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Abstract

The evaporation process within turbulent sprays consists of an unsteady,

multi-scale and multiphase process characterized by the presence of liquid

evaporating droplets dispersed within a turbulent gaseous phase. Up to date

a satisfactory comprehension of turbulent spray evaporation dynamics is not

yet been achieved and existing model capabilities for applications are still

limited. Then, the present work aims to further investigate this phenomenon

contributing to the improvement of physical understanding of the evapora-

tion process inside two-phases turbulent spray. To this purpose Direct Nu-

merical Simulations of the Navier-Stokes equations was adopted as the main

numerical investigation tool, since in this framework no turbulence model is

considered and all scales of turbulent motion are evolved directly on a discrete

mesh. The DNS results were able to reproduce in details several phenomena

occurring in turbulent spray and involving interactions between turbulence

and droplets dynamics (e.g. droplets clustering). An existing numerical par-

allel code (CYCLON), written in FORTRAN90, has been modified to allow

the simulation of evaporating droplets. Then simulations of dilute evaporat-

ing turbulent sprays have been performed. It should be remarked that up to

date the most part of studies concerning droplets vaporization in turbulent

sprays have been performed in the Large Eddy Simulations (LES) context,

while DNS are still missing in literature. The preliminary analysis shows

an intense speed-up of the process induced by turbulence and a remarkable

spreading of the droplet radius spectrum. This phenomenon has been fully

characterized and related to interaction between droplets dynamics and the

turbulent gaseous phase fields.
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Chapter 1

Introduction

Progress in the understanding and modeling of turbulent spray evaporation

processes is of fundamental importance in a variety of industrial applications

as well as from an environmental point of view. Examples can be found in

aeronautical, space and auto-mobile sectors where an improved understand-

ing of the turbulent spray vaporization process would be a key stone in the

designing of innovative combustors and injection systems for internal combus-

tion engines (e.g. auto-mobile direct-injection engines, aircraft air-breathing

engines and liquid-fuel rocket engines). In these applications, liquid fuel is

injected directly into the combustion chamber where an evaporation process

take place inside a turbulent gas composed by both fuel vapour and oxidizer.

Inside this chaotic environment combustion occurs due to the fragmentation

of the liquid fuel in fine droplets which progressively evaporate producing re-

active fuel vapour. Thus, the vaporization process has a direct impact on the

combustion efficiency and pollutants formation level, e.g. particulate mat-

ter, CO2, and NOx. More specifically, combustion efficiency and pollutants

production are directly related to to complex multi-scale phenomena involv-

ing fluctuations of temperature, vapour concentration, velocity and chemical

reactions and these mechanisms are not still fully characterized.

In the aircraft transportation context, according to recent aircraft traffic

end efficiency trends analysis [Lee et al., 2001] it has been stated that aircraft

are expected to account for 0.05 K of the 0.9 K global mean surface tempera-
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ture rise expected to occur between 1990 and 2050. Thus, for 2050 it is likely

that the radiative forcing due to aircraft may fall between 2.5% and 13.2%

of the total forcing due to men. In this scenario, Advisory Council for Avia-

tion Research and Innovation in Europe (ACARE) procedures have recently

been enforced for soot in order to strict the pollution limits for emissions. It

is then clear that an improved understanding of mechanism of evaporation

and combustion of turbulent spray is essential to the development of inter-

nal combustion systems characterized by higher efficiency and lower emission

levels and this thesis aims to give a contribution to this challenging tasks.

In this scenario, the present thesis aims to move forward the physical

understanding of the evaporation process inside turbulent jet sprays. In

a turbulent spray, liquid droplets are dispersed within a turbulent gaseous

phase causing the overall dynamics to be a titanic modelling task due to

the presence of unsteady, multi-scale and multiphase processes. Up to date

a satisfactory comprehension of evaporating turbulent spray dynamics has

not yet been achieved and existing model capabilities of reproducing this

phenomenon are still limited [Jenny et al., 2012].

The present work considers the dilute droplets vaporization process re-

stricting to the non-reactive turbulent case. The main tool that will be used

to investigate the spray dynamics is the Direct Numerical Simulation (DNS).

In DNS the 3D time evolving Navier-Stokes equations are solved without us-

ing any turbulence model, but resolving on the discrete mesh all the turbulent

motions at any scale. This approach allows accurate simulations where the

whole physics of turbulent flows is described. It should be remarked that sev-

eral studies consider droplets evaporation in turbulent jets within the Large

Eddy Simulation (LES) framework [Bini and Jones, 2009] while, to the best

of author knowledge the problem has never been addressed using DNS data.

During this thesis work an existing numerical parallel code CYCLON has

been modified to introduce droplet evaporation models both in the Eulerian

and Lagrangian frameworks, for the gaseous and liquid phases respectively.

The code, written in FORTRAN90, has been also parallelized using MPI

directives. Preliminary DNS data show how crucial is the role of turbulence
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which fastens the mixing and widen the spectrum of the droplet radii.
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Chapter 2

Physics of turbulent

evaporating spray

2.1 Phenomenology of turbulence

In continuum fluid mechanics turbulence is a stochastic, unsteady phenomenon

concerning the dynamics of flows which change randomly their properties over

time. These stochastic fluctuations of fluid dynamic fields occur over a wide

range of lenth and time scales and interest the whole turbulent flow. The

randomness of these fluctuations makes turbulence to be an extremely com-

plex phenomenon to be modelled and the wide range of scales over which

these fluctuations occur adds further complexity. In this context, one of

the most important issue to be discussed concerns the consistency between

the random nature of turbulent flows, and the deterministic nature of classi-

cal mechanics embodied in the Navier-Stokes equations (see section 2.2). It

should be considered that the randomness occurring in any turbulent phe-

nomena is fully deterministic, as it is due to the high sensitivity of the flow

to its initial conditions. Two turbulent flows being characterized of slightly

different initial conditions will evolve in a completely different way. Even if

fluid particles were near in their initial evolution, they will not resemble at

later times, when the flow develops its chaotic profile. It is then clear how, in

order to develop a mathematical description of turbulence, only a statistical



Physics of turbulent evaporating spray 12

approach can provide satisfactory results.

Before introducing further concepts concerning turbulence, a brief de-

scription of the main characteristics that distinguish laminar and turbulent

flow will be given. In a laminar regime the fluid flows along parallel layers

and no disruption is present between these layers. In these conditions viscous

forces prevail on inertial forces such that the fluid layers slip on each other

and no lateral mixing or cross-currents perpendicular to the direction of flow

are present. By counterpart, a main characteristic of turbulent flows is the

prevalence of the inertial forces over the viscous ones. This is the reason why

turbulent flows are characterized by a chaotic motion and the fluid properties

change significantly and irregularly both in space and time.

A flow regime is often said to be turbulent as the Reynolds number as-

sumes high values, even though there is not a clear separation between lami-

nar and turbulent regimes. Typically, but not necessarily, flows at Reynolds

numbers larger than 5000 are turbulent, while flow at lower Reynolds num-

bers usually remain laminar. The Reynolds number is defined as the ratio

between the inertial forces and the viscous ones acting on the flow:

Re =
UL

ν
(2.1)

where ν is the fluid kinematic viscosity, while U and L should be intended

as characteristic velocity and length scale of the flow at a certain condition.

It should be noted that the Reynolds number can be defined at each specific

length and velocity scales of turbulence, giving useful informations in order

to characterize phenomenons occurring at the each of these scales. There-

fore, the Reynolds number is a key parameter concerning the description of

turbulence phenomenology.

A turbulent flow is intrinsically rotational, that is a turbulent velocity

field presents a non-zero vorticity. The vorticity field is defined as the curl

of the velocity field, ω = ∇ × u, and is characterized, in analogy with the

velocity field, by vorticity lines which are everywhere tangential to the in-

stantaneous vorticity vector. Furthermore, each arbitrary group of these

vorticity lines generates tubes of vorticity which evolve over time showing
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features typical of rotational flows. In particular, two main phenomenologies

can be distinguished concerning the evolution of the vorticity field:

• Vortex tilting. Tilting consists in the change of the orientation of

the stream of vorticity due to velocity gradient acting along direction

transversal to the vorticity field.

• Vortex stretching. The so-called vortex stretching consists of a three-

dimensional vortices auto-amplification mechanism due to a velocity

gradient aligned with at least one component of the vorticity field.

Actually, vortices subjected to stretching increase the component of

local vorticity in the stretching direction due to the conservation of

angular momentum and can brake-up giving origin to slower eddies.

The relevance of vorticity lies in the fact that turbulence determines the

generation of vortexes of several width, namely eddies, so that eddies of a

larger extent transfer kinetic energy to the smaller ones, leading to dissipation

of mechanical energy to heat, at the smallest scales of turbulent motion.

This process, known as the energy cascade, was first described by Lewis Fry

Richardson and further investigated by Andrej Kolmogorov. The concept of

energy cascade and the Kolmogorov theory are often referred in literature as

RK41 theory and will be discussed in the following subsection.

2.1.1 The energy cascade and the Kolmogorov turbu-

lence theory

Richardson’s energy cascade theory is based on the assumption that a tur-

bulent motion can be considered as the resultant of the supersposition of

vortices of different sizes, the so-called eddies. According to [Pope, 2001],

these turbulent structures elude a precise definition and can be conceived

as a turbulent motion, localized within a region of size l, that is at least

moderately coherent over this region. Hence, each of these eddies is char-

acterized by a length scale l, a characteristic velocity u(l) and a time scale

τ(l) ≡ l/u(l).
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In a specific turbulent flow larger eddies have a length scale, l0, which

is of the same order of the flow scale, L, and a characteristic velocity, u0,

which is comparable to the flow characteristic velocity, U . Thus, the charac-

teristic Reynolds number of these eddies, Re ≡ u0l0/ν, is of the same order

of the flow Reynolds number, Re = UL/ν. This means that, the larger ed-

dies that appears in a fully developed turbulent flow have a characteristic

Reynolds number which is large enough such that the effect of viscosity at

this length scale are negligible. At larger scales of a turbulent flow, kinetic

energy coming from the main flow feeds on this larger eddies. Thus, these

turbulent structures can be viewed as energy containing structures, whose

characteristics are typical of any flow and may differ from one to another.

The energy cascade process described by Richardson starts from these

larger vortices. These eddies are unstable turbulent structures and tend to

break up transferring their energy to smaller eddies. In turn, these smaller

eddies are subjected to a similar break-up process and transfer their energy

to even smaller eddies. This energy transfer from larger to smaller turbulent

structures continues until the Reynolds number of receiving eddies is low

enough that the dissipative effects of molecular viscosity become relevant and

kinetic energy is dissipated to heat. This scale is known as the Kolmogorov

scale, η, and correspondes to the smaller length scale of turbulence. At the

length scales of the same order of the Kolmogorov scale, kinetic energy is

completely dissipated into heat by the action of molecular viscosity and the

energy cascade process ends.

In order to evaluate the Kolmogorov scale, let us consider the rate of

kinetic energy transfer in the energy cascade process, ε. It should be noted

that the rate of energy dissipation at the Kolmogorov scale is imposed by

the energy transfer rate at the larger scales. The dissipative scale can be

easily calculates through dimensional analysis. Given the two parameters ε

and ν, there are, to within multiplicative constants, unique length, velocity,

and time scales that can be formed. These are the Kolmogorov scales, η,

uη and τη. Kolmogorov hypothesis, that will be discussed in the following,

state that the dissipative scale must be dependent only from ε and ν param-
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eters. Hence, the following equation can be immediately derived imposing

dimensional consistency between ν, ε and η:

[η] = [εανβ] (2.2)

This leads to the following system of equations in order to grant dimen-

sional consistency between the right-hand sides and left-hand sides of equa-

tions 2.2: 3α + β = 0

−α + β = 1
(2.3)

which has a unique solution: α = −1/4 and β = 3/4. Applying the same

dimensional analysis to the velocity and time scales lead to the following

expressions for the Kolmogorov scales:

η ≡
(
ν3

ε

) 1
4

(2.4)

uη ≡ (εν)
1
4 (2.5)

τη ≡
(
ν

ε

) 1
2

(2.6)

From the preceding equations the following identity clearly indicate that

the Kolmogorov scales characterize the very smallest, dissipative eddies:

η uη
ν
≡ 1 (2.7)

Indeed, the Reynolds number based on the Kolmogorov scales, Reη ≡
ηuη/ν, is unity. This is consistent with the energy cascade hypothesis, that is

the energy transfer proceeds to smaller and smaller scales until the Reynolds

number is small enough for dissipation to be effective.

The Kolmogorov scale completely defines the extension of the range of

length scales over which the energy cascade process occurs. Nevertheless, the

hypothesis at the base of Kolmogorov turbulence theory leads to a further
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Figure 2.1: A sketch of the different length scale ranges over which the energy

cascade process occurs according to the Kolmogorov hypothesis.

distintion between different sub-ranges characterized by deeply different con-

ditions which are sketched in figure 2.1. Kolmogorov introduced the three

following fundamental hypothesis:

• Hypothesis of local isotropy. At sufficiently high Reynolds number,

the small-scale turbulent motions, l < lEI , are statistically isotropic.

• First similarity hypothesis. In every turbulent flow, at sufficiently

high Reynolds number, the statistics of the small-scale turbulent mo-

tions, l < lEI , have a universal form that is uniquely determined by ν

and ε.

• Second similarity hypothesis. In every turbulent flow, at suffi-

ciently high Reynolds number, the statistics of the motions of scale

l in the range lDI < l < lDE have a universal form that is uniquely

determined by he dissipation rate ε, independently from ν.

The hypothesis of local isotropy at the small scales implies that an en-

ergy transfer process to smaller scales through a non-viscous process is always

achieved. Moreover, the local isotropy hypothesis states that the turbulent

structures in the size range l < lEI are isotropic independently from the

anisotropic structure of the large scale of turbulent motion which is deter-

mined by the peculiar conditions of the particular flow considered (boundary
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conditions, external forcing, etc.). The scale lEI is useful in order to set a

demarcation between the anisotropic large eddies and the isotropic small ed-

dies. This scale is usually set to lEI ≈ 1/6 L, nevertheless this length scale

can not be uniquely defined. The scale range lEI < l < L is called energy

containing range. As stated above, this scale range is anisotropic, strongly

non universal and it is the range of production of turbulent kinetic energy

associated with larger eddies.

The first hypothesis of similarity states that below this energy containing

range, where turbulent kinetic energy is produced, a second interval can be

identified. The range lID < l < lEI was called by Kolmogorov the universal

equilibrium range. This range has universal characteristics independently by

the particular turbulent flow taken into exam and the main physical quan-

tities governing turbulence in this range are uniquely ν and ε. Moreover, in

this range small eddies can adapt quickly to maintain a dynamic equilibrium

with the energy transfer rate imposed by the large eddies.

At last, the universal equilibrium range can be further subdivided into

two different scale ranges according to the second similarity hypothesis: the

inertial sub-range, lID < l < lEI , and the dissipation range, l < lID. These

ranges are identified by another characteristic scale lDI . The inertial sub-

range includes the scales of the universal equilibrium range where inertial

effects are predominant, while the dissipation range includes the scales where

molecular dissipation is dominant.

This brief description of turbulent phenomenology underlines some of

the most fundamental concepts concerning turbulent flows dyanmics and is

considered to be satisfactory in order to introduce the following discussion

concerning evaporation process inside turbulent sprays.

2.1.2 The evaporation process within a turbulent spray

In these subsection a brief review of the state-of-the-art knowledge concern-

ing turbulent evaporating spray phenomenology is reported in order to in-

troduce some of the most fundamental phenomena which can be observed in
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this context and that will be accurately discussed in the following chapters.

The formation of a bi-phase turbulent spray is an extremely complex phe-

nomenon to be modelled due to the presence of two distinct phases which

are separated by time-evolving interfaces and mutually interact exchanging

mass, momentum and energy.

The spray formation process starts as a high velocity fluid exits from a

duct and enters in contact with a gaseous phase. The finite velocity differ-

ence across the interface between the liquid and gas phases gives origin to

instability such as Kelvin-Helmholtz and Rayleigh-Taylor. These instabilities

lead to the fragmentation of the jet into separated large drops or ligaments

in the so-called main break-up process [Marmottant and Villermaux, 2004].

Further downstream, liquid droplets and ligaments are exposed to aerody-

namics forces induced by the velocity difference between the gas and liquid

phases. These aerodynamic stresses induce a secondary fragmentation of the

liquid phases leading to a system of small droplets transported by the gas

phase. This secondary fragmentation is referred as secondary break-up.

Primary and secondary brake-up processes, occur in a dense regime where

the volume fraction of the liquid phase is relevant Φ > 0.01 and thus strong

mutual interactions between ligaments and ligaments-gas subsists. The at-

omization process represents an extremely challenging phenomenon to be

investigated from a numerical point of view since both liquid ligaments and

gas phase need to be evolved from a continuum point of view. Indeed, in this

case moving interfaces must be considered together with appropriate bound-

ary conditions concerning surface tension. This part of spray phenomenol-

ogy will be not addressed in this work that focuses only at investigating the

evaporation dynamics occurring among droplets created after the end of the

atomization process. It should be noted that the evaporation rate is usually

negligible before atomization is concluded.

The atomization process ends up when surface tension forces balance the

aerodynamic forces and thus terminate the break-up process [Jenny et al.,

2012]. At this step a so-called dilute regime develops. In this conditions, the

droplets are enough diluted in terms of volume fraction (Φ < 0.001) that their
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Figure 2.2: A sketch of the main phases of the spray formation process.

mutual interactions can be neglected, however their effect on gaseous phase is

still relevant and thus must be considered. This dilute regime is also referred

in literature as two-way coupling conditions [Ferrante and Elghobashi, 2003,

Gualtieri et al., 2013].

This two-way coupling regime consists in the main focus of the present

work, since in these conditions several phenomenons involving turbulence

and droplets dynamics interactions occur. Moreover, it is during this part of

the spray evolution that the most part of the liquid phase transit to vapour

which is further mixed with the gas phase by the turbulent mixing.

In these conditions, a strong interaction between turbulence, vapour con-

centration field and droplet clustering can be observed. The droplets clus-

ters phenomenology will be discussed in chapter 4 and consists in a criti-

cal phenomenon concerning evaporating spray dynamics which has not been

yet adequately understood. Indeed, inside these structures the local droplet

concentration may become also hundreds time the mean bulk concentration

strongly affecting the evaporation rate and the gas velocity field. Actually,

the vapour concentration around a cluster may increase suddenly above the
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saturation values blocking the local droplets vaporization [Reveillon and De-

moulin, 2007]. At this point, mixing induced by local turbulent motion dif-

fuses this vapour concentration peak permitting the evaporation process to

restart. It is then clear how an improved understanding of the complex mech-

anisms governing this regime is mandatory to move forward the physical and

technological understanding of bi-phase turbulent spray evaporation.

Further downstream this dilute regime, a large part of the droplets are

evaporated and both liquid phase volume and mass fractions become substan-

tially negligible. This region is characterized by a very dilute regime in which

particle doesn’t substantially affect the gaseous phase and the so-called one-

way coupling condition subsists. In this conditions, only the carrier phase

afflicts the droplets dynamics while no significant counterforce exerted by

droplets can be observed. At this step, the vaporization process is completed

and the remaining liquid droplets are evaporated so that only vapour and

gas phases subsist.

2.2 The governing equations of the carrier

phase

In a turbulent spray the evaporation and condensation processes are respon-

sible for a mass, momentum and energy transfer between the liquid phase

and the carrier phase. The vapour released by the droplets surfaces mixes

with the gaseous phase adding mass, momentum and energy to the local

flow. In case of condensation the process is reversed and mass, momentum

and energy are subtracted to the carrier phase. This exchange process occurs

in a wide range of scales typical of turbulent motion and causes a strong cou-

pling between the gaseous phase and the droplets dynamics. In particular,

the transferred energy is one of the driving parameter regulating the diver-

gence of the velocity field in the carrier phase. In addition, this energy flow

is responsible for local expansions or compression of the gas phase which is

non-negligible in order to obtain an accurate description of the evaporation
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dynamics. Therefore, the carrier phase density, pressure and temperature

have to be treated as both time and space dependent variables and some

compressible form of Navier-Stokes equations have to be considered.

The present work aims to investigate as more details as possible of the

evaporation process in turbulent spray. To this purpose a low Mach num-

ber regime has been considered and a low Mach number expansion of the

Navier-Stokes equations has been adopted in order to solve the carrier phase

turbulent motion. This approach leads to significant simplifications concern-

ing the numerical solution of equations without neglecting the effects of the

carrier phase density variations. Indeed, in a low Mach number approach

only the effects of acoustic waves propagation on the fluid dynamics of the

carrier phase are neglected, while local variations of thermodynamic pres-

sure, density and temperature are still considered. In the present work dilute

spray conditions are considered, hence theese equations are derived treating

the carrier phase by an Eulerian point of view, while the dispersed phase is

described through a Lagrangian approach. The carrier phase is considered to

be a Newtonian fluid and the diffusion of the species is assumed to obeys the

Fick’s law. Two mass equations have been considered: the first relative to

the vapour species and the second concerning globally the carrier phase. The

phases coupling has been taken into account by three sink/source terms in

the right-hand sides of the Navier-Stokes equations. Each of these terms rep-

resents respectively the mass, momentum and energy added or subtracted

to the carrier phase by the evaporation and condensation processes. The

expressions for the coupling terms will be discussed in subsection 2.4.1.

Since the energy transfer plays a key role in the evaporation dynamics,

a brief description concerning enthalpy of gas, vapour and liquid phase are

discussed in the following. In a mixture of different chemical species, the

enthalpy of the i-th species can be written as:

hi(T ) =

∫ T

T0

Cp,i dT + ∆Hf,i(T0) (2.8)

where the former term in the right-hand side of equation 2.8 is the sensible

enthalpy of the i-th species while the latter represents its formation enthalpy
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evaluated at an arbitrary reference temperature T0. In the present study,

all species are assumed to be calorically perfect and therefore have constant

heat capacities. The formation enthalpy of gas and vapour at the reference

temperature of zero Kelvin is assumed to be zero. The calorically perfect

hypothesis and the chosen reference state for enthalpy lead to the following

relations for the vapour and gas enthalpy respectively:

hv = Cp,vT (2.9)

hg = Cp,gT (2.10)

It should be noted that vapour and liquid consists of two different phases

of the same chemical species. Therefore, according to Miller and Bellan

[1999], the definition of the latent heat of vaporization Lv = hv − hl leads to

the following expression for liquid phase enthalpy:

hl = ClT + ∆H0
f,l (2.11)

∆H0
f,l = (Cp,v − Cl)T − Lv(T ) (2.12)

where hl is the liquid enthalpy and ∆H0
f,l its enthalpy of formation at the

reference temperature T0. It should be noted that formation enthalpy must

be a constant to be a meaningful reference condition. This is guaranteed by

the Clausius-Clapeyron relation:

∂Lv
∂T

= Cp,v(T )− Cl(T )) (2.13)

which reveals that ∆H0
f,l is indeed a constant (as a result of the integration

constant), and is therefore independent of the evaluation temperature T.

These assumption concerning enthalpy will be considered in order to derive

all equations adopted in the present work.

The full compressible form of the Navier-Stokes equations for the carrier

phase can be written according to Mashayek [1998], including conservation
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of mass, momentum and energy equations. Vapour and gas are treated as

ideal gases and the correspondent state equation has been considered:

∂ρ

∂t
+∇ · (ρu) = Sρ (2.14)

∂

∂t
(ρYv) +∇ · (ρuYv) = ∇ · (ρ D∇Yv) + Sρ (2.15)

∂

∂t
(ρu) +∇ · (ρuu) = ∇ · τ −∇p+ f + Sm (2.16)

∂

∂t
(ρet) +∇ · (ρuet) = ∇ · (τ · u)−∇ · (pu) +u ·f +∇ · (k∇T ) +Se (2.17)

p = ρ
(
(1− Yv)Rg + YvRv

)
T (2.18)

All variable appearing in equations 2.14 to 2.18 refer to the vapour-gas

mixture constituting the carrier phase. The total specific energy of the carrier

phase is et = e+ 1
2
u ·u, while e is the specific internal energy. Yv, Rg, Rv and

D are respectively the vapour mass fraction, the specific gas constant of gas

and vapour and the binary diffusion coefficient of vapour. The sink/source

terms Sρ, Sm and Se are the mass, momentum and energy coupling terms

and will be discussed in subsection 2.4.1.

2.3 The governing equations of the dispersed

phase

This section aims to underline some physical characteristics of the droplets

evaporation process in order to motivate the main assumptions at the base

of the model considered in the present work. Equations for droplets mass,

temperature, position and velocity are derived in a low temperature and

dilute regime context starting by fundamental principles of dynamics and
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thermodynamics. Before introducing the equations, the main critical aspects

concerning droplets evaporation will be briefly discussed.

Droplets evaporation consists of a mass and heat exchange process oc-

curring between the droplets surfaces and the carrier phase. Since in dilute

regime droplets are separated by the main gaseous phase by a well-defined

interface, a boundary layer develops over the droplets surfaces. The phase

transition take place in correspondence of the liquid-gas interface where liquid

particles with sufficiently high microscopic kinetic energy break intermolecu-

lar bonds and moves to vapour phase producing a thin sub-layer of saturated

vapour immediately away from the droplet surface. This saturated vapour

layer is dispersed into the surrounding carrier phase by two different mecha-

nisms:

• molecular diffusion driven by the vapour concentration gradient;

• forced convection induced by external flow and by the presence of a

so-called Stefan flow.

Some particular attention must be paid to the presence of the Stefan flow.

This phenomenon consists of a mass transport process occurring in a mixture

of two or more chemical species which is caused by the production or removal

of one species in correspondence of an interface. The chemical species flow

at interface induces a stream in the mixture which transports the chemical

species themselves by forced convection. On the surface of an evaporating

droplet the Stefan flow is induced by the pressure exerted on the saturated

vapour sub-layer by the additional vapour produced on droplet surface. This

phenomenon is mainly responsible for an increment of the boundary layer

thickness relative to the case of non-evaporating droplets. Since both mass

and heat exchange processes occur through the droplet boundary layer, mass

and heat transfer rate are affected by its characteristics. Therefore, the effect

of the Stefan flow is not negligible in order to achieve an accurate description

of the evaporation process.

Concerning the energy involved in the evaporation process, the transition

of the liquid to vapour requires a certain amount of energy per evaporated



Physics of turbulent evaporating spray 25

mass. This energy corresponds to the latent heat of vaporization of the liquid

phase and is supplied both by droplets and the carrier phase. As evaporation

proceeds at a certain rate, some energy is supplied to the evaporation process

by the internal energy of the droplet itself. Consequently, droplet temper-

ature tends to decrease while convective heat transfer increases due to the

increment of the temperature difference between the droplet and the carrier

phase. This heat transfer supply the remaining amount of energy required

by evaporation. It is then clear how mass and heat exchange processes are

strongly coupled together and are further dependent on the local turbulent

motion of the carrier phase.

In the present work droplets dynamics is described by a Lagrangian ap-

proach expressing droplets velocity and position in a fixed reference system.

The model proposed by Abramzon and Sirignano [1989] has been adopted

for the evaporating mass equation in order to account for the previously

described effects, while the temperature equation has been derived directly

from the first law of thermodynamics following the approach of Bini and

Jones [2009]. These models are obtained introducing some corrections to

the model proposed by Spalding in order to account for the presence of the

Stefan flow and the relative motion between droplets and the carrier phase.

According to Abramzon and Sirignano [1989] two different correction factors

are defined to correct the thermal and diffusional boundary layer thickness

respectively:

Ft =
δt
δt,0

(2.19)

Fm =
δm
δm,0

(2.20)

where δt,0 and δm,0 are the thickness of the thermal and diffusional bound-

ary layer which develops around a sphere in absence of the Stefan flow, while

δt and δm are the thickness of the actual boundary layers. Operative relations

for Ft and Fm will be given in subsection 2.3.1 and 2.3.2.

In order to derive the equation for droplets mass and temperature several
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assumptions have been considered. First of all, it should be noted that in

dilute regime the brake-up process has substantially ended and the liquid

phase volume fraction is in the range between 10−6 and 10−3 [Jenny et al.,

2012]. In these conditions droplets collisions and coalescence become ex-

tremely rare events and can be safely neglected without compromising the

physical description of the phenomenon. The heat and mass transfer pro-

cesses are assumed to be quasi-steady processes and temperature and vapour

concentration distributions are supposed to be constant along the droplet

surface. Moreover, temperature is supposed to be time varying but uniform

inside droplets volume. In literature, these models are referred as infinite-

liquid-conductivity models, or rapid-mixing models, because this latter hy-

pothesis is equivalent to suppose the liquid phase thermal conductivity to be

infinitive.

Concerning the heat transfer process in dilute regime, at low tempera-

ture heat transfer occurs mainly between each droplet and the carrier phase

through a convective process, while radiative heat transfer between droplets

is negligible. Therefore only convective heat transfer has been accounted

while no radiative exchange has been considered.

After the atomization process has ended, surface tension forces prevail

on aerodynamic forces causing droplets to maintain a spherical shape during

evaporation. Hence, the droplets are modelled as rigid spheres which radius

varies due to mass exchange process. Finally, the density of the droplets is

considered to be constant and much larger than the density of the carrier

phase such that only inertia and drag forces are significant for the droplet

dynamics while secondary effects can be neglected. Interior motion and ro-

tation of droplets are not considered.

Concerning the evaluation of the carrier phase variables in correspondence

of each liquid particle, droplets are assumed to be punctiform. This hypoth-

esis is equivalent to assume that each droplet is invested by a uniform stream

with the same characteristics of the effective local flow. In the following

subsections the ∞ subscript refers to the carrier phase variables evaluated

at droplet centre, overlined terms corresponds to average properties of the
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gas-vapour mixture in the droplet boundary layer, while s subscript refers

to variable evaluated on droplets surface. Moreover, the g subscript refers

to the gas phase, l refers to property of the liquid phase, v refers to vapour

produced by droplets evaporations while the d subscript refers generically to

droplet.

All equations presented in the following subsections are derived such that

the droplet relaxation time appears explicitly in the right-hand sides. The

droplet relaxation time, or droplet response time, is a time-dimension param-

eter which plays a key role in droplet dynamics as a regulating parameter for

the heat and mass transfer ratio. It is defined as following:

τd =
2

9

ρl
µg
r2
d (2.21)

where ρl is the density of the liquid phase, µg is the gas dynamic viscosity

and rd is the droplet radius. It should be noted that the non-dimensional

form of the droplet relaxation time corresponds to the droplet Stokes number:

St =
τd
tf

(2.22)

where tf is a reference time concerning the carrier phase fluid dynamics.

If the reference time is chosen opportunely, the droplets Stokes number rep-

resents a measurement of droplet dynamics rapidity compared to the rapidity

of the carrier phase dynamics.

2.3.1 Droplet mass equation

The principle of mass conservation leads to the following equation concerning

each single droplet:

dmd

dt
= Φm (2.23)

where Φm is the total mass flow transferred between the droplet and the

carrier phase. Since the mass transfer process happens as a result of both

molecular diffusion and forced convection, the instantaneous mass flow, Φm, is
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related to both kinematic and thermodynamic parameters and, in particular,

to the heat exchange rate, local vapour concentration, local vapour pressure

and the thickness of the diffusional and thermal boundary layers. The mass

flow Φm can be estimated through the relation according to Abramzon and

Sirignano [1989]:

Φm = 2π ρ Dv rd Sh ln(1 +Bm) (2.24)

where ρ and Dv are respectively the average density of the gas/vapour

mixture in the boundary layer near the droplet surface and the vapour bi-

nary diffusion coefficient. The non-dimensional parameter Bm, appearing in

equation 2.24 is called Spalding mass transfer number and depends on the

difference between the vapour mass fraction in the saturated sub-layer Ys and

the local vapour mass fraction in the carrier phase, Y∞:

Bm =
Ys − Y∞
1− Ys

(2.25)

Sh is a modified Sherwood number which is corrected in order to account

for the effects of the Stefan flow. It is related to the Sherwood number Sh0,

which accounts only for forced convection due to relative motion between the

droplet and the carrier phase. Sh0 can be estimated through the Frössling

correlation:

Sh0 = 2 + 0.552
√
Red Sc

1
3 (2.26)

while Sh is defined as following:

Sh = 2 +
(Sh0 − 2)

Fm
(2.27)

The Reynolds number appearing in equation 2.26, is the droplet Reynolds

number. Since it is interpreted as a ratio of inertia to viscous forces, the

definition of Red uses the free-stream density and viscosity and the droplet

diameter:

Red =
2ρg||ug − ud||rd

µg
(2.28)
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The Fm parameter is the diffusional boundary layer thickness correction

factor, which has been previously defined and can be estimated according to

Abramzon and Sirignano [1989] through the following correlation:

Fm =
(1 +Bm)0.7

Bm

ln(1 +Bm) (2.29)

The Sc parameter in equation 2.26 is the Schmidt number of the gas/vapour

mixture in the boundary layer near the droplet surface:

Sc =
µ

ρ Dv

(2.30)

The vapour mass fraction in the droplet boundary layer is one of the

driving parameter governing the evaporation rate and appears explicitly in

equation 2.25 for the Spalding mass transfer number. The vapour molar

and mass fraction in the saturated sub-layer, xs and Ys respectively, are

strongly dependent on the droplet temperature and carrier phase pressure.

This correlation can be accounted through the Clausius-Clapeyron relation

for saturated vapour pressure:

pv,s(Td) = pref e
Lv
Rv

(
1

Tref
− 1
Td

)
(2.31)

xs(Td, p) =
pv,s
p

(2.32)

Ys(Td, p) =
xs

xs + (1− xs)Mg

Mv

(2.33)

In the above expressions Td is the droplet temperature, Lv is the latent

heat of vaporization of the liquid phase and pref is the saturated vapour

pressure evaluated in correspondence of a reference temperature Tref . Mg and

Mv are the molar weight of gas and vapour respectively. Once pref is known

for the vapour of a certain chemical species at the temperature Tref , the

saturated vapour pressure corresponding to an arbitrary temperature T can

be estimated trough equation 2.31. Since the partial vapour pressure in the

vapour sub-layer near the droplet surface corresponds to the saturated vapour
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pressure at temperature Td, the vapour molar fraction in correspondence of

the droplet surface follows immediately from equation 2.32.

Finally, introducing the expression for the mass flow 2.24 in equation

2.23 and dividing both sides by the droplets mass md leads to the following

equation:

dmd

dt
= −md

3τd

Sh

Sc
ln(1 +Bm) (2.34)

Equation 2.34 is quite stiff and can lead to numerical instability. In order

to reduce the stiffness of this equation and improve the numerical stability it

is convenient to rewrite the equation as following:

dr2
d

dt
= −µg

ρl

Sh

Sc
ln(1 +Bm) (2.35)

Equation 2.35 corresponds to the well-known d2-law. Nevertheless it is

modified in order to considered the effects of the Stefan flow and the varia-

tions over time of the droplets parameters.

2.3.2 Droplet temperature equation

The first law of thermodynamics can be applied to a Lagrangian control

volume defined by the droplet surface and containing the liquid phase as

following:

d

dt
(mdhd) = q̇ + ṁd(hd + Lv) (2.36)

where mdhd is the droplet enthalpy, ṁ(hd + Lv) is the enthalpy removed

from the control volume by the evaporation process and q̇ is the heat power

transferred by convection from the gaseous phase to the droplet. Equation

2.36 leads to:

mdCl
dTd
dt

= q̇ + ṁdLv (2.37)

Under the hypothesis of a quasi-steady heat transfer process the convec-

tive heat transfer, q̇, can be written as:
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q̇ = Sd h (T∞ − Td) (2.38)

where Sd is the droplet surface area and h is the convective heat transfer

coefficient. For a sphere invested by a uniform flow the following analyti-

cal expression for h is known and can be applied to one droplet under the

considered hypothesis:

h =
kNu

2rd
(2.39)

In analogy with the equations governing mass diffusion, Nu is a modified

Nusselt number which is corrected in order to consider the effect of the Ste-

fan flow on the thermal boundary layer thickness. Again, Nu depends on

Nu0 which accounts only for the forced convection and is obtained from the

Frössling correlation, similarly to Sh:

Nu0 = 2 + 0.552
√
RePr

1
3 (2.40)

Nu = 2 +
(Nu0 − 2)

Ft
(2.41)

Pr is the Prandtl number of the mixture in the droplet boundary layer

defined as:

Pr =
µ Cp

k
(2.42)

The thermal boundary layer thickness correction factor Ft can be evalu-

ated by the following correlation according to Bini and Jones [2009]:

Ft =
(1 +Bt)

0.7

Bt

ln(1 +Bt) (2.43)

The terms µ, k and Cp corresponds respectively to the average viscosity,

thermal conductivity and heat capacity of the gas mixture in the droplet

boundary layer.

Substituting expressions 2.39 and 2.38 in 2.37 and considering the defini-

tion of the droplets relaxation time 2.21 leads to:
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dTd
dt

=
1

3τd

(
Nu

Pr

Cp
Cl

(Tg − Td)−
Sh

Sc

Lv
Cl

ln(1 +Bm)

)
(2.44)

2.3.3 Droplet motion equation

The droplets motion equation can be derived by applying the third law of

dynamics to one droplet and considering the resultant of the forces acting

on the droplet itself. Under the considered hypothesis only the drag force

exerted on droplet by the carrier phase is relevant. Therefore, Newton’s third

law applies to one droplet as following:

md
dv

dt
= FD (2.45)

The drag force acting on each droplet is caused by the relative velocity

between the droplet and the carrier phase:

FD =
1

2
ρg Sd CD||ug − ud||(ug − ud) (2.46)

where CD is the droplet drag coefficient and Sd is the droplet frontal area

projected along the direction of motion. Under the hypothesis of spherical

droplets Sd simply corresponds to the area of a disk of radius rd. CD is

assumed to be equal to the drag coefficient of a rigid sphere and can be

evaluated as a function of the droplet Reynolds number by the following

correlation:

CD =
24

Red
(2.47)

Substituting correlations 2.47 and 2.46 in equation 2.45 leads to:

dv

dt
=
ug − ud

τd
(2.48)

The droplets position can be obtained by integration of equation 2.48.
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2.4 The coupled equations of evaporating spray

2.4.1 Coupling terms

As stated in section 2.2, the governing equations for the carrier phase con-

tain two-way coupling terms which represent the integrated effects of the

droplet mass, momentum, and energy exchange with the carrier phase itself.

These Eulerian variables are calculated from the Lagrangian droplets vari-

ables according to Miller and Bellan [1999] and Bukhvostova et al. [2014].

Nevertheless, in the present work some different hypothesis have been con-

sidered in order to estimate the enthalpy of the chemical species in the carrier

phase mixture, leading to a different coupling term Se. Considering a single

droplet, the heat flow transferred from the liquid to the carrier phase q̇c has

the same intensity of the heat flow transferred from the carrier phase to the

droplet q̇d:

q̇c = −q̇d (2.49)

The energy coupling term must take into account the heat transfer and

kinetic energy flow. Moreover, vapour enthalpy is transferred by the evapo-

ration process to the carrier phase and vice-versa in the case of condensation.

Therefore, the term Se can be written, considering heat transfer, enthalpy

and kinetic energy flow as:

Se = −
(
q̇d +

dmd

dt
hv +

d

dt

(
md

u2
d

2

))
δ(xd − x) (2.50)

where q̇c can be derived from equation 2.37:

q̇c = −mdCl
dTd
dt

+
dmd

dt
∆Hv (2.51)

Substituting the expression 2.51 in 2.50 and taking the sum over all

droplets leads to:

Se = −
∑
i

(
miCl

dTi
dt

+
dmi

dt
(Cp,vTi − Lv) +

d

dt

(
md

u2
d

2

))
δ(xi − x) (2.52)
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The coupling terms Sρ and Sm are the same proposed by Miller and

Bellan [1999]:

Sρ = −
∑
i

dmi

dt
δ(xi − x) (2.53)

Sm = −
∑
i

d

dt
(miui)δ(xi − x) (2.54)

In the above expressions for the coupling terms all the sums are taken

over all droplets in the domain. The delta-function expresses that the cou-

pling terms act only at the positions of the droplets, consistent with the

point-particle assumption. The Sρ term represent the mass transfer between

the phases occurring because of evaporation or condensation. This term

appears both in the global continuity equation 2.14 and in the vapour conti-

nuity equation 2.15. Indeed, even if the evaporation process interest only the

vapour and liquid phase, it gives a contribution to the total density of the

carrier phase. The momentum transfer between the two phases as expressed

by 2.54, consists of two mechanisms: the drag force between the droplets and

the carrier phase and the momentum exchanged due to mass transfer arising

from phase changes. This relations complete the description of the governing

equations for the two phases.

2.4.2 Non-dimensionalization procedure

In order to derive the low Mach number limit of the full Navier-Stokes equa-

tions it is convenient to convert equations 2.14 to 2.18 to a non-dimensional

form. To this purpose some statistics of the carrier phase variables evaluated

on the jet inlet section are taken as reference values. The primary reference

variables are ρ∞, p∞, u∞ and r∞ which are respectively the average density,

pressure and velocity evaluated at inlet section and the jet inlet radius. More-

over, reference values are considered for the thermal conductivity, k∞, specific

gas constant, R∞, specific heat, cp∞ = γ
γ−1

R∞, binary diffusion coefficient,

D∞, and viscosity, µ∞. From this reference values it is possible to define
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the following derived values that has been considered in the non-dimensional

equations:

t∞ = r∞
u∞

e∞ = p∞
ρ∞

h∞ = p∞
ρ∞

T∞ = p∞
R∞ ρ∞

f∞ = ρ∞u2∞
r∞

which are respectively the reference time, specific energy, specific en-

thalpy, temperature and force per unit mass. Moreover the following non-

dimensional groups are considered:

M̃a = u∞√
p∞
ρ∞

Sc = µ∞
ρ∞ D∞

Pr = cp∞ µ∞
k∞

Re = ρ∞u∞r∞
µ∞

Sc and Pr are respectively the Schmidt and Prandtl number of the carrier

phase, while M̃a =
√
γMa where Ma is the Mach number. Considering the

non-dimensional groups relative to the convective terms of each equations,

the non-dimensionalization procedure can be accomplished by dividing each

equation for the respective non-dimensional group, which leads to the follow-

ing non-dimensional equations:

∂ρ

∂t
+∇ · (ρu) = Sρ (2.55)

∂

∂t
(ρYv) +∇ · (ρuYv) =

1

Re Sc
∇ · (µ∇Yv) + Sρ (2.56)

∂

∂t
(ρu) +∇ · (ρuu) =

1

Re
∇ · τ − 1

M̃a
2∇p+ f + Sm (2.57)

∂

∂t
(ρe) +∇ · (ρue) + M̃a

2
(
∂

∂t

(
ρ
u2

2

)
+∇ ·

(
ρu

u2

2

))
=

=
Ma2

Re
∇ · (τ · u)−∇ · (pu) + M̃a

2
u · f+

+
γ

γ − 1

1

RePr
∇ · (k∇T ) +

γ

γ − 1
Se

(2.58)

p = ρ (1 +M Yv) T (2.59)
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The M parameter appearing in the gas state equation is defined as M =
Mg

Mv
−1 where Mg and Mv are the molecular weight of gas and vapour respec-

tively. The non-dimensional expressions for the coupling terms are formally

equal to the dimensional ones, except for the energy one:

Se = −
∑
i

(
micl

dTi
dt

+
dmi

dt
(cpvTi−

γ − 1

γ
∆Hv)+M̃a

2 d

dt

(
md

u2
d

2

))
δ(xi−x)

(2.60)

The non-dimensionalization procedure must be applied to both carrier

phase and droplets equations, the latter becoming the following equations:

dmd

dt
= −md

3St

Sh

Sc
ln(1 +Bm) (2.61)

dTd
dt

=
1

3St

(
Nu

Pr

Cp
Cl

(Tg − Td)−
γ − 1

γ

Sh

Sc

Lv
Cl

ln(1 +Bm)

)
(2.62)

dv

dt
=
ug − ud
St

(2.63)

St =
2

9
Re

ρl
µg
r2
d (2.64)

where the Stokes number St corresponds to the non-dimensional droplet

response time τd and Re is the spray Reynolds number.

2.4.3 Low Mach number equations

In order to derive the low Mach number limit of the non-dimensional Navier-

Stokes equations, it is necessary to express each variable appearing in both

carrier phase and droplets non-dimensional equations (equation 2.55 to 2.63)

as the following asymptotic series:

f(x, t) = f0(x, t)+f1(x, t)M̃a+f2(x, t)M̃a
2
+f3(x, t)M̃a

3
+O(M̃a

3
) (2.65)
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The full procedure, which will be omitted in this context, requires to

impose the equality of all terms of the same order in the left-hand sides

and right-hand sides of the equations obtained through the preceding series

expansion. This procedure leads to the following low Mach number equations:

∂ρ0

∂t
+∇ · (ρu)0 = Sρ0 (2.66)

∂

∂t
(ρYv)0 +∇ · (ρuYv)0 =

1

Re Sc
∇ · (µ∇Yv)0 + Sρ0 (2.67)

∂

∂t
(ρu)0 +∇ · (ρuu)0 =

1

Re
∇ · τ0 −∇p2 + f0 + Sm0 (2.68)

∂

∂t
(ρe)0 +∇ · (ρuh)0 =

γ

γ − 1

1

RePr
∇ · (k∇T )0 +

γ

γ − 1
Se0 (2.69)

p = ρ (1 +M Yv) T (2.70)

Se,0 = −
∑
i

(
micl

dTi
dt

+
dmi

dt
(cp,vTi −

γ − 1

γ
Lv)

)
(2.71)

In equation 2.66 to 2.70 the order of each term is indicated by an integer

subscript which varies from zero to two. It should be noted that, applying

the asymptotic series expansion to the momentum equation and considering

separately the zeroth and first order terms leads to the following statements

concerning the thermodynamic pressure:

∇p0 = 0 ∇p1 = 0

Therefore, the zeroth and first order terms of thermodynamic pressure

are uniform over the whole fluid domain, while only the second order term is,

in general, non-uniform. This express the fact that, in a low Mach number

regime, acoustic waves propagation through the carrier phase exert negligible

effects on the fluid dynamics of the system. In addition, the present study

deals with an evaporating spray injected into an open environment. In this
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condition thermodynamic pressure is regulated by the environmental pressure

and, therefore, p0 can be assumed to be both constant over time and uniform

over space.

Equation 2.69 can be further modified considering the non-dimensional

correlations between the thermodynamics pressure and the internal energy

and enthalpy of the carrier phase (ρe)0 = 1
γ−1

p0 and (ρh)0 = γ
γ−1

p0:

p0 ∇ · u0 =
1

RePr
∇ · (k∇T )0 + Se0 (2.72)

This equation is of particular importance since expresses explicitly a cor-

relation between the divergence of the velocity field of the carrier phase,

thermal conduction and energy transferred between phases due to evapora-

tion and condensation process. Moreover, equation 2.69 play a key role in

the numerical method adopted in the CYCLON code in order to solve the

low Mach number equations.



Chapter 3

Direct Numerical Simulation of

turbulent evaporating spray

3.1 Computational Fluid Dynamics

The resolution of Navier-Stokes equations for turbulent flows is a challenging

task and in most cases an exact solution does not exist. In these cases, the

solution must be computed numerically by the use of Computational Fluid

Dynamics (CFD) techniques. Multy-phase turbulent flows present even big-

ger challenging issues due to the presence of more phases which mutually in-

teract exchanging mass, momentum and energy. The coupling between these

exchange processes and turbulence dynamics increases further the complexity

of the description of evaporating spray physics, leading to extremely complex

procedure required to solve the coupled equations of the carrier and dispersed

phases.

In this context, CFD numerical techniques require huge computational

resources both in terms of variable storage memory and processing capacity.

Indeed, in a turbulent biphase spray millions of droplets are dispersed within

the carrier phase, each of them must be tracked storing its position, velocity,

radius and temperature into some memory area. Moreover, each Lagrangian

variable concerning droplet dynamics must be processed in order to evolve it

over time and, in the presence of such a number of droplets, this task engages



DNS of turbulent evaporating spray 40

a considerable amount of computational capacity.

In this chapter the numerical techniques adopted to solve evaporating

spray equations will be described. This task was accomplished by the im-

plementation of several algorithms that will be discussed paying particular

attention to the optimization of computational resources.

3.1.1 CFD Techniques

Up to date several CFD techniques have been developed in order to numer-

ically solve Navier-Stokes equations and many strategies can be followed to

the purpose of reducing the necessary computational resources. The state-

of-the-art CFD methods available up to date may be divided in the following

three groups:

• Direct Numerical Simulation (DNS): In DNS the time evolving Navier-

Stokes equations are solved without using any turbulence model, but

resolving explicitly any scale of turbulent motion on a discrete mesh.

This approach allows accurate simulations where the whole physics of

turbulent flows is described;

• Large Eddy Simulation (LES): In LES only larger scales of turbulent

motion are calculated explicitly, whereas the effects of smaller ones

are modeled using sub-grid closure models (e.g. Smagorinsky). LES

approach is based on the application of an opportune filtering operator

to each fluid dynamic field appearing in the Navier-Stokes equations.

Each generic variable, Φ, can be decomposed like in the following:

Φ = Φ̃ + Φ′ (3.1)

where Φ̃ is the filtered value while Φ′ is the field fluctuation with respect

to its filtered value. The pass-band of this filter operator is chosen

in order to cut the stochastic fluctuations of each fluid dynamic field

under a certain turbulent scale. This approach reduces drastically the

computational resources required to solve Navier-Stokes equations with
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respect to the DNS case, however LES can’t capture the variations of

the fluid dynamic fields under a certain frequency threshold.

• Reynolds Averaged Navier-Stokes (RANS). RANS approach is based on

the the Reynolds decomposition of the fluid dynamic fields appearing

in the Navier-Stokes equations. Each fluid variable can be considered

as the superposition of deterministic mean part and a stochastic con-

tribution:

Φ =< Φ > +Φ′ (3.2)

The mean value of each generic variable, < Φ >, is defined by the en-

semble average taken over some set of realizations, while the stochastic

part, Φ′, represents the variable fluctuations relative to its mean value.

RANS equations can be derived substituting Reynolds decomposition

for every fluid dynamics fields in the Navier-Stokes equations and then

effectuating the ensemble average. The stochastic contribution to the

fluid momentum is considered through virtual stresses called Reynolds

stresses. This quantities can be represents through the Reynolds stress

tensor, however, the main issue concerning RAANS is that this ten-

sor is an unknown quantity. Therefore, the estimation of the Reynolds

stress requires some closure model (e.g. the k − ε model). By the use

of RANS techniques it is possible to solve only the mean values of all

quantities, while fluctuations are completely discarded.

The numerical techniques described above are characterized by different

degrees of approximation, DNS being the most performant technique in terms

of accuracy. Moreover, DNS does not require any closure model, while in

RAANS and LES the use of some problem closure rule for turbulence is

essential. Since the present study aims to reproduce and investigate as much

details as possible of the evaporation dynamics in a turbulent spray, a 3D

DNS approach has been adopted. This will be further discussed in the next

subsection.
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3.1.2 Direct Numerical Simulation

As previously outlined, DNS consists of the most accurate state-of-the-art

numerical technique available to the purpose of solving Navier-Stokes equa-

tions. This method solves the full instantaneous equations without using any

model for turbulent motions and considering explicitly all turbulence scales.

Through DNS it is possible to predict all time variations of fluid dynamic

fields exactly like a high-resolution sensor would measure them in an ex-

perimental set-up. By this aproach extremely accurate simulations can be

performed where the whole physics of turbulent flows is described.

One of the most critical issue concerning the set-up of a DNS consists in

the fluid domain discretization. All CFD methods requires both space and

time discretization, nevertheless this step is critical for DNS since all scales

of turbulent motion must be resolved on the discrete mesh. These scales

range from the Kolmogorov micro-scale, η, up to the length scale of larger

eddies appearing in the fluid domain, l0, which is comparable to the flow

scale L. In order to obtained a full resolution of all these length scales on

the discrete mesh, the following conservative resolution requirements must

be guaranteed:

ns ∆s ≥ L (3.3)

∆s ≤ η (3.4)

where ns is the number of points along a given mesh direction with incre-

ments ∆s. The eddies in the largest size range are characterized by velocity

u0 which is comparable to the flow velocity scale U. The Reynolds number of

these eddies, Re0 = u0l0
ν0

is therefore comparable to the flow Reynolds number

Re = UL
ν

. According to the Richardson-Kolmogorov turbulence theory, the

rate of kinetic energy dissipation, ε is determined by the transfer of energy

from the largest eddies. These eddies have energy of order u2
0 and timescale

τ0 = l0
u0

, so the energy transfer rate can be supposed to scale as:
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ε ∝ u2
0

τ0

∝ u3
0

l0
∝ U3

L
(3.5)

All energy transferred through eddies is dissipated by viscosity effects

at the Kolmogorov micro-scale, therefore ε can be expressed through the

definition of the Kolmogorov scale as following:

ε ≡ ν3

η4
(3.6)

Considering a uniform mesh, expression 3.6, 3.5 and 3.4 lead to the fol-

lowing requirement concerning the total number of mesh point:

n3
s ≥ Re

9
4 (3.7)

This is not the only requirement concerning resolution, since for the ad-

vance of the solution in time to be accurate, it is necessary that a fluid particle

move only a fraction of the grid spacing ∆s in a time step ∆t. This leads to

the following requirement concerning the time step:

∆t ≤ ∆s

U
(3.8)

In general, the duration of a DNS is typically on the order of the following

time scale:

tDNS =
L

U
(3.9)

which expresses the time required by a fluid particle, which moves at

velocity U, to move across the whole flow length scale L. Hence the number

of time steps, nt, can be estimated as nt = tDNS
∆t

leading to the conclusion

that the number of time steps required by a DNS grows also as a power law

of the Reynolds number:

nt ∝ Re
3
4 (3.10)

The number of operations required to complete the simulation is propor-

tional to the number of mesh points and the number of time steps. Since both
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these parameters grow as a power low of Reynolds number, it is possible to

demonstrate that the number of operations required by a DNS grows as Re3.

This make clear how DNS computational cost may become extremely high

and motivate further the necessity to develop extremely efficient algorithms

in order to make DNS possible on to-date calculators.

3.1.3 Parallel Computing

As discussed in the previous subsection, the DNS of a turbulent spray is

an extremely expensive task in terms of computational resources required to

solve the full instantaneous Navier-Stokes equations. Therefore, an accurate

optimization of the numerical algorithms is critical to make possible this kind

of approach. Different optimization strategies are available, the most impor-

tant of them being a parallel computing approach. Parallel computing consist

in the use of multiple processors together, in order to distribute the compu-

tational costs among more computing units and reduce the computational

time required to complete the simulation. This task can be accomplished by

machines with a variety of different architectures. In the following a brief

description of the main architectures existing is reported:

• Symmetrical Multiprocessor (SMP). These systems consists of two or

more identical processors connected to a common main central memory

and to the same mother board. Each processor works independently

while connection between processors and central memory is performed

by a dedicated system bus.

• Massively Parallel Processors (MPP). These systems consists of a very

high numbers of independent processors joined together and working

as a single computer. These systems are characterized by a distributed

memory which is accessed locally by each single processors. This means

that each processor is strictly encapsulated and is able to access only

to its own code part and memory area.

• Cluster and constellations. A computer cluster consists of a set of
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loosely or tightly connected computers that work together. Each com-

puting unit of a cluster runs its own instances and is connected to others

through fast local area networks.

• Single processor. A single processor which is serial by nature.

In order to take advantage of the high performances of these systems

specific numerical codes must be developed through a parallel programming

approach. To this purpose many libraries and compiler instructions are avail-

able. In the present work OpenMP and MPI directives has been adopted in

order to develop the numerical tools required to perform the spray simula-

tions. These directives are by large the most used to date and have become

a standard for parallel computing.

3.2 Numerical solutions of the evaporating

spray equations

In this section an accurate description of the algorithms implemented in order

to perform a DNS of the spray equations described in chapter 2 will be given.

A parallel programming approach, based both on MPI and OpenMP direc-

tives has been widely used in order to increase the algorithms performances.

The numerical code adopted to perform this task is based on a pre-existing

code, called CYCLON, developed in the Department of Mechanics and Aero-

nautics of “Sapienza”, University of Rome. This code has been implemented

through the FORTRAN90 programming language and is able to perform

both DNS and LES of a turbulent spray. The structure of CYCLON can be

divided into two main part:

• The former part of the CYCLON code is dedicated to the solution of the

low Mach number expansion of the Navier-Stokes equations. This code

feature will be referred in the following as the carrier phase module

and is based on a fully explicit Runge-Kutta method, third order of

accuracy. The code is able to solve the carrier phase equations using
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a so-called projection method and considering the presence of more

chemical species and their mutual diffusion. The carrier phase module

has been previously adopted with success in several studies and has

proved to be really accurate. Therefore, this code feature has not been

deeply modified to the purpose of the present work and will be only

briefly described in subsection 3.2.1.

• The latter part of the CYCLON code has been developed during the

present work starting by a previously existing numerical code which

considered only droplet motion equations, discarding any evaporation

process. This updated feature is able to simulate the whole droplets

dynamics considering the vaporization process. Moreover, it estimates

the coupling terms appearing in the spray equations, granting a full

coupling between the carrier phase and droplets equations. It will be

referred in the following as the droplet solver module and will be de-

scribed accurately in subsection 3.2.2.

3.2.1 Parallel algorithm for the carrier phase equations

The solutions of the Navier-Stokes equations governing the carrier phase dy-

namics is performed by the carrier phase module of the CYCLON code.

This numerical tool is based on an hybrid parallelization which engages both

OpenMP and MPI directives in order to maximize the computational per-

formances.

Concerning the solution of partial differential equations (PDE), the de-

velopment of efficient parallel codes is based on the decomposition of the

domain over which the equations want to be solved. This task is accom-

plished through the decomposition of the system of Navier-Stokes equations

in a series of several sub-problems with some specific boundary conditions,

which must be chosen such that equivalence between the full problem and

the system of sub-problems is preserved.

A problem consisting in a system of PDEs with boundary and initial

conditions can be written in the following general form:
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Auxx +Buxt + Cutt +Dux + Eut + Fu+G = 0 : Ω× (0, T ]

f(u, ux) = 0 : ∂Ω× (0, T )

g(u, ut) = 0 : Ω, t = 0

(3.11)

The preceeding system written in a general expression which can be re-

duced both to a Dirichlet or a Neumann boundary value problem. The

principle of parallelization consists in the decomposition to the domain Ω in

a set of Z sub-domains Ωi so that:(
∪Zi=1 Ωi

)
∪
(
∪Zi=1 ∂Ωi / ∂Ω

)
= Ω (3.12)

Nvertheless, in order to obtain the same solution as the original problem,

a system of Z boundary value problems linked together by matching condition

on their boundaries must be considered. This means that, each sub-problem,

has time-changing boundary conditions on spatial derivatives from order 0

up to order 1: u(x0, t)|− = u(x0, t)|+
ux(x0, t)|− = ux(x0, t)|+

(3.13)

where the signs + and − design the positive and negative faces of the

overlapping boundaries of two continuous sub-domains around the same point

x0 ∈ Ω with respect to the normal to the surface.

In a numerical simulation context, the numerical solution of PDEs re-

quires the discretization of both the space domain, Ω, and the simulation

time interval. Hence, the given spatial domain must be discretized in a num-

ber N of points. This set of points is then subdivided in a number Z of subsets

of ni points each of them corresponds to the discretization of a sub-domain Ωi

as previously explained. It is important to note that each of these discretized

sub-domains must have overlapping boundaries, such that superposed nodes

are present and
∑Z

i=1 ni 6= N . These boundary superposed nodes must be

managed by the parallel code such that the matching condition expressed



DNS of turbulent evaporating spray 48

by equation 3.13 is satisfied. This domain decomposition allows the numer-

ical simulation to run on each of the sub-domains at the same time. When

boundary conditions need to be applied, each discrete sub-domain tells the

others neighbouring sub-domains the value of each time-evolving variable

on its boundary nodes. Then, the receiving sub-domains use these values

on the overlapping nodes in order to apply the proper boundary conditions.

The communications through the different processors running on each sub-

domains is managed by the directives of OpenMP and MPI.

This brief description is considered to be exhaustive in this context in

order to explain the principle of work of the carrier phase module.

3.2.2 Parallel algorithm for droplets equations

The implementation of the droplet vaporization model will be discussed in

this subsection paying particular attention to the numerical code paralleliza-

tion. The droplet module of CYCLON can be considered as a separate nu-

merical code which works independently by the main carrier phase module.

During each iteration the carrier phase module evolves all Eulerian variables,

then a call is send to the droplet module and needed variable are trans-

ferred. At this step the computation is carried on by the droplet module.

New droplets are injected in correspondence of the jet inlet. The initial ra-

dius of these droplets is computed by a pseudo-random code such that the

radius distribution at inlet follows a prescribed Gaussian probability density

function. Moreover, droplets are positioned randomly on the inlet section

such that a uniform-spatial distribution is achieved. Initial temperature and

velocity of droplets are set equal to the local temperature and velocity of

the gas phase. Once new droplets are injected, the droplet module evolves

radius, temperature, velocity and position of all droplets present in the space

domain. Finally the Lagrangian-Eulerian coupling terms are estimated and

send back to the carrier phase module. This concludes the time step proce-

dure and the sequence restarts in the following iteration. Figure 3.1 repre-

sents all functions performed by the droplet module, showing schematically



DNS of turbulent evaporating spray 49

Figure 3.1: The droplets module schematic. All feature implemented in the droplet

module are shown in figure. The right-hand side, partial right-hand side and vari-

able update blocks represents the different steps required to evolve droplets variables

over time and are performed by the Runge-Kutta algorithm. The droplets MPI

transfer block represents the part of the code dedicated to the droplets repositioning

over the sub-domains performed through the MPI directives.

the connections with the main carrier phase module.

The droplet module was written with a parallel approach based on MPI

directives such that all feature implemented are executed simultaneously by

each process running on each of the different sub-domains. The droplet mod-

ule parallelization presents less critical issues then the carrier phase module,

nevertheless it is critical concerning the computational performances due to

the huge amount of data mutually transferred between neighbouring pro-

cesses.

Each droplet variable is memorized in a dedicated array which contains

information about all droplets over the entire domain. Droplets are identified

by an integer index which is unique and is assigned to each droplet at the

injection. This task allows to track every single drop as it moves through the

turbulent carrier phase.
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Figure 3.2: The figure shows an hypothetical path for one single droplet in cor-

respondence of six different time step. As the droplet moves along the jet, it pass

through all the four sub-domains represented in the figure. Each grey area identi-

fies the process computing droplet dynamics at the respective time step.The figure

underlines how both forward and backward passages are possible due to fluctuations

and eddies which characterize the fluid fields of a turbulent spray.
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The main critical issue concerning the droplet solver parallelization con-

sists in the fact that each droplet moves through all the sub-domains as it

is transported by the main carrier phase from the jet inlet to the end of

computational domain. Figure 3.2 shows the transition of one single droplet

across all computational sub-domains. In order to evolve each droplet dy-

namics through the entire fluid field, when a droplet reach the boundaries

of its actual sub-domain each droplet variable must be send to the process

running on the neighbouring one in which droplet is going to enter. This

task is performed by MPI directives. Every time step, a subroutine identifies

all droplets in the proximity of each sub-domain boundaries and loads these

droplets data into a common buffer, sketched in figure 3.3. This procedure

is accomplished simulataneously by all running processes, each of them built

up its own buffer. Nevertheless, each of these buffers are stored in a memory

area which can be accessed only by the respective process. The role of MPI

directives is that of menaging communication between adjacent processes by

sending and receiving the memory addresses identifying the memory area

corresponding to each buffer. In this way each receiving process can access

the respective transmitted droplets data. Once a droplet variables have been

send to the new process, the droplet dynamics is solved by the receiving

process while the sending one discards the transmitted droplet data.

This approach leads to significant reduction of computational costs. Nev-

ertheless, it should be noted that as the number of droplets in the domain

increases, the number of droplets moving from one sub-domain to a neigh-

bouring one can grow really fast. This is one of the most critical aspect

concerning the parallelization of the droplet module and the domain decom-

position, since the the time spend for communications at each time step can

grow till nullifying the benefits of using a parallel approach. Concerning the

simulations performed during the present work, the parallel approach has

proved to be effective in terms of computational costs reduction. This was

verified with a number of droplets over the whole space domain in the range

of 105 - 2 · 106, which was considered a satisfying result to the purpose of the

present work.
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Figure 3.3: Schematic representation of the droplet data buffer used to exchange

droplets data between neighbouring processes. The data relative to all droplets

moving through two different sub-domains are loaded sequentially into the buffer.

Hence each buffer contains 17 · nd,t numerical values where nd,t is the number of

droplet moving from the sending sub-domain to a neighbouring one. The sequence

of data corresponds to droplet θ, r and z position, droplet velocity ux, uy, uz, droplet

radius, droplet temperature and droplet integer index. The remaining 8 values are

the right-hand sides of the corresponding equations.

3.2.3 Lagrangian-Eulerian variable coupling

As discussed in chapter 2, the description of the evaporating sprays dynamics

can be accomplished through an Eulerian description concerning the carrier

phase and a Lagrangian one regarding the dispersed phase. This hybrid

approach leads to the necessity of developing some interpolation tools in

order to account for the coupling between the Lagrangian and the Eulerian

descriptions. More specifically, the carrier phase variables can be estimated

only in correspondence of the discrete mesh nodes, while droplets can lay

in arbitrary positions within the computational domain. Hence, in order

to evaluate the carrier phase variables in correspondence of each droplet it

is necessary to make use of some interpolation procedure. Vice versa, in a

two way coupling regime, mass, momentum and energy flows coming from

a droplet disperse into the gaseous phase surrounding droplet itself. On

a discrete mesh the contribute added to the carrier phase by these flows

must be allocated to the mesh nodes in the droplet proximity according to

some criterion such that the total amount of mass, momentum and energy

transferred are preserved. In this section the interpolation tool implemented
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in the droplet module will be discussed.

Droplets equations 2.61, 2.62 and 2.63 are solved by a Runge-Kutta in-

tegrator. This algorithm evaluate the right-hand sides of each equation in

correspondence of each time step of the simulation. In order to calculate

these right-hand sides, the carrier phase density and vapour mass fraction

must be estimated in correspondence of each droplet centre. In particular, it

is necessary to apply the interpolation procedure to the density and velocity

field of the carrier phase. Once these variable have been estimated at the

droplet position, temperature can be calculated using the state equation for

ideal gases and all variable needed to estimate droplets equation right-hand

sides are known.

This task is performed by a tri-quadratic interpolation which consider

27 mesh nodes. Each of these nodes corresponds to the central nodes of 27

mesh cells adjacent to the mesh cell containing the droplet. Taking into exam

the density interpolation, let’s consider a single droplet situated inside an

arbitrary mesh cell, which central node is identified by indexes (i,j,k) relative

to the θ, r and z mesh direction respectively. The two neighbouring cells

along the theta direction have central nodes which indexes are respectively

(i+1, j, k) and (i-1, j, k). The same happens for the r and z directions where

the neighbouring cells have central nodes with indexes, (i, j+1, k), (i, j-1, k)

and (i, j, k+1), (i, j, k-1). In correspondence of an arbitrary time step, fixing

r and z coordinates at a certain value, r = r0 and z = z0, the carrier phase

density, ρ = ρ(θ, r, z), can be expressed along the θ direction as a function θ

only through the following Taylor series:

ρ(θ, r0, z0) = ρ(θ0, r0, z0) +
∂ρ

∂θ

∣∣∣∣
θ0,r0,z0

(θ − θ0) +
1

2

∂2ρ

∂θ2

∣∣∣∣
θ0,r0,z0

(θ − θ0)2 (3.14)

If the point (θ0, r0, z0) is the mesh node (i,j,k), the preceding expres-

sion can be evaluated by considering the finite differences expressions for the

derivatives of ρ. A central difference scheme is adopted for both 1st and 2nd

order derivatives leading to the following expression:
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ρ(θ, rj, zk) = ρi,j,k +
ρi+1,j,k − ρi−1,j,k

θi+1,j,k − θi−1,j,k

(θ − θi,j,k)+

+
ρi+1,j,k − 2ρi,j,k + ρi−1,j,k

(θi+1,j,k − θi−1,j,k)2
(θ − θi,j,k)2

(3.15)

where ρi is the carrier phase density evaluated at the mesh node (i,j,k).

Equation 3.15 can be rewritten introducing the following non-dimensional

parameter:

θ = 2
θ − θi,j,k

θi+1,j,k − θi−1,j,k

(3.16)

ρ(θ, rj, zk) =
1

2
θ(θ − 1)ρi−1,j,k + (1− θ2

)ρi,j,k + θ(θ + 1)ρi+1,j,k (3.17)

By equation 3.17 the carrier phase density can be estimated in correspon-

dence of an arbitrary point aligned along the θ direction with the nodes (i-1,

j, k) and (i+1, j, k).

The same procedure can be applied to the r and z directions indepen-

dently, which leads to the following expressions:

ρ(θi, r, zk) =
1

2
r(r − 1)ρi,j−1,k + (1− r2)ρi,j,k + r(r + 1)ρi,j+1,k (3.18)

ρ(θi, rj, z) =
1

2
z(z − 1)ρi,j,k−1 + (1− z2)ρi,j,k + z(z + 1)ρi,j,k+1 (3.19)

where:

r = 2
r − ri,j,k

ri,j+1,k − ri,j−1,k

(3.20)

z = 2
z − zi,j,k

zi,j,k+1 − zi,j,k−1

(3.21)

Let θd, rd and zd be the droplet centre coordinates. In order to evaluate

the carrier phase density in correspondence of the droplet centre it is possible
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to apply equation 3.17 to the carrier phase density to estimate ρ(θd, rj −
1, zk), ρ(θd, rj, zk) and ρ(θd, rj+1, zk). These three values can then be used to

calculate ρ(θd, rd, zk) through equation 3.18. Repeating these procedure on

the zk−1 and zk+1 planes the carrier phase density ρ(θd, rd, zd) can finally be

estimated through equation 3.19.

In general, the following interpolating equation can be derived combining

3.17, 3.18 and 3.19:

ρ(θ, r, z) = −
1∑

a=−1
b=−1
c=−1

(θ
2

+ Φ(a)θ|a|)(r2 + Φ(b)r|b|)(z2 + Φ(c)z|c|)

(−2)|a|+|b|+|c|
ρi+a,j+b,k+c

(3.22)

where:

Φ(n) =

−1 , n ≤ 0

1 , n = 1
(3.23)

The preceding equation was implemented into the droplet module in order

to estimate the carrier phase density at droplet position.

Due to the cylindrical metrc of the mesh, multy-dimensional variables are

interpolated following the same approach used for the scalar ones in except

that a quadratic-linear interpolation is used. This means that only 18 mesh

nodes are considered by the interpolation. This procedure ensures a more

accurate interpolation of the radial component of the gas velocity.

The opposite process must be accomplished in order to grant a full cou-

pling between Eulerian and Lagrangian variables. Once the coupling terms

have been estimated, it is necessary to allocate the contribution coming from

each droplet to the surrounding mesh nodes. There are several conservative

interpolation operators that can be used to this purpose. In the present work

a simple unity operator has been considered:

S(θi, rj, zk) =
∑
l

K(∆θi,l,∆rj,l,∆zk,l) Sd,l (3.24)
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where the sum is taken over all droplets in the domain. Sd,l is an arbitrary

coupling term representing the l-th droplet contribution to the carrier phase

mass, momentum or energy and ∆θi,l, ∆rj,l, ∆zk,l are respectively the θ, r

and z distances between droplet l and mesh node (i,j,k). The interpolation

operator K is defined as following:

K(∆θi,l,∆rj,l,∆zk,l) =

1 ,∆θi,l ≤ Pθi ,∆rj,l ≤ Prj ,∆zk,l ≤ Pzk

0 , elsewhere
(3.25)

where Pθi , Prj and Pzk are the mesh half step at the node (i,j,k). This

interpolation is the simplest possible and allocate to each mesh node all

the contributions coming from the coupling terms of droplets laying in the

corresponding mesh cell. This procedure ensures the conservation of mass,

momentum and energy.

3.3 Validation of droplet vaporization model

The droplet vaporization model implemented into the CYCLON code was

subjected to two different tests in order to validate the model and verify

the proper work of MPI parallelization. The first test was accomplished by

running a laminar flow simulation and tracking only one evaporating droplet.

In these specific conditions it was possible to derive approximated analytical

solutions of droplet equations and compare the numerical results obtained

through the simulation to the analytical expressions. In the second test, some

experimental results concerning free-falling water droplets evaporation were

compared to the numerical results obtained through the droplet vaporization

model in the same conditions. Both tests gave positive results that will be

discussed in the following subsections.
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3.3.1 Comparison between numerical and analytical

solutions

The first test of the droplet vaporization model required the derivation of

some approximated analytical solutions of droplets mass and temperature

equations, 2.34 and 2.44. To this purpose, a steady-state, laminar and uni-

form flow was considered and only one droplet was injected and tracked across

the carrier phase. In the presence of just one droplet the liquid phase volume

fraction is negligible, hence only the carrier phase affects the droplet dynam-

ics. In particular, in this one-way coupling condition, evaporation doesn’t

affect the vapour mass fraction of the carrier phase and, since laminar flow is

deterministically steady, droplet is subjected to constant external conditions

over time.

The droplet was injected at same initial temperature of the carrier phase

Td,0 = T∞ and initial radius, rd,0, was chosen such that the droplet Stokes

number was sufficiently low. In these conditions, initial transient evapo-

ration extinguishes very fast and droplet temperature regimes to an equi-

librium value depending on the carrier phase temperature. Since, the sat-

urated vapour pressure in the droplet boundary layer depends on droplet

temperature, in this conditions the vapour pressure in the droplet boundary

layer can be considered approximately constant over time. Hence, also the

evaporation-driving term, Hm = ln(1 + Bm), in the droplet mass equation

can be assumed to be constant and equal to its the average effective value.

Droplet non-dimensional mass equation can be written as:

dr2
d

dt
= −C0 (3.26)

C0 = 2
µgHm

Re Sc ρl
(3.27)

Under the preceding hypotheses, the right-hand side of droplet radius

equation is constant and solution reduces to the well-know D2 law:

r2
d = r2

d,0 − C0 t (3.28)
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Substituting equation 3.28 in the droplet temperature equation leads to:

dTd
dt

= C1
C2 − Td
C3 − t

(3.29)

Again, the parameters C1, C2 and C3 are assumed to be constant under

the previously described hypotheses. These are calculated respectively as:

C1 =
3

2

Sc

Pr cl Hm

(3.30)

C2 = Tg −
γ

γ − 1

Pr Lv Hm

Sc
(3.31)

C3 =
Sc Re ρl r

2
d,0

2 µg Hm

(3.32)

Equation 3.29 is an ordinary differential equation which can be solved by

variables separation, leading to the following expression for droplet temper-

ature evolution over time:

Td = C2 − (C2 − Td,0)

(
1− 1

C3

t

)C1

(3.33)

The numerical results obtained by CYCLON were compared to the ap-

proximated time evolution of the droplet radius and temperature evaluated

through expressions 3.28 and 3.33. The simulation was performed inject-

ing a water droplet of initial diameter Dd,0 = 10µm into a dry air flow at

temperature Td,0 = 20◦C. The Reynolds number and the values of den-

sity, pressure and temperature of the gas phase were setted respectively to

Re = 100, ρ∞ = 1.2kg/m3, p∞ = 101300Pa and T∞ = 20◦C. Figure 3.4

shows the comparison between the numerical and analytical results. Under

the prescribed conditions, the droplet radius evolution obtained by numerical

simulation follows theD2 law with optimal agreement over the whole duration

of the evaporation process. Moreover,the equilibrium temperature predicted

by expression 3.33 is the same resulting from the numerical simulation. Nev-

ertheless, the analytical expression for temperature was not able to predict

exactly the temperature evolution during the initial transient evaporation
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regime. In this period of time the droplet temperature varies very fast. As a

consequence, the saturated vapour pressure near the droplet surface varies,

modifying the vapour mass fraction and the driving term of evaporation Hm.

Expression 3.33 was obtained under the hypotheses of constant parameter

Hm. Since this latter parameter can be estimating as an average value, de-

pending by the average droplet temperature during evaporation, equation

3.33 overestimates the time required by the droplet to reach the equilibrium

regime temperature. Indeed, the average droplet temperature is higher then

the equilibrium one, leading to an overestimation of Hm.

3.3.2 Freely-falling waterdrops experiment

In this subsection experimental results obtained by Kinzer and Gunn [1951]

will be used as reference in order to further validate the droplet vaporization

model. Kinzer and Gunn considered the evaporation of freely falling water

drops that move at their terminal velocity relative to the environmental air.

In this experimental set-up, water droplets are generated by a dropper at the

environmental temperature and let fall into a pipe. An air flow is adjusted in

order to catch and sustain the droplet at a fixed position inside the pipe. As

droplet evaporates, it cools down approaching an equilibrium temperature.

This equilibrium temperature was measured within half Kelvin precision by

a Schlieren optical method based on the measurement of the variation of

droplet index of refraction. Kinzer and Gunn find out that droplet temper-

ature approaches the wet-bulb temperature of environmental air and were

able to estimate also the droplet thermal relaxation time.

In order to further validate the numerical code a simulation concern-

ing one freely falling droplet was performed in the same condition of the

experiments previous described. It should be noted that the terminal ve-

locity of a freely falling drop is the velocity resulting from the equilibrium

of the gravitational acceleration and aerodynamic drag exerted on droplet

by the surrounding air. Therefore, as evaporation proceeds and droplet ra-

dius decreases, the terminal velocity changes. To the purpose of this test,
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Figure 3.4: Non-dimensional droplet radius and temperature versus non-

dimensional time. The continuous lines represent the analytical solutions obtained

from equations 3.29 and 3.33 while dots represent the numerical solution.
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Figure 3.5: The figure shows the temperature evolution over time for a free-falling

water drops. On the left is represented the numerical solution obtained through the

CYCLON code, while on the right the experimental result obained by Kunzer and

Gunn is shown.

the droplet solver module was run inipendently by the carrier phase module.

Droplet velocity was calculated considering that, if air velocity is zero and

gravity acceleration is considered, the droplet motion equation becomes:

dud
dt

= −ud
τd

+ g (3.34)

Therefore, droplet terminal velocity can be derived from the preceding

equation imposing that the velocity derivative is zero:

ud,t = τd g (3.35)

where τd varies due to evaporation and is calculated at each time step.

In addition, a one way coupling regime was considered and air temperature

and vapour mass fraction were assumed to be constant around droplet. The
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air temperature, relative humidity and pressure were set to the experimental

values, respectively T = 28.3◦C, Φ = 0.22 and p=101300 Pa. The droplet

initial radius used by Kinzer and Gunn was rd,0 = 1.35 ·10−2 m. The droplet

vaporization model used in the present work is not able to represent accu-

rately the droplets dynamics when the Stokes number increases over a certain

threshold. Therefore, the initial droplet radius was set to rd,0 = 13.5 ·10−6 m

which is 1/100 of that used in the experiments and corresponds to a droplet

Stokes number of about St = 0.15. Since droplet temperature approaches

the wet-bulb temperature independently by the droplet initial radius, this

choice was consistent with the purpose of comparing numerical and analyt-

ical results, nevertheless a different thermal relaxation time was found due

to the different droplet dimensions. Figure 3.5 shows on the left the numeri-

cal results obtained by the droplet vaporization model, while on the right is

reported the experimental temperature trend obtained by Kinzer and Gunn.

The ultimate equilibrium temperature reported by the experiment is 14.9◦C,

while the numerical simulation estimates a droplet equilibrium temperature

of exactly 15.0◦C. The difference between these two values is of only of 0.1
◦C. Moreover, they differs from the wet-bulb temperature of environmental

air of only 0.3 ◦C. The thermal relaxation time find out by Kinzer and Gunn

was 4.35 s while from the numerical simulation the thermal relaxation time

was 2.8E−3s, which is 1/1550 lower then the former one due to the different

droplet dimension.

In conclusion, the tests performed on the droplet vaporization model were

successful, demonstrating an optimal accordance between numerical and ex-

perimental results. To the purpose of the present work, the outcomes of

these tests were considered satisfactory in order to confirm the validity of the

present vaporization model.



Chapter 4

Analysis of results

In this chapter the results of a DNS of a turbulent saturated acetone spray

will be discussed paying particular attention to the analysis of some peculiar

phenomena that characterize turbulent multiphase flows. Several phenomena

involving the interaction between turbulence and droplets dynamics were

taken into exam through an accurate analysis of the data-set produced by

DNS, e.g. droplet clustering and environmental gas entrainment. All these

phenomenologies will be considered in the following subsections, together

with the main numerical tools adopted in order to elaborate DNS data.

4.1 DNS of saturated acetone spray

The performed DNS considers liquid acetone droplets which are injected into

an air/acetone-vapor mixture. Acetone, is an extremely volatile organic com-

pound which is frequently used in experimental set-up concerning turbulent

spray evaporation. Indeed, the saturated vapour pressure of acetone at 20◦C

is of 24598 Pa, approximately 10 times higher than that of water and this

acetone property is advantageous in order to develop a substantial droplets

evaporation. More details can be found in Chen et al. [2006]. The concen-

tration of acetone vapour in correspondence of the jet inlet was prescribed to

be close to its saturation value. In these conditions, the evaporation process

is substantially disabled among the jet core region at inlet. Nevertheless,
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the high volatility of acetone contribute to fast restart evaporation in regions

where the vapour mass fraction reduces. Combining the effects of a satu-

rated jet core and the high volatility of acetone it was possible to amplify the

effects of several phenomenons involving turbulence/droplets interaction.

In the present DNS, inlet velocity is prescribed through a Dirichlet con-

dition at the jet inflow section while the flow rate of the gas is kept constant

fixing a bulk Reynolds number Re = 2U0R/ν = 4000 with U0 the bulk

velocity, R the jet radius and ν the kinematic viscosity. As stated before,

the vapour inlet mass concentration is prescribed at the saturation level.

This vapour-saturated jet has a bulk velocity of U0 ' 7.5m/s, nozzle radius

R ' 0.005m and a temperature for both droplets and gas of T0 = 275K

Lagrangian mono-disperse droplets with radius rd = 6µm are injected at the

inflow within the vapour-saturated turbulent jet. The mass flow rate of the

liquid to the gas phase is fixed at Φm = ṁl/ṁg = 0.05. The cylindrical simu-

lation box extends for 2π× 22R× 70R in the azimuthal θ, radial r and axial

z directions. The box has been discretized by Nθ×Nr×Nz = 64×145×304

points using a non-equispaced mesh in the radial and axial direction. About

1.5M of evaporating droplets have been evolved.

In order to study the correlation between the Eulerian fluid field and the

Lagrangian dispersed phase dynamics an ensemble average procedure was

considered. The spray presents an axis-symmetric structure. After the tran-

sient a steady condition fully develops and it is possible to take an ensemble

average of the Eulerian variables both over the θ direction and time. This

procedure was accomplished considering only that time steps of the entire

DNS data-set in which a steady condition of the averaged fields was fully

developed. Concerning the Lagrangian variables, the same procedure can

be accomplished taking the ensemble average of the droplets variable over

the θ direction and time and attributing the average values to the discrete

mesh. This lead to an Eulerian map of the averaged Lagrangian variables

which can be easily compared to the averaged Eulerian fields. Nevertheless,

it should be noted that this procedure leads to a graphical representation

which gives completely different information, indeed the zero-value zones of
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these Eulerian maps represent regions in which the Lagrangian variable is

not defined.

4.1.1 Instantaneous field description

In order to introduce the main phenomenologies which were identified by the

analysis of the DNS data-set, a brief description of the instantaneous Eule-

rian variable fields and droplets distribution is reported. Figure 4.1 shows

two different contour plots of instantaneous temperature and vapour mass

fraction fields. First of all, it should be noted the cooling effect exerted by

the vaporization process on the gaseous carrier phase. Indeed, droplets evap-

oration subtract to the carrier phase an amount of energy equal to the latent

heat of vaporization required by the phase change process, thus reducing

the gas temperature. The gas temperature was found to vary due to liquid

phase vaporization in a range of 10 K between 275 K and 265 K. Lower

gas temperature is achieved in the jet core, while outer layer presents higher

temperature comparable to the environmental air one.

The vapour mass fraction field ranges between zero and the saturated

vapour mass fraction value at 275K and presents a non-homogeneous struc-

ture due to the effect of turbulent mixing. In the jet core higher concentra-

tion can be observed while outer regions are characterized by lower values

of vapour mass fraction due to the larger turbulent fluctuation that interest

the external jet layer. This larger fluctuations, typical of external regions of

turbulent spray, tend to enclosure environmental irrotational air bubbles and

entrain them inside the spray. This air is the mixed up with the turbulent

gas and becomes part of the spray itself, thus, diluting vapour concentration

and enhancing the vaporization process.

It should be remarked that, the vapour concentration and the tempera-

ture fields play together a key role in governing the vaporization rate. In par-

ticular, local saturated vapour concentration depends on local temperature.

Hence, in low temperature regions saturation can occurs even in correspon-

dence of a vapour concentration sensibly lower then the bulk one. This topic
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will be further discussed in the following.

Figure 4.3 shows the ensemble average over time and θ direction of the

droplets mass concentration over the spray field. The droplets mass con-

centration is defined as the local number of droplets per unit volume times

the liquid/gas density ratio. This parameter gives useful informations in

order to evaluate the progress of the vaporization process over the fluid

domain. It should be remarked that liquid phase is injected at a rate of

Φm = ṁl/ṁg = 0.05. A residual mass fraction of Φm = 0.99Φm,0 has been

chosen as a limit for the end of the vaporization process. At Z=30R the av-

eraged mass fraction of liquid droplets reduce to 1/10 of the injection value.

This means that the 90% of liquid phase has been evaporated before reach-

ing this axial distance form inlet. At Z=38R a further 10% of initial liquid

mass has moved to vapour phase and less then 1% remains in a liquid state.

Thus, this distance from inlet can be considered as a demarcation line for

the completion of the vaporization process.

In a dilute regime, such that considered in the present DNS, the strong

coupling among turbulence and droplet dynamics leads to the formation

of spray regions characterized by high droplet concentration, the so-called

droplets clusters. Inside these structures the local droplet concentration may

become also hundreds time the mean bulk concentration strongly affecting

the evaporation rate and the gas velocity field of the carrier phase. Figure

4.2 shows several droplets clusters which can be found both in the spray core

and external shear layers. The formation of these high droplets concentration

features can be explained considering that the finite inertia of the droplets

prevents them from following highly convoluted turbulent motions inducing a

dissipative droplet dynamics [Toschi and Bodenschatz, 2009]. In other word,

each droplet, is able to follow only the motion imposed by sufficiently large

scale turbulent structures, depending on the droplet Stokes number. Indeed,

droplet inertia prevent it to follow the smaller eddies motion characterized

by higher local acceleration. Thus, these small-scale turbulent motions are

responsible for only local fluctuation of the droplet/gas relative velocity lead-

ing to instantaneous increments of the aerodynamic drag force exerted on
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Figure 4.1: Figure shows two contour plots relative to the same section of the

carrier phase instantaneous temperature field (left box) and instantaneous vapour

mass fraction field (right box). Temperature is expressed in K. Droplets are repre-

sented as black dots superposed to the contour plots. It is possible to observe the

presence of a non-homogeneous droplets distribution characterized by fluctuation of

droplets density with respect to its bulk value, giving origin to high droplets density

regions (droplets clusters) and low droplets density zones.

droplets by the carrier phase and thus forcing droplets to accumulate accord-

ing to the large-scale eddy structures in the gas.

The clustering phenomenon is a critical issue to be analysed due to the

multitude of mechanisms which co-operate in the cluster formation process.

Where these high droplets concentration structures appear the vapour con-
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Figure 4.2: Figure shows two details of the contour plots in figure 4.1. Upper

box represents the contour of the carrier phase vapour mass fraction field while

lower box shows the contour of the temperature field. Droplets are represented as

sphere which are scaled according to droplets actual radius. The droplet surface

is contoured according to droplets temperature. In both boxes contour legend are

relative to droplets temperature expressed in K.
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centration can increase till reaching its saturation value, hence reducing the

vaporization rate or even completely blocking evaporation. As a local in-

crement of droplets concentrations occurs, the vaporization rate of droplets

can be initially higher then the vapour diffusion rate causing the vapour

concentration to increase extremely fast inside the cluster. While vapour

concentration increases, droplets vaporization rate reduces. If the diffusion

of vapour is not enough intensive, vapour concentration reaches its saturation

value and blocks completely the droplets vaporization inside the cluster. It is

clear then how these structures are characterized by a rapid time-evolving dy-

namics and how the characteristic feature of each of these clusters is strictly

dependent by its formation process history.

According to the size and temperature distribution of droplets inside each

clusters and the vapour concentration and temperature of the enclosured gas

it is possible to distinguish mainly two different kind of structures:

• Clusters of large, hot droplets surrounded by high vapour con-

centration and high temperature gas. These structures can be ob-

served in the spray core between the jet inlet and Z=20R. In this region

the vapour concentration field reaches its peak values due to the high

vapour concentration prescribed at inlet. These structures has formed

inside a saturated region and have never experienced during their evo-

lution a high vaporization rate. Hence, only a weak gas cooling effect

can be observed inside these clusters and mainly large and hot droplets

which radius is comparable with the initial one are present.

• Cluster of both large and small cold droplets enclosed inside

low temperature gas bubble with low vapour concentration.

These structures characterize the outer layers of the spray and can be

found at every axial distance from inlet. Their characteristics are due

to a high droplets vaporization rate which has occurred during the first

phase of the cluster evolution. As a clustering process starts in a low

saturated region, the heat removed from the gas by the phase transi-

tion process originates a bubble of low temperature gas which encloses
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Figure 4.3: Figure shows contour plot of the averaged droplets mass fraction

field defined as the ratio between local droplets density and gas density. The 99%

label identifies the isoline corresponding to Φ = 0.0005. This isoline delimits the

region of spray inside which vaporization process completion is achieved. Inside

this region the 99% of liquid phase mass is vaporized before axial distance from

inlet Z=38R. Downstream Z=38R less then 1% of injected liquid mass subsists in

the liquid phase
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completely the cluster itself. As stated above, in this low tempera-

ture regions saturation occurs at low vapour concentration impeding

the vaporization process to continue inside the cluster. Hence, inside

these structures it is possible to observe the presence of both large and

small cold droplets which vaporization has been blocked by saturation

occurring in correspondence of low temperature and low vapour con-

centration.

4.1.2 Averaged fields description

DNS data analysis showed, as expected, that droplets presents a non-uniform

vaporization rate over the spray region. The local intensity of the droplet

vaporization rate is driven by both gas temperature and vapour concentration

(see chapter 2, section 2.3). The combined effects of both these Eulerian

variables can be evaluated simultaneously by the adopting the saturation

field as an index for local level of saturation over the carrier phase. The

saturation field, S, is defined as following:

S(x, t) =
Yv(x, t)

Yv,s(x, t)
(4.1)

where Yv is the actual vapour mass fraction field, while Yv,s is the satu-

rated vapour mass fraction field which is a function of only local tempera-

ture and pressure of the carrier phase. Yv,s can be derived by the Clausius-

Clapeyron equation:

xv,s(x, t) =
pref
p

e
Lv
Rv

(
1

T (x,t)
− 1
Tref

)
(4.2)

Yv,s(x, t) =
xv,s(x, t)

xv,s(x, t) + (1− xv,s(x, t))Mg

Mv

(4.3)

The saturation field ranges from zero to one. In region where S assumes

values near unity a saturation condition subsists. By counterpart, S assumes

values near zero in dry regions, characterized by low vapour concentration.
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In figure 4.4 the contour plots of averaged vapour concentration and sat-

uration fields are represented. As expected, the saturation field is maximum

in the spray core region immediately downstream the jet inflow due to the

prescribed saturation condition. The same area is characterized also by the

highest values of the averaged vapour mass fraction field. Downstream inlet,

in proximity of the spray axis, the saturation field decreases progressively

together with the vapour concentration ranging from S > 0.8 in the inlet

region to S ≈ 0.5 at Z=30R. Similarly, the vapour mass fraction varies from

Yv,s ≈ 0.2 to Yv ≈ 0.1 over the same length range. The right box of figure

4.5, shows the carrier phase averaged temperature field. The carrier phase

temperature decrease sensibly in the spray core downstream inflow reach-

ing its overall minimum value at Z=30R. This trend lead to a decreasing of

the vapour concentration required to reach saturation, nevertheless the sat-

uration field show a decreasing trend over its down-flow evolution over the

same region. This is due to the vapour concentration dilution caused by the

environmental air entrainment. Entrainment plays a key role in regulating

droplet vaporization inside turbulent jets. Indeed, the vapour concentration

dilution inside the jet caused by the environmental air flow entrained into

the spray is fundamental to maintain a non-zero vaporization rate inside the

jet core as the evaporation of the liquid phase proceeds.

In order to compare the intensity of droplets vaporization between differ-

ent spray regions and evaluate the effect of entrainment the Eulerian map of

averaged droplets vaporization rate is plot in the left box of figure 4.5, while

the right box represents the averaged droplets radius distribution. It should

be noted that the higher intensity of the vaporization rate is reached in the

external zone of spray immediately downstream the jet inlet. This is due

to the presence in this area of large and hot droplets which enter in contact

with the dry environmental air surrounding spray.

In accordance with the downstream evolution of the saturation field, the

droplets vaporization rate increases in intensity along the axial direction over

the core region. In the peculiar case of core saturated spray considered by the

present work, the entrainment effect is further more evident. In the jet shear
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Figure 4.4: The figure represents the averaged vapour mass fraction field (right

box) and the averaged saturation field defined by equation 4.1. Average has be

intended as ensemble average taken both over θ direction and time.
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layer vapour can easily diffuse in the surrounding environment. Conversely

in the spray core the progressive reduction of vapour concentration along

the spray axis and the increasing of the droplet vaporization rate can be

related exclusively to the dilution caused by entrainment. It should be noted

that along jet axis the evaporation rate ranges from a minimum intensity of

10−8kg/s immediately downstream inlet to a maximum of about 1.2 10−8kg/s

at Z=30R. This means that evaporation rate is increased of 20% along the

jet axis due to entrainment.

The right box of figure 4.5 shows the average droplet radius distribu-

tion. Inside the inner spray region between Z=0R and Z=40R the averaged

droplets radius is reduced of a factor of about 3, which is compatible with

the 99% of liquid mass lost previously estimated over the same zone. Smaller

droplets can be found all over external shear layer. Droplets moving across

this zone experience high evaporation rate during the whole flight-time from

inlet to their actual position, and thus their mass reduces faster then droplets

moving in the spray core.

In 4.5 droplets average temperature distribution and the gas averaged

temperature field are shown. It can be seen that the droplets temperature

assumes its minimum values in correspondence of the outer spray layer, where

the highest rate of vaporization occurs. By counterpart, the carrier phase

temperature field is minimum over the spray core, between Z = 22R and

Z = 42R. In the outer layer small cold droplets are presents. These droplets

exert a cooling effect on the surrounding gas, absorbing energy from the

carrier phase. Nevertheless, this region is in direct contact with the hot

environmental air and is subjected to an intense turbulent mixing due to the

large fluctuations of the velocity field. Therefore, in the outer spray layer the

convective heat flow due to the entrained environmental air and turbulent

mixing tend to compensate the cooling heat flow absorbed by evaporating

droplets. This leads to a gas temperature between 272K and 274K which

is sensibly higher then spray core temperature. It should be also remarked

that in the inner spray region the averaged vaporization rate is lower due to

the high vapour concentration. Nevertheless, in this region the mass fraction
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Figure 4.5: Figure shows average droplet vaporization rate distribution (left box)

and the average droplets radii distribution (right box). Units are expressed respec-

tively in kg/s and µm. Average has to be intended as ensemble average taken both

over θ direction and time.
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Figure 4.6: The figure shows droplets average temperature distribution (left box)

and the carrier phase averaged temperature field (right box). Temperature is ex-

pressed in K. Average has to be intended as ensemble average taken both over θ

direction and time.

of liquid evaporating phase is sensibly higher then in the outer zone and the

entrained air reaching this area is subjected to a pre-cooling effect. Hence,

even if spray core is characterized by a low-rate vaporization process, the

cooling effects exerted on the gas phase by droplets vaporization is much

more effective in this area due mainly to the higher droplets concentration.

Finally, figure 4.7 show the contour plots of the averaged axial velocity
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Figure 4.7: The figure shows droplets average axial velocity distribution (left box)

and the carrier phase averaged axial velocity field (right box). Velocity are expressed

in m/s. Average has to be intended as ensemble average taken both over θ direction

and time.
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field of the carrier phase and the Eulerian map of the averaged droplet axial

velocity. There are no considerable differences between averaged axial veloc-

ity of droplets and gas. Thus, injected droplets are small enough such that

their inertia is sufficiently low to prevent them to deviate from the averaged

gas velocity field.

This concludes the following report concerning the main phenomenologies

that were identified inside the turbulent spray by the analysis of the instan-

taneous and averaged field of gas and droplets Lagrangian variables. In the

following subsection the consequences of these phenomena will be analysed

by a statistical point of view.

4.1.3 Droplets radius spectrum

In order to obtain further information about droplets distribution over the

fluid domain, a statistical analysis of droplets sizes was accomplished. To

this purpose, the Probability Density Function (PDF) of droplets radius was

estimated in correspondence of different distances from the origin Z/R. Figure

4.8 shows droplets radius PDFs evaluated at six different spray regions. Each

of these curves were computed considering cylindrical spray slices normal to

the jet axis and extending for the whole spray region in radial direction. The

population of all droplets positioned inside each of these slices, at every time

steps, was sampled in order to generate these PDFs.

As can be seen in figure 4.8, the PDF relative to the axial coordinate

Z=0R confirms the presence of 6µmmonodisperse droplets among this region,

according to the prescribed inlet conditions for droplets radius. Immediately

away from inlet, an intense spreading of the droplet radius spectrum can be

observed in the downstream evolution. It should be noted that only 5 jet radii

away from inlet, the droplets population is constitute by polydisperse droplets

which sizes range from 0.5 µm to 6 µm, giving origin to a radius distribution

which spans for around one decade. This extremely intense widening of

droplets radius spectrum leads to an increment of PDFs standard deviation

by a factor of of 30 over only 5 jet radii. It should be remarked that this
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Figure 4.8: The figure compares the PDF of droplets radii at different distances

from the jet inlet. Each PDF is evaluated considering droplets positioned inside

cylindrical slices of width Z=0.5R normal to jet axis and centre at the respective

axial distances from inlet. The sampling considers each time step after the reaching

of full steady condition of the averaged fluid dynamic fields.
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Figure 4.9: In figure are shown four Joint Probability Density Function (JPDF)

relative to droplet radius and temperature evaluated in correspondence of four dif-

ferent axial distances from inlet. Droplets radius is expressed in µm while temper-

ature in K.
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Z=0R Z=5R Z=10R Z=20R Z=30R Z=40R

µ[µm] 5.989 5.461 4.910 4.088 3.251 2.211

σ[µm] 1.872 · 10−2 0.6257 1.005 1.183 1.102 8.662 · 10−1

Table 4.1: In table mean values and standard deviations of each PDF represented

in figure 4.8 ere reported. A reduction of the PDF mean values is observed, as

expected, moving downstream jet inlet. A rapid increasing of the standard deviation

occurs between Z=0R and Z=30R. Further downstream evaporation is substantially

completed, thus this trend tends to be inverted.

quantity amounts in differences of droplet volumes of about 103. In table

4.1 mean values and standard deviations are reported for all PDFs drawn in

figure 4.8. The standard deviation increases from 1.872 · 10−2µm to 1.183µm

between Z=0R and Z=20R, while the mean values decreases as expected

ranging from 6µm to 2µm.

Figure ref characterize further this phenomenology showing four Joint

Probability Density Function (JPDF) relative droplets radius and tempera-

ture which has been evaluated at four different distances from inlet. Accord-

ing to previous analysis, it is possible to observe that in proximity of jet inlet

large and hot droplets subsists. Nevertheless, several droplets presents lower

temperature between 275 K and 272 K even if this event is characterized

by low probability density. Moving further away from inlet, the widening of

droplets radius spectrum can be observed. Moreover, each of this class of

droplets presents temperatures over a wide range of values, thus both large

hot and cold droplets can be found in the spray together with small and cold

droplets.

This intense spread of the droplet radius spectrum can be attributed

to the extremely complex evolution of evaporating spray, involving turbu-

lence and the previously discussed droplets clustering and entrainment phe-

nomenology. In particular, the convoluted fluid structures typical of turbu-

lent motion play a key role in the widening of droplets spectrum. Let us

consider a set of droplets which are injected simultaneously into the carrier

phase. After injection each of these droplets will move through the gas fol-
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lowing a different path, originated by the interaction between droplet finite

inertia and turbulent structures that characterize turbulent flow. Hence, each

of these droplets will spend a different amount of time in order to travel from

the jet inlet to an arbitrary axial coordinate. Therefore, even if droplets

would move across uniform vapour concentration and temperature fields,

each droplet would experience a different mass lost along its path due to the

different duration of the vaporization process. This phenomenon, due only

to kinematics of droplet-laden flows, is primary responsible for the widening

of droplets radius spectrum. The presence of non-uniform temperature and

vapour concentration field, cluster phenomenologies and entrainment increase

further the intensity of this phenomenon.

4.1.4 The fundamental role of turbulence

The present thesis work concludes with a further brief discussion concerning

the fundamental importance of all the stochastic phenomenology described

in this chapter on the vaporization dynamics. To this purpose a RAANS

framework has been considered. More specifically, the ensemble average of

all the Eulerian fields obtained by the DNS approach have been adopted as

the carrier phase fields in the RAANS approach. The same parameters of

DNS were used in the RAANS context and monodispersed droplets of 6µm

radius were injected and evolved through these averaged and constant fields.

It should be remarked that the fields considered for the RAANS approach are

the exact solution of the carrier phase averaged fields dynamics, since they

have been calculated by a DNS approach that does not consider any model

both for turbulence and droplets dynamics. Moreover,these fields account for

the full effect of droplets evaporation on the gas phase dynamics, consider-

ing the correct averaged vapour concentration, gas temperature, gas velocity

and saturation encountered by droplets through the gas. In other words this

RAANS approach neglect only the effects of the stochastic fields fluctuations

due to turbulence on droplets dynamics, thus discarding stochastic phenom-

ena such clustering. It should be remarked that all the stochastic processes
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concerning droplets dynamics can be accounted only in a DNS framework.

Thus this last analysis is fundamental to evaluate the importance of these

phenomena and estimate the error which is committed by neglecting them,

such in RAANS and LES context. Figure 4.10 shows a comparison between

the liquid phase mass fraction obtained by the DNS and RAANS approach.

It is clear that the RAANS approach fails in predicting the length scale

over which the vaporization process is substantially completed. In particular,

the vaporization proceeds at a higher average rate in RAANS. In the DNS

the 99% of the injected liquid mass is vaporized at Z=38R, while the RAANS

predicts the end of the vaporization process at a distance from inlet Z=26R,

underestimating the vaporization process length scale of a factor of 1.5. This

error is entirely due to the neglecting of the turbulence fluctuation on droplets

dynamics. In absence of this processes, droplets clustering does not occur

and droplets are homogeneously dispersed over the spray. Therefore, no

high saturated zone take place and evaporation proceeds at higher averaged

vaporization rate in RAANS then DNS. It is then clear how every scale of

turbulent motions has a considerable effects on droplets dynamics and all

phenomenology described in these chapter must be considered in order to

obtain accurate results concerning evaporation inside turbulent spray. To-

date only DNS is able to consider the effects of turbulent structure ranging

over the whole turbulence length range.
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Figure 4.10: The figure shows droplets average temperature distribution (left

box) and the carrier phase averaged temperature field (right box). Temperature is

expressed in K. Average has to be intended as ensemble average taken both over θ

direction and time.



Chapter 5

Concluding remarks

The main achievement of the present work consists in the implementation and

testing of a parallel code able to perform 3D Direct Numerical Simulation

(DNS) of a turbulent evaporating spray, considering a full coupling between

the liquid and gaseous phases. A parallel solver for droplet dynamics, based

on MPI directives, has been successfully integrated into the pre-existing CY-

CLON code. This updated tool take into consideration mass, momentum

and energy exchange between the two phases. At each time step coupling

terms are estimated in order to advance simultaneously the solution of both

Eulerian and Lagrangian phase governing equations and grant the conserva-

tion of exchanged quantities. The parallel architecture makes this code able

to operate on high performance computing units with high computing and

memory storage efficiency.

The droplet dynamics solver has been subjected to a former validation

process through the comparison between numerically computed data and

both experimental and analytical results. An optimal agreement has been

achieved proving the accuracy of the new code in reproducing droplets dy-

namics.

The validated code has been adopted to perform a DNS of a turbulent

spray composed by fine acetone droplets dispersed within a saturated mix-

ture of air and acetone vapour. The analysis of the DNS results has further

demonstrating the capabilities of this numerical tool concerning the reproduc-
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tion of droplet vaporization dynamics. DNS data has been analysed looking

both at instantaneous and averaged fields. Moreover, a statistical approach

has been adopted in order to evaluate the evolution of the droplets distribu-

tion along the spray axis. The main results achieved by DNS data analysis

concerns the role played by turbulence on evaporation dynamics. All over

the simulated spray, droplet distribution is highly non-homogeneous giving

origin to both high droplet density regions (droplet clusters) and low droplets

density zones. Inside this chaotic features, at similar axial distance from in-

let, large droplets with high temperature can be found in the jet core while

small and large droplets with low temperatures are present in the outer part.

This dynamics is is the results of turbulence. Fluctuation of the saturation

field, induced by the highly convoluted turbulent motion, is fundamental in

order to explain the presence of this non-homogeneous structure. In this

context, the presence of highly evaporating droplets dispersed in between

large ones, demonstrate how turbulence has key role in enhancing droplet

vaporization by promoting vapour diffusion (turbulent mixing) and gener-

ating non-saturated gas bubbles in which vaporization can proceed at high

rates.

In the future larger DNS simulations could be performed at higher Reynolds

number, thus obtaining more details concerning this phenomenology. By the

analysis of future DNS data, the role of turbulence on evaporation dynamics

could be further characterized and to this purpose the preliminary informa-

tions collected during this work will be precious.



Bibliography

B Abramzon and WA Sirignano. Droplet vaporization model for spray com-

bustion calculations. International journal of heat and mass transfer, 32

(9):1605–1618, 1989.

M Bini and WP Jones. Large eddy simulation of an evaporating acetone

spray. International Journal of Heat and Fluid Flow, 30(3):471–480, 2009.

A Bukhvostova, E Russo, JGM Kuerten, and BJ Geurts. Dns of turbulent

droplet-laden heated channel flow with phase transition at different initial

relative humidities. International journal of heat and fluid flow, 50:445–

455, 2014.

Yung-Cheng Chen, Sten H St̊arner, and Assaad R Masri. A detailed exper-

imental investigation of well-defined, turbulent evaporating spray jets of

acetone. International journal of multiphase flow, 32(4):389–412, 2006.

Antonino Ferrante and Said Elghobashi. On the physical mechanisms of

two-way coupling in particle-laden isotropic turbulence. Physics of Fluids

(1994-present), 15(2):315–329, 2003.

Paolo Gualtieri, Francesco Picano, Gaetano Sardina, and Carlo Massimo

Casciola. Clustering and turbulence modulation in particle-laden shear

flows. Journal of Fluid Mechanics, 715:134–162, 2013.

Patrick Jenny, Dirk Roekaerts, and Nijso Beishuizen. Modeling of turbulent

dilute spray combustion. Progress in Energy and Combustion Science, 38

(6):846–887, 2012.



Bibliography 88

Gilbert D Kinzer and Ross Gunn. The evaporation, temperature and thermal

relaxation-time of freely falling waterdrops. Journal of Meteorology, 8(2):

71–83, 1951.

Joosung J Lee, Stephen P Lukachko, Ian A Waitz, Andreas Schafer, et al.

Historical and future trends in aircraft performance, cost, and emissions.

Annual Review of Energy and the Environment, 26(1):167–200, 2001.

Philippe Marmottant and Emmanuel Villermaux. On spray formation. Jour-

nal of fluid mechanics, 498:73–111, 2004.

Farzad Mashayek. Droplet–turbulence interactions in low-mach-number ho-

mogeneous shear two-phase flows. Journal of Fluid Mechanics, 367:163–

203, 1998.

Richard S Miller and J Bellan. Direct numerical simulation of a confined

three-dimensional gas mixing layer with one evaporating hydrocarbon-

droplet-laden stream. Journal of Fluid Mechanics, 384:293–338, 1999.

Stephen B Pope. Turbulent flows, 2001.

Julien Reveillon and François-Xavier Demoulin. Effects of the preferential

segregation of droplets on evaporation and turbulent mixing. Journal of

Fluid Mechanics, 583:273–302, 2007.

Federico Toschi and Eberhard Bodenschatz. Lagrangian properties of parti-

cles in turbulence. Annual Review of Fluid Mechanics, 41:375–404, 2009.


