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Introduction

Graphs serve as essential tools for modeling a wide range of phenomena, from
social interactions to biological networks. However, as the size and complex-
ity of these systems grow, analyzing them becomes increasingly challenging.
Random graphs have emerged as a powerful abstraction, enabling researchers
to study large-scale networks by introducing randomness into graph struc-
tures. With the explosion of available data in today’s digital age, random
graph theory has gained more and more relevance for understanding complex
systems.
The main focus of these studies aim to understand the common features
shared by many networks and explore their implications for various kinds of
dynamical processes evolving on them.

The Erdős-Rényi model stands as a cornerstone in random graph the-
ory, providing a foundational framework characterized by its simplicity and
elegance. This model, where edges between vertices are independently in-
cluded with a certain probability, has paved the way for more sophisticated
variations, such as inhomogeneous random graphs, which accommodate the
heterogeneity observed in real-world networks, leading to scale-free structures
characterized by power-law degree distributions.

Real-world networks frequently demonstrate high connectivity, leading to
the emergence of a prominent structural feature known as the giant compo-
nent. This component represents the largest portion of nodes that happens
to be interconnected; requiring that this component covers the majority of
the graph, or more precisely a positive fraction of its vertex set, is a needed
assumption for the study of any process performed on it, and one of the main
problem when dealing with a random graph model is thus to establish the
conditions that guarantee its existence.
High connectivity in real-world networks often accompanies the so-called
’small-world’ property, characterized by polylogarithmic distances between
nodes. One prominent example of this typical phenomenon is the Erdős
number, which illustrates how even within the vast scientific community, a
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relatively small number of collaborations - represented as edges in the pub-
lication network - is often sufficient to connect an author to Paul Erdős.
Erdős, being a highly connected node, effectively reduces the distances be-
tween seemingly remote authors to a logarithmic scale.

Another key feature, struggled to be captured by classical random graph
models, is large clustering coefficient. The formulation of preferential at-
tachment models, like those proposed by Watts and Strogatz, addressed the
absence of this characteristic, which was a shared missing attribute due the
assumption of independence of the edges, as well as in inhomogeneous ran-
dom graphs.
However, recent advancements such as hyperbolic random graphs and geo-
metric inhomogeneous random graphs offer promising avenues for bridging
this gap, enabling more accurate representations with the incorporation of
all these features.
In random graphs, geometry serves not only as a representation of spa-
tial attributes but also as a broader concept reflecting proximity between
nodes. This proximity can encompass various dimensions, such as shared in-
terests, geographical proximity, common affiliations, or frequent interactions.
Whether nodes are physically close or share similar characteristics, the un-
derlying geometry captures the essence of their connectivity, facilitating the
formation of edges based on various types of proximity or similarity.

It is through the concept of thresholds that researchers formulate the ab-
sence or emergence of these properties: these are functions depending on the
parameters of the model (in particular the network size) that set an asymp-
totic boundary to the certain (probabilistically) occurrences of these events.

Among the processes that has been studied on graphs, lattices or general
network structures, bootstrap percolation is probably one of the most rel-
evant. Recent studies have explored this process within geometric models,
shedding light on its applicability and implications.
Bootstrap percolation is a deterministic process of activation or infection
that spreads through a given realization of a graph, starting from a set of
initially active nodes. At each step, inactive vertices with at least r g 2
active neighbors become active themselves. This process continues until no
more vertices can become active, resulting in a set of active vertices that
grows monotonically. It has gained attention for its effectiveness in modeling
various phenomena, ranging from the diffusion of a disease or information to
neuronal activity, from the spread of defaults in banking systems to the jam-
ming transition of materials. Originally developed in the context of magnetic
systems, bootstrap percolation offers a simplified yet powerful approach to
understanding network resilience.
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Its dynamics has been extensively studied on different types of graphs, rang-
ing from deterministic to random graphs. In deterministic scenarios, re-
searchers investigate optimal initial sets, while in random scenarios, initial
sets are chosen randomly, and the general aim is to investigate the depen-
dence of the initial set of activation on the final activated set.
In the same way as the study of ‘statical’ properties of standalone random
graphs, the behavior of this process, its outcome and velocity are tried to
be contained within thresholds: as happens, for example, in the emergence
of the giant component, the process will be shown to face a sharp transition
with respect to a specific function, from a situation in which, basically, no
vertex becomes infected (excepts the initial ones) to one in which almost all
the vertices will be infected (where the meaning of ‘almost all the vertices’
will be made clear already in the analysis of the largest connected compo-
nent).
However, differently from what has been observed in the percolation of the
previous models such as Erdős-Rényi or Chung-Lu, there is also a ‘gray’
area, coinciding with the threshold function itself, in which both scenarios
are possible with positive probability.

Outline of the thesis

In this thesis, we will give an introduction to the theory of random graph,
trying to give a uniform and smooth presentation of the key concepts and
ideas both behind construction and proof of the prescribed characteristics.
The theory is vast, with different models enclosing different purposes and
features: we will focus the dissertation starting from the Erdős-Rényi model,
generalizing and enriching it to finally achieve the geometric model, which
incorporates all the desired characteristics, focusing in particular on the giant
component feature. On this model we will present the study of bootstrap
percolation and describe the main results, before simulating and testing nu-
merically their validity.

In chapter one, we introduce definitions and key concepts of the theory of
random graphs, present the cornerstone model of Erdős-Rényi, and analyze
it using in particular Branching processes, through which the existence of
the giant component is shown.

In chapter two, we extend the model of Erdős-Rényi to the Inhomogeneous
random graph model and study the existence of the giant component through
multi-type branching processes. We focus then on the generalized random
graph or Chung-Lu model.

In chapter three, we present the geometric inhomogeneous random graph
model as an extension of the Chung-Lu model, analyze its characteristics
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and prove the existence of the giant component for the threshold case of the
model.

In chapter four, we define bootstrap percolation and summarize some
known results concerning the evolution of the process on the models of the
first two chapters. The rest of the chapter is devoted to its analysis on the
geometric model.

Finally, in chapter five, a numerical simulation of the process on the
geometric model is performed. The results presented are tested numerically
for increasing number of nodes.
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Chapter 1

Random graphs

1.1 Preliminaries

A graph is a pair G = (V,E), where V is the set of vertices and E is the set
of edges, where an edge is identified by a pair of vertices. We will identify
the vertex set with natural number; denote with [n] = {1, 2, . . . , n} and
Gn = {G = (V,E): V = [n]} the set of graphs with n vertices.

• Two vertices v, w are neighbours if the edge (v, w) ∈ E, and we will
then write v ∼ w. The number of neighbours of v is called degree of v
and denoted as dG(V ) = #{w ∈ V : w ∼ v}.

• A path µ from v to w is a sequence v = v0, v1, . . . , vk = w such that
vj ∼ vj+1, ∀j. It can be viewed as a sequene of edges e1, . . . , ek where
ei = (vi−1, vi). Its length is by definition the number of edges apperaing
in the sequence and denoted by |µ| = #edges.

• Two vertices v, w are connected if there exists a path connecting them,
and we will write v ´ w.
We define the Cluster or connected component of a vertex v ∈ V as
C(v) = {w ∈ V : v ´ w}.

• We can define a distance on V setting dG(v, w) = min
µ:v´w

|µ| with the

convention min∅ = ∞.

• The diameter of a graph G is defined as diam(G) = max
v,w∈V

d(v, w)

• The largest component of G (which may be not unique) is defined as
Cmax = max

v∈V
|C(v)|

11



12 CHAPTER 1. RANDOM GRAPHS

• denote with Kn the complete graph with n vertices and En its edge set.

A rooted graph is a pair (Gn, Än), with Gn ∈ Gn and Än ∈ [n] a fixed vertex.
Let (G, Ä) an infinite size rooted graph.

Definition 1.1.1. A sequence (Gn, Än)n∈N converges locally to (G, Ä) if

∀r g 1, lim
n→∞

BGn
r (Än) ∼= BG

r (Ä)

where an isomorphism between graphs is a bijection that preserves the prop-
erty of vertices of being neighbourhood, and we denoted with BG

r (Ä) the ball
in G of radius r centered in Ä, i.e. the subgraph of G spanned by the vertices
at a distance < r from Ä.
We can ask equivalently that

∀H∗ = (H, Ä), ∀r g 1 lim
n→∞

BGn
r (Än) ∼= H∗ ⇐⇒ BG

r (Ä)
∼= H∗

Asymptotic notations: let f(x), g(x) be non negative functions. We say
that

• f(x) = O(g(x)) iff

lim sup
x→∞

f(x)

g(x)
<∞;

in particular f = O(1) means that f is bounded, f = O(n) that it is
at most linear.

• f(x) = O(g(x)) iff

lim
x→∞

f(x)

g(x)
= 0;

in particular, f = O(1) means that f → 0 and f = O(n) that it is
sublinear.

• f(x) = Ω(g(x)) iff g = O(f);

• f(x) = É(g(x)) iff g = O(f)

• f(x) = Θ(g(x)) iff f(x) = O(g(x)) ∩ Ω(g(x))

• f(x) ∼ g(x) iff

lim
x→∞

f(x)

g(x)
= 1

We say that a property (represented through some event A = An depend-
ing on n, the graph size) holds with high probability (abbreviated whp) if
P(An) = 1− O(1), meaning that with n increasing the probability that An is
true tends to 1.
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1.2 Random Graphs

We endow Gn with the Ã-algebra given by the power set, together with a
probability distribution Pn.

Definition 1.2.1. A random graph is an element of Gn, chosen with proba-
bility Pn, and denoted as Gn.

Let U = U (n) ∼ Uniform([n]) the uniform random variable on the set [n].
Denote the proportion of vertices with degree k in Gn with Pk,

Pk :=
1

n

n
∑

i=1

1{dG(i)=k} = P(dGn(U) = k). (1.1)

When modelling the so called ‘real world networks’, we want our model to
have some key properties that are often empirically observed in them. Real
worlds networks are typically really large, so we will be interested in studying
the behaviour of Gn as n → ∞, i.e. we will consider sequences of random
graphs with increasing number of vertices.
The main properties that we want our random graphs to possess are the
following (here the definitions are given for deterministic sequences; in the
context of sequences of random graphs the convergence should be intended
as almost everywhere, in distribution or in probability, with eventually more
hypothesis concerning convergence of the mean or second moment, thus in
general using the notions of convergence of random variables, according to
the situation):

• Sparsity: A graph sequence (Gn)ng1 is sparse if

lim
n→∞

P
(n)
k = pk, k ∈ N (1.2)

for some (pk)kg0 probability distribution with finite mean µ, so in par-
ticular

∑

kg0 pk = 1.
Equivalently, we will ask that the random variable d(U) converges in
distribution to a random variable D with density (pk)k.
Observe that from this hypothesis it follows that

|E(Gn)| =
1

2

∑

i∈[n]

dGn(i) =
n

2

∑

k∈N

k · Pk ≈
n

2
µ (1.3)

so |E(G)| ∼ O(n), from which the term ‘sparse’.
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• Scale-free property: A graph sequence (Gn)ng1 is scale-free with expo-
nent Ä if it is sparse and

lim
k→∞

log(1− F (k))

log( 1
k
)

= Ä − 1 (1.4)

where F (k) =
∑

jfk pj is the distribution function of the random vari-
able D = d(U), which then follows a power-law distribution; roughly
speaking, it means that P(D g k) ∼ ck−(Ä−1), i.e. the limiting distri-
bution has power-law tails.
Equivalently, we can ask the density (pk)k to satisfy

lim
k→∞

log(pk)

log( 1
k
)
= Ä (1.5)

Observe that in this case we have

E(D) =
∑

kg0

kpk ≈
∑

kg0

c

kÄ−1

Var(D) ≈
∑

kg0

k2pk ≈
∑

kg0

c

kÄ−2

What is observed in real world networks is bounded average degree and
a high level of variability in the nodes degree, meaning finite mean and
infinite variance of D; this leads to set typically the parameter Ä in the
interval (2, 3).

• High Connectivity: A graph sequence (Gn)ng1 is highly connected if

lim inf
n→∞

|Cmax|
n

> 0 (1.6)

and in this case Cmax is called ‘giant component’.

• Small-world: a graph sequence (Gn)ng1 has the small world property if
the typical distance between vertices is small compared to n.
Formally, considering U1, U2 ∼ Uniform([n]), it means that

∃K > 0 : lim
n→∞

P(d(U1, U2) < K log n) = 1 (1.7)

It has the ultra small world property if the same condition holds with
log log n instead of log n.
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Another important concept in the study of random graphs is that of clus-
tering, which focus on the tendency of neighbours of a node to be neighbours
themselves, thus creating subsets of nodes that are highly connected within
themselves, called clusters. Formally, let

WG =
∑

1fi,j,kfn

1{ij,jk∈E} (1.8)

be twice the number of wedges in the graph G (since every wedge ij, jk is
the same as kj, ji so it’s counted twice), and let

∆G =
∑

1fi,j,kfn

1{ij,jk,ki∈E} (1.9)

be six times the number of triangles in G. The clustering coefficient CCG
of G is defined as the ratio between triangles and wedges in G, thus it mea-
sures the proportion of wedges for which the closing edge is also present.

Definition 1.2.2. A graph sequence (Gn)ng1 is highly clustered when

lim inf
n→∞

CCGn > 0 (1.10)

We can generalize the notion of local convergence of graph, given in the
deterministic setting, to the random one:

Definition 1.2.3. A sequence of random graphs (Gn)n∈N converges locally
in probability to the the graph(G, Ä) (which can be either deterministic or
random) if

∀r g 1, ∀H∗rooted graph, P (BGn
r (U) ∼= H∗)

P−−→ P̃(BG
r (Ä)

∼= H∗)

Note that P (·) is the probability related to the uniform distribution, so that
the left hand side is indeed a random variable in [0, 1], the convergence in
probability P is related to the Gn and P̃ is relative to G.

1.3 Branching processes

In this section we introduce and show the main properties of the branching
processes, the simplest models for the evolution of a population in time. The
results presented here will be used later to prove threshold results for the
Erdős-Rényi model.
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Assume that every individual in the population has the same offspring
distribution X and that they are indipendent of each other. Call pi = P(X =
i) the probability that an individual gives birth to i children. Let Zn the
number of individuals in the nth generation and set Z0 = 1. Denoting with
Xn,i the number children of individual i of the generation n, Zn then statisfies

Zn =

Zn−1
∑

i=1

Xn−1,i (1.11)

where (Xn,i)n,ig0 is a doubly infinite array of i.i.d. random variables. Define
the extinction probability as

¸ = P(∃n : Zn = 0) (1.12)

and the random variable T as

T =
∞
∑

n=0

Zn (1.13)

representing the total progeny of the branching process. Call Èn(s) = E(sZn),
ÈT (s) = E(sT ) and ÈX(s) = E(sX) the probability generating functions of
Zn, T and X respectively.

Theorem 1.3.1. For a branching process with i.i.d. offspring distribution
X,

• ¸ is the minimal solution of the equation

È(s) = s (1.14)

and in particular

1. if E(X) < 1 then ¸ = 1 and we are in the subcritical regime

2. if E(X) > 1 then ¸ < 1 and we are in the supercritical regime

3. if E(X) = 1 and P(X = 1) < 1, then nothing can be said about ¸
a priori and we are in the critical regime

• ÈT satisfies
ÈT (s) = s · ÈX(ÈT (s)) (1.15)

Proof. Observe first that Èn satisfies

Èn+1(s) = Èn(È(s)) = È(Èn(s)), (1.16)
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indeed, conditioning at the first generation

Èn+1(s) = E(sZn+1) = E(E(sZn+1 |Z1)) = E(E(sZ
(1)
n +...Z

(Z1)
n ))

= E(
Z1
∏

E(sZn)) = E(Èn(s)
Z1) = È(Èn(s))

As a consequence, taking s = 0 and passing to the limit in 1.16, we get that
¸ is indeed solution of equation 1.14.
To see that is the minimal one, we study the function È in the domain [0, 1]:
we have that È(0) = p0, È(1) = 1 and moreover it is strictly increasing and
convex in (0, 1):

È′(s) =
∑

kg0

ksk−1pk > 0

È′′(s) =
∑

kg0

k(k1)sk−2pk > 0,

so È([0, 1]) = [0, 1]. We have now two cases:

• if lims→1− È
′(s) f 1, then it means that equation 1.14 has only one

solution in s = 1 = ¸

• if lims→1− È
′(s) > 1, then equation 1.14 has two solutions, one in s = 1

and another < 1; to prove that ¸ is the smaller one, we proceed by
induction on the generation: if z is solution of z = È(z), for n = 1 then

z = È(z) = E(zZ1) = E(zX) = p0 +
∑

jg1

zjpj g p0 = P(Z1 = 0),

while for n+ 1

z g È(P(Zn = 0)) = È(Èn(0)) = Èn+1(0) = P(Zn+1 = 0) (1.17)

where the inequality follows by monotonicity of È and induction hy-
pothesis. Taking the limit in (1.17) we get that ¸ f z whenever
z = È(z).

To prove equation (1.15), we do as done for Èn, conditioning to the first gen-
eration, observing that the total progenies T (1), . . . , T (Z1) are i.i.d. random
variables with the same distribution as T :

ÈT (s) = E(sT ) = E(E(sT |Z1)) = E(E(s1+
∑
T (i) |Z1)) = sE(E((sT )Z1 |Z1))

= sE(E((sT )Z1)) = sE(E(sT )X) = sE((È(s))X) = sÈX(ÈT (s))
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Figure 1.1: Solution of s = ψ(s) for E(X) = 1,E(X) < 1,E(X) > 1 respectively

Duality principle

Let X and X ′ be the offspring distribution of two branching processes BP(p),
BP(p′) respectively, with ¸ the extinction probability for the branching pro-
cess X. We say that p = (pk)kg0 and p′ = (p′k)kg0 are a conjugate pair
if

p′k = ¸k−1pk, ∀k ∈ N (1.18)

Theorem 1.3.2. The distribution of BP(p) conditioned on extinction is equal
to the distribution of BP(p′).

In the particular case of a Poisson branching processes BP¼, with ¼ > 1,
where the offspring distribution is given by

pk = e−¼
¼k

k!
, (1.19)

we have that p′k = e−¼¸ (¼¸)
k

k!
, i.e. a Poisson branching process with parameter

¼ conditioned on extinction is again Poisson with parameter ¼¸ := µ¼. Using
1.3.1, which in the Poisson case takes the form

¸ = e¼(¸−1) (1.20)

we obtain that µ and ¼ are conjugate pair if and only if they satisfy

µe−µ = ¼e−¼. (1.21)

and so µ = µ¼ < 1.
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Exploration

Exploring the tree associated to a branching process gives us a random walk
perspective of them and will be useful to link with random graphs; con-
sider a branching tree P with a total progeny T , together with the following
procedure:

• each vertex can be labeled with L (live), N (neutral) or D (dead).

• At step 0, the root of the tree is labeled as live, while all the other T−1
vertices are labeled as neutral

• at each step n g 0, choose a live vertex, label it from Live to Dead and
all of its offspring vertices from Neutral to Live

• let Sn = |{live vertices at step n}|, Kn = |{dead vertices at step n}|
and Nn = |{neutral vertices at step n}|; clearly Sn+Kn+Nn = T , ∀n

• from the definition it follows that

S0 = 1 (1.22)

Sn = Sn−1 +Xn − 1 = X1 + . . . Xn − (n− 1) (1.23)

where Xn is the offspring distribution of the vertex chosen at step n,
with (Xj)j∈N are i.i.d. ∼ X.

It follows that (Sn)n∈N is a random walk with increments (Xn − 1)n∈N and,
denoting with T ′

−k the random variable

T ′
−k = inf{n : Sn = −k},

T ′
0 has the same distribution of the random variable T ; this allows us to see
T as a stopping time for the random walk Sn and to apply theorem 6.1.1 to
get

P(T = N) = P1(T
′
0 = N − 1) = P0(T

′
−1 = N) =

1

N
P(X1+ · · ·+XN = N − 1)

(1.24)
where Pk(·) = P(·|S0 = k).

1.4 Erdős-Rényi model

In this section we will present and discuss the simplest model and one of the
first to appear in the literature, considered the foundation of random graphs
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theory, introduced by Erdős and Rényi.
In their model, each edge between any two vertices has a fixed probability
p ∈ [0, 1] to appear in the graph, independently from the other edges. This
leads to consider independent Bernoulli random variables with parameter p
for each of the possible

(

n
2

)

edges of a graph with n vertices, and thus on Gn
the measure

Pn,p(G) := p|E(G)| · (1− p)(
n
2)−|E(G)| (1.25)

In order to analyze the main properties of the model, we introduce some
definition:

Definition 1.4.1. An event A ¢ Gn is increasing if it satisfies

if G ∈ A⇒ G ∪ {e} ∈ A, ∀e ∈ En. (1.26)

A real random variable X : Gn → R is increasing if the event {X g x} is
increasing for every x.

It is easy to see, using coupling (see 6.1.4 in the appendix) that Pn,p1(A) f
Pn,p2(A) for every increasing event A, whenever p1 f p2.

Most of the properties can be expressed in terms of increasing or de-
creasing events, and in this case, in the limit n → ∞, the graph exhibits a
transition with respect to the parameter p:

Definition 1.4.2. A threshold in G(n, p) for an increasing event A is a
function pc = pc(n) such that

lim
n→∞

Pn,p(A) =

{

0 if pj pc

1 if pk pc
(1.27)

where pj pc stands for p
pc

→ 0.

Despite its simplicity, the Erdos Renyi random graph has a big variety of
substructures arising for different thresholds.
First observe that, for p(n) j 1

n2 the graph has no edges w.h.p. as n → ∞,
i.e. 1

n2 is a threshold for the event A = {Gn,p has at least one edge}. Indeed,
if X is the random variable counting the edges, precisely

X(G) := |E(G)| =
∑

e∈E

1{e∈E} G ∈ Gn,

thenX is sum of
(

n
2

)

independent Bernoulli random variables with parameters
p(n). Thus

Pn,p(A) = Pn,p(X g 1) f E(X) =

(

n

2

)

· p(n) → 0 if p(n) j 1

n2
.



1.4. ERDŐS-RÉNYI MODEL 21

On the other hand,

Pn,p(A
c) = Pn,p(X = 0) f V ar(X)

E(X)2
≈ 1− p
(

n
2

)

· p → 0 if p(n) k 1

n2
.

There are other important thresholds connected to different subgraphs con-
tainment, we highlight the following transitions:

Theorem 1.4.3. For the Erdos-Renyi random graph G(n, p), with p = p(n),
the following thresholds hold:

• for p(n) = p̄ ∈ (0, 1), we are in the dense regime, with E(E(G(n, p))) ∼
cn2 and diam(G(n, p)) → 2;

• for p ∼ ¼
n
, with ¼ > 0, we have that E(E(G(n, p))) ∼ cn and we are

then in sparse regime

• for p(n) = log(n)+cn
n

, we have that

lim
n→∞

P(G(n, p) is connected) =











0 if cn → −∞
e−e

−c
if cn → c

1 if cn → ∞

Sparse Regime

We restrict now to the sparse regime, considering only p of the form p(n) = ¼
n
,

and deduce results on the size of connected components and small world
property. From the definition we can immediately observe that it is not
scale-free: indeed each vertex i ∈ [n] has degree distribution

d(i) ∼ Bin(n− 1,
¼

n
)

d−→ Poi(¼) (1.28)

where the convergence follow from lemma 6.1.3; thus

Pn,p(d(i) = k) =

(

n

k

)

pk(1− p)n−k ≈ e−¼
¼k

k!
. (1.29)

Exploration of the giant component

In order to build a link with branching processes and use results of the pre-
vious section, we define in the following a procedure to perform exploration
of the connected components in G(n, p), with p = ¼

n
.

Choose a vertex j ∈ [n]:
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• at step 0 j is live, while all other vertices are in status neutral

• at every step k g 1, choose a live vertex i. Every neighbour l of i will
change or keep its status to live if it’s neutral or live and keep its status
to dead if it’s already dead; i will become dead and all other vertices
will keep their status.

Denote with Sk, Dk and Nk the number of live, dead and neutral vertices
respectively. Observe that Dk = k, so Sk +Nk = n− k. It follows from this
procedure that

|C(j)| = min{k : Sk = 0} := T (1.30)

Let Xi be the number of vertices becoming live at step i, so that

S0 = 1, Sk = Sk−1 +Xk − 1 =
k
∑

i=1

Xi − (k − 1), (1.31)

thus (Sk)0fkfT is a random walk with increment (Xi − 1). The difference
with the branching process’ random walk defined in (1.22) is in that the
increments are not i.i.d., but their distribution varies at each step, indeed

Xi ∼ Bin(Ni−1, p). (1.32)

Since N0 = n− 1, by recursion and applying Lemma 6.1.2

Ni ∼ Bin(n− 1, (1− p)i) (1.33)

from which it follows that

Si ∼ Bin(n− 1, 1− (1− p)i)− i+ 1. (1.34)

Theorem 1.4.4. For the random graph ER(n, p), with p = ¼
n
, it holds that

1. if ¼ < 1, then

|Cmax|
log n

d ,P−−→ c¼ := I¼(1)
−1 = (1− ¼− log ¼)−1 (1.35)

2. if ¼ > 1, then

(a)
Cmax

n

P−−−−→ · (1.36)

(b)
C2
n

P−−−−→ 0 (1.37)

where · = 1 − ¸ is solution of Poisson branching process’ survival
equation (1.20). The first case is called subcritical regime, while the
second one is called supercritical. Observe that the last equation of the
supercritical scenario tells us that the giant component is unique.
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Figure 1.2: Largest component in Erdős Renyi graph G(n, p), with n = 2000. The vertices
in the largest component are drawn in red while the others are in blue. On the left, the
parameter λ = 0.8 is subcritical and the realization of the graph indeed displays a largest
component of size 31 which is of the order of log n. On the right, λ = 1.2 is supercritical
and the largest component has size 533, with a empirical fraction of ζ nodes similar to the
theoretical ζ.

Proof. We will prove upper and lower bound on the probabilities:

1. Proving convergence in the subcritical regime amounts to show that
both the following convergence holds:

(i) P(|Cmax| g c log n) → 0, ∀c > c¼

(ii) P(|Cmax| f c′ log n) → 0, ∀c′ < c¼

We will show the lower bound (i) : let C > c¼, let (Sk)k=1...T the
exploration process of C(j).
For k = k(n) = O(n), it holds that

Pn,p(|C(j)| > k) = Pn,p(T > k) = Pn,p(Sk g 1)

= P(Bin(n− 1, 1− (1− p)k) g k) ≈ P(Poi(k¼) g k) f e−kI¼(1)

where the approximation follows from 1 − (1 − p)k ≈ kp and apllying
6.1.3, while in the last inequality Chernoff has been used. Substituting
k(n) = c log n, one gets the upper bound n−cI¼(1) which is O(n−1) for
c > c¼. Then

Pn,p(|Cmax| g c log n) f
∑

j∈[n]

Pn,p(|C(j)| > c log n) = O(1)
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2. To prove convergence in (a), first we show that Pn,p(|Cmax| = O(n)) → 0
as n→ ∞, then prove upper and lower bound for Cmax

n
.

Let k = k(n) = O(n) and k(n) → ∞. It holds that

Pn,p(|Cmax| f k) = Pn,p(
⋂

j∈[n]

{|C(j)| f k}) f Pn,p(|C(j)| f k)

=Pn,p(T f k) = Pn,p(Sk f 0) = Pn,p(Bin(n− 1, 1− (1− p)k < k)

≈P(Poi(¼k) < k) f e−I¼(1)k → 0, as n→ ∞
where the approximation follows from 1 − (1 − p)k ≈ kp and the last
inequality from Chernoff’s Bound with ¼ < 1.
To prove upper and lower bound, let k(n) = cn, with c > 0.

Pn,p(|C(j)| f k) = Pn,p(T f k) = P(Sk f 0)

=P(Bin(n− 1, 1− (1− p)k < k) ≈ P(Bin(n, 1− e−¼c < cn)

where the last approximation follows from 1−(1−p)k = 1−(1− ¼
n
)cn ≈

1− e¼c.
Observe now that, by (1.20), 1 − e−¼c > c ⇐⇒ c < ·¼. When
c < 1− e−¼c, we have by (6.1) that

Pn,p(|C(j)| f cn) f e−nIBin(c) → 0

and so for every c < ·¼ it holds that P(|Cmax| f cn) → 0.
When c > 1− e−¼c, again by (6.1), we have that

Pn,p(|C(j)| f cn) = 1− Pn,p(|C(j)| > cn) g 1− e−IBin(c)n → 1

and so for all c > ·¼ it holds that

Pn,p(|Cmax| > cn) f nPn,p(|C(j)| > cn) f ne−IBin(c)n → 0.

To prove uniqueness in (b), we iterate the exploration procedure, at
each step removing from the graph the component explored. When
removing a component C(j) that is not giant, the remaining graph is
of size n − O(n) ≈ n, so we proceed with iteration until we encounter
the giant component, which should eventually happen by its existence
proven in (a). In this case the remaining graph will have distribution

G(n− n·¼,
¼

n
) = G(n¸¼,

¼

n
) = G(m,

µ¼
m

)

where ¸¼ = 1 − ·¼ and we called m := ¸¼n and µ¼ = ¼¸¼ < 1 is the
Poisson dual of ¸¼. Then G(m, µ¼

m
) is an ER random graph in the sparse

regime, thus its maximal component is of order O(n).
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We state now a convergence theorem for the ER random graph that will
be used to prove small world property

Theorem 1.4.5. For ¼ > 1, G(n, ¼
n
) converges locally in probability to the

Poisson Branching process BP(Poi(¼)).

This further connection between ER and BP(Poi(¼)) allows us to prove
the following

Theorem 1.4.6. Let U1, U2 independent uniform random variables on [n].
Conditionally on the event {U1 ´ U2}, it holds that

distG(n,p)(U1, U2)

log n

P−−→ 1

log ¼
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Chapter 2

Inhomogeneous random graphs

The most direct generalization of random graph, starting from the baseline
model of Erdős-Renyi, is built by keeping the independence of edges but al-
lowing a different probability distribution between them. There are different
ways to do so, i.e. to define the probability of existence of any edge. The
most general approach is to consider vertices of the graph to be of different
types and to define the edge probability between two vertices to be dependent
on those types. For the most general definition, where the set of types can
be either finite or infinite (countable or uncountable), see [7]. Nevertheless
the models that can be built from a finite set of types is already rich and
various and we will initially focus on this particular case.
Then, for the infinite case we will restrict our study to the so called Gener-
alized Random Graphs, a particular case of the IRG that can be formulated
through weight assignment to each node of the graph.
We will denote vectors with underline bar and matrix in bold.

Definition 2.0.1. An Inhomogeneous random graph (IRG) is defined by a
finite set of types T , a probability measure µ on T and a function

t : V = [n] → T

such that

µ(s) =
|{i ∈ [n] : t(i) = s}|

n
, ∀s ∈ T,

together with a symmetric non negative matrix K = (Ks,t)s,t∈T , called kernel,
such that

∀i, j ∈ V, P(i ∼ j) = P(t(i), t(j)) = Kt(i),t(j).

The corresponding random graph, which is determined by the kernel K and
the vector µ = (µ(1), . . . , µ(|T |)), will be denoted with G(n,K) and its cor-
responding probability with Pn,K.

27
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We will assume in the following that the kernel is irreducible, meaning that
it is not possible to split the type set into two proper subsets T1 ⊔ T2 such
that kij = 0 for every pair i ∈ T1, j ∈ T2.

Assumption 2.0.2. We will assume from now on, as done for the ER model,
that the edge probabilities scale as 1

n
, i.e.

P(t(i), t(j)) =
Kt(i)t(j)

n
.

Then it follows that, for i ∈ [n] with t(i) = t,

d(i) =
∑

s∈T

∑

j∈[n]
t(j)=s

1{i∼j}
d
=
∑

s∈T

µ(s)n
∑

a=1

Be(
K(s, t)

n
)

d
=
∑

s∈T

Bin(µ(s)n,
K(s, t)

n
) ≈ Poi(¼(t)),

where ¼(t) =
∑

s∈T K(s, t)µ(s) = (K · µ)t.

Definition 2.0.3. Let ϕ a probability density function on R+. A random
variable X is distributed as a Mixed Poisson distribution with density ϕ if
its probability density is

P(X = k) =

∫ ∞

0

¼k

k!
e−¼ϕ(¼)d¼

The vertex degree sequence in G(n,K) is then ruled by Mixed Poisson
distribution with density µ:

Pn,K(d(U) = r) =
∑

t∈T

∑

i∈[n]
t(i)=t

1

n
e−¼(t)

¼(t)r

r!
=
∑

t∈T

µ(t)e−¼(t)
¼(t)r

r!

which can be rewritten as dGn,K
(U)

d
= Poi(W ), with P(W = ¼(t)) = µ(t).

2.1 Multi-type Branching processes

In order to extend the existing correlation between random graphs and
branching processes to the inhomogeneous settings, we need to generalize
and allow the progeny to be of different type. We restrict for the moment to
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the finite type case and first introduce some notation.
Let T ∈ N0, [T ] the set of types and denote with p

(s)

i the probability that an

individual of type s gives birth to an offspring i, where i = (i1, . . . , iT ), i.e.

it individual of type t, for each type t in [T ], and with pi = (p
(1)

i , . . . , p
(T )

i ).

Let Z
(s)
k,r be the number of individual of type r in generation k starting from

an individual of type s, so that we can denote with

Z
(s)
k = (Z

(s)
k,1, . . . , Z

(s)
k,T )

the vector of k-th generation. Let

·(s) = P(Z(s)
k ̸= 0, ∀k g 0)

and · = (·(1), . . . , ·(T )).
Assume that the offspring of different individuals are mutually indepen-

dent and also that children of different type of a single individual are gen-
erated independently, i.e. Z

(t)
1,r §§ Z

(t)
1,s, for all t, r and s. This implies that

the probability distribution of a single individual split as the product of the
probability distribution of different types:

p
(s)

i =
∏

t∈[T ]

p
(s,t)
it

,

where p
(s,t)
it

is the probability that an individual of type s generates it indi-
viduals of type t.
Finally, for z ∈ [0, 1]T , denote the joint probability generating functions of
the offspring distribution of an individual of type s with

G(s)(z) =
∑

i∈NT

p
(s)

i

∏

t∈[T ]

zitt ,

by G
(s)
k (z) the one of Z

(s)
k and the corresponding vectors by G(z) and Gk(z).

By independence, splitting by type in the product of expectation and apply-
ing separately 1.16, one can prove that

Gk+1(z) = G(Gk(z))

Now since Gk(0) = (P(Z(s)
k = 0))s∈[T ], passing to the limit we have

1− lim
k→∞

Gk(0) = ·,

and so, reasoning as in the 1 type case, one can show that · is the largest
solution (in lexicographic order) of the equation

· = 1−G(1− ·). (2.1)
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To emphasize analogy with IRGs, call ¼sr := E(Z(s)
1,r ) and write ¼sr =

K(s, r)µ(r) (this can always be done in different ways).
Let T = (¼sr)s,r∈[T ] the matrix of expected offspring.

Definition 2.1.1. We say that the multi-type branching process is singular
if G is linear in z, i.e. if there exist a matrix M such that G(z) = Mz. In this
case every individual has a.s. one offspring of a given type and the branching
process reduce to a Markov chain between types and a.s. survives.
We say that the branching process is positively regular if there exist a positive
integer l such that (Tl)sr > 0 for every s, r.

Theorem 2.1.2. Assume that the branching process is not singular and pos-
itively regular. Then · ̸= 0 if and only if ∥T∥ > 1.

Proof (sketch). Let l g 1 such that (Tl)sr > 0 for every s, r ∈ [T ]. Then
by the Perron-Frobenius theorem, there exists a unique largest eigenvalue
³ = ∥Tl∥, with eigenvector x; thus also

T
l
Tx = TT

lx = T³x = ³Tx,

i.e. x is eigenvector of T, too, with

³ = sup
∥x∥f1

Tx.

Now, since E(Z(s)
k+1|Zk = y) = Ty, taking y = e(s) the s-th basis vector (the

ancestor of the progeny tree), we have that

E(Z(s)
k ) = T

ke(s).

Then, when ∥T∥ < 1, it holds that

P(|Z(s)
k | g 1) f E(|Z(s)

k |) f ∥T∥k∥e(s)∥ = ∥T∥k

hence the branching process dies out a.s.
On the other hand, observe that Mk := x · Z(s)

k ∥T∥−k is a non-negative
martingale, which then converges to someM∞ by the Martingale convergence
theorem. Since E(M0) > 0, it follows that |Z(s)

k | grows exponentially with
positive probability, which means that the survival probability is positive.

These three different behaviours depending on the value of ∥T∥ are called,
in line with the single type case, supercritical (∥T∥ > 1), critical (∥T∥ = 1)
and subcritical (∥T∥ < 1).
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Assume now that the branching process is Poisson, meaning that Z
(s)
1,r are

independent Possion random variables, with mean ¼sr. In this case,

G(s)(z) =
∏

t∈[T ]

e¼st(zt−1) = eT(z−1) (2.2)

and thus the survival equation becomes · = 1− e−T· , where the exponential
is meant component-wise.

2.2 Consequences on multi-type ER

Consider now the IRG defined before.

Assumption 2.2.1. From now on we will assume that p
(s,t)
it

d
= Poi(¼(s, t)),

and call Λ = (¼(s, t))s,t∈[T ].

The local structure of the IRG with finitely many types, that is how edges
arise in the neighbourhood of a vertex, is explained in the following theorem,
which is a direct generalization of theorem 1.4.5:

Theorem 2.2.2. The random graph G(n,K), with Kst(n) ∼ kst/n, converges
in probability to the multi-type Poisson branching process with the root type
distribution µ and vertex type offspring distribution Poi(¼(t, s)) independent
for each v ∈ [n], where ¼(s, t) = Kstµt

As in the ER model, in the supercritical regime the largest connected
component arises, having the same size of the whole graph:

Theorem 2.2.3. For the random graph G(n,K) it holds that

Cmax

n

P−−−−→ ·K

C2
n

P−−−−→ 0

where ·K = · · µ, so by theorem 2.1.2the giant component arises precisely
when ∥TK∥ > 1, and in that case it is unique.

In the subcritical case a small-world property holds for IRG too:

Theorem 2.2.4. Let U1, U2 independent uniform random variables over [n].
Then for the inhomogeneous random graph G(n,K), with K irreducible, it
holds that, conditionally on {U1 ´ U2}

distG(n,p)(U1, U2)

log n

P−−→ 1

log ∥TK∥
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2.3 Generalized Random Graphs and Chung-

Lu model

One particular case of Inhomogeneous random graphs are the so called Gen-
eralized Random Graphs (GRG). In this framework, a weight (that can in
general be deterministic or random) is assigned to each node of the graphs
and edges between nodes appear with some probability depending on weights.

Definition 2.3.1. Let w = (wi)i∈[n] the set of weights assigned to each vertex
i ∈ [n], with wi g 0, and define the edge probability between two vertices
i ̸= j as

pGRGij = ϕ(wi, wj) =
wiwj

ln + wiwj
, ln =

∑

i∈[n]

wi. (2.3)

The resulting random graph is called Generalized random graph with weights
w (GRG(w)) and denoted with G(n,w) with law Pn,w.

In general there are different choices for the function ϕ; we will focus the
study to the case ϕ(wi, wj) = min{wiwj

ln
, 1} making the assumption

max
i∈[n]

w2
i < ln

so that we can avoid the minimum in the definition and work in the so called
Chung-Lu model,where

pij =
wiwj
ln

. (2.4)

Observe that associating a different type to each vertex and calibrating the
kernel values depending on the weights, one can formulate equivalently the
GRG in the IRG settings with countable infinite many types: explicitly,
choose T = [0, 1] as set of types and assign to each vertex i ∈ [n] the type
t(i) = i

n
, set the edge probability regulated by a kernel with

pij =
K( i

n
, j
n
)

n+K( i
n
, j
n
)

and K( i
n
, j
n
) =

wiwjn

ln
, for n→ ∞.

Definition 2.3.2. Define the empirical distribution function to be the dis-
tribution function of the weight of a vertex chosen uniformly at random
Wn := wU ,

Fn(x) =
1

n

∑

i∈[n]

1{wifx} (2.5)
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which can be itself random in the case of random weights, where the source
of randomness comes both from the uniform random variable U on [n] and
the weights distribution w.

In the Chung-Lu model the weight of a vertex coincides asymptotically
with its expected degree, indeed

E(d(i)) =
∑

j∈[n]

E(1{i∼j}) =
∑

j

wiwj
ln

=
wi
ln

∑

j

wj = wi;

in the analogy with the IRG seen above, this coincide with saying that
K( i

n
, j
n
) =

wiwj

E(Wn)
, and the model goes in fact also by the name “random

graph with prescribed expected degrees”.
In order to have convergence of the degree sequence in GRG(w) we will

require that there exist a random variable W with distribution F such that
the following regularity conditions hold:

Weak convergence. In case of deterministic weights

(a) Wn
d−−−−→ W (2.6)

while in case of random weights

(a∗) Pn(Wn f x)
P−−−−→ P(W f x) = F (x) (2.7)

where Pn denotes the conditional probability given the weights.
This is equivalent to ask, by the definition of convergence in distribu-
tion, that for every x continuity point of F ,

P(Wn f x) → P(W f x)

where again convergence is meant in probability in the case of random
weights.

Convergence of first and second moments. In case of deterministic weights

(b) lim
n→∞

E(Wn) = E(W ) (2.8)

(c) lim
n→∞

E(W 2
n) = E(W 2) (2.9)

while in case of random weights

(b∗) E(Wn)
P−−−−→ E(W ) (2.10)

(c∗) E(W 2
n)

P−−−−→ E(W 2) (2.11)

where En again denotes the expected value given the weights.
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Observe that, if wi are i.i.d random variables, these conditions are automat-
ically verified by the law of large numbers. With this hypothesis, the first
consequence is that GRG is sparse, precisely

E(|E(G(n,w))|) → E(W )n

2

As for IRG with finite number of types, one would expect that the degrees
a vertex chosen uniformly at random has a mixed Poisson distribution, and
indeed in the limit it will converge toward it:

Theorem 2.3.3. In the GRG model G(n,w), let U ∼ Uniform([n]); then

d(U)
d−→ D

where P(D = k) = E(e−W Wk

k!
).

It follows that we can calibrate the weights to make the model scale-free:
indeed, if we ask that

P(W g x) ≈ c · x−(Ä−1), as x→ ∞ (2.12)

then also D follows a power law distribution, since P(D g x) ≈ P(W g x).

Figure 2.1: On the left a Generalized Random graph (Chung-Lu) with power-law exponent
τ = 2.5 consisting of 500 nodes. Node sizes and distance from the center are according to
the weights, in red those in the giant components. On the right, log-log plot of the weight
(blue) and degree (red) sequences.

The role played in ER by the parameter ¼ and in IRG by the norm (or
max eigenvalue) of the matrix of expected offspring ∥TK∥ is, in the GRG
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settings, replaced by the ratio ¿ = E(W 2)
E(W )

. The reason behind this is that, in

the general IRG setting (with an arbitrary separable metric space of types
S with measure µ), the kernel K is a general continuous function S2 → R+,
with norm

∥TK∥ := sup
0<∥f∥f1

{∥TKf∥},

where TKf(x) :=
∫

S
K(x, y)f(y)µ(dy).

In this general settings, for the Chung-Lu model with weight distribution F ,
the kernel is defined as

K(x, y) =
È(x)È(y)

E(W )

where È(x) := (1− F )−1(x). In this case

TKf =

∫

È(x)È(y)f(y)µ(dy)

E(W )

and the supremum is reached precisely in f = È∫
È
= È

E(W )
so that

∥TK∥ =

∫

È(x)È(y)È(y)µ(dy)

E(W )2
=

E(W )E(W 2)

E(W )
=

E(W 2)

E(W )
.

We state now an analogous treshold result for generalized random graphs,
where again the critical value of this ratio is 1:

Theorem 2.3.4. In the GRG(w) model, under the hypothesis 2.6 and 2.8,

with ¿ = E(W 2)
E(W )

, let ·w be the survival probability of a multi type Poisson
branching process with infinite type set w. Then it holds that:

1 for ¿ > 1, the giant component appears and is unique:

Cmax

n

P−−−−→ ·w,
C2
n

P−−−−→ 0

while for ¿ f 1, we are in the subcritical regime and

Cmax

n

P−−−−→ 0

2 for ¿ > 1, conditionally on the event {U1 ´ U2}, it holds that

distG(n,p)(U1, U2)

log n

P−−−−→ 1

log ¿
, (2.13)
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so the small-world property holds in the supercritical regime.
In particular, when E(W 2) = ∞, thus ¿ = ∞ and the left hand side of
(2.13) converges to 0, if we assume (2.12) with 2 < Ä < 3, we have an
ultra small world behaviour:

distG(n,p)(U1, U2)

log log n

P−−−−→ 2

| log(Ä − 2)| (2.14)



Chapter 3

Geometric Inhomogeneous

Random Graphs

In the previous chapter we assigned different types or weights to nodes in
the random graphs, allowing for heterogeneity in order to make them more
adaptable to represent real world networks. One feature that can usually
have relevance in them and which we did not consider so far is the geometric
one, that means if and how the nodes are located in some underlying space,
and in that case how this space and its geometry are defined. One important
consequence of embedding the random graph in a metric space is the increase
of clusters, which makes them more realistic in many contexts. In this chapter
we present what are known as Geometric Inhomogeneous Random Graphs
(GIRG), and then specialize in the most studied one, where the underline
space is a Torus.

3.1 Introducing geometry: small world and hy-

perbolic model

The first model to appear in the literature which considered the presence of
an underlying metric space was the so called ‘small-world model’ [13], where
the graph is some sort of interpolation between a deterministic and a ran-
dom graph, the idea being to start from a given graph with nodes placed on a
one dimensional lattice with a fixed number of edges per node that connects
neighbours (in the underlying metric), and then ‘rewire’ with probability p
each edge, creating shortcuts in the graph, i.e. edges connecting nodes that
are far in the geometric sense. The increasing number of shortcuts (which
depends on how one chooses p) brings after a certain threshold the desired
small-world property, while preserving a sufficiently high level of clustering.
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The model was then improved, considering multidimensional lattice together
with the adjoints of shortcuts instead of rewiring.
However, in all these models, a quantitative feature of the metric was not
taken into account still, indeed only the underlying topology and the prop-
erty of being neighbour in the lattice was considered.
Subsequently, an underlying metric space where edge probabilities depend
explicitly by the distance between node was considered in the so called ‘Hy-
perbolic random graph’, introduced firstly in [2].
In this model, each node is placed u.a.r. in the angular coordinate ¹ inside
the hyperbolic disk of radius R DR and at a distance from the origin r with
density regulated by a parameter ³

f(r) =
³ sinh³R

cosh³R− 1
≈ ³e³(R−r) ∼ e³r

The probability of two nodes i, j ∈ DR, depending on their hyperbolic dis-
tance, is usually defined as

P(i ∼ j) =
1

1 + e
1
2T

(d(i,j)−Ç)

where T is a parameter which, in the limit T → 0, gives us the so called
threshold hyperbolic model, where the connection rule is the simplest one,
i.e. the indicator function on the nodes distance:

P(i ∼ j) = 1{d(i,j)<Ç}

where Ç < 2R is some parameter and for i = (r, ¹) and j = (r′, ¹′),

cosh(d(i, j)) = cosh r cosh r′ − sinh r sinh r′ cos(∆¹),

with ∆¹ = (¹ − ¹′) mod Ã.
The model is proven to have power law degrees and be highly clustered, this
last property following directly from the triangle inequality of the hyperbolic
geometry.

3.2 Geometric model

Aware of the importance of geometry in the structure of graphs to reflect
in a more realistic way real world networks, numerous models have been
proposed, most of all possessing the property of being highly clustered. In
general, what is needed to build such models is an underlying metric space
together with a weight assigned to each nodes (and hence in each position,
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balancing the mass distribution in the space where the graphs lies). This
leads to a more general definition of what comes with the name of Geometric
Inhomogeneous Random Graphs (GIRG) [3], for which we will restrict our
dissertation to the case in which the underlying space is a torus:

Definition 3.2.1. Fix a dimension d g 1 and consider as ground space the d-
dimensional torus Td = Rd/Zd, (interpretable also as the d-dimensional cube
[0, 1]d where opposite boundaries are identified), together with the infinity
distance

∥x− y∥ = max
1fifd

|xi − yi|C , x, y ∈ Td

where |xi − yi|C = min{|xi − yi|, 1− |xi − yi|}.
For each vertex v ∈ [n] there is associated, in addition to a weight wv as

in the Chung-Lu model, a position xv ∈ Td chosen uniformly at random and
independently between nodes. The edge probability between two vertices
u, v will depend now both on weights and positions:

puv = Θ ·min

{

1

∥xu − xv∥³d
·
(

wuwv
ln

)³

, 1

}

. (3.1)

In the limit case ³ = ∞, require additionally that

puv =















Θ(1), if ∥xu − xv∥ f O
(

(

wuwv

ln

) 1
d

)

0, if ∥xu − xv∥ g Ω

(

(

wuwv

ln

) 1
d

) (3.2)

where the constants hidden by O and Ω do not have to match, so that there

can be an interval

[

c1 ·
(

wuwv

ln

)1/d

, c2 ·
(

wuwv

ln

)1/d
]

for ∥xu−xv∥ in which puv

is arbitrary.
A vertex v will be denoted by its position-weight coordinates: v = (xv, wv).
It will be assumed that weights wi are i.i.d following power-law distribution,
in particular we ask that

1− Fn(x) = P(Wn g x) =
1

n

∑

i∈[n]

1{wigx} ∼ x1−´ (3.3)

for some ´ > 2 and that the minimum weight is constant, meaning

wmin := min
v∈[n]

wv = Ω(1)
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The resulting random graph G(n, d, ³, ´, w, x) has free parameters d, ³ ∈
(1,∞], ´ and the average weight E(W ) (at which E(Wn) converges by hy-
pothesis, as seen for the CL model in case of i.i.d. weights). In the following
it will be assumed, as commonly done, 2 < ´ < 3.
It can be shown [4] that the model is whp scale-free, having degree sequence

Figure 3.1: Chung-Lu (left) and geometric random graph (right) with the same power law
on the weights, in particular τ = 2.5. The introduction of geometry in the formula ruling
the edge probabilities cause the clustering coefficient to be significantly different between
the two models, as one can see even already here with n = 1000 nodes

following a power law, which is not surprising since we asked the same for
the weights, as in the CL model. Even more foreseeable is that, as shown
in the following lemma, marginal edge probabilities fixing one position are
approximately Chung-Lu probabilities:

Lemma 3.2.2. Let xv ∈ Td and wv g wmin being fixed. Then for v =
(xv, wv), it holds that E(d(v)) = Θ(wv) and for u = (xu, wu) with fixed weight
and random position, the probability that v, u are neighbours is

P(u ∼ v|xv, wv, wu) = Θ(min{1, wvwu
ln

}) (3.4)

In the geometric model, it is useful to have a bound on the number of
neighbours of a given vertex whose positions lie in a prescribed region. The
following lemma, which will be crucial in the study of the percolation on this
random graph, gives a bound for balls:
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Lemma 3.2.3. Let m = min{³, ´ − 1}, let B = B̄r(0) ¢ Td the closed ball
of radius r centered at 0 with volume ¿ = nVol(B). Then, for any constant
C > 0 and any vertex with given weight and position v = (xv, wv), denoting
with µv =: E(|Γ(v) ∩B)|), it holds that

µv = O(¿) ·
{

min
{

wv

¿
, 1
}

if ∥xv∥ f Cr

min
{(

wv

∥xv∥dn

)m

, 1
}

if ∥xv∥ g Cr

As done for the previous models presented, we highlight in the next the-
orem the main features concerning connection, size and distances in the ge-
ometric model, and present later a proof of the first fact for the threshold
geometric model.

Theorem 3.2.4. Let G the GIRG described above, then it will holds that:

1. whp |Cmax| ∈ Θ(n), |C2| ∈ O(log n)

2. whp diam(Cmax) ∼ (log(n))O(1)

3. Conditionally on the event {U1 ´ U2}, we are (as in CL model with
infinite variance of the weights) in an ultra small-world:

dist(U1, U2)

log log n

P−−−−→ 2± O(1)

| log(´ − 2)|
and, moreover, the convergence is also in expectation.

4. whp CCG = Θ(1)

3.3 Giant component in the threshold GIRG

We present the proof of the existence of of the giant component in the thresh-
old model [5], i.e. when ³ = ∞ and the edge probability is the indicator
function on the relation between weight and position:

puv =

{

1 if ∥xu − xv∥ f
(

¼wuwv

n

)
1
d

0 if ∥xu − xv∥ >
(

¼wuwv

n

)
1
d

(3.5)

The parameters d, Ä, ¼ are constant not depending on n. We also assume
that the nodes positions is sampled via a Poisson point process (instead of a
uniform distribution of positions in the torus), which has the advantage that
the number of vertices in disjoint regions is independent. This approach will
be used also in the next section for the formulation of the percolation process
on a GIRG.
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Proof of 1. The strategy is the following: first observe that, with these as-
sumptions, the subgraph induced by V

g
√

n
¼

is a clique, i.e. it’s complete,

call it the core of G. The proof amount to show then that every non-core
vertex has a path into the core with non-vanishing probability, thus leading
to a linear number (in expectation) of vertices in the component ‘generated’
by the core. Once this is proven, a Chernoff bound will be applied to show
concentration around the mean; for this we subdivide the ground space in
disjoint cells and show that a constant fraction of this cells possess a path to
the core that remains within the cells (and thus are pairwise independent):
for this the key point will be then to choose the correct size of the cells, i.e.
small enough to have independence of the path and big enough to have a
sufficiently large probability of this path to exists.

Step 1.
Define Vl := Vgel/2 ∩ Vfel+1/2 to be the l-th layer. Then it holds that

P(v ∈ Vl) = Θ(P(wv g el/2)) = Θ(e−l(Ä−1)/2). (3.6)

Call a sequence (v0, . . . , vk) a layer path if, for every i, {vi, vi+1} ∈ E(G) and
if vi ∈ Vl then vi+1 ∈ Vl+1.

Lemma 3.3.1. For every v not in the core, P(there exists a layer path from
v to the core) = Ω(1).

Proof. Let u ∈ Vl. Then for a u′ ∈ Vl+1 we have wu, wu′ g w = el/2, and the
edge {u, u′} exists if

dist(u, u′) f
(

¼w2

n

)
1
d

= ¼
1
d

(

el

n

)
1
d

:= ∆l. (3.7)

By independence between weights and positions, the probability that such u′

exists is then

P(u′ ∈ Vl+1)P(dist(u, u
′) f ∆l) = Θ(e−l(Ä−1)/2Θ(∆d

l ) = Θ(
el(3−Ä)/2

n
). (3.8)

Consider the random variable that counts the number of such vertices Xl :=
|{u′ : u′ ∈ Vl+1, dist(u, u

′) f ∆l}|. It has mean Θ
(

el(3−Ä)/2
)

and, since it is
Poisson distributed,

P(Xl > 0) = 1− P(Xl = 0) = 1− e−E(Xl) = 1− exp(−Θ(el(3−Ä)/2)) > 0

Consider now the events Al = {Xl > 0} for l = 0, . . . , +log(n/¼),, where the
latter is the core layer.
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We have that the existence of a layer path from any vertex in layer 0 to the
core layer has probability

P





+log(n/¼),
⋂

l=0

Al



 = P

(

c−1
⋂

l=0

Al

)

· P





+log(n/¼),
⋂

l=c

Al





=P

(

c−1
⋂

l=0

Al

)

·



1− P





+log(n/¼),
⋃

l=c

Acl







 g P

(

c−1
⋂

l=0

Al

)

·



1−
+log(n/¼),
∑

l=c

(1− P(Al)





=P

(

c−1
⋂

l=0

Al

)

·



1−
+log(n/¼),
∑

l=c

exp(−Θ(el(3−Ä)/2)



 g K · (1− ϵ) > 0

since the series in the second term converges and so we can lower bound
this quantity by a constant positive factor (being the product of a constant
number c of positive terms) times a factor bigger than 1− ϵ, for every ϵ > 0.
Thus the existence of a layer path has non vanishing probability for every
non-core vertex (clearly the constant c determined for layer 0 makes the
inequality holding for any higher layer) and we proved our claim.

The consequence of this is that

E(|Cmax|) g E(|{v : vhas a layer path to the core|) = Θ(n) (3.9)

and we want to apply a concentration inequality to |Cmax| around its mean.

Step 2.
In order to do that, we will divide the ground space in different subregion
and construct paths to the core that are enough independent (restricted to
a single cell) and at the same time enough likeable to exist.
For a weight w and a region of the underlying metric space C, denote with

Vgw,C := {v : xv ∈ C,wv g w}

Lemma 3.3.2. Let C a d-dimensional cube of side length ∆, called cell, and
divide Td in ∆-cells. Then

P(G(Vgw,C) is connected) g 1− (2∆)d

¼w2
exp(−¼w

3−Ä

2d
)n (3.10)

Proof. Subdivide each cell into subcells Cw of size ∆w = 1
2

(

¼w2

n

)1/d

, so that

any two vertices of weight greater than w in adjacent subcells are adjacent
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themselves. Again, weight and position are independent features, and point
positions follows a Poisson distribution, so for a random vertex v

P(xv ∈ Cw, wv g w) = ∆d
w · w−(Ä−1) =

¼w3−Ä

2dn

and thus

E(|Vgw,Cw |) = P(|Vgw,Cw | = 0) =
¼w3−Ä

2d
.

Now since there are R = (+ ∆
∆w

,)d subcells Cw fully contained in each cell C,
the probability that the subgraph induced by Vgw,C is connected is greater
or equal to the probability that each of this subcells C1

w, . . . , C
R
w contains at

least one heavy vertex, which is

P(|Vgw,Ci
w
| > 0, ∀i = 1, . . . , R) =

(

P(|Vgw,Ci
w
| = 0)

)R
(3.11)

g1−R · P(|Vgw,Ci
w
| = 0) = 1− (+ ∆

∆w

,)d · e−¼w3−Ä

2d (3.12)

g1−∆d · 2
dn

¼w2
· e−¼w3−Ä

2d = 1− (2∆)d

¼w2
exp(−¼w

3−Ä

2d
)n. (3.13)

We call a cell ‘good’ if a linear number of its vertices has a path within
the cell that connect them to the core. The following lemma will show that
cells are good independently and with non-vanishing probability, so we are
basically in a situation of an independent Bernoulli coin flip for each cell and
in the hypothesis of Chernoff inequality to be applied.

Lemma 3.3.3. Let ŵ weight, C cell or size ∆ with µ = ∆dn = E(|{v : xv ∈
C}|). Assume that

1. µ g ŵÄ−1

2. µ ∈ É
(

(log n)
2

3−Ä (log log n)d
)

3. ŵ ∈ É
(

(log n)
1

3−Ä

)

Then with non vanishing probability the graph induced by VC contains a vertex
of weight g ŵ whose connected component has size Θ(µ).



3.3. GIANT COMPONENT IN THE THRESHOLD GIRG 45

Proof. (i) Observe first that, since the random variable |Cgŵ,C | is Poisson
distributed and by the first hypothesis it has mean

E(|Cgŵ,C |) = µŵ1−Ä g 1, (3.14)

it holds that P(|Cgŵ,C | g 1) = Ω(1).

Let w̄ := (2
d

¼
log n)1/3−Ä . By hypothesis 3, w̄ f ŵ and, by Lemma 3.3.2

P(G(Vgw̄,C) is connected) g 1− (2∆)d

¼w̄2
−−−→
n→∞

1. (3.15)

Take now v with wv < w̄ and xv ∈ C. By Lemma 3.3.1, there exists a layer
path L = {v0, · · · , vk(w̄)} from v to layer w̄ with probability Ω(1). By the
definition of w̄, the length k(w̄) of L is O(log log n). Since the largest weight
in L is O(w̄) and thus for all i

dist(vi, vi+1) ∈ O
(

w̄2

n
)1/d
)

, (3.16)

the total (geometric) distance made in L satisfies

∑

vj∈L

dist(vj, vj+1) =O
(

(
w̄2

n
)1/d log log n

)

(3.17)

=O





(

(log n)
2

3−Ä (log log n)d

n

) 1
d



 < ∆ (3.18)

where the last inequality follows directly by the second hypothesis.
This means that, if we shrink uniformly in all dimensions the size of C to a
region C ′ with side length ∆′ = s∆, with s f 1, we will have µ′ = n(∆′)d =
Θ(µ) and with the property that every layer path to layer w̄ that starts in
C ′ will remain in C.
(ii) We consider now the vertices in C ′ that are in the layer 0, since for them
the event of having a layer path to w̄ is independent of the number of such
0-layer vertices.
The number of vertices |V0,C′ | in the first layer with position in C ′ is Poisson
distributed with mean Θ(µ) and thus

P(∃v ∈ V0,C′) > 0. (3.19)

Define now X the random variable of the portion of vertices in the first layer
that have a layer path to w̄:

X =
|{v : v ∈ V0, ∄ layer path from v to layer w̄}|

|{v : v ∈ V0}|
∈ [0, 1]. (3.20)
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By Lemma 3.3.1, the probability for a random vertex in 0-layer to possess
a layer path is at least 1 − p, for some constant p < 1, which means that
E(X) f p.
By the Markov inequality, P(X < c) g 1 − p

c
, so choosing the constant

c ∈ (p, 1) gives us that with positive non vanishing probability at least a
fraction of 1− c vertices has a layer path to layer w̄.
(iii) We have that for the four events

A1 := {|Vgŵ,C | > 0}
A2 := {|V0,C′ | = Θ(µ)}
A3 := {|{v ∈ V0,C′ : ∃ layer path from v to layer w̄}| = Θ(µ)}
A4 := {G(Vgw̄) is connected}

it holds that P(A1) = P(A2) = P(A3) = Ω(1) and A1 §§ A2 §§ A3, so that
the event A := ‘The cell C contains a ŵ-weight vertex and a linear part of its
vertices has a path to layer w̄’ has probability Ω(1). By Lemma 3.3.2 P(A4)
happens asymptotically almost surely, so

P(A ∩A4) = P(A) + P(A4)− P(A ∪A4) = Ω(1),

i.e., since a ŵ-weighted vertex vŵ is connected to any other w̄-weight vertex
inside the cell C, the connected component of vŵ inside C contains a linear
fraction of the vertices in the cell with non vanishing probability.

Step 3.
Choose ŵ =

√

n
¼

the core weight and the cell size ∆ so that

µ = E(VC) = n∆d = ŵÄ−1.

The total number of cell is then

r = Θ

(

1

∆d

)

= Θ
(

n
3−Ä
2

)

and we are in the hypothesis of previous Lemma, so the graph induced in
each cell contains a core vertex whose connected component has size Θ(µ)
with non vanishing probability. We are then in the situation of a independent
coin flip for each cell, where the probability of success to satisfy Lemma 3.3.3
is strictly positive.
LetX1, . . . , Xr the independent random variables associated to cells C1, . . . , Cr
and representing these coin flips, with P(Xi = 1) = 1 − P(Xi = 0) = pi g
p > 0 for all i is the probability that the size of the connected component of
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cell Ci is indeed Θ(µ). Define X =
∑

iXi and note that E(X) = Θ(r). By
Chernoff bound 6.3, it follows that, for every 0 < ¶ < 1,

P(X f (1− ¶)E(X)) f e−
E(X)¶2

2 (3.21)

i.e.

P(X f (1− ¶)Θ(r)) f e−
Θ(r)¶2

2 . (3.22)

For ¶ → 1, this finally leads to

P(X ∈ O(r)) f e−Θ(r) −−−→
n→∞

0, (3.23)

that is, by the definition of r, with high probability X ∈ Ω(n
3−Ä
2 ).

So what has been proved is that w.h.p. Ω(n
3−Ä
2 ) cell will possess a core vertex

having its connected component of size Ω(n
Ä−1
2 ). Since all this components

are connected together via the edge between their core vertices, they form
w.h.p. a global connected component of size

|Cmax| = Ω(n
3−Ä
2 )Ω(n

Ä−1
2 ) = Ω(n). (3.24)
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Chapter 4

Bootstrap percolation

Percolation serves as a framework for simulating random damage inflicted
upon a network. This process acts globally on the graph, where typically a
random set of edges and/or nodes is removed from the graph. It stands out as
one of the most straightforward models capable of illustrating a phase tran-
sition phenomenon: as the network experiences increasingly severe damage,
it fractures into numerous small connected components. Conversely, when
the damage is minimal, a single large component persists. It can be studied
both on deterministic and random graphs.
Bootstrap percolation on the other hand is, in a sense, a process acting locally,
where its evolution is determined by the neighbourhood structure of nodes in
the graph. It’s a powerful theoretical framework that has gained significant
attention in the study of graph theory and complex networks. It provides
a simple yet effective mechanism to model various dynamic processes, such
as the spread of information, influence, or disease within a network. This
concept was first introduced by Chalupa, Leath, and Reich in 1979 in the
context of magnetic disordered systems, where in their study the underlying
structure was a particularly simple type of graph, namely a lattice, and since
then, it has been extensively studied due to its applicability and intriguing
properties.
In this chapter, we will introduce the concept of bootstrap percolation ap-
plied to graphs. We will provide a comprehensive definition of this process
and offer an overview of the significant findings related to its application in
random graph models. Specifically, we will compare the threshold results ob-
tained for various models presented in this thesis, elucidating the similarities
and differences between them.
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4.1 Motivation and definition of the model

A bootstrap percolation process with activation threshold an integer r g 2
on a graph G = G(V,E) is a deterministic process evolving in rounds. Every
vertex can have two status: active or inactive, and the process is initialized
by the definition of a (random) subset V 0 ¢ V in which every vertex is
activated, whereas every other vertex remains inactive. Subsequently, in
each subsequent round, if an inactive vertex has at least r of its neighbours
activated, then it also becomes active and remains so forever:

V t+1 = V t ∪ {v ∈ V : |Γ(v) ∩ V t| g r}

The process stops when no more vertex become active between two subse-
quent rounds, and the main goal is to find the dependence from both the
parameters of the random graph model and the percolation process of the
initial set V 0 and the final set of active node V ∞.
The relation between the initial and final infected sets A0 and A∞ is the
central problem to be typically studied, as well as the number of rounds Ä
needed for the process to stabilize

Ä := inf{t g 1 : V t = V t−1}

or to expand in the (almost) totality of the graph, which in case of random
graphs is considered to be a linear part of it, as the number of the total nodes
tends to infinity (as done when analyzing the rise of the giant component).
Denoting with a = a(n) = |A0| and observing that the event ‘for the process
starting from A0 it holds that |A∞| > c’ is an increasing event of Gn, these
leads to look for a threshold function for a.

Clearly the evolution of the process in any model depends sensitively
on its parameters: if we consider for example the Erdős-Renyi model with
p = O(n−2, the resulting graph has w.h.p. no edges and then, whatever the
activation parameter r is, in the limit it will always hold that A0 = A∞. In
[10] the authors discuss thresholds for percolation in G(n, p) reformulating
the process considering the effect of one infected vertex at each time and
an auxiliar ‘marking’ process to keep track of vertices that will eventually
become infected. Their study is focused both on thresholds for p given the
size a and viceversa, i.e. given specific windows for the function p(n) and
so a prescribed structure of the graph, analyze constraints for a. One of the
main results is that, for r g 2 and

1

n
j p(n) j 1

n1/r
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the model exhibits a sharp phase transition with respect to a threshold ac =
ac(r, n, p(n)) , where the final size infection with high probability is either
n − O(n) or it is O(n); in particular, when |A0| = O(n), w.h.p. there is no
evolution of the process, and instead one needs positive density (|A0| = Ω(n))
of the initial infection in order to spread effectively. This analysis in the
subcritical case, meaning under the threshold ac, is then deepened to prove
that the final size is near in the limit to a normal distribution.

4.2 Known results for IRG

We switch framework to highlight some result on bootstrap percolation per-
formed on a inhomogeneous random graph with power-law degrees, in partic-
ular the Chung-Lu model. This brief summary will also serve as an example
to highlight similarities and differences with the geometric model introduced
in section 3, the latter being based on the former.
The behaviour here is in glaring contrast with the ER model briefly discussed
above: now even with a sublinear number of initially activated vertices the
process can explode and propagate to a linear part of the graph. Under
the usual hypothesis of the exponent in (2.12) Ä ∈ (2, 3) and weights to be
bounded below by a positive constant and above by the function n· , with
· f 1

1−Ä
, the key point in the proof, similarly to the proof of the existence

of the giant component seen in the previous chapter and that will be again
essential in the next section, is the presence of high weight vertices, forming
a fairly dense graph and guaranteeing the spread of the infection. We remark
that for Ä > 3 this is not true anymore and one find a similar situation as of
ER
To achieve this fact, authors in [8] define, for a function f : N → R+, the
f -kernel of the graph as

Vf := {v ∈ V : wv g f(n)}

and consider the subgraph induced by this set of vertices. The goal is to find
an f = É(1) that grows fast enough in order to activate a large part of the
graph once Vf is infected, and at the same time grows slow enough in order
to have G(Vf ) dense enough in the graph.
In the subcritical case (where such an f is not achievable), there will be no
evolution at all: with high probability, V ∞ = V 0. This is done showing that
under the threshold the expected number of vertices with at least r neighbour
in V 0 is in O(1) and applying first moment argument.
In the supercritical case, there exists such a function f(n) = f(n; Ä, r, a(n)),
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which must be in O(n·) (otherwise Vf = ∅) and is, most important, shown
to be such that

a(n) j |Vf |.
One can construct a coupling between the induced subgraph G(Vf ), where

the probability of its edges is by definition always larger than pf :=
f2∑
w
, and

the Erdős-Renyi random graph

G(|Vf |, pf ).

Thus, one may apply results obtained in [10] for the percolation in the ER
model to get that w.h.p. almost all the high weight vertices become infected;
observe that this comes from a sublinear initial infection.
The second step is done by splitting the vertex set into layer depending on
weights in a decreasing way starting from layer Vf , and proving by induction
that the infection spread from one layer to the adjacent one w.h.p. up to a
constant layer VgC : specifically, it is shown that

Proposition 4.2.1. There exist ¶ = ¶(Ä) such that, for every ϵ f ¶ there
exist a constant C = C(ϵ, Ä, r, ) > 0 with the property that, if at least a
(1 − ϵ)|Vf | part of the vertices in Vf becomes infected, then w.h.p. at least
(1− ϵ)|VgC | vertices of VgC will become infected.

The conclusion follows since clearly |VgC | = Θ(n).
These results are then enriched in [11] by the same authors to show a law
of large number for the size of V ∞ (in more general settings) in the linear
case of initial infection size, i.e. when every vertex in the graph is initially
infected independently with a fixed constant probability p; they also refine
the supercritical-sublinear case (that in which a(n) = O(n) ∩ É(ac(n))) to
show that the size of the final set of infected nodes does not depend on a(n).

Bootstrap percolation has been studied intensively in a wide range of
graphs based on its application, from fairly simple structures, as lattices in
statistical physics, to more complex ones, such as random graphs incorporat-
ing geometry, the topic of the next section.

4.3 Bootstrap percolation on GIRG

In the following we will study the spread of a disease in a population through
bootstrap percolation on a geometric graph [1]; the underlying geometry, in
addition to determining the graph structure as discussed in the previous chap-
ter, enables us to define the epicenter of the infection in a localized manner:
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percolation in previous model started with the activation of a random set of
nodes, that could be far apart (in an edge-distance sense) in the graph, while
here we will restrict the initial activation to a predefined region in the torus,
leading to a more realistic representation of the phenomenon .
We will be interested in finding thresholds for the behaviour of the process,
like explosion (infection of an infinite number of nodes in finite time in the
case of a infinite graph, or a Θ(n) number of nodes in case of graph of size
n) and the speed of the diffusion in the case of global spread.
With an abuse of notation, for V ′ ¢ V and A ¢ Td, we denote with

V ′ ∩ A = {v ∈ V ′ : xv ∈ A}

and, in line with the previous chapter, Vgw,A = {v ∈ V : wv g w, xv ∈ A}.
The model is the GIRG introduced before, with the slight difference that
nodes and positions of the graphs are generated by a homogeneous Poisson
point process on the torus with intensity n ∈ N.
Formally, for any Lebesgue-measurable subset A of Td, we assume that

|V ∩ A| ∼ Poi(nVol(A)) (4.1)

and that |V ∩ A| §§ |V ∩B| for any disjoint measurable subsets A,B.
Observe that in this case the total number of vertices is also random, being
itself Poisson distributed with mean n. One consequence is that, given a
random vertex v = (xv, xw), conditioning on xv ∈ A, then xv is uniformly
distributed in A. In this framework, conditioning on the Poisson point pro-
cess, an edge between two distinct vertices (xu, wu) and (xv, wv) will appear
with probability (3.1). Having fixed the underlying structure, we define ob-
jects and fix notations that will be used in the description of the process on
GIRG:

Definition 4.3.1. Fix a constant threshold k g 2, the initial infection rate
Ä f 1 and a starting region B0 ¢ Td, assumed to be a ball centered in 0.
Define V 0 the set of infected at time 0 selecting all vertices in V ∩ B0 inde-
pendently with probability Ä, and for each t ∈ N, each vertices with at least
k infected neighbours will be infected:

V t+1 := V t ∪ {v ∈ V : |Γ(v) ∩ V t| g k},

where we allow t ∈ R meaning in that case +t,.

Call V ∞ =
⋃

t∈N V
t and denote the infection time of a vertex v with

Lv := inf{t g 0 : v ∈ Vt}
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and Lv = ∞ if the infimum doesn’t exist. Finally, call ¿ = ¿(n) = n|Vol(B0)|
the expected number of vertices initially infected.

The following theorem determines a threshold for the outcome of the per-
colation process, showing a phase transition from a subcritical regime where
the spread of the disease ends immediately to the supercritical regime where,
roughly speaking, all vertices will be infected, passing through a critical win-
dow in which both these outcomes are possible. It also establish a time of
explosion for the process in the subcritical regime, i.e. the step at which a
linear part of the nodes become infected whp:

Theorem 4.3.2. In the above settings, with constants parameters ³, Ä, wmin, d
and k, for the bootstrap percolation on a GIRGn with initial infection rate
Ä = Ä(n) and initial infection region B0(n) with volume ¿(n) = É(1), call

Äc(n) = ¿−
1

Ä−1 . (4.2)

Then it holds that

(i) If Ä = O(Äc) then whp |V ∞| = V0

(ii) If Ä = Θ(Äc) then both |V ∞| = Θ(n) and |V ∞| = V 0 have non vanish-
ing probabilities

(iii) If Ä = É(Äc) then whp |V ∞| = Θ(n)

In particular, defining

i∞ :=
log log¿ n+ log log n

| log(Ä − 2)| ,

it holds that
|V (1+¶)i∞ | = Ω(n) (4.3)

whp in the case (iii) and with probability Ω(1) in the critical regime.

Proof (sketch). In the subcritical regime (i), the percolation process ends
immediately, since whp it holds that |V 1| = |V 0|.
Indeed, since by construction and Lemma 6.1.7, the random variable |Γ(v)∩
V 0| (the number of neighbours of v that are activated at the beginning of
the process) is Poisson distributed with mean Äµv, we have that

P(|Γ(v) ∩ V0| g k) = O(1)min{1, (Äµv)k}.
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Now we can bound the number of vertices that become active at first round
|V =1| := |V 1 \V 0| with the number of vertices that has at least k neighbours
in V0. Split them in those that lies inside the ball 2B0 and call this subset
V =1
in , and those outside it, V =1

out .
Applying lemma 3.2.3 and using the hypothesis Ä = O(¿−1/(Ä−1)), we can
bound E(|V =1

in |) = O(1); for E(|V =1
out |) we only need that Ä = O(Äc) to deduce

E(|V =1
out |) = ¿−(Ä−2)(1−1/m)

which, since m > 1, is also O(1). Thus E(|V =1|) = O(1) and so by Markov
inequality, no vertices will be activated in round 1 whp.

In the critical regime (ii), the bound on E(|V =1
out |) still holds since only

Ä = O(Äc) was sufficient. To bound E(|V =1
in |), let À > 0 constant to be

determined and we further divide vertices in low-weighted Vfw0À and heavy-
weighted Vgw0À, where w0 =: ¿1/(Ä−1).
Again by 6.1.7, |Vgw0À ∩ 2B0| is Poisson distributed with mean O(¿(Àw0)

1−Ä ) =
O(1), so the event A = {|Vgw0À ∩ 2B0| = 0} occurs with Ω(1) probability,
thus it is enough to prove that

P(V =1
fw0À

∩ 2B0 = V 0|A)

occurs with probability Ω(1).
Now by Lemma 6.1.7 and Lemma 3.2.2

P(|Γ(v) ∩ V0| g k | A) = O((Äwv)
k), (4.4)

which implies E
[∣

∣V =1
fÀw0

∩ 2B0

∣

∣ | A
]

= O(Àk+1−Ä ) f 1
2

for small enough À,

which in the end implies that
∣

∣V =1
fÀw0

∩ 2B0

∣

∣ = 0 with probability at least 1/2
(since it has values in N0). Thus with positive probability the process ends
at the first round, as in the subcritical case.

To see that the process ‘survives’ with positive probability (at least until
round 1), consider the random variable |Vgw ∩ B0|, which is Poisson with
mean Θ(¿w1−Ä

0 ) = Θ(1), thus with probability Ω(1) there exist k vertices
v1, . . . , vk with wi g w0 and xi ∈ B0. Consider the balls Bi centered in vi of
volume ¿1/(Ä−1)

n
, and call

Ci = Bi ∩ B0.

Since |V 0 ∩ Ci| ∼ Poi(ÄnVol(Ci)), for every i the event

Ci = {|V 0 ∩ Ci| g k}

has probability Ω(1). Since the events Ci are either independent or positively
related, i.e.

P(Ci|Ci1 , . . . , Cis) g P(Ci), ∀i, i1, . . . is f k
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and so P(Ci, ∀i) g
∏k

i=1 P(Ci) = Ω(1).

Condition now on weights and positions of vi and on Ci, and fix u
(i)
j , for

j = 1 . . . k the existing vertices in V 0 ∩ Ci, for every i. Then conditioned on
weights and position of all the uij, we have that

P(vi ∼ u
(i)
j ) = Ω

(

min
{

1,
( w0

¿1/(Ä−1)

)³})

= Ω(1)

and so the probability that all the edges {u(i)j ∼ vi}i,j appear has still prob-
ability Ω(1), due to independence of the edges given weights and positions.
This means that V 1 ∩ B0 contains at least k heavy-weighted vertices with
probability Ω(1).

Now, if there are at least k activated vertices in the first round (so with
probability Ω(1) in the critical regime) or if Ä = Θ(Äc) (supercritical regime),
the infection starts spreading; in the following we summarize its evolution,
whose outcome and speed is stated in 4.3.
Define · = 1

Ä−2
> 1 and let 0 < ϵ < · − 1. For ¸ = O(ϵ) and

¿i = ¿(·−ϵ)
i

.

let wi,ϵ = wi,l(ϵ) = ¿
(·−ϵ)−l

Ä−1+¸

i and for all i > 0 the increasing sequence of nested
balls Bi = Bi(ϵ) centered in 0 and with volume ¿i

n
. The key idea is that the

infection spreads in two ways:

• from heavy vertices in one region to heavy vertices in the next region,
whose volume grows exponentially fast: at time i, a a big portion
of Vgwi,Bi

becomes infected w.h.p and is responsible, in the following
rounds, of the infection of Vgwi+1,Bi+1

. It can be shown that w.h.p. and
for all i every sufficiently heavy vertex of Bi will be infected within the
next three rounds, i.e. the events

Hi := {∀u ∈ Bi ∩ Vgwi
, u ∈ V i+3} (4.5)

occur with high probability. This ensures that the infection spreads
and eventually reaches the boundaries of Td, at least for enough heavy
vertices.

• from ‘low’ weight vertices to nearby low weight vertices: once ensured
the ‘heavy spread’ at step i+3 in the whole ball i, it can be shown that
all vertices in Bi with weight larger thatn wi,l will become infected in
the next l rounds with ‘large enough’ probability Ω(1).



4.3. BOOTSTRAP PERCOLATION ON GIRG 57

The key point in the second step, which is the reason why in the end a linear
part of the nodes will be infected, is the usage of a function that regulates the
relation between weights and distance in any ball in the correct way. Select
i and l such that i+ l f (1+ ϵ)Bi = Td and wi,l = O(1), one can then choose
h ∈ É(1) with log log h ∈ O(log log n) such that

P(v ∈ V j|wv g wh) = 1− h−Ω(1) (4.6)

with wh = h
1

´−1+¸ and j = (1 + ϵ/2)i∞.
Decompose now the tours into balls Q1, . . . Qs of volume Θ(h

n
), with s =

Θ(n
h
), and divide them into ‘good’ if at round j half of vertices in Q ∩ Vgwh

are infected, ‘bad’ otherwise; let XÃ the Bernoulli random variable associated
to QÃ. with XÃ = 1 if QÃ is good. By (4.6), the expected fraction of vertices
still inactive at round j in Q∩Vgwh

is h−Ω(1) = O(1), so by Markov inequality
the probability that a ball is bad is O(1). Then in expectation a O(1) fraction
of the balls is bad, so again by Markov

P(
∑

Ãfs

1{XÃ=0} g
s

2
) f 2

E(
∑

Ãfs 1{XÃ=0})

s
= O(1),

i.e. with high probability at least half of the balls is good. Now for a good
ball Q, consider the percolation process restricted to it (in which only the
interaction of vertices inside Q is taken into account, in particular for the
infection probability), and define finally YQ = |Q∩ VgC ∩ V j+l1 |, for suitable
constant C and l1 = O(log log h) (so that for large n we have j+l1 f (1+ϵ)i∞).
With the same reasoning it can be shown that

P

(

YQ g E(|VgC ∩Q|
2

)

= Ω(1)

Since restricted processes to different QÃs are independent, so in particular
YQÃs

are independent, we can apply Chernoff bound to get that an Ω(1)
fraction of the ball satisfies w.h.p.

YQ g E(|VgC ∩Q|
2

= Ω(h)

and then w.h.p |V j+l1 | = s · Ω(1) · Ω(h) = Ω(sh) = Ω(n), leading us to the
lower bound of the global infection time
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Chapter 5

Numerical simulation

In this chapter we are going to test numerically the results of 4 by con-
cretely performing bootstrap percolation on a geometric inhomogeneous ran-
dom graph.

5.1 Methods and assumption

We will run the simulations with spread parameter k = 2, i.e. the least
possible choice, in order to ‘minimize’ the speed of convergence (expecting
the latter to be decreasing with k) and be able to observe different behaviors
for different scales of the graph size. The power-law exponent of the weights
is set to Ä = 2.9 , the torus is 2-dimensional and for graphical reason, its size
is scaling as the vertex size n, i.e.

Vol(T2) = n

so that it has side length
√
n. From this, it follows that the hypothesis

¿(n) = É(1), i.e. the expected number of vertices in the initial region of
infection B0 going to infinity for n going to infinity, is translated as

E(VB0) = n
Vol(B0)

Vol(T2)
= Vol(B0).

We thus control this quantity through the ‘infection radius’ of the ball B0,
setting it to be

r0 =

(√
n

Ã

)
1
2

,

so that ¿ = r20Ã =
√
n.

With this calibrations, the threshold function will be approximately ¿−1/Ä−1 ≈

59
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Figure 5.1: The number of graphs generated decreases with the graph size (in blue), while
the number of percolation run on each of them increases (in green), in order to keep the
number of simulations almost constant (10000) for each size considered (yellow). Observe
that the number of bootstrap percolations performed starts and remains below the gray
curve, representing the number (at the threshold, in expectation) of possible ways to start
the infection (equal to the binomial coefficient of the expected number of nodes in B0 and
the expected number of initial nodes infected in B0).

n−0.26. We consider graph sizes from 50 to 10000 nodes and for each of these
we perform the simulations by iteration on two parameters, namely the num-
ber of of graph generated l and the number of bootstrap percolations m run
on each of them; we will decrease l with the graph size and increase m with
the graph size for two reasons: first computational (generating a big size
graph takes way more time than performing percolation on it), and second,
because percolating the same graph l times when starting from a small (com-
pared on l) number of expected vertices inside the initial region of activation
will end up in repeating the exact same process approximately

l/

( +¿,
+Ä¿,

)

times, while instead the percolation can start from an enormous combination
of different sets of nodes (even of the same size) when the vertex set is big,
changing completely the outcome of the process.
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Figure 5.2: Plot of the threshold function pc(n) and the initial infection rate ρ(n).

5.2 Subcritical regime

In the subcritical case, to effectively measure the number of percolation that
ends in a ‘negligible’ portion of the graph infected, we consider a variable
that count the number of simulation in which the process ends before round
f(n) = +log(n), (this quantity may be affected in a small decrease in the
graphs with size between powers of 10; the choice of f(n) can be refined, and
a deeper analysis can be done considering together the number of infected
nodes and the average number of steps - both scaled by other functions of
the number of nodes).
We set the infection probability Ä = n−0.4 j Äc. As we can see in the figure,

Figure 5.3: Fraction of the number of percolations that stop almost immediately (before
round +log(n),)

the number of simulations that die almost immediately increase with the
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Figure 5.4: Bootstrap percolation performed on the same graph with 1000 in the subcritical
regime, the black circle represents the initial region of infection: on the left, the 2 initial
nodes activated (in green) trigger no more vertex; on the right, 2 of the initial 3 nodes
activated trigger a new round, starting a waterfall of infection that turn into the activation
of the high-weight vertex (the highly connected node positioned on the top of the torus),
leading to the infection of a big portion of the graph

graph size, except for the oscillation between different power of 10 due to the
function considered as discriminant on the number of rounds; in particular
focusing on sizes 100, 1000, 10000, the ratio is strictly increasing.

Figure 5.5: Average number of infected nodes after round 0, scaled by the number of
nodes of the corresponding graph in which the simulation is performed. The fraction of
the graph infected at the end of the process is strictly decreasing with the graph size.
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Percolating the same graph can lead to opposite outcomes based on the
realization of the starting infection, both in the number of its nodes and their
relative position and weigth: in the figure above, a graphs of size 103, with the
same number of node activated at round 0, the first stopping immediately,
the second reaching a huge fraction of the nodes in the graph.
The average number of infected nodes indeed increases with n for the sizes
we considered as well as the average number of rounds performed by the
infections; nevertheless, the size of infected nodes fraction the number of
total nodes decrease, as shown in the picture.

5.3 Supercritical Regime

In the supercritical regime, we consider the initial activation probability Ä to
be equal to the threshold function multiplied by a function in É(1) ∩ O( 1

Äc
);

precisely, we define

Ä(n) = Äc(n) · (log10(n))
1
2

so that Ä = É(Äc) and also Ä(n) = O(1), in particular Ä ∈ [0, 1] and is
decreasing with the number of nodes (and with the number of expected
vertices in the region of initial infection). To show evidence of the result
of the theorem in the supercritical case, we again measure the fraction of
infected nodes at the end of the percolation process |V∞(n)|

n
: in the figure,

we can observe that this quantity increase with the graph size, and seems
to stabilize around a certain constant C. We then consider the number of

Figure 5.6: Average number of infected nodes after round 0, scaled by the number of
nodes of the corresponding graph in which the simulation is performed. The fraction of
the graph infected at the end of the process increases in the sizes range considered.
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simulations that infect a fixed positive fraction C ∈ [0, 1] of the vertex set
within round i∞(n); we choose C ≈ 0.2, the infimum of the fraction obtained
in the simulation above (see figure). By the theorem, we expect this quantity
to increase toward 1 with the graph size, and indeed it is verified as shown
in the figure below.
The frequency of the rounds performed during the process tends to have

Figure 5.7: Fraction of simulation run that reach a positive portion (C ≈ 1

5
) of the graph

size before the round i∞.

two distinct dense region, one around 0, represented by process that die
immediately, and one near the average; the first peak become more and
more rare and shifted on the right (the probability of no percolation going
to 0 for n increasing), while the second grows. In particular, a ‘desert’ area

Figure 5.8: Frequencies for 100 (left) and 1000 nodes (right)
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Figure 5.9: Frequencies of the number of rounds performed by bootstrap percolation on a
random graph of 100 nodes (upper left), 1000 nodes (upper right) and 10000 nodes (down).
The mass in the supercritical regime is shifted from the left peak to the right one as n
grows, creating an interval of rounds for which almost no process end up with.

between the two appears already for n = 10000, reflecting what is predicted
by the theorem and enclose the meaning of the sharp threshold behavior:
either the process does not start or (almost) complete percolation happens.

Figure 5.10: In this graph with 5000 nodes, repeating the percolation ends up frequently
with the infection of the same nodes as those activated (in red) in the figure, due to a
particular distribution of node positions and edges in and near the initial ball, performing
a small positive number of rounds. As n grows, this situation becomes less and less likely.
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5.4 Conclusions

One interesting part, which we won’t treat here, is to estimate numerically
the dependence of the convergence in probability from the spread coefficient
k: since the result is independent of k, indeed the threshold in (4.2) being
a function of the graph realization (through n, positions and the power-
law exponent of the weight) and the parameter driving the initial infection
(the ball’s volume, specifically the expected number of vertices inside it), the
global infection or the zero infection will happen above and below this thresh-
old respectively with probability tending to 1 for graph size large enough, no
matter how large is k. What instead varies is how fast (for n growing) is
tending to 1.



Chapter 6

Appendix

6.1 Inequalities

Let X a random variable with finite mean µ and variance Ã.

• Markov inequality: if X is non-negative random variable, then

P(X g a) f E(X)

a

• Chebyshev inquality:

P(|X − µ| > a) f Ã2

a2

• Chernoff bound: let Sn =
∑

ifnXi, with Xi i.i.d. ∼ X. From the
Central Limit Theorem we know that

Sn − nµ

Ã
√
n

d−→ N(0, 1)

i.e. Sn ≈ nµ + O(
√
n). Applying the exponential form of Markov

inequality to

P(Sn > an) = P(Sn > µn+ (a− µ)n)

leads to

If a > µ =⇒ P(Sn g an) f e−nI(a)

If a < µ =⇒ P(Sn f an) f e−nI(a)

67
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where I : R → R̄ is the Legendre transform of the logarithm of the
moment generating function of X, i.e.

I(a) = inf
t
{ta− log(E(etX))}

For Sn ∼ Binomial(n, p) and Sn ∼ Poisson(n¼), we have respectively

IBin(p)(a) = a log
p

a
+ (1− a) log

1− p

1− a
(6.1)

IPoi(¼)(a) = ¼− a− a log
¼

a
(6.2)

In the case of distinct independent Bernoulli random variables Xi tak-
ing values in {0, 1} with P(Xi = 1) = pi > 0∀i, denote with m =
E(
∑

Xi), we get the following lower bound for the concentration in-
equality of Sn around its mean: for every 0 < ¶ < 1

P(Sn f (1− ¶)m) f e−
m¶2

2 (6.3)

Theorem 6.1.1. Let Sn a random walk starting from 0 and with i.i.d. integer
increments Xk g −1. For k > 0 let Tk = inf{n : Sn = −k}. Then

∀N ∈ N P(T−k = N) =
k

N
P(SN = −k) (6.4)

Lemma 6.1.2. Let X, Y random variables such that X ∼ Bin(n, p) and
Y |X ∼ Bin(X, q). Then Y ∼ Bin(n, pq).

Lemma 6.1.3. Let Xn ∼ Bin(n, p = p(n)), with limn→∞ n · p = ¼. Then as

n→ ∞, Xn
d−→ Poi(¼)

Definition 6.1.4. Let µ, ¿ probability measures on some space (Ω,F). A
coupling of µ and ¿ is a measure µ defined on the product space (Ω×Ω,F×F)
such that

µ(A× Ω) = µ(A), µ(Ω× A) = ¿(A), ∀A ∈ F

Using coupling we can easily prove that

Lemma 6.1.5. For A ¢ Gn increasing event and p1 f p2, it holds that
Pn,p1(A) f Pn,p2(A)

Proof. Consider i.i.d. uniform random variables (Un
e )e∈En for each edge and,

for any p ∈ [0, 1], the random graphs

G(Un, p) := {e ∈ En : Ue f p}
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Since for all p it holds that

P(G(Un, p) = G) = p|E(G)| · (1− p)(
n
2)−|E(G)| = P(G(n, p) = G)

we defined a coupling of the probability measures (Pn,p)p∈[0,1]. Now if p1 f p2,
we have that

G(n, p1) = G(Un, p1) = {e ∈ En : Ue f p1}
¦{e ∈ En : Ue f p2} = G(Un, p2) = G(n, p2)

Lemma 6.1.6. If X is a power-law exponent random variable with exponent
Ä , then Y = Poi(X) follows a power-law with same exponent.

Lemma 6.1.7. Let ¼ ∈ Rg0 and let X ∼ Poi(¼). Given 0 f q f 1, let Y
be a random variable which conditioned on {X = x}, for any x ∈ N0, is the
sum of x independent Bernoulli random variables with mean q. Then Y is
Poisson distributed with mean q¼.
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