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Abstract  

A data-driven approach commonly used to support the modelling of unknown systems 

is the design of experiments (DoE; Fisher 1971). The application of the DoE 

methodology is limited to the cases in which the input variables (or factors) are constant 

with time. In batch and semi-batch processes, the evolution of an operating condition 

with time can have a significant impact on the results (e.g. product specifications, 

reaction yield). The design of dynamic experiments (DoDE) is a new methodology 

developed by Georgakis (2013) to incorporate input variables that are time-dependent. 

The modeling approach, necessary to statistically estimate the relationship between 

inputs (both statics and dynamics) and the output variable is the response surface model 

(RSM; Box and Draper, 1987). However, the RSM describes the behavior of the output 

at the end-point of the process only. A generalization of RSM that captures the effects 

of the process inputs on time-resolved output has been proposed in Klebanov and 

Georgakis (2016). The latter is called dynamic response surface model (DRSM).  

In this thesis, the above methodologies are reviewed and critically applied. Empirical 

models are built to describe the relationship between inputs variables (regardless of their 

nature), and the output, in order to calculate the operating optimum of a dynamic 

process. Its application to three case studies allows to compare the DoE methodology 

with the DoDE one and to define the utility of a DRSM in the optimization of the end-

point of the process.  

The results show how the DoDE methodology leads to an improvement in the definition 

of the optimal operating conditions, of compared to DoE. Instead, the use of a DRSM 

can only confirm the result obtained by DoDE.   

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Riassunto  

Il design of experiments (DoE) è la tecnica di pianificazione degli esperimenti basata 

su dati più comunemente utilizzata per descrivere processi batch e semi-batch (Fisher 

1971). Tra le strategie di pianificazione degli esperimenti considerate dal DoE è 

possibile ricordare quella fattoriale completa e quella cubica a facce centrate. 

L’applicazione di tale metodologia permette di ridurre al minimo il numero di 

esperimenti necessari alla definizione di un modello empirico in grado di descrivere 

l’influenza di una o più variabili in ingresso al processo su una variabile in uscita. 

L’utilizzo del DoE è però circoscritto ai casi in cui le variabili (dette anche fattori) in 

ingresso siano costanti nel tempo. Tuttavia, questa appare essere un’importante 

limitazione nei processi batch e semi-batch, sui quali la variazione temporale delle 

condizioni operating può avere un impatto significativo.  

Una nuova metodologia, definita design of dynamic experiments (DoDE) è stata 

recentemente sviluppata da Georgakis (2013) con lo scopo di pianificare esperimenti 

che coinvolgano variabili in ingresso dinamiche. I profili in ingresso sono definiti come 

combinazione lineare di polinomi di Legendre e di coefficienti numerici chiamati sotto-

fattori dinamici. Le stesse strategie di pianificazione che nel DoE determinano i livelli 

di variazione dei fattori statici, sono utilizzate nel DoDE per definire le diverse 

combinazioni di sotto-fattori dinamici. L’applicazione sia del DoE che del DoDE mira 

a costruire un modello empirico che stimi statisticamente la relazioni tra variabili in 

ingresso (sia statiche che dinamiche) e quella in uscita (chiamata anche variabile di 

risposta). Questi modelli sono definiti superfici di risposta (Box e Draper, 1987) e, in 

accordo con il numero di esperimenti eseguiti, possono essere di primo o secondo 

ordine. Sono modelli di primo ordine quelli che descrivono gli effetti lineari dei fattori 

in ingresso sulla variabile di risposta. Per definire invece la dipendenza quadratica è 

necessario costruire un modello del secondo ordine. Tuttavia, le superfici di risposta 

descrivono il processo in un preciso istante temporale, rappresentato, normalmente, 

dall’istante finale. Per questo motivo, si possono definire anche superfici di risposta 

statiche. Con lo scopo di descrivere l’intero profilo della variabile di risposta, un nuovo 

approccio di modellazione, chiamato superficie di risposta dinamica, è stato proposto 

(Klebanov e Georgakis 2016). Questi modelli dinamici definiscono la dipendenza della 

variabile di risposta sia dai fattori in ingresso, qualsiasi sia la loro natura, che dal tempo. 

Le Superfici di Risposta Dinamiche sono costruite come combinazioni dei polinomi di 

Legendre. 



 

In questa tesi, viene definita una metodologia che, basandosi sulle metodologie fino a 

qui discusse, consente di costruire un modello empirico in grado di descrive la relazione 

tra le variabili in ingresso e una variabile in uscita, al fine di calcolare le condizioni 

operative ottimali di un sistema dinamico. Questo procedimento di ottimizzazione 

prevede cinque passaggi.  

Il primo passaggio richiede la definizione della variabile in uscita al processo che si 

vuole ottimizzare e delle variabili in ingresso che maggiormente la influenzano. Per fare 

ciò, ci si può basare sia su dati di letteratura, sia su test di screening precedentemente 

eseguiti. È necessario inoltre definire l’intervallo di variazione delle variabili in ingresso 

e, nel caso di variabili dinamiche, il numero di sotto-fattori utilizzati.  

Il passaggio successivo richiede di identificare la strategia di pianificazione degli 

esperimenti adatta a garantire la definizione del modello empirico desiderato. Un 

modello quadratico richiederà infatti un numero maggiore di esperimenti rispetto ad 

uno lineare. 

Una volta definiti i valori assunti dai fattori statici e dai sotto-fattori dinamici, gli 

esperimenti sono eseguiti con l’obiettivo di raccogliere i dati relativi alla variabile in 

uscita necessari alla costruzione di una superficie di risposta statica o dinamica.   

I coefficienti di una superficie di risposta statica sono calcolati considerando i valori 

assunti dalla variabile di risposta alla fine del processo. Per la costruzione di una 

superficie di risposta dinamica, la misurazione della variabile deve essere invece 

eseguita ad intervalli di tempo regolari durante il processo. Sia la superficie di risposta 

statica che quella dinamica sono utilizzate per determinare le condizioni operative 

ottimali del processo. Nel primo caso, l’ottimizzazione riguarderà il valore assunto dalla 

variabile di risposta alla fine del batch. Nel caso di una superficie di risposta dinamica 

il criterio di ottimalità prevede, invece, la massimizzazione di una funzione del profilo 

della variabile in uscita (per esempio, il suo integrale).  

L’intera procedura è applicata a tre casi studio: 

• un generico reattore batch con reazione reversibile;  

• un reattore semi-batch;  

• un processo di fermentazione della penicillina. 

Nel primo caso studio si è cercato di ottimizzare il profilo della temperatura del reattore 

in modo tale da massimizzare la conversione finale del reagente. Nel caso studio del 

reattore semi-batch si vuole controllare la concentrazione in uscita di un prodotto 

manipolando la portata in ingresso di uno dei reagenti. Nel terzo caso invece sono 

considerati due fattori statici, rispettivamente la concentrazione di biomassa iniziale e 

la durata del batch e di un fattore dinamico, ovvero, la portata di substrato in ingresso. 

La variabile in uscita è la concentrazione finale di penicillina.  



 
 

 

L’applicazione della procedura ai casi studio sopra citati ha dato modo di confrontare i 

risultati ottenibili attraverso DoE e DoDE e definire l’utilità delle superfici di risposta 

dinamiche nell’ottimizzazione del valore finale della variabile di risposta.                             

I risultati mostrano come la metodologia DoDE porti ad un miglioramento nella 

definizione delle condizioni operative ottimali, rispetto al DoE. Invece, l’uso di una 

superficie di risposta dinamica può solo confermare il risultato ottenuto dal DoDE.  
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Introduction 

In batch and semi-batch processes, a data-driven modeling approach is often convenient 

since usually it is not possible to develop a detailed and accurate knowledge-driven 

model describing the process (Georgakis 2013). The classical data-driven approach to 

set up the experimental campaign is the design of experiments (DoE). This 

methodology, proposed by Fisher (1971), allows running a minimal number of 

experiments to characterize the behavior of a process output. DoE considers defining 

an empirical model, called response surface model (RSM; Box and Draper, 1987) that 

describes the relationship between the input variables, often called factors, and the 

output variable. However, the DoE methodology is limited by the fact that all the factors 

examined are invariant with time. In the case of batch and semi-batch processes, the 

time evolution of the input variables can have a substantial impact on the results. For 

this reason, a new methodology, for the description of dynamic experiments, has been 

developed. This methodology is called design of dynamic experiments (DoDE) and it 

has been proposed by Georgakis (2013). This approach is based on the design criteria 

used in DoE and allows defining a RSM that relates the time-variant input to a single 

output at the end-point process. Klebanov and Georgakis (2016) proposed the dynamic 

response surface model (DRSM) methodology. The latter is a generalization of the RSM 

that, starting from the results of DoDE, is able to describe the relationship between the 

input variables and the profile of the output along the process.  

The objective of this thesis is to bring together the methodologies already explored 

(DoE and RSM) and the new ones (DoDE and DRSM) to determine the operating 

optimum of batch and semi-batch process. The aim is to understand if the new 

methodologies are able to define operating conditions that allows obtaining an 

improvement in the product specifications (e.g. product concentration, conversion of a 

reactant), with those achievable using the older ones. The thesis is divided in four 

chapters. In Chapter 1, the procedure useful to build an empirical model, which 

describes the relationship between manipulated inputs and process output, and to define 

the operating optimum of a dynamic process, is reported. In Chapter 2 three case studies, 

to which the procedure will be applied, are described. The case studies considered are:  

• a batch reactor with reversible reaction, 

• a semi-batch reactor with a network of three reactors, 

• a penicillin fermentation process.  



 

In Chapter 3, the optimization procedure is applied to the case study of a batch reactor 

with reversible reaction, while in the fourth chapter it is applied to the case study of the 

penicillin fermentation process. The development of the case study of a semi-batch 

reactor is reported in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 1 

Mathematical background on design 

of dynamic experiments 

In this chapter, a methodology for the optimization of the operating conditions of batch, 

semi-batch or fed-batch processes using data-driven models is described.  

1.1 Introduction to a designed experimentation    

The procedure presented in this chapter allows building an empirical model that 

describe the relationship between manipulated inputs and process output and defining 

the operating optimum of a dynamic process. It can be applied to batch and semi-batch 

processes in which first principle model is not available. First, it is necessary to define 

the process output that has to be optimized and the input variables, static or dynamic, 

that influence the output. Through some screening tests, it is possible to define the input 

variables that have a greater influence on the process and the appropriate ranges of 

variation within which the optimization analysis has to be concentrated. Once defined 

the variation interval of the input variables, a strategy for the design of the experiments 

must be identified. The experimental campaign is made by a series of tests, called runs, 

in which changes are made in the input variables in order to identify the reason for 

changes in the output response. The way in which the inputs are modified between 

experiments is defined using DoE criteria. The application of DoE for the definition of 

the design strategy allows obtaining the largest number of information, by minimizing 

the number of experiments to be performed. The data obtained from the experimental 

campaign, in terms of the value of the output variable, have to ensure the definition of 

an empirical model that describes the relationship between the input variables and the 

output. The design strategy has to consider both the complexity of the empirical model 

in terms of representativeness of the process, and the number of informative 

experiments that have to be done.  

The empirical model defined will be used to calculate the operating optimum of the 

process.  
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Five general steps that compose the optimization procedure are schematized in Figure 

1.1. 

 

Figure 1.1 Scheme of the optimization procedure 

As reported in Figure 1.1, the procedure for the process optimization can be schematized 

in the following steps: 

• selection of factors;  

• choice of the strategy of the design of experiments; 

• realization of the experiments; 

• construction of a response surface model; 

• definition of the operating optimum. 

The first part of the procedure consists in the design of dynamic experiments (DoDE). 

DoDE is a generalization of the statistical design of experiments (DoE), which is a 

widely used data-driven approach to explore the functional relation among output 

variables (e.g.: the product quality) and the input variables, usually called factors (e.g.: 

process operating conditions, initial settings, etc.). The factors considered in the DoE 

are static variables. Nevertheless, in a batch process, the time evolution of operating 

conditions has an important impact on the process output. DoDE can be used when a 

process is affected both by static and dynamic factors, so that it is possible to understand 

which is the profile of variation of a dynamic input that guarantees the optimal value of 

the process output. The application of this methodology allows the definition of static 

response surface model (RSM) and dynamic response surface model (DRSM).  

1.  Selection of the factors 

3. Realization of the experiments 

4. Construction of a response surface model  

5. Definition of the operating optimum 

2.  Selection of the strategy of the design of 

experiments 
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RSM is a data-driven model structure that captures the relationship between process 

input (time-variant or time-invariant) and a single output, usually at the end-point of the 

process. DRSM, as an expansion of RSM, defines the correlation between input 

variables and time-resolved output variables.  

1.1.1 Selection of the factors 

The first step of the procedure consists in the selection of the factors that more influence 

the process. They can be: 𝑖) static (𝑊𝑗), 𝑖𝑖) or dynamic, namely time-varying. This is a 

standard step in the design of experiments, which needs to define also the variation 

range of the factors.  

The selection of the factors needs screening tests in order to highlight those that have a 

greater influence on the output variable that must be optimized. These tests allow also 

to determine the variation range of the input variables on which the analysis may be 

focused on. 

The variation of the static factors in the design of experiments (DoE) is described in 

Montgomery, D. (2013) and reported here in Subsection 1.1.2. 

1.1.1.1 Static factors 

DoE enables the design of a set of experiments, so that the maximum information is 

obtained or, conversely, the minimum number of experiments is performed to obtain 

the desired information. The procedure consists in the definition of the values that an 

input factor must assume during each experiment. The target is to collect the values of 

the process output in order to define the relationship between input and output variables. 

Numerical values among which the input factor changes are called levels. The variation 

of the factor 𝑊𝑗 is usually codified to range its variation between -1 and +1. The codified 

version of factor 𝑊𝑗 is indicated with a lowercase letter (𝑤𝑗) and its levels 𝑤𝑖,𝑗  are 

defined as:  

𝑤𝑖,𝑗 =
𝑊𝑖,𝑗 − 𝐷𝑊𝑗

𝑑𝑊𝑗
    , 

                                                         (1.1) 

−1 ≤ 𝑤𝑖,𝑗 ≤ +1                                                          (1.2) 

with 

𝐷𝑊𝑗 =
 𝑊𝑚𝑎𝑥,𝑗 + 𝑊𝑚𝑖𝑛,𝑗

2
   , 

 

                                                   (1.3) 

𝑑𝑊𝑗 =  
𝑊𝑚𝑎𝑥,𝑗 − 𝑊𝑚𝑖𝑛,𝑗

2
   . 

 

                                                   (1.4) 
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The 𝑊𝑚𝑎𝑥,𝑗 and 𝑊𝑚𝑖𝑛,𝑗 represent the maximum and the minimum value of the variation 

range of factor 𝑊𝑗.       The DoE methodology is usually applied to the case of static factors. 

In most cases, the input parameters must describe a time variable profile during the 

batch process; to design this type of processes the design of dynamic experiment is used. 

1.1.1.2 Dynamic factors 

For the sake of simplicity, consider one single factor 𝑋 that varies inside the batch 

process with time. The factor can vary with different time profiles 𝑋𝑚(𝑡), whose set of 

M profiles is indicated with the bond letter 𝐗(t). As the static factors in DoE, the time 

profiles must be codified to range their variation between -1 and +1 in a time interval 𝜏 

that is considered here a dimensionless time ranging from 0 (i.e., start of the process) to 

1 (i.e., completion of the process). The set of codified profiles is defined by the 

lowercase letter 𝐱(𝜏) while a single profile is defined using 𝑥𝑚(𝜏) and calculated as: 

𝑥𝑚(𝜏) = 
𝑋𝑚(𝑡)− 𝐷𝑋(𝑡)

𝑑𝑋(𝑡)
    , (1.5) 

−1 ≤ 𝑥𝑚(𝜏) ≤ +1   ,        
(1.6) 

 

and  

𝐷𝑋(t) =
 𝑋𝑚𝑎𝑥(𝑡) + 𝑋𝑚𝑖𝑛(𝑡)

2
     , 

 

(1.7) 

𝑑𝑋(𝑡) =  
𝑋𝑚𝑎𝑥(𝑡) − 𝑋𝑚𝑖𝑛(𝑡)

2
      , 

 

 (1.8) 

where the 𝑋𝑚𝑎𝑥(𝑡) and 𝑋𝑚𝑖𝑛(𝑡) are the maximum and minimum values that the factor 

𝑋 can assume. The novelty brought by DoDE consists in the way of defining the profiles 

𝐱(𝜏). It is assumed that all functions of time belong to the Hilbert space of squares 

integrable functions in 𝜏 ∈ [0, 1] interval. The profiles of the input variable must be 

defined as a linear combination of an ortho-normal set of functions that is a basis in the 

Hilbert space (Georgakis 2016) namely the shifted Legendre polynomials, and the 

dynamic subfactors 𝑥𝑛,𝑚 . The first five polynomials are reported in Table 1.1: 

Table 1.1 Shifted Legendre polynomials 𝑃𝑛(𝜏) 

n 𝑷𝒏(𝝉): 

n=0 1 

n=1 −1 + 2𝜏 

n=2 1 − 6𝜏 + 6𝜏2 

n=3 −1 + 12𝜏 − 30𝜏2 + 20𝜏3 

n=4 1 − 20𝜏 + 90𝜏2 − 140𝜏3 + 70𝜏4 
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where n is the degree of the shifted Legendre polynomial 𝑃𝑛(𝜏) . Each profile is defined 

as a combination of this set of functions: 

𝑥𝑚(𝜏) = ∑𝑥𝑛,𝑚𝑃𝑛−1(𝜏)   

𝑁

𝑛=1

.  (1.9)                  

 

The coefficients {𝑥1,𝑚, 𝑥2,𝑚, … 𝑥𝑁.𝑚} are called dynamic subfactors and N is the total 

number of subfactors used. The profiles, whose total number M is related to the number 

of experiments scheduled, are differentiated according to the choice of the dynamic 

subfactors.  

Since the value of each profile has to range between -1 and +1 according to Equation 

(1.6), the  𝑥𝑛,𝑚 coefficients must observe the following inequalities: 

−1 ≤ 𝑥1,𝑚 ± 𝑥2,𝑚 ± 𝑥3,𝑚 ± ⋯ ± 𝑥𝑁,𝑚 ≥ +1 .   (1.10) 

The total number of dynamic subfactors N is also the total number of shifted Legendre 

polynomial used for the description of the input profiles while N-1 is the maximum 

degree of polynomial used. If only the first Legendre polynomial 𝑃0 is used, the profiles 

performed are constant with time while if the second or the third Legendre polynomials 

are added, the input factor can vary respectively in a linear or a quadratic way with time. 

The combinations of the dynamic subfactors that define the profiles of variation of the 

dynamic variable has to satisfy the constraint in Equation (1.10). However, other 

operating constraints must be considered in the design step. 

1.1.2 Strategy for designing the experiments 

Once the levels of variation are defined both of the static factors and the dynamic 

subfactors identified in the previous step, it is necessary to choose a proper strategy. It 

has to consider both the number of experiments that are able to perform, according to 

cost, time, or the availability of the facilities and the information that are aimed to 

collect from the experimental campaign.  

In this paragraph, the design strategy that will be applied in the Chapter 3, to different 

case studies, are described. These are:    

• Full Factorial (FFD) 

• Central Composite Scheme (CCD) 

• D-Optimal Design (DOD) 
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1.1.2.1 Full factorial design (FFD) 

The full factorial design allows a complete collection of information because 

investigates all the possible combinations among all the levels for every factor. If each 

factor varies its value along I-levels, the number of runs necessary for a I-level full 

factorial design is IJ, where J is the number of factors. For example, in the case of 2 

factors varied on 3-levels, a FFD requires 9 experiments. The 3 levels are usually 

defined as the lower, an intermediate and the higher value (usually equally spaced) that 

the factor can assume. (Montgomery, 2013) 

If the variation of the factors is codified between -1 and +1, the -1 is considered the 

lower level, 0 the intermediate one, and +1 the higher level. The design matrix for two 

factors 𝑊1 and 𝑊2 codified as 𝑤1and 𝑤2 that vary among three levels (-1, 0, +1) is 

reported in Table 1.2:  

 
Table 1.2 Experimental plan in the case of three level full factorial design 

with two factors 

Run 
Coded Variables 

𝑤1 𝑤2 

1 -1 +1 

2 0 +1 

3 +1 +1 

4 -1 -1 

5 0 -1 

6 +1 -1 

7 -1 0 

8 0 0 

9 +1 0 

FFD is an orthogonal experimental design method because the scalar product of the 

columns of the design matrix in Table 1.2 is zero. The design points can be represented 

inscribed in a square as in Figure 1.2. 

 

Figure 1.2. Geometrical representation of a three-level full factorial design with two 

factors   

To the point defined by the structure of a FFD, it is necessary to add some replicated 

runs in order to estimate the accuracy of the measurements.  
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The performance of a FFD sometimes required high costs and long times to do all the 

tests. In fact, as the number of factors in a I-level factorial design increases, the number 

of runs necessary to do increases quickly. For example, in the case of three factors that 

vary among three levels 27 experiments are needed, 81 for 4 factors. In these cases, a 

fractional factorial design is preferable as it requires only half of those runs. Therefore, 

the result decreases the information that can be collected.  

1.1.2.2 Central composite design 

A more complicated experimental design, useful in the case of two or more than two 

factors, is a central composite design (CCD). This is an experimental design through 

which is possible to build a second order (quadratic) model for the response variable 

without needing to use a complete three-level factorial experiment.  

Two types of CCD scheme are reported in the figure below: 

         a)           b) 

Figure 1.3. Geometrical representation of a central composite design in the case of 

a) two factors and b) three factors.  
 

The CCD consists of: 

• 2𝑗 factorial design, that is described by the black points in Figure 1.2,  

• a star design consisting of 2j + 1 points. 

In summary, CCD allows to obtain data to estimate first-order and interaction effects 

for each factor and additionally provides data to estimate second-order effects. One of 

these points is the central one, the experiment in this point is often repeated in order to 

define the precision of the experimental measurements (Trutna et al, 2012). The 

distance from the central point of the design space to a star point (in white in the Figure 

1.3) is equal to α. This value is calculated according to the equation: 

𝛼 = [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑟𝑢𝑛𝑠]
1

4⁄ = [2𝑗]
1

4⁄
.                            (1.11) 
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In the case of two factors a CCD requires the same number of trials (9) as 32 FFD, while 

in the case of three or four factors the CCD requires respectively only 15 and 25 trials.  

1.1.2.3 D-optimal design 

DOD is used when the latter requires too many runs for the amount of resources or time 

allowed for the experiment or when the design space is constrained. Unlike standard 

classical designs, such as factorials and fractional factorials, D-optimal design matrices 

are usually not orthogonal (Trutna et al, 2012). As a starting point in DOD, a set of 

candidate samples is needed and a restricted subset of them is selected according to the 

optimality criterion. This is defined using a full factorial experimental design with many 

levels for each factor. D-optimal designs depends on the adopted optimality criterion 

and on the response surface model which is intended to obtain (e.g. first order, first 

order plus interactions, full quadratic, cubic, etc.). Z is the matrix containing the set of 

candidate samples. The D-optimal design is built by looking for the submatrix z for 

which the value of the determinant of z'z, is maximized where z' is the transposed 

version of z. This optimality criterion aims at minimizing the variance of the parameters 

that will be calculated in the response surface models.  

1.1.2.4 Example of design of dynamic experiments with linear profiles  

DoDE allows the application of the DoE strategies to time-variant factors. In particular, 

it suggests building the experimental plan considering both the dynamic subfactors (𝑥𝑛) 

and static factors (𝑤𝑗). This means that the choice of the strategy, according to those 

presented in this paragraph, depends both on the number of dynamic subfactors and 

static factors.  

In this subparagraph, some examples of the design of dynamic experiments, in the case 

of only one dynamic factor that can be described by a different number of dynamic 

subfactors, are reported. Consider for example the simplest set of DoDE experiments: 

this is obtained by selecting N=1 in the equation (1.11), meaning that the dynamic 

profile of 𝑋(𝑡), and accordingly its codified value 𝑥(𝜏) is a linear combination of the 

first two Legendre polynomials 𝑃0(𝜏) and 𝑃1(𝜏) reported in Table 1.1. The equation 

(1.9) can be rewritten in this form: 

𝑥𝑚(𝜏) = 𝑥1,𝑚𝑃0(𝜏) + 𝑥2,𝑚𝑃1(𝜏)  .                          (1.12)  

The experiments are characterized by different profiles of 𝑥(𝜏) which variation is 

determined by the values of dynamic subfactors 𝑥1,𝑚 and 𝑥2,𝑚.  
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The values of the subfactors are varied on different levels, based on the design strategy 

that it is wanted to use. To perform a two-level full factorial design, the following four 

(22) experiments are described:  

(
 𝑥1,𝑚 

 𝑥2,𝑚 
) =  ( 

1 
1 

) , (
   1
−1

) , (
−1 
   1

) , ( 
−1
−1

)   . (1.13) 

However, these combinations do not meet the constrain in Equation (1.6) for all the 

experiments. For example, the case of  ( 𝑥1,2 ,  𝑥2,2 ) = (1, −1)  generates the following 

profile, that are indicated with  𝑥2(𝜏) :  

 𝑥2(𝜏) =  𝑥1,2 𝑃0(𝜏) + 𝑥2,2𝑃1(𝜏) = 1 − (1 − 2𝜏) = 2𝜏       (1.14) 

which does not satisfy Equation (1.6) when 𝜏 is > 0.5. Therefore, the values of  𝑥1,𝑚  and 

 𝑥2,𝑚  are changed according to the inequality in equation (1.10), that in this case has 

the following formulation: 

−1 ≤ 𝑥1,𝑚 ± 𝑥2,𝑚 ≤ 1     . (1.15) 

These lead to the following FF DoDE: 

Table 1.3 Combinations of two dynamic subfactors 𝑥1,𝑚, and 𝑥2,𝑚 in the 

case of two levels full factorial design with two factors 

Run 
Coded Variables 

𝑥1,𝑚 𝑥2,𝑚 

1 -0.5 +0.5 

2 -0.5 -0.5 

3 +0.5 +0.5 

4 +0.5 -0.5 

The values in Table 1.3 define four linear profiles of variation of the dynamic factor 

that are reported in Figure 1.4. 
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Figure 1.4 Profiles of variation of the dynamic factor in the case of two level full 

factorial DODE with two dynamic subfactors 

1.1.2.5 Example of design of dynamic experiments with non-linear profiles  

In the previous example linear profiles are used in DoDE. The profiles of a dynamic 

factors may not be linear. For example, consider the case of a quadratic time profile: in 

this case the first three Legendre polynomials: 𝑃0(𝜏) , 𝑃1(𝜏) and 𝑃2(𝜏) are considered. 

As a consequence, the values of three subfactors: 𝑥1,𝑚, 𝑥2,𝑚, and 𝑥3,𝑚 are varied in a 

two levels full factorial DoDE. In order to define the correct combinations of the values 

that the subfactors assume, it is necessary to verify that each combination satisfies the 

inequality of Equation (1.6). In Table 1.4 the design matrix for a 2-level FF design in 

the case of three subfactors is reported.   

Table 1.4 Combinations of three dynamic subfactors 𝑥1, 𝑥2 and 𝑥3 in the 

case of two level full factorial design with three factors. 

Run 
Coded Variables 

𝑥1 𝑥2 𝑥3 

1 0,33 0,33 0,33 

2 0,33 -0,33 0,33 

3 0,33 0,33 -0,33 

4 0,33 -0,33 -0,33 

5 -0,33 0,33 0,33 

6 -0,33 -0,33 0,33 

7 -0,33 0,33 -0,33 

8 -0,33 -0,33 -0,33 

The quadratic profiles of the dynamic factor, related to the eight experiments, are shown 

in Figure 1.5 
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The design matrix in the Tables 1.3 and 1.4 illustrates the experimental plan for the 

description of the influence of a single dynamic factor on the process. In the case of 

DoE, it would necessary to consider the same number of experiments to describe two 

static factors, as shown in the Table 1.2. This means that the implementation of DoDE 

requires at least twice the number of experiments of DoE.  

1.1.3 Execution of the experiments 

Once defined the experimental plan, the practitioner has to perform the experiments in 

a random order. This part of the procedure has the purpose to collect the data related to 

the response variable that will be used in the next step to define a response surface 

model. The experiments are performed in silico using MATLAB® software. 

1.1.4 Construction of a response surface model  

Two strategies can be adopted for empirical model building: response surface model 

(RSM) and dynamic response surface model (DRSM) 

1.1.4.1 Static response surface models (RSM) 

The RSM is an empirical modeling approach to characterize the relationship between 

factors and outputs (Myers et al, 2009). The relationship can be modelled by a 

parametric equation that defines the influence of factors on the process output, that is 

the response variable such the conversion of a reactant or a concentration of a product 

at the end-point of the batch. The general equation that defines the relationship between 

a response variable 𝑦 and two input factors 𝑥1 and 𝑥2 is the following: 

 

Figure 1.5 Profiles of the dynamic factor in the case of two level full factorial DODE 

with three dynamic subfactors 
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𝑦 = 𝒇(𝑥1, 𝑥2)𝒃 + 𝜺    (1.16) 

where 𝒇(𝑥1, 𝑥2) is the vector function of d elements that consists of powers and cross-

product powers of 𝑥1 and 𝑥2 up to a certain degree, 𝒃 is a vector of d unknown constant 

coefficients and 𝜺 is the random experimental error assumed to have zero mean. The 

vector function  𝒇(𝑥1, 𝑥2) and the number of coefficients d depend on the degree of the 

model chosen to describe the influence of the input factors on the response variable. In 

the equation below, both the first and the second order terms are reported. 

𝑦̂ = 𝒇(𝑥1, 𝑥2)𝒃 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2  .  (1.17) 

The first terms are useful to define the linearity of the factors effects. If interaction terms 

are added to the first order, the model can represent some curvature in the response 

function. However, in some situations, the curvature of the response variable is not 

adequately modeled using only linear and interaction terms. In this case, the 

approximation of the response variable required second order terms to describe the 

quadratic effects. The model chosen depends on the design strategy according to which 

the experiments were performed. The most common first-order designs are 2-levels FF, 

while, a 3-level FFD or a CCD are usually required to define a second-order model. If 

J is the number of independent factors, the number of parameter p in the second-degree 

model is calculated as: 

𝑑 = 1 + 2𝐽 +
1

2
𝐽(𝐽 − 1)   .                                                (1.18) 

Therefore, the number of distinct design points of a second order must be at least equal 

to d. (Montgomery, 2013)  

The values of the response variables, necessary to define the empirical model, are those 

collected during the experimental campaign as the one in 1.1.3. If the total number of 

experiments is M, the same number of values of the response variable are collected. 

Using 𝑦̂ the set of predicted values of 𝑦 is indicated while with 𝑦̂𝑚 is indicated the 

predicted value of the 𝑦𝑚 experimental data. The estimation of the regression 

coefficients d in a multiple linear regression model is performed through the MATLAB 

function “regress” that uses the least square method. If 𝑦𝑚 is characterized by the 

following equations: 

 𝑦𝑚 = 𝑦̂𝑚 + 𝜀𝑚  ,       (1.19) 
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𝑦̂𝑚 = 𝑏0 + 𝑏1𝑥1,𝑚 + 𝑏2𝑥2,𝑚 + 𝑏12𝑥1,𝑚𝑥2,𝑚 + 𝑏11𝑥1,𝑚
2 + 𝑏22𝑥2,𝑚

2  (1.20) 

the least squared method chooses 𝒃 in Equation (1.20) so that the sum of squares error 

related to each measurement of the response variable 𝑦𝑚, is minimized. The adequacy 

of the approximation provided by the function (1.20) is defined by the value of the 𝑅2-

adjusted. The 𝑅2-adjusted is a modified version of the 𝑅2 that has to be adjusted 

according to the number of independent factors in the model. The number of 

independent factor determined the number of regressors M. The is 𝑅2-adjusted 

calculated in this way: 

𝑅2
𝑎𝑑𝑗 = 1 − (

𝑀 − 1

𝑀 − 𝑑
)

𝑆𝑆𝐸

(𝑆𝑆𝐸 + 𝑆𝑆𝑅)
 (1.21) 

𝑆𝑆𝐸 is the sum of squared error and 𝑆𝑆𝑅 is the sum of squared regression calculated 

respectively as: 

𝑆𝑆𝐸 = ∑ (𝑦̂𝑚 − 𝑦̅)2

𝑀

𝑚=0

 (1.22) 

𝑆𝑆𝑅 = ∑ (𝑦𝑚 − 𝑦̂𝑚)2

𝑀

𝑚=0

 (1.23) 

where 𝑦𝑚 is the experimental value that has to be predicted using 𝑦̂𝑚 and 𝑦̅ is the mean 

value of the response variable. The value of 𝑅2
𝑎𝑑𝑗 varies between 0 and 1, with larger 

numbers indicating better fit (Chatterjee and Hadi, 1989). 

1.1.4.2 Dynamic response surface models (DRSM) 

In processes with time varying nature, separate RSM models may be developed at 

different time instants during each batch to give a general view of the process.  

To this end, a new procedure has been used: the dynamic response surface model 

(DRSM), described in Klebanov and Georgakis (2016). 

DRSM is a data-driven model structure that captures the relationship between process 

input (time- invariant or time-variant) and time-resolved output. Its aim is to define the 

dependence of the process output profile to the input variables.    

Consider for instance one dynamic factor 𝑥, whose variation is described by two 

dynamic subfactors: 𝑥1 and 𝑥2. Suppose that experimental plan was build, according to 

the DoDE rules and the experiments run, to collect the respective data. By measuring 

the process output K times along the process, KM values of the response variable can 
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be obtained, where M is the number of unique experiments performed. The choice in 

the number of K must be a compromise among carrying out few measurements and 

obtaining a larger data set to build a most informative response surface model. The KM 

is the data set containing all the values of the process output at different time instant 𝑡𝑘 

and in the case of 𝑥𝑚 input profile. 

A general relationship can be defined: 

  𝑦𝐷𝑅𝑆𝑀(𝑡) =  {𝛽0(𝜏)} +  {𝛽1(𝜏)}𝑥1 + {𝛽2(𝜏)}𝑥2     (1.24) 

                    + {𝛽12(𝜏)}𝑥1𝑥2  + {𝛽11(𝜏)}𝑥1
2 + {𝛽22(𝜏)}𝑥2

2 .  

In order to describe the time profiles of the process output 𝑦𝑒𝑥𝑝(𝑡), the time varying 

functions of the coefficients {𝛽0
(𝜏), 𝛽1

(𝜏), 𝛽2
(𝜏) … } have to be defined.  A finite 

approximation of {𝛽𝑞
(𝜏) } is achieved by a polynomial expansion using shifted 

Legendre polynomials, where the subscript [q] defines the index of variation of the 

parameters according to the used model (linear, linear plus interaction or quadratic). 

The {𝛽𝑞
(𝜏) } can be rewritten as a linear combination of the shifted Legendre 

polynomials {𝑃0(𝑡), 𝑃1(𝑡), 𝑃2(𝑡), … }.  For example, the following DRSM is obtained 

using the first three Legendre polynomials: 

𝑦𝐷𝑅𝑆𝑀(𝜏) =  {𝑔0,1𝑃0(𝜏) + 𝑔0,2𝑃1(𝜏) + 𝑔0,3𝑃2(𝜏)}    (1.25) 

                                  +{𝑔1,1𝑃0(𝜏) + 𝑔1,2𝑃1(𝜏) + 𝑔1,3𝑃2(𝜏)}𝑥1  

                                  +{𝑔2,1𝑃0(𝜏) + 𝑔2,2𝑃1(𝜏) + 𝑔2,3𝑃2(𝜏)}𝑥2  

                                  +{𝑔12,1𝑃0(𝜏) + 𝑔12,2𝑃1(𝜏) + 𝑔12,3𝑃2(𝜏)}𝑥1𝑥2  

                                  +{𝑔11,1𝑃0(𝜏) + 𝑔11,2𝑃1(𝜏) + 𝑔11,3𝑃2(𝜏)}𝑥1
2  

                                  +{𝑔22,1𝑃0(𝜏) + 𝑔22,2𝑃1(𝜏) + 𝑔22,3𝑃2(𝜏)}𝑥2
2 .  

If R is the number of polynomials used, the parameters {𝛽𝑞
(𝜏)} will be approximated 

with polynomials up to degree R-1. The number of Legendre polynomials R determines 

also the number of parameters 𝑔𝑞,𝑟, where the subscript [r] indicates that the parameter 

is related to the (r-1) degree polynomial.  

The parameters 𝑔𝑞,𝑟 are estimated using a stepwise regression method that retains only 

the statistically significant terms at the 95% significance level (Draper and Smith, 

1998). This method is performed using MATLAB function “stepwisefit”. The number 

of polynomials used is limited by the number of measurements K that can be collected 

from each experiment. For a given number of available measurements K, a model with 

several values of R up to K-1 is developed. In order to identify the adequate model, 

characterized by a particular value of R and K, the sum of squares of the residuals is 
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defined as done in Klebanov and Georgakis (2016). The sum of squares is calculated 

using the following formulation: 

𝑆𝑆̂𝑢𝑛(𝑅, 𝐾) =
∑ [∑ {𝑦𝐷𝑅𝑆𝑀,𝑚(𝜏𝑘; 𝑅, 𝐾) − 𝑦𝑒𝑥𝑝,𝑚(𝜏𝑘)}

2𝐾
𝑘=1 ]𝑀

𝑚=1

∑ [∑ {𝑦𝑒𝑥𝑝,𝑚(𝜏𝑘)}
2𝐾

𝑘=1 ]𝑀
𝑚=1

 
             (1.26) 

 

where M is the number of the experiments performed and from which MK output values 

are collected. The 𝑦𝐷𝑅𝑆𝑀,𝑚(𝜏𝑘; 𝑅, 𝐾) is the value of the response variable in 𝜏𝑘 predicted 

by the DRSM. The 𝑦𝑒𝑥𝑝,𝑚(𝜏𝑘) is the value of the response variable in 𝜏𝑘 collected during 

the experiments and that has to be approximated. The best value of R is the one which 

provides the smallest value in the equation (1.26). However, if two values of R provide 

only slightly different values for 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾) the smaller R should be selected. Since the 

experiments are considered to be performed in silico, the value of 𝑦𝑒𝑥𝑝,𝑚 is available for 

the entire time interval 𝜏. It is possible to verify the adequacy of the chosen model 

through the calculation of 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾), determining the following sum squares residuals: 

𝑆𝑆𝑢𝑛(𝑅, 𝐾) =
∑ [∫ {𝑦𝑅𝑆𝑀,𝑚(𝜏; 𝑅, 𝑘) − 𝑦𝑒𝑥𝑝,𝑚(𝜏)}

2𝜏=1

𝜏=0
]𝑀

𝑚=1

∑ [∫ {𝑦𝑒𝑥𝑝,𝑚(𝜏)}
2𝜏=1

𝜏=0
]𝑀

𝑚=1

   . (1.27) 

The calculation of 𝑆𝑆𝑢𝑛(𝑅, 𝐾) allows to verify if the DRSM, calculated using only K 

point for each profile, is able to approximate the complete profile. This calculation of 

the sum of squares is necessary but not sufficient to certify that the DRSM adequately 

represents the nonrandom variability of the data. To verify this, it is possible to examine 

whether the above-defined 𝑆𝑆̂𝑢𝑛, is of the same order of magnitude of the 𝑆𝑆𝑒𝑟𝑟, that 

describes the natural variability of the process. This variability can be calculated 

repeating the same experiment in such a way as to define the uncertainty on the 

measurements. The equation used is the following: 

𝑆𝑆𝑒𝑟𝑟 =
∑ [∑ {𝑦0,𝑚(𝜏𝑘) − 𝑦0,𝑚̅̅ ̅̅ ̅̅ (𝜏𝑘)}

2𝐾
𝑘=1 ]

𝑁𝐶𝑃
𝑚=1

∑ [∑ {𝑦0,𝑖̅̅ ̅̅ (𝜏𝑘)}
2𝐾

𝑘=1 ]
𝑁𝐶𝑃
𝑖=1

         (1.28) 

where 𝑦0,𝑚(𝜏𝑘) is the value of the response variable in 𝜏𝑘 calculated in the center point 

of the design space. The 𝑦0,𝑚̅̅ ̅̅ ̅̅ (𝜏𝑘) is the mean value of the response variable in 𝜏𝑘 

calculated performing 𝑁𝐶𝑃(= 10) repeated runs in the center point of the experimental 

region.  The value of 𝑆𝑆𝑒𝑟𝑟 has to be compare to the 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾) calculating the following 

statistic ratio: 
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𝐹0 =
𝑆𝑆̂𝑢𝑛(𝑅, 𝐾)/𝑛1

𝑆𝑆𝑒𝑟𝑟/𝑛2
=

𝑆𝑆̂𝑢𝑛(𝑅, 𝐾)/(𝑀𝐾 − 𝐷)

𝑆𝑆𝑒𝑟𝑟/(𝐾(𝑁𝐶𝑃 − 1))
   . 

       

        (1.29) 

The parameters 𝑛1 and 𝑛2 define the degrees of freedom and are calculated as shown in 

Equation (1.29). MK is the total amount of experimental data utilized and D is the 

number of significant parameters that are used in the definition of DRSM model via 

stepwise regression. According to the F-test, the p-value is calculated and the 

significance determined. If the p-value is lower than 0.95, the model can meaningfully 

represent the nonrandom variability of data. 

1.1.5 Definition of the operating optimum 

The empirical model defined in the RSM/DRSM allows defining the operating optimum 

of the process.  

1.1.5.1 Optimization method using RSM 

In the case of a RSM, the operating optimum corresponds to the values of the factors, 

that maximize / minimize the response variable. The calculation of the maximum point, 

for example, is performed minimizing the inverse of the equation that describes the 

RSM. Consider the following RSM: 

𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2  . (1.30) 

The optimization problem can be exemplified below: 

min
(𝑥1,𝑥2)

(−𝑦̂) = min
𝑥1,𝑥2

(−(𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2)) . (1.31) 

The minimum value of the function 𝑦̂ and the related value of 𝑥1and 𝑥2 are calculated 

using the MATLAB function “fmincon”. Using the RSM, it is possible to optimize the 

response variable in a certain time instant.  

1.1.5.2 Optimization method using DRSM 

The optimization of a DRSM, instead, allows the definition of the optimum profile of 

the response variable along the process. It is possible to look for the values of the input 

factors 𝑥1and 𝑥2 that maximize the integral of the response variable profile. This 

calculation is performed maximizing the integral of the DRSM in the time domain as in 

Equation (1.32). 
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Equation (1.32) can be rewritten as a problem of minimization of the inverse of the 

integrated function as below: 

min
x1,x2

(− ∫ 𝛽0(𝜏)𝑑𝜏

1

0

− 𝑥1 ∫ 𝛽1(𝜏)𝑑𝜏

1

0

− 𝑥2 ∫ 𝛽2(𝜏)𝑑𝜏

1

0

 − 𝑥1𝑥2 ∫ 𝛽12(𝜏)𝑑𝜏

1

0

− 𝑥1
2 ∫ 𝛽11(𝜏)𝑑𝜏

1

0

−𝑥1
2 ∫ 𝛽22(𝜏)𝑑𝜏

1

0

)  . 

 

(1.33) 

The values of 𝑥1and 𝑥2 that minimize the function in Equation (1.33) are calculated 

using the MATLAB function “fmincon”.  

Another criterion of optimality requests to define the profile of the response variable 

that is higher than all the others during the whole process.  

First, it is necessary to verify if there is a combination of the factors that corresponds to 

this requirement. To do this, the values of the factors that maximize the response 

variable in different time instants of the process are calculated. This is done by choosing 

a few time instants(𝜏ℎ), in which the values of the factors that maximize the response 

variable in those precise moments are defined. The equation used is the following: 

max
x1h,x2h

𝑦𝐷𝑅𝑆𝑀(𝜏ℎ) = min
x1h,x2h

(−𝑦𝐷𝑅𝑆𝑀(𝜏ℎ))  (1.34) 

where x1h and x2h are the values of the factors 𝑥1and 𝑥2 that maximize the value of the 

DRSM calculated in 𝜏ℎ. If the values x1h and x2h change according to the time instant, 

then there is no unique combination of the factors that meets the optimization criterion.    

Instead, it is possible to define the optimum time-varying profile of the factors. In fact, 

in order to obtain a response variable profile that is always higher than all the others, it 

is necessary to change the value of the input factors during the batch.  

In the case of a dynamic factor, the change of the values of its dynamic subfactors 

corresponds to modify its type of trend along the process.   

Once define the optimal profile of the process output, either using the method in (1.33) 

or using the one in (1.34), it will be necessary to compare the profile predicted through 

the DRSM to the real one. The difference is defined calculating the root mean square 

error (𝑅𝑀𝑆𝐸) using Equation (1.35). 

max
x1,x2

∫ 𝑦𝐷𝑅𝑆𝑀(𝜏)𝑑𝜏   .

1

𝜏=0

 (1.32) 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝐷𝑅𝑆𝑀(𝑡𝑘) − 𝑦exp(𝑡𝑘))2𝐾′

𝑘=1

𝐾′
  (1.35) 

where 𝐾′ is the number of time instants in which the two profiles are compared.  

This calculation will be a further confirmation of the accuracy of the DRSM calculated 

in the previous step and the results will be compared to the value of the measurement 

error, that the case of in silico experiments is known and added to the data collected as 

will be described in Chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 2 

Case Studies 

In this chapter, the description of the case studies is reported. The same case studies are 

shown in Georgakis (2013) and Klebanov and Georgakis (2016).  

The case studies considered are: 

• a batch reactor with reversible reaction; 

• a semi-batch reactor with three reactions; 

• a penicillin fermentation process. 

An exhaustive description of the model’s equations and parameters is reported.  

2.1 Batch reactor with reversible reaction 

The first case study is the one of a batch reactor in which a reversible reaction between 

reactant A and product B takes place. The reaction has the following characteristics: 

𝐴 ↔ 𝐵 (2.1) 

𝑟 = 𝑘𝐴[𝐴] − 𝑘𝐵[𝐵] (2.2) 

where: 

𝑘𝐴 = 𝑘𝐴0𝑒𝑥𝑝
 (− 

𝐸𝐴
𝑅𝑔𝑇

)
  (2.3) 

𝑘𝐵 = 𝑘𝐵0𝑒𝑥𝑝
 (− 

𝐸𝐵
𝑅𝑔𝑇

)
 . (2.4) 

The batch time is fixed at 2 hr. The values of the parameters are reported in Table 2.1. 

Table 2.1 Values of the kinetic parameters related to Equations (2.3), (2.4) 

Parameter Value 

 𝑘𝐴0     1.32 × 107 h-1 

𝑘𝐵0    5.25 × 1013 h-1 

𝐸𝐴 41840  J/mol 

 𝐸𝐵  83680 J/mol 

𝑅 8.314 J/mol/h 
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Since the experiments are performed in silico, the simulated results (𝑦) are perturbed 

adding an error, according to the following equation: 

𝑦𝑒𝑥𝑝 = 𝑦(1 + 𝜎𝑁(0,1))                                                          (2.5) 

where 𝑁(0,1) is a normally distributed number with zero mean and standard deviation 

equal to 1 and 𝜎 defines the percentage of measurement error added to the simulated 

experiments. In the case of DoE and DoDE, the value of  𝜎  in Equation (2.5) is equal 

to 0.005, corresponding to a measurement error of 1%. The error added is increased to 

4% in the case of DRSM, in order to consider a higher variability of data. The results 

regarding this case study can be found in the Appendix. 

2.2 Semi-batch reactor 

In the second case study, a semi-batch reactor, in which a reaction network of three 

reactions takes place, is considered. The process in maintained at a constant temperature 

and volume. The reactions take place with the following characteristics:     

         𝐴 + 𝐵 → 𝐶 𝑟1 = 𝑘1[𝐴][𝐵]                    (2.6) 

         2𝐵 → 𝐷        𝑟2 = 𝑘2[𝐵]2               (2.7) 

         𝐶 → 𝐸     𝑟3 = 𝑘3[𝐶]              (2.8) 

The kinetic parameters related to the reactions are reported in the table below. 

Table 2.2 Values of the kinetic parameters related to Equations (2.6), (2.7), 

(2.8)  

Parameter Value 

 𝑘1    2 L/gmol/h 

𝑘2    1 L/gmol/h 

𝑘3 1 h-1 

B is the coreactant and is fed in semi-batch mode in order to minimize the amount of 

by-product produced. The model is made by the following material balances:  

𝑑[𝐴]

𝑑𝑡
=  − 𝑘1[𝐴][𝐵]  (2.9) 



Case studies                                                                                                                                              35 

 

 
 

𝑑[𝐵]

𝑑𝑡
=  

𝑢𝐵(𝑡)

𝑉
−  𝑘1[𝐴][𝐵] − 2𝑘2[𝐵]2  (2.10) 

𝑑[𝐶]

𝑑𝑡
=  𝑘1[𝐴][𝐵] − 𝑘3[𝐶]  (2.11) 

𝑑[𝐷]

𝑑𝑡
=  𝑘2[𝐵]2                                                   (2.12) 

𝑑[𝐸]

𝑑𝑡
=  𝑘3[𝐶]                                                    (2.13) 

The reactor volume is fixed to 10 L, while the batch time is fixed to 1 hour. The initial 

concentration for A is fixed to 1 gmol/L, while the initial concentration of the other 

species is equal to 0 gmol/L. Since it is desirable to maximize the production of product 

C, the decision variable is the time dependence of the feeding flowrate of B. Since the 

experiments are performed in silico, a measurement error is added to the experimental 

data 𝑦 according to Equation (2.5). The value of  𝜎 is equal to 0.005, corresponding to 

an error of 1%, in the case of DoE and DoDE, while it is equal to 0.02 in the case of 

DRSM.  

2.3 Penicillin fermentation process 

In the last case study, the penicillin fermentation process is simulated. This consists in 

two phases: the first one is a phase of growth and the second one is a phase of 

production.  

During the first phase of the process, the biomass, which consists in an aggregate of 

bacteria, grows by consuming the substrate. The latter is a cultivation medium with a 

high glucose content, to allow a rapid growth of biomass. The concentration of the 

biomass has not to be excessive in order to avoid the consumption of oxygen. The 

second phase of the process is finalized to the production of penicillin, with a limitation 

in the growth of biomass. The fed-batch reactor is considered the optimal choice to 

avoid a rapid growth of biomass, because it allows a progressive substrate feeding. The 

model used for the description of the process is the one obtained by Bajpai and Reuss 

(1980). It consists of balances for the volume (V), biomass (b), substrate (s) penicillin 

(p) as follows: 

𝑑𝑉

𝑑𝑡
= 𝑢𝑠                                 (2.14) 
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𝑑𝑏

𝑑𝑡
= 𝜇𝑏 −

𝑏𝑢𝑠

𝑉
                                 (2.15) 

 𝑑𝑠

𝑑𝑡
= −

𝜇𝑏

𝑌𝑋𝑆
−

𝜌𝑏

𝑌𝑃𝑆
−

𝑚𝑠𝑠𝑏

𝑘𝑚 + 𝑠
+

(𝑠𝑓 − 𝑠)𝑢𝑠

𝑉
                                 (2.16) 

𝑑𝑝

𝑑𝑡
= 𝜌𝑏 − 𝑘𝑑𝑝 −

𝑝𝑢𝑠

𝑉
                                 (2.17) 

with:  

𝜇 = 𝜇𝑚𝑎𝑥 (
𝑠

𝑘𝑏 + 𝑠
)  ,                                                      (2.18) 

𝜌 = 𝜌𝑚𝑎𝑥 (
𝑠

𝑘𝑝+𝑠+(𝑠2

𝑘𝑚
⁄ )

) .                                                      (2.19) 

The model parameters of Riascos and Pinto (2004) are reported in Table (2.3). 

Table 2.3 Values of parameters related to Equations (2.14)- (2.19) 

Parameter Definition Value 

𝜇𝑚𝑎𝑥 maximum specific biomass growth rate 0.1 h-1 

𝜌𝑚𝑎𝑥 maximum specific production rate 5.5 ×10-3 grp/grb h 
𝑘𝐵 saturation parameter for biomass growth 6 ×10-3 grb /grs  
𝑘𝑝 saturation parameter for penicillin production 0.1×10-3 grs/L 
𝑘𝑖𝑛 inhibition parameter for penicillin production 0.1 grs/L 
𝑘𝑑 penicillin degradation 0.01 h-1 
𝑘𝑚 saturation parameter for maintenance consumption 0.1×10-3 grs/L 
𝑚𝑠 maintenance consumption rate 2.9 ×10-3  grs/grb h 

𝑌𝑋𝑆 yield factor, substrate (S) to biomass 0.47×10-3 grb/grs 

𝑌𝑃𝑆 yield factor, substrate (S) to product 1.2  grp /grs 

𝑠𝑓 feed concentration of substrate (S) 500 grs/L 

Other information useful for the implementation of the model are the value of the initial 

substrate concentration that is fixed equal to 500 grs/L. Since the experiments are 

performed in silico, the simulated results (𝑦) are perturbed adding a measurement error, 

according to Equation (2.5). In the case of DoE and DoDE, the value of  𝜎  in that 

equation is equal to 0.005, corresponding to a measurement error of 1%. The error added 

is increased to 4% in the case of DRSM, in order to consider a higher variability of data 

 

.  



 
 

Chapter 3 

Optimization of a batch reactor 

In this chapter, the optimization procedure defined in Chapter 1 is applied to case study 

of a batch reactor that is described in Section 2.1. By applying DoE and DoDE, it is 

possible to define the profile of an input variable that optimizes the value of the output. 

The construction of a DRSM, instead, allows studying the dynamic behavior of the 

output variable along the process.  

3.1 Optimization of a batch reactor using DoE methodology   

The objective of the following procedure is to define an empirical model that describes 

the relationship between the input variables and an output factor, that, in this case, is 

the reactant A concentration. The model that has to be defined considers both linear and 

quadratic effects of the inputs on the output.  

3.1.1 Selection of input factors 

In this case, the input variable is the temperature of the reactor and it is considered a 

static factor. Temperature varies in the range between 15 °C and 50°C and is indicated 

using 𝑊1 or, in the codified version, 𝑤1.  

3.1.2 DoE and experimentation 

In the case of one independent factor 𝑤1, three parameters must be estimated to define 

a quadratic model. DoE must be composed of at least three experiments; respectively at 

the highest, the intermediate and the lowest value of input variable range, the reactor 

temperature 𝑤1. Two replicated experiments in the central point of the design space are 

added in order to represent the variability of the measurements. The results of the five 

experiments in terms of reactant A final conversion, are reported in the Table 3.1.  
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Table 3.1 Reactant A conversion at the end of the batch regarding the 

experiments defined in DoE methodology 

 Run1 Run2 Run3 Run4 Run5 

Temperature °C 15 °C 32.5 °C 32.5°C 32.5°C 50°C 

Coded variable 𝒘𝟏 -1 0 0 0 1 

Simulated conversion 48.18% 70.91% 70.91% 70.91% 59.27% 

Measured conversion 48.17% 70.86% 71.14% 71.30% 59.60% 

3.1.3 RSM and optimization  

The relationship between temperature and conversion of reactant A can be described 

defining an empirical model, or a response surface model (RSM), with the following 

structure: 

where 𝑦̂  is the conversion of the reactant A at the end-point process and 𝑤1 is the codified 

temperature. Using the experimental data, reported in the Table 3.1, the coefficients of 

Equation (3.1) can be calculated using a least square method as described in Sub-

subsection 1.1.4.1. These are reported, along with their 95% confidence interval, in 

Table 3.2.  

Table 3.2 Coefficients of the response surface model in Equation (3.1) that 

describes the quadratic influence of the temperature on the reactant A final 

conversion.  

The optimization procedure is performed in order to define the reactor temperature that 

provide the higher conversion of the reactant at the end of the batch. Using the RSM in 

(3.1), it was possible to define the maximum value of the conversion of reactant A. 

According to the regression model the maximum conversion should be at 𝑤1,𝑂𝑃𝑇= 

0.1658, corresponding to a constant temperature of 35.40 °C and at which the predicted 

conversion is 71.57%. The confidence intervals of the parameters define a range of 

variation of the predicted maximum, which varies in the range [70.88%, 72.28%]. It is 

necessary to verify that the reactant A process conversion related to the coded variable 

𝑤1,𝑂𝑃𝑇, can be described by the RSM calculated. The real conversion, according to the 

suggested temperature 𝑤1,𝑂𝑃𝑇 is equal to 71.12% and this result allows confirming the 

adequacy of the empirical model defined.  

𝑦̂ = 𝑏0 + 𝑏1𝑤1 + 𝑏2𝑤1
2              (3.1) 

Coefficients 

𝑏0 𝑏1 𝑏2 

71.1 %  ± 0.56 % 5.71 %  ± 0.69 % -17.22 %  ± 0.89 % 
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The optimum conversion calculated can be compared with those in Georgakis (2013); 

the difference between the results is not significant since it is lower than 1% that is the 

value of the measurements error added to the simulated results according to (2.5).  

Using DoE, the dynamic behavior of the temperature is not considered. To do this, 

DoDE methodology can be applied.   

3.2 Optimization of a batch reactor using DoDE methodology 

with linear profiles  

As in the previous case, the objective is to define a full quadratic RSM that describes 

the effects of the input variable, namely, the reactor temperature, on the final conversion 

of reactant A. The dynamic behavior of reactor temperature is considered. 

3.2.1 Selection of input factors 

In this case, only the constant and linear time dependence of reactor temperature is 

considered. According to the theory, the profiles of temperature are described using two 

dynamic subfactors 𝑥1 and 𝑥2. In the following equations, the general formulation of 

the temperature profile 𝑋𝑚(𝑡) and its codified version 𝑥𝑚(𝜏) are reported: 

where 𝜏 is the dimensionless time ∈ [0, 1] and 𝑥1,𝑚 and 𝑥2,𝑚 are the values assumed by 

the dynamic subfactors in the m-th profile.  

3.2.2 DoDE and experimentation  

The number M of profiles and the design structure of the experiments are related to the 

type of RSM that must be obtained. The empirical model, in this case, has to describe 

the linear, interactions and quadratic effects of two independent factors 𝑥1 and 𝑥2 on the 

response variable, which is the end-point conversion of reactant A. The profiles of the 

reactor temperature, described by the combinations of dynamic subfactors 𝑥1 and 𝑥2, are 

defined according to a central composite design (CCD) with α = 2. Since the 

combinations of subfactors have to satisfy the constraint (1.15), it is not possible to 

apply a full factorial design (FFD).  

𝑥𝑚(𝜏) = 𝑥1,𝑚𝑃0(𝜏) + 𝑥2,𝑚𝑃1(𝜏) = 𝑥1,𝑚 + 𝑥2,𝑚(−1 + 2𝜏) ,                     (3.2) 

𝑋𝑚(𝑡) = 32.5 + 17.5(𝑥1,𝑚 − 𝑥2,𝑚 + 2𝑥2,𝑚𝑡) ,         (3.3) 
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The values of the two dynamic subfactors, 𝑥1,𝑚 and 𝑥2,𝑚, that define the 𝒙(𝜏) profiles, 

are reported in the second and third columns of Table 3.3. In the same table, the 

experimental data, in terms of the final conversion of the reactant A, are reported.  

Table 3.3 Temperature profiles defined according to a central composite 

design applied to the subfactors 𝑥1 and 𝑥2 and the related values of the 

reactant A final conversion.  

Run 
Coded factors 

T profile 
Simulated 

conversion 

Measured 

conversion 𝑥1 𝑥2 

1 0 -1 50 °C > 15°C 74.01% 73.41% 

2 0 -1 50 °C > 15°C 74.01% 74.07% 

3 -0.5 -0.5 32.5 °C > 15 °C 64.66% 64.78% 

4 0.5 -0.5 50 °C > 32.5°C 72.06% 71.98% 

5 -1 0 15°C 48.18% 47.91% 

6 0 0 32.5°C 70.90% 71.61% 

7 1 0 50°C 59.26% 58.56% 

8 1 0 50°C 59.26% 59.11% 

9 -0.5 0.5 15 °C > 32.5°C 62.51% 62.10% 

10 0.5 0.5 32.5°C > 50°C 61.56% 61.36% 

11 0 1 15°C > 50 °C 61.92% 62.01% 

12 0 1 15°C > 50 °C 61.92% 61.96% 

The twelve temperature profiles and the related profiles of the conversion of reactant A 

are reported in the Figure (3.1): 

 a)  b) 

Figure 3.1 Profiles of: a) temperature and b) the conversion of reactant A obtained by 

performing a CCD in the case of DoDE with linear profiles.  

3.2.3 RSM and optimization  

Using the information in Table 3.3, it is possible to estimate the coefficients of the RSM 

in Equation (3.4) that describes the quadratic dependence of the reactant A final 

conversion (𝑦̂) from the two dynamic subfactors 𝑥1 and 𝑥2.  
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𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2                    (3.4) 

The coefficients, calculated using a least squares algorithm for the estimation of the 

coefficients in the multiple linear regression empirical model, are reported in Table 3.4. 

Table 3.4 Coefficients of response surface model in Equation (3.4) that 

defines the full-quadratic relationship between the dynamic subfactors and 

the reactant A final conversion. 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏12 𝑏11 𝑏22 

70.58 ± 1.9 4.9 ± 1.36 -6.3 ±1.16 -7.94 ± 5.2 -17.19 ± 2.66 -2.85 ±2.46 

The 𝑅2-adj for the above regression, calculated using Equation (1.21), is equal to 0.981. 

DoDE is applied in order to define the linear temperature profile that provides the 

maximum conversion of reactant A at the end of the process.  

The profile, that provides the maximum conversion, is the one described by the values 

of subfactors 𝑥1,𝑂𝑃𝑇 = 0.2187 and 𝑥2,𝑂𝑃𝑇 = -0.7813. These correspond to the linear 

temperature profile in Figure 3.2. The corresponding predicted conversion is 75.37 % 

while the conversion obtained by carrying out the process with the suggested optimal 

temperature profile is 74.32%. The value of the process conversion is inside the range 

[73.4%, 77.535%] that is calculated considering the coefficients of Table (3.4) at their 

extreme values of the confidence interval. The results obtained are comparable to those 

in Georgakis (2013). The predicted conversion calculated differs by the 1.2% while the 

process conversion is the same. 

It is possible to compare also the optimal results obtained by applying the two 

methodologies: DoE and DoDE.  

 a) b) 

Figure 3.2 Comparison among the optimum calculated using DoE and the optimum 

obtained by DoDE: a) reactor temperature; b) conversion of reactant A. 
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By comparing the result of DoDE to the one obtained performing DoE, it is clear that 

the first allows the definition of an optimum profile that provides a higher conversion.  

3.3 Optimization of a batch reactor using DoDE methodology 

with non-linear profiles  

The aim it to define a RSM that describes the relationship between reactor temperature 

and conversion of reactant A. In the previous section, DoDE considers linear 

temperature profiles. However, the optimal temperature profile might be more complex. 

For this reason, it was necessary to consider a design of experiments that involves 

nonlinear profiles.  

3.3.1 Selection of input factors 

The temperature profiles are characterized by at least three dynamic subfactors in order 

to add nonlinear time dependence. Consider for example a quadratic temperature 

profile.  

The codified profiles 𝒙(𝝉)  are defined by using a linear combination of the first three 

shifted Legendre polynomials with three dynamic subfactors {𝑥1, 𝑥2, 𝑥3} as in Equations 

(3.5) and (3.6). 

𝒙(𝜏) = 𝑥1𝑃0(𝜏) + 𝑥2𝑃1(𝜏) + 𝑥3𝑃2(𝜏) 

          = 𝑥1 + 𝑥2(−1 + 2𝜏) + 𝑥3(+1 − 6𝜏 + 6𝜏2)  

(3.5)      

𝑿(𝑡) = 32.5 + 17.5(𝑥1 − 𝑥2 + 𝑥3 + 2𝑡(𝑥2 − 3𝑥3) + 6𝑥3𝑡2) (3.6) 

The dynamic subfactors may assume different numerical value {𝑥1,𝑚, 𝑥2,𝑚, 𝑥3,𝑚} 

according to the m-profile 𝑥𝑚(𝜏).  

3.1.3.2 DoDE and experimentation 

To obtain a full quadratic RSM, in the case of 3 independent factors, as 𝑥1, 𝑥2, and 𝑥3 , it 

is necessary to perform at least 10 experiments, according to the number of parameters 

that are required and that represent both the linear, the interaction and the quadratic 

effects of the inputs on the output. Different combinations of the three dynamic 

subfactors characterize the experiments. A d-optimal design is used to define the 

combinations of subfactors, according to the constraint (1.10). This type of design aims 

to minimize the number of experiments compared to those required in the case of a FFD 

that, in this case, would have requested at least of 18 experiments. In the following table, 

the values of the conversion of reactant A for the 16 simulated profiles are reported.  
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Table 3.5 Temperature profiles characterized by the values of the dynamic 

subfactors 𝑥1, 𝑥2 and 𝑥3 defined according a d-optimal design and the 

related values of conversion of reactant A 

Run 
Coded variables Simulated 

conversion  

Measured 

conversion 𝑥1 𝑥2 𝑥3 

1 0 0 -1 70.63% 71.06% 

2 0 0 -1 70.63% 70.92% 

3 0 -0.5 -0.5 72.35% 72.73% 

4 -0.67 0 -0.33 58.76% 58.54% 

5 0 -1 0 74.02% 73.67% 

6 0 -1 0 74.02% 73.55% 

7 0.5 -0.5 0 72.07% 72.24% 

8 0 0 0 70.91% 71.90% 

9 1 0 0 59.27% 59.48% 

10 0.5 0.5 0 61.56% 61.32% 

11 0 1 0 61.87% 62.12% 

12 0 1 0 61.87% 61.52% 

13 -0.67 0 0.33 58.66% 58.24% 

14 0.5 0 0.5 64.87% 65.10% 

15 0 0.5 0.5 64.03% 63.78% 

16 0 0 1 66.65% 71.06% 

 

3.3.3 RSM and optimization 

The desired RSM has the following structure: 

𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3                    (3.7) 

                   +𝑏23𝑥2𝑥3 + 𝑏11𝑥1
2 +  𝑏22𝑥2

2 + 𝑏33𝑥3
2.  

The experiments in Table 3.5 allows defining the coefficients of Equation (3.7) along 

with their 95% confidence interval. These, calculated as described in Sub-subsection 

1.1.4.1, are reported in Table 3.6.  

Table 3.6 Coefficients of response surface model in Equation (3.7) that 

defines the relationship between three dynamic subfactors and the reactant 

A final conversion. 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏3 𝑏12 

70.14 %± 2.27 % 5.37 %± 2 % -5.96 % ± 1.39 % -2.49 % ± 1.53 % -9.93 % ± 8.71 % 

     

𝑏13 𝑏23 𝑏11 𝑏22 𝑏33 

-4.73 % ± 7.62 % -3.49 % ± 9.57 % -17.06 %±4.25 % -2.56 % ± 2.79 % -1.46 % ± 2.95 % 

The 𝑅2-adj for the above regression is 0.9831. The profile that allows obtaining the 

maximum conversion is the one described by the values of subfactors 𝑥1,𝑂𝑃𝑇, 𝑥2,𝑂𝑃𝑇 and 

𝑥3,𝑂𝑃𝑇, that are respectively 0.2451, -0.7549 and 0. The maximum predicted conversion 

is 75.32 %, in a range of [73.43%, 77.5%].  
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The conversion obtained by carrying out the process with the suggested optimal 

conditions is 74.25%. These results demonstrate that the addition of the quadratic time 

dependence of temperature profiles does not provide any improvement of the 

conversion. For this reason, it is possible to assert that the optimal temperature profile 

is the one calculated by DoDE with linear profiles.  

As in the previous cases, the results of the optimization can be compared to those in 

Georgakis (2013). From the comparison, it is possible to assert that the process 

conversion does not differ in a significant way.  

3.4 Definition of a dynamic response surface model  

In the previous subsections, it was shown that is possible to define the input profile that 

provides the optimum value of the process output at end of the batch process. 

Nevertheless, in other application (for example in process control), it might be 

interesting to define the optimum profile of the output variable. Accordingly, a dynamic 

response surface model (DRSM) can be built following the procedure described in Sub-

subsection 1.1.4.2. The definition of DRSM is based on the data, in terms of profiles of 

reactant A conversion, obtained performing the DoDE simulation. Since the previous 

analysis has demonstrated that it is possible to consider only the constant and linear 

time dependence of temperature, the profiles considered are those obtained by the 9 

unique experiments in Table 3.3 and reported in Figure 3.1. From each profile, K value 

of the process output are collected in equidistant time intervals. Different DRSM can 

be defined with different combinations of K and R. The latter is the number of Legendre 

polynomials of which the DRSM. These DRSM can be characterized by a value of the 

sum of squares error 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾). The value of 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾) defines the accuracy of the 

DRSM calculated using K points and R polynomials and is calculated using the (1.26). 

In Table 3.7, the values of the 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾) are reported.Once defined the maximum 

number of measurements KM that can be done, the appropriate DRSM is the one that 

provides a small value of 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾). 

Table 3.7 Values of 𝑆𝑆̂𝑢𝑛(𝑅, 𝐾) for dynamic response surface model for a 

variable K and R calculated in the case of batch reactor 

R 
K=Number of experimental points for each profile 

3 4 5 6 7 8 9 10 

2 0.0625 0.0513 0.0455 0.0379 0.0338 0.0317 0.0304 0.0278 

3  0.0052 0.0061 0.0062 0.0063 0.006 0.0063 0.006 

4   7.36E-04 9.68E-04 0.0011 0.0013 0.0011 0.0012 

5    4.92E-04 5.72E-04 4.26E-04 3.34E-04 3.09E-04 

6     3.42E-04 6.79E-04 3.86E-04 4.63E-04 

7      4.58E-04 2.71E-04 4.55E-04 

8       4.62E-04 4.08E-04 

9        4.36E-04 
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In Table 3.7, it can be noted that for K=10 there are several values of R (= 5, 6, 7, 8) 

that produce very low of 𝑆𝑆̂𝑢𝑛. These are good candidates to build an appropriate DRSM 

models. However, it is necessary to compare the value of 𝑆𝑆̂𝑢𝑛 with the value of 𝑆𝑆𝑒𝑟𝑟, 

to asses if the DRSM defined is able to represent the nonrandom variability in the data.  

The calculation of 𝑆𝑆𝑒𝑟𝑟 allows carrying out an F-test that is traduced in the definition 

of a statistical ratio 𝐹0 (1.29). In this case, the discriminant is the p-value related to the 

𝐹0, if its value is <0.95 the 𝑆𝑆̂𝑢𝑛 calculated is a significant indicator of the accuracy of 

the DRSM and the latter is adequate for the description of the time variability of the 

process output. The p-value are reported for each combination of K and R in Table 3.8. 

Table 3.8 Values of p-values for dynamic response surface model for a 

variable K and R calculated in the case of batch reactor 

R 
K=Number of experimental points for each profile 

3 4 5 6 7 8 9 10 

2 1 1 1 1 1 1 1 1 

3  1 1 1 1 1 1 1 

4   0.9637 1 1 1 1 1 

5    0.7625 0.6771 0.2916 0.0221 0.0091 

6     0.0769 0.949 0.1351 0.645 

7      0.2509 0.0054 0.5255 

8       0.171 0.0462 

9        0.3969 

An acceptable DRSM is obtained using a fourth order polynomial (R=5) with K=10 

experimental points. The DRSM has the following formulation:  

𝑦𝐷𝑅𝑆𝑀(𝜏) = 𝑔0,1𝑃0 + 𝑔0,2𝑃1 + 𝑔0,3𝑃2 + 𝑔0,4𝑃3 + 𝑔0,5𝑃4  (3.8) 

+ (𝑔1,1𝑃0 + 𝑔1,2𝑃1 + 𝑔1,3𝑃2 +  𝑔1,4𝑃3 + 𝑔1,5𝑃4)𝑥1 

+ (𝑔2,1𝑃0 + 𝑔2,2𝑃1 + 𝑔2,3𝑃2 + 𝑔2,4𝑃3 + 𝑔2,5𝑃4)𝑥2 

+ (𝑔12,1𝑃0 + 𝑔12,2𝑃1 + 𝑔12,3𝑃2 +  𝑔12,4𝑃3 + 𝑔12,5𝑃4)𝑥1𝑥2 

+ (𝑔11,1𝑃0 + 𝑔11,2𝑃1 + 𝑔11,3𝑃2 + 𝑔11,4𝑃3 + 𝑔11,5𝑃4)𝑥1
2 

+ (𝑔22,1𝑃0 + 𝑔22,2𝑃1 + 𝑔22,3𝑃2+𝑔22,4𝑃3 + 𝑔22,5𝑃4)𝑥2
2 

The coefficients of the DRSM in (3.8), calculated via stepwise regression, are reported 

in Table 3.9. 
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Table 3.9 Coefficients of dynamic response surface model described by 

Equation (3.8) that define the relationship between the inputs and the time-

variant output  

Coefficients 

g0,1 g0,2 g0,3 g0,4 g0,5 

0.482 0.3204±0.0054 -0.1197 ±0.0064 0.0279 ±0.0066 -0.0181 ±0.0055 

g1,1 g1,2 g1,3 g1,4 g1,5 

0.1294 ±0.0043 -0.0319 ±0.0069 -0.0789 ±0.0087 0.0550 ±0.0085 -0.0241 ±0.0095 

g2,1 g2,2 g2,3 g2,4 g2,5 

-0.0914 ±0.0043 0.0387 ±0.0069 0.0338 ±0.0087 -0.0665 ±0.0085 0.0263 ±0.0095 

g12,1 g12,2 g12,3 g12,4 g12,5 

0.0385 ±0.0148 0 -0.1164 ±0.0303 -0.0291 ±0.0272 0.0458 ±0.0329 

g11,1 g11,2 g11,3 g11,4 g11,5 

-0.0941 ±0.0065 -0.1144 ±0.0108 0.0176 ±0.0118 0.0319 ±0.0132 0 

g22,1 g22,2 g22,3 g22,4 g22,5 

0 0 0 0 0 

In Table 3.9, it is possible to notice that the stepwise regression has eliminated the 

coefficients that are not significant by assigning to them a value equal to 0. In particular, 

all the parameters that describe the quadratic dependence of the dynamic subfactors 𝑥2 

have been deleted, this means that the quadratic influence of 𝑥2, on the profile of the reactant 

A conversion is not significant. The accuracy of the DRSM defined can be demonstrated 

calculating the error 𝑆𝑆𝑢𝑛 according to Equation (1.27). In this case, the experimental 

profiles of the conversion of the reactant A along the process are compared those 

approximated using a DRSM. The value of the 𝑆𝑆𝑢𝑛 is 6.2995e-04 and its magnitude is 

the same of 𝑆𝑆̂𝑢𝑛. In Figure 3.3 the DRSM predictions are plotted against the 

experimental profiles.  
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a) b) 

c) d) 
Figure 3.3 In these figures the experimental data are compared to the DRSM predictions 

within the experimental design a) 𝑥1=-1, 𝑥2=0, b) 𝑥1=0, 𝑥2=1, c) 𝑥1=0.5, 𝑥2=0.5 and 

d) 𝑥1=1, 𝑥2=0. 

Once the accuracy of DRSM has been demonstrated, it is possible to use it as an 

alternative method for the optimization of the process.  

3.4.1 Optimization using dynamic response surface model  

DRSM, defined by Equation (3.8) and coefficients in Table 3.9, can be used for the 

optimization of the process conditions, as it describes both the time and the temperature 

dependence of reactant A conversion. Globally, DRSM defines a series of profiles that 

are shown in the Figure 3.4. 
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Figure 3.4 Profiles of the reactant A conversion along time obtained using the DRSM 

in (3.8)  

One of the criteria that can be used for the definition of the optimum profile is to 

determine the value of the dynamic subfactors 𝑥1 and 𝑥2, and the related temperature 

profile, that defines the conversion profile, which maximizes the integral of the DRSM, 

from τ = 0 to τ = 1, according to Equation (1.33). The combination of dynamic 

subfactors that meets this condition is: 𝑥1,𝑂𝑃𝑇= 0.0013; 𝑥2,𝑂𝑃𝑇= -0.9987. The optimum 

profile calculated in this way, both for the profile of temperature and the profile of the 

conversion of the reactant A, can be compared with those obtained with the DoDE and 

DoE. 

 a)  b) 

Figure 3.5 Comparison among the optimum calculated using DoE, DoDE and by 

maximizing the integral of the DRSM: a) reactor temperature; b) conversion of reactant 

A. 

Even if the temperature profiles calculated through the optimization procedure in DoDE 

and DRSM are different, the output profiles of the process are almost the same. 

Therefore, in this case the use of DRSM for the optimization does not provide a higher 

conversion of reactant A.  
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However, the profiles in Figure 3.4 suggests that there is not a combination of subfactors 

𝑥1 and 𝑥2 that guarantees a profile of conversion that is higher than the others in each 

time instant. For this reason, the method (1.34) in Chapter 1 is considered to obtain the 

values of 𝑥1 and 𝑥2 that maximize the value of the 𝑦𝐷𝑅𝑆𝑀(𝜏) in each time instant of the 

batch. Using DRSM, the values of 𝑥1 and 𝑥2 that maximize the response are calculated 

for the entire duration of the batch. The profiles of the dynamic subfactors and the 

related temperature profile are shown in Figure 3.6. 

a) b) 

Figure 3.6 Optimal profiles of: a) the dynamic subfactors and b) temperature calculated 

maximizing the DRSM in a series of time instants.  

The corresponding profile of the reactant A conversion is shown in Figure 3.7. In this 

case, the predicted profile, as the one defined by DRSM, is compared to the simulated 

one. 

 

 

Figure 3.7 Comparison between the approximated profiles of the concentration of 

reactant A according to the optimal temperature profile in Figure 3.6 and the real one.  

0.0 0.2 0.4 0.6 0.8 1.0

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

D
y
n
a

m
ic

 s
u
b

fa
c
to

rs

Dimensionless time ()

 x1

 x2

0.0 0.2 0.4 0.6 0.8 1.0
15

20

25

30

35

40

45

50

55
 

 

T
e

m
p
e

ra
tu

re
 (

°C
)

Dimensionless time ()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 DRSM

 Experimental C
o

n
v
e

rs
io

n
 o

f 
re

a
c
ta

n
t 

A
 (

-)

Dimensionless time ()



50                                                                                                                                                  Chapter 3 

 

The difference between the profiles in Figure 3.7 is defined by the value of the RSME 

calculated according to Equation (1.35). In this case RSME is equal to 0.0127 that is 

lower than the value of σ=0.02. This means that the difference is not significant since it 

is lower than the measurement error. It is possible to represent the optimum simulated 

profile in Figure 3.4 to verify if the time-variation of the dynamic subfactors leads to 

define a profile of the process output that satisfy the request to be higher than all the 

other in the entire duration of the batch.  

 
Figure 3.8 Profiles of the conversion of reactant A calculated using DRSM and reported 

in Figure 3.4 are compared with the optimal real profile shown in Figure 3.7.  

The optimum profile in Figure 3.8, obtained varying the dynamic subfactors along the 

batch does not satisfy the optimality criterion described above. In fact, the optimal 

profile of the dynamic subfactors calculated using (1.34) would require an instant 

variation of the reactant temperature in τ= 0.4. Since this is not possible, it can be 

concluded that there is no profile of the dynamic subfactors variation and of the related 

temperature that allows providing a reactant A conversion profile that is higher than the 

others in the entire duration of the batch.  

3.5 Conclusions regarding the optimization of a batch reactor 

In the conclusions, it is possible to summarize the results obtained in order to define the 

operating optimum of the batch process. The following considerations are possible: 

• The application of the DoDE methodology allows defining a time-varying 

profile of temperature that leads to determine a higher conversion of reactant A 

than the one obtainable performing a DoE, namely, considering constant 

temperature. 
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• The use of the DRSM as a means to optimize the process conditions allows to 

define a temperature profile different from the one defined by DoDE. However, 

this variation does not influence in a significant way neither the reactant A 

conversion profile nor its end-point value.  

• The variation of the dynamic subfactors along the process defines a profile of 

the reactant A conversion that do not satisfy the optimization criterion 

considered 

The operating optimum is the one defined by a linear profile of reactor temperature that 

is described by 𝑥1,𝑂𝑃𝑇 = 0.2187 and 𝑥2,𝑂𝑃𝑇 = -0.7813 and provides a final conversion 

of reactant A equal  𝑦 =74.32%. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 4 

Optimization of a penicillin 

fermentation process 

In this chapter, the optimization procedure defined in Chapter 1 is applied to case study 

of a penicillin fermentation process that is described in Section 2.3. By applying DoE 

and DoDE, it is possible to define the profile of an input variable that optimizes the 

value of the output. The construction of a DRSM, instead, allows studying the dynamic 

behavior of the output variable along the process.  

4.1 General considerations 

In this case study, the goal is to define the operating conditions that guarantee the 

maximum penicillin productivity at the end of the batch. The output variables 

considered are both the penicillin concentration (gr/L) and the grams of penicillin 

produced. The input variables that have to be optimized are the substrate income 

flowrate and initial biomass concentration. The latter is a static factor with a nominal 

value of 1.5 gmol/L that varies between 1 gmol/L and 2 gmol/L. The initial biomass 

concentration, indicated with 𝑏̅,  can be parametrized through this equation: 

𝑏̅ = 1.5 + 0.5𝑤1     (4.1) 

with:  

−1 ≤ 𝑤1 ≤ +1 .            (4.2) 

For what concern the dynamic factor, namely, the substrate income flowrate, an 

operating constraint on the maximum volume capacity of the reactor 𝑉(𝑡𝑏) = 10 L is 

imposed.  For the initial value of the reactor volume 𝑉(0)=7 L, the reference value of 

the substrate inflow 𝑢0,𝑠(𝑡) should satisfy the following constrain: 

𝑉(0) + ∫  𝑢0,𝑠(𝑡)𝑑𝑡
𝑡𝑏

0

= 𝑉(𝑡𝑏) . (4.3) 
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If the batch time: 𝑡𝑏 is fixed to 130 hr, Equation (4.3) can be rewritten as: 

∫  𝑢0,𝑠(𝑡)𝑑𝑡
1

0

=
3

130
 . (4.4) 

Considering a simple linear dependence of 𝑢0,𝑠 on the dimensionless time τ = 𝑡 𝑡𝑏⁄  and 

imposing the following final condition 𝑢0,𝑠(1) = 0, the following equation is obtained: 

𝑢0,𝑠(τ) =
6

130
(1 − τ). 

(4.5) 

The 𝛥𝑢𝑠(τ) is defined in the same way in Equation (4.4): 

𝛥𝑢𝑠(τ) =
6

130
(1 − τ) , (4.6) 

so that all possible feeding profiles between 0 and 2𝑢0,𝑠(τ) can be used. The dynamic 

behaviour of the substrate income flowrate can be described by the following general 

equation: 

𝑢𝑠(𝜏) = 𝑢0,𝑠(𝜏) + 𝛥𝑢𝑠(𝜏)𝑥(𝜏) ,                                                         (4.7) 

with:   

−1 ≤ 𝑥(𝜏) ≤ 1.                                                          (4.8) 

The 𝑥(𝜏) is the codified version of the dynamic factor 𝑢𝑠(𝜏). The 𝑢𝑠(𝜏) must satisfy 

the following equation to fill the reactor but not overfill.  

𝑉(0) + ∫ 𝑢𝑠(𝑡)𝑑𝑡
𝑡𝑏

0

= 𝑉(𝑡𝑏) .                                                          (4.9) 

According to (4.9), it is required that: 

∫ 𝑢𝑠(𝑡)𝑑𝑡
1

0

= ∫ 𝑢0,𝑠(𝜏) + 𝛥𝑢𝑠(𝜏)𝑥(𝜏)
1

0

=
3

130
 . 

(4.10) 

The 𝑥(𝜏) is defined using a linear combination of Legendre polynomials and 

coefficients that are called dynamic subfactors.  
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The general expression is the following: 

𝑥(𝜏) = 𝑥1𝑃0(𝜏) + 𝑥2𝑃1(𝜏) + 𝑥3𝑃2(𝜏)     (4.11) 

In the case study, a DoE should be performed by considering the dynamic factor as a 

static one. The variation of the substrate incoming flowrate should be defined using 

only one dynamic subfactor 𝑥1.  Therefore, DoE could be made by the combinations of 

values of 𝑥1 that describes the substrate incoming flowrate and 𝑤1 that defines the initial 

biomass concentration. However, this is not possible because, once fixed the batch time, 

there is only one value of 𝑥1 that satisfies the constraint on the total volume in Equation 

(4.10). A DoDE must be performed.  

4.2 Optimization of a penicillin fermentation process using 

DoDE methodology  

The objective is to define an empirical model that describes the relationship between 

the inputs, which are the substrate income flowrate and the initial concentration of 

biomass and the process output, which can be represented either by the final penicillin 

concentration (gr/L) or by the end-point penicillin production (gr).  

4.2.1 Selection of input factors  

The initial biomass concentration (𝑏̅) is a static factor represented by 𝑤1 as in Equation 

(4.2). The substrate income flowrate is a dynamic factor, whose variation is described 

by three dynamic subfactors 𝑥1, 𝑥2 and 𝑥3. The m-th codified profile 𝑥𝑚(𝜏) of the 

substrate income flowrate is defined by the equation: 

𝑥𝑚(𝜏) = 𝑥1,𝑚𝑃0 + 𝑥2,𝑚𝑃1 + 𝑥3,𝑚𝑃2.     (4.12) 

The number of independent subfactors can be reduced considering two constraints. The 

first one imposes that each profile 𝑥𝑚(𝜏) goes to 0 at the end of the batch. This means 

that the combinations of the dynamic subfactors obey the following equation: 

𝑥1,𝑚 + 𝑥2,𝑚 + 𝑥3,𝑚 = 0. (4.13) 

One of the three subfactors can be rewritten as a combination of the others: 

𝑥3,𝑚 = −(𝑥1,𝑚 + 𝑥2,𝑚)  (4.14) 
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The second constraint involves Equation (4.10), which can be modified as: 

∫ [
6

130
(1 − τ) +

6

130
(1 − τ)(𝑥1,𝑚𝑃0 + 𝑥2,𝑚𝑃1 + 𝑥3,𝑚𝑃2)]

1

0

=
3

130
 (4.15) 

Using the (4.15), the dynamic subfactor 𝑥2,𝑚 can be rewritten as a combination of 𝑥1,𝑚 

in this way: 

𝑥2,𝑚 = 3𝑥1,𝑚                                                        (4.16) 

Equations (4.14) and (4.16) allow reducing the number of independent factors from four 

to two, which are 𝑤1 and 𝑥1.   

The constraint (4.10) defines the variability range of the independent subfactor 𝑥1 that 

is forced to vary between [-0.25, +0.25].  

4.2.2 DoDE and experimentation  

If the objective is to define a full quadratic RSM, at least 10 experiments are required 

to estimate the linear, the interaction and the quadratic effects of two independent 

factors on the output. A 3-level FF design with two factors 𝑤1 and 𝑥1, is performed, 

considering the range of variation defined previously. The design requires also 4 

repeated experiments in the central point, useful to assess the normal variability of the 

process. The experiments are described in Table 4.1. 

Table 4.1 Three level full factorial design with two factors 𝑥1and 𝑤1 the 

represent the variation of the substrate income flowrate and of initial 

biomass concentration.  

Run 
Coded variables 

𝑤1 𝑥1 𝑥2 𝑥3 

1 1 -0.125 -0.375 0.5 

2 1 0.125 0.375 -0.5 

3 1 0 0 0 

4 -1 -0.125 -0.375 0.5 

5 -1 0.125 0.375 -0.5 

6 -1 0 0 0 

7 0 -0.125 -0.375 0.5 

8 0 0.125 0.375 -0.5 

9 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 
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The factor’s values in Table 4.1 characterize thirteen experiments. The experimental 

data in terms of grams of penicillin produced and of penicillin concentration at the end 

of the batch are reported in Table 4.2. 

Table 4.2 Experimental data in terms of grams and concentration of the 

penicillin that are obtained at the end of the batch process according to the 

experimental campaign described in Table 4.1  

Run 
Simulated 

production (gr) 

Measured 

production (gr) 

Simulated  

concentration (gmol/L) 

Measured  

concentration (gmol/L) 

1 36.6132 36.5901 3.6614 3.6651 

2 77.5159 77.6183 7.7528 7.7604 

3 56.9233 57.8223 5.6923 5.6880 

4 31.3725 31.5649 3.1373 3.1513 

5 68.0308 68.8202 6.8032 6.7908 

6 49.5667 49.6694 4.9567 4.9362 

7 34.3659 34.4023 3.4367 3.4414 

8 73.6708 73.8966 7.3677 7.3847 

9 53.8512 53.7091 5.3851 5.3793 

10 53.8512 54.1855 5.3851 5.4066 

11 53.8512 53.8087 5.3851 5.3442 

12 53.8512 53.4813 5.3851 5.3562 

13 53.8512 54.0857 5.3851 5.3024 

The profiles of the concentration of the penicillin inside the reactor are shown in Figure 

4.1, since they will be useful to define the DRSM in the next steps. 

 

Figure 4.1 Profiles of the penicillin concentration obtained by performing a 3-level full 

factorial design in the case of DoDE.  

4.2.3 RSM and optimization  

Using the experimental data reported in last column of Table 4.2, the RSM that 

describes the relationship between the response variable 𝑦 at the end of the process and 

the input factors (𝑤1 and 𝑥1) can be defined. This is reported in Equation (4.17).  
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𝑦̂ = 𝑏0 + 𝑏1𝑤1 + 𝑏2𝑥1 + 𝑏12𝑤1𝑥1 + 𝑏11𝑤1
2 + 𝑏22𝑥1

2.               (4.17) 

The response variable considered is the penicillin concentration. The estimated 

coefficients of Equation (4.17) are reported in Table 4.3.            

Table 4.3 Coefficients of response surface model in Equation (4.17) that 

define the relationship between input factors: substrate income flowrate and 

initial biomass concentration and the end-point penicillin concentration.  

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏12 𝑏11 𝑏22 

5.36±0.0342   0.3725±0.034  15.57 ±0.269  0.9116±0.33 -0.058 ± 0.049 2.75±3.172 

The 𝑅2-adj for the above regression is 1. The maximum predicted productivity is 7.77 

gr/L, which corresponds to the values of  𝑤1,𝑂𝑃𝑇 = 1, 𝑥1,𝑂𝑃𝑇 =0.125, 𝑥2,𝑂𝑃𝑇 =0.375 

and 𝑥3,𝑂𝑃𝑇 =-0.5. The maximum concentration of the penicillin at the end of the batch 

is 7.75 gr/L that corresponds to the result of the second experiment in Table 4.2. In 

Figure 4.2 the optimum profile of both the income flowrate of substrate and the 

concentration of penicillin are shown.  

a) b) 

Figure 4.2 Optimum profiles of a) the substrate feeding flowrate and b) the 

concentration of penicillin obtained with the DoDE. 

A DRSM is developed considering the profiles of the penicillin concentration obtained 

by performing a DoDE. 

4.3 Definition of a dynamic response surface model 

For the definition of the DRSM, the data of the penicillin concentration collected by 

performing a DoDE as the one in Subsection 4.3.1 are used. As it is possible to see in 

Figure 4.3, the profiles of the penicillin concentration show a discontinuity.  
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This makes the approximation more difficult. It has been decided to collect at least 14 

points from each profile and use the first thirteen Legendre polynomials. The accuracy 

of the DRSM is defined through the calculation of 𝑆𝑆̂𝑢𝑛 using Equation (1.26). 

Table 4.4 Values of  𝑆𝑆̂𝑢𝑛  for dynamic response surface model with variable 

K and R calculated in the case of penicillin fermentation process 

R K=Number of experiments for each profile 

14 15 16 17 18 19 20 21 

13 7.61E-04 3.87E-04 2.95E-04 5.78E-04 9.23E-04 9.41E-04 8.34E-04 8.40E-04 

14 
 

4.44E-04 3.01E-04 5.66E-04 6.57E-04 7.51E-04 6.80E-04 6.45E-04 

15 
  

3.06E-04 4.49E-04 6.62E-04 6.68E-04 8.86E-04 6.10E-04 

16 
   

4.48E-04 5.46E-04 6.72E-04 5.08E-04 3.74E-04 

17 
    

6.22E-04 5.65E-04 3.64E-04 4.54E-04 

18 
     

2.41E-04 8.35E-04 4.79E-04 

19 
      

2.67E-04 6.11E-04 

20 
       

2.73E-04 

 

By looking to the results, it is possible to observe that the value of 𝑆𝑆̂𝑢𝑛, cannot be 

reduced below 10−4 also using a large number of polynomials. This is due to the 

presence of a discontinuity in the experimental profiles of the penicillin concentration.  

However, the ratio 𝐹0 and the p-value have to be calculated using the (1.29) in order to 

certify that the model adequately represents the non-random variability of the data. The 

values of p-value for each combination of R and K are reported in Table 4.5. 

Table 4.5 Values of p-values for dynamic response surface model with a 

variable K and R calculated in the case of penicillin fermentation process 

R K=Number of experiments for each profile 

14 15 16 17 18 19 20 21 

13 1 0.615 0.89 1 1 1 1 1 

14 
 

1 1 1 1 1 1 1 

15 
  

1 0.98 1 1 1 1 

16 
   

1 1 1 0.99 0.99 

17 
    

1 1 0.92 0.99 

18 
     

     0.82 1 1 

19 
      

0.83 1 

20 
       

0.87 

 

An acceptable DRSM model is the one obtained with K=20 and R=19. The general 

equation of the DRSM is reported in Equation (4.18). 

𝑦𝐷𝑅𝑆𝑀(𝜏) = ∑ 𝑔0,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

+ {∑ 𝑔1,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1 + {∑ 𝑔2,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥1 (4.18) 

 + {∑ 𝑔12,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1𝑥1   + {∑ 𝑔11,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1
2 + {∑ 𝑔22,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥1
2 
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The coefficients {𝑔𝑞,𝑟} of the DRSM are calculated via stepwise regression that turns 

only the parameters that are significant. These are reported in Table 4.6. 

Table 4.6 Coefficients of dynamic response surface model in Equation (4.18) 

that define the relationship between the inputs and the time-variant output  

Coefficients 

g0,1 g0,2 g0,3 g0,4 g0,5 

2.736 4.214±0.031 0.129±0.029 -2.096±0.030 -0.518±0.041 

g0,6 g0,7 g0,8 g0,10 g0,11 

1.103±0.036 -0.181±0.048 -0.608±0.040 0.318±0.043 -0.247±0.044 

g0,12 g0,13 g0,17 g1,1 g1,2 

-0.271±0.051 0.379±0.054 0.359±0.072 0.365±0.015 0.321±0.027 

g1,3 g1,4 g1,5 g1,7 g1,8 

-0.308±0.040 -0.300±0.045 0.309±0.056 -0.271±0.063 -0.114±0.062 

g1,9 g1,10 g1,11 g1,12 g1,15 

0.231±0.061 -0.147±0.059 -0.252±0.056 0.224±0.060 -0.121±0.102 

g1,16 g1,18 g1,19 g2,1 g2,2 

0.364±0.084 -0.151±0.083 0.243±0.111 8.471±0.111 12.815±0.187 

g2,4 g2,5 g2,6 g2,8 g2,10 

-7.028±0.281 -1.725±0.369 3.539±0.347 -1.790±0.394 0.946±0.417 

g2,11 g2,12 g2,13 g2,17 g12,1 

-0.698±0.431 -0.704±0.478 0.936±0.472 0.802±0.472 0.943±0.132 

g12,2 g12,3 g12,4 g12,5 g12,7 

0.904±0.215 -0.875±0.284 -0.491±0.291 0.772±0.367 -0.843±0.422 

g12,9 g22,1 g22,2   

0.548±0.445 2.606±1.448 2.790±2.332   

The error 𝑆𝑆𝑢𝑛 that defines the accuracy of DRSM in the entire profile is calculated 

using (1.27). In this case, the experimental profiles of the concentration of penicillin are 

compared to the profiles approximated using the DRSM. The value of  𝑆𝑆𝑢𝑛  is 0.0018 

that is higher than the 𝑆𝑆̂𝑢𝑛. This result confirms the difficulty to approximate the 

profiles of the penicillin concentration along the batch. In Figure 4.3, where the DRSM 

predictions are plotted against the experimental profiles, it is possible to notice an 

oscillatory behaviour of the profiles predicted in the first part of the batch.  
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 a)  b) 

 c)  d) 

Figure 4.3 In these figures the experimental profiles are compared to the DRSM 

predictions of penicillin concentration profiles within the experimental design in the 

case of a) 𝑤1=1 and  𝑥1= -0.125, b) 𝑤1=1 and  𝑥1=-0.125, c) 𝑤1=-1 and  𝑥1=0 and d)  

𝑤1=0 and  𝑥1=0 

4.3.3.1 Optimization using dynamic response surface model 

Using the DRSM calculated in Equation (4.18), it is possible to represent the profiles 

of the penicillin concentration inside the reactor for different combinations of 𝑤1 and 

𝑥1. The profiles are shown in Figure 4.4. 
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Figure 4.4 Profiles of the Penicillin concentration along time obtained using the DRSM 

(4.28) 

In this case, the optimization procedure followed in Subsection 3.4.1 is not necessary. 

In fact, looking to the Figure 4.4, it is possible to notice that one of the profiles defined 

by the DRSM satisfies all the optimal criteria required. This profile is the same 

calculated through the DoDE (Subsection 4.2.3) and corresponds to the values 

of  𝑤1,𝑂𝑃𝑇 = 1, 𝑥1,𝑂𝑃𝑇 =0.125, 𝑥2,𝑂𝑃𝑇 =0.375 and 𝑥3,𝑂𝑃𝑇 =-0.5. The maximum 

concentration of the penicillin at the end of the batch is 7.75 gr/L. Since its trend is 

always higher than the others, it is not necessary to vary the values of the dynamic 

subfactors along the process.  

4.4 Optimization of a penicillin fermentation process with 

variable batch duration 

The profiles of the response variable suggest the possibility to study the influence of the 

batch time on the calculation of the operating optimum. To do this, the batch time is 

considered a static factor whose variation is described by using the codified factor 𝑤2 

as in the following equation: 

𝑡𝑏 = 130 + 30𝑤2                                                         (4.19) 

 

with: 

−1 ≤ 𝑤2 ≤ +1                                                         (4.20) 

 

In the application of DoE and DoDE, the static factor 𝑤2 is combined with the dynamic 

factor 𝑥(𝑡) that describes the substrate income flowrate and the static factor 𝑤1, which 

defines the initial biomass concentration.  
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4.4.1 Optimization of a penicillin fermentation process with variable 

batch duration using DoE  

The calculation of the optimal batch duration requires the definition of an empirical 

model that described the linear, interaction and quadratic effects of the inputs factor on 

the output factor, which is the penicillin concentration at the end of the batch.  

4.4.1.1 Selection of input factors 

The DoE considers all the input factors as static. This means that the dynamic factor 

𝑥(𝑡) , that describes the variation of the substrate income flowrate, is parametrized using 

the first subfactor 𝑥1. This allows defining only linear profiles of the substrate income 

flowrate. The subfactor 𝑥1 is indicated as a static variable using 𝑤3. The number of 

independent factors is decreased considering the constraint on the volume in Equation 

(4.15). This is rewritten as: 

(130 + 30𝑤2) ∫ [
6

130
(1 − τ) +

6

130
(1 − τ)(𝑤3𝑃0)]

1

0

= 3  .                    (4.21) 

It is possible to express 𝑤2, which represents the batch duration, as a combination of 

𝑤3 in this way: 

𝑤2 =
−4.33𝑤3

(1 + 𝑤3)
  .                                                        (4.22) 

Since 𝑤2 is bounded through Equation (4.20), the independent factors, 𝑤1 and 𝑤3,  must 

vary according to the following inequalities:  

−0.18 ≤ 𝑤3 ≤ 0.30 ,                                                       (4.23) 

−1 ≤ 𝑤1 ≤ 1.                                                       (4.24) 

4.4.1.2 DoE and experimentation 

The RSM that has to be defined is made by two independent factors (𝑤1 and 𝑤3), which 

describe respectively the initial biomass concentration and the linear variation of the 

substrate income flowrate. If the model aims to explore the linear, the interaction and 

the quadratic effects of the input factors, at least 10 parameters have to be estimated. A 

3-levels FFD is considered the best choice since it allows a complete collection of 

information.  
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Table 4.7 Three level full factorial design that defines the combination of 

the three factors 𝑤1, 𝑤2, and 𝑤3 that describe, respectively the variation of 

initial biomass concentration, of the batch duration and of the linear profile 

of the substrate income flowrate. 

The factor’s values in Table 4.7 characterize twelve experiments, from which it is 

possible to collect the experimental data, in terms of grams of penicillin produced and 

of end-point penicillin concentration, that are reported in Table 4.8. 

Table 4.8 Experimental data in terms of grams and concentration of the 

penicillin obtained at the end of the batch process according to the 

experimental campaign described in Table 4.7. 

 

The profiles of the penicillin concentration defined in DoDE are shown in Figure 4.5. 

Run 
Coded Variables 

𝑤1 𝑤2 𝑤3 

1 -1 -0.999 0.30 

2 -1 -0.245 0.06 

3 -1 0.950 -0.18 

4 -1 0.950 -0.18 

5 0 -0.999 0.30 

6 0 -0.245 0.06 

7 0 -0.245 0.06 

8 0 0.950 -0.18 

9 1 -0.999 0.30 

10 1 -0.999 0.30 

11 1 -0.245 0.06 

12 1 0.950 -0.18 

Run 
Simulated 

production (gr) 

Measured 

production (gr) 

Simulated  

concentration (gr/L) 

Measured  

concentration (gr/L) 

1 45.8550           45.6586 4.5814 4.5689 

2 47.2141 47.1224 4.7213 4.7207 

3 53.8546 54.1316 5.3858 5.3643 

4 53.8546 53.7901 5.3858 5.3720 

5 41.2238 41.1307 4.1220 4.0914 

6 51.8995 51.6454 5.1898 5.1764 

7 51.8995 51.6054 5.1898 5.1719 

8 56.8294 56.8357 5.6833 5.6998 

9 45.5766 45.8136 4.5572 4.5904 

10 45.5766 45.8572 4.5572 4.5808 

11 55.2672 55.4219 5.5266 5.5555 

12 58.9352 58.8441 5.8939 5.9139 
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4.3.1.3 RSM and optimization 

Starting from the experimental data reported in Table 4.8, the following RSM can be 

defined:  

𝑦̂ = 𝑏0 + 𝑏1𝑤1 + 𝑏2𝑤3 + 𝑏12𝑤1𝑤3               (4.25) 

As in Subsection 4.2, only the data regarding the penicillin concentration is taken into 

account. The estimated coefficients of the RSM in Equation (4.25) are in Table 4.9.                 

Table 4.9 Coefficients of response surface model in Equation (4.25) that 

define the influence of the initial biomass concentration and of the substrate 

feeding flowrate on the end-point penicillin concentration considering a 

variable batch duration 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏12 

5.24±0.1256 0.2557±0.1535  -2.587±0.6146  -0.570±0.7071 

The RSM calculated does not consider the quadratic dependence of the input factors; 

this is due to the fact that the used function “regress” allows to determine the 

significance of the terms of which the RSM is composed. In this case, the quadratic 

effects of the factors do not influence in a significant way the final penicillin 

concentration. The 𝑅2-adj for the above regression is 0.92. The optimum values of the 

input variables are those corresponding to the maximum predicted value of the end-

point penicillin concentration. This is equal to 6.0712 gr/L and corresponds to the values 

of 𝑤1,𝑂𝑃𝑇 =1, 𝑤2,𝑂𝑃𝑇 = 0.950 and 𝑤3,𝑂𝑃𝑇= -0.18.  

 

Figure 4.5 Profiles of the penicillin concentration obtained by performing a 3-level full 

factorial design with three factors in the case of DoE  
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The penicillin concentration obtained by carrying out the process with the suggested 

optimal conditions concentration, is 5.89 gr/L.  

The optimal batch time is equal to 158.5 hr but this result must be confirmed performing 

DoDE. 

4.4.2 Optimization of a penicillin fermentation process with variable 

batch duration using DoDE  

In this case, an empirical model that describes the influence of the input factors (both 

dynamic and static) must be calculated. The desired RSM considering both the linear 

and the non-linear terms (e.g. interactions and quadratic). 

4.4.2.1 Selection of input factors 

By applying DoDE, it has been possible to refer to the article Georgakis (2013) so that 

to compare the results obtained. In this case, the profiles of the substrate income 

flowrate are defined by the three dynamic subfactors {𝑥1, 𝑥2, 𝑥3} as in Equation (4.11). 

Two static factors have to be considered, which are the initial biomass concentration 𝑤1 

and the batch duration 𝑤2. 

The number of independent factors (five), is reduced by imposing two constraints as in 

Section 4.2. The first one imposes that each profile 𝑥𝑚(𝜏) tends to 0 at the end of the 

batch, so one of the dynamic subfactors can be rewritten as a linear combination of the 

others, using Equation (4.14). The second constraint is on the reactor volume and is 

reported below: 

(130 + 30𝑤2) ∫ [
6

130
(1 − τ) +

6

130
(1 − τ)𝑥𝑚(𝜏)]

1

0

= 3  .                      (4.26) 

This equation imposes the following relationship between the factor 𝑤2 that describes 

the batch duration and the dynamic subfactors 𝑥1 and 𝑥2. 

𝑤2 = −4.33 (
3𝑥1 − 𝑥2

3𝑥1 − 𝑥2 + 3
)  .                                                      (4.27) 

Equation (4.20) forces the 𝑤2 to vary inside the range [-1, +1]. This bounds the 

variability range of the dynamic subfactors. 

4.4.2.2 DoDE and experimentation 

The independent factors are three: 𝑤1, 𝑥1 and 𝑥2. A full quadratic RSM, as the one 

required, is composed by 10 parameters.  
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The experimental plan, made by the combinations of the three independent 

variables {𝑤1,𝑥1, 𝑥2}, is built according to the d-optimal criterion. The latter provided 

the definition of sixteen experiments that are characterized in Table 4.10. 

Table 4.10 D-optimal design that defines the combinations of  𝑤1,  𝑤2, 𝑥1, 

 𝑥2 𝑎𝑛𝑑 𝑥3 in DoDE applied to the case study of penicillin fermentation 

process with variable batch duration. 

Run 
Coded Variables 

𝑤1   𝑤2 𝑥1   𝑥2 𝑥3 

1 0.33 0.99 -0.1 0.26 -0.16 

2 0.33 -0.62 0 -0.5 0.5 

3 -1 1.04 -0.27 -0.23 0.5 

4 -1 -0.99 0.13 -0.5 0.37 

5 1 -0.3 0.18 0.32 -0.5 

6 -1 -0.14 0.03 -0.01 -0.02 

7 0 -1 0.35 0.15 -0.5 

8 -1 0.99 -0.02 0.5 -0.48 

9 1 -0.3 0.18 0.32 -0.5 

10 1 1.04 -0.27 -0.23 0.5 

11 0 1.04 -0.27 -0.23 0.5 

12 -1 -0.99 0.13 -0.5 0.37 

13 -0.33 0.03 0.12 0.38 -0.5 

14 1 1.04 -0.27 -0.23 0.5 

15 0 -0.63 0.14 -0.09 -0.05 

16 1 -1 0.24 -0.18 -0.06 

The substrate income profiles, defined using the value in Table 4.10 are shown in Figure 

4.6. 

 

Figure 4.6. Profiles of the substrate feeding flowrate obtained by performing a D-

optimal design in the case of DoDE 

The experimental data, in terms of grams of penicillin produced and of final penicillin 
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Table 4.11 Experimental data in terms of grams and concentration of the 

penicillin obtained at the end of the batch process according to the 

experimental campaign described in Table 4.10. 

Run 
Simulated 

production (gr) 

Measured 

production (gr) 

           Simulated 

concentration (gr/L) 

Measured  

concentration (gr/L) 

1 70.3113 69.7830 7.0334 6.9989 

2 29.8981 29.8670 2.9901 2.9958 

3 36.1361 35.8642 3.6136 3.6195 

4 23.3673 23.5788 2.3364 2.3515 

5 71.8808 71.8388 7.1905 7.2300 

6 48.2309 48.5266 4.8231 4.8389 

7 47.8810 47.9995 4.7881 4.7760 

8 81.2945 81.6638 8.1336 8.1143 

9 71.8808 71.4660 7.1905 7.1167 

10 40.0795 40.3315 4.0078 3.9988 

11 38.3801 38.6588 3.8380 3.8083 

12 23.3673 23.1247 2.3364 2.3473 

13 72.5724 72.5083 7.2573 7.2900 

14 40.0795 39.9488 4.0078 4.0106 

15 45.4576 45.4932 4.5458 4.5372 

16 41.6087 41.4318 4.1608 4.1637 

In Figure 4.7, the profiles of both the penicillin concentration and its productivity along 

the batch are shown.  

 a)  b) 

Figure 4.7 Profiles of a) penicillin production and b) penicillin concentration related 

to the experimental design in Table 4.11. 

4.4.2.3 RSM and optimization 

With the experimental data reported in the second and forth columns of Table 4.11, it 

is possible to define a RSM with the following formulation: 
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The RSM, in this case, is defined both for the penicillin concentration and for the 

penicillin produced in order to compare the results with those in Georgakis (2013).   

The estimated coefficients of Equation (4.28), in the case in which the response variable 

𝑦̂ is the end-point penicillin concentration, are reported in Table 4.12. 

Table 4.12 Coefficients of the response surface in Equation (4.28) that 

describes the influence of inputs on the final penicillin concentration 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏3 𝑏12 

5.312± 0.0935    0.3367 ±0.0472 -1.1092 ±0.2415 5.5398 ±  0.1485 0.4704 ±  0.2397  

     

𝑏13 𝑏23 𝑏11 𝑏22 𝑏33 

0.0622 ±  0.1426 -0.885  ± 1.2207 -0.0013 ±0.074 -7.6426 ±1.4163 1.5342 ±0.4657 

In Table 4.12, the optimum values of the input variables, calculated according to the 

procedure in Sub-subsection (1.1.5.1), are reported. 

Table 4.13 Optimum value of the input factors calculated maximizing the 

RSM in Equation (4.28), with the coefficients in Table (4.12)   

 Concentration 

(gr/L) 

Coded variables 

𝑤1   𝑤2 𝑥1   𝑥2 𝑥3 

Calculated 8.8512 1 1 -0.021 0.5 -0.479 

Simulated 8.7311      

The RSM can be defined also for the penicillin production. The coefficients, calculated 

using a least squares algorithm for the estimation of the coefficients in the multiple 

linear regression empirical model, are reported in Table 4.14 

Table 4.14 Coefficients of the response surface in Equation (4.28) that 

describes the influence of inputs on the end-point penicillin production 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏3 𝑏12 

53.08± 0.7297    3.291 ±0.3677 -11.156 ±1.8835 55.523 ±  1.1584 4.3765 ±  1.8696  

     

𝑏13 𝑏23 𝑏11 𝑏22 𝑏33 

0.2685 ±  1.1123 -8.8513 ± 9.5202 -0.0412 ±0.5773 -74.359 ±11.045 15.404 ±3.632 

In Table 4.15, the optimum values of the input variables are reported. 

Table 4.15 Optimum value of the input factor calculated maximizing the 

RSM in Equation (4.28) with the coefficients in Table (4.14)   

 Production 

 (gr) 

Coded variables 

𝑤1 𝑤2 𝑥1   𝑥2 𝑥3 

Calculated 88.2786 1 1 -0.021 0.5 -0.479 

Simulated 87.3122      
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In Figure 4.8, the profiles of the penicillin concentration and of the penicillin produced, 

obtained by carrying out the process at the suggested optimal conditions, are shown. 

The profiles obtained by performing a DoDE are compared to those obtained by DoE.   

a) b) 

Figure 4.8. Comparison between the optimum profile calculated in DoDE and DoE of 

a) the penicillin produced and b) the penicillin concentration  

In Figure 4.9, the profiles of the volume and of the substrate feeding flowrate, obtained 

by carrying out the process at the suggested optimal conditions, are shown, both in the 

case of DoE and DoDE. 

a) b) 

Figure 4.9. Comparison between optimum profile in the case of DoDE and DoE of a) 

the substrate feeding flowrate, b) the volume  

Looking to Figure 4.8, it is possible to observe that the optimum conditions provided 

by DoDE leads to an improvement in terms of penicillin productivity, with respect to 

those provided by DoE. This means that the optimal profile of the substrate income 

flowrate is a non-linear one.  
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The results obtained are compared to those in Georgakis (2013). The maximum value 

of the final penicillin concentration calculated is significantly higher than the one in 

Georgakis (2013). The aim of the procedure in this section was to understand if the 

calculation of the optimal batch duration brings an improvement in the maximum value 

of the penicillin concentration. In Figure 4.10b, the penicillin production obtained by 

applying the optimization procedure in the case of fixed batch time 𝑡𝑏=130 hours is 

compared to that calculated considering the variation of batch duration (e.g. an optimum 

batch duration equal to 𝑡𝑏=160 hr). 

a) b) 

Figure 4.10 Comparison between the optimum profile calculated performing a DoDE 

with variable batch time (continuous line) and the one calculated performing DoDE 

with fixed batch time (dashed line) of: a) the substrate feeding flowrate and b) the 

penicillin concentration.  

The increase of the batch duration affects the final value of the penicillin concentration 

significantly.  

4.4.3 Definition of a dynamic response surface model 

For the definition of the DRSM, the data of the penicillin concentration collected by 

performing a DoDE as the one in Subsection 4.4.2 are used. Respect to the case 

developed in Section 4.3, the DRSM is composed by three independent factors. For this 

reason, it is expected that the approximation will be more complicated than the one 

performed above. In fact, it has been decided to collect at least 18 experimental point 

from each profile. The accuracy of the DRSM is defined through the calculation of 𝑆𝑆̂𝑢𝑛 

using Equation (1.26). 
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Table 4.16 Values of  𝑆𝑆̂𝑢𝑛  for dynamic response surface model with 

variable K and R calculated in the case of penicillin fermentation process 

with variable batch duration 

R K=Number of experiments for each profile 

18 19 20 21 22 23 24 

17 8.60E-04 5.70E-04 6.32E-04 6.94E-04 9.64E-04 8.42E-04 6.07E-04 

18 
 

5.71E-04 8.13E-04 0.0013 5.10E-04 7.49E-04 5.30E-04 

19 
  

7.45E-04 0.001 5.46E-04 4.21E-04 7.18E-04 

20 
   

6.94E-04 5.54E-04 0.0012 6.36E-04 

21 
    

0.0011 8.21E-04 7.97E-04 

22 
     

8.13E-04 6.77E-04 

23 
      

7.17E-04 

 

By looking to the results, it is possible to observe that the value of 𝑆𝑆̂𝑢𝑛, cannot be 

reduced below 10−4 also using many polynomials.  

However, the ratio 𝐹0 and the p-value have to be calculated using the (1.29) in order to 

certify that the model adequately represents the non-random variability of the data. The 

p-value for each combination of R and K are reported in Table 4.17. 

Table 4.17 Values of p-values for dynamic response surface model with a 

variable K and R calculated in the case of penicillin fermentation process 

with variable batch duration 

R K=Number of experiments for each profile 

18 19 20 21 22 23 24 

17 1 0.99 1 1 1 0.98 1 

18  1 1 1 1 1 0.98 

19   1 1 0.88 0.78 1 

20    1 1 1 0.99 

21     1 1 1 

22      1 1 

23       1 

 

An acceptable DRSM model is the one obtained with K=23 and R=19. The general 

equation of the DRSM is reported in Equation (4.29). 

𝑦𝐷𝑅𝑆𝑀(𝜏) = ∑ 𝑔0,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

+ {∑ 𝑔1,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1 + {∑ 𝑔2,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥1 + {∑ 𝑔3,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥2 (4.29) 

    + {∑ 𝑔12,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1𝑥1 + {∑ 𝑔13,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1𝑥2 + {∑ 𝑔23,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥1𝑥2  

   + {∑ 𝑔11,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑤1
2 + {∑ 𝑔22,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥1
2 + {∑ 𝑔33,𝑟𝑃(𝑟−1)

𝑅

𝑟=1

} 𝑥2
2 

 

The coefficients {𝑔𝑞,𝑟} of the DRSM are calculated via stepwise regression that turns 

only the parameters that are significant. These are reported in Table 4.18. 
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Table 4.18 Coefficients of dynamic response surface model in Equation 

(4.29) that define the relationship between the inputs and the time-variant 

output  

Coefficients 

g0,1 g0,2 g0,3 g0,4 g0,5 

2.732 4.089±0.0469 0.214±0.0582 -2.020±0.0621 -0.429±0.0677 

g0,6 g0,7 g0,8 g0,10 g0,12 

0.956±0.0518 0.118±0.0767 -0.523±0.0602 0.368±0.0968 -0.229±0.0981 

g1,1 g1,2 g1,3 g1,4 g1,5 

0.337±0.0153 0.317±0.0257 -0.267±0.0331 -0.190±0.0348 0.211±0.0421 

g1,6 g1,7 g1,9 g2,1 g2,2 

0.064±0.0407 -0.153±0.0495 0.063±0.0504 -3.366±0.0721 -1.830±0.1226 

g2,3 g2,4 g2,5 g2,6 g2,7 

4.893±0.1587 1.604±0.1440 -4.384±0.2097 -0.382±0.2151 3.042±0.2576 

g2,8 g2,9 g2,10 g2,11 g2,12 

-0.822±0.2553 -2.389±0.2581 1.054±0.2815 0.726±0.2284 -1.293±0.2740 

g2,14 g2,17 g3,1 g3,2 g3,3 

0.978±0.3473 0.812±0.4256 4.055±0.0442 4.817±0.0762 -1.845±0.0958 

g3,4 g3,5 g3,6 g3,7 g3,8 

-2.950±0.0939 1.166±0.1243 1.103±0.1442 -1.195±0.1497 -0.254±0.1826 

g3,9 g3,10 g3,11 g3,12 g3,13 

0.931±0.1423 -0.273±0.1963 -0.606±0.1485 0.404±0.1704 0.274±0.1673 

g3,14 g3,16 g12,1 g12,2 g12,3 

-0.330±0.2184 0.264±0.2763 0.157±0.0798 0.582±0.1380 0.351±0.1650 

g12,4 g12,5 g12,6 g12,8 g12,10 

-0.661±0.1932 -0.293±0.1968 0.697±0.2356 -0.813±0.2643 0.520±0.2786 

g13,1 g13,2 g13,3 g13,5 g13,7 

0.196±0.0480 0.089±0.0758 -0.345±0.1082 0.199±0.1482 -0.457±0.1883 

g13,11 g13,13 g13,17 g23,1 g23,2 

-0.331±0.1910 0.289±0.1907 0.518±0.2848 -4.927±0.3851 -1.716±0.6504 

g23,3 g23,5 g23,6 g23,7 g23,8 

8.699±0.898 -4.973±1.2497 3.508±1.173 6.742±1.5562 -6.063±1.3964 

g23,10 g23,12 g23,13 g23,14 g23,15 

5.826±1.5460 -5.653±1.5215 2.210±1.2628 3.375±1.8874 -4.904±1.6154 

g23,19 

-3.564±1.8510 

g11,1 

-0.077±0.0230 

g11,2 

-0.060±0.0372 

g11,3 

0.053±0.0456 

g22,1 

-1.297±0.4329 

g22,2 g22,3 g22,4 g22,5 g22,6 

-6.107±0.7376 -5.970±0.9719 5.903±0.8529 4.024±1.3071 -7.598±1.2398 

g22,7 g22,8 g22,10 g22,12 g22,13 

-5.746±1.5733 8.760±1.4524 -8.357±1.7282 7.359±1.7318 -2.518±1.1145 

g22,14 g22,15 g22,19 g33,1 g33,2 

-3.413±1.5396 4.594±1.3629 3.478±1.5761 2.175±0.1412 1.950±0.2428 

g33,3 g33,4 g33,5 g33,7 g33,9 

-2.000±0.3029 -1.497±0.3512 1.720±0.3843 -1.786±0.4476 1.247±0.3218 

g33,10 g33,11 g33,12 g33,13 g33,16 

-1.076±0.5587 -1.279±0.3205 0.870±0.5260 0.873±0.3763 0.795±0.5469 

In Figure 4.11, where the DRSM predictions are plotted against the experimental 

profiles it is possible to notice an oscillatory behaviour of the profiles predicted in the 

first part of the batch.  

 

 



74                                                                                                                                                  Chapter 4 

 

 
a) b) 

c) 
 

d) 

Figure 4.11 In these figures the experimental profiles are compared to the DRSM 

predictions of penicillin concentration profiles within the experimental design in the 

case of a) 𝑤1=0.33,  𝑥1=-0.1 and 𝑥2=0.26 b) 𝑤1=-1,  𝑥1=0.03 and 𝑥2=-0.01 c) 𝑤1=-1,  

𝑥1=0.13 and 𝑥2=-0.5 d)  𝑤1=1,  𝑥1=0.25 and 𝑥2=-0.18  

4.4.3.1 Optimization using dynamic response surface model 

Using the DRSM calculated in Equation (4.29), it is possible to represent the profiles 

of the penicillin concentration inside the reactor for different combinations of 𝑤1, 𝑥1 

and 𝑥2. The profiles are shown in Figure 4.12. 
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Figure 4.12 Profiles of the penicillin concentration obtained using the DRSM in (4.29) 

One of the criteria that can be used for the definition of the optimum profile is to 

determine the value of the factors: 𝑤1, 𝑥1 and 𝑥2, and the related temperature profile, 

that defines the conversion profile, which maximizes the integral of the DRSM, from τ 

= 0 to τ = 1, according to Equation (1.33). The combination of dynamic subfactors that 

meets this condition is: 𝑤1,𝑂𝑃𝑇= 1, 𝑥1,𝑂𝑃𝑇= -0.021; 𝑥2,𝑂𝑃𝑇= 0.5. The factors calculated 

are the same obtained in DoDE. By plotting this profile together with the profiles in 

Figure 4.12, it is possible to see that this satisfies also to the criterion in (1.34) since it 

is higher than all the others during the whole process. 

a) b) 

Figure 4.13. Comparison between the optimum predicted profile of the penicillin 

concentration and a) the profiles obtained using the DRSM in (4.29) and b) the optimum 

simulated profile of the penicillin concentration  

The difference between the profiles in Figure 4.13b is defined by the value of the RSME 

calculated according to Equation (1.35). In this case RSME is equal to 0.36 that is higher 

than the value of σ=0.02.  
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This means that the difference between the predicted profile and the simulated one is 

higher than the measurement error added to the experimental data.  

4.5 Conclusions regarding the optimization of the penicillin 

fermentation process  

The obtained results can be summarized in order to compare the methodologies applied 

and to define the operating optimum of the penicillin fermentation process. The 

following considerations, regarding both the case of fixed batch duration and the 

variable one, are possible: 

• In the case of fixed batch time (𝑡𝑏=130 hours), DOE cannot be performed, and 

the comparison is made between DoDE results and DRSM. The calculation of 

the operating optimum using the DRSM does not bring any improvements with 

respect to DoDE, neither of penicillin concentration profile, nor of its end-point 

value. Therefore, the optimum is defined by the following factors values: 

𝑤1,𝑂𝑃𝑇 = 1, 𝑥1,𝑂𝑃𝑇 =0.125, 𝑥2,𝑂𝑃𝑇 =0.375 and 𝑥3,𝑂𝑃𝑇 =-0.5. The related final 

penicillin concentration is 7.75 gr/L. 

• Considering the variability of the batch duration, both the DoE and DoDE have 

been applied. The DoDE leads to determine a higher value of the penicillin 

concentration at the end of the batch compared to the one that can be obtained 

using DoE. The operating optimum is characterized by the following values of 

the factors: 𝑤1,𝑂𝑃𝑇 = 1, 𝑤2,𝑂𝑃𝑇 = 1, 𝑥1,𝑂𝑃𝑇 = -0.021, 𝑥2,𝑂𝑃𝑇 =0.5 and 

𝑥3,𝑂𝑃𝑇 =-0.479. The optimal batch duration is equal to 𝑡𝑏=160 hours. The 

corresponding final penicillin concentration is 8.73 gr/L. This result is higher 

than the one obtained by DoDE with fixed batch duration. 

 

 

 

 

 



 
 

Conclusions 

The objective of this thesis has been to discuss a methodology that allows defining the 

optimum operating conditions of a dynamic batch or semi-batch process. The 

methodology uses the data-driven approach commonly used in the case of time-

invariant input variables, (namely, the design of experiments; DoE) and a new 

methodology (called design of dynamic experiments; DoDE) that allows considering 

the dynamic behavior of the input variables. The application of these two methodologies 

allows to obtain a large amount of information by minimizing the number of 

experiments to be performed. The data collected, in terms of process output, have to 

ensure the definition of a response surface model (RSM) that describes the effects of 

the factors on the output end-point value. A larger number of experimental 

measurements is required for the construction of a dynamic response surface model 

(DRSM), which is a data-driven model that captures the relationship between process 

input and time-resolved output. The RSM has been used to define the profile of the 

manipulated variables that optimize the final value of the process output. Instead, 

through the use of a DRSM, it is possible to optimize the process output profile. In the 

latter case, two example criteria have been considered. The first one aims to maximize 

the integral of the profile of the output variable while the second criterion requests to 

define the profile of the response variable that is greater than all the others during the 

whole process.  

The complete methodology, made by both DoE and DoDE, and the related RSM and 

DRSM, has been applied to three case studies.  Results indicate that the application of 

DoDE in batch and semi-batch processes can lead to the definition of better values of 

the process output than those achievable by DoE. This result shows how the time 

variation of the input variables can affect significantly the product quality.  

For what concerns the construction of a DRSM, the examples considered have 

highlighted some critical aspects. Firstly, the output variable must be measurable during 

the entire batch. Furthermore, the number of experimental data, required for the 

definition of a DRSM, quickly increases as the number of input factors increases or as 

the process output trend shows a discontinuity. In the latter occurrence, the DRSM 

calculated may be inaccurate. Considering the results regarding the three case studies, 

it can be concluded that the use of the DRSM approach does not allow to improve 

significantly the output end-point value if compared to DoDE.  

However, the DRSM methodology may be very useful to determine the optimum profile 

of the process output. 



 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

List of symbols  

 
Acronyms 

 

CCD = Central Composite Design 

DODE = Design of Dynamic Experiments 

DOE = Design of Experiment  

DOD = D-Optimal Design  

DRSM = Dynamic Response Surface Model 

FFD = Full Factorial  

RSM = Response Surface Model 

RSME = Root Mean Square Error 

SSE =  Sum of Squares Error 

SSR = Sum of Squares Regression 

   

 
   Symbols 

 

[𝐴] = Concentration of A (gmol/L) 

[𝐵] = Concentration of B (gmol/L) 

𝐵𝑇 = Total amount of B fed (gmol) 

b = Biomass concentration (grb/L)  

𝑏̅ = Initial biomass concentration (grb/L) 

𝑏𝑞 = Coefficients of a Response Surface Model 

[𝐶] = Concentration of C (gmol/L) 

[𝐷] = Concentration of D (gmol/L) 

D = Total number of the significance parameters of DRSM  

d = Total number of parameters of RSM  



 

[𝐸] = Concentration of E (gmol/L) 

𝐸𝐴 = Activation energy of direct reaction J/mol 

𝐸𝐵 = Activation energy of inverse reaction J/mol 

𝑔𝑞,𝑟 = Coefficients of a Dynamic Response Surface Model 

H = Total number of time instants in which the DRSM is 

maximized 

I = Total number of variation levels of a static factor  

J = Total numbers of static factors  

K = Total number of experimental points for each profile used 

in DRSM  

𝑘𝐴 = Kinetic constant of direct reaction (L/gmol/h) 

𝑘𝐵 = Kinetic constant of inverse reaction (L/gmol /h) 

𝑘𝐴0 = Pre-exponential factor of direct reaction (h-1) 

𝑘𝐵0 = Pre-exponential factor of inverse reaction (h-1) 

𝑘1 = Kinetic constant of reaction 1 (L/gmol/ h) 

  𝑘2 = Kinetic constant of reaction 2 (L/gmol/ h) 

  𝑘3 = Kinetic constant of reaction 3 (h-1) 

𝑘𝑏 = Saturation parameter for biomass growth (grb /grs) 

𝑘𝑝 = Saturation parameter for penicillin production (grs/L) 

𝑘𝑖𝑛 = Inhibition parameter for penicillin production (grs/L) 

𝑘𝑑 = Penicillin degradation (h-1) 

𝑘𝑚 = Saturation parameter for maintenance consumption (grs/L)  

M = Total number of variation profiles of a dynamic factor  

𝑚𝑠 = Maintenance consumption rate (grs/grb/h) 

N = Total number of dynamic subfactors related to a dynamic 

factor  

p = Penicillin concentration (grp/L) 

𝑃0 = Shifted Legendre polynomial of zero degree 

𝑃1 = Shifted Legendre polynomial of first degree 

𝑃2 = Shifted Legendre polynomial of second degree 

R = Total number of shifted Legendre polynomials used in 

DRSM 



 

 
 

𝑟 = Rate of reaction (gmol/L/h) 

𝑟1 = Rate of reaction (gmol/L/h) 

𝑟2 = Rate of reaction (gmol/L/h) 

𝑟3 = Rate of reaction (gmol/L/h) 

𝑅𝑔 = Gas Constant (J/mol/K) 

s = Substrate concentration (grs/L) 

𝑠𝑓 = Feed concentration of substrate (grs/L) 

t = Time (h) 

𝑡𝑏 = Batch time (h) 

T = Temperature (K) 

𝑻 = Set of temperature profiles (°C) 

𝑢𝐵 = Feeding flowrate of B (gmol/h) 

𝑢𝑠 = Substrate feeding flowrate (L/h) 

V = Volume (L) 

𝑊 = Static factor 

𝑤 = Codified static factor 

𝑌𝑋𝑆 = Yield factor, substrate to biomass (grb /grs) 

𝑌𝑃𝑆 = Yield factor, substrate to product (grp /grs) 

𝑦𝑒𝑥𝑝 = Perturbed value of the response variable 

𝑦 = Simulated value of the response variable 

𝑦̂ = Response Surface Model 

𝑦𝐷𝑅𝑆𝑀 = Dynamic Response Surface Model 

𝑿 = Set of dynamic factor profiles 

𝒙 = Set of codified dynamic factor profiles 

𝑋 = Dynamic factor 

𝑥 = Codified dynamic factor 

𝑥1 = Dynamic subfactor of factor x 

𝑥2 = Dynamic subfactor of factor x 

𝑥3 = Dynamic subfactor of factor x 

Z = Matrix of set of candidate samples  



 

z =  Submatrix of Z defined according to D-optimal criterion 

   

Greek letters  

 

  

𝜇𝑚𝑎𝑥 = Maximum specific biomass growth rate (h-1) 

𝜌𝑚𝑎𝑥 = Maximum specific production rate (grp/grb/ h) 

τ = Dimensionless time 

 

 
Subscript 

       

h = h-th time instants in which the DRSM is maximized 

i =             i-th variation level of a static factor 

j = j-th static factor 

m = m-th profile of a dynamic factor 

n = n-th dynamic subfactor of a dynamic factor 

q = Index of variation of the parameters according to the used 

model in RSM and DRSM  

 

 

 

 

 

 

 



 
 

Appendix A 
 

Optimization of a semi-batch reactor 

In this appendix, the optimization procedure defined in Chapter 1 is applied to case 

study of a semi-batch reactor that is described in Section 2.2. By applying DoE and 

DoDE, it is possible to define the profile of an input variable that optimizes the value 

of the output. The construction of a DRSM, instead, allows studying the dynamic 

behavior of the output variable along the process.  

A.1 Optimization of a semi-batch reactor using DoE 

methodology   

The optimization procedure, described in Chapter 1, is applied in order to define an 

empirical model that describes the relationship between the feeding flowrate of B, 

which is the input factor, and a process output that is the concentration of product C. 

The model that has to be defined described both the linear and the quadratic effects of 

the input on the concentration of product C.  

A.1.1 Selection of input factors 

The feeding flowrate of B is the input variable that must be manipulated to define the 

optimum value of the concentration of product C, that is the output of the batch. The 

input variable has an intrinsically dynamic behaviour that tends to 0 at the end of the 

process and it is indicated with 𝑢𝐵(𝜏). The general equation, that describes the variation 

of the dynamic factor 𝑢𝐵 in the dimensionless time, is the following:  

𝑢𝐵(𝜏) = 𝑢0,𝐵(𝜏) + 𝛥𝑢𝐵(𝜏)𝑥(𝜏)                                      (A.1) 

with:  

𝑢0,𝐵(𝜏) = 30(1 − 𝜏)  ;                                           (A.2) 

𝛥𝑢𝐵(𝜏) = 20(1 − 𝜏) ;                                          (A.3) 

𝑥(𝜏) = 𝑥1𝑃0(𝜏) .                                          (A.4) 
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The profile 𝑥(𝜏) is the codified version of the dynamic factor 𝑢𝐵(𝜏), described by the 

combination of the dynamic subfactor 𝑥1 with the first Legendre polynomial 𝑃0(𝜏).  

Equations (A.2) and (A.3) define the range of variation of the factor 𝑢𝐵(𝜏): [0, 50]. The 

initial value 𝑢𝐵(0) varies between 10 gmol/L and 50 gmol/L.  

An operating constraint is introduced to consider the total amount of B to be fed along 

the process. It is defined using the equation (A.5). 

𝐵𝑇 = ∫ {𝑢0,𝐵(𝜏) + 𝛥𝑢𝐵(𝜏)𝑥(𝜏)}
1

0

𝑑𝜏                                      (A.5) 

The reference value for 𝐵𝑇 is set to 15 gmol while its variation is bounded between 10 

gmol and 20 gmol. The total amount of B fed is parametrized by introducing a decision 

variable 𝑎 as follows:  

𝐵𝑇 = 15 + 5𝑎                                                         (A.6) 

with the constraint −1 ≤ 𝑎 ≤ +1.   

In this case, in which DoE is going to applied, the variation of the feeding flowrate of 

B is described using only the subfactor 𝑥1. This means that the feeding flowrate of B 

varies linearly with time. Therefore, 𝑥1 can be considered as a static factor and rewritten 

as 𝑤1. Equation (A.1) is simplified as follows: 

𝑢𝐵(𝜏) = 30 + 20𝑤1 − (30 + 20𝑤1)𝜏                                (A.7) 

The range of variation of the factor 𝑤1 is bounded according to the operating constraint 

on the total amount of B fed in Equations (A.5) in this way: 

−0.5 ≤  𝑤1 ≤ +0.5.                                                         (A.8) 

A.1.2 DoE and experimentation  

Different profiles of 𝑢𝐵(𝜏) are described by varying 𝑤1 according to the design strategy 

chosen to characterize the experimental campaign. The latter depends on the empirical 

model that it has to be defined to describe the influence between the input variable, 𝑤1 

and the process output  𝑦 , which is the product C concentration. Since the desired RSM 

has to include both the linear and the quadratic term, the experimental design defines at 

least three experiments, in which the input factor assumes respectively, the highest, the 

intermediate and the lowest value of its variability range.  
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Two repeated experiments in the central point of the experimental space are added. The 

five experiments, according to the variation range defined in (A.8), are described in 

Table A.1. 

Table A.1 Concentration of product C by applying the DOE methodology 

 Run1 Run2 Run3 Run4 Run5 

𝒖𝑩(0) (gmol/time) 20  30  30  30  40  

Coded variable 𝒘𝟏  -0.5 0 0 0 0.5 

Simulated product C  0.3007     0.3732     0.3732     0.3732     0.4190     

Measured product C  0.3015 0.3748 0.3757 0.3686 0.4187 

The profiles of the feeding flowrate of B, according to the experiments in Table A.1, 

are shown in Figure A.1, with the related value of the process output, which is the 

concentration of product C.   

a) b) 

Figure A.1 Profiles of a) the feeding flowrate of B and b) the concentration of C 

obtained performing a DoE described in Table A.1  

A.1.3 RSM and optimization 

The RSM that has to be obtained and the relates the input factor 𝑤1 with the response 

variable 𝑦̂, namely, the concentration of product C at the end of the batch is the 

following: 

𝑦̂ = 𝑏0 + 𝑏1𝑤1 + 𝑏2𝑤1
2                                                                     (A.9) 

The coefficients {𝑏0, 𝑏1, 𝑏2} that define the RSM in (A.9) are calculated using a least 

square estimation method and are reported in Table A.2.  
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Table A.2 Coefficients of the response surface model in Equation (A.9) that 

defines the quadratic relationship between the feeding flowrate of B and the 

concentration of product C  

Coefficients 

𝑏0 𝑏1 𝑏2 

0.373 ±0.0097 0.1172± 0.0273 -0.0517 ± 0.0613 

The 𝑅2 adj is 0.9957. It is possible to define the value of the factor 𝑤1 that guarantees 

the highest productivity. Since the trend of the productivity is a growing one, it reaches 

its maximum value at the upper limit of the variation range of factor 𝑤1. The maximum 

predicted value is 𝑦 ̂= 0.4187 gmol/L, that is related to 𝑤1,𝑂𝑃𝑇= 0.5.  

The confidence intervals of the parameters define a range of variation of the predicted 

maximum that is [0.3812 gmol/L, 0.4573 gmol/L]. Since the maximum real 

concentration of B is 𝑦 =0.4190 gmol/L, the empirical model defined in Equation (A.9) 

is able to describe the process optimum.  

A.2 Optimization of a semi-batch reactor using DoDE 

methodology  

In this case, the objective is to define a RSM that consider both linear and non-linear 

effect (e.g. interactions and quadratic) of the input variable, which is the feeding 

flowrate of B, on the product C concentration. 

Differently from the DoE described in Section (A.1), the feeding flowrate of B varies 

non- linearly with time.  

A.2.1 Selection of input factors  

The time dependence of the feeding flowrate of B can be non-linear if three dynamic 

subfactors: 𝑥1, 𝑥2 and 𝑥3, are used. Equation (A.4), which describes the codified 

variation of feeding flowrate of B: 𝑢𝐵(𝜏), can be rewritten in this way:  

𝑥(𝜏) = 𝑥1𝑃0(𝜏) + 𝑥2𝑃1(𝜏) + 𝑥3𝑃2(𝜏) ,   (A.10) 

with  

−1 ≤ 𝑥(𝜏) ≤ +1                                                        (A.11)       

where the 𝑃1(𝜏) and 𝑃2(𝜏) are, respectively, the first and second order Legendre 

polynomials. The subfactors combinations, that will be used for the characterization of 

the M profiles of feeding flowrate of B, have to satisfy the inequality in (A.12). 
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−1 ≤ 𝑥1,𝑚 ± 𝑥2,𝑚 ± 𝑥3,𝑚 ≤ +1 .                                                       (A.12) 

Since the experimental region shrinks to zero at the end of the batch, the 

constraint 𝑥𝑚(1) = 0, which yields 𝑥1,𝑚 + 𝑥2,𝑚 + 𝑥3,𝑚 = 0, must be imposed. In this 

way, the number of independent subfactors is reduced from three to two independent 

subfactors {𝑥2, 𝑥3} since 𝑥1,𝑚 can be rewritten in this way: 

𝑥1,𝑚 = −(𝑥2,𝑚 + 𝑥3,𝑚)                                                        (A.13) 

The constraint (A.11) defines the following variation range of the subfactors: 

−0.5 ≤ 𝑥2 ≤ +0.5 
                                                               

(A.14) 

−0.5 ≤ 𝑥3 ≤ +0.5 (A.15) 

−0.5 ≤ 𝑥2,𝑚 + 𝑥3,𝑚 ≤ +0.5 (A.16) 

The operating constraint in Equation (A.5) has to be considered. In particular, it is 

necessary to consider the parameter 𝑎, which parametrizes the total amount of B fed in 

the reactor, considering that it depends on the value of 𝑥2 and 𝑥3 as follows: 

𝑎 = −2 (
4𝑥2

3
+ 𝑥3)  (A.17) 

Since the value of 𝑎 has to be always inside the range [-1, +1], the following constraint 

on the values of the dynamic subfactors has to be imposed:  

−1.5 ≤ 4𝑥2 + 3𝑥3 ≤ +1.5  (A.18) 

A.2.2 DoDE and experimentation 

Since there are two independent subfactors 𝑥2 and 𝑥3, a full quadratic RSM requires the 

estimation of six parameters. The experiments are characterized by different 

combinations of the two dynamic subfactors that satisfy the constraints in Subsection 

A.2.1. A d-optimal design is the design strategy commonly used in the case in which 

the design space is bounded by constraints. To estimate a quadratic RSM thirteen 

experiments are required, of which 4 are replicates. In Table A.3, the combinations of 

the dynamic subfactors are reported. In the last column of the same table the results of 

the experiments, in terms of product C concentration at the end of the batch are reported. 
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Table A.3 Feeding flowrate of B profiles defined according to a D-optimal 

design applied to three dynamic subfactors and the related value of the 

product C concentration at the end of the batch. 

Run 
Coded Variables Simulated product Measured product 

C (gmol/L) 𝑥1 𝑥2 𝑥3 a C (gmol/L) 

1 -0.5 0 0.5 -1 0.2972 0.2947 

2 0.33 -0.5 0.17 0.993 0.4144 0.4144 

3 0 -0.5 0.5 0.333 0.3844 0.3859 

4 0.5 0 -0.5 1 0.4225 0.4230 

5 -0.01 0.01 0 -0.027 0.3717 0.3682 

6 0 0.5 -0.5 -0.333 0.3570 0.3560 

7 -0.33 0.5 -0.17 -0.993 0.3019 0.3015 

8 0.38 -0.35 -0.03 0.993 0.4168 0.4206 

9 -0.01 0 0.01 -0.020 0.3720 0.3737 

10 -0.01 0 0.01 -0.020 0.3720 0.3719 

11 -0.01 0 0.01 -0.020 0.3720 0.3744 

12 -0.01 0 0.01 -0.020 0.3720 0.3701 

13 -0.01 0 0.01 -0.020 0.3720 0.3714 

The profiles of the feeding flowrate of B described by the dynamic subfactors in Table 

A.3 and the respective variation of the response, namely, the concentration of product 

C are shown in Figure A.2. 

A.2.3 RSM and optimization 

The RSM that describes the influence of the non-linear profile of the feeding flowrate 

of B on the value of the product C concentration at the end of the batch has the following 

formulation:  

𝑦̂ = 𝑏0 + 𝑏1𝑥2 + 𝑏2𝑥3 + 𝑏12𝑥2𝑥3 + 𝑏11𝑥2
2 + 𝑏22𝑥3

2 . (A.19) 

a) b) 
Figure A.2 Profiles of: a) the feeding flowrate of B and b) the concentration of product 

C obtained performing a D-optimal design as the one in Table A.3. 
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The coefficients, calculated using a least square algorithm for the estimation of the 

coefficients in the multiple linear regression empirical model, are reported in Table A.4.  

Table A.4 Coefficients of response surface model in Equation (A.19) that 

defines the full quadratic relationship between two independent subfactors 

and the value of product C concentration 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏12 𝑏11 𝑏22 

0.3731±0.02        0.1585±0.0062   -0.128±0.0063    -0.146 ±0.0352  -0.1 ±0.024 -0.056±0.0166 

The 𝑅2-adj for the above regression is 1. DoDE has been applied in order to define the 

profile of feeding flowrate of B that provides the maximum concentration of product C 

at the end of the batch. The maximum predicted value of the product C, is 0.4235 

gmol/L, which corresponds to a feeding profile defined by 𝑥1,𝑂𝑃𝑇= 0.4999, 

𝑥2,𝑂𝑃𝑇=0.0001 and 𝑥3,𝑂𝑃𝑇= -0.4999. The maximum real conversion is 0.4225 gmol/L 

that is inside the range of variability [0.4025 gmol/L, 0.4445 gmol/L] calculated 

considering the coefficients in Table A.4 at the ends of their confidence interval. This 

result of the optimization can be compared with the one obtained performing the DoE 

in Figure A.3. 

a) b) 

Figure A.3 Comparison among the optimum calculated using DoE and the optimum 

obtained by DoDE: a) feeding flowrate of B and b) product C concentration. 

In Figure A.3, it is possible to notice that the difference between the optimum 

concentration obtained by DoDE and the one obtained by DoE is not significant as it is 

less than the value of the measurement error of 1% imposed in the experimental 

campaign.  
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A.3 Definition of the optimal batch duration 

Since the profiles of the product C concentration show a parabolic trend with time, it 

might be useful to define the optimal batch time. In this Section, DoE and DoDE are 

applied considering the batch time as a static factor. This case studies has been 

developed in Troup and Georgakis (2013). 

The batch time 𝑡𝑏 is parametrized through the decision variable 𝑤2 as follow: 

𝑡𝑏 = 1 + 0.5𝑤2                                                        (A.20) 

where 𝑤2 is the codified factor that describes the variation of the batch duration.  

The 𝑤2 is bounded by the following constraint:  

−1 ≤ 𝑤2 ≤ +1                                                        (A.21) 

According to Equations (A.20) and (A.21), the batch time varies between 0.5 h and 1.5 

h. In the application of DoE and DoDE, the static factor 𝑤2 is combined with the 

dynamic factor 𝑥(𝑡), which describes the feeding flowrate of B.   

A.3.1 Optimization of a semi-batch reactor with variable batch 

duration using DoE methodology 

The calculation of the optimal batch duration requires the definition of an empirical 

model that described the linear, interaction and quadratic effects of the inputs factor on 

the output factor, which is the product C concentration at the end of the batch.  

A.3.1.1 Selection of input factors 

In DoE, two factors are considered, one in the static factor 𝑤2 that describes the variable 

batch duration, the other is the factor 𝑤1. The latter defines the linear variation of the 

feeding flowrate of B as defined in Subsection A.1.1. The variation range of the two 

factors are in Equations (A.8) and (A.21). 

A.3.1.2 DoE and experimentation 

The definition of a full quadratic RSM with two factors 𝑤1 and 𝑤2 requires a complete 

collection of information that can be provided by a three-levels FFD. It is made by 

twelve experiments among which three are replicas. The CCD cannot be performed 

since the two factors vary among different levels. The combinations of the factors and 

the related value of the product C concentration of at the end of the batch are reported 

in Table A.5. 
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Table A.5 Full factorial design applied to the case of two input factors: 

feeding flowrate and batch time duration and the that vary among three 

levels and the related value of the product C concentration at the end of the 

batch  

Run 
Coded Variables Simulated product Measured product  

C (gmol/L) 𝑤2 𝑤1 C (gmol/L) 

1 1 -0.5 0.3242 0.3258 

2 1 0 0.3593 0.3590 

3 1 0.5 0.3687 0.3692 

4 -1 -0.5 0.1627 0.1632 

5 -1 0 0.2256 0.2255 

6 -1 0.5 0.2792 0.2799 

7 0 -0.5 0.3007 0.2988 

8 0 0 0.3732 0.3753 

9 0 0.5 0.4190 0.4170 

10 0 0 0.3732 0.3698 

11 0 0.5 0.4190 0.4219 

12 -1 -0.5 0.1627 0.1627 

The profiles of the feeding flowrate of B and of the product C concentration, according 

to design plan in Table A.5, are shown in Figure A.4. 

a) b) 

Figure A.4 Profiles of: a) the feeding flowrate of B and b) the concentration of product 

C obtained by performing a 3-levels FFD in the case of DoE  

A.3.1.3 RSM and optimization 

The effects of the two factors 𝑤1 and 𝑤2  on the product C concentration (𝑦) can be 

described by the following RSM: 

𝑦̂ = 𝑏0 + 𝑏1𝑤2 + 𝑏2𝑤1 + 𝑏12𝑤2𝑤1 + 𝑏11𝑤2
2 + 𝑏22𝑤1

2.               (A.22) 

Using the experimental data in Table A.5, the coefficients of Equation (A.22) are 

estimated and reported in Table A.6. 
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Table A.6 Coefficients of response surface model of Equation (A.22) that 

defines the quadratic effects of the two factors on the product C 

concentration 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏12 𝑏11 𝑏22 

0.372± 0.015   0.0631± 0.010 0.093± 0.0192 -0.0351±  0.0242  -0.08± 0.016  -0.035 ± 0.0647 

The 𝑅2-adj for the above regression is 0.99. Equation (A.22) allows calculating the 

maximum predicted value of the concentration of product C that is equal to 0.4172 

gmol/L. This corresponds to the values of 𝑤1,𝑂𝑃𝑇=0.5 and 𝑤2,𝑂𝑃𝑇 =0.2854. The 

optimum value that described the feeding flowrate of B is the same as the one obtained 

in the case of fixed batch time in Section A.1. However, the optimal batch time is 

𝑡𝑏=1.14 h which is 14% longer than the fixed duration. The variability range of the 

RSM is [0.3747, 0.4697], which includes the real maximum value of product C that is 

𝑦 =0.4168 gmol/L. This value is lower than the one calculated in DoE with fixed batch 

length, but the difference is smaller than the measurement error equal to 0.005. This 

means that, either keeping the batch time at 1 hour, or increasing it to 1.14 hours, the 

maximum value of the concentration of C obtainable does not change.   

A.3.2 Optimization of a semi-batch reactor with variable batch 

duration using DoDE methodology  

In this subsection the empirical model that describes the linear, interaction and quadratic 

effects of the input factors on the output factor, which is the product C concentration at 

the end of the batch, is defined. Differently from DoE, the feeding flowrate profiles 

considered are non-linear.  

A.3.2.1 Selection of input factors 

In this case, three dynamic subfactors {𝑥1, 𝑥2, 𝑥3} are used to characterize the non-linear 

profiles of the feeding flowrate of B.  These are unified to the static factor 𝑤2 that 

describes the variation of the batch duration according to Equation (A.20). According 

to the proceeding in Subsection A.2.1, only two of the three dynamic subfactors are 

independent, namely, (𝑥2, 𝑥3).  

The variability range of the two dynamic subfactors are the same of Equations (A.14)-

(A.18). 

A.3.2.2 DoDE and experimentation 

A design strategy is applied to define the combinations of the two dynamic subfactors 

𝑥2, 𝑥3 and the static factor 𝑤2.  To obtain a full quadratic RSM with three independent 

factors, at least 10 experiments are required. In this case, a D-optimal design is 
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performed, which define sixteen experiments among which three are replicates. These 

are suggested in Table A.7.  

Table A.7 D-optimal design applied to the case of three input factors: 

feeding flowrate and batch time duration and the related value of the product 

C concentration at the end of the batch  

Run 
Coded Variables Simulated product 

C (gmol/L) 

Measured product 

C (gmol/L) 𝑤2 𝑥1 𝑥2 𝑥3 a 

1 0 0.5 0 -0.5 1 0.4225 0.4264 

2 -1 0 0.5 -0.5 -0.333 0.1973 0.1983 

3 -1 0 0.5 -0.5 -0.333 0.1973 0.1982 

4 1 0 0.5 -0.5 -0.333 0.3654 0.3650 

5 1 0.44 -0.16 -0.28 0.987 0.3703 0.3706 

6 0 -0.35 0.45 -0.10 -1 0.3010 0.3014 

7 -1 0.01 0 -0.01 0.020 0.2267 0.2268 

8 1 -0.32 0.28 0.04 -0.827 0.3386 0.3372 

9 0.13 0 -0.1 0.1 0.067 0.3803 0.3796 

10 -1 0.33 -0.5 0.17 0.993 0.2835 0.2833 

11 -1 0.33 -0.5 0.17 0.993 0.2835 0.2828 

12 1 0.33 -0.5 0.17 0.993 0.3583 0.3598 

13 0 0 -0.5 0.5 0.333 0.3844 0.3892 

14 -1 -0.5 0 0.5 -1 0.1652 0.1641 

15 -1 -0.5 0 0.5 -1 0.1652 0.1653 

16 1 -0.5 0 0.5 -1 0.3139 0.3116 

The profiles of both the feeding flowrate of B defined by the values of factors in Table 

A.7 and the concentration of the product C are reported in Figure A.5. 

 a)  b) 
Figure A.5 Profiles of a) the feeding flowrate of B and b) the concentration of product 

C obtained performing a d-optimal design described in Table A.7. 

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
 Run1

 Run2

 Run4

 Run5

 Run6

 Run8

 Run9

 Run10

 Run12

 Run13

 Run14

 Run16

P
ro

d
u
c
t 
C

 (
g
m

o
l/
L
)

Dimensionless time ()
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

10

20

30

40

50

 Run1

 Run2

 Run4

 Run5

 Run6

 Run8

 Run9

 Run10

 Run12

 Run13

 Run14

 Run16

F
e

e
d

in
g

 f
lo

w
ra

te
 o

f 
B

 (
g

m
o

l/
h

r)

Batch time (hr)



94                                                                                                                                             Appendix A 

 

A.3.2.3 RSM and optimization 

The RSM that has to be obtained is the following:  

𝑦̂ = 𝑏0 + 𝑏1𝑤2 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏12𝑤2𝑥2 + 𝑏13𝑤2𝑥3 (A.23) 

       +𝑏23𝑥2𝑥3 + 𝑏11𝑤2
2 + 𝑏22𝑥2

2 + 𝑏33𝑥3
2  

The RSM describes the influence of the batch duration 𝑤2 and the feeding flowrate of 

B, described by 𝑥2 and 𝑥3 on the final product C concentration. The coefficients of 

Equation (A.23) in Table A.8, are calculated using a least square algorithm. 

Table A.8 Coefficients of response surface model related to Equation (A.23) 

that defines the influence of the batch duration and of the non-linear profile 

of feeding flowrate of B on the product C concentration 

Coefficients 

𝑏0 𝑏1 𝑏2 𝑏3 𝑏12 

0.3662± 0.0106   0.0642 ±0.0072 -0.1276 ±0.0172 -0.101 ±  0.0154 0.068 ±  0.0184  

     

𝑏13 𝑏23 𝑏11 𝑏22 𝑏33 

0.0264 ±  0.0216 -0.1243  ± 0.069 -0.0764 ±0.0099 -0.4453 ±0.2015 0.037 ±0.1506 

Equation (A.23) allows defining the optimum combination of the values of the dynamic 

and static factors as the one that provides the higher concentration of C at the end of the 

batch. The optimum profile is described by the values of subfactors 𝑥1,𝑥2, 𝑥3 and 𝑤2 

that are respectively 0.5, 0, -0.5 and 0.334. The maximum concentration predicted is 

0.4346 gmol/L. The optimum value of the batch time is equal to 1.16 hr. In these 

conditions, the concentration of product C is equal to 0.4204 gmol/L.   

The difference between this value and the one calculated in the case of fixed batch time 

is not significant. This means that the variation of the batch time from 1 hour to 1.16 

hours is not necessary and the lowest one can be considered the optimal.  

A.4 Definition of a dynamic response surface model 

The data collected during DoDE in terms of variation of the concentration of product 

C, are used for the construction of DRSM. It is considered to use the results obtained in 

the DoDE with fixed batch. (Figure A.2b). DRSM has the aim to approximate the 

relationship between the feeding flowrate of B and the concentration of product C 

considering also the time variation of the latter. The construction of DRSM consists in 

the definition of the Legendre polynomial degree R-1 that approximates the KM 

experimental points. Using the M profiles performed through DoDE, K measurements 

of the output variable are collected from each experiment. A series of DRSM, 



Optimization of a semi-batch process                                                                                                   95 

 

 
 

characterized by different values of R and K, has been taken into account. The lowest 

𝑆𝑆̂𝑢𝑛 value, identify the most appropriate R and K. In Table A.9, the values of 𝑆𝑆̂𝑢𝑛 that 

characterize the different DRSM, are reported.  

Table A.9 Values of  𝑆𝑆̂𝑢𝑛 related to dynamic response surface model with variable 

K and R calculated in the case of semi-batch 

R 
K=Number of experiments for each profile 

3 4 5 6 7 8 9 10 

2 0.0443 0.0304 0.0298 0.0293 0.029 0.0286 0.0285 0.0258 

3  0.0071 0.0051 0.0052 0.005 0.0053 0.0045 0.004 

4   0.0011 0.0013 0.0022 0.0019 0.0019 0.0015 

5    1.40E-04 4.39E-04 3.78E-04 1.92E-04 4.06E-04 

6     4.48E-04 4.03E-04 1.44E-04 1.95E-04 

7      5.39E-04 3.63E-05 5.98E-05 

8       2.23E-04 2.83E-04 

9        3.41E-04 

In Table A.9, it is possible to see that for K=8, 9 and 10 there are several values of R (= 

4, 5, 6, 7, 8) that are characterized by the lowest values of  𝑆𝑆̂𝑢𝑛, and thus are candidates 

for appropriate DRSM. The ratio 𝐹0 and the p-value are calculated using Equation 

(1.29) to verify that the model adequately represents the non-random variability of the 

data. If the p-value is ≤ 0.95 the K time-resolved measurements demonstrate to be 

sufficient. The p-value for each combination of R and K are reported in Table A.10. 

Table A.10 P-values related to dynamic response surface model with 

variable K and R calculated in the case of semi-batch 

R K=Number of experiments for each profile 

3 4 5 6 7 8 9 10 

2 1 1 1 1 1 1 1 1 

3  1 1 1 1 1 1 1 

4   1 1 1 1 1 1 

5    1.32E-04 0.3706 0.0281 1.64E-07 2.76E-04 

6     0.24 0.0174 1.18E-07 4.81E-07 

7      0.336 5.86E-23 5.746E-06 

8       0.0021 1.62E-04 

9        4.53E-04 

An acceptable DRSM is obtained with K=10 and using a sixth order polynomial. The 

DRSM, made by 42 coefficients calculated via stepwise regression, is reported in 

Equation (A.24). 
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The coefficients of the DRSM in (A.24) are reported in Table (A.11). 

Table A.11 Coefficients of DRSM in Equation (A.24) that defines the 

influence of feeding flowrate of B and batch duration on the product C 

concentration 

Coefficients 

g0,1 g0,2 g0,3 g0,4 g0,5 

0.2331 0.2131±0.0002 -0.0676±0.002 -0.0248 ±0.0026 0.0183 ±0.0024 

g0,6 g0,7 g1,1 g1,2 g1,3 

-0.0056 ±0.0028 0 -0.1589 ±0.0039 -0.0815 ±0.0065 0.1094 ±0.008 

g1,4 g1,5 g1,6 g1,7 g2,1 

0 -0.0245 ±0.0086 0.0099 ±0.0070 0 -0.0828 ±0.004 

g2,2 g2,3 g2,4 g2,5 g2,6 

-0.0846 ±0.0063 0.0317 ±0.0081 0.0260 ±0.0067 -0.0101 ±0.0088 0 

g2,7 g12,1 g12,2 g12,3 g12,3 

0 0 -0.0170 ±0.0163 0 0 

In Table A.11, it is possible to notice that the stepwise regression has eliminated the 

coefficients that are not significant. In particular, all the parameters that describe the 

quadratic dependence of the dynamic subfactor have been deleted, this means that the 

quadratic influence of the two subfactors on the profile of the reactant A conversion is 

not significant.  As explained in Subsection 1.1.4.2, it is possible to calculate the 

distance of the predicted profiles from the experimental ones using Equation (1.27). The 

value of 𝑆𝑆𝑢𝑛 is 1.2113e-04. The DRSM predictions are plotted against the 

experimental data in Figure A.6.  

 

 

 

 

 

 

𝑦𝐷𝑅𝑆𝑀(𝜏) = 𝑔0,1𝑃0 + 𝑔0,2𝑃1 + 𝑔0,3𝑃2 +  𝑔0,4𝑃3 + 𝑔0,5𝑃4 + 𝑔0,6𝑃5 + 𝑔0,7𝑃6  (A.24) 

+ (𝑔1,1𝑃0 + 𝑔1,2𝑃1 + 𝑔1,3𝑃2 +  𝑔1,4𝑃3 + 𝑔1,5𝑃4 +  𝑔1,6𝑃5 + 𝑔1,7𝑃6)𝑥2 

+ (𝑔2,1𝑃0 + 𝑔2,2𝑃1 + 𝑔2,3𝑃2 + 𝑔2,4𝑃3 + 𝑔2,5𝑃4 +  𝑔2,6𝑃5 + 𝑔2,7𝑃6)𝑥3 

+ (𝑔12,1𝑃0 + 𝑔12,2𝑃1 + 𝑔12,3𝑃2 + 𝑔12,4𝑃3 + 𝑔12,5𝑃4 +  𝑔12,6𝑃5 + 𝑔12,7𝑃6)𝑥2𝑥3 

+ (𝑔11,1𝑃0 + 𝑔11,2𝑃1 + 𝑔11,3𝑃2 + 𝑔11,4𝑃3 + 𝑔11,5𝑃4 +  𝑔11,6𝑃5 + 𝑔11,7𝑃6)𝑥2
2 

+ (𝑔22,1𝑃0 + 𝑔22,2𝑃1 + 𝑔22,3𝑃2+𝑔22,4𝑃3 + 𝑔22,5𝑃4 +  𝑔22,6𝑃5 + 𝑔22,7𝑃6)𝑥3
2 
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a) b) 

c) d) 

Figure A.6 In these figures the experimental profiles are compared to the DRSM 

predictions of concentration of C profiles within the experimental design in the case of 

a) 𝑥1=-0.5, 𝑥2=0 and 𝑥3=0.5,  b) 𝑥1=0, 𝑥2=-0.5 and  𝑥3=0.5, c)  𝑥1=0, 𝑥2=0.5 and  

𝑥3=-0.5  and d) 𝑥1=-0.01, 𝑥2=0 and  𝑥3=0.01. 

By comparing the DRSM calculated to the one in Klebanov and Georgakis (2016), it is 

possible to see how the choice is very similar, since in the article the DRSM is 

approximate with a fifth order polynomial, instead of sixth.  

A.4.1 Optimization using dynamic response surface model 

Using the DRSM, it is possible to represent the profiles of the concentration of product 

C for different combinations of the independent subfactors 𝑥2 and 𝑥3. The profiles are 

shown in Figure A.7. 
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The DRSM allows defining the values of the dynamic subfactors 𝑥2 and 𝑥3 that 

determine the profile of the concentration of product C whose integral, in the 

dimensionless time τ, is greater than all the others. The values of the subfactors, 

calculated using (1.33),  are 𝑥2 =-0.5 and 𝑥3= +0.1667. The input profile, defined in 

this way, is different from those obtained using DoE and DoDE. In Figure (A.8), the 

optimum profiles of the feeding flowrate of B and the related profiles of the 

concentration of product C, obtained using the three different methods, are compared. 

In this case, the optimum profile calculated using DRSM is different from the one 

defined by DoDE, except in the last part of the process. In fact, the end-point value of 

the profile of the product concentration is the same. 

a)     b) 

Figure A.8 Comparison among the optimum calculated using DoE, DoDE and by 

maximizing the integral of the DRSM: a) feeding flowrate of B and b) concentration of 

product C  

 

 

Figure A.7 Profiles of product C concentration along time obtained using the DRSM in 

(A.24)  

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

40

45

50

 DoDE

 DoE

 DRSM

 

 

F
e

e
d

in
g
 f
lo

w
ra

te
 o

f 
B

 (
g
m

o
l/
)

Dimensionless time ()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

 DoDE

 DoE

 DRSM

 

 

P
ro

d
u
c
t 
C

 (
g
m

o
l/
L
)

Dimensionless time ()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

P
ro

d
u

c
t 
C

 (
g

m
o

l/
L

)

Dimensionless time ()



Optimization of a semi-batch process                                                                                                   99 

 

 
 

However, the profiles in Figure A.7 suggest that to increase the value of the 

concentration of product C, the variation of the values of subfactors 𝑥2 and 𝑥3 along the 

process must be considered. In fact, there is no profile that shows, in each point, a higher 

trend than all the others. Equation (1.34) allows calculating the combinations of values 

𝑥2 and 𝑥3 that maximize the concentration of C in a series of time laps. The profiles of 

the dynamic subfactors and the related feeding flowrate of B are reported in Figure A.9. 

a) b) 
Figure A.9 Optimal profile of a) the dynamic subfactors and b) the feeding flowrate of 

B calculated maximizing the DRSM in a series of time instants. 

The concentration profile of product C, in case of the variation of the feeding flowrate 

of B as in Figure A.9b, is reported in Figure A.10a.  

a) b) 

Figure A.10 Comparison between the real profile of the product C concentration 

according to the optimal feeding flowrate of B in Figure A.9b and a) the predicted 

profile and b) the profiles of the product C concentration calculated using the DRSM  

In Figure A.10b, the predicted concentration profile, related to the input profile in 

Figure A.9b, and the simulated one are compared.  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

P
ro

d
u
c
t 
C

 (
g
m

o
l/
L
)

Dimensionless time ()

0.0 0.2 0.4 0.6 0.8 1.0
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
 

 

D
y
n
a

m
ic

 s
u
b

fa
c
to

rs

Dimensionless time ()

 x2

 x3

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

40

45

50
 

 

F
e

e
d

in
g
 f
lo

w
ra

te
 o

f 
B

 (
g
m

o
l/
)

 

Dimensionless time ()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

 DRSM

 Experimental 

P
ro

d
u

c
t 

C
 (

g
m

o
l/
L

)

Dimensionless time ()



100                                                                                                                                             Appendix A 

 

The RSMe, calculated using (1.35), is 0.0057, which is smaller than the measurements 

error equal to 0.02. This means that the DRSM is accurate in describing the output 

profile in the case of dynamic behavior of the dynamic subfactors. Furthermore, the 

simulated profile, in red in Figure A.10b, corresponds to the request to maximize the 

output variable profile in the whole process. 

A.5 Conclusions regarding the optimization of a semi-batch 

reactor 

The results obtained by applying the optimization procedure, both in the case of fixed 

batch duration and in the variable one, are summarized below. 

• In the case of fixed batch time (𝑡𝑏 = 1 hour), DoDE and DoE leads 

approximately to the same result in term of maximum concentration of product 

C at the end of the batch. This means that either varying the feeding flowrate of 

B linearly or non-linearly the optimum value of the process output is the same.  

• The use of the DRSM to maximize the integral value of the profile of product C 

concentration leads to a lower value at the end of the batch if compared to DoDE 

or DoE. The time variation of the dynamic subfactors, instead, allows defining 

a profile that is higher than all the others in the whole process.   

• In the case of variable batch duration, DoDE leads to determine a higher value 

of the product C concentration at the end of the batch if compared to the one 

achievable using DoE. However, the optimum value of the process output 

calculated is not better than the one defined in the case of fixed batch time.  

The operating optimum is characterized by the following values of the factors:  

𝑥1,𝑂𝑃𝑇 = 0.4999, 𝑥2,𝑂𝑃𝑇 =0.0001 and 𝑥3,𝑂𝑃𝑇 =-0.4999, for a batch time 𝑡𝑏 =1 hour. 

The corresponding final product C concentration is 0.4225 gmol/L.  
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