The catalysts that have been synthetized are divided in the following subchapters, depending 

on the composition or on the type of green solvent used. 

 
2.3.1 Copper sulphate and additive in solvent free conditions 

The first catalysts to be prepared are made of copper sulphate and an additive (total mass 200 

mg) in solvent free systems. Initially, the tested additive is graphite, a crystalline allotrope of 

carbon and the most stable form of carbon under standard conditions. Secondly, activated 

carbon is used as additive due to its small volume pores that increase the surface area available 

for adsorption or chemical reactions. 

https://en.wikipedia.org/wiki/Crystallinity
https://en.wikipedia.org/wiki/Allotropes_of_carbon
https://en.wikipedia.org/wiki/Allotropes_of_carbon
https://en.wikipedia.org/wiki/Standard_conditions
https://en.wikipedia.org/wiki/Surface_area
https://en.wikipedia.org/wiki/Adsorption
https://en.wikipedia.org/wiki/Chemical_reaction
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During the dry milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction is changed from clockwise to anticlockwise.  

Finally, the produced catalysts are tested in order to verify magnetic properties that may arise 

during mixing, because of possible changes in the oxidation state of the metal, especially for 

iron. The followed procedure is the Gouy balance which is extremely fast but at the same time 

makes it easy to detect magnetic properties. Each eppendorf is passed close to a very strong 

magnet that will induce catalysts powder movements if affected by the magnetic field. In the 

case of magnetic properties, the catalyst could be easily recovered and recycled, but studies in 

the catalytic activity should be carried out to understand if recycling is a convenient strategy. 

In this view, each catalyst is tested but no magnetic properties are detected. Finally, Table 2.2 

shows in detail the composition of each test. The molecular weight showed in the all the Tables 

is a result of the fractional contribution of each reagent that were used in the mixtures. At the 

same time, in all Tables the reported ratio refers to anhydrite reagents.  

 
Table 2.2. Composition details of pentahydrate copper sulphate and carbon. 

N° Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

 

[mg] 

Molecular 

Weight 

[g/mol] 

1 CuSO4·5H2O 180.2 graphite 20.4 82.8 

2 CuSO4·5H2O 189.5 graphite 10.1 124.7 

3 CuSO4·5H2O 198 graphite 2.2 205.1 

4 CuSO4·5H2O 180 activated 
carbon 19.5 85.1 

5 CuSO4·5H2O 189.4 activated 
carbon 10.6 125.6 

6 CuSO4·5H2O 197.6 activated 
carbon 2.4 201.7 
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2.3.2 Copper sulphate and vanadium oxide in solvent free conditions 

Bi-metallic particles are prepared in the ball milling reactor. Catalysts composition is related to 

a precise mass and molar ratio, more precisely it is considered a 2:1 and 1:2 ratio. Moreover, 

the total mass is close to 200 mg, to avoid reagents waste.  

During the dry milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction is changed from clockwise to anticlockwise. 

Finally, each bi-metallic catalyst is tested in order to detect magnetic properties that may pop 

up during ball milling. Nevertheless, the produced catalysts are completely non-magnetic and 

in Table 2.3 reagents weights are shown for every synthesized sample. 

 
Table 2.3. Composition details of pentahydrate copper sulphate and vanadium oxide. Entry 7 and 8 are 

calculated in mass ratio (2:1 and 1:2) while entry 9 and 10 in molar ratio (2:1 and 1:2). 

N° Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

 

[mg] 

Molecular 

Weight 

[g/mol] 

7 CuSO4·5H2O 133.7                   V2O5 66.8 221.8 

8 CuSO4·5H2O 66.6                     V2O5 133.4 199.5 

9 CuSO4·5H2O 149.6                   V2O5 54.5 227.8 

10 CuSO4·5H2O 74.7                     V2O5 109.3 204.4 

 

2.3.3 Synthesis of copper sulphate and vanadium oxide in a green solvent  

Also, in this case, bi-metallic catalysts are prepared from copper sulphate and vanadium oxide. 

Nevertheless, 0.5 mL of water is added once the reagents are weighted and directly added to 

the grinding jars. The green solvent is used to promote the formation of chemical bonds during 

mixing in order to improve the mechanochemical method. In this view, solvent may enhance 

bonds formation because it increases the probability of continuous contacts between copper 

sulphate and vanadium oxide (Solid-Solid reaction) that may induce chemical bonds. 

Nevertheless, solvent pollutes the catalysts even if water is used since it is necessary to remove 
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it after the ball milling procedure. Indeed, each solid-liquid solution are peaked up, put in an 

Eppendorf, and left with the cap open, so water evaporates spontaneously. Otherwise, samples 

are placed in an oven (60°C) to increase drying speed.  

During this wet milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction is changed. 

Finally, each bi-metallic catalyst is tested in order to detect magnetic properties that may appear 

during ball milling. Nevertheless, the produced catalysts are completely non-magnetic and the 

experiments are reported in Table 2.4. 

Table 2.4. Composition details of pentahydrate copper sulphate and vanadium oxide. Entry 11 and  

12 are calculated in mass ratio (2:1 and 1:2) while entry 13 and 14 in molar ratio (2:1 and 1:2). 

N° Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

 

[mg] 

Molecular 

Weight 

[g/mol] 

11 CuSO4·5H2O 133.3                 V2O5 66.2 221.9 

12 CuSO4·5H2O 66.2                   V2O5 133.1 199.5 

13 CuSO4·5H2O 149.4                    V2O5 54.5 227.3 

14 CuSO4·5H2O 74.5                       V2O5 108.7 204.25 

 

 

2.3.4 Copper sulphate, vanadium oxide and additive in solvent free 

conditions 

In this case copper sulphate/vanadium-based catalyst are mixed together with an additive. The 

two additives that are used are graphite and activated carbon. The additive concentration with 

respect the total mass is 1% w/w only. 

During the dry milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 



Chapter 2 - Synthesis details                                                                                                                                   33 
 

 

direction was changed from clockwise to anticlockwise. Finally, magnetic property has been 

verified but none of the samples are magnetic. The experiments are reported in Table 2.5. 

 
Table 2.5. Composition details of pentahydrate copper sulphate, vanadium oxide and additive. 

 Entry 15 and 17 are with a 2:1 molar ratio while entry 16 and 18 with a 1:2. 

N° Reagent 1 Mass 

1 

[mg] 

Reagent 2 Mass 

2 

[mg] 

Additive Mass 

3 

[mg] 

Molecular 

Weight 

[g/mol] 

15 CuSO4·5H2O 187.7                     V2O5 68.5 graphite 2.6 221.9 

16 CuSO4·5H2O 93.9                       V2O5 136.6 graphite 2.3 199.5 

17 CuSO4·5H2O 187.7                     V2O5 68.3 activated 
carbon 2.5 227.3 

18 CuSO4·5H2O 93.8                     V2O5 136.6 activated 
carbon 2.3 204.25 

 

 

2.3.5 Copper sulphate, vanadium oxide and additive in a green solvent  

The last copper sulphate-based catalysts are prepared together with vanadium oxide, water and 

an additive. As usual, two different carbon-based additives are mixed with the reagents: 

graphite and activated carbon. Moreover, each additive has been tested at 1/5/10 % in weight 

with respect the total mass.  

During the wet milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction is changed. 

Finally, each bi-metallic catalyst is tested in order to detect magnetic properties that may appear 

during ball milling. Nevertheless, the produced catalysts are completely non-magnetic. The 

experiments are reported in Table 2.6. 
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Table 2.6. Composition details of pentahydrate copper sulphate, vanadium oxide and additive. Entry 

19,21,23,25, 27 and 29 are with a 2:1 molar ratio while entry 20,22,24,26,28 and 308 with a 1:2. 

N° Reagent 1 Mass 

1 

[mg] 

Reagent 

2 

Mass 2 

 

[mg] 

Additive Mass 

3 

[mg] 

Molecular 

Weight 

[g/mol] 

19 CuSO4·5H2O 187.5                       V2O5 68.1 activated 
carbon  2.6 192.67 

20 CuSO4·5H2O 93.7                       V2O5 136.7 activated 
carbon  2.4 175.4 

21 CuSO4·5H2O 187.9                       V2O5 68 graphite 2.5 192.6 

22 CuSO4·5H2O 93.9                       V2O5 136.4 graphite 2.4 175.5 

23 CuSO4·5H2O 188                       V2O5 68.3 graphite 12.4 124.1 

24 CuSO4·5H2O 93.5                       V2O5 136.9 graphite 11.5 115.9 

25 CuSO4·5H2O 187.5                       V2O5 68.5 graphite 25.4 85.4 

26 CuSO4·5H2O 93.56                      V2O5 136.4 activated 
carbon  23.3 81.3 

27 CuSO4·5H2O 187.6                      V2O5 68.3 activated 
carbon  12.7 121.7 

28 CuSO4·5H2O 93.8                       V2O5 136.5 activated 
carbon  11.5 115.9 

29 CuSO4·5H2O 187.7                       V2O5 68.2 activated 
carbon  26.7 83 

30 CuSO4·5H2O 93.6                      V2O5 136.5 activated 
carbon  22.9 82.9 

 

 

2.4 Experimental synthesis of iron based catalysts  

New catalysts are made by mixing hexahydrate iron chloride and graphite/activated carbon 

(total mass 200 mg). Also, for this type of composites, additives concentration is 1/5/10% with 

respect the total mass.
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Even if, the metal salt is changed, ball milling conditions are not changed. Thus, during the dry 

milling treatment, the reagents are mixed mechanically for 1 hour in the planetary ball mill 

reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 5 mm radius. 

Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the direction was 

changed. Finally, each metallic catalyst is tested in order to detect magnetic properties that may 

appear during ball milling. Nevertheless, the produced catalysts are completely non-magnetic. 

The experiments are reported in Table 2.7. 

 
Table 2.7. Composition details of hexahydrate iron chloride and additive. 

N° Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

 

[mg] 

Molecular 

Weight 

[g/mol] 

31 FeCl3·6H2O 198.1               graphite  2.5 216.06 

32 FeCl3·6H2O 190.7              graphite  10.2 128.2 

33 FeCl3·6H2O 180.2                graphite  20.3 84.33 

34 FeCl3·6H2O 198.2                activated 
carbon 1.9 223.8 

35 FeCl3·6H2O 190.4              activated 
carbon 10.4 125.6 

36 FeCl3·6H2O 179.4              activated 
carbon 20.3 84.8 

 

 

2.4.1 Iron chloride and vanadium oxide in solvent free conditions 

Bi-metallic catalysts are prepared by mixing iron chloride and vanadium oxide. Metal salt and 

metal oxide are added to the grinding jars considering 2:1 and 1:2 molar ratio. 

During the dry milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction was changed. Finally, no magnetic properties appeared after mechanochemical 

mixing. The experiments are reported in Table 2.8. 
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Table 2.8. Composition details of hexahydrate iron chloride and vanadium oxide. 
Entry 37 is with a 2:1 molar ratio while entry 38 with a 1:2. 

N° Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

 

[mg] 

Molecular 

Weight 

[g/mol] 

37 FeCl3·6H2O 200.7              V2O5 67.5 240.8 

38 FeCl3·6H2O 100.8              V2O5 134.6 211.5 

 

2.4.2 Iron chloride and copper sulphate in solvent free conditions 

Finally, bi-metallic catalysts are made from two metal salts and have been added to the grinding 

jars considering 2:1 and 1:2 molar ratio. Also, in this case, the molar ratio refers to anhydrous 

reagents even if the used reagents are hydrate.  

During the dry milling treatment, the reagents are mixed mechanically for 1 hour in the 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction was changed. Finally, no magnetic properties appeared after mechano-chemical 

mixing but changes in the oxidation state occur. The experiments are reported in Table 2.9. 

 
Table 2.9. Composition details of hexahydrate iron chloride and pentahydrate copper sulphate. 

Entry 39 is with a 2:1 molar ratio while entry 40 with a 1:2. 

N° Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

 

[mg] 

Molecular 

Weight 

[g/mol] 

39 FeCl3·6H2O 200.7                 CuSO4*5H2O 92.4                 263.4 

40 FeCl3·6H2O 100.7              CuSO4*5H2O 184.7                256.5 
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2.5 FTIR-ATR analysis 

The dispersed catalytic materials are then characterized by infrared spectroscopy (FTIR) that 

provides specific information about the chemical composition throughout signal analysis 

concerning the transitional vibrations of chemical bonds. Such analysis is carried out with a 

Cary 630 FTIR Spectrometer from Agilent.   

Each sample are analysed by FTIR in order to detect the chemical bonds resonance frequency 

in the mid-infrared region (4000 and 400 cm-1). Most of the samples spectra are reported in 

Annex A. The catalyst spectrum is then compared with the one of the reagents. The comparison 

between them will allow to reveal the presence of new chemical bonds. The aim of this analysis 

is to verify if the ball milling procedure induces chemical reactions and therefore new bonds 

between reagents due to kinetic and heat energy that are provided by the mechanical treatment. 

Moreover, it is expected to easier detect new bonds in solid-liquid mixing thanks to the green 

solvent (H2O) that enhances solids contact, so the probability of new bonds increases. 

Nevertheless, solvent pollutes the catalyst since it must be extracted from the solid. Indeed, new 

bonds formation from solid-solid mixing would turn to be the best solution.  

From the comparison between the pure reagents spectroscopy and each catalyst spectra, no 

difference is detected. Figure 2.15 reports the spectroscopy of catalysts n°22 which is mixture 

of copper sulphate, vanadium oxide and graphite. Comparing Figure 2.15 with the pure reagents 

spectra, it is confirmed that peaks represent already existing bonds thus, no new structures 

appear. In other words, the dispersed materials are a mixture of reagents powder. 

 

 

(a) 

 

1070 cm
-1

 

https://www.agilent.com/en/products/ftir/ftir-benchtop-systems/cary-630-ftir-spectrometer
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(b) 

  

(c) 
 

Figure 2.15. Comparison between the spectra of pentahydrate copper sulphate (a), 

 vanadium oxide (b), and the synthesized compound n°22. 

 

Characterizing the spectroscopy from right to left, it is stated that the catalyst spectra is an 

overlap of the reagents one the first peak that appears in the catalyst spectroscopy is of 1000 

cm-1, which also appears in vanadium oxide spectrum. Then, a second peak appears close to 

1000 cm-1, more precisely 1070 cm-1, which also characterizes copper sulphate spectrum. 

Instead, peaks placed between 2000 and 2500 cm-1 concern to triple bond stretching, more 

precisely carbon monoxide stretching present in the air. Moreover, the air moisture also causes 

a second peak, at 3200 cm-1 because of the presence of water. 

1000 cm
-1
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2.6 Preparation of Fe3O4@TiO2 by reduction of metal salts 

The objective is to create a core-shell system in order to coat metallic nanoparticles with TiO2. 

This procedure was chosen because it does not use harsh chemicals and it is carried out below 

100°C. For this procedure, a round bottom flask (250mL) is filled with 80 mL of distilled water, 

1 mmol of iron(II) sulfate hexahydrate and 2 mmol of iron(III) chloride, and then, stirred at 

50°C. In order to heat and stir at the same time, the round bottom flask is immersed in an oil 

bath and placed on a magnetic stirrer. At the same time, a 1 M sodium hydroxide solution is 

prepared.  

 

                                                 (a)                                                                                             (b) 

Figure 2.16. Acid solution with pH=3 (a), basic solution with pH=10 (b). 

The aim was to add dropwise the basic solution in the metal one until it reached a pH of 10 

(dark solution), as in Figure 2.16. The reason for the pH to be is adjusted is to convert the 

dissolved (ionic) metals into insoluble nanoparticles of Fe3O4. During the sodium hydroxide 

injections, the pH is measured every 15/20 droplets until the solution started to become black 

which meant that nanoparticles were created, and the solution approached basicity. Once the 

solution reaches pH 10, it is removed from the magnetic stirrer to cool down to room 

temperature and from Figure 2.17 it is possible to detect nanoparticles depositing in the flask 

bottom
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Figure 2.17. Nanoparticles depositing in the flask bottom 

 once the solution is cooled. 
 

Finally, the dispersed particles must be separated from the solution, washed with distilled water, 

and completely dried. Thanks to the magnetic property of the nanoparticles, the washing 

procedure is simplified. A strong magnet is placed in the flask bottom so, magnetic particles 

did not follow the solution while pouring it. Secondly, distilled water is added until the pH 

became neutral in order to stabilize the nanoparticles, which are separated, and finally placed 

in an oven at 60°C to dry completely. Once the magnetic nanoparticles were completely dry, a 

mortar and pestle were used to prepare a powder by crushing and grinding them.  

Once the magnetic nanoparticles are pulverized, the objective is to coat them with TiO2. The 

core-shell system is created adding 100 mg of magnetic nanoparticles in 250 mL of dry ethanol 

and 1 mL of titanium isopropoxide solution. The round-bottom flask that contains the mixture 

is magnetically stirred at 600 RPM and heated at 75°C.  

 
Figure 2.18. Reflux system to avoid the loss of ethanol  

during core-shell synthesis.
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Moreover, a reflux system, as shown in Figure 2.18, is placed on the flask neck to avoid losing 

ethanol due to evaporation. During mixing 7 mL of dry ethanol and 1 mL of distilled water are 

added. The solution is mixed for 18 h and afterwards it is removed from the magnetic-heating 

system to cool down to room temperature. The core-shell particles are removed from the 

solution by filtration, dried in the oven at 60°C overnight and stored.  

 

2.7 Experimental synthesis of Metal Organic Frameworks  

Microporous and mesoporous metal-organic frameworks (MOFs) are a recent class of 

crystalline materials, which are currently of great interest for different types of applications 

such as sorption, separation, catalysis and sensor technology. Besides the important results 

obtained in the area of high surface materials, many groups are focused on the synthesis of new 

materials for catalysis applications. By following the procedure described by Klimakow et al, 

a mechanochemical approach is proposed as an alternative synthetic green route for MOFs 

preparation (1).  

Mechanochemical synthesis is carried out in an Emax 2000, Retsch GmbH, ball mill reactor 

via the liquid assisting grinding of fine particles of copper acetate monohydrate and 1,3,5-

benzenetricarbocylic acid (H3BTC), respectively in a 3:2 molar ratio, as shown in Figure 2.19. 

The synthesis is carried out using a 50 ml stainless steel grinding jar and 5 stainless steel balls 

of 10 mm diameter. The objective is to reproduce the metal-organic framework, named 

HKUST-1 which was synthesized by Hong Kong University of Science and Technology. 

 

 

Figure 2.19. HKUST-1 reaction mechanism (1). 

For the synthesis of this type of MOF copper acetate monohydrate (0.57 g) and H3BTC (0.4 g) 

are placed in the grinding jar together with 5 stainless steel balls at 1500 RPM for 10 min. As 

shown in Figure 2.20, the colour of the powder turned into turquoise accompanied by a release 

of acetic acid (by-product). 
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                                               (a)                                                                                                     (b)   

Figure 2.20. Copper acetate monohydrate and H3BTC before the mechanochemical mixing (a), 

 and after the treatment (b). 

 

Afterwards, a small amount of pure ethanol (1 mL) is added in order to assist the reaction and 

the mixture was further grinded for 15 min at 1500 RPM. The sample is then dried in oven at 

60°C. The synthesized MOF is then characterized with FTIR, elemental analysis and SEM-

EDS. The MOF spectroscopy is reported in Annex A. Comparing both characterization 

techniques with the ones published by, it is stated that the synthesized MOF corresponds to 

HKUST-1. The elemental analysis of the synthesized MOF and the HKUST-1 are reported in 

Table 2.10. 
Table 2.10. Elemental analysis (mass %) and comparison between  

the synthesized MOF and HKUST-1 

Element Synthesized  

 

MOF 

HKUST-1 
(**) 

 

 

Copper (*) 18.8% - 

Carbon 32.7% 29.63% 

Hydrogen 3.15% 3.112% 

(*) is not included in the scope of the LAIST accreditation. 
                                                (**) composition reported from Klimakow et al [14].  

 
Klimakow et al article does not provide the copper percentage. The external surface is 

characterized by SEM analysis, as shown in Figure 2.21.
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Figure 2.21 SEM image of HKUST-1. 

 

Figure 2.21 shows an inhomogeneous size distribution of the particles and distinct crystal 

habitus and it is possible to state that the grinding process created microscopic composites with 

size that ranges from bulk to 10 µm while the corresponding EDS shows the presence of the 

metal with a mass composition that is almost equal to the theoretical quantities (Table 2.11). 

 
Table 2.11. EDS analysis (mass %) and comparison between 

the synthesized MOF and HKUST-1 theoretical composition. 

Element EDS 

analysis 

HKUST-1 

Theoretical 

composition  

Copper  32.87% 28% 

Carbon 30.37% 32.81% 

Oxygen 36.75% 37.36% 

 

Finally, it is possible to state that the synthesized MOF corresponds to HKUST-1. Another 

proof is shown in Table 2.11, in which the composition determined by EDS analysis is almost 

10 µm   
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equal to the theoretical composition of HKUST-1 which states that the elements are well 

dispersed.   

 

2.7.1 Preparation of supported Metal Organic Frameworks 

A serious of catalysts are synthesized by mechanochemical treatment in an Emax 2000, Retsch 

GmbH, ball mill reactor via the liquid assisting grinding fine particles of HKUST-1. The 

procedure was repeated for each type of catalysts and consists in grinding HKUST-1 for 1 min 

at 1500 RPM. Afterwards, a precise amount of another compound is added and the mixture is 

grinded for 5 min at 1500 RPM. Each synthesis required 5 stainless steel balls of 10 mm of 

diameter that are placed in 50 mL stainless steel jars. The supported MOFs are reported in the 

Table 2.12. 

Table 2.12. Composition of HKUST-1 supported with core, core-shell and titanium isopropoxide. 

Name Reagent 1 Mass 1 

 

[mg] 

Reagent 2 Mass 2 

[mg] or 

[mL] 

HKUST-1/  

Fe3O4@TiO2 HKUST-1 150 mg Fe3O4@TiO2 150 mg 

HKUST-1/ 
C12H28O4Ti HKUST-1 350 mg Titanium 

isopropoxide 1 mL 

HKUST-1/ 
Fe3O4 HKUST-1 50 mg Fe3O4 50 mg 

 

The supported MOFs have been characterized by elemental analysis and SEM-EDS. Regarding 

the elemental analysis of the 3 compounds, Table 2.13 shows the mass quantity of each element 

(oxygen is not detected by the equipment).
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Table 2.13. Elemental analysis (mass %) of supported HKUST-1 compounds. 

Element HKUST-1/  

Fe3O4@TiO2 

HKUST-1/ 

C12H28O4Ti 

HKUST-1/  

Fe3O4 

Copper (*) 11.4% 9.6% 14.1% 

Carbon  17.82% 21.48% 21.41% 

Hydrogen 2.3% 2.84% 2.30% 

Iron (*) 4.9% - 21% 

Titanium (*) 14.8% 18.3% - 
(*) is not included in the scope of the LAIST accreditation 

 

Furthermore, the surface of the synthesized supports is characterized by SEM. Figure 2.22 states 

that from the grinding process microscopic compounds are obtained with sizes that reach a 

minimum of 10 µm.  

 

(a)

10 µm   
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(b) 
Figure 2.22. SEM image of HKUST-1 supported with titanium isopropoxide (a)  

and HKUST-1 supported with Fe3O4@TiO2 (b). 

 
Comparing the images reported in Figure it is possible to affirm that the HKUST-1 supported 

with Fe3O4@TiO2 creates a more homogeneous composite than the HKUST-1 supported with 

titanium isopropoxide even tough clear bulk agglomerations are visible. Finally, the samples 

are characterized by EDS analysis. The elements mass percentages are reported in Table 2.14. 

 

Table 2.14. EDS analysis (mass %) of supported HKUST-1. 

Element HKUST-1/  

Fe3O4@TiO2 

HKUST-1/ 

C12H28O4Ti 

Copper  11.67% 6.18% 

Carbon  25.6% 17.34% 

Oxygen 42.69% 50.87% 

Iron  3.98% - 

Titanium  16.06% 25.61% 
 

Analysing Table 2.14 it is stated that for both composites the elements are well dispersed on 

the surface but this characterization cannot be extended to the samples internal composition 

because of the agglomerations that for both compounds are formed.

10 µm   



 
 

 

CHAPTER 3  

 Oxidation of cyclohexane  

and 1-phenylethanol 

Chapter 3 is dedicated to the application of compounds which are synthesized in Chapter 2 and 

some not directly synthesized in this work, as catalysts for the oxidation of organic substrates 

such as alkanes and alcohols with green oxidants (tert-Butyl hydroperoxide solution 70% in 

H2O, K2S2O8 or even O2). Reactions take place in the ball milling equipment or in the 

microwave reactor. In this view, the influence of reaction parameters (catalyst type and 

loadings, operating conditions and additives) will be studied for the most promising systems 

and results will be compared. The procedure that has been followed in this Chapter is shown in 

Figure 3.1. 

 
Figure 3.1. Schematic view of the procedure followed in this chapter. 
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3.1 Reactors 

The studied reactions occur in two types of reactors that differ for the energy input and stirring 

conditions. Both can be considered as batch reactors therefore, reagents and products 

composition change in time and they do not deliver the products continuously but it in discrete 

amounts. The first type of reactor unit is the PM 100, Retsch GmbH, planetary ball mill, that is 

used to synthesize the metal-based composites obtained by mechanochemical treatment (Figure 

2.1). 

The second type of reactor is a Monowave 300 by Anton Paar GmbH (Figure 3.2), a high-

performance microwave reactor specially designed for small scale microwave synthetic 

applications. The two main differences with respect the ball milling equipment are the stirring 

and microwave heating techniques. Indeed, an adjustable high-performance magnetic stirring 

device provides agitation at any time, enhancing the quality of chemical transformations. The 

magnetic stirring mechanism consists on a magnetic bean placed inside the pyrex tube (G10) 

that mixes the solution thanks to an invertible magnetic field.  

 

 

Figure 3.2. Monowave 300 by Anton Paar GmbH. 

 

Microwave is a form of electromagnetic radiation with wavelengths ranging from about one 

meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). 

Microwave chemistry is based on the efficient heating of materials by “microwave dielectric 

https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Frequency
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heating” effects. This phenomenon is dependent on the ability of a specific material (solvent or 

reagent) to absorb microwave energy and convert it into heat. MW heating occurs from the 

inside to the outside, so, from the bulk of the sample towards the flask walls. On the other hand, 

conventional heating involves the exact opposite heat transfer mechanism and this difference 

causes a decrease in the heating homogeneity. 

 

3.2 Reactants and catalysts 

None of the reagents are significantly sensitive to air or moisture and therefore were handled in 

normal ambient conditions without any previous purification step. Table 3.1 reports the regents 

used and some other specifications. In this work, reagents are weighted and directly added to 

the grinding jars or to the vial, always remembering to add the oxidant in the last place. 

 
Table 3.1. Main characteristics of the reagents used in Chapter 3. 

Compound Chemical 

formula 

Colour Purity Molecular 

Weight 

[g/mol] 

State Suppliers 

Cyclohexane C6H6 transparent 99.50% 84.16 liquid Acros 
Organics 

Tert-Butyl 
hydroperoxide (CH3)3COOH transparent 70% in 

H20 90.12 liquid Acros 
Organics 

1-Phenylethanol C8H10O transparent 100% 122.16 liquid TCI 

Potassium 
peroxodisulphate K2S2O8 white 100% 100 solid Sigma-

Aldrich 

 

The catalysts that are tested in this work are, in part, the ones whose synthetic process are 

described in Chapter 2 as well as the bi-metallic compounds that have not been synthesized 

during this work, but will be studied, and the specifications are reported in Table 3.2. 
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Table 3.2. Bi-metallic compounds not synthesized in this work. 

Catalyst 

number 

Metal 

 1 

Metal 

 2 

Molar 

ratio 

Additive Test conditions 

41 CuO KReO4 1:1 - Ball milling; 1 h 
at 500 RPM 

42 CuO KReO4 2:1 - Ball milling; 1 h 
at 500 RPM 

43 CuO KReO4 1:2 - Ball milling; 1 h 
at 500 RPM 

44 Fe2O3 KReO4 1:1 - Ball milling; 1 h 
at 500 RPM 

45 Fe2O3 KReO4 2:1 - Ball milling; 1 h 
at 500 RPM 

46 Fe2O3 KReO4 1:2 - Ball milling; 1 h 
at 500 RPM 

47 

 
V2O5 

 
KReO4 1:2 1% GO Ball milling; 1 h 

at 500 RPM 

 

 

3.3 Peroxidative oxidation of cyclohexane  

The first reaction of interest concerns the catalytic oxidation of cyclohexane in order to produce 

cyclohexanone and cyclohexanol mixture, as shown in Figure 3.3. The significant industrial 

applications for these latter products brought about an enormous demand (more than 106 

ton/year of cyclohexanone alone) and therefore stimulated studies aiming to find milder, 

energy-saving and possibly green conditions. 

Nearly all cyclohexane is used to make cyclohexanol and cyclohexanone, which, in turn, are 

used mainly as precursors for the production of adipic acid and caprolactam, respectively. Other 

uses for cyclohexane include various solvent applications. Indeed, most 

cyclohexanol/cyclohexanone (over 95%) is consumed captively on site for the production of 

adipic acid and caprolactam, so only a small amount (4%) enters the world’s trade markets 

which is used as solvents for paints and dyes, in pesticides, and as an intermediate for 

pharmaceuticals, films, soaps, and coatings. 
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Figure 3.3. Cyclohexane oxidation (path a) and PPh3 treatment for the alkyl hydroperoxide (path b).  

 

Path a) in Figure 3.3 describes cyclohexane catalytic oxidation under mild conditions and an 

oxidant thanks to which is produced the corresponding alkyl hydroperoxide that leads to the 

formation of cyclohexanone/cyclohexanol. Once the reaction is ended, by adding an excess of 

solid triphenylphosphine (PPh3) to the solution to transform the remaining hydroperoxide in the 

corresponding alcohol. Path b) was published in 2001 by Georgiy B. Shul’pin thanks to which 

the alcohol yield remarkably increases. Indeed, cyclohexyl hydroperoxide is known to be 

readily and quantitatively reduced by PPh3 to yield the corresponding alcohol: 

 

             C6H11OOH + PPh3 → C6H11OH + OPPh3                                                                           (3.1) 

 

In this work the cyclohexane catalytic oxidation is tested using different types of green oxidants 

such as O2 or potassium peroxodisulphate (K2S2O8) rather than hydrogen peroxide. Shul’pin 

method is followed, before gas chromatographic (GC) analysis, in order to convert, if 

peroxidation occurs, cyclohexyl hydroperoxide to cyclohexanol. Operating conditions such as 

temperature, composition and mixing parameters have been changed during the experiments as 

well as the reactional media (BM or MW).  

In general, once the reaction was ended, each sample was analysed by gas chromatography 

(GC). Gas chromatographic measurements were carried out using a FISONS GC 8000 series 

gas chromatograph with a capillary column (DB-WAX, column length: 30 m; internal diameter: 
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0.32 mm) and an FID detector. The initial temperature of the column was 100°C (for 1 min) 

and the final one was 180°C (for 1 min) with a total time of 10 min since temperature 

increasement was 10 K/min. Before injecting in the column, 90 µL of cycloheptanone (internal 

standard), 5 mL of diethyl ether (solvent used to extract the substrate and products from the 

reaction mixture) and the sample are put inside a round-bottom flask with a magnetic bean. The 

obtained mixture was magnetically stirred for 5 minutes and then, 1 mL of sample is extract 

from the organic phase and placed in an Eppendorf, thus centrifuged for 30 min particles that 

would damage the column were not injected. Finally, an excess of triphenylphosphine was 

added in order to eventually stop the cyclohexane oxidation and convert cyclohexyl 

hydroperoxide to cyclohexanol.  

 

3.3.1 Ball milling cyclohexane oxidation with copper and vanadium based 

catalysts  

Copper sulphate and vanadium oxide based catalysts, synthesized in Chapter 2 by 

mechanochemical mixing, are tested in the PM 100 by Retsch GmbH, planetary ball milling 

unit. The reaction takes place at normal conditions (25°C and 1 atm). The tested catalysts are 

n° 9 to 16, therefore including Cu-V composites synthesized with/without solvent and 

supported or not supported. 

During the one-pot reactions, the system is mixed mechanically for 2 hours in the planetary ball 

mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 5 mm radius. 

Grinding jars rotational speed is 500 RPM and every 5 minutes the direction is changed. 

Detailed descriptions of the experiments are reported in Annex B.1. 

The results show low conversions, mainly due to the high stability of cyclohexane. The higher 

conversion obtained with catalyst n°12 was 8.5%, which is an average value for cyclohexane 

oxidation. Indeed, the results are similar to the ones obtained by industrial methods.  

 

3.3.2 Microwave-assisted cyclohexane oxidation with copper and 

vanadium based catalysts  

In this case the Cu-V based materials are tested as catalysts in the microwave reactor. The tested 

catalysts have been synthesized in this work and correspond to n° 9 to 16. In this case, 3 mL of 

acetonitrile (ACN) are added to favour the reaction. 110 µl (1 mmol) of substrate (cyclohexane) 
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is added to the vial together with 10 mg of catalyst and 400 mg of K2S2O8. Detailed descriptions 

of the experiments are reported in Annex B.2. Reaction is carried out at 50°C, microwave 

irritated (10 W) and mixed at 650 RPM. Results showed lower conversions and the higher one 

(5%) is obtained with catalyst n°12, as in the ball milling tests. This is due to the fact that that 

n°12 is a Cu-V catalyst with a 1:2 mass ratio which evidences the fact that for cyclohexane 

oxidation vanadium is more active than copper. 

 

3.4 Peroxidative oxidation of 1-phenylethanol 

The oxidation of primary and secondary alcohols to carbonyl compounds is one of the most 

important reactions is synthetic organic chemistry. In this view, the peroxidative oxidation of 

1-phenylethanol to acetophenone is particular important due to the high market request of the 

product of interest. Acetophenone is an organic compound and the simplest form of ketone 

which is used in various applications such as ingredients of fragrances in food and beverages, 

precursor as solvent soap in plastics and resins and as catalyst in olefins reactions. Its increasing 

demand is also due to the end industries request that use it in the production of cigarettes, 

chewing gum and tobacco. Nevertheless, the growth of acetophenone in the global market is 

restrained because of numerous constraints that regulates its use since it may arise skin irritation 

and corneal injury. For this reason, together with the fact that traditional oxidation reactions 

often involve the use of harmful oxidants, such as CrO3 or KMnO4, and/or halogenated solvents, 

with the generation of large amounts of wastes, the development of new green routes is a matter 

of current interest. One of the possible routes that can be followed to produce acetophenone in 

a greener way is by oxidation of 1-phenylethnol, as shown if Figure 3.4, in the microwave 

reactor. Moreover, it is known that microwave irradiation provides a more efficient heating than 

conventional ones thanks to which similar yields and higher selectivity can be attained (23,24,25). 

 

 
Figure 3.4. Reaction mechanism of 1-phenylethanol oxidation to acetophenone. 

 

In this work the peroxidative oxidation of 1-phenylethnol is tested in the microwave reactor 

with the different types of catalysts produced in this work in order to analyse has the best 
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efficiency comparing the yield, turn over number (TON) and turn over frequency (TOF). 

Moreover, catalysts are tested at different temperatures and additive loadings and results are 

characterized by gas chromatography. 

In general, once the reaction was completed, the mixture is allowed to cool down to room 

temperature and each reaction is analysed by gas chromatography. Gas chromatographic 

measurements are carried out using a FISONS GC 8000 series gas chromatograph with an FID 

detector and a capillary column (DB-WAX, column length: 30 m; internal diameter: 0.32 mm). 

The initial temperature of the column was 120°C (for 1 min) and the final one was 200°C (for 

1 min) with a total time of 10 min since temperature was increasing by 10 K/min. Before 

injecting in the column, a short procedure was followed in order to analyse correctly the 

samples. First of all, 90 µL of benzaldehyde (internal standard), 3 mL of acrylonitrile (solvent 

used to extract the substrate and products from the reaction mixture) and the sample are put 

inside a round-bottom flask with a magnetic bean inside. The obtained mixture is magnetically 

stirred for 10 minutes and then, 1 mL of sample was extract from the organic phase, placed in 

an Eppendorf and centrifuged for 30 min, to avoid injecting solid particles in the column. 

Finally, 0.4 µL were injected in the column. 

In order to quantify GC results a calibration step is needed. Calibration is carried out by 

injecting four samples of known quantities of solvent, internal standard, product and substrate. 

After injecting these solutions, it is possible to find out the linear relation between the substrate 

or product concentration and the ratio between their area and the internal standard one. Both 

calibrations are reported in Table 3.5. 

Table 3.5. Measurements of the 4 samples injected in GC for calibration purposes. 

N° ACN 

 [mL] 

Internal 

Standard [mL] 

Acetophenone 

[mL] 

Substrate 

[mL] 

Total 

Volume 

[mL] 

1 3 0.09 0.2 0.2 3.49 

2 3 0.09 0.4 0.4 3.89 

3 3 0.09 0.6 0.6 4.29 

4 3 0.09 0.8 0.8 4.69 
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The GC software calculates each chromatographic peak area automatically.  Figure 3.5 shows 

the linear regression concerning acetophenone calibration with a slope equal to 6.6291. 
 

 
Figure 3.5. Acetophenone calibration curve by linear regression, 

(Ac= acetophenone area, Aint=internal standard area). 

 

Figure 3.6 shows the linear regression concerning the 1-phenylethanol calibration with a slope 

equal to 6.6845. 
 

 

Figure 3.6. 1-phenylethanol calibration curve by linear regression,  

(As= substrate area, Aint=internal standard area). 
 

y = 6.6291x
R² = 0.9655

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
c/

A
in

t

Concentration [mmol/mL]

Acetophenone Calibration 

y = 6.8145x
R² = 0.9691

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
s/

A
in

t

Concentration [mmol/mL]

1-Phenyehtanol Calibration 



Chapter 3 - Oxidation of cyclohexane and 1-phenylethanol                                                                                   56 
 

 

 

As expected, the slope of both calibrations is almost equal since the amounts of substrate and 

product are used in each calibration sample. Calibration curves are used to calculate substrate 

and acetophenone concentrations of each reaction once the ratio between their area and the 

internal standard one is known, therefore with this calibration, all of the performed reactions 

can be quantified.  

 

3.4.1 Copper oxide and potassium perrhenate based catalyst 

1-Phenylehtanol peroxidation is tested with the copper- and rhenium-based catalysts at different 

molar ratios (1:1, 1:2 and 2:1). For each experiment, 5 mmol of substrate together with 10 mmol 

of tert-butyl hydroperoxide (70% aqueous solution) and 10 ± 0.2 mg of catalyst are introduced 

in a cylindrical Pyrex tube, which has then been placed in the focused microwave reactor. The 

system is magnetically stirred (650 RPM) and irradiated (10 W) for 30 min at 80°C. Details are 

reported in Table 3.6. 

 
Table 3.6. MW-assisted 1-phenylethanol oxidation, over ball milled Cuo-KReO4  

with different molar ratios as catalysts. (*) 
N° Catalyst Catalyst 

[µmol] 

Time 

[h] 

Yield  

[%] 

TON  TOF 

 [h-1] 

41 54.22 0.5 2.84 3 5 

42 67.58 0.5 3.21 2 5 

43 46.04 0.5 2.94 3 6 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 0.5 

h, 80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

Analysing Table 3.6 it is evident that the catalyst with a highest yield, at the chosen operating 

conditions, is the 2:1 molar ratio one. Nevertheless, the turnover number (TON) and, as a 

consequence the turnover frequency (TOF), are higher for the 1:2 molar ratio due to catalyst 

amount. Indeed, the 1:2 ratio shows best performances with respect the other compositions. 
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Figure 3.7. 3D bar chart with the results for CuO-KReO4 in terms of TON, TOF and yield. 

 

As it is shown in Figure 3.7, it is possible to state that the rhenium enhances the substrate 

conversion more than copper, consequently the rhenium molar fraction should show an 

acetophenone increase. The more performant catalysts Cu-Re 1:1 and 1:2 molar ratio were 

supported with 1% w/w of graphene oxide (GO) in order to analyse if the additive brings 

improvements in the 1-phenylehtanol oxidation at the same operating conditions. Graphene 

oxide is an oxidized form of graphene, laced with oxygen-containing groups. Results are shown 

in Table 3.7. 

 
Table 3.7. MW-assisted 1-phenylethanol oxidation, over ball milled Cuo-KReO4  

Supported with 1% GO, as catalysts. (*) 
N° Catalyst Catalyst 

[µmol] 

Time 

[h] 

Yield  

[%] 

TON  TOF 

 [h-1] 

41 54.22 0.5 3.85 4 7 

43 46.50 0.5 4.22 5 9 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 0.5 

h, 80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

It is possible to state that performances of Cu-Re based catalysts with 1:1 and 1:2 and supported 

with 1% GO are enhancing the production of acetophenone. 

0

1

2

3

4

5

6

7

3 2
3

5
5

6

2.84 3.21 2.94

Molar ratio 

CuO-KReO4

TON

TOF [1/h]

Yield [%]

1:1 2:1 1:2



Chapter 3 - Oxidation of cyclohexane and 1-phenylethanol                                                                                   58 
 

 

 

3.4.2 1 Iron oxide and potassium perrhenate based catalyst 

1-Phenylehtanol peroxidation is tested with iron- and rhenium-based catalysts at different molar 

ratios (1:1, 1:2 and 1:3). For each experiment, 5 mmol of substrate together with 10 mmol of 

tert-butyl hydroperoxide (70% aqueous solution) and 10 ± 0.2 mg of catalyst are introduced in 

a cylindrical Pyrex tube, which is then placed in the focused microwave reactor. The system is 

(magnetically) stirred and irradiated (10 W) for 30 min at 80°C. Details are reported in Table 

3.8. 
Table 3.8. MW-assisted 1-phenylethanol oxidation, over ball milled Fe2O3-KReO4  

with different molar ratios as catalysts. (*) 
N° Catalyst Catalyst 

[µmol] 

Time 

[h] 

Yield  

[%] 

TON  TOF 

 [h-1] 

44 44.55 0.5 2.56 3 6 

45 49.79 0.5 1.65 2 3 

46 41.05 0.5 2.11 3 5 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 

 0.5 h, 80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

 

Analysing Table 3.8 it is clear that these bi-metallic catalysts have lower performances than 

copper- and rhenium-based catalysts. Indeed, yield ranges between 1.6% and 2.5% while TON 

and TOF are relatively low for all 3 samples.   
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Figure 3.7. 3D bar chart with the results for Fe2O3-KReO4 in terms of TON, TOF and yield. 

 

Figure 3.8 sums up the results by representing them in a bar chart plot and it is highlighted that 

the best performance concerns the catalyst with a 1:1 molar ratio. As a result, it is possible to 

state that the rhenium enhances the substrate conversion more than iron. Even though, catalysts 

are not as performant as Cu-Re ones their magnetic properties can be used easily recover them 

from the reaction pot and recycled but studies in the catalytic activity should be carried out to 

understand if recycling is a convenient strategy. 

 

3.4.3 Vanadium oxide and potassium perrhenate based catalyst 

1-phenylethanol oxidation is tested with vanadium oxide and potassium perrhenate catalysts 

with a 1:2 molar ratio and 1% w/w of graphene oxide (GO) as additive. As usual, 5 mmol of 

substrate together with 10 mmol of tert-butyl hydroperoxide and 10± 0.2 mg of catalyst are 

added to the cylindrical Pyrex tube. Table 3.9 sums up the reaction details. 
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Table 3.9. MW-assisted 1-phenylethanol oxidation, over ball milled V2O5-KReO4 as catalysts. (*) 

N° Catalyst Catalyst 

[µmol] 

Time 

[h] 

Yield  

[%] 

TON  TOF 

 [h-1] 

47 39.85 0.5 11.56 15 29 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 0.5 

h, 80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

Analysing Table 3.9 it is noticed that more acetophenone is produced than with the other tested 

catalysts. Yield reaches 11.5% even considering that the moles of catalyst are the lowest tested 

comparing them with Cu-Re and Fe-Re ones.  

Due to the obtained results, the catalyst was tested at different operating conditions in order to 

understand which is the more efficient in terms of performance. The catalyst was tested at 

different reaction times, more precisely 1 h, 1.5 h and 2 h while temperature remained constant 

(80°C) as well as stirring conditions (650 RPM). In Table 3.10 the experiments are reported in 

details.  
 

Table 3.10. MW-assisted 1-phenylethanol oxidation, over ball milled V2O5-KReO4 as catalysts. (*) 

N° Catalyst Catalyst 

[µmol] 

Time 

[h] 

Yield  

[%] 

TON  TOF 

 [h-1] 

47 39.85 1 12.32 15 15 

47 39.85 1.5 17.02 21 14 

47 39.85 2 19.51 24 12 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 

80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

As it is expected, conversion is enhanced by increasing the reaction time but its increase is more 

or less of 5% every 0.5 h as shown in Figure 3.8. It is shown that yield reaches almost its 

maximum value after 0.5 h.  
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Figure 3.8. Yield vs Time plot for the 1-phenylethanol oxidation with V2O5-KReO4 as catalyst. 

 

In this view, the catalyst was tested at different temperatures in order to understand if 

temperature could allow to increase the yield. 1-phenylethanol oxidation was tested at 100°C 

and 120°C and results were then compared with the reaction at 80°C. The reason why the 

temperature was not raised above 120°C is due to TBHP boiling temperature (96.2°C) that may 

cause an excess of concentration in the vapor phase (flammable substance). Table 3.11 sums 

up the reaction details. 

Table 3.11. MW-assisted 1-phenylethanol oxidation, over ball milled V2O5-KReO4 as catalysts. (*) 

N° Catalyst Catalyst [µmol] Temperature 

[°C] 

Yield  

[%] 

TON  TOF 

 [h-1] 

47 39.85 80 12.32 15 15 

47 39.45 100 17.06 22 43 

47 40.64 120 43.75 54 108 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol),  

0.5 h, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

As expected, the yield increases with temperature and the highest yield is obtained to the at 

120°C therefore, the optimal temperature is 120°C, as shown if Figure 3.9. 
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Figure 3.9. Yield vs Temperature plot for the 1-phenylethanol oxidation with V2O5-KReO4 as catalyst. 

 

In conclusion, the parameter that most influences the reaction is temperature. Knowing the 

optimal temperature at which the reaction should be run, another test was carried out in order 

to verify if the reaction is affected by time, considering 3 h. Another parameter that affects the 

reaction is the catalyst loading so, the reaction is tested with 20 mg of catalyst while temperature 

and reaction are set at the optimal values determined previously.  

 
Table 3.12. MW-assisted 1-phenylethanol oxidation, over ball milled V2O5-KReO4 as catalysts. (*) 

N° Catalyst Time 

[h] 

Catalyst 

[µmol] 

Yield  

[%] 

TON  TOF 

 [h-1] 

47 0.5 80.09 41.11 30 60 

47 3 39.85 63.42 79 26 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 

120°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

The results are quite interesting because thy show that doubling the catalyst loading, does not 

bring any advantage (yield still 41%). Instead, different results are obtained with 3 h reaction 

indeed, yield reaches 63.5%. This is an important observation that can lead to understand the 

catalyst activation is greatly depended on temperature.  

To conclude, it can be observed that the most important operating parameter that affects the 

catalytic oxidation of 1-phenylethanol is temperature while the catalyst loading is not that 
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relevant. Moreover, time has a positive effect on the alcohol oxidation but enhancements are 

not as positive. In this view, temperature can be coupled in order to optimize the process.  

 

3.4.4 Copper sulphate and vanadium oxide based catalyst 

The alcohol oxidation is tested with CuSO4 -V2O5 catalyst. The dispersed materials that are used 

as catalysts, have been synthesized in this work and more precisely are n° 9, 10, 15, 16, 17 and 

18. As usual, to test the goodness of the mentioned catalyst the reactions are carried out with 5 

mmol of substrate together with 10 mmol of tert-butyl hydroperoxide and 10± 0.2 mg of catalyst 

that are added to the cylindrical Pyrex tube.  Results are shown in Table 3.13. 

Table 3.13. MW-assisted 1-phenylethanol oxidation, over ball milled CuSO4-V2O5 

with different molar ratios as catalysts. (*) 
N° Catalyst Catalyst 

[µmol] 

Yield  

[%] 

TON  TOF 

 [h-1] 

9 45.37 11.48 13 25 

10 49.40 13.03 13 26 

15 44.48 13.08 15 29 

16 50.39 12.19 12 24 

17 44.93 11.24 13 25 

18 49.89 13.63 14 27 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol),  

0.5 h, 80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

By analysing the results in Table 3.13, it is possible to state that supporting Cu-V dispersed 

materials supported with graphite or activated carbon does not bring about improvements in the 

yield. 
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3.4.5 Metal Organic Framework based catalyst 

MOFs derivatives are tested as catalysts in the 1-phenylethanol oxidation. As usual, to test the 

activity of the mentioned catalyst the reactions are carried out with 5 mmol of substrate together 

with 10 mmol of tert-butyl hydroperoxide and 10± 0.2 mg of catalyst that are added to the 

cylindrical Pyrex tube. Results are shown in Table 3.14 and highlights that the best result are 

obtained for the HKUST-1 itself. Moreover, the mixture of this MOF with core-shell system or 

core, creates a more active catalyst than the supports themselves, mainly thanks to the presence 

of HKUST-1. 

Table 3.14. MW-assisted 1-phenylethanol oxidation, with HKUST-1 based structures as catalyst. (*) 

Catalyst type Catalyst 

[µmol] 

Yield  

[%] 

TON  TOF 

 [h-1] 

HKUST-1 16.70 9.72 29 58 

HKUST-1/ 

Fe3O4@TiO2 
51.42 3.59 3 7 

HKUST-1/ 

C12H28O4Ti 
- 3.11 - - 

HKUST-1/ Fe3O4 30.09 6.31 10 21 

Fe3O4@TiO2 84.94 3.00 2 4 

Fe3O4 43.63 2.70 3 6 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 

 0.5 h, 80°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

To conclude it can be then affirmed that HKUST-1 derivatives have a positive effect on the 

catalyst activity. On the other hand, it can be stated that the core-shell or core systems are its 

selves are an unappropriated catalyst for 1-phenylethanol oxidation. Figure 3.10 shows, after 

the reaction, that the MOF and MOF/Core-Shell catalysts are suspended in the liquid 

environment and the MOF/Core-Shell catalyst is still magnetic once the reaction is ended. 
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Figure 3.10. Caption of MOF/Core-Shell (left) and MOF (right) after 1-phenylethanol reaction. 

 

Table 3.14 shows that the best results, in term of conversion, are achieved with the HKUST-1, 

so operating conditions are then changed in order to optimize the operating conditions. First of 

all, the catalyst is tested at different temperatures in order to understand if temperature could be 

the parameter that decisively affects the reaction. 1-phenylethanol oxidation is tested at 100°C 

and 120°C and results are then compared with the reaction at 80°C. The reason why the 

temperature is not raised above 120°C is due to TBHP boiling temperature (96.2°C) that will 

cause an excess of concentration in the vapor phase (flammable substance). Table 3.15 sums 

up the reaction details. 

Table 3.15. MW-assisted 1-phenylethanol oxidation, with HKUST-1 as catalyst. (*) 

Temperature 

[°C] 

 Catalyst 

[µmol] 

Yield  

[%] 

TON  TOF 

 [h-1] 

100 

 

16.86 23.60 70 140 

120 

 

17.03 52.00 153 305 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol),  

0.5 h, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

As it is expected, the yield increases directly with temperature and the highest slope, shown in 

Figure 3.11 is related to the interval between 100°C and 120°C which states that the optimal 

temperature is close to 120°C whereas with 100°C the yield is below 20%. 
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Figure 3.11. Yield vs Temperature plot for the 1-phenylethanol oxidation with HKUST-1 as catalyst. 

 

Another operating parameter that is analysed is the reaction time while temperature was held 

constant at 120°C. The results are reported in the Table 3.16. 

Table 3.16. MW-assisted 1-phenylethanol oxidation, with HKUST- as catalyst. (*) 

Time 

[h] 

Catalyst 

[µmol] 

Yield  

[%] 

TON  TOF 

 [h-1] 

0.5 17.03 52.00 153 305 

1 17.03 61.07 117 117 

1.5 16.86 72.25 214 143 

2 17.03 99.07 291 145 

 

(*) Reactions conditions: 1-phenylethanol (5.0 mmol), 10 mg of catalyst, TBHP 70% aq. solution (10 mmol), 

120°C, microwave (MW) irradiation 10 W, mixing at 650 RPM. 

Results are quite interesting in comparison with the Re-V (2:1) catalyst since the latter one is 

more active than this MOF at 80°C but more expensive due to rhenium. This is not true if the 

temperature is increased, indeed it is analysed that the MOF reaches higher conversion at 

120°C. Moreover, the catalyst is tested at increasing reaction times and with 2 h of reaction 

100% of conversion is almost reached whereas the Re-V catalyst, after 3h reaction, it allows to 

reach 64%, as reported in the previous reports. It is possible to state that the with the HKUST-
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1 it is possible to reach 50% of conversion in 1/4 of the time with respect the mentioned bi-

metallic catalyst. 

 
Figure 3.12. Yield vs Time plot for the 1-phenylethanol oxidation with HKUST-1 as catalyst. 

 

Finally, from the last reaction it is demonstrated that doubling the catalyst amount has an 

extremely positive response on the oxidation results whereas with the Re-V catalyst it has been 

shown that there are no remarkable improvements. 

 

3.4.6 Metal catalyst supported with biomass 

According to Green Chemistry principles number 1 and 5 which deal with preventing the 

generation of waste and using renewable resources in reacting systems, the 1-phenylethanol 

oxidation is tested with metal catalysts supported with coffee waste. In this view, this type of 

support allows to use waste that is generated in everyday life and at the same type substitutes 

natural resources role, thus improving waste management.   

The aim is to optimize the operating conditions for the 1-penyethanol catalytic oxidation with 

three different bio-supported metal catalysts. The attention is focused on temperature, catalyst 

loading and reaction time as operating parameters that can be tuned in order to achieve high 

conversion/yield by lowering temperature as much as possible, thus, taking in account Green 

Chemistry principles concerning safety design and energy optimization.   

It must be specified that these catalysts have been not synthesized in this work, nevertheless the 

synthetization procedure is briefly explained before illustrating the oxidation results. 
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The starting material is coffee waste which is pyrolyzed and then treated with a wet 

impregnation or mechanochemical method. There are two different impregnation methods used 

to synthesize the biomass catalyst which are briefly described.  

In the first case, 90 mg of the pyrolyzed coffee are placed in a round bottom flask (250 mL) 

together with 10 drops of acid chloride and stirred overnight until a good suspension is 

achieved. Afterwards, 140 mg of copper(II) chloride dihydrate are added to the suspension and 

stirred for several hours. Finally, the solution is neutralised (pH=7) by adding drop after drop a 

1M sodium hydroxide solution and then the solvent is removed and the powder completely 

dried out. In the second case, 90 mg of the pyrolyzed coffee are placed in a round bottom flask 

(250 mL) together with 80 mL of ethanol and stirred overnight until a good suspension is 

achieved. Afterwards, 140 mg of copper(II) chloride dihydrate are added to the suspension and 

stirred for several hours and then the solvent is removed and the powder completely dried out.  

In contrast with classical methods that are applied in the synthetization process of catalysts, 

such as the wet impregnation method, the latter type of coffee-based catalyst is synthesized by 

pursuing the ball milling technique. This greener route allows to synthesize the catalyst in a dry 

ambient and it grinds particles to nanoscale order. Indeed, 90 mg of the pyrolyzed coffee and 

140 mg of copper(II) chloride dihydrate are placed for 1 hour in the PM 100, Retsch GmbH, 

planetary ball mill reactor, equipped with a 50 mL grinding bowl and 10 stainless steel balls of 

5 mm radius. Moreover, the grinding jars rotational speed is 500 RPM and every 5 minutes the 

direction is changed from clockwise to anticlockwise.                                                              

Multiple testes are carried out by always adding in Monowave 300, a Pyrex tube with 5 mmol 

of 1-phenylethanol (600µL), 10 mmol of tert-butyl hydroperoxide (955µL) and the studied 

catalysts. Afterwards, once each reaction is completed, it is allowed to cool down to room 

temperature and then is analysed by gas chromatography. Gas chromatographic measurements 

are carried out using a FISONS GC 8000 series gas chromatograph with an FID detector and a 

capillary column (DB-WAX, column length: 30 m; internal diameter: 0.32 mm). The initial 

temperature of the column is 120°C (for 1 min) and the final one is 200°C (for 1 min) with a 

total time of 10 min since temperature is increasing 10 K/min. Before injecting in the column, 

a short procedure is followed in order to analyse correctly the samples. First of all, 90 µL of 

benzaldehyde (internal standard), 3 mL of acrylonitrile (solvent used to extract the substrate 

and products from the reaction mixture) and the sample are put inside a round-bottom flask 

within a magnetic bean inside of it. The obtained mixture is magnetically stirred for 10 minutes 
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and then, 1 mL of sample is extract from the organic phase and placed in an Eppendorf thus 

centrifuged for 30 min, to avoid injecting solid particles in the column. 

 

3.4.6.1 1 Synthesized by wet impregnation method  

Operating conditions are optimized for the coffee catalyst synthesized in acid solution by wet 

impregnation method. Multiple testes are carried out by always adding in the microwave 

reactor, a Pyrex tube with 5 mmol of 1-phenylethanol (600µL), 10 mmol of tert-butyl 

hydroperoxide (955µL). 

First of all, the influence of the reaction time is analysed by carrying out the reaction at 0.5 h, 

1 h and 2 h while temperature is held constant at 80°C as well as the catalyst amount. Detailed 

information regarding the reactions is reported in Annex C.1. In Figure 3.13 the results are 

reported in terms of yield and it is observed that yield increases with time. 

 
Figure 3.13. Yield vs Time plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized in acid solution. 
 

It is also stated, in Figure 3.13, that the yield is more affected by reaction time in between 0.5 

h and 1 h reaction but also increases between 1 h and 2 h reaction. Secondly, the same catalyst 

is tested holding constant the reaction time (0.5 h) while temperature is increased from 80°C to 

120°C. Temperature is not increased above 120°C for safety reasons and to comply with green 

chemistry principles.  Yield as a function of temperature is shown if figure 3.14.  
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Figure 3.14. Yield vs Temperature plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized in acid solution. 

 

Relying on the above figure, it is stated that temperature has a dominant effect on the catalyst 

activity thus, on the product formation. Moreover, it is stated that increasing the temperature of 

20°C with respect the 80°C reaction, the yield is enhanced of 30% whereas at 120°C it increases 

of 40%. 

In line with the optimization study, the catalyst loading effect is analysed while temperature is 

held constant at 100°C as well as reaction time (1 h). The tests are carried out with 5 mg and 

20 mg of catalyst and it is found out that yield is slightly improving by increasing the catalyst 

amount (Figure 3.15). 
 

 

Figure 3.15. Yield vs Catalyst loading plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized in acid solution. 
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Relying on the above figure, it is stated that no improvement is observed when the reactions are 

carried out with catalyst loading that exceeds 5 mg. 

Operating conditions are optimized for the coffee catalyst synthesized in ethanol by wet 

impregnation method. Multiple testes are carried out by always adding in the microwave 

reactor, a Pyrex tube with 5 mmol of 1-phenylethanol (600µL), 10 mmol of tert-butyl 

hydroperoxide (955µL) while the catalyst loading is changed. Detailed descriptions of all the 

are reported in Appendix C.2. 

Temperature is hold constant at 80°C as well as the catalyst amount while reaction time is 

changed in order to analyse the catalytic activity behaviour. This understanding is done by 

analysing the conversion/yield as it is reported in Figure 3.16.  

 
Figure 3.16. Yield vs Time plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized in ethanol. 

 

Relying on the above figure, it is stated that time has an opposite effect towards conversion 

depending on the reaction time. It is clearly stated that the best option is 1 h of reaction. 

Furthermore, comparing the reaction time effect for both catalysts made through out wet 

impregnation, it is possible to state that the latter one is more suitable for 1-phenyehtnol 

oxidation since yield is quite higher. Secondly, temperature effect is analysed while reaction 

time (0.5 h) and catalyst amount are held constant as shown in Figure 3.17. 
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Figure 3.17. Yield vs Temperature plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized in ethanol. 

 

In line with the reaction time optimization, this catalyst is more active than the previous one in 

particular for lower temperatures. Finally, the catalyst loading effect is analysed while 

temperature is held constant at 100°C as well as reaction time (1 h). The tests are carried out 

with 5 mg and 20 mg of catalyst and it is found out that yield is slightly improving by increasing 

the catalyst amount. 

 

Figure 3.18. Yield vs Catalyst loading plot for the 1-phenylethanol oxidation 

 with metal catalyst supported with biomass and synthesized in ethanol. 

 

By having a look at the Figure 3.18, it is clearly visible that it is convenient to carry out reactions 

with 5 mg of catalyst.  
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3.4.6.2 Synthesized by mechanochemical treatment  

Operating conditions are optimized for the coffee catalyst synthesized by ball milling. Multiple 

testes are carried out by always adding in the microwave reactor, a Pyrex tube with 5 mmol of 

1-phenylethanol (600µL), 10 mmol of tert-butyl hydroperoxide (955µL) while the catalyst 

loading is changed. Detailed descriptions of all the experiment are reported in Appendix C.3. 

Temperature is maintained constant at 80°C as well as the catalyst amount while reaction time 

is changed in order to analyse the catalytic activity behaviour. This understanding is done by 

analysing the yield as it is reported in Figure 3.19.  

 
Figure 3.19. Yield vs Time plot for the 1-phenylethanol oxidation with metal catalyst  

supported with biomass and synthesized by mechanochemical treatment. 

 

Analysing figure 3.19, it is possible to evidence that increasing the reaction time up to 2 h has 

a positive effect on the catalytic activity. Indeed, yield in enhance of 10% for 1 h reaction with 

respect 0.5 h and increases of the same amount for 2 h reaction. On the other hand, if 

temperature is changed from 80°C to 120°C while the other operating parameters are held 

constant (0.5 h and 10 mg of catalyst), yield reaches promising results as it is shown in Figure 

3.20. 
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Figure 3.20. Yield vs Temperature plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized by mechanochemical treatment. 

 

Analysing the figure above, the catalyst effect on the alcohol oxidation until 100°C is similar 

to the previous ones. Instead, when temperature is raised towards 120°C the catalyst becomes 

extremely more active and the substrate is almost fully converted. Finally, the catalyst loading 

effect is analysed.  

 

Figure 3.21. Yield vs Temperature plot for the 1-phenylethanol oxidation with metal 

 catalyst supported with biomass and synthesized by mechanochemical treatment. 

 

By having a look at Figure 3.21, it is understood that the loading must not be lower than 10 mg 

since it favours yield
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Conclusions 

The main objective of this work was the screening of potential new catalysts for the well-known 

reactions with industrial relevance of cyclohexane and 1-phenylethanol oxidation. The tested 

catalysts are abundant and cheap transition metals (namely copper and iron) and are appealing 

to the industry because these types of reactions are a multibillion market since the commodities 

that are produced from these reactions are the base of thousands of products used nowadays in 

our society. 

The synthetic methods were chosen and applied based in their availability in the industry 

(namely ball milling, which is quite economic in factories and laboratories) and according to 

Green Chemistry principles. Almost all of the catalysts were characterized by FTIR-ATR and 

part of them by SEM and EDS. Overall, 40 composites were synthesized by ball milling 

whereas a wet impregnation method was applied to create some with a core-shell structure. The 

latter one has then been used as a support for HKUST-1, a copper-based Metal Organic 

Framework which has been synthesized by mechanochemical treatment.  

In terms of application, this work focused on the oxidation of cyclohexane and 1-phenylethanol 

under mild conditions. First of all, application Cu-V catalyst on cyclohexane oxidation was 

studied by comparing the influence of two different types of energy input, namely 

mechanochemical (ball milling) and microwave irradiation. The highest conversion was 

obtained by ball milling, in solvent free procedure, with Cu-V catalyst (1:2 mass ratio). This is 

a good indication that improvements are still possible, since the reactor conditions used in 

industry are over dated (they have more than 30 years) and this green procedure, performed for 

the first time in this work, is a promising result in order to implement a change in the industrial 

process. With this new procedure it is possible to diminish the amount of waste because is 

solvent free and the cost of the catalyst preparation is low. 

Secondly, the different composites were tested as catalysts in 1-phenylethanol oxidation. As 

reported, several conditions were studied, namely the effect of time, temperature and quantity. 

At first, the substrate was reacted in the presence of different types of bi-metallic composites 

that were synthesized by ball milling. Results show that the addition of additives enhances the 

catalyst activity and that temperature is the clue operating parameter. The best results are 

obtained with a rhenium-based catalyst supported wit 1% of graphene oxide.
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The 1-phenylehtanol oxidation was also tried with copper-based MOF (HKUST-1) and results 

(yield, TON, TOF) show improvement with respect the bi-metallic composites since 90% yield 

is reached with 2 h reaction at 120°C. Finally, 1-phenylethanol oxidation with biomass 

supported metal catalyst was also performed. In general, the catalyst shows higher activity, with 

respect the HKUST-1 and the bi-metallic compounds. The best performance concerns the 

biomass supported metal catalyst that was synthesized by mechanochemical mixing and results 

are quite promising since a 90% yield is achieved with half an hour reaction at 120°C.   

In terms of societal improvement, the work described in this thesis shows that the application 

of biomass from waste is a promising filed for changing the paradigm in industry and 

consequently improving the management of waste produced, obtaining a more efficient and 

eco-friendly process that leads to a better quality of life. Moreover, this promising application 

is in agreement with The European Chemical Industry Council (CEFIC), which commits the 

chemical industry to improve its management of chemicals and chemical processes, which are 

central to its commitment to Sustainable Development. 

As future work, characterization by X-ray Photoelectron Spectroscopy (XPS) should be 

performed for all composites to evaluate if the grinding only mixed the salts or created new 

compounds in different oxidation states. Nonetheless, further work in optimizing the 

operational parameters for the synthesis of the catalysts should be done to decrease the size of 

the composites. The operational parameters that can be improved are the number of spheres, 

reactional time and grinding velocity. 

Regarding the MOF, supporting it for improving dispersion is a possible solution. Also 

synthesizing new MOFs with higher content of metal can be a possibility to improve the yield 

of the studied reactions. 

For biomass, the best results observed were obtained using the ball milling procedure which 

means that the size of the composite is an important parameter and grinding at higher velocities 

or with different number of spheres should be studied. Another task that should be done as 

future work is a systematic analysis of the operational cost for industry to compare the final 

cost of the product obtained. 







 

 

Annex A 

FTIR-ATR spectroscopy 

The reported spectroscopies concern catalysts n°9 to 16, 33, 37 and 39. Also the HKUST-1 

spectroscopy is reported.  

 

Catalyst n°9 

 
Catalyst n°10 
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Annex B 

Cyclohexane reactions list 

 

B.1 Ball milling reactor  

 

N° 

Catalyst 

Catalyst 

[µmol] 

Reactant Qt  

[µL] 

Oxidant Operating 

Parameters 

9 44.04 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

10 48.43 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

11 44.55 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

12 50.52 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

13 43.60 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

14 49.40 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

15 52.49 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 

16 57.00 Cyclohexane 540  O2 2 h; 10 spheres;     
  500 RPM 
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B.2 Microwave reactor   

 

N° 

Catalyst 

Catalyst 

[µmol] 

Reactant Qt 

 [µL] 

Oxidant Qt  

[mg] 

Operating 

Parameters 

9 44.04 Cyclohexane 110  K2S2O8 400.1 1 h; 50°C;     
  650 RPM 

10 48.92 Cyclohexane 110  K2S2O8 400.2 1 h; 50°C;     
  650 RPM 

11 45.00 Cyclohexane 110  K2S2O8 400.1 1 h; 50°C;     
  650 RPM 

12 49.52 Cyclohexane 110  K2S2O8 399.9 1 h; 50°C;     
  650 RPM 

13 44.04 Cyclohexane 110  K2S2O8 399.8 1 h; 50°C;     
  650 RPM 

14 48.42 Cyclohexane 110  K2S2O8 399.8 1 h; 50°C;     
  650 RPM 

15 51.46 Cyclohexane 110  K2S2O8 400.1 1 h; 50°C;     
  650 RPM 

16 57.57 Cyclohexane 110  K2S2O8 400.1 1 h; 50°C;     
  650 RPM 

 

  



Annex C                                                                                                                                                                   87 
 

 

Annex C 

1-Phenylethanol reactions list 

for biomass supported catalyst 

 

C.1 Biomass supported catalyst synthesized in acid solution  

 

Entry Reactant Qt 

[µL] 

Oxidant Qt 

[µL] 

Catalyst 

Qt [mg] 

Operating 

Parameters 

1 
1-

Phenylethanol 600 µL TBHP 955 µL 9.9 0.5 h; 80°C;     
  650 RPM 

2 
1-

Phenylethanol 600 µL TBHP 955 µL 10 1 h; 80°C;     
  650 RPM 

3 
1-

Phenylethanol 600 µL TBHP 955 µL 10.2 2 h; 80°C;     
  650 RPM 

4 
1-

Phenylethanol 600 µL TBHP 955 µL 10.2 0.5 h; 100°C;     
  650 RPM 

5 
1-

Phenylethanol 600 µL TBHP 955 µL 10 0.5 h; 120°C;    
   650 RPM 

6 
1-

Phenylethanol 600 µL TBHP 955 µL 5.2 1 h; 100°C;    
 650 RPM 

7 
1-

Phenylethanol 600 µL TBHP 955 µL 20.1 1 h; 100°C;  
   650 RPM 
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C.2 Biomass supported catalyst synthesized in ethanol  

 
 

Entry Reactant Qt 

[µL] 

Oxidant Qt 

[µL] 

Catalyst 

Qt [mg] 

Operating 

Parameters 

1 
1-

Phenylethanol 600 µL TBHP 955 µL 9.9 0.5 h; 80°C;     
  650 RPM 

2 
1-

Phenylethanol 600 µL TBHP 955 µL 10 1 h; 80°C;     
  650 RPM 

3 
1-

Phenylethanol 600 µL TBHP 955 µL 10.3 2 h; 80°C;     
  650 RPM 

4 
1-

Phenylethanol 600 µL TBHP 955 µL 10 0.5 h; 100°C;     
  650 RPM 

5 
1-

Phenylethanol 600 µL TBHP 955 µL 10 0.5 h; 120°C;    
   650 RPM 

6 
1-

Phenylethanol 600 µL TBHP 955 µL 5.4 1 h; 100°C;    
 650 RPM 

7 
1-

Phenylethanol 600 µL TBHP 955 µL 20.1 1 h; 100°C;  
   650 RPM 

 

 

 

 

 

 

 



Annex C                                                                                                                                                                   89 
 

 

C.3 Biomass supported catalyst synthesized by mechanochemical 

treatment  

 

Entry Reactant Qt 

[µL] 

Oxidant Qt 

[µL] 

Catalyst 

Qt [mg] 

Operating 

Parameters 

1 1-Phenylethanol 600 µL TBHP 955 µL 10 0.5 h; 80°C;     
  650 RPM 

2 1-Phenylethanol 600 µL TBHP 955 µL 9.9 1 h; 80°C;     
  650 RPM 

3 1-Phenylethanol 600 µL TBHP 955 µL 10.2 2 h; 80°C;     
  650 RPM 

4 1-Phenylethanol 600 µL TBHP 955 µL 10.2 0.5 h; 100°C;     
  650 RPM 

5 1-Phenylethanol 600 µL TBHP 955 µL 10.3 0.5 h; 120°C;    
   650 RPM 

6 1-Phenylethanol 600 µL TBHP 955 µL 5.3 1 h; 100°C;    
 650 RPM 

7 1-Phenylethanol 600 µL TBHP 955 µL 20.6 1 h; 100°C;  
   650 RPM 

 

 

 

 

 



 

 

 

 

  



 

 

Nomenclature 

Aint = Internal standard area (µV·s) 

Ac = Acetophenone area (µV·s) 

As = Substrate area (µV·s) 

TON =  
Moles of product

Moles of catalyst
 

TOF =  
TON

Time [ℎ]
   

RPM = Revolutions per Minute (rounds/min) 

A = Pre-exponential factor 

Ea = Activation energy (J·mol-1) 

R = Universal gas constant (J·mol-1·K-1) 

T = Temperature (°C or K) 

 

Acronyms 

BM = Ball Milling 

CS = Core-Shell 

CSNPs = Core-shell nanoparticles 

GC = Gas Chromatography  

TON = Turn Over Number  

TOF = Turn Over Frequency 

Qt = Quantity 

EDS = Energy Dispersive X-RAY Spectroscopy 

SEM = Scanning Electron Microscopy 

FID = Flame Ionization Detector 

MW = Microwave 

MOFs = Metal Organic Frameworks  

GO = Graphene Oxide 

KA oil = Ketone-alcohol oil 

ACN =Acetonitrile
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FE = Field Emission 

TEM = Transmission Electron Microscopy 

UV = Ultraviolet 

FTIR-ATR = Fourier Transform Infrared Spectroscopy-Attenuated Total reflection  

USD = United States Dollar 

TBHP = Tert-butyl hydroperoxide  

XPS = X-ray Photoelectron Spectroscopy  
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