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ABSTRACT 

This thesis examines the development of a tracking system for a lower limb 

exoskeleton using inertial odometry techniques. The system utilizes inertial sensors, 

such as accelerometers and gyroscopes, to monitor and manage the device's 

movements precisely and efficiently. The Robot Operating System (ROS) 

framework has been employed for system integration and management, facilitating 

modular development and communication between various modules. The proposed 

approach aims to improve the stability, precision, and reliability of the exoskeleton 

control system, representing a significant advancement in wearable robotics and 

offering potential applications in motor rehabilitation and recovery. 

 

 

SOMMARIO 

Il presente elaborato esamina lo sviluppo di un sistema di tracciamento per un 

esoscheletro degli arti inferiori utilizzando tecniche di odometria inerziale. Il 

sistema utilizza sensori inerziali, come accelerometri e giroscopi, per monitorare e 

gestire i movimenti del dispositivo in modo preciso ed efficiente. Il framework 

Robot Operating System (ROS) è stato impiegato per l'integrazione e la gestione 

del sistema, facilitando lo sviluppo modulare e la comunicazione tra i vari 

componenti. L'approccio proposto mira a migliorare la stabilità, la precisione e 

l'affidabilità del sistema di controllo dell'esoscheletro, rappresentando un 

significativo progresso nella robotica indossabile e offrendo potenziali applicazioni 

nella riabilitazione e nel recupero motorio. 
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Introduction 
 

1.1 Exoskeletons and LLEs 

An exoskeleton is a wearable robot that enhances, support and assist human limbs 

in daily tasks. It is a device that augments human performance by increasing 

strength, endurance, and other physical capabilities of healthy or able-bodied 

individuals [1].  

Exoskeletons can be classified as either active or passive. Passive devices differ 

from active ones because they do not contain actuators; instead, they rely on natural 

human movement to generate the energy needed to operate the device which is 

achieved through materials, springs, or dampers. This can lead to increased stress 

and fatigue, but also can provide mechanical benefits and protection to the user. An 

active exoskeleton, on the other hand, is powered by actuators such as electric 

motors, pneumatics, hydraulics, or a combination of multiple technologies to 

enhance human strength and reduce the body’s energy consumption [2, 3]. 

Exoskeletons find applications in various fields such as in clinical environments for 

rehabilitation, restoration of muscular weakness and augmentation or enhancement 

of intact operators, for example, in the military field. That said, there are three 

fundamental categories of exoskeletons: rehabilitation exoskeletons, augmentation 

exoskeletons, and assistive exoskeletons [4]. 

Rehabilitation exoskeletons, which HAL exoskeleton shown in Figure 1 is a 

realistic example, are designed to follow a specific treatment or therapy for the 

wearer during which it is assumed that the patient partially or totally regains his 

mobility and must be useful for a wide range of patients considering their physical 

differences (disease, weight, height, gender). Rehabilitation therapy with robots 

ensures a greater number of repetitive movements. This allows that the 

proprioceptive input coming from limb movements stimulates the brain and spinal 

cord neuroplasticity, which is the key for restoring the mobility of affected limbs in 

cases of some neuromuscular disorders. For this reason, rehabilitation exoskeletons 

often encourage the user's physical recovery by gradually reducing assistance as the 

user improves [5]. Augmentation exoskeletons, such as the XOS2 in Figure 2, are 

mostly used by healthy users to reduce the (metabolic) effort required for tasks or 
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to enhance his physical abilities, making the user able to perform tasks that normally 

would be incapable of. 

                            

                    Figure 1: HAL for rehabilitation             

 

Assistive exoskeletons mainly focus on users that have permanently lost their 

mobility. This type of exoskeletons often requires a high level of personalization to 

the user’s needs, which is very expensive and challenging to satisfy in the real 

world. The fact that the specialized equipment is not available outside the laboratory 

and everyday walking occurs at different speeds and with varying durations makes 

providing beneficial assistance in the real world very difficult [6]. 

When discussing exoskeletons, the focus will be on Lower Limb Exoskeletons 

(LLEs). LLEs are mechatronic devices which are applied to the external surface of 

the body and can provide ergonomic structural support, allowing lower limb 

movements. LLEs have been developed since the 1960s to enable spinal cord injury 

(SCI) patients to walk, by regaining their locomotion or recovering their gait. The 

initial design started with orthoses, such as the Hip Guidance Orthosis (HGO) 

shown in Figure 3, which required much physical effort on the part of the patient 

and the loss of a lot of energy in attempting to walk [7].  

 

Figure 3: Hip Guidance Orthosis (HGO) 

Figure 2: Raytheon Sarcos 

XOS2  for military porpouse 
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Nowadays, LLEs combine elements of a mechanical structure, sensor, controller 

and actuator. Speaking of actuators, LLEs can be actuated in three different ways: 

active actuation, passive actuation, hybrid actuation. Active actuators comprise 

electric, pneumatic and hydraulic actuators. Passive actuators comprise non-

powered components or elastic components such as springs, which can store energy 

and are based on the principles of gravity for balance. Passive LLEs depend solely 

on the physical effort of the patient and allow for very slow walking speed. Hybrid 

actuators are a combination of the two [8].  

Currently, there are two main types of LLEs: the ones for full mobilization, and the 

ones for partial assistance. Full mobilization LLEs are designed to move the legs of 

people suffering from a severe loss of motor control or motor disorders, typically 

in people with SCI. The actuators must have a high torque capability because they 

provide the entire torque required for the movement.  

Such devices are available commercially since 2011, when the ReWalk in Figure 4 

(ReWalk Robotics, Israel) was released on the market. 

 

Figure 4: ReWalk Exoskeleton 

They could be developed quickly because their control strategy can be simply 

positioning control over time. There is no need to collaborate with an existing 

voluntary movement of the legs, because there is none (or it is very weak) and thus 

the user’s legs are assumed to be passive. The start of the gait is often triggered by 

the upper body movements or buttons pressed by the fingers, which is simple to 

implement. 
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Partial assistance devices are generally lighter, targeting various less severe 

handicaps. These could be the loss of stamina because of aging, the loss of strength 

or coordination because of incomplete spinal cord injury SCI, stroke, 

neurodegenerative diseases, etc. These devices can also assist the gait of healthy 

people, which can be useful for endurance augmentation purposes. This is more 

challenging because the device must assist more than it is hindering its user, given 

the complex nature of the interaction with the user [9].  

Understanding this difference in the end goals, there is a lot of commonalities 

between the two applications in terms of the techniques used for control. 

1.2 Control of an Exoskeleton  

From the control perspective, the main challenge for gait assistance is to contribute 

to the intended movement, where effective collaboration can be interpreted in 

different ways, depending on the context and application. In general, for partial 

assistance it would mean synergy in forces or torques between the user and the 

device, and for full mobilization it would be coordination between the movements 

of the exoskeleton and those of the user’s upper body. Many strategies are used to 

identify the user’s intent and apply an appropriate torque or motion accordingly 

[10]. 

A study conducted by Tucker et al. [11] presents a generalized framework (Figure 

5) with a three-level hierarchy control structure.

 

Figure 5: Tucker framework representation 



 
9 

 

The proposed framework illustrates the physical and signal-level interactions 

between a powered lower limb prosthetic or orthotic (P/O) device, a user, and his 

environment. The arrows indicate the exchange of power and information between 

the various components of the P/O ecosystem. A hierarchical control structure is 

implemented, with the estimation of the user’s locomotive intent taking place at the 

high-level, translation of the user’s intent to a desired device state at the mid-level, 

and a device-specific controller responsible for realizing the desired device state at 

the low-level. Safety mechanisms underly all aspects of P/O design, including those 

which are mechanically passive and those which are actively controlled. 

 

• High-level: the high-level control determines the general behaviour 

of the exoskeleton. The controller must perceive the user’s 

locomotive intent, allowing the switch between different operating 

modes, depending on the desired type of activity. A reliable high-

level control is crucial for the usability of exoskeletons for people in 

real-world situations and everyday life, where the inputs can come 

from both the user and the environment. There are several high-level 

control strategies: 

o Manual User Input (MUI): The exoskeleton is directly 

controlled by the user thanks to input devices such as buttons, 

as in the CUHK-EXO exoskeleton [12], or voice commands, 

as in the Vanderbilt Powered Orthosis [13]. MUI is 

commonly used for complete SCI patients, because no input 

can be obtained from lower limbs. 

o Brain-Computer Interface (BCI): Electrodes measure the 

user’s brain activity to determine the mode of operation. 

Currently the most common method used among the 

different brain signal recording methods [14] is  

electroencephalography (EEG) since it is non-invasive and 

easier to use. 

o Movements recognition (MOV): The controller’s behaviour 

is entirely dependent on the user’s movements or intent to 

move. The special feature of this method is that is not 
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required any cognitive load or direct input from the user, 

making the interaction natural and intuitive. Generally [15] 

for this method a machine learning or fuzzy logic algorithm 

are involved to process Inertial Measurement Data (IMU) 

and joint sensors. 

 

• Mid-level: The mid-level controller allows to translate the user’s 

motion intentions from the high level to the desired device sequence 

for tracking by a low-level controller. It is at this level of control that 

the user’s state within the gait cycle is determined, and a control law 

applied. It may have the form of a position/velocity, torque, 

impedance, or admittance controller. 

• Low-level: The low-level controller acts as a specific control layer 

device from which is derived the actuator that tracks the state in the 

mid-level. Actuators used in robotics are generally direct-current 

motors that are current-driven, and the field of wearable robotics is 

no exception. The target current is determined depending on the type 

of low-level controller. This level serves as the force, torque and 

position or angle of the exoskeleton joint. 
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1.3    Purpose and Structure of the Thesis 

 

Purpose 

This thesis provides an overview of the results obtained during my time at the IAS 

Laboratory in the Department of Information Engineering at the University of 

Padova. The aim of the thesis is to determine the movements and, consequently, the 

position of the exoskeleton over time using inertial odometry techniques. To 

achieve this, I was provided with a .bag file containing a recorded session of the 

exoskeleton in use (ALICE). By applying the techniques presented in the following 

chapters, I was able to extract its movements. I used ROS framework, as it 

facilitates the acquisition, processing, and publication of the data necessary to 

obtain the exoskeleton's pose and position. 

Structure 

In the first chapter, I presented exoskeletons in general and their specific 

employment in the medical field, focusing on the LLEs. After that I reported the 

standard for exoskeletons control, analysing the different levels of the control 

hierarchy. 

In the next chapters, the topics will be organized as follows. In the second chapter 

I present the ALICE Open-Source Exoskeleton, which is the one used in the 

laboratory, describing its features. Afterwords, I describe the IMU, which is the type 

of sensors used to capture the motion and the orientation of the exoskeleton and the 

techniques applied to the sensors data to obtain exoskeleton’s pose and position 

over time through IMU integration. Lastly, I present the ROS framework, and the 

algorithms/methods used. In the third chapter I report the experiments I run to 

validate the methods used. In the last chapter, I discuss the outcomes of the 

experiments, focusing on possible limitations and future applications. 
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Materials and Methods 

 

2.1 ALICE Open-Source Exoskeleton 

 

The first version of ALICE Exoskeleton was developed in honour of Cybathlon 

2016 [16]. To make the project available to developing countries, a simplified 

alternative which would require only easy-to-find materials and low construction 

budget was designed. 

The exoskeleton combines hardware, software and operation conditions focused on 

reducing complexity while achieving the minimum required functionality for 

previously unattended patients. ALICE has been successfully tested with patients 

exhibiting different medical conditions, such as Muscular Dystrophy(MD), 

Cerebral Palsy (CP), Spinal Muscular Atrophy (SMA), and Cephalic Disorder 

(CD). Short term clinical usage has been proved to benefit patient positive impacts 

in blood circulation and internal organ functioning, and to improve the mental well-

being of patients [17].  

The exoskeleton used consists of 3 links: pelvis, femur and tibia, each of which 

includes one electric actuator. The first version of ALICE includes 4 active degrees 

of freedom (DOFs): hip flexion / extension and knee flexion / extension in both 

legs. It also has a passive DOF: dorsal / plantar flexion of the ankle. The exoskeleton 

is powered by automotive DC 26Nm actuators [18], and a significant portion of 

parts is manufactured on PLA(Polylactic Acid) [19] and commercial 3D-Printing 

composites.  
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ALICE is adjustable for adult patients with femur and tibia lengths between 35 cm 

to 50 cm and pelvic width from 29 cm to 40 cm [20]. ALICE can be adhered directly 

to the pelvis and has two adjustable elements that adapt to the femur and tibia 

respectively, as shown in Figure 6, allowing the user a good wearability. 

 

Figure 6: 

CAD of the exoskeleton robot for rehabilitation, ALICE 

 

Each joint described above has the Range of Motion (ROM) shown in Figure 7 

and found in the literature [21] . 

 

Figure 7: ROM of different joints 
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2.2 IMU and IMU Integration 

An Inertial Measurement Unit is a solid-state sensor capable of measuring motion. 

An IMU is in fact composed of 3 different components, as can be seen in Figure 8: 

accelerometer, gyroscope and magnetometer (optional) which respectively allow to 

obtain the linear acceleration (the rate of change in velocity), the angular rate 

(change in angular velocity), and the magnetic field force along the three axes X, Y 

and Z and provides movement data. The combination of these three sensors 

provides a complete picture of the orientation and movement of an object in space. 

  

Figure 8: 3-axis IMU representation 

• Accelerometer: 

Accelerometers, Figure 9, are electro-mechanical devices that detect static 

or dynamic acceleration forces. Static forces include gravity, while dynamic 

forces can include vibrations and movements [22]. As said above, the 

accelerometers used in IMUs measure acceleration on three different axes.  

 

 

 

 

Figure 9:MEMS Accelerometer (most widely used on the market) 
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The use of accelerometers for kinematic analysis of limb movement has 

been explored by numerous researchers [23]. If the acceleration of a 

segment is known, with a single mathematical integration it is possible to 

obtain its velocity and with a second integration its position, provided that 

both position and speed are known at a certain point in the measurement 

period. However, these requirements, combined with the 'drift' that the 

accelerometer often undergoes, have prevented it from entering a 

widespread use for this purpose. If the limb rotates and changes position, as 

is usually the case, gyroscopes are required. 

 

• Gyroscope: 

Gyroscopes, Figure 10, are electro-mechanical devices that allow to 

measure angular velocity, which indicates the speed of rotation. Gyros are 

essential for determining correct orientation in autonomous devices, such as 

LLEs. 

Triple-axis gyroscopes measure rotation around the three orthogonal axis X, 

Y and Z. 

 

Figure 10: Triple-Axis Digital-Output Gyroscope - ITG-3200 

 

The angular orientation (attitude) of the object can be determined by 

integrating its angular velocity over time. Like accelerometers, gyroscopes 

also suffer from drift, which can lead to errors in orientation over time.  
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• Magnetometer: 

Magnetometers, Figure 11, measure earth’s magnetic field along the three 

axes. They are not used often as they can be distorted by metal or electronic 

objects in the surrounding environment, and it is difficult to get a correct 

calibration. 

 

 

Figure 11: Triple Axis Compass Magnetometer Sensor Module 

 

Combining a three-axis accelerometer and a three-axis gyroscope results in an IMU 

sensor of 6 DOFs. An IMU with 9 DOFs can be achieved by adding the 

magnetometer. 

 

IMU Integration 

The term IMU integration refers to the process of obtaining the position and 

orientation over time of a moving object from the raw data of an IMU. As mentioned 

above, to obtain the position of the device from the output of the accelerometer it is 

necessary to make two mathematical integrations. Similarly, the output of the 

gyroscope is integrated to get the angular orientation.  

When a large amount of data is processed over time, errors can accumulate 

producing a totally uncontrolled variation from the true values. This error is called 

drift. For example, accelerometers are susceptible to noise and biases that, when 

integrated twice to obtain position, can lead to large cumulative errors and even a 

small bias in the gyroscope can result in a large error in orientation after a long 

period [24]. The drift is one of the primary challenges in using IMUs for accurate 

motion tracking. Sensor fusion techniques, such as complementary filters, Kalman 
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filters or Madgwick filters, are often employed to correct these errors by combining 

data from multiple sensors (E.g. GPS) [25]. In the paragraph 2.4, I will delve deeper 

into IMU integration algorithms, which are central to the work presented in this 

paper. 

 

2.3 ROS 

ROS (Robot Operating System) is an open-source operating system, a framework 

for robotic development, which provides a wide range of libraries, tools and 

conventions that simplify the development of applications for robots. ROS is a 

crucial component because it ensures that the various elements of a robotic system 

communicate with each other, resulting in efficient data exchange between software 

and hardware components. ROS currently only works on Unix-based platforms 

[26]. In fact, I used Ubuntu 20.04. The core ROS system, along with useful tools 

and libraries are regularly released as a ROS Distribution. This distribution is 

similar to a Linux distribution and provides a set of compatible software for others 

to use and build upon. The ROS distribution I used is ROS Noetic. 

ROS has some important concepts [27]:  

− Packages: packages allow software organization in ROS. A ROS package may 

contain ROS runtime processes named “nodes”, libraries, datasets, 

configuration files. A package is the smallest entity that is possible to build, run 

or release; its purpose is to encapsulate a specific functionality. This allows for 

a structured and modular approach that makes it easy to re-use, maintain and 

share code.                  

− Nodes: nodes are processes that perform computation in ROS. A ROS node 

must be written with the use of a ROS client library, such as roscpp (for C++) 

or rospy (for Python). Nodes communicates with each other using messages. 

− Master: the Master provides a naming service for ROS. It helps nodes to find 

and communicate with each other. The Master keeps a record of active nodes 

and communications between them. 

− Messages: communication in ROS is via messages exchanged between the 

different nodes. A message is simply a data structure, comprising typed fields. 

Standard primitive types (integer, floating point, boolean, etc.) are supported, 
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as are arrays of primitive types. Messages can include arbitrarily nested 

structures and arrays (much like C structs). 

− Topics: topics are the communication channels used by nodes to exchange 

messages in ROS. In fact, messages are routed via a transport system with 

publish / subscribe semantics. A node sends out a message by publishing it to a 

given topic. The topic is a name that is used to identify the content of the 

message. A node that is interested in a certain kind of data will subscribe to the 

appropriate topic. 

− Services: the publish/subscribe model used for the messages is not appropriate 

for request/reply interactions, which are often required in a distributed system. 

Request/reply is done via services. A providing node offers a service under 

a name and a client uses the service by sending the request message and 

awaiting the reply. 

− Bags: bags are files used to record and reproduce messages exchanged between 

nodes within a ROS system. These files contain a time record of the data of 

messages sent and received while running a ROS system. Bags are an important 

mechanism for storing data, such as sensor data, that can be difficult to collect 

but is necessary for developing and testing algorithms. 

 

 The ROS Master acts as a nameservice in the ROS Computation Graph. It 

 stores topics and services registration information for ROS nodes. Nodes 

 communicate with the Master to report their registration information. As 

 these nodes communicate with the Master, they can receive information 

 about other registered nodes and make connections as appropriate. The 

 Master will also make callbacks to these nodes when this registration 

 information changes, which allows nodes to dynamically create connections 

 as new nodes are run. 

 Nodes connect to other nodes directly; the Master only provides lookup 

 information. Nodes that subscribe to a topic will request connections from 

 nodes that publish that topic and will establish that connection over an 

 agreed upon connection protocol. 



 
19 

 

2.4 Algorithms/Methods used 

 

In  this section, I am going to delve into the methods employed to determine the 

position of the exoskeleton using inertial odometry techniques. 

The first step in the process involved a detailed analysis of the data recorded in the 

'.bag' file provided by the IAS Laboratory. This file contained the raw sensor data 

captured thanks to the Intel RealSense D435i camera, during a session where the 

ALICE exoskeleton was in use.  

The Intel RealSense camera D435i combines D435 standard camera with the 

addition of an inertial measurement unit. The IMU, which detects movement and 

rotation in 6 degrees of freedom, combines accelerometers and gyroscopes to track 

rotation and movement across three axes [28]. 

The focus was on extracting relevant information, specifically the linear 

acceleration and angular velocity, which are crucial for determining the movement 

of the exoskeleton. 

Using the ROS command ‘rosbag info’: 

, 

I was able to obtain the information related to the characteristics of the .bag file, 

as shown in Figure 12: 

 

Figure 12: result of rosbag info  
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As can be seen from the image presented above, the messages of interest are 

published on the ROS topic /camera/imu. At this point, it was essential to study 

their nature. To do so, I used ‘rostopic echo /camera/imu’ while the recording from 

the bag file was played using ‘rosbag play rectangle_path.bag’, thus printing the 

data over time. I organized them into a .csv file to facilitate a more straightforward 

analysis: 

 

The ‘.csv’ file below shows the results of the steps performed. It can be observed in 

Figure 13 that at each time instant, the linear acceleration along the three axes x, y, 

z and the angular velocities also along x, y, z are measured. 

Figure 13: ‘.csv’ file obtained from the ‘.bag’ file 

With the linear acceleration and angular velocity obtained in an easily accessible 

format, it is possible to perform the integration operations explained in the previous 

paragraphs to determine the position at each instant, and thus the path travelled by 

the exoskeleton. 
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IMU INTEGRATION 

To achieve this, the initial approach used was a "brute force" method, where I 

performed direct and exclusive integrations using specific MATLAB functions on 

the data obtained from the IMU, which are necessary to determine the position:  
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Figure 14 represents the estimated trajectory of the sensor in terms of position along 

the X and Y axes, obtained through the integration of the measured accelerations. 

It is evident how the drift has caused a significant error over time in subsequent 

measurements, as explained later in Chapter 3, where it is detailed that the actual 

path recorded in the ‘.bag’ file is a regular rectangular trajectory of 3 meters by 1.4 

meters. 

The first method performs direct integration of linear accelerations to obtain 

velocity and then integrates velocity to get position. This approach does not account 

for biases or offsets in the acceleration data, which can affect the accuracy of the 

position calculation.  

Additionally, no operations have been performed on the angular velocities, which 

could be integrated to obtain the IMU's orientation at each time instant. The 

orientation is crucial for accurately reconstructing the actual path, as the IMU's 

linear acceleration data is affected by its orientation in space. Without taking 

orientation into account, the calculated trajectory may not accurately reflect the 

real-world movement, since the IMU's frame of reference might change during the 

motion. 

 

Figure 14: “brute force” result 
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In the second approach, I tried to enhance the accuracy and reliability of position 

estimation using several methods. 

First, I removed the bias from the acceleration data. By calculating and 

subtracting the mean value of each acceleration component, the systematic errors 

due to sensor bias are significantly reduced. This allows more precise subsequent 

integrations of acceleration, yielding more accurate velocity and position 

estimates. 

 

 

 

Next, a low-pass filter is applied to the accelerometer data before integration. This 

filtering process helps to remove high-frequency noise that can distort the 

measurements and lead to inaccurate results. By focusing on the meaningful 

movement data and ignoring irrelevant noise, the method achieves smoother and 

more precise trajectory estimates. 

 

Another crucial improvement is the implementation of drift correction for the 

velocity data. Over time, small errors can accumulate during the integration of 

acceleration, leading to velocity drift. Using MATLAB’s detrend function, the 

velocity is corrected to remove this drift, ensuring that the integrated position 

remains consistent and reliable over time. 
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Figure 15 illustrates the estimated position after applying the second data filtering 

approach. Unlike the first approach, this estimate accounts for bias errors, providing 

a more accurate trajectory and reducing the effect of drift. The improvements shown 

above make the second method more robust and accurate than the initial "brute 

force" approach, since the trajectory obtained is much more similar to the recorded 

one. While the first method simply performed direct integrations of raw data, this 

enhanced version applies critical corrections and filters, laying the groundwork for 

even more refined methods in the future. Despite its limitations, the first method 

remains useful as a reference point to compare the impact of these enhancements. 

A more detailed analysis will be carried out in the following chapter, where the two 

methods will be compared. 

 

Figure 15: result obtained using filtered data and bias/drift correction 
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Experiment and Results 

 

 

3.1 Validation of Algorithms/Methods 

To validate the results obtained, the provided .bag file contains a recording where  

a rectangular path of 3m x 1.4m was followed. This known reference path allows 

for direct comparison between the estimated trajectory from the IMU data and the 

actual recorded movement. By overlaying the results from the IMU-based 

calculations with the path from the .bag file, discrepancies can be identified and 

analysed. 

 

3.2 Results 

As can be noticed from the graph obtained in the “brute force” method, the direct 

integration  of raw linear acceleration data without the any preprocessing steps, such 

as filters or bias correction, led to a considerable accumulation of errors over time. 

This resulted in a significant drift in the estimated trajectory, which can be clearly 

observed in the plot. The path, in fact, looks exaggerated, reaching unrealistic 

scales, with the drift making the estimated path completely deviate from the actual 

movement. 

The enhancements in the second approach yielded a trajectory much closer to the 

real path followed by the exoskeleton. In the image to be considered, the estimated 

path now roughly follows the expected rectangular shape. While some distortions 

are still visible, particularly in the overall curvature of the path, the scaling of the 

position is now much more accurate, with the coordinates more closely matching 

the real-world dimensions of 3m x 1.4m, the result obtained has in fact dimensions 

of 3,9m x 1,6m. Despite the improvements, deviations from the exact rectangular 

path are still visible. These residual errors stem from factors such as IMU sensor 

configuration and readings and minor noise not eliminated by the filter. 



 
26 

  

Figure16: comparison between the two approaches 

 

The comparison between the two approaches highlights the significant 

improvement achieved by incorporating bias correction, filtering, and drift 

correction techniques. In addition, it has been shown that raw data integration alone 

is not enough for accurate position estimation and how easy it is to incur drift when 

working with IMU data. 

To improve the results obtained from the current IMU-based position estimation, 

integrating additional sensors such as GPS could be highly beneficial [29]. The 

IMU alone, while providing detailed information about linear acceleration and 

angular velocity, is prone to accumulating drift over time due to the integration of 

noisy sensor data, as shown before.  
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Conclusions 

4.1 Contributions to the work 

In this thesis, I presented some contributions to the field of inertial odometry for 

exoskeleton control. One of the key advancements is the development of an 

enhanced methodology for integrating data from inertial sensors, specifically 

accelerometers and gyroscopes, to estimate the position and orientation of a lower 

limb exoskeleton. By employing techniques such as filtering and drift correction, 

the approach proposed significantly improves the accuracy of trajectory estimation 

compared to conventional brute-force integration methods, which are prone to 

cumulative drift errors. The refined method has led to a more stable and reliable 

estimation of the exoskeleton’s movement, addressing a critical challenge in 

wearable robotics. 

Additionally, this work leverages the Robot Operating System (ROS) framework to 

facilitate the acquisition, processing, and analysis of IMU data. The use of ROS 

enables efficient modular development and real-time communication between 

different components of the system, ensuring seamless integration of the sensor data 

into the control algorithms. This contributed to a robust system architecture that 

supports both experimentation and future scalability. 

The methodology was experimentally validated using a known rectangular path 

(3m x 1.4m), providing a clear benchmark for comparing the estimated trajectory 

against the actual movement. The results demonstrate that the improvements in 

filtering and drift correction significantly reduced errors and provided a much closer 

approximation of the real-world path, compared to the initial methods. 

Ultimately, this thesis contributes to the advancement of wearable robotics, 

particularly in the context of lower limb exoskeletons used for rehabilitation and 

mobility assistance. The improved inertial odometry techniques developed in this 

work offer a pathway towards more accurate and efficient control systems, which 

could enhance the performance of exoskeletons in real-world scenarios, improving 

both user experience and therapeutic outcomes. 
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4.2 Limitations 

The most prominent challenge I found is the inherent susceptibility of inertial 

measurement units (IMUs) to drift over time. Despite the implementation of 

filtering techniques and drift correction, small errors in the accelerometer and 

gyroscope data accumulate, particularly over extended periods of use. This 

limitation impacts the long-term accuracy of the estimated trajectory, as the system 

lacks external references, such as GPS or visual markers, to further constrain or 

correct the position. 

Additionally, the current method relies solely on data from a single IMU, which 

limits the precision of the motion estimation. The integration of multiple IMUs or 

additional sensors could potentially improve the accuracy by providing more data 

points and enabling more robust sensor fusion techniques. Another limitation is that 

the system assumes a relatively controlled environment with consistent and 

predictable movement patterns. Most advanced exoskeletons still fail to provide the 

real-time adaptability and flexibility presented by humans when confronted with 

natural environments, in fact more dynamic or unstructured real-world 

environments, sensor noise, unexpected movements, or external factors could 

introduce variability that would affect the accuracy of the estimated trajectory. 

The computational complexity of the implemented methods, though manageable in 

a controlled lab setting, may pose a challenge for real-time applications on 

embedded systems with limited processing power. Optimization of the algorithms 

may be necessary to ensure scalability and usability in practical, on-device 

scenarios. 

Lastly, it is also important to consider the economic point of view of using an 

exoskeleton, as they are still very expensive to use and the credibility and 

acceptability gap in patients is still not high enough. 
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4.3. Future applications  
Inertial odometry techniques implemented in this work have the potential to 

contribute to a wide range of future applications, for example integration of the 

enhanced odometry system into lower limb exoskeletons designed for rehabilitation 

and assistance therapies. The system could be used to track the user's movements 

in real-time, aiding patients going through rehab from spinal cord injuries, strokes 

or other motor impairments, potentially accelerating the rehabilitation process by 

adapting to the user’s progress and providing enhanced support for everyday 

activities. 

Additional sensor modalities such as cameras or GPS can be integrated to enhance 

the accuracy of the system, allowing it to perform reliably in more complex and 

dynamic environments. This would open possibilities for outdoor use, where 

environmental factors such as uneven terrain or variable lighting conditions could 

be better accounted for. Furthermore, as advances in sensor technology and machine 

learning techniques continue to evolve, there is potential to incorporate adaptive 

algorithms that refine the control of the exoskeleton in real-time, based on 

continuous feedback from the user's movements and the surrounding environment. 
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