
Università di Padova Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

24 Ottobre 2011

People Detection and Tracking with

Kinect for Mobile Platforms

Supervisor: Pagello Enrico
Cosupervisor: Jensfelt Patric

(KTH - Stockholm)

Student: Campana Riccardo
621996-IF

Academic Year 2010/2011

i

Abstract

Human detection is a key ability for robot applications that operate in
environments where people are present, or in situation where those applications
are requested to interact with them. It’s the case for social robots like aids for
the rehabilitation of inmates in hospitals, assistance in office, guides for museum
tours.
In this thesis we will investigate on how we can make use of the new Microsoft’s
gaming sensor, the Kinect, to address the issues of real-time people detection
and tracking, since the sensor has been built in order to detect people and track
their movements.
We developed a system that is able of detecting and tracking people in near
real-time both on fixed environments and mobile platforms. The system has
been developed for an indoor environment and it is composed by three modules
that are:

1. segmentation module: looks for values of depth to use as initial centroids
for a k-means algorithm in order to label the depth map retrieved by the
Kinect;

2. features computation module: computes normalized depth candidates
and obtains the likelihood of them being people, using a vector of Rela-
tional Depth Similarities (RDSFs) and a Real AdaBoost trained classifier;

3. features tracking module: adds or updates the tracking features for the
detected people, that are color histogram, present position and distance
covered.

We tested four different classifiers on different situations. The best classifier
showed very good detection and tracking results whereas, because of some
segmentation problems, the performances of the complete system have been
subjected to a lowering with respect to the theoretical ones. We developed also
a method for getting rid of some of these segmentation problems and it showed
some improvements for the complete system together with some drawbacks
that affected the theoretical results. However the complete system works good
and with a frame rate of 2 fps on average. Most of the computational load
is due again to the segmentation module, so an improvement of this module
would lead to both improvements on the real-time performances and on the
detection results.

ii

Sommario

La capacità di riconoscere persone é un’abilità chiave per robot che ope-
rano in ambienti popolati da esseri umani, o in quelle situazioni in cui tali
applicazioni richiedono di interagire con le persone stesse. È il caso di robot
a uso sociale come aiuto ai pazienti negli ospedali, assistenti d’ufficio, guide
turistiche nei musei.
In questa tesi s’investigherà su come far uso del nuovo sensore giochi della
Microsoft, il Kinect, per risolvere le problematiche di riconoscimento e insegui-
mento di persone in tempo reale, poiché tale sensore è stato costruito apposi-
tamente per riconoscere persone e tracciare i loro movimenti.
Abbiamo sviluppato un sistema capace di tracciare e inseguire persone in tem-
pistiche vicine a quelle real-time in grado di funzionare sia in scenari statici che
su piattaforme mobili. Il sistema è stato sviluppato per ambienti interni ed è
composto da tre moduli, vale a dire:

1. modulo di segmentazione: cerca dei valori di profondità da usare come
centroidi iniziali per un algoritmo k-means al fine di ottenere il labeling
della mappa di profondità ottenuta dal Kinect;

2. modulo di calcolo delle features: calcola dei candidati di profondità nor-
malizzati e ottiene la verosimiglianza degli stessi di essere persone, usando
un vettore di Relational Depth Similarities (RDSFs) e un calssificatore
allenato tramite Real AdaBoost;

3. modulo per le features di inseguimento: aggiunde o aggiorna le features
di inseguimento per le persone riconosciute, vale a dire istogramma di
colore, posizione attuale e distanza percorsa.

Abbiamo testato quattro diversi classificatori in situazioni differenti. Il miglior
classificatore ha dimostrato risultati molto buoni di riconoscimento mentre, a
causa di alcuni problemi di segmentazione, le prestazioni del sistema completo
sono state soggette a un abbassamento rispetto a quelle teoriche. Abbiamo
sviluppato anche un metodo per evitare alcuni di questi problemi di segmenta-
zione e tale metodo ha mostrato alcuni miglioramenti per il sistema completo
insieme ad alcuni svantaggi che hanno influito sui risultati teorici. Tuttavia,
il sistema completo funziona bene e con un frame rate medio di 2 fps. La
maggior parte del carico computazionale è dovuto ancora una volta al modulo
di segmentazione, di conseguenza un miglioramento di questo modulo porte-
rebbe sia a miglioramenti nelle prestazioni in tempo reale sia nei risultati di
riconoscimento.

Contents

Contents iii

1 Introduction 1

1.1 Previous Work: Static Scenarios . 2
1.1.1 Gaussian Distribution . 2
1.1.2 Intensity Difference . 2
1.1.3 Region Based Model . 2
1.1.4 Illumination Invariance . 2
1.1.5 Shape Based Classification 2
1.1.6 RGBD Data Segmentation 3
1.1.7 IR Technique . 3

1.2 Previous Work: Mobile Platforms . 3
1.2.1 2D Range Data Detection . 4
1.2.2 Face Detection . 4
1.2.3 HOG Features . 5
1.2.4 Multi-Modal Anchoring . 5
1.2.5 Audiovisual Approach . 6
1.2.6 Startup Tracking . 6
1.2.7 Biological Motion Patterns 7
1.2.8 Shape-Based Template Matching 7
1.2.9 Pedestrian Pose Estimation 7

1.3 Tools . 8
1.3.1 Kinect . 8
1.3.2 OpenNI . 9
1.3.3 OpenCV . 11
1.3.4 ROS . 11

1.4 Organization of the Thesis . 12

I Detection System 13

2 Why No Image Preprocessing 15

3 Segmentation 17

iii

iv CONTENTS

3.1 Depth Candidates Detection . 17
3.2 Depth Candidates Filtering . 18
3.3 Clustering, Labeling and Saving of Segmented Layers 21

4 Features Computation 25

4.1 Shape Computation . 25
4.1.1 Real Width and Height Computation 28

4.2 Histogram Tracking Preprocessing 32
4.2.1 Depth Registration . 33

4.3 RDSF Computation . 33
4.3.1 Construction of the Classifier 34

5 Features Tracking System 37

5.1 Tracking Features . 37
5.2 Tracking Features Creation and Update 38
5.3 Person Tracking . 41
5.4 Showing Detections . 43

II Tests and Results 45

6 Introduction 47

6.1 Performance Measurement . 47
6.2 Ground Truth . 47
6.3 Receiving Operating Characteristic 49
6.4 Detection Error Trade-Off . 50
6.5 Classifiers . 50
6.6 Final Notes . 50

7 Test 51

7.1 Setup . 51
7.2 tree . 52

7.2.1 Results of the Complete System 52
7.2.2 Results Without Segmentation Errors 53
7.2.3 TAR, ROC and DET . 54

7.3 tree2 . 56
7.3.1 Results of the Complete System 56
7.3.2 Results Without Segmentation Errors 57
7.3.3 TAR, ROC and DET . 58

7.4 hugeTree . 60
7.4.1 Results of the Complete System 60
7.4.2 Results Without Segmentation Errors 61
7.4.3 TAR, ROC and DET . 62

7.5 treeLast . 64

CONTENTS v

7.5.1 Results of the Complete System 64
7.5.2 Results Without Segmentation Errors 65
7.5.3 TAR, ROC and DET . 66

7.6 Classifiers Comparison . 68
7.7 Shape Parameter . 72
7.8 Tracking Evaluation . 80

7.8.1 Strict Algorithm . 80
7.8.2 Non Strict Algorithm . 83
7.8.3 Comparison . 86

7.9 Moving Camera . 89
7.10 Timing Constraints . 91

8 Conclusions 93

8.1 Classifier Performances . 93
8.2 Tracking Performances . 94
8.3 Segmentation Problems . 94
8.4 Real-Time Measurement . 95
8.5 Final Notes and Future Work . 95

Bibliography 97

Chapter 1

Introduction

Human detection is a key ability for robot applications that operate in environments
where people are present, or in situation where those applications are requested to
interact with them. It’s the case for social robots like aids for the rehabilitation of
inmates in hospitals, assistance in office, guides for museum tours.
This problem has been studied quite a lot over the years providing partial solu-
tions that rely on laser scanner and cameras. When dealing with static scenarios,
systems that use background subtraction methods are very common. They build a
background model of the environment and then by comparing the actual data from
the sensors with the model, they look for differences to achieve candidates for the
human detection. While this technique yields to good results and low computation
load, it cannot be applied in mobile robot applications.
Present solutions rely on face detection algorithms, laser based methods or color
skin recognition. The first one has the major issue that the person has to face the
robot, the second one has the limitation of exploring the space just on 2D, while
the last one can be affected by illumination problems and false candidates. Others
applications instead use combination of techniques such as face detection with color
segmentation and torso recognition. This because robot applications should often
be able not only to detect people, but also to track them and sometimes possibly
follow them.
In this thesis we will investigate on how we can make use of the new Microsoft’s
gaming sensor, the Kinect, to address this problem, since it has been built in order
to detect people and track their movements in real-time.
Let’s now clarify more precisely the background of human detection. As already in-
troduced, when dealing with the human detection problem we should usually make
a distinction between two categories:

1. static sensors;

2. sensors mounted on a mobile platform.

1

2 CHAPTER 1. INTRODUCTION

1.1 Previous Work: Static Scenarios

For static scenarios one of the most used method relies on the background subtrac-
tion principle. The first step is to create a background model of the environment
whereas the second step consists in processing the new data with the model in order
to detect people. This procedure can be done in various ways [1].

1.1.1 Gaussian Distribution

Wren et al [2] create a background model by mean of a gaussian distribution on the
YUV space at each pixel. This model is continuously updated and the detection is
achieved by modeling the human being with multiple blobs with spatial and color
components. The parameters of these lasts are estimated by a Kalman filter. Each
pixel will be given then a likelihood value of being part either of the background or
of the blob.

1.1.2 Intensity Difference

Beleznai [3] instead considers the intensity difference between an input frame and
a reference one as a multi-modal probability distribution. Human detection is then
achieved by using mean shift computation.

1.1.3 Region Based Model

Another approach was proposed by Eng et al [40]. They built a region based
background model of the environment based on the hypothesis that each region has
a multi-variate gaussian probability distribution over the colors. In order to build
this model, background frames are separated into blocks by means of a k-means
algorithm.

1.1.4 Illumination Invariance

The method proposed by Toth and Aach [4] performs illumination invariant back-
ground subtraction by using frame differencing, window based sum of absolute dif-
ferences aggregation, and an adaptive threshold. The method leads to foreground
shapes that are then clustered in blobs by mean of a connected components tech-
nique. A Fourier transform is then used to describe the shape. This descriptors are
used then for the classification process for obtaining the likelihood of a blob being
a person. The classifier is represented by a feedforward neural network.

1.1.5 Shape Based Classification

Lee et al [5] combined a background subtraction method with a shape categoriza-
tion approach. This is achieved by subtracting each new frame with the model

1.2. PREVIOUS WORK: MOBILE PLATFORMS 3

of the environment. On the resulting blobs a contour processing is then applied.
The contour is modeled as a polygon approximation expressed as a bend angle in
comparison with a normalized length. For each contour achieved then, a similarity
measure between the various categories is computed in order to obtain the likelihood
of each candidate belonging to one of those categories.

1.1.6 RGBD Data Segmentation

A different approach is the one of Xu and Fujimura [6] also for the type of sensor
used. In fact they utilize a device that is able of retrieving depth values together
with the RGB ones of the usual image. A range of depth is considered in order
to get rid of the background areas. A split and merge algorithm is used then to
perform segmentation by depth slicing. At this point foreground objects and people
are segmented and, in order to really detect the people between all the blobs, a torso
detection is achieved by an ellipse fitting. An heuristic based on the movement is
finally used to make the last adjustments.

1.1.7 IR Technique

Another interesting work is the one of Han and Bhanu [7]. They proposed to
use an infrared camera together with a standard one. A background subtraction
technique is used separately for the two cameras by means of a gaussian probability
distributions method. The separated foreground candidates are registered using a
hierarchical genetic algorithm and then merged together. Note that the IR camera
highly reduces the number of candidates since it detects just object with a thermal
signature.
Also Jiang et al [8] developed an approach based on this sensor fusion, but based
on relative pixel saliences in the two images.

1.2 Previous Work: Mobile Platforms

None of the background subtraction methods works in situations where the camera
or the sensor is moving. In fact in this scenarios the background is continuously
changing and having a model results in being almost useless. The methods that
deal with mobile scenarios usually involve four steps:

1. preprocessing: the input data have to be prepared in order to be used on the
later computation. It is the case of, for example, stereo rectification when
using a stereo camera for obtaining depth informations or of color balancing
for getting rid of illumination condition in skin detection techniques;

2. segmentation: it is the process of detecting the single objects starting from
the global image. This can be done by mean of various techniques like color
skin segmentation for detecting people [9], depth or stereo vision segmentation
[10], sliding window scan;

4 CHAPTER 1. INTRODUCTION

3. feature extraction: it is the process of extracting relevant information from
the segmented data. Example of features that can be used are edge detector
[11], SIFT [12], RDSF [13];

4. classification: the features extracted for each segmented candidate are like de-
scriptors that can be used in order to find the likelihood of the candidate itself
belonging to a specific category. Each set of features is given to a classifier.
This classifier can be binary or multi-categorical. The first one is capable of
determining whether a candidate belongs to a category or not. The multi-
categorical one instead returns, from a set of categories, which one is more
likely to describe the candidate. There are different options and the most
used ones are machine learning methods [14] like support vector machines,
AdaBoost and neural networks.

1.2.1 2D Range Data Detection

One of the approaches on a mobile system consists in using boosted features based
on two dimensional range scans.
These sensors provide a large field of view and, more important, they work indepen-
dently from the environment. As a drawback the scans provide little information
about people. In fact in cluttered spaces is difficult to do a detection even for people.
Luckily for these lasts, it is possible to find some particular geometrical properties
that can be used as features for a supervised learning. Arras et al [15] for example
proposed an approach that uses AdaBoost both for finding the best features and
thresholds to use, and, as usual, to create the classifier. The most popular methods
rely on extracting legs by detecting moving blobs that appears as local minima in
the range image ([16], [17], [18], [19]) by using motion and geometry features. They
demonstrated good results in simple environments but not on cluttered ones.
Another method consists in finding non-static objects in the environment by looking
for space that was previously free and now it is occupied [20]. The basic principle is
similar to the occupancy grid one but without the grid itself. The method presents
low computational load and robustness even on a cluttered environment.

1.2.2 Face Detection

The face detection problem has been studied quite a lot in the past. The face,
in fact, represents a very good feature because of its characteristics: it has a low
degree of variability in contrast with a high level of texture and, in conjunction with
a distinctive color, make it easier to be used for differentiation from other objects.
The first approaches consisted in rely just on the skin color detection as indicator
for faces ([21], [22], [23]). However this method is very limited and too sensitive to
illumination conditions that yield to a great number of false positive especially in
environment with wooden furniture.
For this reason Schlegel et al [24] introduced a facial contour recognition together
with the skin color detection. The greatest drawback of their work is the fact that

1.2. PREVIOUS WORK: MOBILE PLATFORMS 5

the system has to be initialized in order to detect a person. So each person in the
environment has to be introduced first.
Finally Viola and Jones [25] realized a fast frontal face detection system which will
be used also in later researches.

1.2.3 HOG Features

One of the most used feature based detection is the Histogram of Oriented Gradi-
ents (HOG) one.
Dalal and Triggs [12] showed how to use these kind of feature in order to build a
classifier. Intensity gradients and edge directions appeared, in fact, to be very dis-
criminative features. The process consists in dividing the image in cells, computing
the histogram of the edge orientations over all the pixels of the cell itself. Finally
a Support Vector Machine was trained in order to classify the candidate for human
detection.
Similarly Wang and Lien [26] developed a HOG based detection system which is
able also to detect people that present different sizes and orientations. Moreover
the system can work under a variety of environments and also in crowded places.
By assigning a dominant orientation to each feature the system gets rid of geometric
and rotational variations. This is achieved by mean of both rectangular and circu-
lar HOGs since they are not affected by lighting conditions and noise. AdaBoost
has a very important role in this approach. In fact it is used to choose a set of
meaningful features to achieve a robust detection. The computational time is then
reduced by means of a cascade of rejectors, whose parameters are estimated again
with AdaBoost.

1.2.4 Multi-Modal Anchoring

Another important feature is the ability to track an object over time. A tracking
system can overcome inaccuracies in the feature sequence by mean of temporal
information and context knowledge. Particularly these lasts means allow to process
just a set of features in order to satisfy the low computational load constraint
(limited sensor capabilities or many object to be tracked). One of the techniques
employed is the anchoring framework ([27], [28]). In complex environments there
are usually lots of sensors that generate different types of perceptions of the object
that can vary in a significant way. Kleinhagenbrock et al [17] propose a solution to
these problems by a two level anchoring:

1. anchoring composite objects;

2. anchoring the base components of each object.

The fusion of the different sensing modalities can be achieved in three ways:

1. sensor-based fusion methods like Kalman or particle filtering [29], [30];

6 CHAPTER 1. INTRODUCTION

2. rule-based fusion methods in which the results of individual algorithms can
be fused together by combination rules ([31], [32]);

3. hybrid approaches, that are the combination of the two approaches previously
described.

The work of Kleinhagenbrock uses the last approach. It showed a facilitation of
the distributed and multi-modal anchoring of component symbols that can be also
extended. The implementation merged laser range data and color images trying to
find percepts for the symbols legs and face.

1.2.5 Audiovisual Approach

Another interesting approach is to use also some audio sensor and combine them
with the usual ones (camera, laser scanner...). The introduction of such sensor like
a microphone can appear quite useless in the detection step. In fact problems of
noise and voice recognition are very hard and they need a lot of computational
work. Whereas it can be really useful for example in the tracking of people and
in the understanding of whether or not a person wants to interact with the robot
(Human-Machine-Interaction). The work of Lang et al [33] fuses three types of
information in order to track and focus the attention on a person, that are:

1. camera for face detection: useful when the person is facing the robot (detection
and understanding of required attention), but not available usually when the
robot is asked to follow a person;

2. laser scanner for object detection: it is used for detecting people in the envi-
ronment, but it returns no clue on the relative position of the people detected
(facing or not the robot) and it is limited on the 2D world;

3. stereo microphone for people localization: this can be used as additional infor-
mation for localization of people but also to provide another way for knowing
which people require attention by the robot.

In this research a color model of the torso of the people detected is also used in order
to be able of detecting a person even if it can be lost by the 2D scanner (occlusions).
This introduction made the system more robust and reliable.

1.2.6 Startup Tracking

Another method for tracking a single person in real time is the one proposed by
Schlegel et al [24]. The person has to undertake a startup procedure in order to
be followed. The person introduces himself/herself and the robot, without having
any predefined model of a person, builds a model of the person that can now be
tracked and followed. In order to have always a good representation of the person
tracked, the robot continuously updates the model reducing the sensibility of the

1.2. PREVIOUS WORK: MOBILE PLATFORMS 7

illumination conditions.
The method implements a fast color-blob based approach fused with a sophisticated
and computational expensive contour-based approach. By using together these
two techniques they introduced a trade off between real-time performances and
robustness in the tracking.
In order to be more precise, the model generated consists of a color distribution and
a contour of the person. The first one is used in the process of segmentation of the
image whereas the second one is useful in finding regions of interest at a high rate
for the edge-based approach.
The approach was tested in a natural indoor environment on a real robot and the
tests showed real-time performances and a good robustness when combining the
two approaches.

1.2.7 Biological Motion Patterns

There is also a method of detection that relies on a biological background. Cutler
and Davis [34] built a system able of detecting periodic biological motion patterns
such as walking.
The first step is to retrieve moving object and it is achieved by frame differencing
after a preprocessing phase. Then by morphological operations, the system returns
the tracked objects of whom a temporal selfsimilarity matrix is retrieved since it
has the property of being periodic, if the motion is periodic too.
The detection is then finally achieved by a time-frequency analysis based on the
Short-Time Fourier Transform (STFT) and a fitting procedure returns the category
of the tracked object (human, animal or vehicle).
The system showed robustness and real-time performances.

1.2.8 Shape-Based Template Matching

Another way of dealing with a moving camera is represented by the work of Gavrila
and Giebel [11]. They built a system in which a hierarchical tree of shape-based
templates is stored in order to retrieve the best match. This tree is automatically
generated by a clustering procedure, where the cluster itself represents a node.
When we have a candidate for the detection the tree is transversed from the root
to the leaves. For each node the Chamfer distance between the candidate and the
node itself is computed and, if this distance is greater than a specific value, the scan
is not forwarded to its child nodes resulting in an inefficient match. The system
provides also a Kalman filter tracker that takes care about temporal informations
in order to overcome missed detection.

1.2.9 Pedestrian Pose Estimation

We want to close the summary of the previous works by presenting another system
of Viola and Jones [14], that is a classifier trained both on human shape and motion
features for pedestrians. The system analyzes input images and uses rectangular

8 CHAPTER 1. INTRODUCTION

features by mean of integral images. The usual AdaBoost process will then retrieve
the best weak classifiers for the detection of the pose. Similarly also a dynamic
detector is trained combining static and motion rectangular features. The testing
showed how using the system with either the static or the dynamic classifier leads
to good detection results when a large dataset is utilized.

1.3 Tools

Before starting the description of the proposed detection and tracking system we
want to provide a deeper insight at the tools used.

1.3.1 Kinect

The Kinect is a motion sensing input device by Microsoft for the Xbox 360 video
game console. It allows users to control and interact with the console without
touching a game controller. This is achieved by means of a natural user interface,
gestures and spoken commands.
The Kinect (figure 1.1) is made of different parts:

1. a VGA 640x480 color camera (CMOS) with a Bayer color filter;

2. a IR 1600x1200 camera (CMOS) with outputted sizes of 640x480;

3. an IR projector;

4. servos;

5. 4 microphones.

The majority of gestural control systems were based on the time-of-flight (TOF)
method. It consists in sending an infrared light, or similar, into the environment.
The time and wavelengths of light that returned to the capture sensor inside the
camera, will then give informations on how the environment looks like. The Kinect
instead uses another technique that is encoding already information in light patterns
that are sent out. The deformations of those patterns will be similarly captured and
they will return information on the environment as it was for the other method.
When the camera receives the IR light back, the real processing can start. Prime-
Sense developed a chip that is located inside the camera itself, which is already able
to process the image looking for shapes resembling the one of a person. It tries to
detect the head, torso, legs and arms. Once it has achieved this, it starts computing
a series of parameters like where the arms are probably going to move.
The system developed by PrimeSense is able to detect any person in the scene, but
it is able to process just a limited number of people depending on the power of the
processor used.

1.3. TOOLS 9

Figure 1.1. The Microsoft Kinect and ts parts.

1.3.2 OpenNI

OpenNI (Open Natural Interaction) is a multi-language, cross-platform framework
that defines APIs for writing applications utilizing Natural Interaction.
Natural Interaction (NI) refers to the concept that Human-Machine-Interaction is
achieved by human senses and, most of all, vision and hearing. OpenNI aims to
define a standard API that is able of dealing with both vision and sensors, and a
vision and audio perception middleware, allowing communication between the two
components.
OpenNI provide two types of APIs:

1. implemented APIs: allow to deal with the sensor device;

2. not implemented APIs: allow to deal with the middleware components.

The clear distinction between sensors and middleware components is based on the
"write once, deploy everywhere" principle. In fact OpenNI allows the porting of ap-
plications and moreover enables to write algorithm that works with known raw data
independently from the sensor that has generated them. From the producer point
of view, instead, OpenNI offers the possibility of building sensors for applications
by just providing raw data and not APIs on how to deal with them. An application
of OpenNI is for example the tracking of real-life 3D scenes.
OpenNI is an open source API that is publicly available.

The OpenNI Framework is an abstract layer (figure 1.2) that provides the interface
for both physical devices and middleware components. Multiple components can

10 CHAPTER 1. INTRODUCTION

Figure 1.2. The OpenNI abstract layered structure.

register to this framework based on the specific API and they are called modules.
A module is responsible for producing and processing the data of the sensor and
the currently supported ones are:

1. 3D sensor;

2. RGB camera;

3. IR camera;

4. audio device.

Based on this, OpenNI provides also the following middleware components:

1. full body analysis;

2. hand point analysis;

3. gesture detection;

4. scene analyzer (segmentation, clustering and coordinates framing).

OpenNI relies on Production Nodes. They represents the productive part of the
system, that is they create the data required for the interaction. These data can be
either low level ones, RGB for example, either composited ones. In fact production
nodes can also control lower level production nodes and they can in turn be used
by higher level ones. In order to define communication and hierarchy these nodes
are organized in production chains.

1.3. TOOLS 11

1.3.3 OpenCV

OpenCV is an open source computer vision library. It is written both in C and
C++ and it is available for Linux, Windows and Mac OS X. However there is a
lot of research that points to create interfaces for other programming languages like
Python, Ruby, Matlab and others.
OpenCV is specifically designed for real-time applications and it can take advantage
of multicore processors. Moreover it aims to provide an easy to use infrastructure
that can facilitate the creation of computer vision applications.
The OpenCV libray contains over 500 functions that are spread out over many
different areas, from camera calibration to medical imaging. In order to completly
deal with computer vision problems, OpenCV presents also a complete Machine
Learning Library (MLL). This library can be used also outside of the computer
vision field for the more general machine learning topics.
OpenCV open source license allows to create commercial products using the tools
of the library itself without returning improvements to the library itself. There are
a lot of communities though that maintain the software.

1.3.4 ROS

Since the robotic field is continuously growing, it is difficult to provide software
for robots. An additional problem is due to the variety of hardware that can be
used. In order to overcome these problems, a lot of different frameworks have been
developed, specifically designed for focusing on a determined aspect.
The Robot Operating System (ROS) is also a software framework that has been
developed considering tradeoffs and priorizations, but its emphasis is on large-scale
integrative robotics.
ROS was originally developed in 2007 by the Stanford Artificial Intelligence Labo-
ratory. But from 2008 its development was redirected at Willow Garage, a robotics
research institute.
ROS aims to the following goals:

1. peer-to-peer: a number of processes (different hosts) connected at runtime in
a peer-to-peer topology;

2. tools-based: ROS has been developed with a microkernel design in which a
lot of small tools are used to build and run the ROS components;

3. multi-lingual: different people prefer different programming languages. Inter-
operability is a key feature for a framework that aims to deal with all these
people. In fact ROS has been designed language-neutral and supports C++,
Python, Octave and LISP. The support for other programming languages is
in state of completion;

4. thin: ROS encourages the development of drivers as standalone libraries. Its
build system performs then modular builds inside the source tree by mean

12 CHAPTER 1. INTRODUCTION

of CMake. The thin ideology consists in having to deal with easier code
extraction end reuse beyond the original intent. This is achieved by placing the
complexity inside the libraries and creating small executables. For example
ROS reuses other open-source projects like drivers, navigation system and
simulators from Player, OpenCV, OpenRAVE;

5. free and open-source: ROS is released under the terms of the BSD license,
and it is open source that is free for commercial and research use.

There is also another "side" of ROS called ros-pkg. This is a suite of user contributed
packages, organized in stacks, that implements various functionalities like mapping,
planning, perception. Also the ros-pkg contributed packages are licensed under a
variety of open source licenses.

1.4 Organization of the Thesis

This document will proceed in two parts.
In the first one the proposed detection system is described. Chapter 2 explains why
there is no need for a preprocessing module. Chapter 3 describes the implemented
segmentation module and its phases of detection, filtering, clustering and save.
Chapter 4 continues with the candidate shape and Relational Depth Similarity
Features computation. Finally in chapter 5 the tracking features are introduced
and the person tracking is explained.
In the second part instead the tests and the results achieved are presented together
with the conclusions of chapter 8.

Part I

Detection System

13

Chapter 2

Why No Image Preprocessing

Firstly the system was given a preprocessing module, but it has been deleted since
it wasn’t improving the detection and tracking results.
The module was based on the "Gray World Assumption". It states that given an
image with a sufficient amount of color variations, the average value of the red,
green and blue channels (RGB) should average to a common gray color. Since the
variations in color are random and independent, it would be safe to say that given a
large enough amount of samples, the average should tend to converge to the mean
value, which is gray. The result of using this assumption is that the image will no
longer have any dominant color, often caused by indoor lighting.

Figure 2.1. Example of a preprocessing with a Gray World Assumption. On the

left the original image whereas on the right the processed one.

Hence the module would have been really useful for detection methods that rely
heavily on the color information (color skin detection for example). In our method
the RGB information becomes useful just in the tracking system. In fact the detec-
tion is completely based just on the depth map retrieved by the Kinect whereas, as
we will see afterward in this paper, the tracking is based on an hybrid combination
of color histogram distances, between candidates, and nearness centroid computa-
tion. The tests have shown that the tracking system is not influenced in a relevant
way by the illumination condition and for this reason the module has been deleted.

15

Chapter 3

Segmentation

The segmentation process is achieved in three consequent phases. On the first
one the depth image is scanned in order to achieve the possible candidates, then
those candidates are filtered in order to get rid of the redundancy, finally the depth
imaged is clustered and labeled on the base of the retrieved candidates depth and
each cluster is saved as a single object.

3.1 Depth Candidates Detection

The detection of depth candidates is based on a simple hypothesis: a distinct object
on the depth map will arise from the background, that is there will be a significant
difference between their average depth values. Moreover if an object is partially
hiding another object, then the two objects can be detected again by looking at the
difference between their average depth values.
Since we don’t know the average depth values of all the objects in the scene (it is
indeed the first goal to reach or better approximate this result) the best thing to
do is looking over the depth value of each pixel. When we found relative depth
differences between a pixel and the previous one that exceed a threshold level, we
can safely state that we have detected an object.
The detection step is then described by the relation

|depth[i][j] − depth[i][j − 1]| ?
> depth_threshold

where depth[i][j] is the depth map at the row pixel i and column pixel j and where
the absolute value allows the detection of objects that are partially occluded by
others, or of the background too, starting from nearer ones.
If the relation is satisfied then the value of depth[i][j] is saved as a depth candidate
cause it represents a probable object.
There are two expedients that we follow in the scanning of the image:

1. computational load: in order to reduce the computational load the image is
not scanned for each row. In fact if there is an object edge at a certain height

17

18 CHAPTER 3. SEGMENTATION

then it is highly probable to see that depth value again for the next row in
the neighborhood of the column value of the detected edge. For this reason
the image is scanned just every 10 row pixels;

2. noise: the Kinect is a noisy sensor. For this reason it happens not so rarely
that there are pixel values way different from the real ones (in particular the
value 0 appears frequently). Consequently the detection step, as it has been
described, is too sensitive to noise. In order to avoid this phenomenon, each
time that the relation described before is satisfied, we look forward, for a
certain amount of pixel, if the depth value are in the range of the detected
object or not. In the first case we really have detected an object and so we
save that value as a depth candidate, otherwise we dealt with some noise and
we keep going on with the scanning.

The complete detection step will be the following one:

|depth[i][j] − depth[i][j − 1]| ?
> depth_threshold

if so we can have detected an object. So check for the next n pixels if

|depth[i][j] − depth[i][j + k]| ?
< range_threshold

where k = 1, ..., n and where j + k < x resolution. If also this second condition is
satisfied then the value depth[i][j] is saved as a depth candidate.

3.2 Depth Candidates Filtering

From the detection step we obtain an array of depth candidates, but a lot of them
can have the same value. In order to clarify this idea let’s make two example:

1. as we can see in figure 3.1 at the column j1 in the row i1 we have detected an
object, so we have saved its value as a possible candidate. At the row i2 and
column j2 again we have detected an object and saved its value as a candidate.
It is clear that we have detected twice the same object.

2. in figure 3.2 the scenario is completely different. At the column j1 in the
row i1 we have detected an object, so we have saved its value as a possible
candidate. At the row i1 and column j2 again we have detected an object and
saved its value as a candidate. The two object are distinct but their average
depth value is the same, so they can belong to the same segmented layer.

3.2. DEPTH CANDIDATES FILTERING 19

Figure 3.1. Example of double detection of one person. The dotted red lines are the

scanning of the algorithm at rows i1 and i2, whereas the dotted yellow ones represents

the detection columns j1 and j2.

20 CHAPTER 3. SEGMENTATION

Figure 3.2. Example of detection of two people belonging to the same depth level.

The dotted red line is the scanning of the algorithm at row i1 whereas the dotted

yellow ones represents the detection columns j1 and j2.

3.3. CLUSTERING, LABELING AND SAVING OF SEGMENTED LAYERS 21

In both cases we see a clear redundancy in the depth candidates and we have to
possibly get rid of it. For doing this we first sort the array of candidates and then
we do an averaging of the depth candidates that are within a certain range. All
the candidates at depth 0 are merged in one candidate then, from the first non zero
value, we scan the vector using a procedure similar to the one used for the detection
that is

candidates[i + 1] − candidates[i]
?
< candidate_threshold

where candidates is the sorted array containing the depth candidates. If the con-
dition is satisfied we keep track of the values and the number of candidates in the
same range and then we proceed to the next value that is looking the condition

candidates[i + 2] − candidates[i]
?
< candidate_threshold.

We can generalize this pruning process. Called k the first index for which it is false
that

candidates[i + k] − candidates[i] < candidate_threshold

then the true candidate computed as

∑k−1
j=0 candidates[i + j]

k

will be saved.
The scanning of the array will continue then by using candidates[i + k] as first
element and iterating the process just described.

Figure 3.3. Example of the process of candidate filtering.

3.3 Clustering, Labeling and Saving of Segmented Layers

The clustering and labeling of the depth map is then based on the k-means algo-
rithm. The most common version of it uses an iterative refinement technique.

22 CHAPTER 3. SEGMENTATION

Given an initial set of k means m
(1)
1 , ..., m

(1)
k , the algorithm proceeds by alternating

two steps:

1. assignment step: every pixel is assigned to the candidate with the closest
value:

S
(t)
i = ||depth[i][j] − m

(t)
i || ≤ ||depth[i][j] − m

(t)
i∗ ||, ∀i∗ = 1, ..., k;

2. update step: compute the new k means as

m
(t+1)
i =

1

|S(t)
i |

∑

depth[i][j]∈S
(t)
i

depth[i][j]

The depth candidates computed in the first two phases are used here as starting
centroid for the algorithm. There’s just a minor issue: since we use the OpenCV
implementation of the algorithm we cannot give directly the centroid. So in order
to get advantage of the work done until now, we compute an initial labeling of the
depth map by applying the assignment step one time and by giving the result as
initial labeling for the OpenCV method.
The final result of the k-means algorithm is a labeled image as shown in figure 3.4.

Figure 3.4. Clustered image.

At this point each clustered layer is used as a mask in the depth map. For each
segmented layer, the masked points are saved as a single image as shown in the
figure 3.5.

3.3. CLUSTERING, LABELING AND SAVING OF SEGMENTED LAYERS 23

Figure 3.5. Image of segmented layer.

Chapter 4

Features Computation

This module is responsible for looking in a segmented layer if there are candidates
with a real height and width similar to the ones of a person. If this is the case, then
those candidates are normalized to the fixed dimensions of 64x128. This process is
done both for the depth image, where the computation takes place, and also for the
correspondent RGB image. On the normalized depth image, a vector of Relational
Depth Similarity Features is computed. This vector is given then to a classifier in
order to achieve the likelihood of being human of the candidates. We will see now
the detailed description of the module.

4.1 Shape Computation

Each segmented image is completely scanned. For each column we look every row
pixel seeing if it is occupied or not. While doing this we keep track of the consecutive
pixels encountered. The maximum value of those is saved as the maximum height
in pixel of that column and this statement can be safely done by using both a
reasonable hypothesis and an expedient:

1. hypothesis: there can be more than one object in the scene represented in the
same column. With this method we take in account just the highest object as
a probable candidate. This is perfectly legal since we are looking for people.
In fact theoretically there can be two cases:

a) a person and a smaller distinct object above the person itself: in this case
taking the maximum height is the right thing to do in order to detect
the person (figure 4.1);

b) a person and a bigger distinct object over the person itself: this case
is really highly unlikely to happen. In fact is like assuming to have an
object of the dimensions of a wardrobe flying above the person.

So the operation is correct;

25

26 CHAPTER 4. FEATURES COMPUTATION

Figure 4.1. Image showing the first case that is an object above a person.

2. expedient: we have always to take in account that we are dealing with a noisy
sensor. Moreover more noise can be introduced by the segmentation process.
For these reasons, when scanning each row of a column, if we don’t find a
consecutive pixel we consider it as noise and we increase a noise counter. We
keep then scanning the column and if we find again an object pixel then we
were really dealing with noise and we update the height of the object. Instead
if we keep having noisy pixels it means that it is not noise and that the object
has just the height computed before finding the lasts pixels.

4.1. SHAPE COMPUTATION 27

So the complete process can be described as follows. Assuming that at row i and
column j we have the first object pixel, that is depth[i][j] 6= 0 we look

depth[i + 1][j]
?
6= 0

if it isn’t so we increase the noise counter then, in both cases (negative and positive),
we look at the row i + 2. The height saving condition for an object is that for k

consecutive pixels we have depth[i∗ + l][j] = 0 where 0 ≤ l < k. If it is so we save
as temporary maximum height in pixel the value

pixel_height = i∗ − i.

Instead if we find again an object pixel before the k consecutive noisy ones, we
consider those pixels as height object pixels and we start again the process from
the beginning as already described. If we find more than one object height, we will
consider then the maximum one.
At this point we have that for each column a pixel height has been saved. In order
to convert it to useful information we convert that pixel height into a real height in
cm.
The last step is to do an ordered scan of the column real height. With a similar
approach to the one used for computing the pixel height, we compute the width of
an object, that is firstly we look if

real_height[j]
?
≥ threshold_height.

Assuming that j is the first column that satisfies the above relation, we look if the
next column has also a real height satisfying the relation. If this is the case, then we
keep looking at the column j + 2 and we update the object pixel width. Otherwise
we use the same expedient that has been used for the computation of the column
height, that is, we assume the false result as noise and we keep looking forward if
it was really noise or if the object has just the width computed right before. So
the width saving condition for an object is that for k consecutive pixels we have
real_height[j∗ + l] < threshold_height where 0 ≤ l < k. If this happens, we take
into account the width in pixel described by

pixel_width = j∗ − j.

Now we have again to convert this pixel width in a real width in cm. Once we have
done this we see if the real width exceeds a threshold value. If it is the case then
we have finally found a candidate for the human detection.
In order to have now some good proportions and shape for the candidate, we don’t
take into account the maximum real height and the real width previously computed.
Firstly while scanning the object we kept track of the highest point and lowest point
of the object itself. This two points are used as height of the rectangle that will

28 CHAPTER 4. FEATURES COMPUTATION

bound the candidate. So if the highest point has row index i1 and the lowest i2

then the bounding box height in pixel will be

bbp_height = i2 − i1.

It doesn’t have to appear strange the fact that the height is computed by subtracting
the lowest to the highest since it is the lowest that has the higher row index.
The corresponding width is then computed as half the bounding box height that is

bbp_width =
bbp_height

2
.

Now we can perfectly describe the bounding box by means of another variable that
we can keep track of in the scanning of the height, that is the column index j1 of the
highest point of the object. That point represents the middle point of the width.

Figure 4.2. Strict bounding box.

Finally the bounding box is increased of the 25% both in width and in height having,
as final result, the one showed in figure 4.3.
This procedure has been undertaken since the dimensions of the candidate for the
classifier should be normalized to 64x128 so it is important to keep the proportion

bbp_width

bbp_height
=

64
128

=
1
2

.

The last step of the shaping procedure consists in resizing the candidate to the
required sizes of the classifier.

4.1.1 Real Width and Height Computation

In this paragraph we want to clarify how it is possible to convert the width and
height in pixels. There are two ways of doing this:

4.1. SHAPE COMPUTATION 29

Figure 4.3. Increased bounding box. In transparent red is reported also the strict

bounding box

1. exact way: knowing the intrinsic parameters of the camera, we can obtain the
parameters for actuating a perfect conversion. There are some matlab scripts
that allow the retrieval of those parameters;

2. approximate way: it is the way used in this thesis. Basically it’s an empirical
method of approximate a conversion between pixel and real width. Firstly the
Kinect is carefully positioned parallel to a flat surface (like a table) of known
dimensions b, h and with the depth camera that points at the middle point
of the surface. Then we move the surface at a distance d where the edges of
the surface itself fulfill the x resolution of the camera, that is the edges of the
surface correspond to the columns 0 and 639 (if we use a 640x480 resolution
as in this case) (figures 4.4 and 4.5). We measure then the distance between
the sensor and the surface and we can finally find an equation that relates the
width in pixel and the one in cm, that is:

widthmax = b1
depth

10d1

widthreal = widthmax
widthpx

yresolution

.

Similarly we can proceed for the height. The Kinect is still positioned parallel
to a flat surface and with the depth camera that points at the middle point
of the surface. This time we move the surface until the edges of it fulfill the
y resolution of the camera, that is the edges of the surface correspond to the
rows 0 and 479 (again using a 640x480 resolution). We measure then the

30 CHAPTER 4. FEATURES COMPUTATION

distance between the sensor and the surface and we can find the conversion
equation for the height too, that is:

heightmax = h2
depth

10d2

heightreal = heightmax
heightpx

xresolution

.

depth in both cases is the average depth of the segmented layer to which the
candidate belongs.

4.1. SHAPE COMPUTATION 31

Figure 4.4. Orthographic projection of the process of calibration.

Figure 4.5. Dimetric projection of the process of calibration. We can see the two

cases: in the first one the x resolution is fulfilled, whereas in the second the y one.

The red rectangle represents the captured 640 × 480 image.

32 CHAPTER 4. FEATURES COMPUTATION

4.2 Histogram Tracking Preprocessing

In the shaping procedure we obtained a normalized shaped depth candidate of di-
mensions 64x128. Before resizing it to the normalized dimensions a preprocessing
of the RGB image is undertaken, since it will be necessary for the tracking system.
This preprocessing is really simple.
The RGB image is masked with the segmented layer of the candidate and then we
cut out the portion of the image delimited by the coordinates of the bounding box
for the depth candidate. We can see the workflow of the process in figure 4.6.
The colored candidate will be then normalized as well to the sizes of 64x128 and
forwarded to the histogram computation if necessary.

Figure 4.6. Workflow for retrieving color depth candidates.

4.3. RDSF COMPUTATION 33

4.2.1 Depth Registration

A note has to be done in order to clarify that all the operations done in the procedure
just explained are safe. The problem in fact is that the camera for grabbing the
depth information and the RGB one are distinct. So the two images are not aligned.
Luckily the Kinect can register the depth camera together with the RGB one. After
this operation every pixel in the depth map is exactly the same of the RGB one.

Figure 4.7. Examples of not registered and registered image.

4.3 RDSF Computation

The features that have been used in order to detect people are called Relational
Depth Similarity Features (RDSF) [13]. They are very recent in literature and we
have chosen them instead of the more tested HOG features for two main reasons:

1. firstly to test the effectiveness of these features since they have not been used
widely;

2. secondly cause they are completely based on the depth information.

RDSF are based on a measure of the degree of similarity between depth histograms
obtained from two local regions. First of all we divide the candidate in cells of 8× 8
pixels that will represent our local regions. For each couple of cells we compute then
the normalized depth histogram. Let’s assume to call the two obtained histograms p

and q, what happens now is that, knowing the number n of bins of each histogram,
we can compute the degree of similarity S between the two local regions by using
the Bhattacharyya distance [35], that is

S =
n
∑

i=1

√
pnqn.

This distance is used as feature for the classifier and it is clear from its definition
that it actually represents a degree of the relational depth similarity.

34 CHAPTER 4. FEATURES COMPUTATION

Figure 4.8. RDSF explained.

Since our candidate has the fixed dimensions of 64x128, we have a total of

k =
64
8

128
8

= 128

cells. We have to compute the distance for every distinct pair of local regions so we
obtain a feature vector of length

l =
k−1
∑

i=1

i =

(

k
∑

i=1

i

)

− k =
k(k + 1)

2
− k =

k(k − 1)
2

= 8128.

This features vector is given then to the classifier to obtain the likelihood of being
human.

4.3.1 Construction of the Classifier

Until now we always assumed to already have a classifier capable of stating if a
candidate is likely to be or not to be a person. In reality, this classifier has been
constructed by means of a method called Real AdaBoost [36].
First of all let’s clarify what boosting means. Boosting is a machine learning al-
gorithm for performing supervised learning and it is based on the demostrated
hypothesis that a set of weak learners can create a single strong learner. A weak
learner is just slightly correlated to the true classification since it is able of perfor-
mances that exceed the ones of a random guessing. However they can be far away
from the true classification. Whereas, a strong learner is a classifier that is quite
near to the true classification.
AdaBoost is the short for Adaptive Boosting and it is a boosting algorithm formu-
lated by Yoav Freund and Robert Schapire [37]. The adaptive part stands for the
fact that subsequent built classifiers are tuned in order to be more sensitive of those
candidates misclassified by previous classifiers. AdaBoost is sensitive to noisy data

4.3. RDSF COMPUTATION 35

and outliers, but it is usually less sensitive to overfitting.
AdaBoost works in this way: it calls every weak classifier repeatedly in a series of
rounds equal to the number n of classifiers. During each round it updates a weights
distribution. The function of this distribution is to point out the importance of
examples in the data set for the classification. Reasonably if an example is incor-
rectly classified then its weight will be increased, whereas, if an example is correctly
classified, then its weight will be decreased. By doing this the new classifier will be
focused more on those examples.
The Real version of this boosting algorithm obtains degrees of separation from the
probability density functions for each dimension of features in positive classes and
negative classes. The selection is made in order to choose those features that allow
the greatest separation between positive and negative classes as weak classifiers.
Such degrees of separation is computed in a way so that the output of the clas-
sification is a real number (so the name Real AdaBoost). Defined a generic weak
classifier selected by the procedure of training as hi(x), the final classifier H(x) that
we will use for obtaining the likelihood of being a human is based on the following
equation

H(x) = sign

(

n
∑

i=1

hi(x)

)

.

Two specific programs have been created in order to train the classifier. The pro-
cedures of the programs are identical to the one already described, but they differs
from it in the RDSF computation. In fact we have:

1. positive examples gathering: this first program is responsible for gathering
positive examples for the classifier. In order to do that, we give to the pro-
gram a collection of pictures that contain possible candidates. The program
computes all the probable candidates for each image and it returns them as
an image on the screen. At this point the supervisor is asked to confirm if the
candidate represents a human (positive example) or not (negative example).
If it’s the case of a positive example then the program adds a line on a text
file containing an ordered array with the result of the classification (that is 1)
and the vector of RDSF;

2. negative examples gathering: this second program instead is responsible for
gathering negative examples for the classifier. In order to do that, we give to
the program a collection of pictures that do not contain people. The program
computes all the probable candidates for each image. The difference between
the previous program is that at this point we know that, since there are
no people in any image, the candidate will certainly be a negative example.
Indeed the program automatically adds a line on another text file containing
an ordered array with the result of the classification (in this case 0) and again
the vector of RDSF.

The text file resulting from the merging of the positive and negative ones, is then
used for obtaining a tree of weak classifiers by means of the Real AdaBoost training.

36 CHAPTER 4. FEATURES COMPUTATION

This tree will then be used as the strong classifier of which we have always talked
about.

Figure 4.9. Examples of positive training images.

Figure 4.10. Examples of negative training images.

Chapter 5

Features Tracking System

Once a person has been detected, it is important to track its movements during the
time in which it is on the scene. This last module is responsible of fulfilling this
duty.

5.1 Tracking Features

In this section we will define which features describe a person in our tracking system:

1. color histogram: the final result of section 4.2 is a segmented color candidate
as we can see in figure 4.6. We compute for this color candidate the color
histogram and we save it as a feature for the detected person. In fact the
distribution of color of a person is a good way of describing it as well as it
allows to distinguish it from another one;

2. present position: the present position is represented by the centroid of the
person itself together with the average depth value of the candidate. These
can be easily computed since from the candidate shaping we know both the
bounding box characteristics and the centroid depth of the segmented layer d.
What we need in fact are the coordinates of the upper left corner xl, yl, the
bounding box width bbp_width and height bbp_height. The centroid will be
identified by the coordinates

xc = xl + ⌊bbp_width

2
⌋

yc = yl + ⌊bbp_height

2
⌋

depthc = d;

3. previous position: as explained before the position is represented by the coor-
dinates of a centroid. Consequently the previous position represents the last
position in which the specific person has been detected;

37

38 CHAPTER 5. FEATURES TRACKING SYSTEM

Figure 5.1. Centroid computation.

4. distance: it is the space covered between the previous position and the actual
position. The details on how it is computed will be given shortly;

5. box color: this is a side feature that has nothing to do with the person itself.
It represents the color of the edges of the bounding box that will be used for
the visualization of the detection result. This color is simply computed with
a random choice of the value of Red, Green and Blue (from 0 to 255) that are
merged together in order to achieve the final color.

5.2 Tracking Features Creation and Update

Once a candidate has been given to the classifier, three cases can happen:

1. the classifier states the candidate not being a person;

2. the classifier states the candidate being a person and the tracking system
returns that it has never been detected before;

3. the classifier states the candidate being a person and the tracking system
returns that it has already been detected.

In the first case we don’t have to do anything.
In the second one we have to save for the first time all the tracking features. As
we have seen in the previous section, we can easily save the color histogram and
the present position given by the centroid. What about the other features? First
of all as previous position we save the present position, for the distance we save the
value 0 whereas for the color box we do the random operations and we save the

5.2. TRACKING FEATURES CREATION AND UPDATE 39

final result as the color for the box edges.
Finally in the third one we have to update the features. We save the new color
histogram in place of the old one in order to get rid of illumination differences.
Then we move the value saved as present position to the previous position and then
the actual position can be safely saved as the present position. We finally compute
the distance between those two values and save it in the distance feature. The color
box value instead has not to be changed.
We have to point out how the distance is computed. We know the coordinates of the
present centroid (xc, yc, depthc) and the ones of the previous centroid (xc′ , yc′ , depthc′).
Following the figures 5.2 and 5.3, we will compute now the necessary parameters.

1. widthc: it represents the distance in cm between the present centroid and the
central column. It can be easily computed knowing the pixel width that is

pixel_widthc =
∣

∣

∣

∣

yc − y_resolution

2

∣

∣

∣

∣

and by applying the conversions explained in the section 4.1.1. We note that
in this case the value y_resolution

2 is equal to 320 and more important that this
width is given in absolute value;

2. widthc′ : it represents the distance in cm between the previous centroid and
the central column. Identically to what we have done for widthc, it can be
computed knowing the pixel width

pixel_widthc′ =
∣

∣

∣

∣

yc′ − y_resolution

2

∣

∣

∣

∣

and by applying again the conversions explained in the section 4.1.1. As before
this width is given in absolute value;

3. dvc: it represents the distance between the sensor and the projection of the
present centroid on the middle column. It is clear that the figure identified by
widthc, dc and depthc is a right triangle. Of this triangle we know already one
leg and the hypotenuse. So we can easily find out the third value by mean of
the Pythagorean theorem that is

dvc =
√

depth2
c − width2

c ;

4. dvc′ : it represents the distance between the sensor and the projection of the
previous centroid on the middle column. Identically at what done right before
we can compute this value as

dvc′ =
√

depth2
c′ − width2

c′ .

As clearly shown in the images there can be now two possibilities:

40 CHAPTER 5. FEATURES TRACKING SYSTEM

1. the present and previous centroid are on the same half of the image;

2. the present and previous centroid are on opposite halves of the image.

In the first case the horizontal distance between the two centroids dh is equal to the
subtraction of the singular widths, that is

dh = widthc − widthc′ .

Figure 5.2. Centroids in the same half.

In the second one instead it is represented by the sum of the two widths, that is

dh = widthc + widthc′ .

The vertical distance between the two centroids instead is simply given by the
equation

dv = dvc − dvc′ .

5.3. PERSON TRACKING 41

Figure 5.3. Centroids in opposite halves.

So the value of the distance can be computed using again the Pythagorean theorem

distance =
√

d2
h + d2

v .

5.3 Person Tracking

This section wants to clarify the last thing on the feature tracking system, that is,
how we know if a person that has been correctly detected is new on the scene or if
it has already been detected previously.
All the people that has been detected are saved on a database. So each time that
we have a detection (a positive result given by the classifier), the first thing that we
have to do is to check if the person detected is present on the database. In order to
do this we use two discriminant values that are:

1. color histogram distance: for each person in the candidate we have saved its

42 CHAPTER 5. FEATURES TRACKING SYSTEM

color histogram and for every candidate we do a preprocessing in order to com-
pute the color histogram as already explained. By means of the Bhattacharyya
distance we obtain a degree of similarity between the two histograms s that,
for the way in which it is computed, respects the relation 0 ≤ s ≤ 1;

2. real distance: that is the distance dpt between the centroid of the person that
we want to check and the centroid of the present position of each person in
the database. The way in which this distance is computed is identical the
procedure described in the section 5.2.

In order to make use of the second value we need to scale it so that its value
can follow a relation similar to the one of the color histogram distance, that is
0 ≤ scaled_dpt ≤ k with k small integer.
Since the images should be taken at a real-time rate then it is good to suppose
that the scaled_dpt = 0 will correspond to dpt = 0 and that in a frame the max-
imum movement will be of 1 meter, that is state that dpt = 100cm correspond to
scaled_dpt = 1. In this work we wanted to benefit even more the good values of
the real distance. For this reason we assumed that scaled_dpt = 0 corresponds to
dpt = 2cm. So for values of dpt less than 2cm, scaled_dpt will have negative values.
Given those two couple of values, (2, 0), (100, 1), we can find a linear relation by
means of the straight line equation

y − y0 =
y1 − y0

x1 − x0
(x − x0) ⇒ y =

1
98

(x − 2) ⇒ y = y =
1
98

x − 1
49

.

By substitution of x and y with the right terms we have

scaled_dpt =
1
98

dpt − 1
49

.

So the likelihood lkh of a detected person being one of the people in the database
is given by the sum of those two values, that is

lkh = s + scaled_dpt.

The final step is to find a threshold value for this likelihood in order to affirm that
the person can have been previously detected or to state instead that it is new on
the scene

lkh
?
≤ threshold_lkh.

Given this condition three things can happen:

1. the condition is not satisfied for any person in the database: this means that
the person detected is new on the scene. Consequently it has to be added
following the creation procedure explained in section 5.2;

2. the condition is satisfied for just one person in the database: this means that
the person detected was already in the database so we will proceed with the
update of its features as explained again in section 5.2;

5.4. SHOWING DETECTIONS 43

3. the condition is satisfied for more than one person in the database: it is
a strange case but it can happen for very near people that exchange their
position or for people almost identically dressed. In this case the person
detected was again already in the database and we will choose the one that
minimizes the lkh value. Just for this person we will update its tracking
features.

5.4 Showing Detections

The final part consists in showing the results achieved in real-time. In order to
do that, while processing a new image, the grabbed one is shown together with
the bounding boxes identified by the shape computation module and confirmed,
as humans, by the classifier. On the bounding boxes there will be written also
additional informations deriving by the features tracking module. This are the
number of the person tracked and the distance covered, that is the distance between
the centroid of the previously detected centroid and the actual one.

Figure 5.4. Image with detected people and tracking informations.

Part II

Tests and Results

45

Chapter 6

Introduction

6.1 Performance Measurement

As already seen in the first part of this work, the problems of people detection and
tracking have been studied quite a lot in the past years. For this reason it was
necessary to introduce also an objective method for measuring the performances of
the various algorithms. There are two goals that will be accomplished by using a
shared objective measurement method:

1. providing an actual method of performance measurement;

2. allowing the comparison between different algorithms.

6.2 Ground Truth

As seen in section 5.4 the algorithm returns a bounding box for each person detected.
In order to determine whether or not this bounding box is right, we should compare
it with the true detection of the frame.
This true detection for each frame of the video is often done by hand by a human
being, and it is called ground truth.
Comparing the ground truth with the actual detection of the algorithm we can
retrieve the following direct parameters:

1. number of right detection (true positive);

2. number of wrong detection (false positive);

3. number of miss (false negative).

In order to check if a detection is right the following comparison equation is used

area(Ba

⋂

Bgt)
area(Ba

⋃

Bgt)
≥ 0.5

47

48 CHAPTER 6. INTRODUCTION

where Ba represents the bounding box of the algorithm whereas Bgt is the ground
truth one.
Multiple detections of the same person are considered all false positive except one.
From the three direct parameters we can also retrieve the following ones:

1. True Acceptance Rate (T AR):

T AR =
ntp

np

where ntp is the number of true positive and np is number of people detected
in the ground truth (that can be computed as the sum of the true positives
and the misses);

2. False Acceptance Rate (FAR)

FAR =
nmiss

nmiss + ntn

where nmiss is the number of miss and ntn is a parameter that assumes to
have one true negative for each frame;

3. True Rejection Rate (T RR)

T RR = 1 − FAR;

4. False Rejection Rate (FRR)

FRR = 1 − T AR;

5. False Positive Per Frame (FPPF)

FPPF =
nfp

nf

where nfp is the number of false positive and nf is the number of frames;

6. Miss Per Frame (MPF)

MPF =
nmiss

nf

where nfp and nf are again respectively the number of miss and the number
of frames.

Moreover, in order to evaluate also the tracking performances, these two metrics
are used:

6.3. RECEIVING OPERATING CHARACTERISTIC 49

1. Multiple Object Tracking Precision (MOT P)

MOT P =
100
ntp

∑

t

∑

i

(

area(Bati

⋂

Bgtti
)

area(Bati

⋃

Bgtti
)

)

where Bati
is the bounding box of the algorithm at frame t for the person i

and Bgtti
is the bounding box of the ground truth again at frame t for the

person i;

2. Multiple Object Tracking Accuracy (MOT A)

MOT A = 1 − nmiss + nfp + nmismatches

np

where the only new parameter is nmismatches that represents, for instance, the
number of mismatches in the tracking procedure.

6.3 Receiving Operating Characteristic

The Receiving Operating Characteristic (ROC) curve is the first way of describing
in an objective way an algorithm for people detection. On the x axis it is reported
the FAR whereas on the y axis there are the corresponding T AR values. In order
to achieve different T AR and FAR values, a parameter has to be changed. In this
case this parameter is represented by the threshold value of the classifier. In fact as
explained in 4.3.1 the classification for detecting people uses the relation

H(x) = sign

(

n
∑

i=1

hi(x)

)

.

Instead of using the sign function, we can rewrite the equation for the detection as

H(x) =

(

n
∑

i=1

hi(x)

)

≥ 0.

0 is the right value for achieving the exact correspondence with the sign function,
but we can substitute it with any value obtaining the threshold value of the classifier.
So we can finally rewrite the equation as

H(x) =

(

n
∑

i=1

hi(x)

)

≥ thresholdclassifier.

The optimal point of a ROC curve is represented by the coordinates FAR =
0, T AR = 1. So the curve is better if it passes nearer to this point. The curve
representing a random classifier is the 45 degrees diagonal with origin in the point
FAR = 0, T AR = 0.

50 CHAPTER 6. INTRODUCTION

6.4 Detection Error Trade-Off

The Detection Error Trade-Off (DET) curve is the second way of describing in an
objective way an algorithm for people detection. The aim of this curve is to relate
the two types of errors that can be retrieved, that are false detections and misses.
On the x axis the FPPF values are reported whereas on the y axis there are the
corresponding FRR values in percentage. Again in order to achieve different FPPF

and FRR values the threshold value of the classifier is used as changing parameter.
The optimal point of a DET curve is represented by the coordinates FRR =
100, FPPF = 0. So the curve is better if it passes nearer to this point. The
curve is usually represented with the axis expressed in logarithmic values in order
to point out more clearly the differences between the various algorithms.

6.5 Classifiers

For the tests four classifiers have been trained:

1. tree: 2814 positive candidates, 7484 negative ones;

2. tree2: 4028 positive candidates, 7484 negative ones;

3. hugeT ree: 5628 positive candidates, 22454 negative ones;

4. treeLast: 1115 positive candidates, 10085 negative ones.

6.6 Final Notes

Developing the complete system, it clearly appeared how the segmentation plays a
very important role for the detection step. In fact a good candidate segmentation is
the base requirement for the classifier. Without it instead the classifier would more
likely not recognize real people or an even worse case is that the candidate shaping
(section 4.1) will not be able to meet the minimum requirements for giving to the
classifier candidates representing real people.
For these reasons the tests have been developed in two ways. In the first one the
complete system is tested. In the second one instead the results of the first test are
adjusted in order to get rid of the errors deriving from the segmentation module.
In order to do this a specific program has been created for counting by hand the
number of segmentation errors.
Finally by adjusting a parameter deriving from the segmentation module, we tried
to raise the performances of the complete system looking for drawbacks in the new
procedure. Tests have been undertaken in order to evaluate also the performances
of this last method.

Chapter 7

Test

7.1 Setup

The setup for the test is the following

1. fixed sensor;

2. simple environment;

3. daytime;

4. maximum four people in the scene at the same time;

5. soft and harsh occlusion occurs;

6. 608 frames captured and processed.

51

52 CHAPTER 7. TEST

7.2 tree

7.2.1 Results of the Complete System

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,059803 0 1 0,9402 0 79 0
0,29447 0,012987 0,98701 0,70553 8 397 2,0151
0,48524 0,041009 0,95899 0,51476 26 667 3,8981
0,55488 0,057364 0,94264 0,44512 37 770 4,8052
0,60106 0,099259 0,90074 0,39894 67 861 7,7816
0,63437 0,19683 0,80317 0,36563 149 987 15,096
0,65405 0,33406 0,66594 0,34595 305 1169 26,091
0,67222 0,48865 0,51135 0,32778 581 1469 39,551
0,68206 0,60825 0,39175 0,31794 944 1845 51,165
0,69114 0,73074 0,26926 0,30886 1650 2563 64,378
0,69947 0,78539 0,21461 0,30053 2225 3149 70,657

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 1321 1321 100 2,1727 40
0 1242 1321 94,02 2,0428 20

0,013158 932 1321 70,553 1,5329 10
0,042763 680 1321 51,476 1,1184 0
0,060855 588 1321 44,512 0,96711 -5

0,1102 527 1321 39,894 0,86678 -10
0,24507 483 1321 36,563 0,79441 -15
0,50164 457 1321 34,595 0,75164 -20
0,95559 433 1321 32,778 0,71217 -25
1,5526 420 1321 31,794 0,69079 -30
2,7138 408 1321 30,886 0,67105 -40
3,6595 397 1321 30,053 0,65296 -60

7.2. TREE 53

7.2.2 Results Without Segmentation Errors

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,083246 0 1 0,91675 0 79 0
0,40991 0,012987 0,98701 0,59009 8 397 2,0151
0,67545 0,041009 0,95899 0,32455 26 667 3,8981
0,77239 0,057364 0,94264 0,22761 37 770 4,8052
0,83667 0,099259 0,90074 0,16333 67 861 7,7816
0,88303 0,19683 0,80317 0,11697 149 987 15,096
0,91043 0,33406 0,66594 0,089568 305 1169 26,091
0,93572 0,48865 0,51135 0,064278 581 1469 39,551
0,94942 0,60825 0,39175 0,05058 944 1845 51,165
0,96207 0,73074 0,26926 0,037935 1650 2563 64,378
0,97366 0,78539 0,21461 0,026344 2225 3149 70,657

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 949 949 100 1,5609 40
0 870 949 91,675 1,4309 20

0,013158 560 949 59,009 0,92105 10
0,042763 308 949 32,455 0,50658 0
0,060855 216 949 22,761 0,35526 -5

0,1102 155 949 16,333 0,25493 -10
0,24507 111 949 11,697 0,18257 -15
0,50164 85 949 8,9568 0,1398 -20
0,95559 61 949 6,4278 0,10033 -25
1,5526 48 949 5,058 0,078947 -30
2,7138 36 949 3,7935 0,059211 -40
3,6595 25 949 2,6344 0,041118 -60

54 CHAPTER 7. TEST

7.2.3 TAR, ROC and DET

Figure 7.1. TAR curves based on the threshold values for the classifier tree.

7.2. TREE 55

Figure 7.2. ROC curves for the classifier tree.

Figure 7.3. DET curves for the classifier tree.

56 CHAPTER 7. TEST

7.3 tree2

7.3.1 Results of the Complete System

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,053747 0,00491 0,99509 0,94625 3 74 4,0541
0,37093 0,022508 0,97749 0,62907 14 504 2,7778
0,58743 0,051482 0,94852 0,41257 33 809 4,0791
0,62755 0,073171 0,92683 0,37245 48 877 5,4732
0,65632 0,13759 0,86241 0,34368 97 964 10,062
0,67752 0,22646 0,77354 0,32248 178 1073 16,589
0,69114 0,36 0,64 0,30886 342 1255 27,251
0,70326 0,53374 0,46626 0,29674 696 1625 42,831
0,70704 0,66052 0,33948 0,29296 1183 2117 55,881
0,71461 0,77843 0,22157 0,28539 2136 3080 69,351
0,71612 0,8033 0,1967 0,28388 2483 3429 72,412

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 1321 1321 100 2,1727 40
0,0049342 1250 1321 94,625 2,0559 20
0,023026 831 1321 62,907 1,3668 10
0,054276 545 1321 41,257 0,89638 0
0,078947 492 1321 37,245 0,80921 -5
0,15954 454 1321 34,368 0,74671 -10
0,29276 426 1321 32,248 0,70066 -15
0,5625 408 1321 30,886 0,67105 -20
1,1447 392 1321 29,674 0,64474 -25
1,9457 387 1321 29,296 0,63651 -30
3,5132 377 1321 28,539 0,62007 -40
4,0839 375 1321 28,388 0,61678 -60

7.3. TREE2 57

7.3.2 Results Without Segmentation Errors

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,074816 0,00491 0,99509 0,92518 3 74 4,0541
0,51633 0,022508 0,97749 0,48367 14 504 2,7778
0,8177 0,051482 0,94852 0,1823 33 809 4,0791

0,87355 0,073171 0,92683 0,12645 48 877 5,4732
0,91359 0,13759 0,86241 0,086407 97 964 10,062
0,9431 0,22646 0,77354 0,056902 178 1073 16,589

0,96207 0,36 0,64 0,037935 342 1255 27,251
0,97893 0,53374 0,46626 0,021075 696 1625 42,831
0,98419 0,66052 0,33948 0,015806 1183 2117 55,881
0,99473 0,77843 0,22157 0,0052687 2136 3080 69,351
0,99684 0,8033 0,1967 0,0031612 2483 3429 72,412

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 949 949 100 1,5609 40
0,0049342 878 949 92,518 1,4441 20
0,023026 459 949 48,367 0,75493 10
0,054276 173 949 18,23 0,28454 0
0,078947 120 949 12,645 0,19737 -5
0,15954 82 949 8,6407 0,13487 -10
0,29276 54 949 5,6902 0,088816 -15
0,5625 36 949 3,7935 0,059211 -20
1,1447 20 949 2,1075 0,032895 -25
1,9457 15 949 1,5806 0,024671 -30
3,5132 5 949 0,52687 0,0082237 -40
4,0839 3 949 0,31612 0,0049342 -60

58 CHAPTER 7. TEST

7.3.3 TAR, ROC and DET

Figure 7.4. TAR curves based on the threshold values for the classifier tree2.

7.3. TREE2 59

Figure 7.5. ROC curves for the classifier tree2.

Figure 7.6. DET curves for the classifier tree2.

60 CHAPTER 7. TEST

7.4 hugeTree

7.4.1 Results of the Complete System

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,017411 0,001642 0,99836 0,98259 1 24 4,1667
0,2377 0,011382 0,98862 0,7623 7 321 2,1807

0,53747 0,051482 0,94852 0,46253 33 743 4,4415
0,60484 0,073171 0,92683 0,39516 48 847 5,6671
0,65632 0,12894 0,87106 0,34368 90 957 9,4044
0,68055 0,2294 0,7706 0,31945 181 1080 16,759
0,69114 0,41369 0,58631 0,30886 429 1342 31,967
0,7025 0,58156 0,41844 0,2975 845 1773 47,659
0,7078 0,69324 0,30676 0,2922 1374 2309 59,506

0,71461 0,78584 0,21416 0,28539 2231 3175 70,268
0,71612 0,80419 0,19581 0,28388 2497 3443 72,524

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 1321 1321 100 2,1727 40
0,0016447 1298 1321 98,259 2,1349 20
0,011513 1007 1321 76,23 1,6562 10
0,054276 611 1321 46,253 1,0049 0
0,078947 522 1321 39,516 0,85855 -5
0,14803 454 1321 34,368 0,74671 -10
0,2977 422 1321 31,945 0,69408 -15

0,70559 408 1321 30,886 0,67105 -20
1,3898 393 1321 29,75 0,64638 -25
2,2599 386 1321 29,22 0,63487 -30
3,6694 377 1321 28,539 0,62007 -40
4,1069 375 1321 28,388 0,61678 -60

7.4. HUGETREE 61

7.4.2 Results Without Segmentation Errors

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,024236 0,001642 0,99836 0,97576 1 24 4,1667
0,33087 0,011382 0,98862 0,66913 7 321 2,1807
0,74816 0,051482 0,94852 0,25184 33 743 4,4415
0,84194 0,073171 0,92683 0,15806 48 847 5,6671
0,91359 0,12894 0,87106 0,086407 90 957 9,4044
0,94731 0,2294 0,7706 0,052687 181 1080 16,759
0,96207 0,41369 0,58631 0,037935 429 1342 31,967
0,97787 0,58156 0,41844 0,022129 845 1773 47,659
0,98525 0,69324 0,30676 0,014752 1374 2309 59,506
0,99473 0,78584 0,21416 0,0052687 2231 3175 70,268
0,99684 0,80419 0,19581 0,0031612 2497 3443 72,524

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 949 949 100 1,5609 40
0,0016447 926 949 97,576 1,523 20
0,011513 635 949 66,913 1,0444 10
0,054276 239 949 25,184 0,39309 0
0,078947 150 949 15,806 0,24671 -5
0,14803 82 949 8,6407 0,13487 -10
0,2977 50 949 5,2687 0,082237 -15

0,70559 36 949 3,7935 0,059211 -20
1,3898 21 949 2,2129 0,034539 -25
2,2599 14 949 1,4752 0,023026 -30
3,6694 5 949 0,52687 0,0082237 -40
4,1069 3 949 0,31612 0,0049342 -60

62 CHAPTER 7. TEST

7.4.3 TAR, ROC and DET

Figure 7.7. TAR curves based on the threshold values for the classifier hugeT ree.

7.4. HUGETREE 63

Figure 7.8. ROC curves for the classifier hugeT ree.

Figure 7.9. DET curves for the classifier hugeT ree.

64 CHAPTER 7. TEST

7.5 treeLast

7.5.1 Results of the Complete System

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,000757 0 1 0,99924 0 1 0
0,033308 0,003279 0,99672 0,96669 2 46 4,3478

0,1461 0,003279 0,99672 0,8539 2 195 1,0256
0,22104 0,00491 0,99509 0,77896 3 295 1,0169
0,32627 0,014587 0,98541 0,67373 9 440 2,0455
0,49357 0,034921 0,96508 0,50643 22 674 3,2641
0,59652 0,14487 0,85513 0,40348 103 891 11,56
0,65254 0,44169 0,55831 0,34746 481 1343 35,815
0,6866 0,70699 0,29301 0,3134 1467 2374 61,794

0,70098 0,77915 0,22085 0,29902 2145 3071 69,847

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 1321 1321 100 2,1727 30
0 1320 1321 99,924 2,1711 20

0,0032895 1277 1321 96,669 2,1003 10
0,0032895 1128 1321 85,39 1,8553 0
0,0049342 1029 1321 77,896 1,6924 -5
0,014803 890 1321 67,373 1,4638 -10
0,036184 669 1321 50,643 1,1003 -20
0,16941 533 1321 40,348 0,87664 -30
0,79112 459 1321 34,746 0,75493 -40
2,4128 414 1321 31,34 0,68092 -50
3,528 395 1321 29,902 0,64967 -60

7.5. TREELAST 65

7.5.2 Results Without Segmentation Errors

TAR FAR TRR FRR nfp ndet nfp %
0 0 1 1 0 0 0

0,001054 0 1 0,99895 0 1 0
0,046365 0,003279 0,99672 0,95364 2 46 4,3478
0,20337 0,003279 0,99672 0,79663 2 195 1,0256
0,30769 0,00491 0,99509 0,69231 3 295 1,0169
0,45416 0,014587 0,98541 0,54584 9 440 2,0455
0,68704 0,034921 0,96508 0,31296 22 674 3,2641
0,83035 0,14487 0,85513 0,16965 103 891 11,56
0,90832 0,44169 0,55831 0,091675 481 1343 35,815
0,95574 0,70699 0,29301 0,044257 1467 2374 61,794
0,97576 0,77915 0,22085 0,024236 2145 3071 69,847

FPPF nmiss npeople nmiss % MPF thresholdclassifier

0 949 949 100 1,5609 30
0 948 949 99,895 1,5592 20

0,0032895 905 949 95,364 1,4885 10
0,0032895 756 949 79,663 1,2434 0
0,0049342 657 949 69,231 1,0806 -5
0,014803 518 949 54,584 0,85197 -10
0,036184 297 949 31,296 0,48849 -20
0,16941 161 949 16,965 0,2648 -30
0,79112 87 949 9,1675 0,14309 -40
2,4128 42 949 4,4257 0,069079 -50
3,528 23 949 2,4236 0,037829 -60

66 CHAPTER 7. TEST

7.5.3 TAR, ROC and DET

Figure 7.10. TAR curves based on the threshold values for the classifier treeLast.

7.5. TREELAST 67

Figure 7.11. ROC curves for the classifier treeLast.

Figure 7.12. DET curves for the classifier treeLast.

68 CHAPTER 7. TEST

7.6 Classifiers Comparison

The classifiers hugeT ree and tree2 among all the classifiers showed the best results.
In particular tree2 performed also slightly better with respect to hugeT ree.
This result is clearly showed by the ROC curves in figures 7.16 and 7.17. In fact
those two classifiers come closer to the optimal point (T AR = 1, FAR = 0) and
are all the time above the other two curves. Among them the ROC curves for tree2
and hugeT ree are basically identically for values of FAR greater than 0.1 whereas
under that value the first one performs better.
The DET curves in figure 7.18 instead give no useful informations for comparing the
classifiers. In fact they show that the various classifiers perform almost identically.
Additionally we will report also the T AR curves both with and without segmenta-
tion errors (figures 7.13 and 7.14), and the T RR ones (figure 7.15). We can also now
explain why we don’t need to create a T RR curve without considering segmentation
errors for each classifier.
The T RR curve depends just on the parameters T RR and thresholdclassifier that
don’t depend on the value of misses (the parameter affected by the segmentation
problems) as explained in section 6.2.

Figure 7.13. TAR curves based on the threshold values for all the classifiers.

7.6. CLASSIFIERS COMPARISON 69

Figure 7.14. TAR curves based on the threshold values for all the classifiers without

segmentation errors.

Figure 7.15. TRR curves based on the threshold values for all the classifiers.

70 CHAPTER 7. TEST

Figure 7.16. ROC curves for all the classifiers.

Figure 7.17. ROC curves for all the classifiers without segmentation errors.

7.6. CLASSIFIERS COMPARISON 71

Figure 7.18. DET curves for all the classifiers.

Figure 7.19. DET curves for all the classifiers without segmentation errors.

72 CHAPTER 7. TEST

7.7 Shape Parameter

In order to raise the performances of the complete system, we can change a param-
eter deriving from the section 4.1, that is the threshold_height.
In fact, on the previous tests, we used a quite strict threshold_height value. In
particular:

1. if the average depth of the segmented layer was smaller than 1.5 meters, we
looked for candidates with real_height greater than 50 cm;

2. if the average depth of the segmented layer was greater than 1.5 meters, we
looked for candidates with real_height greater than 90 cm.

For the following tests we changed this parameter so that for every candidate the
only requirement is a real_height greater than 50 cm, independently from the
average depth of the segmented layer. As we can see from figures 7.20, 7.21, 7.22,
7.23, 7.24, 7.25, 7.26, the classifier that on the whole showed the best performances
is again the tree2 one, even if, for values of FAR smaller than 5%, tree2 doesn’t
show the best performances on the ROC curves.

Figure 7.20. TAR curves based on the threshold values for all the classifiers.

7.7. SHAPE PARAMETER 73

Figure 7.21. TAR curves based on the threshold values for all the classifiers without

segmentation errors.

Figure 7.22. TRR curves based on the threshold values for all the classifiers.

74 CHAPTER 7. TEST

Figure 7.23. ROC curves for all the classifiers.

Figure 7.24. ROC curves for all the classifiers without segmentation errors.

7.7. SHAPE PARAMETER 75

Figure 7.25. DET curves for all the classifiers.

Figure 7.26. DET curves for all the classifiers without segmentation errors.

76 CHAPTER 7. TEST

So we can now make a comparison between the performances of the classifier tree2
with the strict shape parameter and the ones of the same classifier but with the
changed threshold_height.
The comparison for the T AR curves of the complete system (figure 7.27) shows
clearly how the performances have been raised. In fact on the parameterized test
the maximum value of true positive is of 86% with respect to the 72% of the original
one. As expected, instead, we can see on figure 7.28 that the two different tests
perform almost identically when we are considering segmentation errors.
The ROC curves are more interesting. We can see that for the complete system
(figure 7.29), the less strict threshold works better for FAR values smaller than
roughly 13%. After this point instead the strict version is more efficient. However
the shapes of the curves seem to show that potentially the strict version of the tests
should perform better than the less strict one. This is confirmed when taking into
account segmentation errors. In fact figure 7.30 shows how, in this case, the strict
version works all the time better. The explanation for this phenomenon is quite
simple actually. By being less strict on the height threshold value, we achieve two
results. The first one is that we actually get rid of some segmentation problems
whereas the second one is that we give to the classifier a lot more candidates which
present a higher probability of not being a person. The probability for a candidate
with height of 60 cm being a segmentation problem is lower than the one of being
an object.
Finally the DET curves show also a similar behavior with respect to the ROC ones.
In fact, for the complete system, the classifier with the strict height_threshold

performs better for values of FPPF smaller than roughly 0.12 whereas after this
point, the parameterized one becomes better (figure 7.31). If we consider instead
also the segmentation errors, the original tests show again continuously the best
performances (figure 7.32).

7.7. SHAPE PARAMETER 77

Figure 7.27. Comparison of the TAR curves for the classifier tree2 in the two

situation described.

Figure 7.28. Comparison of the TAR curves for the classifier tree2 in the two

situation described without segmentation errors.

78 CHAPTER 7. TEST

Figure 7.29. Comparison of the ROC curves for the classifier tree2 in the two

situation described.

Figure 7.30. Comparison of the ROC curves for the classifier tree2 in the two

situation described without segmentation errors.

7.7. SHAPE PARAMETER 79

Figure 7.31. Comparison of the DET curves for the classifier tree2 in the two

situation described.

Figure 7.32. Comparison of the DET curves for the classifier tree2 in the two

situation described without segmentation errors.

80 CHAPTER 7. TEST

7.8 Tracking Evaluation

7.8.1 Strict Algorithm

Tracking informations for the classifier hugeT ree

thresholdclassifier MOT P nfp nmiss nmismatches MOT A MOT A no seg
20 70,39 1 1298 7 1,135503 1,58
10 71,34 7 1007 26 21,27176 29,6
0 69,91 33 611 11 50,41635 70,2

-5 69,89 48 522 8 56,24527 78,3
-10 69,54 90 454 11 57,98637 80,7
-15 69,49 181 422 10 53,59576 74,6
-20 69,4 429 408 8 36,03331 50,2

Tracking informations for the classifier tree2

thresholdclassifier MOT P nfp nmiss nmismatches MOT A MOT A no seg
20 64,53 3 1250 19 3,709311 5,16
10 69,04 14 831 17 34,7464 48,4
0 69,88 33 545 13 55,26117 76,9

-5 69,64 48 492 10 58,36488 81,2
-10 69,45 97 454 14 57,22937 79,7
-15 69,41 178 426 8 53,67146 74,7
-20 69,17 342 408 9 42,54353 59,2

7.8. TRACKING EVALUATION 81

Figure 7.33. MOT P curves for the classifiers hugeT ree and tree2.

Figure 7.34. MOT A curves for the classifiers hugeT ree and tree2.

82 CHAPTER 7. TEST

Figure 7.35. MOT A curves for the classifiers hugeT ree and tree2 without segmen-

tation errors.

7.8. TRACKING EVALUATION 83

7.8.2 Non Strict Algorithm

Tracking informations for the classifier hugeT ree

thresholdclassifier MOT P nfp nmiss nmismatches MOT A MOT A no seg
20 69,5 2 1296 11 0,908403 1,03
10 69,93 16 956 24 24,60257 35,1
0 68,59 86 502 19 54,04996 61,5

-5 68,33 143 385 22 58,36488 66,4
-10 67,91 244 293 34 56,77517 64,6
-15 67,77 419 247 39 46,63134 53,1
-20 67,51 756 219 61 21,57456 24,5

Tracking informations for the classifier tree2

thresholdclassifier MOT P nfp nmiss nmismatches MOT A MOT A no seg
20 69,5 3 1234 19 4,920515 5,6
10 69,93 34 764 19 38,15291 43,4
0 68,59 97 406 15 60,78728 69,2

-5 68,33 154 327 21 61,99849 70,5
-10 67,91 233 279 25 59,34898 67,5
-15 67,77 373 247 37 50,26495 57,2
-20 67,51 659 225 60 28,53899 32,5

84 CHAPTER 7. TEST

Figure 7.36. MOT P curves for the classifiers hugeT ree and tree2.

Figure 7.37. MOT A curves for the classifiers hugeT ree and tree2.

7.8. TRACKING EVALUATION 85

Figure 7.38. MOT A curves for the classifiers hugeT ree and tree2 without segmen-

tation errors.

86 CHAPTER 7. TEST

7.8.3 Comparison

The performances of the tracking module have been evaluated just for the two
classifiers that showed the best performances, that are tree2 and hugeT ree. The
classifier hugeT ree is generally more precise with respect to the tree2 one (figures
7.33, 7.36), even if for values of thresholdclassifier greater than 0, the two classifiers
appear to be almost identical.
The best precision is reached by the classifier hugeT ree in the strict version of the
algorithm (71.3% for the threshold value of 10, whereas the tree2 best performance
is of 69.9% for the threshold value of 0). We can also see from figure 7.39, that the
non strict version of the algorithm is all the time worse than the strict one for both
the classifiers. The best performances achieved are however near to the ones of the
strict version (roughly 2% smaller).
On the contrary, the classifier tree2 is the most accurate, both for the complete
system (figures 7.34, 7.37) and when taking into account the segmentation errors
(figures 7.35, 7.38).
The best accuracy is reached by the classifier tree2 when taking into account seg-
mentation errors and using the strict version of the algorithm. The performance is
of 81.2% with thresholdclassifier = −5. If we consider the complete system instead,
the best result is again reached by the classifier tree2 but using the non strict ver-
sion of the algorithm. Figures 7.40 and 7.41 show more clearly that this time the
non strict version actually raises the accuracy of the complete system as expected
from the considerations made in section 7.7 and the detection results achieved.
However the raising is not significant. In fact we achieved performances that in the
best case have been raised of just 3%. On the contrary when we take into account
the segmentation errors, we see a more significant lowering in the performances
(up to 13%). This is due to a phenomenon that has been introduced by the new
candidates allowed by the shape filtering. The segmentation module in fact can
sometimes cut a person in halves (external and internal or vertical halves for side
detections). This doubling of a person was filtered out by the shaping procedure,
but now they are allowed to be computed as candidates. So it happens not so rarely
that a person can be detected twice by the classifier. This two detections represent
the same person and we can safely affirm that they are both correct. For this rea-
son the probability of achieving a mismatch becomes a lot higher than in the strict
version of the algorithm. In fact it can be the case that the additional detection
has a centroid nearer than the previous detected one. In this case we will obtain a
mismatch. So it is explained also the lowering of the performances.

7.8. TRACKING EVALUATION 87

Figure 7.39. Comparison of the MOT P curves for the two versions of the algorithm.

Figure 7.40. Comparison of the MOT A curves for the two versions of the algorithm.

88 CHAPTER 7. TEST

Figure 7.41. Comparison of the MOT A curves for the two versions of the algorithm

without segmentation errors.

7.9. MOVING CAMERA 89

7.9 Moving Camera

A second test has been done also in a scenario where the Kinect was moving. The
tests showed results almost identical to the ones we have already seen for the static
sensor, but with a little lowering of the performances. In order to be more complete
we report just a little comparison for the T AR, ROC and DET curves of the best
classifier (tree2) in both situations.

Figure 7.42. Comparison of the T AR curves for the classifier tree2 on the static

and mobile scenario.

90 CHAPTER 7. TEST

Figure 7.43. Comparison of the ROC curves for the classifier tree2 on the static

and mobile scenario.

Figure 7.44. Comparison of the DET curves for the classifier tree2 on the static

and mobile scenario.

7.10. TIMING CONSTRAINTS 91

7.10 Timing Constraints

One of the requirement for the developed system is to run in real-time. The perfor-
mances achieved are instead near real-time. We divided the measuring into seven
parts, that are:

1. segmentation: it represents the time needed for segmenting the depth map,
retrieved by the Kinect, in depth layers;

2. candidate initialization: it represents the time needed for computing the pixel
width and height of each candidate;

3. candidate filtering: it represents the time needed for filtering out a candidate,
on the base of the real width and height informations;

4. candidate preprocessing: it represents the time needed for all the preprocessing
procedures for each candidate required by the feature computation module;

5. classifier: it represents the time needed for creating the vector of RDSFs and
for retrieving the answer of the classifier for each candidate;

6. tracking update: it represents the time needed for creating or updating the
tracking features of each candidate;

7. showing: it represents the time needed for showing the results on the screen.

The tests demonstrated that four of this parts always run in less than 1 ms, that are
candidate filtering and processing, tracking update and showing. More interesting
are the remaining three parts.
The candidate initialization takes continuously roughly 10 ms for each candidate.
The processing required by the classifier instead varies mostly between 10 and 30
ms with an average of 16 ms for each candidate. Sometimes it happened that this
part ran incredibly fast (less than 1 ms).
The heaviest part of the computation is represented by the segmentation. In fact
the best performances achieved by this part has been of 200 ms whereas the worst
one recorded a timing of 320 ms. If we sum up all the contributions of the other
parts we obtain, in the best and worst cases, timings of 110 ms and 340 ms. It
doesn’t have to appear strange that the computation time went up to these values
since the timing of the other parts (apart from the showing one) is given for each
candidate. So it has to be multiplied for all the candidates given by the system to
the various parts.
So the complete system runs at 2.2 fps on average. The best performance recorded
the value of 3.1 fps whereas the worst one has been attested to 1.8 fps.

Chapter 8

Conclusions

In this thesis we have investigated on how we can make use of the new Microsoft’s
gaming sensor, the Kinect, to address the issues of real-time people detection and
tracking, since the sensor has been built in order to detect people and track their
movements.
We developed a system that is able of detecting and tracking people in near real-time
both on fixed environments and mobile platforms. The system has been developed
for an indoor environment and it is successfully able to detect people standing
upright that are at least 1.5 meters from the sensor which can be affected by a not
too severe occlusion. Those people can be walking or standing still. The developed
system presents three main characteristics:

1. good detection results of the classifier;

2. good tracking results;

3. segmentation problems.

8.1 Classifier Performances

The classifier by itself showed in the best case (section 7.3) good performances.
It is capable of detecting the 82% of people in the scene with a false positive
detection percentage of 5%. The T AR percentage then keeps growing but from
now on the FAR one grows faster. It is still acceptable until the combination
T AR = 91%, FAR = 13% but after this we can see that an increase of 3% of T AR

correspond to an increase of 10% in the FAR percentage.
This results don’t completely describe the accuracy of the classifier. In fact since the
RDSF are based on the human detection shape (measured by the Bhattacharyya
distance between relative histograms as explained in section 4.3), it is sensitive to
the person pose. In fact the classifier has been tested mainly on frontal and back-
ward pose of people with some side and occluded images. This process has been
done in order to give a classifier consistent data on which relying on.

93

94 CHAPTER 8. CONCLUSIONS

This fact has led to two things: a good detection of people facing or showing their
back to the sensor, and a weaker detection of people showing instead their sides.
These people can be still detected often also because of the head which is a very
strong characteristic in the human shape. In an opposite way the occlusion of the
head will often lead to not recognize a person as a human being.
So we considered the different types of pose on this specific test case: classifier tree2,
thresholdclassifier = −10. In this case we have FRR = 13% and of this the 13% is
due to frontal or backward poses whereas the 51% for side ones. So an improvement
that can be done is to train another classifier for just sides pose of people and use
it as a secondary test for candidates that are not recognized as human being by the
first classifier.
The remaining 36% instead is due to severe occlusion or to half-length detections.
In fact one of the limitation is that the classifier has been trained for full body
detection and so there has to be a minimum distance between the sensor and each
person of 1.5 meters. However on this test people were moving also closer to the
sensor in order to test this limitation.

8.2 Tracking Performances

The system showed good tracking results. By using the MOT P and MOT A met-
rics, we achieved a detection precision of 71.3 % with the classifier hugeT ree, and
an accuracy of 62 % and 81.2 % respectively for the complete system and taking
into account for segmentation errors. Both best accuracies are achieved with the
classifier tree2.

8.3 Segmentation Problems

As already explained in section 6.6 the segmentation module can make some errors.
These errors will result in not giving to the classifier good candidates or in not
giving candidates at all. For this reason the performances of the complete system
drop down sometimes more than 25% with respect to the ones of the classifier it-
self. In fact we can see for the classifier tree2 with thresholdclassifier = −10 the
performances of the complete system go down from T AR = 91% to T AR = 66%.
The false positive measure instead, as already explained, isn’t affected by the seg-
mentation module, in fact we have in both cases FAR = 13%.
Also the tracking system is affected by these problems. In fact the MOT A evalu-
ation depends on the number of miss, false positive and mismatches, whereas the
MOT P measurement is independent from these values. So the performances of the
complete system drop down again sometimes more than 20% with respect to the ones
of the classifier itself. We can see for the classifier tree2 with thresholdclassifier = −5
that the performances of the complete system go down from MOT A = 81.2% to

8.4. REAL-TIME MEASUREMENT 95

MOT A = 58.4%.
An advantage of the method developed is instead that there is a limitation on the
number of candidates produced. This will results in a limitation as well of possible
false positives. In fact even by lowering noteworthily the threshold value for the
classifier, the FAR percentage doesn’t go higher than 85%.
However in order to get rid of some segmentation problems, we tried to relax a
constrain in the shape filtering of the candidates. This has led to three results:

1. raising of the performances of the complete system for detection results: in
fact for the classifier tree2 with thresholdclassifier = −10, the performances
of the complete system that went down from T AR = 91% to T AR = 66%
have been raised till T AR = 79%;

2. no significant improvement in the tracking results: the MOT A evaluation
for the classifier tree2 with thresholdclassifier = −5 that went down from
MOT A = 81.2% to MOT A = 58.4% has been raised just till MOT A = 62%;

3. worsening of the results when taking into account segmentation errors: the
DET and ROC curves for the detection show that the performances for the
complete system become worse and this is due to the fact that by being less
strict on the height threshold value, we actually get rid of some segmentation
problems but we give to the classifier a lot more candidates which presents
a higher probability of not being a person. Indeed, the probability for a
candidate with height of 60 cm being a segmentation problem is lower than
the one of being an object. Moreover the tracking algorithm suffers a lot
the introduction of these new candidates. In fact it happens not so rarely
that a person can be detected twice. This leads to a lot higher probability of
achieving a mismatch than it happens in the strict version of the algorithm.
So the lowering of the performances.

8.4 Real-Time Measurement

The complete system runs at 2.2fps on average. The best performance recorded
the value of 3.1fps whereas the worst one has been attested to 1.8fps.
The module that produces the greatest computational load is again the segmenta-
tion one. In fact, by looking at the partial timing of the algorithm, this module
showed the best run at 200ms and the worst one at 320ms. In order to make a
comparison all the other processing has be done in the best case in 110ms and in
the worst one in 340ms.

8.5 Final Notes and Future Work

The entire program has been developed in two ways:

1. a standalone executable for fixed installations of the sensor;

96 CHAPTER 8. CONCLUSIONS

2. a ROS node for installations of the sensor on mobile platform.

Still the program need to convert the data from the navigation node in order to
update correctly the tracking system. This update is really simple in fact it is
possible to compute where the previous centroid of each person should be, by mean
of a geometrical computation almost identical to the one explained in section 5.2.
Then the computation will be the same of the one already explained again in section
5.2 by using the computed centroids in place of the previous ones.
In addition, the greatest improvement has to be done on the segmentation module
for all the reasons already explained. Moreover an improvement of this module will
lead also to a lowering of the timing of all the remaining processing by giving less
and more accurate candidates.

Bibliography

[1] N. Ogale, “A survey of techniques for human detection from video,” Master’s
thesis, University of Maryland, 2006. Unpublished.

[2] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: real-time
tracking of the human body,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, pp. 780–785, 1997.

[3] C. Beleznai, B. Fruhstuck, and H. Bischof, “Human detection in groups using
a fast mean shift procedure,” International Conference on Image Processing,
vol. 1, pp. 349–352, 2004.

[4] D. Toth and T. Aach, “Detection and recognition of moving objects using
statistical motion detection and fourier descriptors,” International Conference
on Image Analysis and Processing, pp. 430–435, 2003.

[5] D. Lee, P. Zhan, A. Thomas, and R. Schoenberger, “Shape-based human in-
trusion detection,” SPIE International Symposium on Defense and Security,
Visual Information Processing XIII, pp. 81–91, 2004.

[6] F. Xu and K. Fujimura, “Human detection using depth and gray images,” EEE
Conference on Advanced Video and Signal Based Surveillance, pp. 115–121,
2003.

[7] J. Han and B. Bhanu, “Detecting moving humans using color and infrared
video,” IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems, vol. 30, pp. 228–233, 2003.

[8] L. Jiang, F. Tian, L. Shen, S. Wu, S. Yao, Z. Lu, and L. Xu, “Perceptual-based
fusion of ir and visual images for human detection,” International Symposium
on Intelligent Multimedia, Video and Speech Processing, pp. 514–517, 2004.

[9] M. Yang, D. Kriegman, and N. Ahuja, “Detecting faces in images: A survey,”
IEEE Pattern Analisis and Machine Intelligence, vol. 24, pp. 34–58, 2002.

[10] D. Geronimo, A. Lopez, and A. Sappa, “Computer vision approaches to pedes-
trian detection: Visible spectrum survey,” LNCS, Pattern Recognition and Im-
age Analysis, pp. 547–554, 2007.

97

98 BIBLIOGRAPHY

[11] D. Gavrila and J. Giebel, “Shape-based pedestrian detection and tracking,”
IEEE Intelligent Vehicle Symposium, pp. 8–14, 2002.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 1063–6919, 2005.

[13] S. Ikemura and H. Fujiyoshi, “Real-time human detection using relational depth
similarity features,” Proceedings of the 10th Asian conference on Computer
vision, vol. 4, pp. 1–14, 2010.

[14] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns of
motion and appearance,” IEEE International Conference on Computer Vision,
pp. 734–741, 2003.

[15] K. Arras, O. Mozos, and W. Burgard, “Using boosted features for the detection
of people in 2d range data,” IEEE International Conference on Robotics and
Automation, Roma, Italy, vol. 2, pp. 3402–3407, 2007.

[16] A. Fod, A. Howard, and M. Mataric, “Laser-based people tracking,” Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2002.

[17] M. Kleinhagenbrock, S. Lang, J. Fritsch, F. Lomker, G. Fink, and G. Sagerer,
“Person tracking with a mobile robot based on multi-modalanchoring,” IEEE
International Workshop on Robot and Human Interactive Communication (RO-
MAN), Berlin, Germany, 2002.

[18] M. Scheutz, J. McRaven, and G. Cserey, “Fast, reliable, adaptive, bimodal
people tracking for indoor environments,” IEEE/RSJ Int. Conference on In-
telligent Robots and Systems, Sendai, Japan, 2004.

[19] D. Schulz, W. Burgard, D. Fox, and A. Cremers, “People tracking with a
mobile robot using sample-based joint probabilistic data association filters,”
International Journal of Robotics Research (IJRR), vol. 22, pp. 99–116, 2003.

[20] M. Lindstrom and J. Eklundh, “Detecting and tracking moving objects from a
mobile platform using a laser range scanner,” IROS, pp. 1364–1369, 2001.

[21] H. Asoh, Y. Motomura, F. Asano, I. Hara, S. Hayamizu, and K. Itou, “Jijo-
2: An office robot that communicates and learns,” IEEE Intelligent Systems,
vol. 16, pp. 46–55, 2001.

[22] H. Sidenbladh, D. Kragic, and H. Christensen, “A person following behaviour
for a mobile robot,” Proceeding of the IEEE International Conference on
Robotics and Automation, pp. 670–675, 1999.

BIBLIOGRAPHY 99

[23] S. Waldherr, R. Romero, and S. Thrun, “A gesture based interface for human-
robot interaction. autonomous robots,” 2000.

[24] C. Schlegel, J. Illmann, H. Jaberg, M. Schuster, and R. Worz, “Vision based
person tracking with a mobile robot,” Proceeding British Machine Vision Con-
ference, vol. 3, pp. 418–427, 1998.

[25] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” Proceeding of IEEE conference on computer vision and pattern
recognition, vol. 1, pp. 228–235, 2001.

[26] C. Wang and J. Lien, “Adaboost learning for human detection based on his-
tograms of oriented gradients,” Proceedings of the 8th Asian conference on
Computer vision, vol. 1, pp. 885–895, 2007.

[27] S. Coradeschi and A. Saffiotti, “Anchoring symbols to sensor data: preliminary
report,” Proceeding of the 17th AAAI Conference, pp. 129–135, 2000.

[28] S. Coradeschi and A. Saffiotti, “Perceptual anchoring of symbols for action,”
Proceeding of the 17th IJCAI Conference, pp. 407–412, 2001.

[29] J. Sherrah and S. Gong, “Fusion of perceptual cues for robust tracking of head
pose and position. in pattern recognition,” Pattern Recognition, special issue
on Data and Information Fusion in Image Processing and Computer Vision,
2000.

[30] J. Vermaak, A. Blake, M. Gangnet, and P. Perez, “Sequential monte carlo fu-
sion of sound and vision for speaker tracking,” Proceeding International Con-
ference on Computer Vision, vol. 1, pp. 741–746, 2001.

[31] T. Darrell, G. Gordon, M. Harville, and J. Woodfill, “Integrated person track-
ing using stereo, color, and pattern detection,” International Journal of Com-
puter Vision, vol. 37, pp. 175–185, 2000.

[32] A. Gern, U. Franke, and P. Levi, “Robust vehicle tracking fusing radar and
vision,” International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), pp. 323–328, 2001.

[33] J. Fritsch, M. Kleinehagenbrock, S. Lang, G. Fink, and G. Sagerer, “Audiovi-
sual person tracking with a mobile robot,” Proceeding International Conference
on Intelligent Autonomous Systems, pp. 898–906, 2004.

[34] R. Cutler and L. Davis, “Robust real-time periodic motion detection, analy-
sis, and applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, pp. 781–796, 2000.

[35] A. Bhattacharyya, “On a measure of divergence between two statistical popu-
lations defined by probability distributions,” Bull Calcutta Math Soc, vol. 35,
pp. 99–109, 1943.

100 BIBLIOGRAPHY

[36] R. Schapire and Y. Singer, “Improved boosting algorithms using confidence-
rated predictions,” Machine Learning, vol. 37, pp. 297–336, 1999.

[37] E. Schapire, “Using output codes to boost multiclass learning problems,”
Machine Learning: Proceedings of the Fourteenth International Conference,
pp. 313–321, 1997.

[38] G. Buchsbaum, “A spatial processor model for object color perception,” Jour-
nal of the Franklin Institute, 1980.

[39] B. Funt, K. Barnard, and L. Martin, “Is machine colour constancy good
enough?,” Lecture Notes in Computer Science, p. 1406, 1998.

[40] H. Eng, J. Wang, A. Kam, and W. Yau, “A bayesian framework for robust
human detection and occlusion handling using a human shape model,” Inter-
national Conference on Pattern Recognition, 2004.

