
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAURA MAGISTRALE IN INGEGNERIA

INFORMATICA

IoT oriented SIEM tools

Relatore: Prof. Migliardi Mauro

Laureando: Maggiolo Nicola

ANNO ACCADEMICO: 2021-2022

Data di laurea 28 Febbraio 2022

Contents

1 Introduction 1

2 Network and Computer Security 2

3 Security Information and Event Management 4
3.1 SIEM Composition . 4
3.2 SIEM Generations . 4

3.2.1 Early generations . 4
3.2.2 Artificial Intelligence and Machine Learning generations 4

3.3 SIEM Structure . 5
3.3.1 Functionalities . 5
3.3.2 Architecture . 6
3.3.3 Metrics . 8

4 Elastic SIEM 9
4.1 SIEM tools . 9

4.1.1 Exabeam Fusion by Exabeam . 10
4.1.2 IBM QRadar by IBM . 10
4.1.3 Splunk Enterprise by Splunk . 10
4.1.4 LogRhythm NextGen SIEM Platform by LogRhythm 10
4.1.5 Microsoft Sentinel by Microsoft . 11
4.1.6 Elastic SIEM by Elastic . 11

4.2 Elastic Stack . 11
4.2.1 Elasticsearch . 12
4.2.2 Logstash . 12
4.2.3 Kibana . 13
4.2.4 Beats . 13

4.3 Elastic SIEM . 14

5 Internet of Things 15
5.1 IoT Data Protocols . 16

5.1.1 Machine to Machine Protocols . 16
5.1.1.1 MQTT - Message Queuing Telemetry Transport 16
5.1.1.2 CoAP - Constrained Application Protocol . 16

5.1.2 Machine to Server Protocols . 16
5.1.2.1 HTTP - Hypertext Transfer Protocol . 16
5.1.2.2 AMQP - Advanced Message Queuing Protocol 17
5.1.2.3 Websocket . 17

5.1.3 International IoT middleware standard . 17
5.1.3.1 DDS - Data Distribution Service . 17

5.2 IoT and SIEM integration . 17

6 MQTT - Message Queuing Telemetry Transport 18
6.1 Topics . 18

6.1.1 Wildcards . 19
6.2 Packet Structure and Control Packet . 19

6.2.1 Quality of Service . 22
6.3 MQTT Broker . 23
6.4 MQTT Gateway . 24
6.5 Pros and Cons . 25

i

7 IoT applications using MQTT protocol 26
7.1 Smart Home . 26
7.2 Smart City . 26
7.3 Industry . 27
7.4 Healthcare . 27
7.5 Agriculture . 27

8 SIEM supervises a hydroponic greenhouse 28
8.1 Introduction . 28

8.1.1 Eclipse Mosquitto . 29
8.1.2 Paho-MQTT . 29

8.2 Simulation analysis . 30
8.2.1 Intent . 30
8.2.2 Limitations . 31

8.3 Sensors . 32
8.3.1 Simulator . 33

8.4 Network Structure . 38
8.4.1 Sensors Simulator . 38
8.4.2 Host Mosquitto - Logstash . 39
8.4.3 Host Elastic SIEM . 39
8.4.4 Attacker host . 40

8.5 Simulation of Hydroponic Greenhouse supervised by SIEM 40
8.5.1 Network Attacks . 40

8.5.1.1 ICMP Flood . 44
8.5.1.2 DoS attack on MQTT port . 46
8.5.1.3 DoS attack on Kibana . 47

8.5.2 Sensors Data . 48

9 Conclusion 56

A Appendix I
A.1 Simulator Code . I
A.2 Hosts Configuration . VIII

A.2.1 Sensors Simulator . VIII
A.2.2 Host Mosquitto - Logstash . VIII

A.2.2.1 Mosquitto . IX
A.2.2.2 Logstash . IX
A.2.2.3 Filebeat . X
A.2.2.4 Packetbeat . XI

A.2.3 Host Elastic SIEM . XI
A.2.3.1 Packetbeat . XII
A.2.3.2 Elasticsearch . XII
A.2.3.3 Kibana . XIII

A.2.3.3.1 Dashboard . XIII

ii

List of Figures

2.1 C-I-A triad . 2
2.2 Effects of controls . 3
3.1 SIEM functionality . 6
3.2 SIEM Log Filtering . 7
3.3 SIEM Architecture . 7
4.1 Gartner magic quadrant for SIEM . 9
4.2 Elastic Stack (1) . 12
4.3 Elastic Stack (2) . 12
4.4 Elasticsearch logo . 12
4.5 Logstash logo . 13
4.6 Kibana logo . 13
4.7 Beats Diagram . 14
5.1 Growth of IoT devices . 15
6.1 Example MQTT Topics . 19
6.2 MQTT Packet . 20
6.3 Fields of MQTT Packet . 21
6.4 MQTT control packet . 21
6.5 MQTT control packet sequence QoS 0 . 22
6.6 MQTT control packet sequence QoS 1 . 22
6.7 MQTT control packet sequence QoS 2 . 23
6.8 Example of communication between a temperature sensor, the MQTT Broker, and other

output clients . 23
8.1 Supervised hydroponic greenhouse . 28
8.2 Mosquitto logo . 29
8.3 Paho-MQTT Eclipse logo . 29
8.4 Structure of hydroponic greenhouse . 32
8.5 Architecture of hydroponic greenhouse simulation . 38
8.6 Percentage graph of network traffic in normal situation . 41
8.7 Pie chart of network traffic in normal situation . 41
8.8 Histogram of MQTT packets in normal situation . 42
8.9 Pie chart of MQTT packets in normal situation . 42
8.10 Histogram of ICMP packets in normal situation . 43
8.11 Pie chart of ICMP packets in normal situation . 43
8.12 Histogram of HTTP requests in normal situation . 43
8.13 Pie chart of HTTP requests in normal situation . 44
8.14 Percentage graph of network traffic during the attack . 44
8.15 Pie chart of network traffic during the attack . 45
8.16 Histogram of ICMP packets during the attack . 45
8.17 Pie chart of ICMP packets during the attack . 46
8.18 Pie chart of network traffic during the attack . 46
8.19 Histogram of MQTT packets during the attack . 47
8.20 Pie chart of MQTT packets during the attack . 47
8.21 Histogram of packets sent to Kibana port during the attack 48
8.22 Pie chart of MQTT packets sent to Kibana port during the attack 48
8.23 Sensors value of Gerberas’ greenhouse . 49
8.24 Table of sensors value . 49
8.25 Color measured temperature displayed in the table . 49
8.26 Color measured pH level displayed in the table . 49
8.27 Color measured EC displayed in the table . 49
8.28 Color measured EC displayed in the table . 50
8.29 Color measured EC displayed in the table . 50
8.30 Color measured humidity displayed in the table . 50

iii

8.31 Color measured soil moisture displayed in the table . 50
8.32 Temperatures graph . 50
8.33 Temperatures graph out of range . 51
8.34 Humidity graph . 51
8.35 Humidity graph out of range . 51
8.36 Photoperiod graph . 52
8.37 Overly bright photoperiod graph . 52
8.38 Photoperiod graph too dark . 52
8.39 CO2 graph . 52
8.40 CO2 graph out of range . 53
8.41 Electrical Conductivity graph . 53
8.42 Electrical Conductivity graph out of range . 53
8.43 pH graph . 54
8.44 pH graph out of range . 54
8.45 Soil moisture graph . 54
8.46 Soil moisture graph out of range . 55
8.47 CO2 Graph of tomatoes’ greenhouse . 55

iv

1 Introduction

From the very beginning, man felt the need to improve his living conditions, looking for solutions to facilitate
and improve his quality of life for his survival.

Nowadays, globalization has made it easy for people to get in touch with other people, leading to the
worldwide dissemination of ideas and issues, thanks to new media of communication. The ever-increasing
need to improve the quality of life and the greater possibility of quickly exchanging knowledge and informa-
tion have led to rapid growth in the technologies available to men.
Generally speaking, technologies help to improve the quality of life, for example by helping to execute
complex tasks in a simpler way or by making the environment safer and cleaner.

Technological development has led to the creation of many new and increasingly efficient tools that can
help and simplify people’s lives. New tools can be applied in many fields, for example, they can allow compa-
nies to improve and increase productivity, improve the monitoring of a patient’s health, help the environment
by reducing waste and pollution such as noise, and light, and much more.

Nowadays, devices can connect and communicate data. An example is IoT devices, technological devices
that are able to communicate information collected from the environment with a high degree of automation,
transferring them through networks. IoT devices that are always connected and increasingly reliable and
fast wireless networks make it easy to collect large amounts of data with high accuracy.

In addition to the development of new devices, protocols are being developed to transport data effi-
ciently with low power consumption. IoT devices are generally devices that have a low battery capacity and
therefore consumption must be minimized. Examples of protocols that are used, and which are discussed
in this paper, are Message Queuing Telemetry Transport (MQTT), Hypertext Transfer Protocol (HTTP),
Constrained Application Protocol (CoAP), etc...

The introduction of these new technologies has created new vulnerabilities within complex systems, al-
lowing an attacker to breach them more easily. Attackers use these devices, which generally don’t have
important protections because they are composed of minimal hardware. Generally, the attackers’ goal is to
capture data, create malfunctions, steal sensitive and personal information, and more.

In order to protect and limit the actions of possible attackers, new software has been developed to neu-
tralize or reduce vulnerabilities in a complex system composed of these devices.
An example of software that belongs to this category are SIEMs, which are discussed in the following chap-
ters. They make it possible to analyze real-time data and logs of what is happening within a system.
They give the possibility of creating a history of the collected information by the system, indexing the
information to allow efficient and rapid analysis. They also allow the collected data to be visualized using
dashboards.
With the introduction of artificial intelligence, these tools have become more precise, allowing the automatic
creation of thresholds that generate alerts in critical situations if exceeded. These tools may also be able to
autonomously analyze the environment and identify any vulnerability within the system, and even respond
to certain situations autonomously.

In this thesis, IoT devices and SIEM software are combined. As previously mentioned, there are nu-
merous applications in which IoT devices can be used. In the example described below, they are applied in
the agricultural sector by simulating a greenhouse to which attacks are made on it to interrupt its correct
functioning. The SIEM has the task of helping monitor the network packets to identify possible attacks
and analyse the data collected, to control the situation inside the greenhouse. In this way, a supervisor can
visualise and understand the state of the network and protect it from attackers by identifying any present
vulnerabilities; he can also understand trends in environmental factors within the greenhouse, being able to
evaluate any situations where values do not remain within the expected range.

Once the tests have been executed by simulating some sensors that collect the state of the greenhouse
environment and launching attacks against the system, the use of SIEM in the IoT environment is evaluated
to improve the effectiveness of the security and safety of the system.

1

2 Network and Computer Security

The purpose of computer security is to protect the valuable parts of an information system, such as
hardware, software, data or processes. Some examples may be a computer device, an operating system, and
its functions, an installed application, or a self-developed program. The value of each asset is defined by the
owner, for example, according to the monetary impact or sentimental value.
The goal of computer security is to protect important assets from attackers, who aim to damage or steal
them.
Two definitions must be given:

• Vulnerability: a weakness in the system which might be exploited to cause loss or harm. [9]

• Threat: a set of circumstances which has the potential to cause loss or harm. [9]

An attacker tries to exploit system vulnerabilities to break into it. Denial-of-Service is an example of an
attack which takes advantage of weaknesses.

Controls and countermeasures can work as protection by creating procedures or using techniques
which allow to eliminate or reduce the vulnerabilities of a system.
The relationship between threats, controls, and vulnerabilities can be defined as:

"A threat is blocked by control of a vulnerability" [9]

Basic security properties are defined in the ISO 7498-2 and are five:

• Availability : only authorized users can use specific assets.

• Integrity : only authorized users can modify specific assets.

• Confidentiality : only authorized users can visualize specific assets.

• Authentication : ability to confirm the sender of a network communication.

• Non-repudiation : a sender can’t deny its network communications.

The first 3 properties are defined as C-I-A triad or security triad (Figure 2.1). The other two properties
can be considered an extension of the security definition to network devices.

[https://blog.jamestyson.co.uk/wp-content/uploads/2019/09/CIA-triad.png]

Figure 2.1: C-I-A triad

The US Department of Defense has introduced an additional property: auditability. It refers to the
possibility of tracking all the actions performed on an asset.

2

The harm can be characterized by 4 acts: interception, interruption, modification, and fabrication.
A threat represents a possible cause of harm. Threats can be:

• Non-human: not human-caused, such as loss of electrical power or components failure.

• Human: threats can be malicious, i.e. intentional damage, or benign, i.e. accidental damage or damage
that a user unintentionally causes and generates a dangerous situation for the system, for example, by
opening unwanted e-mails or files containing a virus.

In general, an attacker to hack a system needs 3 things:

• Method : skill and knowledge to carry out an attack.

• Opportunity : possibility to execute an attack.

• Motive: a reason to perform an attack.

Vulnerabilities are weaknesses which can lead to attacks. Security analysts identify the set of real and
potential vulnerabilities of a system as attack surfaces which can be physical hazards, mistakes, data stolen
from the system, and more. It is important to take countermeasures and check possible vulnerabilities to
stop threats that may arise due to them.
In order to protect a system, it is important to: [9]

• prevent : solve vulnerabilities which can lead to an attack.

• deter : make an attack difficult for an attacker.

• deflect : make other targets more attractive.

• mitigate : control the attacker’s damage.

• detect : identify when an attack occurred.

• recover : recover data after an attack.

[Figure 1-12 in the book [9]]

Figure 2.2: Effects of controls

It’s important to balance the costs and effectiveness of the countermeasure.
One between software solutions to reduce and control vulnerabilities are SIEMs. These tools can assess

a system environment and help security teams to discover attack surfaces and analyse attacks occurring to
a system by identifying system weaknesses.

3

3 Security Information and Event Management

A Security System (SS) is a procedure which secures an asset through a computer network.
A similar system is called Security Monitoring System (SMS) with different performance. It is an au-

tomated method which supervises a system environment by identifying dubious or unauthorized situations,
alerting the system owner, or making decisions.
Security Monitoring Systems focus on reducing attacks by decreasing vulnerabilities and threats by elabo-
rating and analysing specific indicators.

3.1 SIEM Composition

The first appearance of the term SIEM was in 2005 in a Gartner’s SIEM report written by Amrit T. Williams
and Mark Nicolett.
The acronym SIEM stands for Security Information and Event Management. The goal of SIEM is to
manage the security of a system using a centralized interface.

It is a composition of two arguments of ITIL (Information Technology Infrastructure Library) security,
which are:

• Security Event Management (SEM): management of event security. SEM monitors and manages
real-time events inside a network, providing event correlation and aggregation. It allows to monitor
and alert unusual occurrences.

• Security Information Management (SIM): management of information security. SIM collects
and organizes logs from devices which compose a system, but not in real-time. It allows to create
customized logs by collecting data.

SIEM is the result of the combination between SEM and SIM. It represents a complete tool to manage
network security and prevent real-time attacks and diagnostic of past events. Thanks to those features,
SIEM has become one of the most important software solutions for organizations which want to control their
systems in real-time.

3.2 SIEM Generations

3.2.1 Early generations

Early generations of SIEM had the task of reducing false positives of the Network Intrusion Detection
System (NIDS) which generated a large number of alerts. First SIEM’s had important limitations in terms
of scalability, which is an important feature for these tools.

Subsequent generations improved data management. New SIEMs were capable of handling large amounts
of historical logs and extracting information using historical logs and real-time events.

These first generations of SIEM had important limitations:

• Complexity : difficult to understand how to manage events and logs and set important rules.

• Time Consuming : long time to initialize a SIEM.

• Expensive: high costs to initialize SIEM solution and specialized technicians were needed to manage
the tool.

• No Cloud-Native: first generations of SIEM could not communicate with clouds.

3.2.2 Artificial Intelligence and Machine Learning generations

Nowadays SIEMs are more flexible and have lower costs than older generations. In 2017 a multinational
company which provides guidance and tools to help organizations in critical fields called Gartner introduced
a SIEM tool able to analyze users’ and entities’ behaviour and automatically respond to anomalies.

The major contributions to these new generations of SIEM are Artificial Intelligence (AI) and Ma-
chine Learning (ML). Thanks to these innovations, SIEMs can efficiently discover correlations between

4

data. For example, the tools use heuristic algorithms to execute pattern matching or aggregate logs for
advanced research.

A deep insight into data allows SIEMs to choose which countermeasures to take and responds automati-
cally to problems.

New generations are able to create users’ risk profiles. This feature helps the security team to find the
source of problems caused by users and prevent them.
Also, dashboards have been introduced. They allow to visualize and search into logs and data.

3.3 SIEM Structure

SIEMs are responsible for collecting logs and general events from applications and network systems to monitor
the situation.

The functional principle of the SIEM is based on a set of rules, which are defined by vendors or security
managers, and a software which searches correlations between collected data.
The tools implement different functions:

• Collect and analyze data : are the main functions of the SIEM. The tool collects data in real-time
and generates historical logs, which are useful to quickly identify system anomalies.
Different data suppliers are used. Some examples are:

– Security Events: intrusion detection systems, Antivirus, antimalware, VPN, web filters, firewalls.

– Network Logs: routers, switches, DNS Servers, Wireless Access Points, WAN, data transfers.

– Applications and Devices: databases, web applications, cloud-hosted servers, end-user laptops or
desktops, mobile devices.

– IT Infrastructure: configuration, owners, network maps, vulnerability reports, software inventory.

SIEM monitors real-time data using specific metrics to detect system anomalies. It also allows setting
alerts in case of problems detection.
Analysing historical logs the software helps to understand what happened in the controlled system.

• Correlation : it is based on the metrics used to get information. SIEM not only collects data but also
correlates them to discover strange behaviours of the system.
It correlates historical and real-time data. This feature allows to detect anomalies and set alerts using
a threshold based on historical logs. For that reason, SIEM can become more precise.

• Alerting : as previously introduced, an important function is to alert in case anomalies are detected,
by specifying critical thresholds. SIEM can send SMS or e-mail to warn.

• User-friendly : SIEM usually allows to use customized dashboards to visualize and consult data
collected and correlated. Also, the ability to customize reports is important.

3.3.1 Functionalities

In order to monitor and control a system, a SIEM relies on the following capabilities: [43]

1. Data aggregation: using security systems and network devices, it collects and aggregates data.

2. Threat intelligence feeds: SIEM combines internal data about threats and vulnerabilities with third-
party data.

3. Correlation and Security Monitoring : it links data and events with security incidents.

4. Analytic: it can identify correlations between data using statistical models and machine learning.

5. Alerting : SIEM analyzes log and data to identify issues and immediately alert security team.

6. Dashboards: it allows to visualize collected data and help the security team to identify patterns or
anomalies.

5

7. Compliance: it collects log data and generates customized reports using them.

8. Retention: SIEM stores long-term data, which are useful for investigations.

9. Forensic Analysis: it enables analysis of logs and events data to discover security incident details.

10. Threat Hunting : SIEM gives the possibility to query logs and events data to uncover threats.

11. Incident Response: it allows security teams to quickly identify and solve security incidents.

12. SOC Automation: SIEM can take action automatically in order to respond to incidents by orchestrating
security systems.

[https://www.precisely.com/app/uploads/2019/11/SIEM-Graphic_2020-800x432.png]

Figure 3.1: SIEM functionality

3.3.2 Architecture

The most important structure of a SIEM is log management, which involves collecting, analysing, and storing
data.

• Data Collection : SIEMs gather logs and events from different data sources. Devices store logs in
files or databases. Logs are collected from SIEM, which standardize and store them in a format which
allows analysis of data. The SIEM can collect data in different ways:

1. By using an agent which is installed on system devices.

2. By directly accessing to log files.

3. Via event streaming protocols.

4. By directly connecting to the device using a network protocol or API call.

• Data Management : a large amount of data are stored by SIEMs. The stored data needs to be:

– Stored in local or in cloud or both.

– Efficiently stored and indexed to make faster analysis.

– In high-performance storage should be stored important data, which have to be often investigated
for real-time monitoring, and other data in other locations.

6

• Log Retention : as mentioned in the previous point, a large amount of data are analyzed and stored
by SIEMs and a very high volume of logs are stored over time. For this reason, SIEMs use strategies
to reduce log volumes:

– They use a specific format called Syslog, which allows to compress logs and retain a lot of historical
data.

– SIEMs automatically delete logs which are not useful for future analysis.

– Log filtering : logs are filtered using defined rules by the security team.

– Summarization: data are summarized storing only important information.

[https://www.exabeam.com/wp-content/uploads/2018/08/log-flow-diagram@3x.png]

Figure 3.2: SIEM Log Filtering

[https://www.exabeam.com/wp-content/uploads/2018/08/security-events@3x.png]

Figure 3.3: SIEM Architecture

7

3.3.3 Metrics

In order to study the security of a system, it is important to know how incidents affect an environment.
Metrics play an important role and must have the following features:

• Simple: easy to measure, so it is also easy to explain.

• Measurable: must be measurable in a consistent and well-defined way.

• Actionable: useful for making a decision.

• Relevant : valuable for the decision to make.

• Time-based : useful for showing changes over time.

In the case of SIEMs, metrics can be used to monitor:

• Statistics on handled alerts, monitoring for example the number of alerts per day depending on the
category.

• Response time to a security incident with a given alert.

• Same incidents that are detected after being notified to security teams using an alert.

• Information on the actors who are most frequently involved in security incidents.

8

4 Elastic SIEM

4.1 SIEM tools

In the IT market, a large amount of SIEM tools have been developed. Softwares can be open-source or paid,
each one with its features.

In order to choose the most suitable SIEM tool, the end-users need to evaluate tasks the software need
to perform, such as protection against attacks with notification to users.

To assess the market, researchers of Gartner company evaluate SIEMs implementation in the market,
generating a quadrant called "Magic Quadrant for Security Information and Event Management" (Figure
4.1), which represents a qualitative evaluation of the tools.

[https://images.contentstack.io/v3/assets/bltefdd0b53724fa2ce/bltfaf8b8077c0f9a52/60e47a86979c171ed133e547/
gartner-magic-quadrant-security-information-and-event-management-april-2021.png]

Figure 4.1: Gartner magic quadrant for SIEM

The quadrant shows the leaders, which are Exabeam Fusion, IBM-Qradar, Securonix Next-Gen SIEM, Splunk
Enterprise, InsightIDR (Rapid7), LogRhythm NextGen SIEM Platform.
In the following paragraphs, some SIEMs are discussed and analysed.

9

4.1.1 Exabeam Fusion by Exabeam

Exabeam Fusion SIEM is a cloud SIEM solution. The tool can detect, investigate, and respond to threats
and allows to gather data from anywhere. It can also detect threats missed by other solutions.

Pros Cons

Intuitive and easy to use

Customizable dashboard

Default rules can lead to false positives

Could be more flexible

Table 4.1: Pros and cons of Exabeam Fusion [72]

4.1.2 IBM QRadar by IBM

IBM QRadar is one of the most used SIEM on Windows environments. Developed by IBM, it represents
a log management, offers analytical functions, and allows to detect intrusions on systems. QRadar can be
considered as a near-complete solution and is also available as a cloud platform.

Pros Cons

Allows to evaluate risks using artificial intelligence

Can simulate attacks to evaluate effects on a net-
work

Easy and user-friendly interface

Doesn’t have good integration with other SIEM
tools

Analysis tools should be improved

Table 4.2: Pros and cons of IBM QRadar [58]

4.1.3 Splunk Enterprise by Splunk

Splunk Enterprise is one of the most important SIEM tools. This tool monitors real-time data of network
and machine and can identify potential vulnerabilities or wrong behaviours, at the same time. Another
important feature of Splunk is the Asset Investigator which identifies malicious actions. The user interface
is simple.

Pros Cons

Detects threats analysing behaviours

Simple and customizable user interface

Events prioritization

Available for Linux and Windows

A quote from the vendor is required to know the
price

More convenient for large enterprises

Not efficient processing language which slows
learning curve

Table 4.3: Pros and cons of Splunk Enterprise [58]

4.1.4 LogRhythm NextGen SIEM Platform by LogRhythm

LogRhythm NextGen SIEM is considered one of the pioneers of SIEM solutions. It is a complete solution: the
tool allows to execute behavioural analysis, identify correlations between logs and use artificial intelligence
for machine learning. LogRhythm NextGen SIEM can be considered a good solution for medium-sized
organizations thanks to its price.

10

Pros Cons

Easy wizards to set up the tool

Customizable interface

Uses artificial intelligence to analyse the behaviour

No free trial option

No cross-platform support

Table 4.4: Pros and cons of LogRhythm NextGen SIEM [58]

4.1.5 Microsoft Sentinel by Microsoft

Microsoft Sentinel, previously known as Azure Sentinel, is a cloud solution. Using analytics, the tool detects
threats and reduces false positives, and using artificial intelligence investigates to find suspicious activities.
It can respond automatically to problems.

Pros Cons

Self-explanatory

Analyses any threat, including those not yet dis-
covered

Reduces false positives

Automatically responds to problems

Reports are not easy to read

Depends on Microsoft Azure software

Table 4.5: Pros and cons of Microsoft Sentinel [71]

4.1.6 Elastic SIEM by Elastic

Elastic SIEM is an open-source tool. It has a modular architecture, allows to easily gather data, and
generates shareable analytics. The user can interact with the data using a SIEM dashboard. Elastic SIEM
evolves with threats.

Pros Cons

Free to get started

Distributed in different programming languages

Easy to administrate

Data can be visualized and analysed in real-time

Scaling challenges

Stability problem when data volume increases, due
to indices definition

Table 4.6: Pros and cons of Elastic SIEM [49] [71]

In the next paragraph, Elastic SIEM is detailed because is the tool which is used in the applied section.
The SIEM was chosen because it is open-source, which is a good requirement for education purposes, and
only essential parts can be installed. It has few paid-for functionalities.

4.2 Elastic Stack

The company Elastic has developed three open-source products:

1. Elasticsearch: is an open-source, search and analysis engine;

2. Logstash: transforms and parses data collected from different sources;

3. Kibana: allows users to visualize and analyze data.

11

These software modules compose the acronym, ELK Stack. This project is used to monitor, troubleshoot
and secure IT environments. It allows to collect event logs or metrics and analyse information to solve
challenges for complex environments.
In 2015, a fourth module called Beats has been added to the ELK stack project. This program is a
lightweight data-shippers, which works as an agent installed on devices to collect information.
Taking everything to account, Beats and Logstash gather and process data, Elasticsearch optimizes and
stores logs, and Kibana allows to visualize data.
This new project structure has been renamed Elastic Stack.

[https://www.itzgeek.com/wp-content/uploads/2020/06/
Log-Monitoring-With-ELK-Stack.jpg]

Figure 4.2: Elastic Stack (1)

[https://collabnix.com/]

Figure 4.3: Elastic Stack (2)

The Elastic Stack is popular because provides a robust platform which allows to elaborate data from different
sources, store them in centralized storage, and can scale.
The tool is open-source and allows to understand why the stack is so popular. For this reason, organizations
can keep away from "vendor lock-in".
In addition, ELK is a cheaper solution than others vendors.

4.2.1 Elasticsearch

Elasticsearch is considered as "The heart of the free and open Elastic Stack" [19]. It is a distributed system
which stores data and allows fast search and analytics, using a NoSQL database.

Figure 4.4: Elasticsearch logo

Elasticsearch lets perform a variety of searches, exploring trends and patterns in data. The search is
really fast and rapidly gives results, thanks to implemented inverted indices and BKD trees.
It also ranks search results to improve the way results are shown to users and tries to correct human errors
such as typos.

The heart of the Elastic Stack can run on a cluster or a single node independently. It can identify failures
on cluster devices and maintain the operational structure. Elasticsearch can also decide where store data:
locally for fast queries or remotely for historical data.

Elasticsearch plays such an important role that its name is used as a synonym for ELK stack.

4.2.2 Logstash

Logstash performs data processing. It collects data from different sources, like logs, web applications,
metrics, and then parses and transforms the data, building structures which can be easily analysed.

12

Figure 4.5: Logstash logo

Logstash elaborates and converts any type of data:

• identifies structure from unstructured data;

• finds GEO coordinates using IP addresses;

• hides sensitive information;

• independent simply process.

Once the data have been processed, they are sent to different supported output destinations.

4.2.3 Kibana

Kibana is a free user interface, which allows to visualize and analyse Elasticsearch data. It allows to
customize the data display creating your screen to represent thousands of data. Kibana gives the possibility
to create alerts, such as sending emails, by checking the value of indices against thresholds.

Figure 4.6: Kibana logo

There are different categories of customization:

• Basics: classic shapes of data such as histograms, line graphs, pie charts, and more.

• Location analysis: data are represented on a map to explore location data.

• Time-series: graphics which uses time series to visualize data.

• Machine learning : find anomalies in data using unsupervised machine learning features.

• Graphs and networks: data are represented using graphs to discover relationships on data.

4.2.4 Beats

Beats is a free software which gathers data from devices. It is a lightweight shipper of data, which works as
an agent installed on devices: it collects logs or metrics from a device and sends them to Logstash, which
transforms and parses data, or Elasticsearch, which centralizes the data.
There are different types of Beats which allow to collect various data:

• Filebeat : allows to collect log files and forward them to Elasticsearch or Logstash for indexing.

• Metricbeat : gathers operating system metrics and information from services, such as Apache, Mon-
goDB, MySQL, PostgreSQL.

• Packetbeat : sniffs network traffic and allows to monitor applications and performance.

• Winlogbeat : is a shipper of Windows events log, such as application, hardware, security, system events.

• Auditbeat : gathers data from users’ activities and systems’ processes, and allows to identify security
branches.

• Heartbeat : is installed on a remote server and is used to check the status of services on another server,
for example, if the latter is reachable.

13

• Functionbeat : allows to collect data from a serverless environment and ship them to ELK stacks.

[https://www.elastic.co/guide/en/beats/libbeat/current/images/beats-platform.png]

Figure 4.7: Beats Diagram

4.3 Elastic SIEM

Elastic Stack is an efficient log management and analysis, which can collect information from a large number
of sources. These features are important to implement a SIEM which is why Elastic has presented a Security
Information & Event Management with the Elastic Stack.
Elastic SIEM allows to analyze environment behaviours, detect and solve threats, using real-time events
information.
Thanks to Kibana’s ability to customize visualization, users can monitor data and analyze information using
dashboards. ML jobs are implemented to control potential problems which are or are not expected. Due to
intelligence, alerts can notify possible threats to the security team.

14

5 Internet of Things

The terms Internet of Things (IoT) is used to describe a network of physical devices which are connected
to others to share data over the Internet.

In the 1980s and 1990s began debating about the idea of adding sensors and intelligence to objects, but
the idea was impracticable due to technology limitations: chips were too big and expensive for objects. In
1999 Kevin Ashton coined the phrase "Internet of Things" to describe this idea.
In the beginning, IoT was related to business and manufacturing, where its application was known as
machine-to-machine (M2M), but today the Internet of Things is also widely used in our homes and offices
thanks to smart devices that have become more and more important in our lives.

Thanks to the lower cost of chips and the increasing number of wireless networks, it is now possible
to connect a large number of devices, from the smallest to the biggest device. Some examples of objects
that usually people connect every day are sensors, smart-TVs, smartphones, smart speakers, appliances,
thermostats, home security systems, cameras, cars, also baby monitors.
Recent improvements that have enabled the implementation of the IoT idea are:

• Affordable and reliable sensors with low-cost and low-power consumption.

• Connectivity : the devices can be easily connected with other devices using the Internet with efficient
data exchange.

• Conversational artificial intelligence (AI): thanks to natural language processing (NLP) using neural
networks and applying it to IoT devices (e.g. digital personal assistants Alexa, Cortana, and Siri),
made it possible to use IoT devices in the home.

Nowadays there are more than 10 billion IoT devices and experts expect this number to grow to 22 billion
by 2025 and 125 billion by 2030.

[https://iot-analytics.com/wp/wp-content/uploads/2021/09/
Global-IoT-market-forecast-in-billion-connected-iot-devices-min.png]

Figure 5.1: Growth of IoT devices

The increase of IoT devices has led to the introduction of a new version of the Internet Protocol, the
IPv6, which is the successor of IPv4.

Total Number of Addresses

IPv4 IPv6

2
32

= 256
4
≈ 4.3109 21

28
= 16

32
≈ 3.41038

15

Connecting devices allow real-time data communication with minimal human intervention. IoT allows
automating systems, like factories, creating smarter and more responsive environments. Digital systems allow
to monitor and record the sensor data. In this way, the physical and digital world meets and cooperate.

Not only advantages from the IoT introduction but also disadvantages. The greatest problems are due
to the privacy and security of users’ data . Industry and governmental moves to develop standards and
guidelines to avoid those issues.

5.1 IoT Data Protocols

IoT devices need protocols to transfer data and communicate. In the IoT world, the devices are connected
through a wired, a cellular, or a Wi-Fi network.
The general goal of IoT data protocols is to manage large and often unreliable communication networks due
to the increasing number of small, cheap, and lower-power IoT devices that appear in the networks.

Different data protocols have been developed to allow IoT devices to communicate with others.
These protocols can be divided into two main categories:

• machine-to-machine (M2M): allows communication to devices with limited capacity in low-bandwidth
networks. Examples are:

1. MQTT - Message Queuing Telemetry Transport

2. CoAP - Constrained Application Protocol

• client-to-server : manages data transmission from device to server. Examples are:

1. HTTP - Hypertext Transfer Protocol

2. AMQP - Advanced Message Queuing Protocol

3. Websocket

Another protocol of interest is the DDS - Data Distribution Service protocol, which is considered the
first open international IoT middleware standard.

In the following paragraphs, the protocols are discussed in more detail.

5.1.1 Machine to Machine Protocols

5.1.1.1 MQTT - Message Queuing Telemetry Transport

The Message Queuing Telemetry Transport (MQTT) protocol is a lightweight protocol and is based
on the publish/subscriber model. This protocol allows low power consumption for devices and also works on
TCP/IP protocol.

The MQTT protocol has been adopted in many fields. Despite this, the data doesn’t have a specific
representation and are platform or vendor-specific.

5.1.1.2 CoAP - Constrained Application Protocol

In order to communicate, the IoT devices can use the HTTP protocol which is used in the World Wide Web,
but it’s a heavy and power-consuming protocol.

The Constrained Application Protocol (CoAP) translates the HTTP protocol. The protocol re-
duces overall consumption making it useful for devices with limited battery and resources.

The protocol is generally used for IoT microcontrollers or wireless sensors network nodes.

5.1.2 Machine to Server Protocols

5.1.2.1 HTTP - Hypertext Transfer Protocol

Another possible approach is the HyperText Transfer Protocol (HTTP), which is a request/response
protocol and is born for web communication. The drawbacks of this protocol are the costs, the huge con-
sumption of battery and it isn’t a lightweight protocol.

16

The protocol is used in some industries like 3-D printing because a large amount of data must be published
during communication.

5.1.2.2 AMQP - Advanced Message Queuing Protocol

The Advanced Message Queuing Protocol (AMQP) is used to manage the communication with servers
and is a secure protocol. The protocol receives messages and places them in queues, stores messages, and
creates a relationship between components.

This protocol is generally used in server-based analytical environments.

5.1.2.3 Websocket

WebSocket is born as part of HTML5. The protocol allows to send messages between the client and the
server using a single TCP connection.

The protocol is used in IoT networks where data are continuously communicated between different devices.

5.1.3 International IoT middleware standard

5.1.3.1 DDS - Data Distribution Service

DDS (Data Distribution Service) is an IoT protocol which allows high-quality communication and works
with the publish/subscribe model, like MQTT. The protocol is used in real-time and embedded systems.

The advantage over MQTT is that DDS allows to exchange data independently of hardware and
software platforms. This feature allows DDS to be considered as the first open international middleware
IoT standard.

5.2 IoT and SIEM integration

Nowadays, IoT devices can be considered as the main vulnerability of any system, because of their low
security, generally due to the few resources available in these devices that do not allow the execution of
energy-expensive software or other security measures that can be used.

The increasing development of IoT devices and their introduction into complex systems in various sectors,
including industry, has led to an increased focus on the security of these systems. This is done to increase the
security of these systems by protecting sensitive information and data and reducing the risk of these systems
being hacked, which can lead to serious damage to businesses such as business failure. The monitoring of
data and device logs becomes important in order to analyse and supervise their behaviour.

For these reasons, networks with IoT devices have been combined with SIEMs. In this way, the
network is continuously analysed and the devices are supervised in order to detect undesired behaviour,
incorrect accesses, and more. Notification of any issue allows security teams to work on making the network
more secure. The combination of SIEMs and IoT, therefore, allows security problems to be managed more
efficiently. Using SIEMs as supervisors of the environment can help decreasing vulnerabilities improving the
security of IoT networks.

Integrating the IoT with the SIEM can put the tool under pressure because the devices generate a large
amount of data. In order to reduce the amount of information, Big Data repositories could be used, which
collect only significant information from IoT devices. Then, SIEM works on the collected data and analyses
only the significant IoT information.

In the application section of the paper, a network of IoT sensors that are able to detect information
about the environment of a greenhouse is combined with a SIEM. This allows supervisors to simplify the
management and supervise the operations inside the greenhouse.

17

6 MQTT - Message Queuing Telemetry Transport

As introduced in the previous paragraphs, MQTT is one of the most used protocols in the IoT environment.
In this section, the protocol is discussed in-depth because it is used in the application part of the paper.
This protocol is aimed at minimising the resource requirements of the devices guaranteeing reliability and
message delivery.
These characteristics make the protocol suitable for environments where available resources and network
bandwidth are limited, and where there are remote devices with small memory and low computing capacity.
For those reasons, the MQTT is chosen in the applicative section between the protocols previously described.
Having to simulate a network of IoT devices, which are generally devices with little memory, little battery
power and low computing capacity, that have the task of collecting information about a greenhouse, explains
the use of this protocol.

The Message Queuing Telemetry Transport was invented in 1999 to manage communication between
machines efficiently, to minimise network traffic while requiring minimal energy consumption from the de-
vices involved. MQTT is a lightweight and energy-efficient application layer protocol, is simple to implement,
capable of efficiently distributing messages and allows to exchange information even when the networks are
not stable where the devices are connected.

The MQTT protocol is a protocol based on the publish/subscribe model using topics to organise mes-
sages. It is based on TCP/IP using the following ports:

• 1883 for non-encrypted communication;

• 8883 for encrypted communication.

Two main entities are important for the MQTT protocol:

• Client: produces and receives data by publishing or subscribing to a topic. MQTT protocol can be
considered as a bidirectional protocol because the devices can publish and also receive messages.

• Broker: also known as server, can be considered as a post office. It receives the published messages
from the clients and sends them to others which subscribe to a topic.

In the previous lines, the MQTT protocol has been defined as a publish/subscribe protocol. De-
vices publish messages in one topic and receive messages from other devices only from the topics they are
subscribers, all in an asynchronous way.

The following paragraph describes the structure of the topics.

6.1 Topics

The topics are UTF-8 strings which are used by the broker to filter messages. The topics may consist of
several levels. The character which allows creating a new level is the forward-slash (/).
Some examples of topics are:

• locker_room

• car/position

• home/livingroom/lights

The topics must consist of at least one character and are case-sensitive.
This structure of topics allows MQTT to be lightweight because doesn’t need to use a message queue.
The following image represents an example of an expansion tree of some topics.

18

[https://smarthomeblog.net/wp-content/uploads/2018/01/MQTTTopics.jpg]

Figure 6.1: Example MQTT Topics

6.1.1 Wildcards

In order to subscribe to a topic, a client subscribes to the exact topic and publishes messages. The client
can also use special characters called wildcards. These special characters allow to select different levels of
topics, but can’t be used to publish messages, only subscribe.
There are two different types of wildcards:

• Single Level (+): this wildcard replaces one level of topic. Every topic containing an arbitrary string
in +’s space is selected

home/+/lights

Topics Selected Topics Not Selected

home/livingroom/lights home/livingroom/temperature

home/kitchen/lights garage/lights

• Multi-Level (#): this wildcard allows to select more than one topic level. The subscriber receives all
the messages related to topics starting with the string before the wildcard character.

home/livingroom/#

Topics Selected Topics Not Selected

home/livingroom/lights home/bedroom/temperature

home/livingroom/temperature

home/livingroom/lights/shelf

6.2 Packet Structure and Control Packet

According to the MQTT protocol specifications, the packet has a fixed header of two bytes. The header is
followed by a variable header which depends on topic name length.

19

[https://www.automation.com/getmedia/fcd1f361-9e71-4f70-ab60-03eb68e5e401/IIot-figure-2-March-10-2021-web.png]

Figure 6.2: MQTT Packet

The header is composed of five fields:

• Packet Type (4 bit): it indicates the type of the packet, which represents the different behaviours of
the protocol.

1. CONNECT : when the client requests to connect to the server.

2. CONNACK : the server sends an acknowledgement to the connection request.

3. PUBLISH : to publish a message.

4. PUBACK : acknowledgement to message publication.

5. PUBREC : confirmation of receipt of the packet.

6. PUBREL: when a message is released.

7. PUBCOMP : publication of a message completed.

8. SUBSCRIBE : client requests to the server to subscribe to a topic.

9. SUBACK : the server sends an acknowledgement to subscribe request.

10. UNSUBSCRIBE : client requests to the server to unsubscribe a topic.

11. UNSUBACK : the server sends an acknowledgement to unsubscribe request.

12. PINGREQ : generates a request PING.

13. PINGRESP : it is used to PING response.

14. DISCONNECT : client disconnects from the server.

The numbers 0 and 15 are reserved values.

• DUP Flag (1 bit): it represents a duplicate flag and is used to mark messages which are duplicated.
This field is always 0 for all messages where the quality of service is 0 (described in the following
paragraph).

• Quality of Service (2 bit): it is used to choose QoS (described in the following paragraph). The
allowed values are:

00. QoS0

01. QoS1

10. QoS2

11. Not allowed

• Retain (1 bit): if this flag is set to 1, the server stores the message and the QoS to deliver it to future
subscribers.

• Remaining Length (8 bit): indicates the packet length

20

Figure 6.3: Fields of MQTT Packet

The payload field contains the message sent via the MQTT packet. It can contain every type of message
with a maximum size of 256MB.

Using MQTT protocol, a device can leave a message if it suddenly crashes or can’t connect to the server.
It is called the "Last Will and Testament" message. This special message can be specified when the
client sends CONNECT request.

Figure 6.4: MQTT control packet

21

6.2.1 Quality of Service

The MQTT protocol reserves a field for setting the Quality of Service level. It allows to choose how to
deliver a message to the broker by an agreement between client and server.
There are 3 levels of QoS:

• QoS 0 (at most once): it is fast and reliable and guarantees which message is delivered at least once.
With this level of quality of service, the client doesn’t receive any confirmation when the message is
published (as shown in Figure 6.5).
This level of QoS is generally used when data is not important and when devices have a stable con-
nection, such as a wired connection.

[Article [7] page 5 - Stress Testing MQTT Brokers]

Figure 6.5: MQTT control packet sequence QoS 0

• QoS 1 (at least once): this level guarantees that a message is sent to the receiver at least once, but
duplicates may be received. If the sender doesn’t receive a PUBACK message after publication in a
certain time, the submitter repeats the message and sets DUP field to indicate that it is a duplicate
(as shown in Figure 6.6).
This level of QoS is used to guarantee that the message is received and quickly sent.

[Article [7] page 5 - Stress Testing MQTT Brokers]

Figure 6.6: MQTT control packet sequence QoS 1

22

• QoS 2 (exactly once): it ensures that each message sent is received only once. It is the safest and
most reliable level but it is complex and bandwidth-consuming. The message is published, then the
receiver sends a PUBREC to confirm. The submitter sends PUBREL and the receiver replies with
PUBCOMP (as shown in Figure 6.8).
This level of QoS is used in applications where every message must be received and duplication must
be avoided. QoS 3 generates a lot of network traffic.

[Article [7] page 5 - Stress Testing MQTT Brokers]

Figure 6.7: MQTT control packet sequence QoS 2

6.3 MQTT Broker

The MQTT Broker (or server) is an important entity of the MQTT protocol. It is responsible for managing
the messages it receives from clients and forward them to subscribers using topics as filters. It also has the
task of authorizing and authenticating senders and subscribers.

[https://mqtt.org/assets/img/mqtt-publish-subscribe.png]

Figure 6.8: Example of communication between a temperature sensor,
the MQTT Broker, and other output clients

23

Different software of MQTT brokers have been developed, some examples are:

• Mosquitto

• Bevywise MQTT Route

• ActiveMQ

• HiveMQ CE

• VerneMQ

• EMQ X

Scalability means the ability to expand when the environment changed in size or scale and is a very
important factor to consider to build an MQTT Broker.
In order to manage scalability, MQTT brokers can be developed taking into account:

• Single system: improve Broker using an event-driven mechanism to manage TCP communications

• Clustering : the idea is to use a distributed system. Users observe that it behaves as a single broker,
but in reality, there are multiple MQTT brokers which share the workload.

MQTT broker software can be separated into two families, depending on implementations.
There are two types of message broker implementations:

• Single or fixed number of threads non-scalable broker which cannot use all system resources

• Multi-process scalable broker which uses all the available system resources

Using this logic MQTT Brokers can be divided into:

Non-scalable broker Scalable broker

Mosquitto and Bevywise ActiveMQ, HiveMQ, VerneMQ, and EMQ X

Mosquitto has a "bridge mode" which allows to create a cluster of message brokers with the drawback
of communication overhead inside the cluster.

In the article "Stress-Testing MQTT brokers: A Comparative Analysis of Performance Measurements"
[7], authors compared scalable and non-scalable brokers implementation in single-core and multi-core CPU
in stress conditions. They evaluated the latency of the systems, scalability, increasing the network traffic,
and availability, to control systems failure.

Results showed that Mosquitto and Bevywise, which don’t scale automatically to use available resources,
performed better in resource-constraint environments. However, in a distributed/multi-core environment,
ActiveMQ performed the best. It scaled well and showed better results than all other scalable brokers.

In general, to choose which broker to install must be considered environmental conditions.

6.4 MQTT Gateway

In order to improve the performance and efficiency of MQTT brokers, can be used devices which behaves
as MQTT Gateway. The purpose of these entities is to reduce the data which are sent to a broker. For
example, a temperature sensor is able to send hundreds of readings in a short time, and not always are useful
to humans. The goal of the MQTT Gateway is to reduce the network traffic, resample the sensor data and
send them to the Broker.

The general chain between MQTT entities can be represented in the following way:

1. Sensors detect information from the environment and send them to the MQTT Gateway

2. MQTT Gateway filters and reduces data volume

3. Reduced network traffic is sent to the MQTT Broker

24

6.5 Pros and Cons

The greatest advantage of the MQTT protocol is the simplicity of implementation.
Small and medium-sized enterprises are approaching the IoT world to take advantage of its great potential.

Softwares used for industrial IoT are usually expensive and protocols used are sophisticated. For resources,
costs reasons and thanks to its flexibility, small and medium-sized enterprises mostly use the MQTT protocol.

Other advantages are provided by the publish/subscribe architecture because it allows to manage and
process data in real-time.

The MQTT protocol was invented in the ’90s and its goal was to manage the machine to machine
communication. Nowadays not only M2M communication is required, but also machine to human. Some
examples are the voice assistants like Amazon Echo or Google Home, which are more present in our homes.

Another problem is related to security. When the protocol was invented, cybercrime was a small
phenomenon, and cryptography and authentication protocols weren’t enough developed. Some researches
have shown that lots of MQTT messages are usually stolen from MQTT brokers which are exposed to attacks.
Hackers may be able to control IoT endpoints or execute DDOS attacks.

25

7 IoT applications using MQTT protocol

A large number of IoT devices are available today. As discussed in the previous chapters, IoT devices
generally use the MQTT protocol to transmit and collect data computed or measured by the devices.
These devices, such as sensors, electric sockets, and more, can simplify everyday life, and they can also be
applied in any field by helping and facilitating processes.
IoT devices can be used in sectors such as:

• Healthcare

• Agriculture

• Smart home

• Smart city

• Smart metering

• Industry

• Robotics

• Biomedical engineering

• Video surveillance

In the following paragraphs, some IoT applications in different fields and their contributions are analyzed.

7.1 Smart Home

The most common application of IoT devices concerns smart homes. Electrical sockets, light bulbs, ther-
mostats, smart boxes, and more are devices connected to others to control and manage your home. The
introduction of voice assistants has accelerated the use of IoT devices in homes.

Usually, devices communicate using the MQTT protocol. Smart home devices data are collected to an
MQTT server and the user, using mobile applications, can control the information of the house.

For example, it is possible to gather the states of the lights (ON - OFF) in the house, collecting them
in specific topics with the MQTT protocol, and the user can check if he has turned off the lights when he
already left the house. Moreover, using the voice assistants, the user can turn on the lights with a voice
command.

Another application can be a soil sensor which activates irrigation as soon as the soil is not sufficiently
wet.

The main problem is related to security. According to a study by Avast researchers, around 49,000
MQTT servers are public due to incorrect configurations, including around 32,000 without any password
[53]. These MQTT servers can be hacked using requests which contain wildcards to subscribe to any topic,
or an attacker can visualize the server dashboard without any impediment.
MQTT Server if incorrectly configured could expose personal information about a person’s home.

For this reason, it is important to protect the data in Smart Home, as in any other application in the
IoT world.

7.2 Smart City

Monitoring the city environment through sensors has become of interest to improve the level of well-being
in the city. IoT devices are geographically distributed around the city to collect environmental data such as
traffic in the streets, parking, traffic lights, air pollution levels (NO2, SO2), weather, and more. Once the
data are collected, they are processed and managed to take action to manage the city and citizens.

The MQTT protocol plays an important role, because it has good performance even in conditions of low
connectivity, and allows the transmission of data even with bad connectivity.

26

For example, using a sensor which measures the air quality, the information can be used to decide where
to direct traffic to reduce pollution levels in order to have an acceptable air quality.
Another application concerns the monitoring of traffic lights and traffic: using this information the green
light duration of traffic lights can be changed, or cars can be redirected within the city by reducing city
traffic.

In conclusion, the use of devices which are able to gather data from the environment and monitoring
them allows to achieve more secure and safer cities for citizens.

7.3 Industry

The industry sector is a competitive world. The introduction of Industry 4.0 aims to optimize production
and save time by collecting factory data. Real-time and dynamic data analysis can help to solve problems
efficiently, prevent system maintenance, as well as create precise statistics on product quality.

IoT devices can be used to monitor the environment by reporting and collecting diagnostic information.
The MQTT protocol helps medium and small enterprises which can’t afford to buy expensive programs,

because it is an excellent compromise, in order to improve their business operations.
In the oil and petroleum industry SCADA systems, which are distributed systems that use PLCs to

monitor and supervise physical systems, are used. IoT devices can replace these expensive systems, reducing
hardware and software costs, even by 50%, and operations and maintenance personnel by 70%.

IoT devices can be applied in logistics by giving more services to customers.
Thanks to its easy implementation, the MQTT protocol allows to quickly and effectively update facilities,

helping companies to reduce costs and to increase production.

7.4 Healthcare

IoT devices are also used in the health field. They allow to collect patient information, such as temperature,
oxygenation, blood pressure, sugar levels, and more. By gathering this data in a non-invasive way and
without visiting a user, a doctor can remotely monitor a patient and make a decision for his health, or can
collect information which will be used in the hospital.
An example of a device which collects information is a smartwatch.

A sample application was developed by IBM. In this project, an implanted defibrillator communicates
with a hospital, providing patient and device data. Collected data are securely transferred to the hospital
using the MQTT protocol. The system reduces patient visits and can alert the hospital in case the device
or patient needs attention.

IoT devices allow to improve the quality of care, especially in the management of chronic conditions, by
reducing emergencies, and improving patient outcomes.

7.5 Agriculture

In the agriculture field, IoT devices help in precision agriculture. An example of the application of the
MQTT protocol is hydroponic greenhouses.
Greenhouses help farmers to cultivate plants by protecting them from extreme weather events and insects.
The hydroponic technique consists in cultivating plants without soil, feeding them through aqueous solutions.
In hydroponic greenhouses, is important to monitor environmental factors, such as oxygenation, light inten-
sity, air humidity, pH, temperatures, and more. These values allow to evaluate how to feed plants also based
on further information, such as the age of the plant. The data are collected and visualized by experts to
manage the greenhouse.

The use of IoT devices allows to be more efficient than a human, that executes repetitive work, optimize
plant nutrition, and reduce any waste.

27

8 SIEM supervises a hydroponic greenhouse

8.1 Introduction

Nowadays, IoT devices are applied in many fields including agriculture. New tools are created all the time,
and they are capable of taking increasingly precise measurements of the surrounding environment, allowing
a user to monitor it precisely. These instruments are also often able to make decisions on their own.

An interesting example is greenhouses. Greenhouses are environments in which plants can grow and
protect from adverse weather conditions and attacks by unwanted insects. Controlling the environment
inside greenhouses gives the possibility to optimize plant growth: monitoring the values of the soil or other
factors can improve the actions to be taken to obtain the best results from cultivation. Sensors allow to
collect data from the environment and make them available to supervisors who can understand them and, if
necessary, make decisions.

Greenhouse 1 Greenhouse 2

Figure 8.1: Supervised hydroponic greenhouse

In the project that has been developed, a hydroponic greenhouse is monitored, which is a greenhouse in
which plants are fed with nutrient-rich water solutions. Sensors monitor the environment by taking measure-
ments and can take actions autonomously in certain circumstances. The data collected by the sensors are
communicated to a central server using the MQTT protocol, which is easy to implement and is suitable
for any farm. In the project, the measurements are not real but are simulated through a Python script
which is described in the following paragraphs. Furthermore, the hydroponic greenhouse that is analyzed is
simplified, using a reduced number of sensors. In the following paragraphs the MQTT Broker that is used,
Mosquitto, is also described.

A large amount of data are collected via sensors. Analyzing those data and monitoring them all together
can be difficult for a human. To monitor and control them efficiently, a SIEM is used. It allows to organize,
index, visualize, control through the use of alerts the collected information. In the project, Elastic SIEM
is used as a tool to analyze the data. Some graphics are constructed to allow a supervisor to monitor the
environment continuously. Colors are used to identify values that may be problematic or irregular. In this
way, the supervisor can immediately understand what the problems are and try to solve them. The sending
of e-mails is not managed because this is a function that is activated with a paid version of the tool.

To simulate the described environment, virtual machines are used to reproduce the behaviour of the
greenhouse’s sensors and supervise it. In the following sections, their configurations are described.

In addition to managing the safety of the greenhouse, it is also very important to handle the security
of the environment.
The network structure can also be subject to external or internal attacks. The goal of an attacker may
be to damage the network or environment devices, create slowdowns and more. In this way, for example,
the attacker can sabotage production, creating damage to company productivity and economy.

In the following paragraphs, the simulation that is performed also contains the execution of some attacks.
An attacking host tries to violate network security by damaging the main server where the MQTT broker
is installed and interrupting the functioning of data collection by blocking the port listening to MQTT mes-
sages.

28

In this way, the SIEM behavior can be evaluated, and consequently the security of the network can be
improved.

8.1.1 Eclipse Mosquitto

In the project concerning the hydroponic greenhouse, sensors communicate their measurements through the
MQTT protocol. A fundamental entity which allows to collect and analyse collected data is the MQTT
Broker. Its role is to gather messages sent by clients and forward them to subscribers, using topics as filters.
In the previous chapters, some MQTT Brokers have been compared.

A message broker from the Eclipse Foundation is used for the project: Mosquitto. It is an open-source
and lightweight tool which can be used in any device, thanks to its efficient implementation which allows
low energy consumption. Moreover, Mosquitto is a portable software available on different platforms.

[https://it-obey.com/wp-content/uploads/2021/02/mosquitto-logo.png]

Figure 8.2: Mosquitto logo

It also provides two operations via command line:

1. mosquitto_pub: to post messages in a topic;

mosquitto_pub -h host -t topic -m "I'm a message"

2. mosquitto_sub: to subscribe to a topic and receive messages.

mosquitto_sub -h host -t topic -d

In the project, Mosquitto is installed on a host using Ubuntu Server as its operating system.
In the hydroponic greenhouse project, the MQTT Broker has the task of collecting the information from

the sensors and making it available to SIEM, which allows a supervisor to analyze it.

8.1.2 Paho-MQTT

Paho is an Eclipse Foundation project. Paho-MQTT represents a library which implements the MQTT
protocol. It is implemented in different programming languages, such as Java, Python, C, C#, JavaScript,
and others.

Figure 8.3: Paho-MQTT Eclipse logo

The project manages machine-to-machine (M2M) communication by implementing the functions which char-
acterize the MQTT protocol. The project provides a client class and functions which allow to publish one-time
messages to an MQTT Broker and subscribe topics.

In the hydroponic greenhouse project, the Paho-MQTT project is used to create a sensor simulator in
Python, which sends sensors data to MQTT Broker. In order to install Paho-MQTT can be used the pip
tool:

pip install paho-mqtt

pip3 install paho-mqtt

29

8.2 Simulation analysis

8.2.1 Intent

In the application section, a SIEM is combined with a network of IoT sensors that are used to collect in-
formation in a greenhouse. The goal is to evaluate the behaviour of the tool in an IoT environment with
devices composed of elementary hardware, and whether it is an effective solution to solve vulnerabilities in
a system making it more secure.

The attack surfaces of the IoT, which are the set of real and potential vulnerabilities of a system, can be:
[8]

1. Devices: attackers can exploit vulnerabilities in devices to perform an attack. They can use outdated
components, insecure settings or updates, exploit available interfaces, network services and more.

2. Communication channels: IoT systems can be attacked by exploiting system composition and
protocols, for example by creating a denial of service (DoS) and spoofing attacks.

3. Applications and software: attackers can use software flaws, for example, to steal credentials or
make malicious firmware updates.

Attackers can therefore exploit flaws within the system to perform attacks. Examples are:

• Denial-of-Service (DoS): attacks whereby can be interrupted services.

• Spoofing: attackers collect information passing through the network in order to exploit it.

• In the case of the MQTT protocol, an attacker can hack into the system and subscribe to a topic to
collect data or publish malicious data to create malfunctions.

• Exploit application vulnerabilities in order to obtain information that should only be accessible to
authorised persons.

• Ransomware with which important system data are scanned and encrypted.

The purpose of the attacks is to slow down or block the system operation, and, in the case of the greenhouse,
can lead to a decrease in production creating also economic problems.

Three types of attack are performed in the application section:

• ICMP Flood: this is an attack in which an attacker loads a device with requests using the ICMP
protocol in order to carry out a denial of service attack. The aim is to interrupt the function of the
server.

• DoS MQTT port attack: another DoS attack is also carried out on the server. In this attack,
innumerable requests are opened on port 1883 of the MQTT broker, causing the block of the service
and interrupting the function of the entire system.

• DoS attack on Kibana: the attacker’s goal is to interrupt the smooth operation of the Kibana service
by blocking the display of data to the supervisor.

The SIEM, therefore, has the task of supervising the system and its behaviour is analysed.

In addition, a simulator is created to simulate IoT devices using a host on which a Python script is
run. The simulation creates measurements of the devices in the greenhouse allowing them to be monitored.

Data are communicated using the MQTT protocol which allows sharing information in a lightweight
way. A QoS level 1 is used because the data must be guaranteed to be sent quickly without saturating the
network traffic.
The information collected is structured using a JSON object. The MQTT messages are then sent to a host
that works as a broker, where Mosquitto is installed and run on port 1883.

30

The SIEM that is used is Elastic SIEM. All 4 modules of Elastic are used in the simulation.

• Beats: two modules are installed: Packetbeat and Filebeat.

1. Packetbeat : is used to sniff network traffic about the data visualisation host and the MQTT
broker, allowing applications and performance to be monitored. The data collected are then
directly sent to the Elasticsearch engine, because the data do not need parsing.

2. Filebeat : using this module to collect logs, MQTT messages are collected and managed by the
Broker by filtering them using a topic. The information is then forwarded to Logstash.

These modules are installed on the hosts where the broker and Elasticsearch run.

• Logstash: is responsible for managing the payload of MQTT messages. Logstash receives the content
of the MQTT messages and extracts the JSON object. Then the object is forwarded to the Elasticsearch
engine.

• Elasticsearch: receives the sniffed network packets and the JSON objects representing the state of
the greenhouse and indexes them to be efficiently analysed and stored.

• Kibana: allows the supervisor of viewing historical and real-time data, and also of setting alerts.

Dashboards are created to keep track of packets traversing the network. Different types of graphs are
shown, allowing to check the flow of network packets. The bitstreams occurring in the network server can
be monitored by filtering information through hosts and IPs.
The graphs used are histograms and pie charts. Each one is used to represent a specific type of network
packet and a specific host.
The information is automatically updated every few seconds.

Two more dashboards are created for a supervisor representing the information collected by the sensors
in the greenhouse. The displays update automatically according to the data received.
In the two dashboards, the data are represented with the same types of graphs, but the information is dif-
ferent depending on the plantation.
The created dashboards allow highlighting the data using the following structure:

1. Table containing all measured data sorted by the hour and day. The values are colored to allow the
supervisor a clearer view, especially if the values are outside the correct ranges.

2. Line graphs showing the sensors’ value.

3. Display of current measured values.

This system makes it possible to create a network of IoT devices supervised by an Elastic SIEM. The
structure allows to evaluate the effectiveness of a SIEM in a complex system with IoT devices in
which safety and security are to be monitored.

The appendix to paragraph A.2 explains in a more detailed way how the whole system is configured.

8.2.2 Limitations

The system consisting of several IoT devices supervised by a SIEM which is simulated has some limitations
compared to a real environment.

First of all, the Python script has the task to simulate only the values collected by the sensors from the
environment. In this way, the system is not affected by sensor failures or incorrect readings.
Other network problems that may arise during data communication are not considered in the simulation, e.g.
malfunctioning network devices such as a switch, or network congestion due to high traffic generated
by IoT devices.

Due to this shortcoming, using the SIEM tool to monitor and detect information in case problems arise
to the sensors, intrusions or attacks to the devices, or problems with some component of the system is not
possible. Thus, the functionality of the tool is not fully exploited .

31

Another limitation is due to some paid features of the Elastic SIEM. In fact, for example, the sending
of emails is not implemented because it is a paid feature. This function would be useful when the values
detected by the sensors exceed a certain threshold, and the supervisor is automatically notified by email,
allowing him to take immediate action.

Other simulations can be developed to simulate possible problems with the sensors and devices in the
network.

8.3 Sensors

The peculiarity of hydroponic greenhouses compared to classic structures is that the plants grow without
using the soil: aqueous solutions are used to feed plants.
Environmental factors, such as oxygenation, light intensity, air humidity, pH, temperatures, and more, must
be monitored to minimize waste and optimize plant development by creating the best environment.
These parameters can be monitored using sensors which may be able to perform operations. For example,
if the CO2 level in the greenhouse is too high, the environment is ventilated through specific air pumps.

In the project, the information collected by sensors is communicated through the MQTT protocol, and
the greenhouse data are supervised using a SIEM tool.

Sensors

Hydroponic

Greenhouse

MQTT

Gateway

MQTT

Broker
Elastic SIEM

Supervisor

Figure 8.4: Structure of hydroponic greenhouse

Sensors are not real sensors but are simulated using a Python script which uses the Paho-MQTT library.
The hydroponic greenhouse project which is simulated is a simplified greenhouse. The simulated sensors are
represented and described in the following table.

Description
Range Unit of

Value Measure

Temperature Temperature inside the greenhouse 18 - 26 °C

Light Intensity Number of hours during which plants are exposed to the sun 12 - 18 h

Humidity Humidity in the air 65 - 70 %

CO2

CO2 is used in plants photosynthesis and allows to convert

ppm
solar energy into chemical energy:

• under normal circumstances 1.000–1.300

• for tomatoes, lettuce, cucumbers, and peppers 800–1.000

• for violets and Gerbera varieties 500-800

32

EC
Electrical Conductivity measures the concentration of salts

500 - 2000 µS/cm
by measuring small currents in an aqueous solution

Soil Moisture Humidity in the soil 50 - 60 %

pH
Potential hydrogen which measures aqueous solution acidity

5.5 - 6 pH
and alkalinity

The simulation script also works as MQTT Gateway. It generates and sends data sensors every second.
These data represent the set of measurements taken by the sensors and collected by the gateway, which
aggregates the information and send it to the broker.

The content of MQTT messages is structured in JSON format. It is a simple format which allows to
exchange data and is independent of the language. The messages contain information about the readings of
the sensors and the timestamp which represents the sensor event.

The following JSON structure is used.

1 {

2 "@timestamp": "2021 -12 -19 T00 :00:00", // timestamp of sensor data

3 "temperature": 20, // temperature in Celsius

4 "lightState": true, // light OFF or ON

5 "minutesLightON": 120, // minutes light ON

6 "minutesLightOFF": 140, // minutes light OFF

7 "humidity": 67, // greenhouse humidity

8 "CO2": 950, // CO2 level

9 "EC": 900, // EC value

10 "soil": 55, // percentage of soil moisture

11 "pH": 6 // pH value

12 }

The MQTT topic is used to distinguish the various plantations in the greenhouse. Each plantation mes-
sage has /greenhouse as the base level, and the next level represents the type of plantation, e.g. tomatoes,
cucumber, lettuce, strawberry, Gerbera, etc.

The task of the script is to simulate the sensors of the hydroponic greenhouse and send them to the
MQTT Broker, using a level 1 QoS that guarantees that a message is sent to the receiver at least once.
The data sent will be available to the SIEM, with which a dashboard will be created allowing a supervisor
to oversee the greenhouse.

8.3.1 Simulator

The Python script has the task of simulating the sensors which are used in a hydroponic greenhouse. It
generates and sends MQTT messages to the MQTT Broker, containing sensor measurements which are
aggregated by the MQTT Gateway. The content of the message is structured using the JSON format with
the fields described in the previous paragraph.

The Python script can have different behaviours depending on the command line arguments. The
only mandatory argument is the plant type ; using this value the simulator returns sensor values which
conform to the plantation as in the table described in the previous paragraph.

python simulator.py plantation [options]

In addition to this argument, the script has 13 other arguments. Seven of them allow to set the values
generated by the simulator, which generates correct values if the argument is not present, otherwise, it sends
incorrect ones.

1. -t or --temp: for temperature.

2. -l or --light: for the duration of the light on.

33

3. -u or --hum: for the humidity of the air.

4. -c or --co2: for CO2 levels.

5. -e or --ec: for EC values.

6. -m or --soil: for soil moisture.

7. -p or --ph: for the pH value.

Five other arguments give the possibility to set the simulations:

8. -n SIM or --sim=SIM: number of simulations which are executed. The default value is 144, one simu-
lation every 10 minutes daily.

9. -s SEED or --seed=SEED: allows setting the seed used to generate the sensor values in order to repeat
the tests.

10. -D DAY or --day=DAY: day number of the timestamp. The default value is 1.

11. -M MONTH or --month=MONTH: month number of the timestamp. The default value is 12.

12. -Y YEAR or --year=YEAR: year number of the timestamp. The default value is 2021.

In addition, there is the argument -h (or --help) which allows to show the helper. The OptParse library is
used to parse command-line arguments.

The libraries used to generate the data and carry out the simulation are imported into the script.

1 import time #import time to sleep process

2 from datetime import datetime #import to build timestamp

3 from datetime import timedelta

4 import json #import to parse json objects and strings

5 import numpy.random as rnd #numbers generation

6 import paho.mqtt.client as mqtt #import MQTT client

7 from optparse import OptionParser #parse command-line arguments

The simulation script consists mainly of two classes:

1. Simulator: class for simulating the greenhouse’s sensors.

2. SensorSimulation: executes the simulation of the greenhouse using the simulator and sends messages
to the Broker.

The Simulator class is used to simulate the sensors.
The constructor method receives as parameters the plant type and a flag for each data measured by the
sensors, which allows the simulator to decide whether to generate values in the correct range or not. As an
optional parameter, it can receive the seed to make the tests repeatable. The ranges used are those described
in the table in the previous paragraph:

1 # range sensors' value

2 __range_temp = (18, 26)

3 __range_hours_light = (12, 18)

4 __range_hum = (65, 70)

5 __range_co2 = [(800, 1000), (500, 800)] # depends on plantation

6 __range_ec = (500, 2000)

7 __range_soil = (50,60)

8 __range_ph = (5.5, 6)

34

The initial value of the sensors is chosen randomly among the range values. Using the value representing
the hours when the lighting is on, the photoperiod is calculated and constructed to represent when the
greenhouse lights are on or off. In the constructor method, the timestamp is also initialized.

The class provides a method called simulate(). The method simulates a measurement made by the
sensors, representing the aggregation of the measurements made in 10 minutes inside the greenhouse. It
returns the values of the fields used in the MQTT message and the timestamp which indicates the date and
time of the measurement.
The sensor values are updated randomly with a variation obtained from a Gaussian distribution when the
method is called. If the sensor value remains within the range and the update takes it out of it, the variation
is reversed.

1 # Update value using Gaussian distribution

2 def __gauss_update(self, value, rng, mu=0, sigma=0.1, r=2, check_range=True):

3 # compute gaussian value

4 var_value = round(rnd.normal(mu, sigma), r)

5 # update value

6 new_value = round(value + var_value, r)

7 # check value within range

8 if check_range and (new_value > rng[1] or new_value < rng[0]):

9 return round(value - var_value, r)

10 return new_value

In addition, the timestamp is updated by increasing it by 10 minutes. In case the timestamp represents
the start of a new day, the photoperiod is also updated as done for the constructor.

1 # Method which simulates sensors

2 def simulate(self):

3 # Method which computes light state using photoperiod

4 def compute_light_state(hours_simulation)

5

6 # Method which calculates daily hours spent in the simulation

7 def compute_hours_simulation(count_day_simulation)

8

9 # Method which computes minutes

10 def compute_minutes(date_minutes)

11

12 # if 24 hours have passed, update the photoperiod

13 hours_simulation = compute_hours_simulation(self.__count_day_simulation)

14 if(self.__count_day_simulation > self.one_day_simulations):

15 self.__tot_light_on, self.__act_light, self.__photoperiod =

self.__photoperiod_builder()→֒

16 self.__minutes_light_on = self.__minutes_light_on.replace(hour=0,

minute=0)→֒

17 self.__minutes_light_off = self.__minutes_light_off.replace(hour=0,

minute=0)→֒

18 self.__count_day_simulation = 0

19

20 # store sensors value

21 timestamp, temperature, light_state, humidity, CO2, EC, soil_moisture, pH =

self.__timestamp, self.__act_temp, compute_light_state(hours_simulation),

self.__act_hum, self.__act_co2, self.__act_ec, self.__act_soil, self.__act_ph

→֒

→֒

22 minutes_light_on = compute_minutes(self.__minutes_light_on)

23 minutes_light_off = compute_minutes(self.__minutes_light_off)

35

24 # update sensors value

25 self.__act_temp = self.__gauss_update(self.__act_temp, self.__range_temp,

sigma=0.25, r=1, check_range=(not self.__warning_temp))→֒

26 self.__act_hum = self.__gauss_update(self.__act_hum, self.__range_hum, sigma=0.2,

r=2, check_range=(not self.__warning_hum))→֒

27 self.__act_soil = self.__gauss_update(self.__act_soil, self.__range_soil,

sigma=0.2, r=2, check_range=(not self.__warning_soil))→֒

28 self.__act_ph = self.__gauss_update(self.__act_ph, self.__range_ph, sigma=0.03,

r=1, check_range=(not self.__warning_ph))→֒

29 self.__act_co2 = self.__gauss_update(self.__act_co2,

self.__range_co2[self.__idx_plantation], sigma=5, r=0, check_range=(not

self.__warning_co2))

→֒

→֒

30 self.__act_ec = self.__gauss_update(self.__act_ec, self.__range_ec, sigma=15,

r=0, check_range=(not self.__warning_ec))→֒

31

32 #update timestamp

33 self.__timestamp = self.__timestamp +

timedelta(minutes=self.__minutes_sensor_data)→֒

34 self.__minutes_light_on = self.__minutes_light_on +

timedelta(minutes=(self.__minutes_sensor_data if light_state else 0))→֒

35 self.__minutes_light_off = self.__minutes_light_off +

timedelta(minutes=(self.__minutes_sensor_data if not light_state else 0))→֒

36

37 # update counter of simulation

38 self.__count_day_simulation += 1

39

40 return timestamp, temperature, light_state, minutes_light_on, minutes_light_off,

humidity, CO2, EC, soil_moisture, pH→֒

Finally, the method returns all the fields which are used to construct the JSON.

The other SensorSimulation class uses the simulator to generate the data and send it to the MQTT
broker using the Paho-MQTT library. The IP address of the broker is that of the host where Mosquitto
is installed: 192.168.10.50. The MQTT messages are sent using a QoS of 1 and the topic uses as prefix
/greenhouse and as suffix the plantation, for example, /greenhouse/tomatoes. The constructor method
receives as parameters the type of plantation, the flags related to the simulation, the topic, the id value used
to connect to the Broker, for example, "TomGreenhouse" and initializes the simulator.

The class has a method called simulate() which receives as a parameter the number of simulations to
be carried out. It first connects to the MQTT server and subscribes to the topic. This allows checking if the
messages have been correctly sent and received by the Broker. After opening the connection and enabling
the reading and writing of messages, the method starts the simulation. Within a loop the simulate method
of the SensorSimulation class object is executed, the message in JSON format is constructed and sent to
the Broker. After waiting a few seconds, these operations are repeated. Once the simulation is complete,
the connection to the server is closed.

1 def simulate(self, num_simulation=Simulator.one_day_simulations):

2 # given parameters the function builds JSON object

3 def __json_builder(timestamp, temperature, light_state, minutes_light_on,

minutes_light_off, humidity, CO2, EC, soil_moisture, pH)→֒

4

5 # Callback function which allows to print received messages of a topic

6 # It is used to check if messages have been correctly sent

7 def __on_message(client, userdata, message):

36

8 print("Received message:")

9 print("\tMessage:", str(message.payload.decode("utf-8")))

10 print("\tTopic:", message.topic)

11

12 # create client connection

13 print("Creating", self.__plantation, "client connection...")

14 client = mqtt.Client(client_id=self.__client_id)

15 # set callback which allows to received messages of a topic

16 client.on_message = __on_message

17 # connect to MQTT broker

18 print("Connecting to MQTT broker...")

19 client.connect(broker_address)

20

21 # enable reading and writing data

22 client.loop_start()

23

24 # start to send messages.

25 # It stops the simulation using the number of simulations

26 for i in range(num_simulation):

27

28 # subscribe topic to read messages

29 print("Subscribing to topic:", self.__topic)

30 client.subscribe(self.__topic)

31

32 # publish messages to topic

33 print("Publishing message to topic:", self.__topic)

34

35 # simulate sensor value and build JSON object

36 timestamp, temperature, light_state, minutes_light_on, minutes_light_off,

humidity, co2, ec, soil_moisture, ph = self.__simulator.simulate()→֒

37

38 # build JSON object

39 json_obj = __json_builder(timestamp, temperature, light_state,

minutes_light_on, minutes_light_off, humidity, co2, ec,

soil_moisture, ph)

→֒

→֒

40

41 # publish message

42 client.publish(self.__topic, json.dumps(json_obj), qos=qos)

43

44 # wait to simulate

45 time.sleep(sleep_time)

46

47 # stop the loop

48 client.loop_stop()

49 client.disconnect()

The main method has the task of parsing the command line, initializing the simulation, and executing it.

The complete Python code of the simulator with comments can be found in the appendix in paragraph
A.1.

37

8.4 Network Structure

In order to run the simulation of the hydroponic greenhouse, virtual computers are created with different
tasks such as simulating sensors, collecting data, and supervising through Elastic SIEM.
Computers are virtualized using Oracle Virtualbox 6.1.30, an open-source software which offers a per-
forming system and allows to virtualize a large number of operating systems.

To implement the structure of a hydroponic greenhouse supervised by a SIEM, 3 different PCs with dif-
ferent tasks are used.
The hosts’ structure to simulate the hydroponic greenhouse can be schematized as follows:

Supervisor

MQTT Broker

Sensors Simulator

Host

Elastic SIEM

192.168.10.70
Host Mosquitto

Logstash

192.168.10.50 192.168.10.240

Figure 8.5: Architecture of hydroponic greenhouse simulation

A fourth host is used to execute attacks using Kali Linux, which is usually used for ethical hacking. The
host is located within the network.

8.4.1 Sensors Simulator

The operating system which is used in the first computer is Lubuntu. This OS is a lightweight system with
small consumption of hardware resources. The computer which has installed this operating system has the
task of simulating the sensors of the greenhouse and the MQTT gateway. It is used to run the Python
- Paho-MQTT script described in the previous chapter. The gathered JSON data are sent to the MQTT
server.
In the following table, there are virtual machine characteristics.

Sensors Simulator

Processor: 2

Disk Size: 10 GB

RAM Memory: 4 GB

Network adapters: 2

1. Bridged networking

2. Internal networking: greenhousenet

IP Address: 192.168.10.70

Operating System: Lubuntu 21.10

38

8.4.2 Host Mosquitto - Logstash

A second PC works as MQTT Broker and Ubuntu Server is used as OS. Its role is to receive the MQTT
messages sent by the simulator, save and forward them. In this PC the Mosquitto software is installed which
is an implementation of the MQTT Server.
Also, Logstash and Beats which are part of Elastic Stack are installed. The Beats installed are:

• Filebeat: is used to collect information from messages sent via the MQTT protocol

• Packetbeat: is used to sniff network traffic and monitor applications and performance.

Data gathered through Packetbeat are sent directly to the Elasticsearch engine, while information collected
through Filebeat is transformed and parsed with Logstash and sent to SIEM.
In the appendix paragraph A.2, the installation and configuration are described.
The following table shows the virtual machine characteristics.

Host Mosquitto - Logstash

Processor: 3

Disk Size: 40 GB

RAM Memory: 4 GB

Network adapters: 2

1. Bridged networking

2. Internal networking: greenhousenet

IP Address: 192.168.10.50

Operating System: Ubuntu Server 21.10

8.4.3 Host Elastic SIEM

Also, in the third computer is installed Ubuntu Server as the operating system. On this PC are installed:

• Elasticsearch: the heart of Elastic SIEM;

• Kibana: allows to visualize the information received from hosts;

• Packetbeat: used to sniff network traffic about the Elastic SIEM host.

Thanks to this host, a supervisor can see some dashboard filled with information about the network traffic
generated by the devices in the network and the values of the simulated sensor.
In the following table, there are virtual machine characteristics.

Host Elastic SIEM

Processor: 4

Disk Size: 80 GB

RAM Memory: 8 GB

Network adapters: 2

1. Bridged networking

2. Internal networking: greenhousenet

IP Address: 192.168.10.240

Operating System: Ubuntu Server 21.10

39

8.4.4 Attacker host

A host on which is installed Kali Linux as an operating system it’s used to execute attacks. The OS is
a GNU/Linux distribution, generally used in the field of computer security, in particular for penetration
testing.
Virtual machine characteristics are described in the following table.

Attacker host

Processor: 2

Disk Size: 30 GB

RAM Memory: 4 GB

Network adapters: 2

1. Bridged networking

2. Internal networking: greenhousenet

IP Address: 192.168.10.10

Operating System: Kali 2021.4

8.5 Simulation of Hydroponic Greenhouse supervised by SIEM

After completing the configuration of the hosts and creating the dashboards, the entire system is activated.
First, the virtual machines are started, and then the simulation script on the host at address 192.168.10.70
is executed.

8.5.1 Network Attacks

In the application section, various types of attacks are performed. The purpose is to use the SIEM to
supervise the system by analysing the network packets passing through the network. In this way, the
behaviour of the SIEM is evaluated in order to evaluate and improve the security of the network.

Several attacks are performed against the two most important hosts of the simulation: the MQTT Broker
and the host where the Elasticsearch engine is installed. The attackers try to stop the main services running
in these hosts. The attacks that are performed are:

• ICMP Flood: this is a DoS attack using the ICMP protocol with the aim of stopping the operation
running on the Elasticsearch hosts.

• DoS attack on MQTT port: the attacker blocks the MQTT Broker’s service on port 1883 thus
interrupting the operation of the data collection system.

• DoS attack on Kibana: the attack stops the operation of the Kibana service, blocking the dashboard
shown to the supervisor.

The attacks are executed using hping3. This software generates packets for the TCP/IP protocol,
allowing attacks to be launched on victim hosts.
The main parameters that are used in the application section: [57]

• --flood: mode in which messages are sent as fast as possible.

• --icmp: to activate the ICMP mode.

• -S: set SYN flag.

• -p <port>: destination port.

• -i <packet sending time interval>: message sending time interval.

40

• <attacked host IP address>: IP address of the attacked host.

The dashboards available to the security team show the traffic generated by the devices in the network,
representing the source and destination. The main host generating network traffic is the one simulating the
sensors.

Figure 8.6: Percentage graph of network traffic in normal situation

Figure 8.7: Pie chart of network traffic in normal situation

41

In addition, the status of the MQTT Brokers is displayed while the sensors are sending messages.

Figure 8.8: Histogram of MQTT packets in normal situation

Figure 8.9: Pie chart of MQTT packets in normal situation

A portion of the dashboard is used to show the status of the server. Specifically, ICMP packets and re-
quests to port 5601 of Kibana are shown.

42

Figure 8.10: Histogram of ICMP packets in normal situation

Figure 8.11: Pie chart of ICMP packets in normal situation

Figure 8.12: Histogram of HTTP requests in normal situation

43

Figure 8.13: Pie chart of HTTP requests in normal situation

Attacks lead to alterations of these situations.

8.5.1.1 ICMP Flood

The first attack that is performed at the network is the ICMP Flood. In this attack, the attacker sends
a large number of requests to the host where the heart of the SIEM is installed: Elasticsearch, using the
attacking host with Kali Linux installed as the operating system. In this way, the attacker succeeds in
blocking the operation of the system.

The following command is used to launch the attack:

hping3 --flood --icmp -S 192.168.10.240

The situation that can be observed is the following.
Network traffic shows that a new host with IP address 192.168.10.10 is generating a large amount of traffic
into the network, disrupting the following graphs.

Figure 8.14: Percentage graph of network traffic during the attack

44

Figure 8.15: Pie chart of network traffic during the attack

The traffic generated by the attacking host is sent to the host with Elasticsearch installed. This can be
observed in the following graphs, which show that the packets are directed to the host.

Figure 8.16: Histogram of ICMP packets during the attack

45

Figure 8.17: Pie chart of ICMP packets during the attack

One idea for blocking this type of attack is to interrupt the process of the ICMP protocol. However, this
solution makes the host no pingable.

8.5.1.2 DoS attack on MQTT port

The Kali host is also used in this attack. A large number of requests are sent to port 1883 of the MQTT
broker, blocking the service and thus interrupting the functioning of the system’s data collection.

To perform the attack, the following command is executed, flooding the port 1883 where MQTT runs:

hping3 --flood -S -p 1883 192.168.10.50

It can be seen that the attacking host generates high traffic as in the previous attack, and the graphs that
can be observed are similar to those of the ICMP flood.

Figure 8.18: Pie chart of network traffic during the attack

Concerning the graphs representing the MQTT packets sent to the broker, a very high increase is observed
for those transmitted by the attacker.

46

Figure 8.19: Histogram of MQTT packets during the attack

Figure 8.20: Pie chart of MQTT packets during the attack

8.5.1.3 DoS attack on Kibana

The last DoS attack that is launched targets Kibana. The attacker tries to interrupt the normal operation
of the service by blocking the data dashboards to the supervisor.

The attack is launched with the following command:

hping3 -i u1 -S -p 5601 192.168.10.240

The situation that can be observed concerning network traffic is the same as the two attacks previously
analysed, with the attacker’s traffic suddenly increasing.

The graphs showing the packets received by host 192.168.10.240 on Kibana port 5601, highlight the at-
tack by displaying the high number of packets received during the attack.

47

Figure 8.21: Histogram of packets sent to Kibana port during the attack

Figure 8.22: Pie chart of MQTT packets sent to Kibana port during the attack

8.5.2 Sensors Data

Concerning the information collected by the sensors, in the first run, a simulation is performed without
any simulated values going out of the correct ranges. In order to do this, no parameters are added to the
command line while the script is run, except for the seed to repeat the tests. Both the tomato and gerbera
greenhouse simulators are executed simultaneously.

python3 simulator.py tomatoes --seed 10 -D 1 -M 12 -Y 2021

python3 simulator.py gerbera --seed 15 -D 1 -M 12 -Y 2021

Then, starting timestamp is changed and it is started with all parameters active in order to observe the
behaviour of the tool if the values are not correct.

python3 simulator.py tomatoes --seed 20 -n 1440 -D 5 -M 12 -Y 2021 -t -l -u -c -e -m -p

python3 simulator.py gerbera --seed 25 -n 1440 -D 5 -M 12 -Y 2021 -t -l -u -c -e -m -p

48

The dashboard that is analyzed concerns a greenhouse in which Gerberas are grown.
In the first part of the dashboard, all numerical metrics representing the last detected value by the greenhouse
sensors are displayed.

Figure 8.23: Sensors value of Gerberas’ greenhouse

Successive, a table is displayed showing all the values measured by the sensors in temporal order using the
timestamp. By looking at the table, the supervisor can observe in real-time the status of all the parameters
that are controlled by the IoT devices.

Figure 8.24: Table of sensors value

In this table, the data are shown in chronological order and are highlighted using colors in this way the
supervisor can quickly see if there are any anomalies in the measurements. Examples are:

1. temperature too low or too high

Figure 8.25: Color measured temperature displayed in the table

2. solutions too acidic or alkaline

Figure 8.26: Color measured pH level displayed in the table

3. environment too bright or too dark

Figure 8.27: Color measured EC displayed in the table

49

4. CO2 levels too high or low

Figure 8.28: Color measured EC displayed in the table

5. electrical conductivity too high

Figure 8.29: Color measured EC displayed in the table

6. environment too humid

Figure 8.30: Color measured humidity displayed in the table

7. too high or low soil moisture

Figure 8.31: Color measured soil moisture displayed in the table

The next section of the dashboard shows the temperature details. Using a line graph, the temperatures
measured by the sensors over a user-defined period are displayed. In addition, there are two horizontal lines
in the graph describing the minimum and maximum temperature. The last value measured in the greenhouse
is also displayed.
This visualization allows the user to observe a history of the measurements and at the same time see the
current temperature in the greenhouse.

Figure 8.32: Temperatures graph

50

In case the sensor values are out of range, the line representing the temperature measurements doesn’t
remain between the horizontal lines.

Figure 8.33: Temperatures graph out of range

Similarly, a line graph representing the humidity values and its real-time measured value are displayed. Also
for this measurements, two horizontal lines are indicating the range of values for the greenhouse containing
the Gerberas.

Figure 8.34: Humidity graph

Figure 8.35: Humidity graph out of range

The photoperiod is represented using a bar graph. In this graph, the different bars represent the minutes of
light and dark in the greenhouse since midnight. At the end of the day, this graph represents the total hours
of light and dark.

51

Figure 8.36: Photoperiod graph

Figure 8.37: Overly bright photoperiod graph Figure 8.38: Photoperiod graph too dark

CO2 levels must also be monitored. This is because CO2 is used by plants for photosynthesis and helps them
to grow. The CO2 values are represented using a line graph with the limits and the last measured value is
also displayed.

Figure 8.39: CO2 graph

52

Figure 8.40: CO2 graph out of range

In the same way as temperature, humidity, and CO2 levels, electrical conductivity, pH, and soil moisture are
represented using a line graph and the value is the last value measured by the sensors.

Figure 8.41: Electrical Conductivity graph

Figure 8.42: Electrical Conductivity graph out of range

53

Figure 8.43: pH graph

Figure 8.44: pH graph out of range

Figure 8.45: Soil moisture graph

54

Figure 8.46: Soil moisture graph out of range

The dashboard for the tomatoes simulation is the same as the one for the Gerbera cultivation, but the
data are filtered using the topic /greenhouse/tomatoes and the ranges are adapted to the values, especially
in the case of CO2.

Figure 8.47: CO2 Graph of tomatoes’ greenhouse

55

9 Conclusion

The growth of intelligent devices, able to collect information from the surrounding environment and
share it using a network, and able to simplify and help everyday life, has led to the use of these devices in
the everyday life of every person and within complex systems. However, this has led to new security issues
within the systems due to security problems, such as authentication and authorization, because the devices
do not have important protection from attackers due to the fact that they often are composed of elementary
hardware.
For these reasons and the high diffusion of these devices in many fields, they become of interest at the
security level.

One of the possible applications is in the agricultural sector.
In the presented project, IoT devices and SIEMs are combined. Some attacks that can be performed in the
system are simulated. The attacks are DoS attacks, aiming at blocking the main working services of the
system: Elasticsearch, the heart of the SIEM, and the MQTT Broker.
The sensors inside the greenhouse are also simulated. Simulating the sensors and monitoring them through
the SIEM, allow control the environment and the IoT devices using the functionalities provided by the SIEM.
The SIEM in fact allows collecting historical and real-time information from the system making them easily
accessible for analysis.

In the presented application the SIEM allows identifying attacks by collecting network packets involving
the main hosts of the system.
In addition, the IoT sensors inside the greenhouse communicate with a server using the MQTT protocol;
this is a lightweight and easy to implement data protocol. The data collected inside the greenhouse is sent
to an MQTT Broker, which collects the information according to topics and distributes it to subscribers of
these topics using a publish and subscribe model.
The collected network packets and data are filtered and analysed using a SIEM, which makes the gathered
information available to a supervisor in order to evaluate the security and safety of the system. The first one
happens when the SIEM helps the security team to identify attacks and resolve any problems, while safety
occurs when supervisors can check that sensor values are not too far out of range.

The ease of representation and analysis of the information collected makes the SIEM an effective and
functional tool for controlling devices that are used within a more complex system and any attacks that
may be performed to damage the system. It allows the end-user to analyse and observe the flow of network
packets and all events that are detected by the sensors. These functions allow security teams to take effective
countermeasures or actions by also evaluating the history of network packets and data collected. Another
advantage in terms of data collection is the MQTT protocol, which is lightweight and easy to implement, so
it can be easily applied in any environment.

The SIEM could be able to help a system that is also composed of IoT devices. It would also be able
to:

• evaluate system vulnerabilities that occur due to the sensors, and alert if occur unwanted intrusions
into the system

• monitor continuously and autonomously not only the collected values but also the status of the sensors,
i.e. unexpected intrusions or possible malfunctions

• send alerts automatically, like emails, using rules, for example, based on sensor values

• possibility to connect the SIEM to cloud platforms such as Amazon Web Services (AWS), Google
Cloud, or Microsoft Azure.

The combination of IoT devices and SIEM is effective and easy to implement, thanks to the use of the
MQTT data protocol. This provides the end-user with a tool that allows them to easily evaluate the actions
taking place within the network and the information collected by the sensors. They allow security teams

56

to respond and take action effectively and quickly. In addition, they can detect and resolve vulnerabilities
that may appear within a complex system relating to security, authentication and authorisation. Thanks to
the low cost of implementation, and the ease and intuitiveness of deployment, this combination can also be
easily used by end-users without high budgets, and in any field, becoming a tool accessible to anyone.

57

A Appendix

A.1 Simulator Code

1 import time #import time to sleep process

2 from datetime import datetime #import to build timestamp

3 from datetime import timedelta

4 import json #import to parse json object and strings

5 import numpy.random as rnd #numbers generation

6 import paho.mqtt.client as mqtt #import MQTT client

7 from optparse import OptionParser #parse command line arguments

8

9 # Class which allows to simulate greenhouse's sensor

10 class Simulator:

11 # plantations simulated

12 plantations = ["tomatoes", "gerbera"]

13

14 # range sensors' value

15 __range_temp = (18, 26)

16 __range_hours_light = (12, 18)

17 __range_hum = (65, 70)

18 __range_co2 = [(800, 1000), (500, 800)]

19 __range_ec = (500, 2000)

20 __range_soil = (50,60)

21 __range_ph = (5.5, 6)

22

23 # sensors send information every 10 minutes

24 __minutes_sensor_data = 10

25 # - 6 simulations in one hour

26 __simulation_in_hour = 60 / __minutes_sensor_data

27 # hours in one day: 24

28 __hours_one_day = 24

29 # value which represents simulations in 1 day

30 one_day_simulations = int(__simulation_in_hour * __hours_one_day)

31

32 # Initialization of sensors and warnings

33 def __init__(self, plantation, day, month, year, warning_temp, warning_light,

warning_hum, warning_co2, warning_ec, warning_soil, warning_ph, seed=None):→֒

34 if not (plantation in self.plantations):

35 raise Exception("Wrong plantation")

36 self.__idx_plantation = self.plantations.index(plantation)

37 self.__warning_temp = warning_temp

38 self.__warning_light = warning_light

39 self.__warning_hum = warning_hum

40 self.__warning_co2 = warning_co2

41 self.__warning_ec = warning_ec

42 self.__warning_soil = warning_soil

43 self.__warning_ph = warning_ph

44 self.__count_day_simulation = 0 # count day simulations

45 self.__timestamp = datetime(year, month, day) # timestamp sensor data

46 self.__minutes_light_on = datetime.min # count minutes light ON

47 self.__minutes_light_off = datetime.min # count minutes light OFF

48 rnd.seed(seed) # set seed to repeat tests

I

49 self.__set_starting_values() # method which set starting value

of sensors→֒

50

51 # Method which build day photoperiod of greenhouse

52 def __photoperiod_builder(self):

53 # Method which allows to rotate a list

54 def rotate(l, n):

55 return l[n:] + l[:n]

56

57 # create range light on based on warning

58 range_hours_light = self.__range_hours_light

59 if self.__warning_light:

60 range_hours_light = (6, 11) if rnd.choice(a=[False, True]) else (19, 21)

61 # total of light on

62 tot_light_on = rnd.randint(range_hours_light[0], range_hours_light[1])

63

64 # light off -> 24 hours - tot_light_on

65 hours_light_off = self.__hours_one_day - tot_light_on;

66 # two period of light on

67 hours_light_on_step1 = rnd.randint(3, tot_light_on - 2)

68 hours_light_on_step2 = tot_light_on - hours_light_on_step1

69 # two period of light off

70 hours_light_off_step1 = rnd.randint(2, hours_light_off)

71 hours_light_off_step2 = hours_light_off - hours_light_off_step1

72 # choose if light on or off in first hours of day

73 start_light_on = rnd.choice(a=[False, True])

74 # build photoperiod with tuples which represent

75 # hours and light state

76 photoperiod = [

77 (hours_light_on_step1, True),

78 (hours_light_off_step1, False),

79 (hours_light_on_step2, True),

80 (hours_light_off_step2, False)

81]

82 # sort photoperiod depending on starting choice

83 if not start_light_on:

84 photoperiod = rotate(photoperiod, 1)

85 return tot_light_on, start_light_on, photoperiod

86

87 # Generate random starting value

88 def __set_starting_values(self):

89 # temperature

90 self.__act_temp = round(rnd.uniform(self.__range_temp[0], self.__range_temp[1]),

1)→֒

91 # light period

92 self.__tot_light_on, self.__act_light, self.__photoperiod =

self.__photoperiod_builder()→֒

93 # air humidity

94 self.__act_hum = round(rnd.uniform(self.__range_hum[0], self.__range_hum[1]), 2)

95 # co2 level

96 self.__act_co2 = rnd.randint(self.__range_co2[self.__idx_plantation][0],

self.__range_co2[self.__idx_plantation][1])→֒

97 # ec

98 self.__act_ec = rnd.randint(self.__range_ec[0], self.__range_ec[1])

II

99 # soil moisture

100 self.__act_soil = round(rnd.uniform(self.__range_soil[0], self.__range_soil[1]),

2)→֒

101 # pH value

102 self.__act_ph = round(rnd.uniform(self.__range_ph[0], self.__range_ph[1]), 2)

103

104 # Update value using Gaussian distribution

105 def __gauss_update(self, value, range, mu=0, sigma=0.1, r=2, check_range=True):

106 # compute gaussian value

107 var_value = round(rnd.normal(mu, sigma), r)

108 # update value

109 new_value = round(value + var_value, r)

110 # check value within range

111 if check_range and (new_value > range[1] or new_value < range[0]):

112 return round(value - var_value, r)

113 return new_value

114

115 # Method which simulates sensors

116 def simulate(self):

117 # Method which computes light state using photoperiod

118 def compute_light_state(hours_simulation):

119 hours_spent = 0

120 for i in range(len(self.__photoperiod)):

121 hours_spent += self.__photoperiod[i][0]

122 if(hours_simulation <= hours_spent):

123 return self.__photoperiod[i][1]

124 raise Exception("Wrong photoperiod")

125

126 # Method which calculates daily hours spent in the simulation

127 def compute_hours_simulation(count_day_simulation):

128 return int(count_day_simulation * (60 / self.__simulation_in_hour) / 60)

129

130 # Method which computes minutes

131 def compute_minutes(date_minutes):

132 return date_minutes.hour * 60 + date_minutes.minute

133

134 # if 24 hours have passed, update the photoperiod

135 hours_simulation = compute_hours_simulation(self.__count_day_simulation)

136 if(self.__count_day_simulation > self.one_day_simulations):

137 self.__tot_light_on, self.__act_light, self.__photoperiod =

self.__photoperiod_builder()→֒

138 self.__minutes_light_on = self.__minutes_light_on.replace(hour=0, minute=0)

139 self.__minutes_light_off = self.__minutes_light_off.replace(hour=0, minute=0)

140 self.__count_day_simulation = 0

141

142 # store sensors value

143 timestamp, temperature, light_state, humidity, CO2, EC, soil_moisture, pH =

self.__timestamp, self.__act_temp, compute_light_state(hours_simulation),

self.__act_hum, self.__act_co2, self.__act_ec, self.__act_soil, self.__act_ph

→֒

→֒

144 minutes_light_on = compute_minutes(self.__minutes_light_on)

145 minutes_light_off = compute_minutes(self.__minutes_light_off)

146

147 # update sensors value

III

148 self.__act_temp = self.__gauss_update(self.__act_temp, self.__range_temp,

sigma=0.25, r=1, check_range=(not self.__warning_temp))→֒

149 self.__act_hum = self.__gauss_update(self.__act_hum, self.__range_hum, sigma=0.2,

r=2, check_range=(not self.__warning_hum))→֒

150 self.__act_soil = self.__gauss_update(self.__act_soil, self.__range_soil,

sigma=0.2, r=2, check_range=(not self.__warning_soil))→֒

151 self.__act_ph = self.__gauss_update(self.__act_ph, self.__range_ph, sigma=0.03,

r=1, check_range=(not self.__warning_ph))→֒

152 self.__act_co2 = self.__gauss_update(self.__act_co2,

self.__range_co2[self.__idx_plantation], sigma=5, r=0, check_range=(not

self.__warning_co2))

→֒

→֒

153 self.__act_ec = self.__gauss_update(self.__act_ec, self.__range_ec, sigma=15,

r=0, check_range=(not self.__warning_ec))→֒

154

155 #update timestamp

156 self.__timestamp = self.__timestamp +

timedelta(minutes=self.__minutes_sensor_data)→֒

157 self.__minutes_light_on = self.__minutes_light_on +

timedelta(minutes=(self.__minutes_sensor_data if light_state else 0))→֒

158 self.__minutes_light_off = self.__minutes_light_off +

timedelta(minutes=(self.__minutes_sensor_data if not light_state else 0))→֒

159

160 # update counter of simulation

161 self.__count_day_simulation += 1

162

163 return timestamp, temperature, light_state, minutes_light_on, minutes_light_off,

humidity, CO2, EC, soil_moisture, pH→֒

164

165 class SensorSimulation():

166

167 def __init__(self, plantation, client_id, topic, day, month, year, temp, light, hum,

co2, ec, soil, ph, seed=None):→֒

168 if not (plantation in Simulator.plantations):

169 raise Exception("Wrong plantation")

170 self.__plantation = plantation

171 self.__client_id = client_id

172 self.__topic = topic

173 # create simulator

174 print("Creating", plantation, "simulator...")

175 self.__simulator = Simulator(plantation, day, month, year, temp, light, hum, co2,

ec, soil, ph, seed=seed)→֒

176

177 def simulate(self, num_simulation=Simulator.one_day_simulations):

178

179 # given parameters the function builds JSON object

180 def __json_builder(timestamp, temperature, light_state, minutes_light_on,

minutes_light_off, humidity, CO2, EC, soil_moisture, pH):→֒

181 # check parameter's value

182 if(EC < 0):

183 raise ValueError('EC: the value must be positive')

184 if(CO2 < 0):

185 raise ValueError('CO2: the value must be positive')

186 if(pH < 0 or pH > 14):

187 raise ValueError('pH: invalid value')

IV

188 if(soil_moisture < 0 or soil_moisture > 100):

189 raise ValueError('soil_moisture: the value must be a percentage')

190 if(minutes_light_on < 0 or minutes_light_on > 1440):

191 raise ValueError('minutes_light_on: the value must be between 0 and

1440')→֒

192 if(minutes_light_off < 0 or minutes_light_off > 1440):

193 raise ValueError('minutes_light_off: the value must be between 0 and

1440')→֒

194 # build and return JSON object

195 json_obj = {

196 "@timestamp": timestamp.isoformat(), # timestamp of sensor

data→֒

197 "temperature": temperature, # temperature in

Celsius→֒

198 "lightState": light_state, # light OFF or ON

199 "minutesLightON": minutes_light_on, # minutes light ON

200 "minutesLightOFF": minutes_light_off, # minutes light OFF

201 "humidity": humidity, # greenhouse humidity

202 "CO2": CO2, # CO2 level

203 "EC": EC, # EC value

204 "soil": soil_moisture, # percentage of soil

moisture→֒

205 "pH": pH # pH value

206 }

207 return json_obj

208

209 # Callback function which allows to print received messages of a topic

210 # It is used to check if messages have been correctly sent

211 def __on_message(client, userdata, message):

212 print("Received message:")

213 print("\tMessage:", str(message.payload.decode("utf-8")))

214 print("\tTopic:", message.topic)

215

216 # create client connection

217 print("Creating", self.__plantation, "client connection...")

218 client = mqtt.Client(client_id=self.__client_id)

219

220 # set callback which allows to received messages of a topic

221 client.on_message = __on_message

222

223 # connect to MQTT broker

224 print("Connecting to MQTT broker...")

225 client.connect(broker_address)

226

227 # enable reading and writing data

228 client.loop_start()

229

230 # start to send messages

231 # It stops the simulation using num_simulation

232 for i in range(num_simulation):

233

234 # subscribe topic to read messages

235 print("Subscribing to topic:", self.__topic)

236 client.subscribe(self.__topic)

V

237

238 # publish messages to topic

239 print("Publishing message to topic:", self.__topic)

240 # simmulate sensor value and build JSON object

241 timestamp, temperature, light_state, minutes_light_on, minutes_light_off,

humidity, co2, ec, soil_moisture, ph = self.__simulator.simulate()→֒

242 json_obj = __json_builder(timestamp, temperature, light_state,

minutes_light_on, minutes_light_off, humidity, co2, ec, soil_moisture,

ph)

→֒

→֒

243 # publish message

244 client.publish(self.__topic, json.dumps(json_obj), qos=qos)

245 # wait to simulate

246 time.sleep(sleep_time)

247

248 # stop the loop

249 client.loop_stop()

250 client.disconnect()

251

252 # Class which allows to parse command line arguments

253 class CmdLineParser(object):

254 def __init__(self):

255 # command line

256 self.parser = OptionParser(usage='usage: python plantation simulator.py

[options]')→֒

257 # optional arguments

258 self.parser.add_option("-t", "--temp", dest="temp", action="store_true",

default=False, help="correct (default) or wrong temperature")→֒

259 self.parser.add_option("-l", "--light", dest="light", action="store_true",

default=False, help="correct (default) or wrong light time")→֒

260 self.parser.add_option("-u", "--hum", dest="hum", action="store_true",

default=False, help="correct (default) or wrong air humidity")→֒

261 self.parser.add_option("-c", "--co2", dest="co2", action="store_true",

default=False, help="correct (default) or wrong CO2 level")→֒

262 self.parser.add_option("-e", "--ec", dest="ec", action="store_true",

default=False, help="correct (default) or wrong EC value")→֒

263 self.parser.add_option("-m", "--soil", dest="soil", action="store_true",

default=False, help="correct (default) or wrong soil moisture")→֒

264 self.parser.add_option("-p", "--ph", dest="ph", action="store_true",

default=False, help="correct (default) or wrong pH value")→֒

265 #number of simulations

266 self.parser.add_option("-n", "--sim", dest="sim", action="store", type="int",

default=Simulator.one_day_simulations, help="number of simulations")→֒

267 #seed to generate random values

268 self.parser.add_option("-s", "--seed", dest="seed", action="store", type="int",

default=None, help="seed value")→֒

269 #set initial timestamp

270 self.parser.add_option("-D", "--day", dest="day", action="store", type="int",

default=1, help="day of timestamp. Default: 1")→֒

271 self.parser.add_option("-M", "--month", dest="month", action="store", type="int",

default=12, help="month of timestamp. Default: 12")→֒

272 self.parser.add_option("-Y", "--year", dest="year", action="store", type="int",

default=2021, help="year of timestamp. Default: 2021")→֒

273

274 def addOption(self, *args, **kwargs):

VI

275 self.parser.add_option(*args, **kwargs)

276

277 def parseArgs(self):

278 (options, args) = self.parser.parse_args()

279 options.plantation = args[0]

280 return options

281

282 # address of MQTT Broker

283 broker_address = "192.168.10.50"

284 # MQTT QoS value

285 qos = 1

286 # topic's prefix of greenhouse project

287 topic_prefix = "/greenhouse"

288 # topic of tomatoes greenhouse

289 topic_tomatoes = topic_prefix + "/tomatoes"

290 # topic of Gerbera greenhouse

291 topic_gerbera = topic_prefix + "/gerbera"

292 # client id of tomatoes greenhouse

293 client_id_tomatoes = "TomGreenhouse";

294 # client id of Gerbera greenhouse

295 client_id_gerbera = "GerGreenhouse";

296 # sleep time to next sensor measurements

297 sleep_time = 1

298

299 def main():

300

301 # parse and read arguments

302 parser = CmdLineParser()

303 opt = parser.parseArgs()

304

305 if not (opt.plantation in Simulator.plantations):

306 raise Exception("Wrong plantation")

307

308 # based on plantation set client and topic

309 plantation = opt.plantation.lower()

310 if plantation == "tomatoes".lower():

311 client_id, topic = client_id_tomatoes, topic_tomatoes

312 if plantation == "gerbera".lower():

313 client_id, topic = client_id_gerbera, topic_gerbera

314

315 # enable simulation

316 simulation = SensorSimulation(opt.plantation.lower(), client_id, topic, opt.day,

opt.month, opt.year, opt.temp, opt.light, opt.hum, opt.co2, opt.ec, opt.soil,

opt.ph, opt.seed)

→֒

→֒

317 # start simulation

318 simulation.simulate(opt.sim)

319

320 main()

VII

A.2 Hosts Configuration

A.2.1 Sensors Simulator

A virtual machine is created on VirtualBox with the characteristics previously described. It is the host on
which the simulation script is launched. In the host LUbuntu 21.10 is installed. Python 3 is automatically
installed with OS installation.

Once the general configuration of the host is completed, Python libraries are installed and will be used
to run the script which simulates the sensors of the hydroponic greenhouse with different plantations:

1. Numpy : provides math functions, random number generation and more.

pip3 install numpy

2. OptParse : allows performing an efficient and fast parse of the script’s command line arguments.

pip3 install optparse-pretty

3. Paho-MQTT : allows sending MQTT messages using a Python script. It is described in the previous
chapters.

pip3 install paho-mqtt

The simulation script is saved in any position of the machine and it is launched through the terminal,
simulating various plantations.

Moreover, IP address 192.168.10.70 is set to the network card connected to greenhousenet by editing the
file:

/etc/netplan/00-installer-config.yaml

and is applied using the following command.

sudo netplan apply

A.2.2 Host Mosquitto - Logstash

In the second host Mosquitto, Logstash and Beats are installed.
First, create a virtual machine with Ubuntu Server 21.10 and set the IP address to 192.168.10.50.

Then install the Java Runtime Environment (JRE) to run Elastic programs:

sudo apt-get install default-jre

Once Java is installed, add FTP service to the server:

sudo apt-get install vsftp

Then, import the PGP key - Elasticsearch Signing Key which allows to download the Elastic software:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -

Then install apt-transport-https which allows to download https repositories and add the repository which
allows to download Elasticsearch, Kibana, Logstash, and Beats:

sudo apt-get install apt-transport-https

echo "deb https://artifacts.elastic.co/packages/7.x/apt stable main" |

sudo tee /etc/apt/sources.list.d/elastic-7.x.list

Set the IP address to 192.168.10.50.

VIII

A.2.2.1 Mosquitto

An MQTT Broker, Mosquitto, is installed on the host. To install Mosquitto can be used the default
installation provided by Ubuntu Server or the instructions of the APT package manager :

sudo apt-get update && sudo apt install mosquitto mosquitto-clients

Once it is installed, create configuration file /etc/mosquitto/conf.d/mosquitto.conf to open port 1883:
listener 1883 # mosquitto port

allow_anonymous true

Then, activate the service.

sudo systemctl enable mosquitto

sudo systemctl start mosquitto

A.2.2.2 Logstash

Logstash is a module of Elastic Stack. After adding the repositories, use the following APT command to
install it.

sudo apt-get update && sudo apt-get install logstash

Once it is installed, proceed with the configuration. Some configuration files are created to customize the
data processing pipeline on MQTT messages [35].

1. Set up the Logstash input plugin from which the data are taken. The events’ information is collected
by Elastic Beats. The path of configuration file is /etc/logstash/conf.d/beats-input.conf.

input {

beats {

port => 5044

}

}

2. Filter gathered data by Logstash, collecting JSON messages.
The path used is /etc/logstash/conf.d/json-filter.conf.

filter {

json {

source => "message"

}

}

3. Logstash sends data to the host where Elasticsearch is installed and create the new index filebeat-sensor-data.
The path of configuration file is /etc/logstash/conf.d/elasticsearch-output.conf.

output {

if [@metadata][pipeline] {

elasticsearch {

hosts => ["192.168.10.240:9200"]

manage_template => false

index => "%{[@metadata][beat]}-sensor-data-%{+YYYY.MM.dd}"

pipeline => "%{[@metadata][pipeline]}"

}

} else {

elasticsearch {

hosts => ["192.168.10.240:9200"]

manage_template => false

index => "%{[@metadata][beat]}-sensor-data-%{+YYYY.MM.dd}"

}

}

}

IX

In order to test whether the changes made to the configuration files are correct, can be used the following
command:

sudo -u logstash /usr/share/logstash/bin/logstash --path.settings /etc/logstash -t

After the changes are made, the Logstash service is launched, and set to run automatically when the host
starts up:

sudo systemctl enable logstash

sudo systemctl start logstash

and can be stopped using the stop command.

A.2.2.3 Filebeat

Filebeat allows to collect and centralize data and logs from devices and it works as an agent installed on
devices.
Thanks to the imported repository, the Filebeat installation [34] command is:

sudo apt-get update && sudo apt-get install filebeat

As in the case of Logstash, the next step is the configuration. The file at the following path is edited:

/etc/filebeat/filebeat.yml

1. Filebeat sends data to Logstash, which will forward them to Elasticsearch. Comment output.elasticsearch
to not forward data directly to Elasticsearch and set the IP address of the Logstash where the data
are sent.

output.elasticsearch:

hosts: ["192.168.10.240:9200"]

output.logstash:

hosts: ["192.168.10.50:5044"]

2. Enable the MQTT type and specify the IP address (localhost) of the MQTT Broker [81]. The topic
used to filter messages is greenhouse/#

filebeat.inputs:

- type: mqtt

hosts:

- tcp://127.0.0.1:1883

topics:

- /greenhouse/#

tags: ["json"]

enabled: true

In order to show the modules which Filebeat provides:

filebeat modules list

Activate the module system to collect data and logs:

filebeat modules enable system

Then, load the Elasticsearch index model which represents the index settings, and export the model:

filebeat setup --index-management -E output.logstash.enabled=false

-E 'output.elasticsearch.hosts=["192.168.10.240:9200"]'

filebeat export template > filebeat.template.json

X

Upload the template file to the server where Elasticsearch is installed and load the template using curl:

curl -XPUT -H 'Content-Type: application/json'

http://localhost:9200/_index_template/filebeat-7.16.3

-d@filebeat.template.json

Then activate the Filebeat service.

sudo systemctl enable filebeat

sudo systemctl start filebeat

A.2.2.4 Packetbeat

Packetbeat sniffs network traffic and allows to monitor applications and performance and it works as an
agent installed on devices. The Packetbeat installation [78] command is:

sudo apt-get update && sudo apt-get install packetbeat

The next step is the configuration editing the file at the following path:

/etc/packetbeat/packetbeat.yml

1. Enable protocol MQTT to sniff the packets. Other protocols are already activated, such as ICMP,
HTTP, and other.

packetbeat.protocols:

- type: mqtt

ports: [1883]

2. Set Kibana host:

setup.kibana:

host: [192.168.10.240:5601]

3. Set the output of the collected data to Elasticsearch. The data does not need to be parsed by passing
them through Logstash.

output.elasticsearch:

hosts: [192.168.10.240:9200]

Then, to test the configuration can be run the following commands:

sudo packetbeat test config

sudo packetbeat test output

If everything is correct, setup Packetbeat:

sudo packetbeat setup

Then activate the Packetbeat service.

sudo systemctl enable packetbeat

sudo systemctl start packetbeat

A.2.3 Host Elastic SIEM

The third virtual host works as Elastic SIEM and displays information collected by the sensors of the
greenhouse.
Create the virtual machine and install Ubuntu Server 21.10, Java Runtime Environment (JRE), and
FTP. Then, install apt-transport-https, import Elasticsearch Signing Key, and add Elastic repository as for
Host Mosquitto - Logstash. Set the IP address to 192.168.10.240.

XI

A.2.3.1 Packetbeat

Following the instructions in paragraph A.2.2.4 install Packetbeat. The only change to do in the con-
figuration file is the addition of the Kibana port to the HTTP protocol, in this way, the network packets
concerning port 5601 can be collected.

packetbeat.protocols:

- type: http

ports: [80, 8080, 8000, 5000, 8002, 5601]

A.2.3.2 Elasticsearch

Proceed with the installation of Elasticsearch [24]. Update APT manager and install Elasticsearch.

sudo apt-get update && sudo apt-get install elasticsearch

After software installation, proceed with the configuration [18] by editing the file located at the path:

/etc/elasticsearch/elasticsearch.yml

1. Set a meaningful name to the host.

node.name: "node-siem"

2. By default localhost is the only way to access Elasticsearch. The value of this field is changed to enable
access from any host.

network.host: 0.0.0.0

3. The default port to connect to Elasticsearch is 9200.

http.port: 9200

4. Elasticsearch can scan ports automatically to create an auto-clustering. In the project, there is only
one node where Elasticsearch is installed: localhost.

discovery.seed_hosts: ["127.0.0.1"]

5. Set up the master node.

cluster.initial_master_nodes: ["node-siem"]

Once the changes have been made, the Elasticsearch service is launched and it activates automatically when
the computer is switched on:

sudo systemctl daemon-reload

sudo systemctl enable elasticsearch

sudo systemctl start elasticsearch

The service can be stopped using the following command.

sudo systemctl stop elasticsearch

XII

A.2.3.3 Kibana

After Elasticsearch is installed, Kibana is installed [25] using the following commands:

sudo apt-get update && sudo apt-get install kibana

Once Kibana is installed, proceed by configuring the file at the path: [17]

/etc/kibana/kibana.yml

1. The default port to connect to Kibana is 5601.

server.port: 5601

2. Enable Kibana visible from any device.

server.host: 0.0.0.0

3. Set up Elasticsearch host which is the same host where Kibana is installed: localhost.

elasticsearch.hosts: ["http://localhost:9200"]

Similarly to Elasticsearch, to activate Kibana:

sudo systemctl daemon-reload

sudo systemctl enable kibana

sudo systemctl start kibana

The service can be stopped:

sudo systemctl stop kibana

A.2.3.3.1 Dashboard

Once the 3 hosts have been configured with the Elastic modules, proceed to configure the dashboard
which is visible to the supervisor user.

After activating the various components (Mosquitto, Kibana, Elasticsearch, Logstash, Filebeat, and Pack-
etbeat) with the correct configuration of the Elasticsearch pipeline, run a test with ping messages and the
Python script which simulates the sensors. These operations allow to check whether Packetbeat works and
Filebeat extracts the information from the MQTT Broker, and sends it to Logstash which then forwards it
to Elasticsearch.

If everything works correctly, the Kibana dashboard is configured. In the project, the host which acts as
supervisor is the host on which the virtual hosts run; by configuring the network cards of the virtual hosts
set in Bridged mode with an IP address which can be pinged by the main host, Kibana is visible from a
browser using an address similar to the following:

http://192.168.2.90:5601/app/home

In the main menu under the heading Analytics, open the Dashboard item. Here, you can create any type
of visualisation using the fields collected in the index packetbeat-*, in order to display the information
regarding the collected network packets.
The following graphs are used to show the data in the dashboards:

1. Histograms to show the traffic generated by hosts in the network and the ICMP, MQTT and HTTP
messages sent to the most important hosts in the system;

2. Pie charts to represent the same information as the histograms.

XIII

The different data are filtered using the destination.port and destination.ip.

Then proceed to configure dashboards to show sensors data.
First, open the menu which appears on the left, under Stack Management. Then open the Index Patterns
item and create a new index pattern which allows to aggregate all data which are forwarded through
Logstash with the index defined in the configuration: filebeat-sensor-data-{+YYYY-MM-DD}. In order to
configure the pattern is used the * symbol as a wildcard to group all information regardless of date:

filebeat-sensor-data-*

Once the index pattern has been created, the fields representing the sensor measurements, the MQTT topic,
and other information relating to the data collected can be observed within it.

After the index pattern has been configured, construct the customized dashboards. In the main menu
under the heading Analytics, open the Dashboard item. Here, can create any type of visualization using the
fields collected in the index previously configured.
The dashboards that are created and made available to the supervisor are mainly two:

1. Greenhouse Tomatoes: represents the information of a greenhouse where tomatoes are cultivated.

2. Greenhouse Gerbera: in which the information about the environment where the Gerberas are
grown is displayed.

In the two dashboards, the data are represented with the same types of graphs, but the information is
different.
The created dashboards allow to highlight the data and use the following structure:

1. Table with all measured data sorted by the hour and day. The values are colored to allow the supervisor
a clearer view, especially if the values are outside the correct ranges.

2. Line graphs showing temperature, CO2, electrical conductivity, humidity, light status indicating min-
utes on or off, and soil moisture.

3. Display of current measured values.

Filebeat is configured to collect and forward all MQTT messages that are related to the topic /greenhouse/#.
The data that are collected in Elasticsearch refers to any type of planting in the greenhouse. To filter the
data in the dashboards, the mqtt.topic.keyword field of the index filebeat-sensor-data-* is used. It
allows filtering MQTT messages through the topic used.
In this way, the data that are displayed represents the JSON related to the specific topic, i.e. /greenhouse/tomatoes
or /greenhouse/gerbera.

Once the dashboards have been created they are saved by activating the flag that automatically updates
the displayed values.

XIV

References

[1] Python Package Index (PyPi). paho-mqtt 1.6.1. https://pypi.org/project/paho-mqtt/. Oct. 2021.

[2] AGrowTronics. Advanced Monitoring in Hydroponics. https://www.agrowtronics.com/advanced-
monitoring-in-hydroponics/.

[3] AWS Amazon. ELK Stack. https://aws.amazon.com/opensearch-service/the-elk-stack/.

[4] ArcSight. Security Operations Metrics Definitions for Management and Operations Teams. http :

/ / docs . media . bitpipe . com / io _ 10x / io _ 100356 / item _ 415627 / ArcSight % 20Whitepaper -

%20Security%20Operations%20Metrics%20Definitions%20for%20Management%20and%20Operations%

20Teams.pdf.

[5] Atharva Shewale, Dr. Shwetambari Chiwhane. “Agriculture Using Mqtt Protocol”. In: International
Journal of Future Generation Communication and Networking 13.3s (2020), pp. 1628–1633.

[6] Daniel Berman. Using the ELK Stack for SIEM. https://logz.io/blog/elk-siem/. June 2018.

[7] Biswajeeben Mishra and Attila Kersetz. “Stress-Testing MQTT brokers: A Comparative Analysis of
Performance Measurements”. In: MDPI ().

[8] Ziv Chang and Shin Li. The IoT Attack Surface: Threats and Security Solutions. https://www.

trendmicro.com/vinfo/mx/security/news/internet-of-things/the-iot-attack-surface-

threats-and-security-solutions#:~:text=IoT%20systems%20are%20also%20susceptible,can%

20lead%20to%20compromised%20systems. May 2019.

[9] Charles P. Pfleeger. “Security in Computing”. In: 2015. Chap. 1. isbn: 9780134085043.

[10] Laura Chartier. Hydroponics & Nutrient Application. https://gpnmag.com/article/hydroponics-
nutrient-application/. May 2015.

[11] Anton Chuvakin. On SIEM Tool and Operation Metrics. https://blogs.gartner.com/anton-

chuvakin/2014/06/17/on-siem-tool-and-operation-metrics/. June 2014.

[12] Dipen J. Vyas, Nilesh N. Rudani. “MQTT & IOT Based Control and Monitoring of Smart Green
House”. In: International journal of Engineering development and research 6 (2018).

[13] Onur Dündar. MQTT — Part II: Smart City Design with MQTT. https://medium.com/@onur.
dundar1/mqtt-part-ii-smart-city-design-over-mqtt-da41018a45c2. Aug. 2018.

[14] Elastic. 2021 Gartner Magic Quadrant for SIEM. https://www.elastic.co/campaigns/2021-
gartner-magic-quadrant-siem?elektra=products-siem&storm=cta1&rogue=SIEM-GIC.

[15] Elastic. Auditbeat overview. https://www.elastic.co/guide/en/beats/auditbeat/current/
auditbeat-overview.html.

[16] Elastic. Beats: lightweight data shippers. https://www.elastic.co/beats/.

[17] Elastic. Configure Kibana. https://www.elastic.co/guide/en/kibana/current/settings.html.

[18] Elastic. Configuring Elasticsearch. https://www.elastic.co/guide/en/elasticsearch/reference/
current/settings.html.

[19] Elastic. Elasticsearch: the heart of the free and open Elastic Stack. https://www.elastic.co/

elasticsearch/.

[20] Elastic. Filebeat overview. https : / / www . elastic . co / guide / en / beats / filebeat / current /

filebeat-overview.html.

[21] Elastic. Functionbeat overview. https : / / www . elastic . co / guide / en / beats / functionbeat /

current/functionbeat-overview.html.

[22] Elastic. Heartbeat overview. https://www.elastic.co/guide/en/beats/heartbeat/current/
heartbeat-overview.html.

[23] Elastic. Important Elasticsearch configuration. https://www.elastic.co/guide/en/elasticsearch/
reference/current/important-settings.html.

[24] Elastic. Install Elasticsearch with Debian Package. https://www.elastic.co/guide/en/elasticsearch/
reference/current/deb.html.

[25] Elastic. Install Kibana with Debian package. https://www.elastic.co/guide/en/kibana/current/
deb.html.

[26] Elastic. Installing Logstash. https://www.elastic.co/guide/en/logstash/current/installing-
logstash.html.

[27] Elastic. Kibana: your window into the Elastic Stack. https://www.elastic.co/kibana/.

[28] Elastic. Logstash: centralize, transform and stash your data. https://www.elastic.co/logstash/.

[29] Elastic. Metricbeat overview. https://www.elastic.co/guide/en/beats/metricbeat/current/
metricbeat-overview.html.

[30] Elastic. Metricbeat quick start: installation and configuration. https://www.elastic.co/guide/en/
beats/metricbeat/current/metricbeat-installation-configuration.html.

[31] Elastic. MQTT input. https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-
input-mqtt.html.

[32] Elastic. Packetbeat overview. https://www.elastic.co/guide/en/beats/packetbeat/current/
packetbeat-overview.html.

[33] Elastic. Packetbeat quick start: installation and configuratione. https://www.elastic.co/guide/en/
beats/packetbeat/current/packetbeat-installation-configuration.html.

[34] Elastic. Repositories for APT and YUM. https://www.elastic.co/guide/en/beats/filebeat/6.
8/setup-repositories.html.

[35] Elastic. Setting Up and Running Logstash. https://www.elastic.co/guide/en/logstash/current/
setup-logstash.html.

[36] Elastic. SIEM for the modern SOC. https://www.elastic.co/siem/.

[37] Elastic. What is the ELK Stack? https://www.elastic.co/what-is/elk-stack.

[38] Elastic. Winlogbeat overview. https://www.elastic.co/guide/en/beats/winlogbeat/current/
_winlogbeat_overview.html.

[39] From Wikipedia the free encyclopedia. Internet of things. https : / / en . wikipedia . org / wiki /

Internet_of_things. Dec. 2021.

[40] From Wikipedia the free encyclopedia. MQTT. https://en.wikipedia.org/wiki/MQTT. Nov. 2021.

[41] From Wikipedia the free encyclopedia. Security Information and Event Management. https://it.
wikipedia.org/wiki/Security_Information_and_Event_Management. July 2021.

[42] Exabeam. SIEM Architecture: Technology, Process and Data. https://www.exabeam.com/siem-
guide/siem-architecture/.

[43] Exabeam. SIEM Tools: Top 6 SIEM Platforms, Features, Use Cases and TCO. https://www.exabeam.
com/explainers/siem/siem-buyers-guide/.

[44] Alberto Ferretti. Che cos’è un SIEM (Security Information and Event Management)? https://www.

n4b.it/sicurezza- it/sicurezza- che- cose- un- siem- security- information- and- event-

management/. Oct. 2020.

[45] Fikret Yalcinkaya, Hüseyin AYDİLEK, Mustafa Yasin Erten, Nihat İNANÇ. “IoT based Smart Home
Testbed using MQTT Communication Protocol”. In: International Journal of Engineering Research
and Development 12 (Jan. 2020), pp. 317–324.

[46] Gartner. Security Information and Event Management (SIEM) Reviews and Ratings. https://www.
gartner.com/reviews/market/security-information-event-management.

[47] Erin Glass. How To Install Elasticsearch, Logstash, and Kibana (Elastic Stack) on Ubuntu 20.04.
https://www.digitalocean.com/community/tutorials/how- to- install- elasticsearch-

logstash-and-kibana-elastic-stack-on-ubuntu-20-04. June 2020.

[48] Carsten Gregersen. A Complete Guide to IoT Protocols & Standards In 2021. https://www.nabto.
com/guide-iot-protocols-standards/. Dec. 2020.

[49] Thomas Hazel. 5 ELK Stack Pros and Cons. https://www.chaossearch.io/blog/elk-stack-pros-
and-cons. Jan. 2021.

[50] HiveMQ. Modernizing the Smart Manufacturing Industry with MQTT. https://www.hivemq.com/
solutions/manufacturing/modernizing-the-manufacturing-industry/.

[51] HMS. MQTT used in production - a use case. https://www.anybus.com/docs/librariesprovider7/
default-document-library/whitepapers/mqtt-used-in-production---a-case-study.pdf.
2019.

[52] Dotan Horovits. The Complete Guide to the ELK Stack. https://logz.io/learn/complete-guide-
elk-stack/. June 2020.

[53] Martin Hron. Are smart homes vulnerable to hacking? https://blog.avast.com/mqtt-vulnerabilities-

hacking-smart-homes. Aug. 2018.

[54] IBM. Telemetry use case: Home patient monitoring. https://www.ibm.com/docs/en/ibm-mq/8.0?
topic=cases-telemetry-use-case-home-patient-monitoring. Dec. 2021.

[55] Imperva. Security Information and Event Management. https://www.imperva.com/learn/application-
security/siem/.

[56] Appleton Innovations. Smart Healthcare monitoring System using MQTT protocol. https://appletoninnovations.
medium.com/smart-healthcare-monitoring-system-using-mqtt-protocol-a2818c469f5d. Aug.
2021.

[57] Kali. hping3 Usage Example. https://www.kali.org/tools/hping3/.

[58] Tim Keary. 10 Best SIEM Tools for 2021: Vendors & Solutions Ranked. https://www.comparitech.
com/net-admin/siem-tools. Dec. 2021.

[59] Eric Labbate. FINALLY, KNOW AND UNDERSTAND WHAT YOUR CROP KNOWS! https:

//www.climatecontrol.com/blog/greenhouse-soil-ec-moisture-sensors/. Aug. 2018.

[60] LogSign. Guide for Security Operations Metrics. https://www.logsign.com/uploads/Guide_for_
Security_Operations_Metrics_Whitepaper_2f999f27cc.pdf.

[61] Gianmarco Marcello. Tutorial – Utilizzare MQTT con Python. https://antima.it/tutorial-

utilizzare-mqtt-con-python-la-classe-client-parte-1/. June 2019.

[62] Monika Bharatbhai Patel, Chintan Bhatt, Hamed Vahdat-Nejad, Hardik B. Patel. “Smart city based
on MQTT using wireless sensors”. In: Protocols and Applications for the Industrial Internet of Things
(Apr. 2018), pp. 240–263.

[63] Omafra. Carbon Dioxide In Greenhouses. http://www.omafra.gov.on.ca/english/crops/facts/
00-077.htm.

[64] Oracle. What is IoT? https://www.oracle.com/it/internet-of-things/what-is-iot/.

[65] Mike Poe. What is MQTT and how does it add value to logistics operations? https://www.cognex.

com/blogs/industrial-barcode-reader/what-is-mqtt-and-how-does-it-add-value-to-

logistics-operations. Aug. 2021.

[66] Steve Ranger. What is the IoT? https://www.zdnet.com/article/what-is-the-internet-of-

things-everything-you-need-to-know-about-the-iot-right-now/. Feb. 2020.

[67] Samer Jaloudi. “MQTT for IoT-based Applications in Smart Cities”. In: (Mar. 2019).

[68] Seacom. I moduli di Elastic Stack. https://www.seacom.it/elastic-stack-features/.

[69] Seacom. I vantaggi di una soluzione SIEM basata su Elastic. https://www.seacom.it/elastic-
siem/.

[70] Andrea Sorri. The potential for MQTT in realizing the smart city vision. https://www.axis.com/
blog/secure-insights/mqtt-smart-cities/. Dec. 2020.

[71] IT Central Station. Best SIEM Solutions & SIEM Tools. https://www.itcentralstation.com/
categories/security-information-and-event-management-siem.

[72] IT Central Station. Compare Exabeam Fusion SIEM vs. Securonix Security Analytics. https://www.
itcentralstation.com/products/comparisons/exabeam-fusion-siem_vs_securonix-security-

analytics.

[73] The HiveMQ Team. MQTT Topics and Best Practices - MQTT Essentials: Part 5. https://www.
hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/. Aug. 2019.

[74] Dan Tembe. IoT and SIEM Integration. — Pt.1. https://medium.com/@dtembe/iot-and-siem-
integration-pt-1-6645a012bdc. Sept. 2017.

[75] Celeste Tholen. What Is a Security System and How Does it Work? https://www.safewise.com/

home-security-faq/how-do-security-systems-work/. Oct. 2021.

[76] Gianluigi Torchiani. MQTT: cos’è il protocollo e come riesce a far comunicare i dispositivi IoT. https:
//www.internet4things.it/iot-library/mqtt-cose-e-come-funziona-il-protocollo-alla-

base-delliot/. Mar. 2020.

[77] Vincent de Paul Niyigena Kwizera, Zhanming Li, Victus Elikplim Lumorvie, Febronie Nambajemariya,
Xiaowei Niu. “IoT Based Greenhouse Real-Time Data Acquisition and Visualization through Message
Queuing Telemetry Transfer (MQTT) Protocol”. In: Advances in Internet of Things 11.2 (2021).

[78] Gayan Virajith. Install Packetbeat in Ubuntu. https://gist.github.com/gayanvirajith/d9682285d9146bbc5ad04ee42c243c9a

[79] Fan Wang. Application of MQTT protocol in oil & gas industry. https://www.emqx.com/en/blog/
application-of-mqtt-protocol-in-oil-and-gas-industry. July 2021.

[80] Anuradha Wickramarachchi. Home Automation With MQTT and Home Assistant. https://medium.
com/swlh/home-automation-with-mqtt-and-home-assistant-techtalk-gist-734bc89b5e53.
Nov. 2020.

[81] Lasri Yassine. Track IoT Devices with MQTT and Elastic Stack. http://www.synapticiel.co/track-
iot-devices-with-mqtt-and-elastic-stack/. Oct. 2020.

[82] Laura Zanotti. SIEM: cos’è e come garantisce la sicurezza delle informazioni. https://www.cybersecurity360.
it/soluzioni-aziendali/siem-cos-e-come-garantisce-la-sicurezza-delle-informazioni/.
Dec. 2019.

