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Abstract

This thesis explores the dynamics of mouse embryonic stem cells (ESCs) during di昀昀erentia-
tion, using a combination of experimental data analysis and stochastic modeling. We begin by
analyzing data from the experiment conducted by Strawbridge et al. [1], which provides key
insights into cell population behavior in vitro. Essential parameters are inferred from these data
to construct di昀昀erent phenomenological stochastic models of the ESC population.

The stochastic models are then implemented using the Gillespie algorithm [2] to simulate
cell behavior. Initially, a simple model is constructed to validate the alignment between the
simulated lifetime distribution and its analytical solution. This model also reveals that the ”no
change” rate, where the system remains in its previous state, has minimal impact on overall
system behavior.

Building on these 昀椀ndings, we construct both constant rate and time-dependent ratemodels
to describe the system’s dynamics. While both models e昀昀ectively replicate key metrics, such as
cell count distribution and 昀椀rst passage times, the time-dependent model excels in capturing
the non-monotonic behavior of the mean cell count over time, a characteristic observed in the
experimental data.

This study provides a foundational framework for developingmore sophisticatedmodels of
stem cell behavior, which could eventually guide the creation of targeted therapies for condi-
tions such as degenerative diseases and tissue repair.

v



vi



Contents

Abstract v

List of figures viii

List of tables xi

Listing of acronyms xii

1 Introduction 1

2 Methods 5
2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Analysis of the Cell Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Analysis of the Di昀昀erentiation Process . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Symmetry of Divisions . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Theoretical Framework 25
3.1 Stochastic Modelling of Cell Dynamics . . . . . . . . . . . . . . . . . . . . 26

3.1.1 The Simulation Algorithm: Gillespie . . . . . . . . . . . . . . . . . 27
3.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Results 37
4.1 Inferring Model Parameters from the Data . . . . . . . . . . . . . . . . . . 37
4.2 Comparison of the Models and the Data . . . . . . . . . . . . . . . . . . . 43

5 Discussion and Conclusion 49

References 52

Acknowledgments 58

vii



viii



Listing of 昀椀gures

1.1 Illustration of stem cell di昀昀erentiation into the ectoderm, mesoderm, and en-
doderm germ layers during embryonic development, showing the structures
of the organism they form. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The transition of PSC from a naïve state into a di昀昀erentiated state with an
intermediate reversible phase. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The transition of PSC from a naïve state into a di昀昀erentiated state with an
intermediate reversible phase characterized by the loss of theGFP昀氀uorescence
intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Reduction in cell visibility due to di昀昀erentiation and the subsequent decline
in GFP 昀氀uorescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Distribution of types of cells in the whole dataset. . . . . . . . . . . . . . . . 8
2.4 PDF of number of cells in each environment. . . . . . . . . . . . . . . . . . 9
2.5 Amount of cells in each lineage forNegative and PositiveControl environments. 10
2.6 Amount of cells in each lineage for N2B27 environments in the 2 experiments. 11
2.7 PDFs (2.7a, 2.7b) and boxplots (2.7c, 2.7d) of cell cycles in N2B27 and 2i

environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Boxplots of Cell Cycle Durations in Each Lineage Sorted by the Ascending

Order of the Median. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 PDF of GFP 昀氀uorescence intensity values for Positive Control groups in Ex-

periments 1 and 2. The plots show the distribution of 昀氀uorescence intensity
values in the Positive Control group of Experiment 1 (a) and Experiment 2
(b). The red dashed line represents the threshold, de昀椀ned as the lower bound
of the 95% CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 The example of 昀氀uorescence intensity pro昀椀le of a mother cell undergoing di-
vision into two daughter cells which are di昀昀erentiatin with an illustration of
the last positive point of the Daughter 1. . . . . . . . . . . . . . . . . . . . 17

2.11 The PDF of the time that the cells take to di昀昀erentiate from the moment of
being born. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 PDF of the time at which di昀昀erentiated cells 昀椀rst appear within lineage. . . . 18
2.13 Di昀昀erent types of divisions observed in the dataset in the N2B27 environment. 19
2.14 Histogram of the di昀昀erent types of divisions in the N2B27 environment. . . . 20
2.15 Examples of 昀氀uorescence pro昀椀les of amother cell and its daughter cells under-

going a) symmetric division, b) asymmetric division, and c) symmetric di昀昀er-
entiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



2.16 Correlationof the 昀氀uorescence intensity values of the sister cells for symmetric
division, symmetric di昀昀erentiation, and asymmetric division in linear(a, b, c)
and logarithmic(d, e, f) scales. . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 An illustration of the de昀椀nition of the lifetime in a lineage. . . . . . . . . . . 29
3.2 Mean cell count for 104 lineages. . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 The lifetime distributions of the simple birth-death model computed for 104

lineages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Comparison of mean cell counts and lifetime distribution for q = 0.01. . . . 34
3.5 Comparisonofmean cell counts over time and lifetimedistributions of a birth,

death, ”no change” model across di昀昀erent values of the ”no change” rate q. . . 35

4.1 A scheme of the types of divisions and the probabilities that de昀椀ne them used
to construct the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Histogram of di昀昀erent types of divisions used for constructing the physical
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The pdf of simulated and analytical lifetime distributions of the constant rate
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 The division rates over time mapped onto the time of the simulation. . . . . . 42
4.5 The birth, death and ”no change” rates over time mapped onto the time of

the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 The mean cell count over time of the experimental data. . . . . . . . . . . . 43
4.7 The mean cell count over time of the constant rate model. . . . . . . . . . . 44
4.8 The mean cell count over time of the time-dependent rate model. . . . . . . . 45
4.9 Boxplots of the distribution of the amount of cells in the lineages of the con-

stant rate and time-dependent rate models with the experimental data . . . . 46
4.10 Boxplots of the distribution of the First Passage Times of the constant rate

and time-dependent rate models with the experimental data . . . . . . . . . 47

x



Listing of tables

2.1 Summary of key metrics for cell cycle durations in di昀昀erent environments. . . 13
2.2 Summary of key metrics for cell cycle durations across lineages in di昀昀erent

environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Maximum昀氀uorescence intensity and 95% lowerCI for PositiveControl 1 and

Positive Control 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 TheResults of statistical tests carried out to analyze the correlation of theGFP

昀氀uorescence intensity of sister cells undergoing di昀昀erent types of divisios. . . 23

4.1 Types of cell divisions, their symbols, and corresponding probabilities. . . . . 40
4.2 Statistics comparison of cell populationmean, median, and quartiles between

constant rate, time-dependent rate models, and experimental data . . . . . . 45
4.3 Statistics comparisonof昀椀rst passage time statistics betweenconstant rate, time-

dependent rate models, and experimental data . . . . . . . . . . . . . . . . 46

xi



xii



Listing of acronyms

PSCs . . . . . . . . . . Pluripotent Stem Cells

ESCs . . . . . . . . . . Embrionic Stem Cells

iPScs . . . . . . . . . . Induced Pluripotent Stem Cells

GFP . . . . . . . . . . . Green Fluorescent Protein

CV . . . . . . . . . . . . Coe昀케cient of Variation

IQR . . . . . . . . . . . Interquartile Range

PDF . . . . . . . . . . . Probability Density Function

CI . . . . . . . . . . . . . Con昀椀dence Interval

FPT . . . . . . . . . . . First Passage Time

TS . . . . . . . . . . . . . Test Static

PBMC . . . . . . . . . Population-basedMonte Carlo

SDE . . . . . . . . . . . Stochastic Di昀昀erential Equation

xiii



1
Introduction

The 昀椀eld of systems biology has emerged as a powerful and interdisciplinary approach to un-
derstanding the complex interactions that govern biological systems [3, 4]. Traditional biol-
ogy often focuses on studying individual components of a system in isolation, such as speci昀椀c
genes, proteins, or cellular processes. However, this approach can miss the broader picture of
how these components interact and function together as a system. Systems biology, by con-
trast, seeks to integrate and analyze these interactions within biological networks, aiming to
understand the emergent properties that arise from the collective behavior of their parts [5].

The interdisciplinary nature of systems biology draws heavily on principles from physics,
particularly inmodeling dynamics of interacting systems. Physics provides a rich set of tools for
describing the complex behavior of biological systems, from nonlinear dynamics to stochastic
processes [6, 7]. For example, the Hodgkin-Huxley model, which uses di昀昀erential equations
to describe the initiation and propagation of action potentials in neurons, has been pivotal in
understanding the dynamics of biological networks [8]. Similarly, the principles of scale-free
networks, 昀椀rst identi昀椀ed in physics, have been applied to biological networks, revealing their
robustness and vulnerabilities [9, 10].

At the core of systems biology is the integration of experimental data, often generated from
high-throughput technologies such as genomics, proteomics, and metabolomics, with mathe-
matical models and computational simulations [11, 4]. This integration enables the descrip-
tion and prediction of the behavior of complex biological systems, such as gene regulatory net-
works, metabolic pathways, and signaling cascades. By constructing thesemodels, systems biol-
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ogy aims to identify the fundamental principles governing the dynamics of biological systems,
enabling predictions of system behavior under various conditions.

Physicists have signi昀椀cantly advanced biological research by applying their expertise in quan-
titative analysis, theoretical modeling, and computational techniques. These contributions ex-
tend beyond theoretical insights to include the development of new experimental tools, such
as advanced microscopy techniques, which have revolutionized our ability to observe and ma-
nipulate biological systems at the molecular level [12]. Moreover, physicists have been instru-
mental in the development and analysis of high-throughput technologies that enable the study
of biological systems on an unprecedented scale [13].

Statistical mechanics, a branch of physics traditionally used to describe the behavior of sys-
tems with a large number of interacting particles, has become indispensable in the modeling
and analysis of biological systems [14]. It provides a framework to model the stochastic na-
ture of processes such as gene expression and protein dynamics, where random昀氀uctuations, or
”noise,” play a signi昀椀cant role in biological regulation and function [15, 16]. These stochastic
models help researchers understand how variability within a population of cells or molecules
can lead to di昀昀erent outcomes, such as cell di昀昀erentiation [17].

Moreover, statistical mechanics allows for the application of probability distributions to de-
scribe the variabilitywithin cell populations ormolecular systems. In gene regulatory networks,
for instance, these distributions can reveal steady states, bistability, and other emergent phe-
nomena [18]. Statistical mechanics has also been crucial in understanding phase transitions
in biological systems, analogous to transitions between di昀昀erent states of matter, such as the
di昀昀erentiation of stem cells in response to molecular signals [19, 20].

Figure 1.1: Illustra琀椀on of stem cell di昀昀eren琀椀a琀椀on into the ectoderm, mesoderm, and endoderm germ layers during
embryonic development, showing the structures of the organism they form.

In this context, the study of pluripotent stem cells (PSCs) presents intriguing challenges
and opportunities. PSCs, which include embryonic stem cells (ESCs) and induced pluripotent
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stem cells (iPSCs), are unique in their capacity for self-renewal and their ability to di昀昀erentiate
into various specialized cell types [21]. This dual capability makes them central to growth,
development, and repair mechanisms in organisms. Upon di昀昀erentiation, PSCs give rise to
cells from the three primary germ layers: the ectoderm, mesoderm, and endoderm(Figure 1.1).
The ectoderm forms neural tissue and skin cells, the mesoderm gives rise to muscle, blood, and
skeletal tissues, and the endodermdevelops into the lining of the digestive and respiratory tracts,
as well as organs like the liver and pancreas [21].

The di昀昀erentiation process of ESCs involves transitions through various states of potential
and commitment. Initially, ESCs exist in anaïve state, characterized by a high degree of pluripo-
tency [22]. As they begin to di昀昀erentiate, they enter an intermediate reversible state, where cells
start to commit to speci昀椀c lineages, but can still revert to the naïve state under certain condi-
tions [23]. A lineage is de昀椀ned as the sequential history of cell divisions originating from a
single progenitor cell, tracing its descendants through multiple generations. Eventually, ESCs
transition into a di昀昀erentiated state, where they commit to a speci昀椀c cell fate and acquire dis-
tinct functional properties [24] (see Figure 1.2).

Figure 1.2: The transi琀椀on of PSC from a naïve state into a di昀昀eren琀椀ated state with an intermediate reversible phase.

Understanding these transitions is crucial for both developmental biology and regenerative
medicine. From a computational and physical sciences perspective, studying PSCs o昀昀ers valu-
able insights into the complex network of transcription factors that govern pluripotency and
di昀昀erentiation [25, 24]. These networks can be modeled as computational systems, process-
ing biochemical signals andmaking biological decisions, such as self-renewal or di昀昀erentiation
[26].

In this work, we investigate the dynamics of mouse embryonic stem cells (ESCs) during dif-
ferentiation using experimental data as our basis. Our goal is to analyze these data to study
the behavior of ESCs and develop a stochastic model that simulates the underlying dynamics
of the cell populations. By inferring key parameters from the data, our aim is to construct
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a comprehensive yet minimal model that captures the variability and stability of ESC behav-
ior, providing insights that complement those obtained through in vitro experiments alone
[27, 28, 29].

The thesis is structured as follows: In Chapter 2, we analyze the data obtained from the ex-
periments and infer key parameters essential for constructing the physical model. Chapter 3
describes the development of a stochastic model using the Gillespie algorithm, starting with a
simple model to validate the alignment between the simulated and analytical lifetime distribu-
tions. Chapter 4 presents the construction of constant rate and time-dependent rate models,
built to represent the actual data from the experiments, and compares their e昀昀ectiveness in re-
producing key quantities such as cell count distribution and 昀椀rst passage times, with particular
emphasis on the time-dependent model’s ability to capture the non-monotonic behavior ob-
served in the experimental data. Finally, Chapter 5 discusses the implications of our 昀椀ndings,
highlighting the potential for further re昀椀nement of thesemodels to advance our understanding
of stem cell behavior and its applications in regenerative medicine.
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2
Methods

2.1 Experiments

To investigate the dynamics of mouse ESCs during di昀昀erentiation, an experiment was con-
ducted by Strawbridge et al. [1] with the objective of observing and quantifying key aspects of
this process under controlled conditions. The primary focus of this experiment was to analyze
the transition of ESCs from a naïve pluripotent state to a formative pluripotent state, focusing
on the temporal dynamics and physical parameters associated with this transition.

This was achieved using live-cell imaging combined with single-cell tracking to monitor the
behavior of individual ESCs in real-time. The di昀昀erentiation process of ESCs was monitored
using a Rex1-GFPd2 transgenic cell line, which produces green 昀氀uorescent protein (GFP) in
pluripotent cells. This allowed researchers to track the maintenance or loss of pluripotency. A
decrease in GFP 昀氀uorescence intensity below a speci昀椀c threshold indicated that the cells were
di昀昀erentiating and losing their pluripotent characteristics, while sustained high 昀氀uorescence
indicated that the cells remained in a pluripotent state [30] (Fig. 2.1, 2.2). The experiment
also aimed to observe and measure several critical parameters, including cell division patterns,
timing of di昀昀erentiation, cell size, and motility.

Initially, all stem cells were cultured in a 2i medium environment, known to maintain the
cells in a homogeneous and stable naïve pluripotent state by inhibiting key signaling pathways
that would otherwise prompt di昀昀erentiation [31]. The cells were seeded on laminin-coated
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Figure 2.1: The transi琀椀on of PSC from a naïve state into a di昀昀eren琀椀ated state with an intermediate reversible phase
characterized by the loss of the GFP 昀氀uorescence intensity.

Figure 2.2: Reduc琀椀on in cell visibility due to di昀昀eren琀椀a琀椀on and the subsequent decline in GFP 昀氀uorescence.

surfaces to provide a supportive extracellular matrix conducive to cell adhesion and growth
[32].

After an initial 12-hour period in the 2i medium, the cells were divided into two groups.
One group was transferred to an N2B27 medium, a chemically de昀椀ned environment designed
to promote di昀昀erentiation by removing the inhibitory signals thatmaintain naïve pluripotency
[33]. The other group remained in the 2i medium as a control to ensure a direct comparison
between cells induced to di昀昀erentiate and those maintained in the naïve state.

Within the control group, further division was made into a Positive Control group and a
Negative Control group. The Positive Control group remained in the 2i medium and in-
cluded the Rex1-GFPd2 transgenic cell line, ensuring that these cells maintained high 昀氀uores-
cence intensity throughout the experiment. This consistent high 昀氀uorescence is indicative of
the cells retaining their naïve pluripotent state. In contrast, theNegative Control group, also
kept in the 2i medium, did not contain the Rex1-GFPd2 transgenic cell line. As a result, these
cells exhibited low to no 昀氀uorescence intensity, serving as a baseline comparison to con昀椀rm the
speci昀椀c 昀氀uorescence associated with pluripotency in the Positive Control group.
To ensure the reliability and reproducibility of the results, the experiment was performed

twice, creating two biological replicates. Each replicate followed the same protocol.
During the 72-hourdi昀昀erentiationperiod, individualESCswere continuously trackedusing
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high-resolution live-cell imaging every 30 minutes. The imaging system captured confocal z-
stacks at regular intervals, which were later processed into single images for each time point.
This process resulted in a dataset, comprising more than 36,000 data points from more than
2,500 individual cells.

2.1.1 Data

The lineage tracking process was performed semiautomatically using a combination of imag-
ing software and manual segmentation techniques. The output from manual segmentation
served as input for the oTracks analysis software bundle, which performed further analysis of
cell tracks, shapes, 昀氀uorescence intensity, and genealogical relationships.

In ourwork, wewere providedwith a dataset in the formof .txt 昀椀les, whichwere generated
from the oTracks output.

Each .txt 昀椀le follows the same consistent structure, with each row representing a single cell
at a speci昀椀c time frame. The columns in each 昀椀le include the following information:

• Cell ID: A unique identi昀椀er for each cell, which also contains information about the
cell’s lineage.

• Cell Type: Indicates the status of the cell, which can be one of the following:

– "divided": The cell is a product of division.

– "died": The cell has died.

– "unknown": The cell went out of frame and later returned, but tracking was not
possible while it was out of frame.

– "lost": The fate of the cell is unknown.

– "bkgnd": This entry models background noise as a cell for simplicity.

• TimeFrame: The speci昀椀c timepoint of the observation,with each frame corresponding
to 30 minutes.

• Time (mins): The corresponding time in minutes for the given time frame.

• Fluorescence Intensity: Themeasured abundance of the 昀氀uorescence signal, indicating
the level of GFP in the cell.

• X Coordinate: The X position of the cell in the tracking frame.
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• Y Coordinate: The Y position of the cell in the tracking frame.

• Area: The area of the cell in µm2.

2.1.2 Data Preprocessing

Weaimed to evaluate the characteristics of the data obtained fromboth experiments. Anotable
di昀昀erence was observed between the two experiments: in the 昀椀rst experiment, 646 cells were la-
beled as "lost", while in the second experiment, there were none, indicating an improvement
in the technique. Each frame included a background ("bkgnd") modeled as a cell. Addition-
ally, there were cells marked as "unknown", whose fates could not be determined. As part of
the dataset preprocessing, all cells labeled "lost", "unknown", and "bkgnd"were removed to
ensure a clean and accurate analysis (Fig. 2.3).

Figure 2.3: Distribu琀椀on of types of cells in the whole dataset.
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During the analysis, any quantities related to time were carefully pre-processed. Speci昀椀cally,
cells present in the 昀椀rst and last frames of the tracking time were disregarded, as we lack com-
plete information about their behaviors before the initiation or after the interruption of the
experiment. This step was crucial to ensure the accuracy of the analysis.

(a) Number of Cells in N2B27
(b) Number of Cells in 2i (Posi琀椀ve Control and Nega琀椀ve

Control)

Figure 2.4: PDF of number of cells in each environment.

It is important to note that there was considerably less data available in the 2i environment
compared to the N2B27 (Fig. 2.4). Speci昀椀cally, theNegative Control in the 2i environment
was utilized to analyze the data obtained from the experiments, but due to the limited sample
size, the reliability of the resulting analysismay be compromised. Bootstrappingwas attempted
to address this issue; however, the results were unsatisfactory, and we ultimately decided not to
proceed with this approach. Consequently, while the Negative Control is included in the
analysis of the data for cells in 2i for completeness, it will be disregarded when building the
physical model.

In theN2B27 condition,we initially identi昀椀ed107 lineages, 33 in thePositiveControl, and
12 in theNegativeControl. However, followingpreprocessing, some lineageswere eliminated,
leaving 99 lineages for further analysis. This reductionwas primarily due to the removal of very
short lineages, resulting in empty lineages after preprocessing. It is also worth noting that the
number of cells within each lineage after preprocessing can vary considerably (Figures 2.5 and
2.6).
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(a) Amount of cells in each lineage for Nega琀椀ve Control

(b) Amount of cells in each lineage for Posi琀椀ve Control

Figure 2.5: Amount of cells in each lineage for Nega琀椀ve and Posi琀椀ve Control environments.
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(a) Amount of cells in each lineage for cells N2B27 of the 昀椀rst experiment

(b) Amount of cells in each lineage for cells N2B27 of the second experiment

Figure 2.6: Amount of cells in each lineage for N2B27 environments in the 2 experiments.

2.2 Analysis of the Cell Cycle Time

A cell cycle, also known as the cell division cycle or cell duplication time, comprises the series
of events that a cell undergoes as it grows and divides into two new cells. The cell undergoing
division is referred to as themother cell, while the resulting two new cells are termed daughter
cells with respect to the mother, and sister cells with respect to each other. In our study, we
aimed to examine the variation in cell cycle lengths in both 2i and the N2B27 environmental
settings and investigate whether these lengths change during the di昀昀erentiation process.
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(a) Cell Cycles N2B27 (b) Cell Cycles 2i

(c) Cell Cycles N2B27 (d) Cell Cycles 2i

Figure 2.7: PDFs (2.7a, 2.7b) and boxplots (2.7c, 2.7d) of cell cycles in N2B27 and 2i environments.

The analysis revealed distributions of cell cycle durations in theN2B27 and 2i environments.
In both environments, cell cycle durations were centered around 540-600 minutes (see Figure
2.7a, 2.7b). Speci昀椀cally, the median cell cycle duration was 540 minutes in the N2B27 envi-
ronment and 600 minutes in the 2i environment (Figure 2.7c, 2.7d). The mean cell cycle time
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for cells in the N2B27 environment was 589 minutes, which will later be used as a critical pa-
rameter for constructing the physical model of cell cycle dynamics, while it was 652 minutes
for cells in 2i.

The examination of the 2i environment data indicated a wider spread in the distribution
of cell cycle times compared to the N2B27 environment with the interquartile range(IQR) of
[530, 650] in 2i and of [500, 580] in N2B27. The standard deviation of cell cycle durations in
the 2i environment was 173 minutes, compared to 125 minutes in the N2B27 environment,
highlighting greater variability in the 2i environment (Table 2.1). Additionally, a higher rela-
tive variability was observed for cells in 2i, as indicated by a signi昀椀cantly higher coe昀케cient of
variation(CV) of 0.265 compared to 0.106 in the N2B27 environment.

Metric N2B27 2i Positive Control Negative Control
Median (minutes) 540.0 600.0 630.0 540.0
Mean (minutes) 589.0 652.0 671.4 707.6
Standard Deviation (minutes) 124.78 173.08 140.79 302.18
Coe昀케cient of Variation (CV) 0.106 0.265 0.210 0.427
Interquartile Range (IQR) (25%, 75%) [500, 580] [530, 650] [580, 680] [440, 640]

Table 2.1: Summary of key metrics for cell cycle dura琀椀ons in di昀昀erent environments.

Further analysis of the Positive Control and Negative Control subgroups within the 2i
dataset revealed that the increased spread in cell cycle times was largely attributed to theNega-
tive Control group, which exhibited a signi昀椀cantly higher standard deviation of 302 minutes
compared to 141 minutes in the Positive Control. This high standard deviation in theNega-
tive Control group is further re昀氀ected in its CV of 0.427, indicating that the substantial vari-
ability in cell cycle times is both signi昀椀cant in absolute terms and relative to the overall average
cycle length within this group. In contrast, the Positive Control group had a lower CV of
0.210, suggesting that while there is variability in cell cycle times, it is more consistent and less
pronounced relative to the average cycle length in this subgroup compared to the Negative
Control.

An examination of cell cycle durations across individual lineages (Figure 2.8) revealed dis-
tinct patterns in variability and consistency between the N2B27 and 2i environments. The
N2B27 environment showed more consistent cell cycle durations, with a standard deviation
of 64.77minutes and aCV of 0.218, indicating less variability within individual lineages(Table
2.2). The IQR values further support this, suggesting a more concentrated distribution of cell
cycle lengths within this environment.
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(a) Cell Cycle Dura琀椀ons in Each Lineage in N2B27

(b) Cell Cycle Dura琀椀ons in Each Lineage in 2i

Figure 2.8: Boxplots of Cell Cycle Dura琀椀ons in Each Lineage Sorted by the Ascending Order of the Median.

In contrast, the 2i environment having a higherCV and standard deviation, re昀氀ected awider
spread in cell cycle durations across lineages. However, the di昀昀erence in the IQR between the
two environments is comparable, with the N2B27 environment having an IQR of [500, 680]
minutes and the 2i environment having an IQR of [530, 710] minutes.

Further analysis of the Positive Control and Negative Control subgroups within the 2i
dataset revealed that the increased variability in the 2i environment is particularly pronounced
in theNegative Control subgroup. TheNegative Control subgroup showed a higher CV of
0.438 and an IQR of [440, 920] minutes, indicating a substantial range in cell cycle lengths.
The Positive Control subgroup, although more variable than N2B27 with a CV of 0.218,
showed less variability than theNegative Control, with a standard deviation of 76.51minutes
and an IQR of [580, 755] minutes.
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Metric N2B27 2i Positive Control Negative Control
Standard Deviation (minutes) 64.77 74.34 76.51 69.09
Coe昀케cient of Variation (CV) 0.218 0.265 0.218 0.438
Interquartile Range (IQR) (25%, 75%) [500, 680] [530, 710] [580, 755] [440, 920]

Table 2.2: Summary of key metrics for cell cycle dura琀椀ons across lineages in di昀昀erent environments.

These 昀椀ndings suggest that while the N2B27 environment supports more uniform and sta-
ble cell cycle dynamics within lineages, the 2i environment—especially underNegative Con-
trol conditions—introduces signi昀椀cant variability, potentially re昀氀ecting a more diverse range
of cellular responses to the environment.

In conclusion, the N2B27 environment fosters more stable and homogeneous cell cycle du-
rations across lineages, whereas the 2i environment, particularly underNegative Control con-
ditions, results in higher variability and a broader range of cellular responses.

2.3 Analysis of the Differentiation Process

Our primary focus was to analyze the di昀昀erentiation process of cells. For this, we have devel-
oped an experimental setup capable of identifying thenaïve state of the cells. Since all the cells in
N2B27 have the Rex1-GFPd2 transgenic reporter, we can monitor the di昀昀erentiation process
by measuring the 昀氀uorescence value of GFP. As mentioned before, cells in the naïve pluripo-
tent state typically exhibit high GFP 昀氀uorescence levels, which gradually decrease as they start
to di昀昀erentiate. To identify when a cell transitions beyond the naïve state, we need to establish
a threshold 昀氀uorescence value, beyond which a cell is considered to have exited the naïve state
and begun di昀昀erentiation.

To accurately determine the threshold, we used the data from the Positive Control group,
since itwasmaintained in a2i environment, ensuring that these cells remainpluripotent through-
out the experiment. To establish the threshold, we calculated the 95% lower con昀椀dence interval
(CI) of the total 昀氀uorescence intensity for the Positive Control datasets. This calculation was
performed separately for each experiment to account for any variations between the experimen-
tal runs (Fig.2.9). In the 昀椀rst experiment, the lower 95% CI for 昀氀uorescence was calculated to
be 6021.28 and in the second experiment it was determined to be 15511.94 (Table 2.3).

These thresholds, speci昀椀c to each experiment, were then applied to theN2B27datasets. Any
cell with a 昀氀uorescence intensity below the respective threshold was considered di昀昀erentiated.

Upon examination of the 昀氀uorescence pro昀椀les of the cells, we observed 昀氀uctuations in the
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(a) Posi琀椀ve Control 1 (b) Posi琀椀ve Control 2

Figure 2.9: PDF of GFP 昀氀uorescence intensity values for Posi琀椀ve Control groups in Experiments 1 and 2. The plots show
the distribu琀椀on of 昀氀uorescence intensity values in the Posi琀椀ve Control group of Experiment 1 (a) and Experiment 2 (b). The

red dashed line represents the threshold, de昀椀ned as the lower bound of the 95% CI

Data Maximum Fluorescence Intensity Lower 95%CI
Positive Control 1 67714.81 6021.28
Positive Control 2 88690.92 15511.94

Table 2.3: Maximum 昀氀uorescence intensity and 95% lower CI for Posi琀椀ve Control 1 and Posi琀椀ve Control 2.

昀氀uorescence levels (an example can be seen in Figure 2.10). In particular, for cells undergo-
ing di昀昀erentiation, these 昀氀uctuations can pose challenges in accurately determining when the
昀氀uorescence falls below the threshold. We noticed that selecting the 昀椀rst point (昀椀rst negative)
where the 昀氀uorescence dips below the threshold could lead to false identi昀椀cation of a cell as
di昀昀erentiated, as subsequent 昀氀uctuations may bring the 昀氀uorescence level back up. To mini-
mize the number of false positive di昀昀erentiated cells, we selected the last positive point, which
is the point below the threshold after which there are no subsequent time points where the
昀氀uorescence exceeds the threshold value (Figure 2.10).

Taking into account this observation, we performed an analysis to identify the stage of the
cell cycle at which di昀昀erentiation happens. The results, illustrated in Figure 2.11, indicate that
di昀昀erentiation predominantly occurs in close proximity to the cell birth phase considering that
the mean cell cycle time is 589 minutes while the average di昀昀erentiation time 272 minutes.

Furthermore, we calculated the time at which di昀昀erentiated cells 昀椀rst appear within each
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Figure 2.10: The example of 昀氀uorescence intensity pro昀椀le of a mother cell undergoing division into two daughter cells
which are di昀昀eren琀椀a琀椀n with an illustra琀椀on of the last posi琀椀ve point of the Daughter 1.

lineage. The analysis revealed that most lineages begin to exhibit di昀昀erentiation around the
second or third cell cycle time, i.e. the second or third generation of cells (Figure 2.12).

Figure 2.11: The PDF of the 琀椀me that the cells take to di昀昀eren琀椀ate from the moment of being born.
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Figure 2.12: PDF of the 琀椀me at which di昀昀eren琀椀ated cells 昀椀rst appear within lineage.

2.3.1 Symmetry of Divisions

We identi昀椀ed six possible types of cell division, as illustrated in Figure 2.13. These division
types are:

• Symmetric division: An undi昀昀erentiatedmother cell divides into two undi昀昀erentiated
daughter cells.

• Symmetric di昀昀erentiation: An undi昀昀erentiated mother cell divides into two di昀昀eren-
tiated daughter cells.

• Asymmetric division: An undi昀昀erentiated mother cell divides into one di昀昀erentiated
and one undi昀昀erentiated daughter cell.

• Division with one daughter cell death: An undi昀昀erentiated mother cell divides, re-
sulting in only one undi昀昀erentiated daughter cell, with the other cell dying.

• Division with two daughters cell deaths: An undi昀昀erentiated mother cell divides, re-
sulting in no surviving daughter cells.

• Di昀昀erentiated division: A di昀昀erentiated mother cell divides into two di昀昀erentiated
daughter cells.
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Figure 2.13: Di昀昀erent types of divisions observed in the dataset in the N2B27 environment.

The goal of this part was to quantify the di昀昀erent types of cell divisions observed and to de-
termine which types are themost common. This analysis is crucial for identifying patterns and
probabilities of division outcomes, which are essential for understanding cellular behavior and
later constructing an accurate physical model. It is generally expected that symmetric divisions
and symmetric di昀昀erentiations are the most common types of divisions in pluripotent stem
cells, as these processes are fundamental for maintaining the balance between self-renewal and
di昀昀erentiation [34].

We observed 314 division processes in the data, however, the di昀昀erentiated division, as well
as cases in which one or both daughter cells died shortly after division, were excluded from
this part of the analysis due to their predictability and limited scienti昀椀c signi昀椀cance, leaving us
with 229 division processes in whichwe are interested in. The excluded cases, nevertheless, will
later be included in the physical model as they are essential for inferring the model parameters.
As shown in Figure 2.14, as expected, our analysis revealed that the majority of divisions or
di昀昀erentiations to be symmetric, speci昀椀cally 51. 5% were symmetric divisions (118), 40.6%
were symmetric di昀昀erentiations (93), and 7.8% were asymmetric divisions (18).

After quantifying the frequency of each type of division, our objective was to validate our
classi昀椀cation by analyzing the correlation of 昀氀uorescence intensity between sister cells in three
key division types: symmetric divisions, symmetric di昀昀erentiations, and asymmetric di-
visions. Initially, our classi昀椀cation was based on whether the 昀氀uorescence intensity values of
the cells were above or below the speci昀椀c threshold. Figure 2.15 provides examples of the ex-
pected 昀氀uorescence behaviors for these type of division. Although this method was e昀昀ective,
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Figure 2.14: Histogram of the di昀昀erent types of divisions in the N2B27 environment.

we sought to ensure that the 昀氀uorescence behavior was aligned with the expected outcomes
for each division type. Speci昀椀cally, we expected symmetric divisions and di昀昀erentiations to ex-
hibit a high correlation in 昀氀uorescence intensity between sister cells. In contrast, asymmetric
divisions should show divergence in 昀氀uorescence intensity, re昀氀ecting the distinct fates of the
sister cells(Figure 2.16).

To evaluate the strength and signi昀椀cance of these correlations, we employed the Pearson cor-
relation coe昀케cient[35] and the corresponding Pearson p-value tests[36] (see Table. 2.4). The
Pearson correlation coe昀케cient is particularly well-suited for measuring the linear relationship
between two continuous variables, making it ideal for assessing the relationship between 昀氀u-
orescence intensities in sister cells. A higher Pearson correlation coe昀케cient indicates a strong
positive correlation, whichwas expected for symmetric divisions anddi昀昀erentiations, where sis-
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(a) Symmetric division (b) Asymmetric division

(c) Symmetric di昀昀eren琀椀a琀椀on

Figure 2.15: Examples of 昀氀uorescence pro昀椀les of a mother cell and its daughter cells undergoing a) symmetric division, b)
asymmetric division, and c) symmetric di昀昀eren琀椀a琀椀on.

ter cells exhibit similar 昀氀uorescence intensities. Conversely, a lower correlation was anticipated
for asymmetric divisions, where the sister cells’ 昀氀uorescence intensities diverge. A statistically
signi昀椀cant correlation is con昀椀rmed by a lower Pearson p-value, suggesting that the observed
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(a) Symmetric Division (b) Symmetric Di昀昀eren琀椀a琀椀on (c) Asymmetric Division

(d) Symmetric Division (log) (e) Symmetric Di昀昀eren琀椀a琀椀on (log) (f) Asymmetric Division (log)

Figure 2.16: Correla琀椀on of the 昀氀uorescence intensity values of the sister cells for symmetric division, symmetric
di昀昀eren琀椀a琀椀on, and asymmetric division in linear(a, b, c) and logarithmic(d, e, f) scales.

relationship is unlikely to be due to random chance.
In addition, we conducted Ranksum tests[37], also known as the Wilcoxon rank-sum tests,

to determine whether there were signi昀椀cant di昀昀erences in the distribution of 昀氀uorescence in-
tensity values between sister cells across the di昀昀erent types of divisions. The Ranksum test, a
non-parametricmethod, compares the distributions of 昀氀uorescence intensities between two in-
dependent groups. A higher Ranksum test statistic (TS) indicates a greater di昀昀erence between
the distributions, and a lower Ranksum p-value con昀椀rms that this di昀昀erence is statistically sig-
ni昀椀cant, i.e. not random.

The results of these analysis are visualized in Figures 2.16a–2.16f and summarized in Table
2.4. The Pearson correlation tests revealed a positive correlation between the 昀氀uorescence in-
tensity values of the sister cells in cases of symmetric divisions (ρ = 0.58) and symmetric
di昀昀erentiations (ρ = 0.63), with both correlations being highly signi昀椀cant (P < 0.001).
In contrast, as expected, no signi昀椀cant correlation was observed for asymmetric divisions
(ρ = 0.025, P = 0.92), indicating that the 昀氀uorescence intensities diverged as anticipated.

The Ranksum test results further con昀椀rmed these 昀椀ndings. The Ranksum coe昀케cients and
p-values indicated no signi昀椀cant di昀昀erences in the distribution of 昀氀uorescence intensity values
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between sister cells for any of the cases, suggesting that within each division type, the 昀氀uores-
cence intensities were consistently distributed.

These 昀椀ndings are consistent with our expectations, con昀椀rming that the 昀氀uorescence inten-
sity behavior matches the predicted outcomes for symmetric and asymmetric divisions.

Division Type ρPearson P -valuePearson Ranksum TS Ranksum P -value
Symmetric Division 0.58 9.18× 10−12 −9.535× 10−3 0.99

Symmetric Di昀昀erentiation 0.63 1.76× 10−11 0.11 0.91
Asymmetric Division 0.025 0.92 -1.45 0.15

Table 2.4: The Results of sta琀椀s琀椀cal tests carried out to analyze the correla琀椀on of the GFP 昀氀uorescence intensity of sister
cells undergoing di昀昀erent types of divisios.

The lower than expected Ranksum TS values for asymmetric divisions, may be attributed
to several factors. One signi昀椀cant factor could be the combination of data from two biologi-
cal replicates with di昀昀erent 昀氀uorescence intensity levels. When these data sets are combined,
the 昀氀uorescence intensity distributions of the sister cells may overlap, potentially reducing the
apparent di昀昀erences in 昀氀uorescence intensity between the undi昀昀erentiated and di昀昀erentiated
cells, which leads to lower Ranksum TS values. Although analyzing the replicates separately
could help clarify these di昀昀erences, the lownumber of asymmetric divisions overallmakes such
an analysis statistically unreliable. Additionally, other factors such as sample size, threshold
de昀椀nition, and biological noise may also contribute to these 昀椀ndings. Together, these factors
suggest that while some di昀昀erence in 昀氀uorescence intensities is expected, it may not be as pro-
nounced when considering the combined data from both replicates.
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3
Theoretical Framework

In this chapter, we explore the theoretical foundations necessary for understanding the dynam-
ics of stem cell populations. Biological systems, particularly at the cellular level, are inherently
complex and in昀氀uenced by a multitude of factors. To gain insights into these systems, model-
ing becomes an indispensable tool. Models allow us to simulate and predict behaviors that are
di昀케cult, if not impossible, to observe directly in experiments. However, the choice of model
is critical, as it dictates the accuracy and relevance of the predictions made.

Statistical physics provides a powerful framework for studying systems composed of a large
number of interacting components, such as cells in a biological environment. It o昀昀ers tools
to describe the macroscopic behavior of a system based on the microscopic rules governing
individual components. In biological contexts, where cellular processes are subject to intrinsic
randomness, stochastic processes become particularly valuable. Unlike deterministic models,
which predict a single outcome from a given initial condition, stochastic models account for
randomness in biological systems, providing a distribution of possible outcomes[38].

In the context of stem cell dynamics, stochastic modeling is especially relevant. Stem cells
are in昀氀uenced by a variety of random factors, including 昀氀uctuations in gene expression and
microenvironmental signals. These factors can lead to signi昀椀cant variability in the behavior of
the cell population, which deterministic models may not capture. To accurately simulate the
dynamics of a large population of undi昀昀erentiated stem cells, we require a model that incorpo-
rates this inherent stochasticity.

To address these challenges,we employ theGillespie algorithm, awell-establishedmethod for
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simulating the time evolution of systems where randomness plays a crucial role. The Gillespie
algorithm[2], also known as the Stochastic Simulation Algorithm (SSA), allows the exact nu-
merical simulation of systems by modeling the sequence and timing of individual events. This
approach is particularly suited for our study, where the timing and sequence of cellular events,
such as cell division and di昀昀erentiation, are critical to understanding the overall dynamics of
the system.

3.1 StochasticModelling of Cell Dynamics

To accurately describe the dynamics of undi昀昀erentiated stem cells, we rely on a stochastic ap-
proach that captures the inherent randomness of biological processes. Central to this approach
is theMaster Equation, which governs the time evolution of the probability distribution of
the system’s state. This equation provides a comprehensive framework for understanding how
the probabilities of di昀昀erent system states change over time, in昀氀uenced by the birth and death
processes within the cell population.

To model the processes occurring in the system based on experimental data, we start by ex-
amining a simpli昀椀ed model that includes two fundamental processes: birth and death. These
processes can be described by their transition rates, which de昀椀ne the probability of the system
transitioning from one state to another:

• Birth (Cell Division): An undi昀昀erentiated stem cell divides, increasing the cell popula-
tion by one.

• Death (Cell Death or Di昀昀erentiation): An undi昀昀erentiated stem cell either undergoes
cell death or di昀昀erentiates into a specialized cell type, reducing the undi昀昀erentiated cell
population by one.

The transition rates for these processes are given by the following:

T (n → n+ 1) = b · n (3.1)

T (n → n− 1) = d · n (3.2)

Here, b represents the birth rate, d represents the death rate, and n denotes the number of
undi昀昀erentiated cells at a given time.

Incorporating these transition rates into the Master Equation, we obtain:
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dP (n, t)

dt
= b · (n−1) ·P (n−1, t)+d · (n+1) ·P (n+1, t)− (b ·n+d ·n) ·P (n, t) (3.3)

This equation characterizes the time-dependent probability distribution of the number of
undi昀昀erentiated cells, capturing how the probabilityP (n, t) of having n undi昀昀erentiated cells
at time t changes over time due to birth and death processes. The 昀椀rst two terms on the right-
hand side represent the probability 昀氀ow into the statewithn cells, while the last term represents
the probability 昀氀ow out of this state.

3.1.1 The Simulation Algorithm: Gillespie

To overcome the challenges of solving the Master Equation analytically, we employ the Gille-
spie algorithm. This algorithm provides a powerful method for generating exact numerical
solutions by simulating individual reaction events in a step-by-step manner.

The Gillespie algorithm proceeds through the following steps[39]:

1. Initialization: Begin with an initial set of conditions, including the number of particles
and the rates at which di昀昀erent reactions or events can occur.

2. Calculate Propensities: For each possible event or reaction, calculate its propensity
functionaj(x). The propensity is a product of the reaction’s rate constant and the num-
ber of possible reactive combinations in the system. It represents the likelihood of that
event occurring in a small time interval dt.

3. Determine the Time to Next Reaction: The time τ until the next reaction occurs
is drawn from an exponential distribution, where the mean of the distribution is the
inverse of the sum of all propensities

∑

j aj(x). Mathematically, τ is given by:

τ =
1

∑

j aj(x)
ln

(

1

r1

)

where r1 is a uniformly distributed random number between 0 and 1.

4. Select the Reaction to Occur: The speci昀椀c reaction that occurs next is determined by
comparing another randomnumber r2 to the cumulative sumof thenormalizedpropen-
sities. The reaction is chosen so that:

j−1
∑

i=1

ai < r2 ·
∑

j

aj ≤

j
∑

i=1

ai
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5. Update the System: Once the reaction is selected, the state of the system is updated
according to the stoichiometry of the reaction, and the simulation time is advanced by
τ .

6. Repeat: Steps 2-5 are repeated until a prede昀椀ned stopping criterion ismet, such as reach-
ing a certain time or number of reactions.

This algorithm is particularly useful in simulating the stochastic behavior of undi昀昀erentiated
stem cells as they undergo birth and death processes. By capturing the sequence and timing of
individual events, theGillespie algorithm allows us to obtain a numerical approximation of the
system’s state probability distribution over time, providing valuable insights into the dynamics
of stem cell populations.

3.2 Analytical Results

Since our focus is on analyzing the di昀昀erentiation process of stem cells, a crucial concept to
consider is the time it takes for a cell to di昀昀erentiate from its birth. A key quantity in this
context is the 昀椀rst passage time (FPT), which refers to the time taken for a state variable to
reach a speci昀椀c value[40]. In our work, we de昀椀ne the First Passage Time (FPT), referred to as
the lifetime duration of a lineage, as the time it takes for the number of undi昀昀erentiated cells
in a lineage to reach zero—meaning all cells have either di昀昀erentiated or died (Figure 3.1).

To validate our model, we aim to analytically calculate the distribution of the lifetime dura-
tion and compare it with the results from our simulations. To achieve this, we begin by con-
sidering the stochastic dynamics of undi昀昀erentiated stem cell populations through the Fokker-
Planck equation.

The Fokker-Planck equation describes the time evolution of the probability distribution of
a continuous stochastic process. It captures how the probability density of a system’s state
changes over time, accounting for both deterministic forces (drift) and random 昀氀uctuations
(di昀昀usion). The equation is given by:

∂P (x, t)

∂t
= −

∂

∂x
[A(x)P (x, t)] +

∂2

∂x2
[B(x)P (x, t)] , (3.4)

where P (x, t) is the probability density function of 昀椀nding the system in state x at time t,
A(x) is the drift coe昀케cient representing deterministic forces, andB(x) is the di昀昀usion coe昀케-
cient representing stochastic 昀氀uctuations.
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Figure 3.1: An illustra琀椀on of the de昀椀ni琀椀on of the life琀椀me in a lineage.

However, directly solving the Fokker-Planck equation for our system is challenging due to
the complexity introduced by absorbing boundary, when the number of undi昀昀erentiated cells
reaches zero.

To address this, we use the probability distribution pabs(x, t | x0, 0), derived by Azaele et al.
[41], which describes the likelihood of having x undi昀昀erentiated cells at time t, given an initial
condition ofx0 cells at t = 0. This is the time-dependent absorbing solution of the probability
distribution function of 昀椀nding x individuals at time t in the lineage and is given by:

pabs(x, t | x0, 0) =
1

Dτ
·

1

1− e−t/τ
exp

[

−
1

Dτ
·
x+ x0e

−t/τ

1− e−t/τ

]

·

(

x

x0

et/τ
)

−1/2

I
1−

b

D

[

2

Dτ
·

√

x0xet/τ

et/τ − 1

]

(3.5)
Where:

• pabs(x, t | x0, 0) represents the probability density of observing x cells at time t, given
an initial count x0.

• D = birth rate+death rate
2

accounts for demographic stochasticity.
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• τ = 1

death rate−birth rate denotes the characteristic timescale of the system, capturing how
quickly the population dynamics respond to stochastic 昀氀uctuations.

• b is the migration rate, which is set to zero in our model since our biological system does
not involve migration.

• Iσ(z) is the modi昀椀ed Bessel function of the 昀椀rst kind, which arises naturally in the solu-
tion of stochastic di昀昀erential equations.

It is important to note that even though we have an absorbing condition, the probability
does not vanish at x = 0.

By integrating Equation 3.5 with respect to x from 0 to in昀椀nity, and then taking the deriva-
tive with respect to time t, applying a negative sign to the result, we obtain the formula that
describes the lifetime distribution of the system:

Plifetime(t) = −
2e

t

τ
+

x0

Dτ−De

t
τ τ

√

e
t

τ x0

D
(

−1 + e
t

τ

)3

τ 2
√

2
(

t
2τ

)

(3.6)

3.3 Numerical Simulations

Except from obtaining the lifetime distribution by using the analytical solution, we can com-
pute it through simulation as well. We start by simulating the system by incorporating the tran-
sition rates into the Gillespie algorithm, calculating propensities based on the rates provided in
equations (3.1) and (3.2). We start by modeling a simple birth and death process, implement-
ing the algorithmwith a birth rate coe昀케cient b = 3× 10−2 min−1 and a death rate coe昀케cient
d = 5×10−2min−1. To analyze system behavior, we simulate the number of undi昀昀erentiated
cells in each lineage over time, starting with an initial cell population of x0 = 100 at t = 0,
and running the simulation for tmax = 104 minutes for 104 lineages. Although this duration
and number of lineages exceed those observed in the experiment, they were chosen to ensure
statistically robust results and to capture stochastic 昀氀uctuations e昀昀ectively.

Since we simulate the number of undi昀昀erentiated cells in each lineage at all time points, we
calculate the mean cell count over the entire duration of the simulation, as shown in Fig. 3.2.
As expected, the mean decreases over time due to the higher death rate compared to the birth
rate. The initial part of the simulation, up to around250minutes, represents a rapiddrop in the
mean cell count and a higher standard deviation, re昀氀ecting signi昀椀cant stochastic 昀氀uctuations.
As the simulation progresses beyond this period, the mean cell count stabilizes.
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Figure 3.2: Mean cell count for 104 lineages.

Figure 3.3: The life琀椀me distribu琀椀ons of the simple birth‐death model computed for 104 lineages.
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To validate our simulation results, we compare them with the analytical solution for the
lifetime duration of the lineage. Using the analytical formula for lifetime distribution given by
Equation3.6, we calculate the lifetimedistribution for ourmodel. The values of the parameters
D and τ are calculated based on the birth and death rates as follows: D = 0.04min−1 and
τ = 50minutes. By applying these parameters, we can generate the lifetime distribution for
a range of x values and validate it against the simulation results to assess the model’s accuracy.
As shown in Figure 3.3, there is a general agreement between the simulation and the analytical
solution, though some points deviate slightly from the curve. These minor discrepancies can
be attributed to the binning of the points. Additionally, the deviations might be caused by the
昀椀nite number of lineages that we are able to simulate.

Most cells exhibit a short lifetime, with a peak observed around 150-250 minutes. This is
consistent with the model’s design, which incorporates a higher death rate than birth rate, and
aligns with the rapid decline in the mean cell count shown in Figure 3.2.

To further investigate the system’s behavior, we modify the model by introducing a new
reaction called ”no change” that is present in the real biological system. When this process
occurs, the system remains in its current state, with the number of cells n staying constant.
The transition rate of ”no change” can be described as follows:

T (n → n) = q · n (3.7)

where q is the ”no change” rate. With the introduction of the ”no change” process, the
Master Equation takes the following form:

∂Pn(t)

∂t
= T (n− 1 → n)Pn−1(t) + T (n+ 1 → n)Pn+1(t)

− [T (n → n+ 1) + T (n → n− 1)]Pn(t) + Pn(t) · T (n → n) (3.8)

With the ”no change” process now incorporated, we simulate the system using the Gillespie
algorithm to assess its impact on the overall outcome. We set q = 0.01 and compare the results
with the analytical distribution of the initialmodel that only includes birth anddeath processes.
The plot of the mean cell count (Fig.3.4a) exhibits a similar pattern to that of the birth-death
model (Fig. 3.2): a rapid decrease due to the higher death rate, followed by rapid drop of the
mean cell count in period lasting until around 250 minutes, and eventually reaching a steady
state with a near-zero mean cell count. Our observations indicate that the introduction of the

32



”no change” rate has a minimal e昀昀ect on the overall outcome. Additionally, when compar-
ing the lifetime duration to the analytical formula that does not account for the ”no change”
process, we 昀椀nd that the in昀氀uence of the ”no change” rate is negligible as the 昀椀t between the
simulation results and the analytical predictions remains adequately good (Fig. 3.4b). These
昀椀ndings suggest that the ”no change” process does not signi昀椀cantly alter the dynamics of the
system.

To validate con昀椀rm this observation regarding the impact of the ”no change” rate on the
system’s behavior, we experimented with di昀昀erent ratios of the birth and death rates to the
”no change” rate. Keeping the birth and death rates constant, we ran simulations with q =

0.05, q = 0.005, and q = 0.001, in addition to the previously used q = 0.01. The results
consistently showed that the introduction of the ”no change” process hasminimal e昀昀ect on the
system. In all cases, the mean cell count exhibited the same behavior: a rapid initial drop of the
mean number of cells until around 250 minutes, and a subsequent steady state. The lifetime
distribution in each scenario showed a good 昀椀t with the analytical solution (Figures 3.5a - 3.5f).
Although there were variations in the placement of the peak and the spread of the distribution
across di昀昀erent ”no change” rates, no clear trend was observed, indicating that these shifts do
not signi昀椀cantly impact the overall system dynamics.

The model’s outcomes are in agreement with the theoretical predictions, con昀椀rming its va-
lidity. Furthermore, for the birth and death process, the inclusion of a ”no change” process,
whichmaintains the system in its current state, was found to have a minimal e昀昀ect on the over-
all behavior of the system. The lifetime distributions across di昀昀erent ”no change” rates consis-
tently align with the analytical solution, showing that varying the ”no change” rate primarily
in昀氀uences the peak and spread of the lifetime distribution, but does not signi昀椀cantly alter the
overall dynamics. This suggests that while the ”no change” process introduces some variability
in the timing of events, it does not fundamentally impact the system’s long-term behavior.
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(a)Mean cell count of the model with q = 0.01 (b) Life琀椀me distribu琀椀on of the model with q = 0.01

Figure 3.4: Comparison of mean cell counts and life琀椀me distribu琀椀on for q = 0.01.
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(a)Mean cell count of the model with q = 0.05 (b) Life琀椀me distribu琀椀on of the model with q = 0.05

(c)Mean cell count of the model with q = 0.005 (d) Life琀椀me distribu琀椀on of the model with q = 0.005

(e)Mean cell count of the model with q = 0.001 (f) Life琀椀me distribu琀椀on of the model q = 0.001

Figure 3.5: Comparison of mean cell counts over 琀椀me and life琀椀me distribu琀椀ons of a birth, death, ”no change” model across
di昀昀erent values of the ”no change” rate q.
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4
Results

4.1 InferringModel Parameters from the Data

After examining a simplemodel, we can now implement theGillespie algorithm for simulation
to construct a model that accurately represents the behavior of the biological system observed
in the experiment. The 昀椀rst step is to identify the types of processes that occur within the
system during the experiment. As discussed in Chapter 2, cell divisions in the data result in six
di昀昀erent outcomes. While divisions leading to the death of one or both daughter cells may not
hold direct scienti昀椀c interest for the analysis from a biological point of view, they are crucial for
constructing the physical model, as they impact the population of undi昀昀erentiated stem cells.

All the division types observed in the data, excluding those where the cells are already di昀昀er-
entiated, can be categorized into three processes similar to those used in the simple model with
birth, death and ”no change”(Figure 4.1):

• Birth: Symmetric division.

• Death: Symmetric di昀昀erentiation and division where both daughter cells die.

• No change: Division with one daughter cell death and asymmetric division.

In Chapter 3, we discussed the transition rates and the Master Equation that describe these
processes. Theseprocesses are de昀椀nedbydi昀昀erent types of divisions, thereforwe can rewrite the
transition rates to re昀氀ect the datamore accurately. Since the transition rates represent velocities,

37



which de昀椀ne the probability of the system transitioning from one state to another, the birth,
death, and ”no change” rates can be calculated by multiplying the probability of each type of
division by the inverse of the mean cell cycle time, which we de昀椀ne as the division rate.

Figure 4.1: A scheme of the types of divisions and the probabili琀椀es that de昀椀ne them used to construct the model.

The probabilities of each division type, denoted by the χ terms, can be determined by cal-
culating the number of each type of division observed in the data and dividing it by the total
number of divisions. These χ values, along with the division rate, allow us to express the tran-
sition rates as follows:

T (n → n+ 1) = λχrn (4.1)

T (n → n− 1) = λ(χs + χm)n (4.2)

T (n → n) = λ(χa + χd)n (4.3)

where:

• λ - Division rate

• n - Number of undi昀昀erentiated cells

• χr - Probability of symmetric division
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• χs - Probability of symmetric di昀昀erentiation

• χa - Probability of asymmetric division

• χd - Probability of division with one dead daughter

• χm - Probability of division with two dead daughters

Figure 4.2: Histogram of di昀昀erent types of divisions used for construc琀椀ng the physical model.

Considering that the χ terms represent probabilities, their sum equals 1:

χr + χs + χa + χd + χm = 1 (4.4)

Webegin by constructing amodelwith constant transition rates. Fromour analysis, we infer
that during the experiment, a total of 314 divisions were observed. Of these, 37.6% (118) were
symmetric divisions, 29.6% (93) were symmetric di昀昀erentiations, 5.7% (18) were asymmetric
divisions, 7.3% (23) were divisions where one daughter cell died, and 19.7% (62) were divisions
where both daughter cells died(Figure 4.2). The values of theχ terms are calculated by dividing
the frequency of each type of division by the total number of divisions(Table 4.1).

FromChapter 2, we know that the mean cell cycle time for cells in theN2B27 environment
is 589 minutes. Using this information, we calculate the division rate as λ = 1.698 × 10−3
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Type of Division Symbol Probability (χ)
Symmetric Division χr

118

314

Symmetric Di昀昀erentiation χs
93

314

Asymmetric Division χa
18

314

Division (One Daughter Cell Died) χd
23

314

Division (Both Daughter Cells Died) χm
62

314

Table 4.1: Types of cell divisions, their symbols, and corresponding probabili琀椀es.

Figure 4.3: The pdf of simulated and analy琀椀cal life琀椀me distribu琀椀ons of the constant rate model.

min−1, birth rate as 6.38 × 10−4 min−1, the death rate as 8.38 × 10−4 min−1, and the ”no
change” rate as2.22×10−4min−1. The simulationwas run for the sameduration as themodels
in Chapter 3 tmax = 104 minutes across 104 lineages and initiated with once cell, re昀氀ecting the
initial conditions in the experimental data.

We use the formula 3.6 to compare the analytical and simulated lifetime distributions for
the constant rate model. However, the 昀椀t between the two is not perfect (Figure 4.3). The
deviations between the simulation and analytical results, particularly at shorter times, suggest
that the constant ratemodelmay not fully capture the system’s dynamics, especially in the early
stages. These discrepancies indicate that the model could be oversimplifying the underlying
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biological processes, possibly missing key factors that in昀氀uence stem cell di昀昀erentiation.
The early peak in the simulation data, compared to the smoother analytical curve, may re-

昀氀ect stochastic 昀氀uctuations that the constant ratemodel does not adequately account for. This
could indicate that the real system exhibits time-dependent behavior or other complex dynam-
ics not captured by the constant rate model.

Based on these 昀椀ndings, we constructed a model with time-dependent rates to more accu-
rately re昀氀ect the observed dynamics. To calculate the time-dependent division rate, we 昀椀rst de-
termined the average value of the cell cycles for every 600-minute interval from the data. The
interval of 600 minutes was chosen as a characteristic time since the mean cell cycle time for
cells inN2B27 is 589 minutes, which was rounded to 600 minutes for simplicity. Similarly, to
calculate the time-dependent probabilities for each type of division, we counted the number
of each type of division within each interval and divided it by the total number of divisions
during that interval. By multiplying the division rate by the corresponding probability in each
interval, we derived the time-dependent birth, death, and ”no change” rates.

For consistency, the simulation for the time-dependent model was also run across 104 lin-
eages for tmax = 104 minutes. The time-dependent rates of the processes were then mapped
onto the time of the experiment to ensure comparability between the simulated and observed
data (Figures 4.4 and 4.5). In both constant and time-dependent cases, all lineages were initi-
ated with one cell, re昀氀ecting the initial conditions in the experimental data.

While the analytical formula 3.6 cannot be applied to describe the lifetimedistributionof the
model with time-dependent rates, as it is based on the assumption of constant rates, the time-
dependent model allows us to account for the dynamic nature of the cell cycle and division
processes observed in the experiment.

41



Figure 4.4: The division rates over 琀椀me mapped onto the 琀椀me of the simula琀椀on.

Figure 4.5: The birth, death and ”no change” rates over 琀椀me mapped onto the 琀椀me of the simula琀椀on.
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4.2 Comparison of theModels and the Data

Asmentionedbefore, ourobjective for constructingboth the constant rate and time-dependent
rate models is to identify the model that best represents the experimental data, allowing us to
study the cell system in silico. In order to determine the most suitable model, we need to com-
pare some key quantities that describe the behavior of the cells. However, considering the dif-
ferent timeframes of the experiment and the simulations, it would be meaningless to directly
compare the mean cell count over time.

Figure 4.6: The mean cell count over 琀椀me of the experimental data.

This is because the simulations are run for a much longer duration (tmax = 104 minutes)
than the actual experiment (72 hours), leading to di昀昀erences in the observed dynamics. For
instance, the mean cell count in the simulation may exhibit behavior that stabilizes or evolves
over time inways that are not observablewithin the shorter experimental timeframe. Addition-
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ally, the accumulation of stochastic 昀氀uctuations in the simulation over the longer period can
further skew direct comparisons. Therefore, while we cannot directly compare the absolute
values of the mean cell count over time, we can still analyze and compare the overall trends and
behavior of the cell populations between the models and the experimental data.

Figure 4.7: The mean cell count over 琀椀me of the constant rate model.

The experimental data reveal a non-monotonic trend in the mean cell count over time (Fig-
ure 4.6). In contrast, the model with constant rates exhibits a monotonic decline, which is ex-
pected given the higher death rate compared to the birth and ”no change” rates (Figure 4.7).
However, the time-dependent rate model produces a non-monotonic pattern in mean cell
count, aligning more closely with the observed data, although the range of cell counts di昀昀ers
(Figure 4.8). Furthermore, the time-dependentmodel captures the 昀氀uctuations and variability
seen in the experimental data, suggesting that the underlying biological processes in昀氀uencing
cell cycle duration and division rates may also be time dependent.

In addition to comparing themean cell count over time, we can also compare quantities that
remain consistent even when the duration of the simulation exceeds that of the experiment
since they show a distribution. One such quantity is the distribution of the cell population,
which shows the frequency of occurrence of a given number of cells in the lineages.
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Figure 4.8: The mean cell count over 琀椀me of the 琀椀me‐dependent rate model.

As demonstrated in Table 4.2, while the time-dependent model aligns more closely with the
experimental data, both models e昀昀ectively describe the central tendency and variability of the
cell population(Figure 4.9).

Statistic Constant Rate Model Time-Dependent Model Experimental Data
Mean 12.5 11.5 10.94
Median 12.5 11.5 9.0

Lower Quartile (25%) 6.5 6.0 7.0
Upper Quartile (75%) 18.5 17.0 14.5

Table 4.2: Sta琀椀s琀椀cs comparison of cell popula琀椀on mean, median, and quar琀椀les between constant rate, 琀椀me‐dependent rate
models, and experimental data

Another quantity that we can compare in the same manner is the 昀椀rst passage time. Al-
though the simulations run longer than the duration of the experiment, the 昀椀rst passage times
are still comparable since the system reaches an absorbing state after some time, and the com-
parison is between the distributions of these values.

The statistics for the 昀椀rst passage times are summarized in Table 4.3. These results suggest
thatwhile themodels provide a reasonable approximation, the experimental data exhibit longer
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Figure 4.9: Boxplots of the distribu琀椀on of the amount of cells in the lineages of the constant rate and 琀椀me‐dependent rate
models with the experimental data

昀椀rst passage times. This discrepancy indicates that theremay be some lag in the death process in
the actual data, as the 昀椀rst passage times are higher in the data compared to the models (Figure
4.10).

Statistic Constant Rate
Model

Time-Dependent
Model

Experimental Data

Mean (minutes) 1763.72 1370.89 2380.82
Median (minutes) 1005.0 660.0 2340.1
Lower Quartile
(25%) (minutes)

375.0 260.0 1995.05

Upper Quartile
(75%) (minutes)

2355.0 1480.0 2865.05

Table 4.3: Sta琀椀s琀椀cs comparison of 昀椀rst passage 琀椀me sta琀椀s琀椀cs between constant rate, 琀椀me‐dependent rate models, and
experimental data
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Figure 4.10: Boxplots of the distribu琀椀on of the First Passage Times of the constant rate and 琀椀me‐dependent rate models
with the experimental data
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5
Discussion and Conclusion

In this work, we analyzed the dynamics of mouse ESCs by examining experimental data and
building a minimal stochastic model to study the di昀昀erentiation process. Our focus was on
exploring the mechanisms through which these cells dynamically transition during di昀昀erentia-
tion, a process characterized by complex, non-linear and stochastic behaviors. Understanding
these processes is crucial, as they play a central role in the development and maintenance of
tissues, with disruptions potentially leading to diseases or developmental disorders.

The interdisciplinary nature of this study, which combined systems biology with methods
from statistical mechanics, proved to be e昀昀ective. Stochastic modeling, particularly through
the Gillespie algorithm, allowed us to simulate the inherent randomness and variability in bi-
ological systems. This approach provided insights that deterministic models might fail to cap-
ture, especially in representing the stochastic nature of cellular events.

By building and exploring a simple birth and death model, we test the agreement between
the simulation data and the theoretical predictions of the lifetime distribution of the cells for
di昀昀erent birth and death rates. Additionally, this approach allowed us to investigate the e昀昀ect
of the “no change” rate on the simulation, which was found to be minimal. Although varia-
tions in the peak and spread of lifetime distributions were observed, no clear trend emerged,
indicating that this process introduces variability without fundamentally altering the overall
behavior of the system.

The simple model paved the way for simulating the behavior of the cells observed in the
experiment by implementing the Gillespie algorithm for the processes identi昀椀ed during the ex-
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periment and by inferring the model parameters from the experimental data. We tested both
a model with constant rates and a model with time-dependent rates. The time-dependent rate
model performed better in capturing the non-monotonic nature of the mean cell count over
time, the signature of the non-linearity of the underlying dynamics. Furthermore, a compari-
son of the distribution of cell counts and the FPTs from the simulations with the experimental
data revealed that while both models provided a reasonable representation of the data, they
could be both improved, as the FPTs were higher in the data compared to the models.

We encountered several limitations during our work that impacted our ability to fully ex-
plore and validate ourmodels. One signi昀椀cant limitationwas the shorter duration of the exper-
iment compared to the simulation time. This discrepancymade it di昀케cult to directly compare
time-dependent quantities, as the shorter experimental timeframe was not enough to generate
signi昀椀cant statistics to then compare with the model. Put di昀昀erently, for such short times se-
ries, the stochastic variability is extremely high, and it is di昀케cult to estimate robust transient
properties.

In other words, the limited amount of data posed challenges for our analysis. While the
available data were su昀케cient for drawing biological conclusions, it fell short when used for
discrimination of di昀昀erent stochastic models, where a larger dataset would have allowed for
more robust validation and a 昀椀ner resolution of the underlying processes.

Another challenge was the computational power required for our simulations. Stochasti-
cally simulating a large number of elements over extended periods is computationally inten-
sive, and at times, our resources were insu昀케cient to run these simulations as e昀케ciently or as
extensively as desired. This limitation restricted our ability to explore alternative scenarios or
conductmore in-depth sensitivity analyses, which could have provided additional insights into
the system’s behavior.

Building on the limitations encountered in this study, there are several avenues for future
work that could further enhance the modeling of stem cell dynamics.

Addressing the limitation of data quantity by obtaining a larger and more diverse dataset
would signi昀椀cantly improve the robustness of model inference and validation. A more exten-
sive dataset would in fact enable a 昀椀ner resolution of the stochastic processes and provide a
more reliable basis for parameter inference and model comparison.

Moreover, improving computational e昀케ciency is essential for fast andmore extensive simula-
tions. With enhanced computational power or more e昀케cient algorithms, it would be possible
to explore a wider range of scenarios, conduct more detailed sensitivity analyses, and poten-
tially simulate larger systems or longer time periods, thereby gaining deeper insights into the

50



behavior of the model.
Exploring alternative stochastic algorithms could potentially o昀昀er better modeling for sim-

ulating stem cell di昀昀erentiation dynamics by enhancing accuracy and e昀케ciency. For instance,
the population-based Monte Carlo (PBMC) method is well-suited for handling large systems
with signi昀椀cant population variability, potentially reducing computational time while main-
taining accuracy[42]. Themoment closure technique, which approximates the moments of the
probability distribution, could also be explored for more e昀케cient simulations without fully
solving the Chemical Master Equation[43].

Despite the challenges encountered, this study yielded several positive outcomes. The time-
dependent rate model successfully captured the non-monotonic behavior observed in the ex-
perimental data, providing a closer representation of the stem cell di昀昀erentiation process. The
comparison of simulation results with experimental data demonstrated that our models could
e昀昀ectively reproduce key aspects of stem cell dynamics, such as the distribution of cell counts
and FPTs. These successes highlight the potential of stochastic modeling to uncover insights
into complex biological systems that deterministic approaches might miss.

This work emphasizes the crucial role of integrating experimental data with stochastic mod-
eling to gain deeper insights into the complexities of stem cell dynamics. By developing these
models, we gain a fundamental understanding of the inherent randomness and variability in
biological processes, which are essential to accurately capture how stem cells di昀昀erentiate and
develop.

As stem cells are central to tissue repair and regeneration, the ability to predict and manip-
ulate their behavior through precise modeling has the potential to transform therapeutic ap-
proaches. The developments made in this study can help develop more re昀椀ned models that
could eventually guide the creation of targeted treatments for a variety of conditions, includ-
ing degenerative diseases and tissue repair. Ultimately, this work brings us closer to realizing the
full potential of stem cell research, paving theway formore e昀昀ective treatments and a profound
understanding of human biology.
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