

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

Relazione per la prova finale

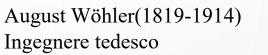
RESISTENZA A FATICA DI COMPONENTI OTTENUTI DA ADDITIVE MANUFACTURING

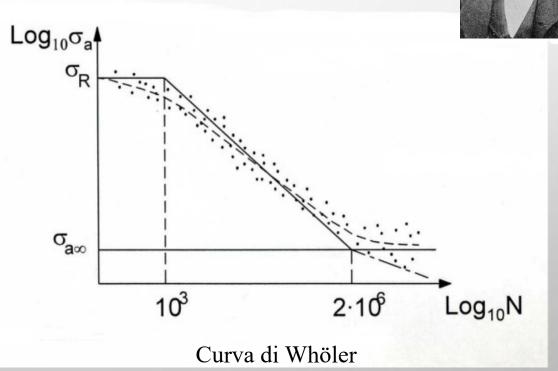
Canella Francesco

Tutor universitario: Prof. Alberto Campagnolo

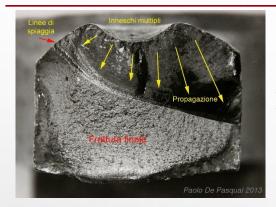
- Fatica nei materiali metallici;
- Additive manufacturing: tecnologia e tecniche;
- Fatica per componenti AM;
- Orientamento di costruzione;
- Porosità;
- Confronto.

- I. Studio dalla letteratura proposta durante il triennio riguardante la fatica nei materiali metallici;
- II. Stesura di una mappa concettuale;
- III. Ricerca di letteratura riguardante gli argomenti della relazione;
- IV. Rielaborazione del materiale a disposizione.

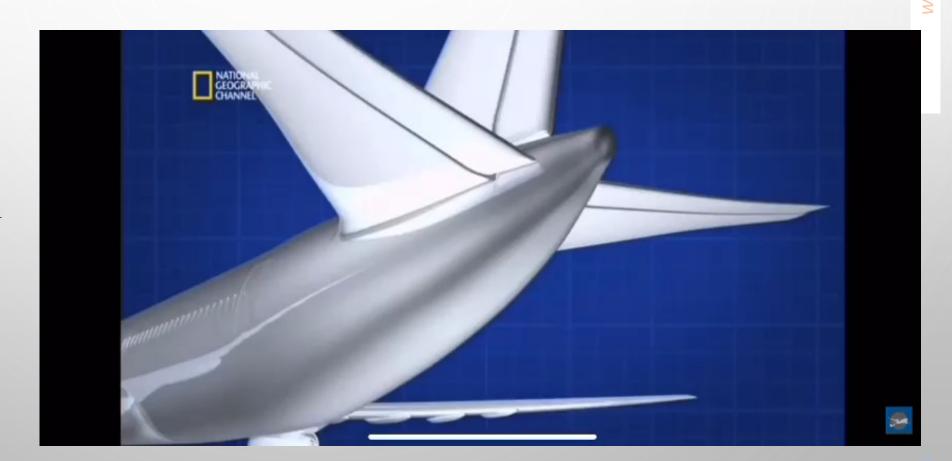



William Jhon Macquorn Rankine(1820-1872) Ingegnere e fisico scozzese

Strage di Viareggio: 32 morti.

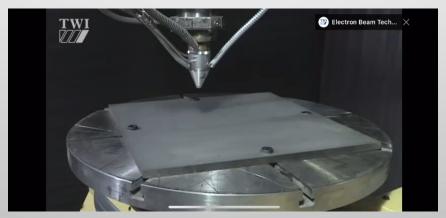

Causa: cedimento dell'asse di un carrello.

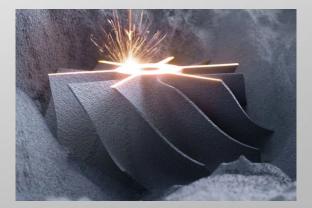
FATICA NEI MATERIALI METALLICI



Rottura a fatica

Volo China Airlines 611 25 maggio 2002, 15:28 225 morti


ADDITIVE MANUFACTURING: TECNOLOGIA E TECNICHE



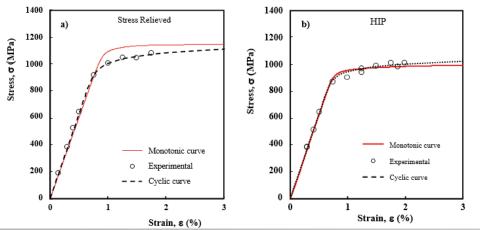
Modello CAD 3D → Suddivisione del componente in strati sottili → Stampa

- LOM (Laminated object manufacturing)
 alta produttività, costi contenuti.
- LMD (Laser metal deposition) riparazioni/aggiunta; settore navale, aereonautico.
- **Stampa 3D** (Binder Jetting/ Inkjet Printing) alta produttività, utilizzo anche per polimeri.
- DMP (Stampa diretta in metallo), DMLS (Sinterizzazione diretta in metallo) componenti piccoli, alte prestazioni.

METODI E MATERIALI

- Provini ad osso di cane prodotti tramite SLM (selective laser melting);
- Provini sottoposti a trattamenti termici di SR ed HIP;
- Test di trazione mono-assiale.

RISULTATI


- Per i provini sottoposti a SR si osserva un addolcimento del materiale;
- Per i provini sottoposti a HIP non si notano rilevanti scostamenti tra CCS e curva σ-ε

CONCLUSIONI

• È E che influenza maggiormente la vita a fatica, non il TT

Al	V	О	N	С	Н	Fe	Y	Ti
5.50 - 6.50	3.50 - 4.50	< 0.15	< 0.04	< 0.08	< 0.012	< 0.25	< 0.005	Bal.

Ø9.00

TT	σ[MPa]	Durezza [HV1]	K'[Mpa]	n'
SR	1144	405	1314	0.0432
HIP	995	350	1176	0.0364
TT	σf' (MPa)	b	εf' (%)	c
SR	3055.6	-0.163	89.380	-0.853
HIP	21150.1	-0.129	67.164	-0.764

19.00

34.20

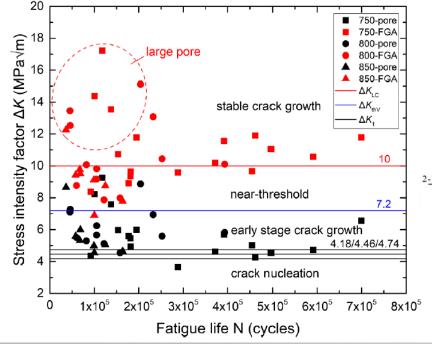
Ø9.00

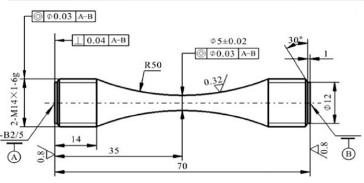
24.90

Tabella 4.3.3: valori ottenuti empiricamente dai test

Figura 1: confronto tra la curva monotona e la CCS per le due famiglie di provini; a) TT di distensione, b) TT HIP.

INFLUENZA DELLA POROSITÀ, LEGA Ti-6Al-4V


METODI E MATERIALI


- Provini in Ti-6Al-4V ricavati da un blocco prodotto tramite DED;
- TT a 600°C per quattro ore circa (riduzione tensioni interne));
- Test a fatica.

Laser Zi X Ti-SAI-4V Substrate

RISULTATI E CONCLUSIONI

- La presenza dei pori influenza negativamente le prestazioni a fatica;
- Le cricche inoltre si propagano più velocemente nell'aria, più lentamente nel vuoto.
- Δ K: fattore di intensificazione degli sforzi, funzione della geometria del corpo e del difetto, delle sollecitazioni applicate.

Main components			Impurities components						
Ti	Al	V	Fe	С	N	Н	О		
Bal.	6.10	4.15	0.16	0.04	0.02	0.01	0.13		
Laser power (W)		Scanning speed (mm/min)		Hatching space (mm)		Layer thickness (mm)			
5000		1000 ± 100		3		0.9			

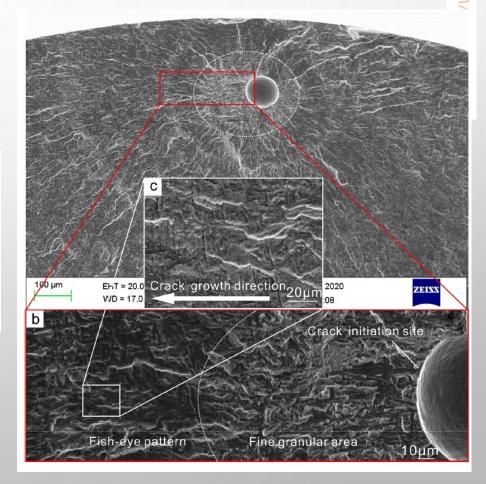
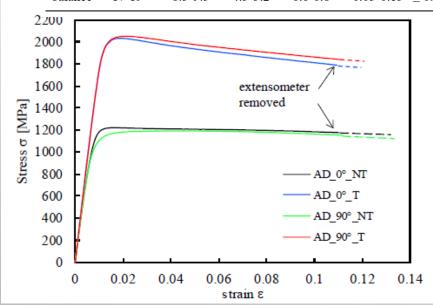


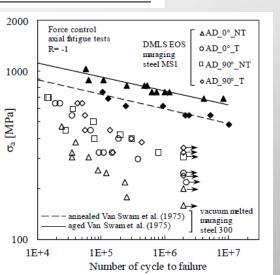
Figura 3: relazione tra ΔK e N; ΔK_{LO} ΔK_{thV} , ΔK_t : soglie per la classificazione degli stadi di crescita delle cricche.

INFLUENZA DEL'ORIENTAMENTO DI COSTRUZIONE E DEI

TRATTAMENTI TERMICI

as-built maraging steel specimens


METODI E MATERIALI


- Provini in acciaio maraging MS1 EOS prodotti da DMLS, con direzione del provino a 0° e 90°;
- TT di indurimento sul 50% dei provini;
- Prove statiche di trazione e prove di fatica a carico controllato, frequenza tra 10Hz e 30Hz;

RISULTATI E CONCLUSIONI

- I provini con orientamento di costruzione di 0° hanno una resistenza a fatica inferiore di quelli a 90°;
- Il TT ha migliorato la resistenza a fatica dei provini a 0° e lasciato invariata quella dei provini a 90°.

Fe	Ni	Co	Mo	Ti	Al	Cr	Cu	C	Mn	Si	P	S
(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)	(wt-%)
balance	17-19	8.5-9.5	4.5-5.2	0.6-0.8	0.05-0.15	≤ 0.5	≤ 0.5	≤ 0.03	≤ 0.1	≤ 0.1	≤ 0.01	≤ 0.01

 $Figura\ 2:\ Curve\ sforzo-deformazione\ dei\ campioni\ DMLS\ testati\ nelle\ condizioni\ as-built\ (NT\ non\ trattato)\ e\ invecchiato\ (T\ trattato)\ con\ differenti.$

risultati delle prove di fatica in termini di ampiezza di sollecitazione nominale per i provini DMLS testati nell'as-built (NT non trattato) e invecchiati (TT).

CONFRONTO TRA TECNOLOGIA ADDITIVA E SOTTRATTIVA

PRO

- Meno utensili;
- Geometrie molto complesse;
 - Rapida ed economica;
 - Customizzazione;
 - Assenza di scarti;
 - Leghe alto-resistenziali.

CONTRO

- Near-net-shape;
- Impianti costosi e complessi;
- Comportamento a fatica peggiore;
 - No produzioni in serie;

- governa la vita a fatica, indipendentemente dal TT;
- Proprietà meccaniche simili per orientazioni di 0° e 90°;
- Resistenza a fatica provini a 0° inferiore che a 90°;
- TT: resistenza a fatica provini 0° inferiore che a 90°;
- Porosità: influenza negativa su vita a fatica;
- ΔK : correlazioni geometria porosità vita a fatica.