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ABSTRACT

This thesis examines the development of a tracking system for a lower limb
exoskeleton using inertial odometry techniques. The system utilizes inertial sensors,
such as accelerometers and gyroscopes, to monitor and manage the device's
movements precisely and efficiently. The Robot Operating System (ROS)
framework has been employed for system integration and management, facilitating
modular development and communication between various modules. The proposed
approach aims to improve the stability, precision, and reliability of the exoskeleton
control system, representing a significant advancement in wearable robotics and

offering potential applications in motor rehabilitation and recovery.

SOMMARIO

Il presente elaborato esamina lo sviluppo di un sistema di tracciamento per un
esoscheletro degli arti inferiori utilizzando tecniche di odometria inerziale. Il
sistema utilizza sensori inerziali, come accelerometri e giroscopi, per monitorare e
gestire 1 movimenti del dispositivo in modo preciso ed efficiente. 11 framework
Robot Operating System (ROS) ¢ stato impiegato per l'integrazione e la gestione
del sistema, facilitando lo sviluppo modulare e la comunicazione tra i vari
componenti. L'approccio proposto mira a migliorare la stabilita, la precisione e
l'affidabilita del sistema di controllo dell'esoscheletro, rappresentando un
significativo progresso nella robotica indossabile e offrendo potenziali applicazioni

nella riabilitazione e nel recupero motorio.
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Introduction

1.1 Exoskeletons and LLEs

An exoskeleton is a wearable robot that enhances, support and assist human limbs
in daily tasks. It is a device that augments human performance by increasing
strength, endurance, and other physical capabilities of healthy or able-bodied
individuals [1].

Exoskeletons can be classified as either active or passive. Passive devices differ
from active ones because they do not contain actuators; instead, they rely on natural
human movement to generate the energy needed to operate the device which is
achieved through materials, springs, or dampers. This can lead to increased stress
and fatigue, but also can provide mechanical benefits and protection to the user. An
active exoskeleton, on the other hand, is powered by actuators such as electric
motors, pneumatics, hydraulics, or a combination of multiple technologies to

enhance human strength and reduce the body’s energy consumption [2, 3].

Exoskeletons find applications in various fields such as in clinical environments for
rehabilitation, restoration of muscular weakness and augmentation or enhancement
of intact operators, for example, in the military field. That said, there are three
fundamental categories of exoskeletons: rehabilitation exoskeletons, augmentation

exoskeletons, and assistive exoskeletons [4].

Rehabilitation exoskeletons, which HAL exoskeleton shown in Figure 1 is a
realistic example, are designed to follow a specific treatment or therapy for the
wearer during which it is assumed that the patient partially or totally regains his
mobility and must be useful for a wide range of patients considering their physical
differences (disease, weight, height, gender). Rehabilitation therapy with robots
ensures a greater number of repetitive movements. This allows that the
proprioceptive input coming from limb movements stimulates the brain and spinal
cord neuroplasticity, which is the key for restoring the mobility of affected limbs in
cases of some neuromuscular disorders. For this reason, rehabilitation exoskeletons
often encourage the user's physical recovery by gradually reducing assistance as the
user improves [5]. Augmentation exoskeletons, such as the XOS2 in Figure 2, are

mostly used by healthy users to reduce the (metabolic) effort required for tasks or
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to enhance his physical abilities, making the user able to perform tasks that normally

would be incapable of.

4T

L‘*-

Figure 1: HAL for rehabilitation Figure 2: Raytheon Sarcos
XOS2 for military porpouse

Assistive exoskeletons mainly focus on users that have permanently lost their
mobility. This type of exoskeletons often requires a high level of personalization to
the user’s needs, which is very expensive and challenging to satisfy in the real
world. The fact that the specialized equipment is not available outside the laboratory
and everyday walking occurs at different speeds and with varying durations makes

providing beneficial assistance in the real world very difficult [6].

When discussing exoskeletons, the focus will be on Lower Limb Exoskeletons
(LLEs). LLEs are mechatronic devices which are applied to the external surface of
the body and can provide ergonomic structural support, allowing lower limb
movements. LLEs have been developed since the 1960s to enable spinal cord injury
(SCI) patients to walk, by regaining their locomotion or recovering their gait. The
initial design started with orthoses, such as the Hip Guidance Orthosis (HGO)
shown in Figure 3, which required much physical effort on the part of the patient
and the loss of a lot of energy in attempting to walk [7].

Figure 3: Hip Guidance Orthosis (HGO)

—
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Nowadays, LLEs combine elements of a mechanical structure, sensor, controller
and actuator. Speaking of actuators, LLEs can be actuated in three different ways:
active actuation, passive actuation, hybrid actuation. Active actuators comprise
electric, pneumatic and hydraulic actuators. Passive actuators comprise non-
powered components or elastic components such as springs, which can store energy
and are based on the principles of gravity for balance. Passive LLEs depend solely
on the physical effort of the patient and allow for very slow walking speed. Hybrid

actuators are a combination of the two [8].

Currently, there are two main types of LLEs: the ones for full mobilization, and the
ones for partial assistance. Full mobilization LLEs are designed to move the legs of
people suffering from a severe loss of motor control or motor disorders, typically
in people with SCI. The actuators must have a high torque capability because they

provide the entire torque required for the movement.

Such devices are available commercially since 2011, when the ReWalk in Figure 4

(ReWalk Robotics, Israel) was released on the market.

Figure 4: ReWalk Exoskeleton

They could be developed quickly because their control strategy can be simply
positioning control over time. There is no need to collaborate with an existing
voluntary movement of the legs, because there is none (or it is very weak) and thus
the user’s legs are assumed to be passive. The start of the gait is often triggered by
the upper body movements or buttons pressed by the fingers, which is simple to

implement.
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Partial assistance devices are generally lighter, targeting various less severe
handicaps. These could be the loss of stamina because of aging, the loss of strength
or coordination because of incomplete spinal cord injury SCI, stroke,
neurodegenerative diseases, etc. These devices can also assist the gait of healthy
people, which can be useful for endurance augmentation purposes. This is more
challenging because the device must assist more than it is hindering its user, given

the complex nature of the interaction with the user [9].

Understanding this difference in the end goals, there is a lot of commonalities

between the two applications in terms of the techniques used for control.

1.2 Control of an Exoskeleton

From the control perspective, the main challenge for gait assistance is to contribute
to the intended movement, where effective collaboration can be interpreted in
different ways, depending on the context and application. In general, for partial
assistance it would mean synergy in forces or torques between the user and the
device, and for full mobilization it would be coordination between the movements
of the exoskeleton and those of the user’s upper body. Many strategies are used to

identify the user’s intent and apply an appropriate torque or motion accordingly
[10].

A study conducted by Tucker et al. [11] presents a generalized framework (Figure

5) with a three-level hierarchy control structure.
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Figure 5: Tucker framework representation
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The proposed framework illustrates the physical and signal-level interactions
between a powered lower limb prosthetic or orthotic (P/O) device, a user, and his
environment. The arrows indicate the exchange of power and information between
the various components of the P/O ecosystem. A hierarchical control structure is
implemented, with the estimation of the user’s locomotive intent taking place at the
high-level, translation of the user’s intent to a desired device state at the mid-level,
and a device-specific controller responsible for realizing the desired device state at
the low-level. Safety mechanisms underly all aspects of P/O design, including those

which are mechanically passive and those which are actively controlled.

e High-level: the high-level control determines the general behaviour
of the exoskeleton. The controller must perceive the user’s
locomotive intent, allowing the switch between different operating
modes, depending on the desired type of activity. A reliable high-
level control is crucial for the usability of exoskeletons for people in
real-world situations and everyday life, where the inputs can come
from both the user and the environment. There are several high-level
control strategies:

o Manual User Input (MUI): The exoskeleton is directly
controlled by the user thanks to input devices such as buttons,
as in the CUHK-EXO exoskeleton [12], or voice commands,
as in the Vanderbilt Powered Orthosis [13]. MUI is
commonly used for complete SCI patients, because no input
can be obtained from lower limbs.

o Brain-Computer Interface (BCI): Electrodes measure the
user’s brain activity to determine the mode of operation.
Currently the most common method used among the
different brain signal recording methods [14] is
electroencephalography (EEG) since it is non-invasive and
easier to use.

o Movements recognition (MOV): The controller’s behaviour
is entirely dependent on the user’s movements or intent to

move. The special feature of this method is that is not
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required any cognitive load or direct input from the user,
making the interaction natural and intuitive. Generally [15]
for this method a machine learning or fuzzy logic algorithm
are involved to process Inertial Measurement Data (IMU)

and joint sensors.

Mid-level: The mid-level controller allows to translate the user’s
motion intentions from the high level to the desired device sequence
for tracking by a low-level controller. It is at this level of control that
the user’s state within the gait cycle is determined, and a control law
applied. It may have the form of a position/velocity, torque,
impedance, or admittance controller.

Low-level: The low-level controller acts as a specific control layer
device from which is derived the actuator that tracks the state in the
mid-level. Actuators used in robotics are generally direct-current
motors that are current-driven, and the field of wearable robotics is
no exception. The target current is determined depending on the type
of low-level controller. This level serves as the force, torque and

position or angle of the exoskeleton joint.

—
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1.3 Purpose and Structure of the Thesis

Purpose

This thesis provides an overview of the results obtained during my time at the IAS
Laboratory in the Department of Information Engineering at the University of
Padova. The aim of the thesis is to determine the movements and, consequently, the
position of the exoskeleton over time using inertial odometry techniques. To
achieve this, I was provided with a .bag file containing a recorded session of the
exoskeleton in use (ALICE). By applying the techniques presented in the following
chapters, I was able to extract its movements. I used ROS framework, as it
facilitates the acquisition, processing, and publication of the data necessary to

obtain the exoskeleton's pose and position.
Structure

In the first chapter, 1 presented exoskeletons in general and their specific
employment in the medical field, focusing on the LLEs. After that I reported the
standard for exoskeletons control, analysing the different levels of the control

hierarchy.

In the next chapters, the topics will be organized as follows. In the second chapter
I present the ALICE Open-Source Exoskeleton, which is the one used in the
laboratory, describing its features. Afterwords, I describe the IMU, which is the type
of sensors used to capture the motion and the orientation of the exoskeleton and the
techniques applied to the sensors data to obtain exoskeleton’s pose and position
over time through IMU integration. Lastly, I present the ROS framework, and the
algorithms/methods used. In the third chapter I report the experiments I run to
validate the methods used. In the last chapter, I discuss the outcomes of the

experiments, focusing on possible limitations and future applications.

—
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Materials and Methods

2.1 ALICE Open-Source Exoskeleton

The first version of ALICE Exoskeleton was developed in honour of Cybathlon
2016 [16]. To make the project available to developing countries, a simplified
alternative which would require only easy-to-find materials and low construction

budget was designed.

The exoskeleton combines hardware, software and operation conditions focused on
reducing complexity while achieving the minimum required functionality for
previously unattended patients. ALICE has been successfully tested with patients
exhibiting different medical conditions, such as Muscular Dystrophy(MD),
Cerebral Palsy (CP), Spinal Muscular Atrophy (SMA), and Cephalic Disorder
(CD). Short term clinical usage has been proved to benefit patient positive impacts
in blood circulation and internal organ functioning, and to improve the mental well-

being of patients [17].

The exoskeleton used consists of 3 links: pelvis, femur and tibia, each of which
includes one electric actuator. The first version of ALICE includes 4 active degrees
of freedom (DOFs): hip flexion / extension and knee flexion / extension in both
legs. It also has a passive DOF: dorsal / plantar flexion of the ankle. The exoskeleton
is powered by automotive DC 26Nm actuators [18], and a significant portion of
parts is manufactured on PLA(Polylactic Acid) [19] and commercial 3D-Printing

composites.
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ALICE is adjustable for adult patients with femur and tibia lengths between 35 cm
to 50 cm and pelvic width from 29 cm to 40 cm [20]. ALICE can be adhered directly

to the pelvis and has two adjustable elements that adapt to the femur and tibia

respectively, as shown in Figure 6, allowing the user a good wearability.

Figure 6:
CAD of the exoskeleton robot for rehabilitation, ALICE

Each joint described above has the Range of Motion (ROM) shown in Figure 7

and found in the literature [21] .

Joint Action ROM
Extension/Flexion —30°/120°
Hip Abduction/Adduction —50°/30°
Knee Flexion/Extension —120°/0°

Ankle Plantar/Dorsal Flexion  —40°/30°

Figure 7: ROM of different joints
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2.2 IMU and IMU Integration

An Inertial Measurement Unit is a solid-state sensor capable of measuring motion.
An IMU is in fact composed of 3 different components, as can be seen in Figure 8:
accelerometer, gyroscope and magnetometer (optional) which respectively allow to
obtain the linear acceleration (the rate of change in velocity), the angular rate
(change in angular velocity), and the magnetic field force along the three axes X, Y
and Z and provides movement data. The combination of these three sensors

provides a complete picture of the orientation and movement of an object in space.

4
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Figure 8: 3-axis IMU representation

e Accelerometer:
Accelerometers, Figure 9, are electro-mechanical devices that detect static
or dynamic acceleration forces. Static forces include gravity, while dynamic
forces can include vibrations and movements [22]. As said above, the

accelerometers used in IMUs measure acceleration on three different axes.

Figure 9:MEMS Accelerometer (most widely used on the market)
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The use of accelerometers for kinematic analysis of limb movement has
been explored by numerous researchers [23]. If the acceleration of a
segment is known, with a single mathematical integration it is possible to
obtain its velocity and with a second integration its position, provided that
both position and speed are known at a certain point in the measurement
period. However, these requirements, combined with the 'drift' that the
accelerometer often undergoes, have prevented it from entering a
widespread use for this purpose. If the limb rotates and changes position, as

is usually the case, gyroscopes are required.

Gyroscope:

Gyroscopes, Figure 10, are electro-mechanical devices that allow to
measure angular velocity, which indicates the speed of rotation. Gyros are
essential for determining correct orientation in autonomous devices, such as
LLEs.

Triple-axis gyroscopes measure rotation around the three orthogonal axis X,

Y and Z.

+x@‘

Figure 10: Triple-Axis Digital-Output Gyroscope - ITG-3200

The angular orientation (attitude) of the object can be determined by
integrating its angular velocity over time. Like accelerometers, gyroscopes

also suffer from drift, which can lead to errors in orientation over time.

—
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e Magnetometer:
Magnetometers, Figure 11, measure earth’s magnetic field along the three
axes. They are not used often as they can be distorted by metal or electronic
objects in the surrounding environment, and it is difficult to get a correct

calibration.

Figure 11: Triple Axis Compass Magnetometer Sensor Module

Combining a three-axis accelerometer and a three-axis gyroscope results in an IMU
sensor of 6 DOFs. An IMU with 9 DOFs can be achieved by adding the

magnetometer.

IMU Integration

The term IMU integration refers to the process of obtaining the position and
orientation over time of a moving object from the raw data of an IMU. As mentioned
above, to obtain the position of the device from the output of the accelerometer it is
necessary to make two mathematical integrations. Similarly, the output of the

gyroscope is integrated to get the angular orientation.

When a large amount of data is processed over time, errors can accumulate
producing a totally uncontrolled variation from the true values. This error is called
drift. For example, accelerometers are susceptible to noise and biases that, when
integrated twice to obtain position, can lead to large cumulative errors and even a
small bias in the gyroscope can result in a large error in orientation after a long
period [24]. The drift is one of the primary challenges in using IMUs for accurate

motion tracking. Sensor fusion techniques, such as complementary filters, Kalman
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filters or Madgwick filters, are often employed to correct these errors by combining
data from multiple sensors (E.g. GPS) [25]. In the paragraph 2.4, I will delve deeper

into IMU integration algorithms, which are central to the work presented in this

paper.

2.3 ROS

ROS (Robot Operating System) is an open-source operating system, a framework
for robotic development, which provides a wide range of libraries, tools and
conventions that simplify the development of applications for robots. ROS is a
crucial component because it ensures that the various elements of a robotic system
communicate with each other, resulting in efficient data exchange between software
and hardware components. ROS currently only works on Unix-based platforms
[26]. In fact, I used Ubuntu 20.04. The core ROS system, along with useful tools
and libraries are regularly released as a ROS Distribution. This distribution is
similar to a Linux distribution and provides a set of compatible software for others

to use and build upon. The ROS distribution I used is ROS Noetic.
ROS has some important concepts [27]:

— Packages: packages allow software organization in ROS. A ROS package may
contain ROS runtime processes named “nodes”, libraries, datasets,
configuration files. A package is the smallest entity that is possible to build, run
or release; its purpose is to encapsulate a specific functionality. This allows for
a structured and modular approach that makes it easy to re-use, maintain and
share code.

— Nodes: nodes are processes that perform computation in ROS. A ROS node
must be written with the use of a ROS client library, such as roscpp (for C++)
or rospy (for Python). Nodes communicates with each other using messages.

— Master: the Master provides a naming service for ROS. It helps nodes to find
and communicate with each other. The Master keeps a record of active nodes
and communications between them.

— Messages: communication in ROS is via messages exchanged between the
different nodes. A message is simply a data structure, comprising typed fields.

Standard primitive types (integer, floating point, boolean, etc.) are supported,
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as are arrays of primitive types. Messages can include arbitrarily nested
structures and arrays (much like C structs).

Topics: topics are the communication channels used by nodes to exchange
messages in ROS. In fact, messages are routed via a transport system with
publish / subscribe semantics. A node sends out a message by publishing it to a
given topic. The topic is a name that is used to identify the content of the
message. A node that is interested in a certain kind of data will subscribe to the
appropriate topic.

Services: the publish/subscribe model used for the messages is not appropriate
for request/reply interactions, which are often required in a distributed system.
Request/reply is done via services. A providing node offers a service under
aname and a client uses the service by sending the request message and
awaiting the reply.

Bags: bags are files used to record and reproduce messages exchanged between
nodes within a ROS system. These files contain a time record of the data of
messages sent and received while running a ROS system. Bags are an important
mechanism for storing data, such as sensor data, that can be difficult to collect
but is necessary for developing and testing algorithms.

Service invocation

YT

N ¢

Topl —_
op1t Subscription

Publication

The ROS Master acts as a nameservice in the ROS Computation Graph. It
stores topics and services registration information for ROS nodes. Nodes
communicate with the Master to report their registration information. As
these nodes communicate with the Master, they can receive information
about other registered nodes and make connections as appropriate. The
Master will also make callbacks to these nodes when this registration
information changes, which allows nodes to dynamically create connections

as new nodes are run.

Nodes connect to other nodes directly; the Master only provides lookup
information. Nodes that subscribe to a topic will request connections from
nodes that publish that topic and will establish that connection over an

agreed upon connection protocol.
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2.4 Algorithms/Methods used

In this section, I am going to delve into the methods employed to determine the

position of the exoskeleton using inertial odometry techniques.

The first step in the process involved a detailed analysis of the data recorded in the
".bag' file provided by the IAS Laboratory. This file contained the raw sensor data
captured thanks to the Intel RealSense D435i camera, during a session where the

ALICE exoskeleton was in use.

The Intel RealSense camera D435i combines D435 standard camera with the
addition of an inertial measurement unit. The IMU, which detects movement and
rotation in 6 degrees of freedom, combines accelerometers and gyroscopes to track

rotation and movement across three axes [28].

The focus was on extracting relevant information, specifically the linear
acceleration and angular velocity, which are crucial for determining the movement

of the exoskeleton.

Using the ROS command ‘rosbag info
$ rosbag info rectangle_path.bag

I was able to obtain the information related to the characteristics of the .bag file,

as shown in Figure 12:

rectangle path.bag
2.0
44.7s
Aug 26 2024 17:15:08.71 (1724685308.71)
Aug 26 2024 17:15:53.42 (1724685353.42)
1.6 GB
12944

compression: bz2 [1341/1341 chunks; 45.83%]

uncompressed: 3.5 GB @ 79.1 MB/s
1.6 GB @ 36.3 MB/s (45.83%)
realsense2_camera/IMUInfo [a@2adb3a99530bl1lbalB8al16f40f9512a]
realsense2_camera/Metadata [4966ca002bel6ee67fe4dbfb2f354787]
sensor_msgs/Cameralnfo [c9a58c1bbb154e0e6da7578cb991d214 ]
sensor_msgs/Image [060021388200f6f0f447d0fcd9c64743]
sensor_msgs/Imu [6a62c6daael103f4ff57a132d6f95¢cec?]
/camera/accel/imu_info 1 msg : realsense2_camera/IMUInfo
/camera/color/camera_info 1341 msgs : sensor_msgs/Cameralnfo
/camera/color/image _raw 1340 msgs : sensor_msgs/Image
/camera/color/metadata 1340 msgs : realsense2_camera/Metadata
/camera/gyro/imu_info 1 msg : realsense2 camera/IMUInfo
/camera/imu 8921 msgs : sensor_msgs/Imu

Figure 12: result of rosbag info

—
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As can be seen from the image presented above, the messages of interest are
published on the ROS topic /camera/imu. At this point, it was essential to study
their nature. To do so, I used ‘rostopic echo /camera/imu’ while the recording from
the bag file was played using ‘rosbag play rectangle path.bag’, thus printing the
data over time. I organized them into a .csv file to facilitate a more straightforward

analysis:

-b rectangle_path.bag -p /camera/imu > imu_data.csv]]

$ rostopic echo

The “.csv’ file below shows the results of the steps performed. It can be observed in
Figure 13 that at each time instant, the linear acceleration along the three axes x, v,

z and the angular velocities also along X, y, z are measured.

A c | D E| [ s T U [V [w[x[v][Z][aaas[ac AD AE AF
felc hme- seq nem header. stamp field header frame_id el r.w anguiar_velocity.x ﬂela-vuwlaf velocity.y field.anguiar_velocity.z field» ie fiel fel fieic fies fieb field fieidh field.inear_acceleration.x _field.lnear_acceleration.y field.finear_acceleration.z

1.71225095453762E +018 0 1.71225005453182E +018 camera,_imu_optical_frame 0.0 715423107 001 00 00,00 0.010.0 00 00 001 DZ0GUMLOTIN0L |4 TOPOUSOITS0S 3 ASTTGTOOUGTSIT0
1.71225095453763E +018 1 0.0 . 117 oom .01 0.0 0.0 0.0 0.010.0 0.0 0.0 0.01 0. .68
1.71225005454744E +018 2 0.0 -0.057595863938331604 0.0 {I 0052358877154231070.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0. |
1,71225005454745E +018 3 0.0 -0.0453 '3718490.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 -0.21739494955097657 -4.775838375001553 -8 08280582407823
1.71225005455764E +018 [l (o {6 wrerosmameeers o o1 saneeTars| G oo TTasoinan 0 apla0 et @ P o o Ta r ET
1.71225005455764E 018 5 0.0 0,00503538771542310) 0.008726646102371845 -0, 0D6BS131695366747¢.0.01 0.0 0.0 0.0 0.010.0 0.0 0.0 0.01 0. 610 4 a m
1712250054867 71E +018 5 0.0 0.01047; 94552 -0.012217: 0.01 0.0 0.00.0 0.010.0 0.0/0.0 0.01 17729736555192085 -4 BO773605485246 -8 933037381525008
1712250954567 72E 018 7 00 0.01: o221 0.01 0.0 0.00.0 0.010.0 0.00.0 0.01 0 n E
1.71725005458041 +018 B 17122508545710€+018 camers_imu_optical_trame 0.0 0.057595853938331604 0013962673907 754052 -0,012217304669320587 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0,01 -0.12811664039540007 4 B20073255050531 -8 63408312344502
1,71725005458041 +018 5 1,71225095457691E +018 camera_lmu_opiical_frame 0.0 0,06632251292467117 0.013962633907794552 -0.010471575430845214 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 -0.09842622037053557 4 BI51251047173845 -8 43613019293450
1.71225005458745E +018 10 1.71225095458192E +018 camera_imu_opical_lrame 0.0 19520.01 0.0 0.0 0.0 0.010.0 0,0 0.0 0.01 -0.10754182185001628 -4 B20727B712103235 -8 24300967224884
1.71225095459706E +018 11 1,71225095458603E +018 camen 0.0 0.08457718451751938 oomﬂmrsaaueaszu 0 ummww&mnox 0.0 0.0 0.0 0.0100 0.0 0.0 0.01 D11 4 8
1.71225005459707E +018 12 1.71225095459133€ +018 camera 00 192371843.0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 -0.132613066568777 -4 BMG293093467525  -7.966637318763196
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Figure 13: °

.csv f le obtazned from the ‘.bag’file

With the linear acceleration and angular velocity obtained in an easily accessible

format, it is possible to perform the integration operations explained in the previous

paragraphs to determine the position at each instant, and thus the path travelled by

the exoskeleton.
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IMU INTEGRATION

To achieve this, the initial approach used was a "brute force" method, where I
performed direct and exclusive integrations using specific MATLAB functions on

the data obtained from the IMU, which are necessary to determine the position:

1 %? % CSV file upload keeping the original column names.

2 %readtable permit to load data from the CSV file into a MATLAB table

3 data = readtable('C:\Users\simio\Downloads\imu_data.csv', 'VariableNamingRule', ‘'preserve');
4

5

6 % Renames columns to ensure compatibility with MATLAB.

7 % matlab.lang.makeValidName permit to change column names

8 % to make them compatible with MATLAB variable naming rules.

9 % Useful if the original names contain invalid characters, spaces, or are too long.

10 data.Properties.VariableNames = matlab.lang.makeValidName(data.Properties.variableNames);
11

12 % Finds the column name for timestamps
13 timestamp_col = data.Properties.VariableNames{contains(data.Properties.variableNames, 'time')};
14
15 % Converting timestamps to Seconds
16 timestamps = data.(timestamp_col) * 1le-9;

. P—

18 % sorts data by increasing timestamp

19 % (useful in case there have been errors in the conversion to the .csv filefj.

2e % Sorting data by timestamps is essential for proper time analysis.

21 % This ensures that data is processed in the correct order and allows for easy integration.
22 [timestamps, idx] = sort(timestamps);

23 data_sorted = data(idx, :);

24

25 [E % Extracting the correct data using the column names updated after

26 % change the name to make them walid

27 accel x = data_sorted.('field_linear_acceleration_x')};

28 accel y = data_sorted.('field_linear_acceleration_y');

29 accel z = data_sorted.('field_linear_acceleration_z'};

3l gyro_x = data_sorted.( field angular velocity x');

31 gyro_y = data_sorted.( field angular velocity y');

32 gyro_z = data_sorted. (" field_angular_velocity_z');

33

34 % Acceleration correction along Z-axis.

35 % The acceleration along the Z-axis is corrected by adding 9.81 m/s?
36 % to remove the effect of gravity. In the context of an IMU sensor,

37 % the Z-axis usually measures both the acceleration due to the movement of the device
38 % and the constant acceleration caused by gravity.

39 % Since the focus is on achieving only the acceleration due to motion,
40 % the gravitational acceleration has been balanced.

41 accel_z = accel_z + 9.81;

42

43 [E % As explained in the prewviocus paragraphs, I obtain the speed by integrating
44 % Linear Acceleration

45 velocity x = cumtrapz(timestamps, accel_x);

46 velocity y = cumtrapz(timestamps, accel_y);

47 velocity z = cumtrapz(timestamps, accel_z);

48

49 % And finally I get the position by integrating the speed first obtained
L1:] position x = cumtrapz(timestamps, velocity x);

51 position y = cumtrapz(timestamps, velocity y);

52 position_z = cumtrapz(timestamps, velocity z);

53

54 % 3D route tracking

55 figure;

56 plet3(position_x, position_y, position_z, 'LineWidth', 2);

57 title('Path estimation®);

58 xlabel( ' Position X (m)");

59 ylabel( 'Position ¥ (m}");

ea zlabel( 'Position Z (m)');

61 grid onj
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Figure 14 represents the estimated trajectory of the sensor in terms of position along
the X and Y axes, obtained through the integration of the measured accelerations.
It is evident how the drift has caused a significant error over time in subsequent
measurements, as explained later in Chapter 3, where it is detailed that the actual
path recorded in the ‘.bag’ file is a regular rectangular trajectory of 3 meters by 1.4

meters.

The first method performs direct integration of linear accelerations to obtain
velocity and then integrates velocity to get position. This approach does not account
for biases or offsets in the acceleration data, which can affect the accuracy of the

position calculation.

Additionally, no operations have been performed on the angular velocities, which
could be integrated to obtain the IMU's orientation at each time instant. The
orientation is crucial for accurately reconstructing the actual path, as the IMU's
linear acceleration data is affected by its orientation in space. Without taking
orientation into account, the calculated trajectory may not accurately reflect the
real-world movement, since the IMU's frame of reference might change during the

motion.
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Figure 14: “brute force” result
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In the second approach, I tried to enhance the accuracy and reliability of position
estimation using several methods.

First, I removed the bias from the acceleration data. By calculating and
subtracting the mean value of each acceleration component, the systematic errors
due to sensor bias are significantly reduced. This allows more precise subsequent

integrations of acceleration, yielding more accurate velocity and position

estimates.
42
43 mean_accel x = mean(accel x);
44 mean_accel y = mean(accel y);
45 mean_accel z = mean(accel z);
46
47 accel x = accel_x - mean_accel x;
48 accel y = accel y - mean_accel y;
49 accel z = (accel 7z + 9.81)-mean_accel z;
5@

Next, a low-pass filter is applied to the accelerometer data before integration. This
filtering process helps to remove high-frequency noise that can distort the
measurements and lead to inaccurate results. By focusing on the meaningful
movement data and ignoring irrelevant noise, the method achieves smoother and

more precise trajectory estimates.

51

52 cutoff = 2.5; % Cutoff frequency in Hz

53 accel x filt = lowpass(accel x, cutoff, fs);
54 accel y filt = lowpass(accel y, cutoff, fs);
55 accel z filt = lowpass(accel z, cutoff, fs);
56

Another crucial improvement is the implementation of drift correction for the
velocity data. Over time, small errors can accumulate during the integration of
acceleration, leading to velocity drift. Using MATLAB’s detrend function, the
velocity is corrected to remove this drift, ensuring that the integrated position

remains consistent and reliable over time.

62
63 velocity x = detrend(velocity x, 'constant');
64 velocity y = detrend(velocity y, 'constant');
65 velocity_z = detrend(velocity_z, 'constant');
66
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Figure 15 illustrates the estimated position after applying the second data filtering
approach. Unlike the first approach, this estimate accounts for bias errors, providing
amore accurate trajectory and reducing the effect of drift. The improvements shown
above make the second method more robust and accurate than the initial "brute
force" approach, since the trajectory obtained is much more similar to the recorded
one. While the first method simply performed direct integrations of raw data, this
enhanced version applies critical corrections and filters, laying the groundwork for
even more refined methods in the future. Despite its limitations, the first method

remains useful as a reference point to compare the impact of these enhancements.

A more detailed analysis will be carried out in the following chapter, where the two

methods will be compared.
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Figure 15: result obtained using filtered data and bias/drift correction
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Experiment and Results

3.1 Validation of Algorithms/Methods

To validate the results obtained, the provided .bag file contains a recording where
a rectangular path of 3m x 1.4m was followed. This known reference path allows
for direct comparison between the estimated trajectory from the IMU data and the
actual recorded movement. By overlaying the results from the IMU-based
calculations with the path from the .bag file, discrepancies can be identified and

analysed.

3.2 Results

As can be noticed from the graph obtained in the “brute force” method, the direct
integration of raw linear acceleration data without the any preprocessing steps, such
as filters or bias correction, led to a considerable accumulation of errors over time.
This resulted in a significant drift in the estimated trajectory, which can be clearly
observed in the plot. The path, in fact, looks exaggerated, reaching unrealistic
scales, with the drift making the estimated path completely deviate from the actual

movement.

The enhancements in the second approach yielded a trajectory much closer to the
real path followed by the exoskeleton. In the image to be considered, the estimated
path now roughly follows the expected rectangular shape. While some distortions
are still visible, particularly in the overall curvature of the path, the scaling of the
position is now much more accurate, with the coordinates more closely matching
the real-world dimensions of 3m x 1.4m, the result obtained has in fact dimensions
of 3,9m x 1,6m. Despite the improvements, deviations from the exact rectangular
path are still visible. These residual errors stem from factors such as IMU sensor

configuration and readings and minor noise not eliminated by the filter.

()




-350 —

-300 —

-250 —

-200 —

Position Y (m)

-150 —

-100 —| 2 \

-50 —

0 T T T T l
25 20

Posizione X (m)

15 10
Position X (m)

Figurel 6: comparison between the two approaches

The comparison between the two approaches highlights the significant
improvement achieved by incorporating bias correction, filtering, and drift
correction techniques. In addition, it has been shown that raw data integration alone
is not enough for accurate position estimation and how easy it is to incur drift when

working with IMU data.

To improve the results obtained from the current IMU-based position estimation,
integrating additional sensors such as GPS could be highly beneficial [29]. The
IMU alone, while providing detailed information about linear acceleration and
angular velocity, is prone to accumulating drift over time due to the integration of

noisy sensor data, as shown before.
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Conclusions

4.1 Contributions to the work

In this thesis, I presented some contributions to the field of inertial odometry for
exoskeleton control. One of the key advancements is the development of an
enhanced methodology for integrating data from inertial sensors, specifically
accelerometers and gyroscopes, to estimate the position and orientation of a lower
limb exoskeleton. By employing techniques such as filtering and drift correction,
the approach proposed significantly improves the accuracy of trajectory estimation
compared to conventional brute-force integration methods, which are prone to
cumulative drift errors. The refined method has led to a more stable and reliable
estimation of the exoskeleton’s movement, addressing a critical challenge in

wearable robotics.

Additionally, this work leverages the Robot Operating System (ROS) framework to
facilitate the acquisition, processing, and analysis of IMU data. The use of ROS
enables efficient modular development and real-time communication between
different components of the system, ensuring seamless integration of the sensor data
into the control algorithms. This contributed to a robust system architecture that

supports both experimentation and future scalability.

The methodology was experimentally validated using a known rectangular path
(3m x 1.4m), providing a clear benchmark for comparing the estimated trajectory
against the actual movement. The results demonstrate that the improvements in
filtering and drift correction significantly reduced errors and provided a much closer

approximation of the real-world path, compared to the initial methods.

Ultimately, this thesis contributes to the advancement of wearable robotics,
particularly in the context of lower limb exoskeletons used for rehabilitation and
mobility assistance. The improved inertial odometry techniques developed in this
work offer a pathway towards more accurate and efficient control systems, which
could enhance the performance of exoskeletons in real-world scenarios, improving

both user experience and therapeutic outcomes.
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4.2 Limitations

The most prominent challenge I found is the inherent susceptibility of inertial
measurement units (IMUs) to drift over time. Despite the implementation of
filtering techniques and drift correction, small errors in the accelerometer and
gyroscope data accumulate, particularly over extended periods of use. This
limitation impacts the long-term accuracy of the estimated trajectory, as the system
lacks external references, such as GPS or visual markers, to further constrain or

correct the position.

Additionally, the current method relies solely on data from a single IMU, which
limits the precision of the motion estimation. The integration of multiple IMUs or
additional sensors could potentially improve the accuracy by providing more data
points and enabling more robust sensor fusion techniques. Another limitation is that
the system assumes a relatively controlled environment with consistent and
predictable movement patterns. Most advanced exoskeletons still fail to provide the
real-time adaptability and flexibility presented by humans when confronted with
natural environments, in fact more dynamic or unstructured real-world
environments, sensor noise, unexpected movements, or external factors could

introduce variability that would affect the accuracy of the estimated trajectory.

The computational complexity of the implemented methods, though manageable in
a controlled lab setting, may pose a challenge for real-time applications on
embedded systems with limited processing power. Optimization of the algorithms
may be necessary to ensure scalability and usability in practical, on-device

scenarios.

Lastly, it is also important to consider the economic point of view of using an
exoskeleton, as they are still very expensive to use and the credibility and

acceptability gap in patients is still not high enough.
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4.3. Future applications

Inertial odometry techniques implemented in this work have the potential to
contribute to a wide range of future applications, for example integration of the
enhanced odometry system into lower limb exoskeletons designed for rehabilitation
and assistance therapies. The system could be used to track the user's movements
in real-time, aiding patients going through rehab from spinal cord injuries, strokes
or other motor impairments, potentially accelerating the rehabilitation process by
adapting to the user’s progress and providing enhanced support for everyday

activities.

Additional sensor modalities such as cameras or GPS can be integrated to enhance
the accuracy of the system, allowing it to perform reliably in more complex and
dynamic environments. This would open possibilities for outdoor use, where
environmental factors such as uneven terrain or variable lighting conditions could
be better accounted for. Furthermore, as advances in sensor technology and machine
learning techniques continue to evolve, there is potential to incorporate adaptive
algorithms that refine the control of the exoskeleton in real-time, based on

continuous feedback from the user's movements and the surrounding environment.
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