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Abstract

The increasing penetration of renewable energy sources (RESs) in the low voltage
distribution grid and the electri�cation of transport and heating/cooling sectors
bring opportunities for a sustainable energy landscape. Concurrently, variable
RESs and uncontrolled electricity demand a�ect the reliability of the electricity
system. An alternative to the business as usual (BAU) approach of reinforcing
the grid infrastructures consists in promoting the deployment of distributed en-
ergy resources (DERs) like stationary storages and demand side response (DSR).
In this dissertation a comparison of di�erent scenarios for the deployment and
control of distributed stationary storage is presented. Centralized and decentral-
ized control are performed with real time, and optimized based on generation and
demand forecast for a United Kingdom context. A micro energy market (MEM)
to allow peer-to-peer (P2P) energy trade within a distribution grid with high PV
and battery energy storage system (BESS) penetration will be implemented. In
addition, a micro balancing market (MBM) to balance the system and to face the
unforeseen events is proposed. Finally, a techno-economic evaluation from both
prosumers and distribution system operator (DSO) side is carried out to advice
grid operators and policy makers towards the implementation of a smart, clean,
e�cient, reliable and a�ordable electricity system. Before doing this, a market
research on current costs and future projection of small-scale PV plants and sta-
tionary battery energy storage systems (BESSs) in UK is presented, to evaluate
the economic attractiveness from an user point of view about the DERs available
in the market in absence of incentives designed to promote the uptake of small-
scale renewable and low-carbon electricity generation technologies (feed-in-tari�),
that are ending soon in many countries, including UK.
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Sommario

La crescente penetrazione di fonti di energia rinnovabile (RES) nella rete di dis-
tribuzione di bassa tensione e l'elettri�cazione dei settori di trasporto e riscalda-
mento/ra�rescamento aprono a nuove opportunità per un panorama energetico
sostenibile. Contemporaneamente, le fonti di energia rinnovabile e la curva di do-
manda non controllata in�uenzano negativamente l'a�dabilità del sistema elet-
trico. Un'alternativa all'approccio del business as usual (BAU) di ra�orzare le
infrastrutture di rete consiste nel promuovere la di�usione di risorse di ener-
gia distribuita (DER) come dispositivi stazionari di stoccaggio dell'energia e la
gestione della domanda (demand side response: DSR). In questa tesi viene pre-
sentato un confronto tra diversi scenari inerenti la di�usione e controllo di dis-
positivi stazionari e distribuiti di stoccaggio dell'energia elettrica. Controlli sia
centralizzati che decentralizzati delle batterie vengono eseguiti in tempo reale e
ottimizzati in base alla previsione della generazione e domanda di energia, in un
contesto ambientato nel Regno Unito. Un micro mercato dell'energia (MEM)
viene implementato per consentire il commercio di energia peer-to-peer (P2P)
all'interno di una rete di distribuzione di bassa tensione con alta penetrazione di
sistemi fotovoltaici e sistemi di accumulo di energia a batteria (BESS). Inoltre
viene proposto un micro mercato del bilanciamento (MBM) decentralizzato con lo
scopo di bilanciare il sistema e fronteggiare gli eventi non prevedibili. In�ne viene
e�ettuata una valutazione tecnico-economica dal punto di vista dei prosumer e
degli operatori del sistema di distribuzione (DSO) al �ne di fornire suggerimenti
agli operatori di rete e ai policy maker riguardo all'implementazione di un sistema
elettrico intelligente, pulito, e�ciente, a�dabile ed economicamente competitivo.
Prima di fare ciò viene presentata una ricerca di mercato sugli attuali costi e
future proiezioni di prezzo di impianti fotovoltaici su piccola scala e sistemi di
accumulo di energia a batteria nel Regno Unito. Il �ne è quello di valutare
l'attrazione economica, dal punto di vista di un utente, delle risorse di energia
distribuita disponibili sul mercato in assenza di incentivi istituiti per promuovere
l'adozione di tecnologie di generazione di energia elettrica a basse emissioni su
piccola scala (es. feed-in-tari�), ormai arrivate al loro termine in molti paesi,
incluso il Regno Unito.
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Chapter 1

Introduction and Literature review

During the last decade the entire electricity sector has been experiencing rapid
and continuous changes. The energy systems are becoming much less passive,
more di�use and more dynamic as energy generation, transmission and man-
agement becomes increasingly complex. This has been driven mainly by the
deployment and transition towards distributed, low carbon energy technologies.
The widespread deployment of renewable energy sources (RES) recently started
creating a series of new technical challenges.[1]
For example the RESs (solar PV and wind generator) do not contribute to the
"system inertia", essential to keep the system frequency stability and resilience
to sudden changes arising from loss of generation or transmission faults. Further-
more, they make more challenging to balance the system, in fact RESs are more
precisely classi�ed as variable RES (VRES), and given their nature, a strong mis-
match between peak generation and peak demand is present. This has caused in
the last 2 years the daytime minimum demand fall over the overnight demand
in UK. [2] The high deployment of RES in the low-voltage (LV) distribution
grid creates a revolution of the original paradigm of it. Distribution grids were
traditionally designed as `passive' networks, and the power �ows were unidirec-
tional. As a consequence of the increasing penetration level of distributed energy
resources (DERs), the era of energy simply traveling from power plants to res-
idential plugs has come to the end in recent times. Distribution grids are now
'active' systems. That imply bi-directional power �ows between distribution and
transmission systems, since distribution grids export power at times when local
generation exceeds consumption. [3]
This evolution brings higher complexity in the management of the distribution
system: in fact it could lead to a rise of the voltage pro�le beyond its allowed
limit, and create congestions that reduces the reliability and may create problems
to maintain the quality of supply to all customers connected to the distribution
network, that was not designed to accommodate a large amount of DERs.[4]
The increasing deployment of RESs was mainly due to policy makers and reg-
ulators decision to apply �nancial incentives and remuneration schemes on the
generation and injection of energy generated by RES, in turn stimulated by en-
vironmental targets.
Other emerging challenges are due to the electri�cation of air conditioning and
transport sectors. The electricity demand is hence expected to grow up consid-
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

erably in the next decade. The �rst one with the deployment of heat pump, the
second one with the deployment of electric vehicle (EV). Both are key points of
the decarbonization in UK. Such these regulations are part of the framework dic-
tated by the climate Change Act 2008 and Paris Agreement of 2015.[5] Through
these acts, the UK government has committed to:

• reduce emissions by at least 80% of 1990 levels by 2050

• contribute to global emission reductions, to limit global warming to well
below 2◦C above pre-industrial levels.

To meet these targets, the government has set �ve-yearly carbon budgets which
currently run until 2032. The UK is currently in the third carbon budget pe-
riod (2018 to 2022). While it is going to meet its next carbon budget, it is not
on track to meet the following. This will require the government to apply more
challenging measures. The new variables introduced in the system are present-
ing new challenges that require a more �exible network from the point of view
of infrastructures and management to integrate the emerging solutions [1, 6]. A
digitalization of the system is in place but this is not enough. A rethinking of the
whole integrated electrical system is needed. Therefore, important investment de-
cisions have to be taken. In the previous years policy makers have been discussed
a lot about the need of re-conceptualize the existing power grid on behalf of one
that supports an e�cient transition towards a distributed and smart system, and
enable new low carbon technology to be deployed, as underlined in [1] and [7]. To
achieve these targets, and ensure energy security and quality supply, the develop
of a smart grid is considered to be a promising option. A smart grid according
to the O�ce of Gas and Electricity Markets (Ofgem) is a "modernised electric-
ity grid that uses Information and communication technology (ICT) to monitor
and actively control the electricity generation and demand in near real time".[1]
Interest in and commitment to developing smart grids has been growing inter-
nationally over the last decade. With the introduction of distributed generation
(DG), renewable sources, energy storage, and microgrids, the classic Distribution
Network Operator (DNO) model is changing into Distribution System (DSO),
since it will be required to take on system operator functions, such as active and
real time network management [8]. Indeed, they are called to an upgrade on the
way of thinking to a new one that accounts for and manages multiple points of
variable supply and consumption. The main idea is that, when many DERs are
distributed in a wide network, it can be very complex and di�cult to control.
Thus, a potential way to manage this complexity is by breaking the entire grid
down into smaller microgrids, containing only a limited amount of DERs. [4].
Many projects and studies have been carried out to help the government and
the grid operators in these decisions. UK can claim to be one of the `European'
leaders in terms of level of investment in smart grid research and demonstration
projects, together with Germany and France, as reported in [9]. Since all the
parts of the electricity system and many stakeholders are in�uenced by the de-
ployments of DERs, the same problem can be scanned from many points of view:
power stations, electricity market system operator, TSO, DSO, customers etc.,
and all these parts will need to coordinately develop all together. Clearly all the
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

challenges presented above require investments to be made on the distribution
grid. This is necessary to avoid overloading of the lines, curtailments of supply
or demand, larger voltage �uctuations, besides higher losses on the entire grid.
Consider to curtail generation is to avoid since in contrast with environmental
issues. There are two main strategies to invest in the network:

• Following the Business as usual (BAU) �Fit-and-forget� approach: respond
to the increasing photovoltaic (PV) penetration by increasing the capacity
of the wires, installing additional voltage regulators, and investing in other
network equipment, with consequent increases in the total network cost.

• Adopt innovative ways that facilitate an e�cient transition towards a dis-
tributed and smart system and that put in place an active network manage-
ment to facilitate the deployment and utilization of DERs in a smart grid
concept. This could reduce network cost and obtain the most value from
DERs. Moreover DERs can enable networks to use existing physical infras-
tructure more e�ciently, reducing or deferring reinforcement needs and so
investments for DSO and grid operators in general.

In [10] it has been proved that this second approach could lead to lower costs
compared to the conventional �t-and-forget BAU paradigm. Therefore starting
from:

• the challenges discussed above and the need to invest on the grid

• the penetration of solar PV installations will increase at residential level

• the end of �nancial incentives in some countries (UK included) both for
generation and export tari�

• BESSs are falling in cost

• DERs and the decentralization of the system control are a promising chance
of reducing costs for everyone and make the system more e�cient

In this dissertation, the impact of deployment of stationary storage coupled
with solar PV system for di�erent battery smart control strategies (BSCS) and
from both the DSO's and users/prosumers' perspectives is evaluated. The aim
is to advice the DSO on the necessary investments for the reinforcement and
modernization of the grid. Three cases are presented: a base case, a centralised
case and a decentralised case. Seven di�erent scenarios have been created, char-
acterized by di�erent battery smart control strategies (BSCS) and market struc-
ture/architecture. A total of three di�erent BSCS, based on the forecast genera-
tion and demand pro�les with a rolling window approach, are presented. In the
decentralised case, energy is traded in a micro energy market (MEM) to allow a
peer-to-peer (P2P) energy trading at a price lower than the spot market, whose
tari� is assumed to be a real time price (RTP) tari�. Further, a micro balancing
market (MBM), whose purpose is to balance the system and to face unforeseen
events (contingencies and congestions), is introduced and resulting bene�ts are
evaluated. The proposed methodology is applied to a branch of a typical UK
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

Figure 1.1: Past module prices and projection to 2035 based on learning curve

distribution network model during a period in June and December 2017. A
techno-economic evaluation is then performed in order to critically analyse the
performance of the proposed control strategies. Before that, a market study on
the current costs and future projection of PV plants and BESSs at residential
level will be done.

The remainder of this dissertation is organized as follow: In the rest of this
chapter a literature review on the main topics of this project will be presented.
First of all, a literature review on the PV systems and BESSs current and future
cost will be presented in section 1.1 and section 1.2. In section 1.3 an introduction
on the most common tool and strategies to perform a forecast of PV generation
and household load pro�le will be presented. Finally a literature review on the
decentralized market and BSCS will be done in section 1.4. In the next chapter
(chapter 2) a detailed explanation of the methodology used for this study is
presented. In chapter 3 all the case studies simulated are introduced and then
results are presented and discussed in chapter 4. Finally, the dissertation ends
with chapter 5 where conclusions are summarized.
For the comprehension of the acronyms, parameters and variables present in the
text, please refer to the Appendix.

1.1 Solar PV system: recent developments and

future projection

1.1.1 Solar PV modules

The PV module price has seen a considerable reduction along the years. The PV
module price is assumed to follow the learning curve1 that has been observed for
many years. The learning curve observed for the PV modules is between 18% and

1The learning curve expresses the module price decrease varying the market size.

10



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

25%. In particular, in [11] a long-term learning rate2 ranging between 19% and
23% has been observed; in [12], researches suggest a learning rate of about 20% -
25% instead. Figure 1.1, reported in [13], con�rms these values and expects the
module costs to fall at 0.3 $/Wp to 0.4 $/Wp by 2035.

The last annual report for 2018 by Fraunhofer [14] reports that in the last 37
years each time the cumulative production doubled, the price went down by 24%.
This fast reduction of the PV module price has driven down the cost of PV system
globally, as con�rmed by International Renewable Energy Agency (IRENA) in
[15], with declines in balance of system (BoS) costs being a smaller contributor to
the overall cost decline. In the same report it has been observed that the global
weighted average cost of utility-scale solar PV projects declined by around 56%
between 2010 and 2015.

1.1.2 Total installed cost of residential solar PV system

The total installed cost reduction for residential PV systems has been following
a similar path, although some cost di�erentials remain within and between coun-
tries: in some cases, these costs di�erential are represented by structural factors
(as labor cost, infrastructure or administrative cost), in other cases they are not
easily explained [16]. Indeed, the reason for the huge variation in the reported
costs for solar PV system within individual markets is not well understood [17].
The average total installed cost for residential PV systems in the markets de-
clined sharply in a wide range of countries from 2010. Indeed, it decreased from
a range of between 4.3 $/Wp and 8.6 $/Wp in Q2 2010, to a range of 1.5 $/Wp
to 4.7 $/Wp in Q2 2016, i.e. between 46% and 74% [16]. Note the wide di�erence
between the di�erent market in Figure 1.2. Anyway, we can see that the costs
di�erences among the markets have declined in the last years and are expected
to continue to decline. Last IRENA publication [18] reports a decline in the res-
idential PV system costs of 47%-78% for the markets with the longest historical
data (Germany, Japan, US).

As an example, the history of a very advanced market like Germany can be
observed, as shown in Figure 1.3 [16]. Data collected from a data-set of o�ers
presented by installers to end-customer show that the median installed residential
cost in Germany decreased from 4.50 $/Wp in 2010 to 1.79 $/Wp in 2016 (a 60%
decrease). In pounds, the cost is more or less from 3.33 ¿/Wp to 1.33 ¿/Wp.
The total installed cost (capital cost) of a PV system is composed by the PV

module cost and the BoS cost. [7] The cost of the PV module includes the raw
material costs, the cell processing costs and module assembly costs. The BoS
includes the cost of the structural system, the electrical system costs and the
soft costs. A detailed breakdown of solar PV cost components is presented in
Figure 1.4. As previously said, the PV module price has driven the lowering of
the capital cost until now. However, with PV module prices at all-time lows, the
importance of the BoS cost increased, particularly the soft costs. Therefore, BoS
costs and �nancing costs will be mainly responsible for future reduction of the

2The learning rate expresses the price decrease with each doubling of the cumulated module
production.
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

Figure 1.2: Average total installed cost of residential solar PV systems by country,
Q2 2010 and Q2 2016.

total system cost. Total installed costs for solar PV systems have fallen rapidly
since 2008 as deployment has experienced exponential growth, driving down not
only module costs, but BoS costs as well. The Figure 1.5 shows the average
total installed cost of residential solar PV system by country, from 2006 to 2014.
The relevant part here is represented by the UK: as we can see the large-scale
deployment of PV system in this country began quite late with respect to the
other countries, but in 2014 costs were at quite competitive levels of between 2800
$/kW to 3100 $/kW. Figure 1.6 highlights the competitive level of UK price with
respect to other countries in 2014.

Applying the 2014 average exchange rate USD/¿ [19] as indicated by IRENA,
we can �nd values in accordance with the ones collected during the years by the
UK government. In [17] a projection for a cost reduction is proposed. In here,
it is stated that if BoS costs can be pushed down to very competitive levels,
average installed costs could range from 1600 $/kW to 2000 $/kW by 2025. In
accordance with the IEA hi-Ren scenario [13] the average cost will be halved by
2040 or before. From Figure 1.7 a decrease of ∼33% from 2015 to 2025 and a
decrease of ∼70% from 2015 to 2050 was extracted. Moreover, the wide span
presents for the di�erent market will narrow signi�cantly, and the system costs
are likely to converge towards the lowest value, except in places where the soft
costs are higher.

12
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Figure 1.3: Residential PV system costs in Germany by size category

1.1.3 LCOE: levelised cost of electricity

The decline in total installed costs has been driving the decline in the levelised
cost of electricity (LCOE)3 of solar PV between 2010 and 2014. The LCOE
of residential solar PV has declined to between 0.14 $/kWp and 0.46 $/kWp in
2014 in eight major residential markets IRENA has data for; it means that the
average LCOE in these markets declined by between 42% and 64% in only 4
years. Figure 1.8 shows that. This trend won't stop in the next years, indeed
IRENA forecasted that by 2025 the global weighted average LCOE of solar PV
could fall by as much as 59% with respect to the 2015 value.[15] With equipment
costs reaching low levels; future cost reductions could be driven by reducing BoS
costs, and lower operation and maintenance and �nance costs.[17]

Photovoltaic is expected to become one of the cheapest forms of electricity
generation during the next decades.[12] The LCOE has already reached par-
ity with retail electricity prices in many European market segments (residential,
commercial or industrial) all over Europe. Moreover, in contrast to conventional
energy sources, renewable energies are still the only ones to o�er the prospect of
a reduction rather than an increase in prices in the future.[20] �Grid parity (or
socket parity) occurs when an alternative energy source can generate power at a
levelised cost of electricity that is less than or equal to the price of purchasing
power from the electricity grid�. However, this doesn't mean that the PV plant is

3LCOE: It is de�ned as the average generation cost, i.e. including all the cost involved
in supplying PV at the point of connection to the grid: manufacturing, installation, project
development, operation and management, inverter replacement, dismantling, etc. Residual
value of the PV system after dismantling is not considered

13
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Figure 1.4: Detailed breakdown of solar PV cost component
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Figure 1.5: Average total installed cost of residential PV system by country, 2006
to 2014 [17]

Figure 1.6: Estimated average total installed PV system costs in the residential
sector by country,2014 [17]
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Figure 1.7: PV investment cost projection in the hi-Ren scenario [13]

Figure 1.8: Levelised cost of electricity of residential solar photovoltaic systems
by country, 2010 to 2014 [17]
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

cost-e�ective. With the progressive conclusion of subsidies and support schemes,
the ratio of self-consumption (SC) is at the core of the prosumers' competitiveness
. The competitiveness occurs when the PV LCOE value is lower than the real
value of energy (RVE), that depends on the SC. The RVE (also PV electricity
value) counts that the energy surplus injected into the grid is valued at a price
lower than the retail price, without support scheme. Usually, this energy is priced
at the wholesale electricity price reduced by an administrative fee. The following
equations shows how the LCOE is computed.

LCOE =
Total life cycle cost

Total lifetime energy production

LCOE =

CAPEX +
∑

t

[
OPEX(t)

(1+WACCreal)
n

]
∑

t

[
Y ield(0)(1−Degr·t)
(1+WACCreal)

n

] (1.1)

WACCreal =
(1 +WACCnom)

(1 + Infl)
− 1 (1.2)

CAPEX = Modules + BoS (1.3)

Where:

• t : year, from 1 to the economic lifetime of the system

• CAPEX : total investment expenditure of the system, made at t = 0 in
¿/kWp

• OPEX(t) : operation and maintenance expenditure at year t in ¿/kWp

• Yield(0) : initial annual yield at year 0 in kWh/kWp

• Degr : annual degradation of the nominal power of the system

• WACCnom : nominal weighted average cost of capital per annum

• WACCreal : real weighted average cost of capital per annum

• In� : annual in�ation rate

While we have already discussed about the CAPEX, let's explain the other
elements. The OPEX(t) for residential application is mostly null. However it usu-
ally counts for 1-2% of CAPEX. A common value is 20e/(kWp*year).[12] This
value is also expected to halve by 2050.
The annual yield of a PV system depends on the local irradiation and perfor-
mance ratio (PR).
The degradation is what a�ects the yield along the years. Most PV module man-
ufacturers guaranties at least 80% of nominal powers after 25 years. This would
mean a maximum average degradation of 0.9% per year. In reality, most sys-
tems degrade less in Europe: an average degradation of 0.2% per year has been
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

reported for German rooftop systems[21]. A very conservative value of 0.5% per
year is typically used.
Obviously, the degradation rate a�ects the system lifetime. An economic system
lifetime of 30 years was recommended by IEA PVPS Task 12 and 13 for life cycle
assessment studies.[22, 23]
WACC is here used as a discount rate to actualize the future cash �ows. The real
WACC, with respect to the nominal value, is a�ected by the in�ation rate.

A study conducted to investigate the true competitiveness of solar PV in
Europe concluded that some countries already reached the true grid parity, others
will reach the true grid parity in the next few years (analysis is presented for a
SC=50%). This depends on the nominal WACC taken into account, on the retail
and wholesale price of electricity, on CAPEX and OPEX and others more. Some
parameters a�ect the results more than the others, as shown in [12]. Figure 1.9
summarizes the results of the analysis.

Based on the literature review, some conclusions can be done. For the �nan-
cial attractiveness of the PV systems without considering support schemes, the
PV self-consumption is a key parameter to be increased. However, for residential
PV prosumers, the mismatch between the PV generation and the load pro�les is
rather inconvenient since social activities are often at other places during daytime,
and for the times of high electricity demand in the buildings, which is typically
in the evening hours, the PV generation is typically low or zero. In fact, for typ-
ical households and PV system designs the average direct self-consumption rate
is about 25-35%.[24, 25] Therefore, a way to increase the SC should be found.
Increasing the SC by reducing the size of PV installation is not desirable as it
reduces the share of renewable energy content in the energy mix of the house-
hold. Moreover, an increasingly PV penetration represents a non-dispatchable
power that, if not properly faced, results in higher systemic costs in terms of elec-
tricity network reinforcement, short-term supply-demand balancing and reserve
capacity.[26] Two main methods exist to increase the SC of solar electricity and
make the PV system more pro�table[20, 25]:

• Load shifting, controllable loads

• Application of a battery storage system

Both the ways aim at increasing the competitiveness of the PV system and
the �exibility of the entire system. Even if the �rst method is related to only a
few loads, it is a useful way to improve load pro�le by reducing the peak load
and peak valley di�erence [27] reducing the stress on the power system. We'll
talk about �exibility in the next subsection. Then, load management can help
in reducing the annual electricity demand that PV cannot supply, and it can
reduce the minimum load level, during the daytime, of the conventional power
plants, in particular if they require a long starting time, avoiding high speci�c
CO2 emissions.[28]
The second way involves the use of a battery storage. An entire chapter will be
dedicated to it.
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Flexibility: the cornerstone of tomorrow's power systems

The rapid growth of renewable energy in recent years has been remarkable. In
order to meet climate goals a lot of investments in this �eld have been made and
thanks to that, RESs costs decreased massively. This price reduction along with
a strong government policy support contributed to a large deployment of renew-
able energy source, solar PV in particular. [29] The renewable power sources also
come with a new set of challenges not faced before, like the variability of the
power generation that creates some uncertainties for the security and continuity
of electricity supply in the modern power system. Therefore, as variable renew-
able energy (VRE) penetration increases, power system �exibility needs to be
improved. To achieve this, investments in many di�erent �elds can be made[30]:

• Power plants

• Grids

• Energy storage

• Demand-side response

Flexibility, as de�ned by IEA(2011), �expresses the extent to which a power sys-
tem can modify electricity production or consumption in response to variability,
expected or otherwise�. In other word it is the ability of a power system to re-
liably and cost-e�ectively manage the variability and uncertainty of supply and
demand across all relevant timescales. In particular, this concept become funda-
mental with the increasing penetration of VRE.[29] The need to improve �exibility
can be illustrated by the foreseen evolution of the net load curve of spring days in
California, called the �duck chart� showed in Figure 1.10. It reveals how PV has
modi�ed the curve during daytime but has kept almost unchanged the demand
peak of the early evening.

1.2 BESS: the heart of the energy transition

The 2015 United Nations Climate Change Conference in Paris set the frame-
work for a rapid global shift to a sustainable energy system in order to avoid
the risk of catastrophic climate change.This is a task that demands urgent ac-
tion. Greenhouse gas emissions must peak in the near future if the world is to
steer clear of the costly and dangerous e�ect of climate change. Given the sharp,
and often rapid, decline in the cost of renewable power generation technologies
in recent years, the electricity sector has made concrete progress on decarboni-
sation. Renewable power deployment, however, needs to accelerate. All this has
brought into sharp relief the signi�cant potential, and the crucial importance, of
electricity storage to facilitate deep decarbonisation. In today's power systems,
solar and wind power still have limited impact on grid operation. As the share
of VRE rises, however, electricity systems will need not only more �exibility ser-
vices, but potentially a di�erent mix that favors the rapid response capabilities
of electricity storage.[31] Recently, battery storage technologies have seen rapid
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cost declines, and now start to become �nancially attractive.[12] They could in-
crease the �exibility in the short-term timescale in the future power system. [29]
In fact, they increasingly compete with gas-�red peaking plants to manage short
�uctuations in supply and demand[30], and they are fundamental to shift PV
surplus generation to other consumption times.[13] In general, energy storage
technologies can capture energy during periods when demand or costs are low, or
when the electricity supply exceeds the demand, and they can surrender stored
energy when demand or energy costs are high. Doing this, they provide system
bene�ts and �exibility to customers, system operator and utilities, also if ap-
plied at household level, reducing peak demand charges and increasing SC from
rooftop PV panels.[32] An advantage of the battery storage system, as Braun ae
al. underlined in the French-German Sol-ion project [33], is that it increases the
PV SC without changing people's consumption habits. California and Germany
were the �rsts in providing subsidies for distributed storage, followed by other
countries. The increasing interest is due to the fact that BESS can defer invest-
ment in other infrastructures of the grid and in the near future they can provide
ancillary services for the safe operation of the grid. From now on, only BESS
Li-ion technology will be considered.

1.2.1 Battery: Cell and pack level

Figure 1.11: BNEF forecast Li-ion bat-
tery pack prices. Source: Bloomberg
new energy �nance[34]

From 2010 to 2016 the cost decline
for Li-ion BESS systems was impres-
sive. In 6 years the cost of an EV
battery pack have fallen by 73% from
1000 to 273 $/kWh.[31, 34] According
to[12] the learning rate of batteries is
about 15-20%. Bloomberg new energy
�nance (BNEF) forecasts a learning
rate of 19% and a continuous dropping
up to 74 $/kWh in 2030.[34] At the cell
level, Tesla announced to probably do
better than 100 $/kWh at the end of
2018 and to achieve this result at pack
level by 2020.[35, 36]

1.2.2 Battery system

In the lasts years some policies to support deployment of energy storage were
emitted. Germany has been supporting the deployment of small-scale battery
energy storage system (BESS) since 2013. It o�ers a variety of incentive pro-
grams. California also emitted support policies. Then, others states and territo-
ries followed the Germany and California's lead. Italy, for example, provides a
tax rebate for battery storage in solar PV system.[32] For the moment, the most
emerging market segment includes the pairing of storage with residential or com-
mercial rooftop solar PV to increase SC through leveling the load curve. In the
last few years, thanks to �nancial support, about the 40% of small-scale solar PV
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systems in Germany have been installed coupled with battery system.[31] Some-
thing similar happened in Australia even without �nancial support. At present,
where the right regulatory structure is in place (Germany) or in areas with high
electricity prices and low feed-in remuneration, a signi�cant fraction of new PV
installation are coupled with a battery storage. It has to be underlined that in
stationary applications not only Li-ion technology is present and di�erent storage
technologies will prosper, however this one is the most promising and is expected
to dominate the market. For this reason, only Li-ion technology is discussed here.
As already said in the previous section, the cost of Li-ion batteries for transport,
have fallen down a lot in the last decade. However, Li-ion batteries in stationary
application have higher installed cost due to more challenging charge-discharge
cycles and battery management system. Figure 1.10 shows that between Q4 2014
and Q1 2017 the median system price o�ered to German customers has fallen
by around 60%.[31] Since a lot of improvements are expected in the next few
years, we expect this price to fall down with the same rapidity. According to [12],
in 2016 the battery system cost in Germany ranged from 750 e/kWh to 2500
e/kWh, with o�ers from the top 3 battery system suppliers for less than 1000
e/kWh available in the market. Moreover, the cost of battery systems declines
by about 18%, which will lead to an accelerated market in the coming years. To
compete in this rapidly growing market, i.e. the power sector, several companies
advanced new home storage options, like Daimler AG in Germany[32].

1.2.3 Li-ion BESS: future projection

Let's now present some studies taken into account. The di�erent results will be
then discussed in the following. All the values are reported in table 2.2.

Fuchs et al.[28] from ISEA (Institut fur Stromrichtertechnik und Elektrische
Antriebe) in a study conducted on behalf of Smart Energy for Europe Platform
GmbH (SEFEP), provided an overview of electricity storage technologies and
their potential application, with regards to the transition to an electricity system
with high share of renewable energies, motivated by the threat of global warming.
At the end a description of important electricity storage technologies with their
technical parameters and their deployment potential is presented. In particular,
a total installation cost between 364 ¿/kWh and 811 ¿/kWh for 2012 and a pro-
jection between 150 ¿/kWh and 296 ¿/kWh for 2030 is reported.

Muller et al.[37] presented an analysis based on literature and their own stud-
ies of 212 commercially available residential Li-ion BESS. A price based on that
for 2016 and then a projection for 2025 is presented. 2016 BESS prices for a
complete system price range from 578 ¿/kWh to 1052 ¿/kWh and is projected to
a range from 266 ¿/kWh to 484 ¿/kWh for 2025. A decrease of 54% in 10 years
can be observed.

Naumann et al.[38] presented a scenario based on their own investigations on
current prices of household BESS. As indicated an annually decrease of 4.96% is
assumed and an installation cost accounting for 5% of the whole investment price
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is taken. Data are reported snd discussed in the next chapter.

Schmidt et al.[39] using market growth models, developed an experience curve
and de�ned a timescale for the future cost of Lithium-ion residential BESS. They
noticed also that the already marketable products (i.e. Tesla powerwall) have a
commercial price lower than the one expected from the analysis, therefore the
real situation is promising for better results and to achieve the forecasted future
price sooner.

To have a comparison with a marketable product, Powerwall 2 of Testa is
taken into account.[40] Its total installation cost in UK, as reported in the o�cial
site, range between 577 and 715 ¿/kWh.

In [34] BNEF reports a projection for the expansion of the energy storage
system (ESS) market. In particular, BNEF expects a growth from 1GWh of in-
stalled capacity in 2017 to 81GWh in 2024. Then a further demand of 65GWh
is expected in 2025, ending with a 200 GWh of behind-the-meter ESS in 2030.

An analysis on the learning rate of Li-ion BESS was made by IRENA in [31].
In particular a LR between 12% and 16% is reported.
Two market size projection are reported in �Renewable Energy Roadmaps� by
IRENA: the REmap Reference scenario and the REmap Doubling scenario.[31]
The battery electricity storage energy capacity growth in stationary small scale
application for the period 2017-2030 is visible in Figure 1.13. The Reference sce-
nario forecasts a market growth from an installed capacity of 1 GWh in 2017 to
an installed capacity ranging between 56 and 94 GWh in 2030. The Doubling
scenario forecasts instead a growth that ranges between 101 and 236 GWh in
2030. A graphical representation of the market growth is shown in Figure 1.14.
From these data we can observe that the Bloomberg projection is more or less in
the middle of Remap Doubling scenario.

Finally, KPMG, in a report for the Renewable Energy Association (REA),
estimated the total cost of installation reduction pro�les for Li-ion BESS in do-
mestic sector.[41] The projections for high and low price and the annual declines
are shown in Table 1.1.

1.2.4 Financial plan

We wonder now if the additional cost due to the storage system paired to the PV
investment makes sense. Some studies concerning this topic have been analysed.
[20] reports that the additional storage costs already make sense in market with
high peak electricity costs in the evening, where a shift of only a few hours is
required to the energy stored in the battery. Moreover, according to various
reports and as showed in the previous section, the electricity battery storage
market's growth, together with a further retail price increase and a PV system
price reduction, could lower the levelised cost of electricity (LCOE) of a PV
system, coupled with storage, below average European electricity retail prices and
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Table 1.1: Total cost projection for domestic Li-ion BESS according to results
reported in [41]

year 2015 2016 2017 2018 2019 2020 2021 2022
%/year 12% 12% 12% 12% 12% 8% 7%
cost high
[¿/kWh]

1410.00 1240.80 1091.90 960.88 845.57 744.10 684.57 636.65

cost low
[¿/kWh]

845.00 743.60 654.37 575.84 506.74 445.93 410.26 381.54

year 2023 2024 2025 2026 2027 2028 2029 2030
%/year 6% 5% 4% 3% 3% 3% 3% 3%
cost high
[¿/kWh]

598.45 568.53 545.79 529.42 513.53 498.13 483.18 468.69

cost low
[¿/kWh]

358.65 340.72 327.09 317.27 307.76 298.52 289.57 280.88

make PV electricity the lowest cost option for more than 230 million Europeans
within the next 5 years.
Eusebio et al. [42] in 2016 demonstrated that in Portugal, where prosumers
receive a very low price for the surplus energy injected to the grid, the PV couped
with a battery system has obtained the grid parity, thanks to an increased self-
consumption and self-su�ciency; consequently the energy e�ciency has increased,
since the energy is produced locally.
A study conducted in France in 2017 by Yu [43] assessed the future economic
attractiveness of French residential PV system coupled with lithium-ion batteries
in 2030. It concluded that the PV system coupled with lithium-ion battery will
be competitive in France before 2030 under IEA scenarios.
Both these studies and even others highlight how a high level of self-consumption
is of importance for a cost-e�ective system in absence of feed-in tari�. Therefore
it's time to see if the BESS coupled with a residential solar PV system can be a
cost-e�ective and worthwhile solution for a UK landscape. It will be analysed in
the next chapter about the methodology.

1.3 Forecast

1.3.1 PV power production

The deployment of variable renewable generation is introducing new requirements
on forecasting techniques. Moreover single PV plants may be exposed to mar-
ket trades, and microgrid operations with self-consumed PV electricity require
forecast at building or district level.[44] In fact, the development of micro-grids
and combined PV+storage systems requires local energy management which, for
optimal operation, relies on predictive control. Single-system or neighborhood-
level power forecasts on timescales from a few minutes to 24 hours are therefore
necessary. The �rst approach in PV power forecasting relies mostly on the pre-
diction of relevant weather parameters (temperature and irradiance at least, then
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humidity etc.) followed by a calculation of the power output. This approach
may be based on existing weather tools: these tools can be based on satellite
data, ground stations or a mix of them. Many techniques for medium-short time
horizon exist. Among all, numerical weather predictions (NWP) techniques are
mainly used. Benghanem et al. used a radial basis function network for modeling
and predicting the daily global horizontal irradiance (GHI) data using other me-
teorological data such as air temperature and sunshine duration as an input, and
it was found a correlation coe�cient of 98.80%. [45] In [46], a practical multi-
layer perceptron (MLP) network forecasting of 24 hours ahead of solar irradiance
has been developed, and a correlation coe�cient of 98% for sunny days and 95%
for cloudy days resulted. GHI forecast is then performed by di�erent companies.
Meteotest [47], for example, deliver forecasts and measurements for power grid
management, power trading, monitoring and operation of PV plants, building
automation and facility management. In particular, they o�er a forecast service
based on sophisticated calculation tools and interpolation models, with more than
30 years of experience and data, and that uses a wide combinations of weather
stations, geostationary satellites and a globally calibrated aerosol climatology to
perform forecasts. A number of weather professional companies that o�er these
kind of services can be found. Then, from weather data, the PV power output
is computed. In [48] a number of PV performance modeling tools are analysed.
The study assesses that all tools achieve annual errors within ±8% and hourly
RMSE<7% for all systems. These tools count on mathematical equations related
to physics. Otherwise, methods based on stochastic learning techniques can be
used. These can be separated in two classes: univariate methods and multivari-
ate methods. In the second one, exogenous variables such as GHI, temperature,
humidity or pressure are fed into the model together with the target model. This
family includes:

• MLR: multi-linear regression model

• SVM: support vector machine

• ANN: arti�cial neural network

• Regression tree

A case study presented in [44] uses an ANN approach to estimate the PV
power production. In particular, a feed-forward MLP with a single hidden layer
is used. The goal is to estimate the PV power production as a function of the
ambient temperature and the GHI. It was found that, for all the cases, the rel-
ative mean bias error (MBE) ranged between 1.36% and 5.2%, the relative root
mean square error (RMSE) varied between 5.26% and 8.99%, while the correla-
tion coe�cient was between 0.9862 and 0.9954. Another study by Mellit et al.
[49] proposed an ANN developed and implemented on experimental climate and
electrical data for predicting the performance of a roof-top grid-connected pho-
tovoltaic (GCPV) plant. In particular, a multivariate model based on the solar
irradiance and the air temperature is presented, and the results show a good ef-
fectiveness between the measured and predicted power produced by the plant. In
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fact, the found correlation coe�cient is in the range of 98�99%, while the MBE
varies between 3.1% and 5.4%.

Performance parameters

Many parameters are used to evaluate the performance of the forecasting method.
Here some of them are presented.

• Mean Bias Error

MBE =
1

N

N∑
i=1

(Y forecast − Y real) (1.4)

• Mean Absolute Error

MAE =
1

N

N∑
i=1

| Y forecast − Y real | (1.5)

• Root Mean Square Error

RMSE =

√√√√ 1

N

N∑
i=1

(Y forecast − Y real)
2 (1.6)

As stated in [44], it is good practice to integrate the error only over day hours,
since PV production is sure to be zero in the night, and to normalise the error
by the nominal peak power of the system.

1.3.2 Residential load forecasting

Many studies concerning methodologies for aggregated load forecasting are present
in literature, and these have helped network operators and retailers in optimiz-
ing their planning and scheduling. Therefore, utilities focused on a cluster of
loads. Nowadays, forecasting for the entire grid has been achieved with relatively
high accuracy. However, the increasingly deployment of distributed generation
(mainly PV) and storage systems has generated new demand for disaggregated
load forecasting techniques for a single customer,[50] mainly to perform a home
energy management system (HEMS) for planning the operation of storage sys-
tems in the context of upcoming schemes for demand response, accordingly to
real-time and dynamic pricing.[51, 52] Indeed, a transition to a more distributed
energy generation is focusing the attention towards a decentralization of the elec-
tricity market and demand side control systems. Therefore in the near future
the scale of management will move from a centralised control down to microgrid
and single household level.[51] However, the load forecasting at residential level
is more challenging than for a commercial building or some larger loads that has
periodic loads characteristics. Indeed, at the single residential household level,
the hourly energy consumption is small and highly variable, since it depends on
the number of people inside the home, the kind of electrical appliances running at
that time, stochastic people's behavior and so on.[52] Many di�erent techniques
have been used up to now for the electricity load forecasting. We can group them
in three classes:
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• Statistical methods including time series analysis techniques and regression
methods (ARMA and ARIMA, MLR)

• Arti�cial intelligence methods that use SVM or ANN. Stochastic models
like Markovian models have been recently developed for electricity load
prediction.

1.4 Peer-to-Peer electricity trade and BSCS: lit-

erature review

As previously said in the introduction chapter, if a decentralization of energy gen-
eration is taking place, a decentralization of all the entire system may perform
better than the conventional one. In particular, the market for the P2P trading
of energy and a decentralized and active control of generation and demand have
to be performed, in order to increase the value of the DERs. In literature, several
studies tried to face this problem form di�erent point of view, however it is still
widely open and needs to be examined in depth.
Luth at al. [53] optimised a model to represent the P2P interaction for a small
community with stationary storage located at the customer level or a central bat-
tery shared by the community. However some limitation can be detected: in fact,
they assume that prosumers cannot feed-in to the grid and they analyze only a
decentralised control of the batteries.
In [54] a market procedure for a community microgrid in presence of the utility
grid is presented. Within this microgrid, each node has full control over its local
energy resources and its energy plan is based on its own personal bene�t. It is
shown that both sellers and buyers will always bene�t from participating in this
market.
In [55] a battery strategy based on an easy feasible persistence forecast and on
a perfect forecast is presented. From the comparison of both the strategies it
has been demonstrated that a storage system management based on forecasts
has a higher potential to relieve the grid than a system that only maximizes self-
consumption, as it is used nowadays.
In [56] three di�erent market paradigms are proposed to apply P2P energy trad-
ing in a community microgrid. It was found that energy trading resulted in a
reduction of community energy cost. The limitation of this work lies in the fact
that no batteries are present in the analysed microgrid.
In [57] a home energy management system model based on PV and load forecast
that controls a residential battery system connected to a rooftop PV system is
presented and the impact of forecast error on household economics is examined.
In [58] a third party entity controls distributed batteries owned by clients per-
forming a two-stage (day ahead and real time) aggregated control to realize P2P
energy sharing in a community microgrid. Economic bene�ts, compared to con-
ventional peer-to-grid (P2G) energy trading, are observed for all the prosumers
and consumers within the community microgrid.
In [59] the in�uence of electricity pricing models on the pro�tability and man-
agement of residential BESSs has been investigated. In particular is has been
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demonstrated that opportune price structures, like the proposed enhanced Time
of Use pricing policy, are able to opportunely drive private BESS investments and
to increase the network hosting capacity.
In [60] Zhang et al. designed a P2P energy trading platform where the energy
trading was simulated using game theory, and they found that P2P energy trad-
ing is able to improve the local balance of energy generation and consumption.
In [4] possible microgrid control architectures from highly centralized to fully
distributed P2P techniques are classi�ed. Then a control paradigm based on
coupled microgrids, P2P communication and autonomous control, is proposed,
as suggestion of an appropriate strategy to face the increasing penetration of
DERs. It must be noted that the realization of P2P energy trading mostly de-
pends on the national regulatory as well as enabling technology. A number of
trials and projects on P2P energy trading have been carried out in recent years.
Some of them focus on business model and energy market platform, some others
are targeted at the local control and Information and Communications Technol-
ogy (ICT) system for Microgrids [61, 62]. Among the technology and paradigm
to realise an energy trading system in or among local Microgrids, the idea of
Blockchain was used in many trials [62, 63] and seems to be a promising technol-
ogy to regulate energy market system, as shown in Australian trials [63]. Based
on the challenges discussed at the beginning of this chapter and the relevant
studies that can be found in literature just presented, this project aims to exam-
ine deeper on the topic, evaluating techno-economic bene�t of di�erent control
strategies and proposing a decentralised market structure. From the next chapter
the methodology of the project to ful�ll the targets will be presented in all the
details.
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Figure 1.9: Summary of the time when true grid parity is reached in the residential
segment with SC=50%, for di�erent values of nominal WACC
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Figure 1.10: Expected evolution of the net load in a typical spring day in
California[13].

Figure 1.12: Home storage lithium-ion system o�ers in Germany from Q4 2014
to Q1 2017. Source: IRENA, based on EuPD Research,2017.
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Figure 1.13: Battery electricity storage energy capacity growth in stationary
application by sector, 2017-2030. Source: IRENA[31]

Figure 1.14: Small-scale BESS growth scenario: REmap Reference scenario and
REmap Doubling scenario by IRENA
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Chapter 2

Methodology

Linking to the literature review, this chapter will present the personal data pro-
cessing, all the methods used in the formulation of the problem and all the instru-
ments that have been chosen to do it. Everything in this chapter will be needed
to introduce the case study of the next chapter.

2.1 Solar PV system in small-scale application:

Future system installation cost projection

Starting from data collected from literature review presented in section 1.1 a pro-
jection for the future prices of the residential solar PV system is here proposed.

From the data collected by the UK government and using the range of future
cost development in di�erent scenarios based on IEA projection [13] and a study
based on that [11], a future forecast for the total cost of a residential PV system
in the UK has been computed. According to the future scenarios from IEA, a
cost reduction of 19% to 36% by 2025 and a cost reduction of 40% to 72% by
2050, compared to 2014 cost, is expected. Table 2.1 reports the data collected
by the UK government [64] for years 2014 and 2018. Data in 2025 and 2050 are
the result of the computed forecast. In Figure 2.1 the result of the forecast is
presented.

Table 2.1: Residential small-scale PV system collected by UK government[64]
and future projection according to [11, 13]

Year
2014 2018 2025 2050

Cost
[¿/Wp]

max 2.08 1.85 1.68 1.25
mean 2.07 1.84 1.49 0.91
min 2.06 1.83 1.31 0.58
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Figure 2.1: Forecast of small-scale PV system in UK

Figure 2.2: PV system CAPEX development 2016-2050 for di�erent market seg-
ments.

2.1.1 Discussion: results evaluation

The curves in Figure 2.1 are only indicative, indeed the history of UK PV mar-
ket is recent and it will likely have a better progression in the next few years.
Moreover, while the mean value reported for 2018 by UK government is 1840
¿/kWp, the median value is 1700¿/kWp. A comparison can be made with the
already mature German market, where the average residential PV system cost
was already 1407 ¿/kWp in 2014, it was lower than utility-scale projects in many
countries. [17] In 2016 it was 1.33 ¿/Wp instead. [16] Moreover, if BoS costs can
be pushed down to very competitive levels, average installed costs could range
from 1023 ¿/kWp to 1279 ¿/kWp by 2025.[17] Since the market is expanding a
lot and in a global way it's likely to expect greater improvements in the UK res-
idential system price in the next few years. The validity of this forecast is �nally
con�rmed by the provision made by the European Technology and Innovation
Platform (ETIP) Steering Committee[12] showed in �gure 2.2.
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Figure 2.3: BESS's cost projection in terms of the market size

2.2 Li-ion BESS for small-scale application: ac-

tual price and future projection

Future cost projections for the Li-ion BESS solar PV system from the literature,
previously presented in section 1.2, are here recalled. Two projections to 2030
have been developed to be compared to data found in literature. They are now
presented.

The expansion of the BESS market projected by Bloomberg was considered.[34]
In particular, BNEF expects a growth from 1GWh of installed capacity in 2017
to 81GWh in 2024. Then, a further demand of 65GWh more is expected in 2025,
ending with a 200 GWh of behind-the-meter BESS in 2030. A learning rate of
12% and 16% is considered as suggested by IRENA.[31] The starting point of this
analysis can be found in [37]; it was chosen because it re�ects the average cost of
212 commercially available residential Li-ion BESS. Given the two learning rate
and the future size of the market, two curves representing the cost reduction of
the BESS system in terms of the market size have been computed and showed in
Figure 2.3. Then, after that the price in the future years have been computed,
two �tting curves using MATLAB �tting tool were found in order to make a
projection of the system cost along the time. The results are shown in Figure 2.5
with the labels "BNEF proj. LR=12%" and "BNEF proj. LR=16%". Results
will be discussed below.

Another projection has been made taking into account the Renewable En-
ergy Roadmaps by IRENA. In particular, the REmap Reference scenario and the
REmap Doubling scenario already presented in section 1.2.3 are used. Choosing
a price of 850 ¿/kWh in 2017 as starting point and computing a future price
based on the 2 above mentioned scenarios and the two learning rate of 12% and
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Figure 2.4: Small-scale BESS price projection according to REmap Reference
scenario and REmap Doubling scenario by IRENA

16% previous discussed, a forecast of 2030 system price can be done. The sce-
nario's starting point is the average price of commercial products available for
UK market, taken from [65]. The projected future battery system price range
between 283 ¿/kWh ad 408 ¿/kWh in the Reference scenario and between 217
¿/kWh and 367 ¿/kWh in the Doubling scenario, as shown in Figure 2.4. An
evolution path is not present because of insu�cient data. The results are reported
in Table 2.2 with the labels "IRENA reference scenario" and "IRENA doubling
scenario". Then, to make results more compact, only border data are shown in
Figure 2.5, identi�ed by the label "IRENA analysis".

Finally, all the projections analyzed in section 1.2.3 and the two ones dis-
cussed above are presented in Figure 2.5. All the results and data collected are
summarized in Table 2.2.

2.2.1 Results and discussion

First of all, �nding the values for the analysis has not been simple at all since the
technologies are quite recent and the application in this �eld even more. Li-ion
technologies have bene�tted from signi�cant investment in recent years due to
their versatility that enables them to be deployed in a wide variety of applica-
tions, but the utilization of a BESS coupled with PV is recent, and due to the
fact that the price of the technologies decreased steeply. Indeed, many values
that are easily found in literature refer to EV batteries and not to stationary
applications, and most of the time, if related to stationary applications, most of
researches refer to utility-scale applications. Other times instead, values are not
reported numerically but only graphically. As visible in Figure 2.5, nowadays
there's a wide span on the cost of technologies. This is due to the fact that there
are a lot of di�erent sub-technologies of Li-ion batteries, each one characterized
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Table 2.2: Prices of the Li-ion BESS for small-scale application in accordance to
the literature and personal data processing as previously explained. NB: All the
prices are in ¿/kWh

Year
2012 2014 2015 2016 2017 2018 2024 2025 2030

BNEF proj.
LR=12%

825 371 315

BNEF proj.
LR=16%

825 276 221

ISEA for
SEFEP

811
364

296
150

IRENA reference
scenario

850
408
283

IRENA doubling
scenario

850
367
217

Muller et al.
1052
578

484
266

Naumann et al. 591 550 506 376 355 248
Schmidt et al. 1235 1152 977 508 345

KPMG for REA
1410
845

1241
744

1092
654

961
576

569
341

546
327

469
281

Tesla powerwall 2
715
577
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Figure 2.5: BESS future cost projection for small-scale application

by di�erent maturity and cost, and also because the scarce data and the high
uncertainty in the forward-looking analysis for a technology that is rapidly inno-
vating. Fortunately, the Lithium Iron Phosphate (LIP) [37] and Lithium-nickel-
manganese-cobalt-oxide (NMC) [66] chemistry setups, that are nowadays used
for stationary storage thanks to a long lifetime, high cycle stability and very high
safety conditions, also have a moderate cost with respect to other chemistries.
Then, we can observe that di�erent studies have a similar path and all converges
towards a narrower range. For these reasons, on the base of the knowledge that
can be found in literature, the forecast is considered e�ective. In Figure 2.6 a
common area of the several projection has been bounded with a yellow dotted
line. Prices of Li-ion BESS for small-scale applications are expected to belong to
this area with a certain con�dence. Then, only the outlook for 2030 is presented,
indeed, the technology uncertainty beyond 2030 renders any further discussion
highly speculative. On the base of that, the results of any analysis presented
should be treated with cautions, as also suggested in [31]

It's visible that all the di�erent market growth scenarios by Bloomberg and
IRENA expect a huge development of the market, therefore a question is imme-
diate: Is the manufacturers ready to face a so huge growth?
As reported by some analyst at Bloomberg NEF [67] the demand of Li-ion batter-
ies for EV and stationary energy storage purposes is growing as never seen before
and the supply is struggling to keep up. Up to now the market have been depen-
dent on a few producers, like Panasonic (Japan), Samsung SDI and LG Chem
(Rep. f Korea), BYD and Contemporary Amperex Technology(CATL) (China),
Tesla (USA), E.ON and Sonnen and Deutsche Energieversorgung and Daimler
AG (Germany) [32]. That's why the demand just necessitates new suppliers.
Anyway, on average, prices have nonetheless fallen this year. The reason may be
simple enough. In fact, new manufacturing capacity is being added quickly, par-
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Figure 2.6: BESS future cost projection for small-scale application: common area
of di�erent projection

ticularly in China. This is con�rmed by BNEF's energy storage analyst Sekine,
that sees enough manufacturing capacity in China planned over the next three
years to meet the total global battery demand for batteries.[67] CATL and BYD
are building huge factories in China and Germany, and also South Korean battery
giants are planning to expand the production in the next few years. Currently, au-
tomakers are holding o� on their own production until there are further advances
in battery technology, but they are investing a lot on their suppliers. Several
companies, by the way, advanced new home storage options to compete in this
new rapidly growing market, and in the near future new companies are expected
to emerge and join the market. Therefore, the market growth is massive. Ex-
isting suppliers are investing a lot and new suppliers are expected to join the
market since it's pro�table and in expansion. Moreover, the constantly lowering
of the price is a sign that the suppliers are facing the market demand and the
investments already planned represent a sign that hopefully the manufacturers
are ready to face the future demand.
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2.3 Financial evaluation: PV system and Li-ion

BESS in UK

Is it worth to have a Li-ion BESS coupled with the residential PV system in UK?
This is the question we want to answer to.

Feed-in Tari�s (FITs) is a Government scheme designed to encourage uptake
of a range of small-scale renewable and low-carbon electricity generation technolo-
gies. On 19th July 2018 the government con�rmed the FiT scheme to close in full
(the export tari� alongside the generation tari�) to new applications after 31st
March 2019. Currently the government has not announced that there will be an-
other incentive scheme to replace it.[68, 69] However, having received comments
on the importance of maintaining a route to market for small-scale low-carbon
generation after 31 March 2019, Government published a call for evidence on the
future of small-scale low-carbon generation in the summer and they will follow
this up with speci�c proposals for future arrangements in due course. In fact, the
arguments put forward included that it would be unfair for small-scale generators
to provide free electricity to the grid when not self-consuming.
The Renewable UK's executive director Emma Pinchbeck released that "the good
news, as we look beyond FITs, is that solar is coming of age and while solar always
makes great environmental sense it now makes economic sense for most investors
without public subsidies given fair treatment by government. An average domes-
tic solar system cost ¿12,000 in 2010. It is more like ¿5,000 today.�[70]
On the base of that, it's fundamental to understand if installing a PV system in
the residential sector is cost e�ective for an user in UK. Now, an answer to this
question will be given.

2.3.1 Data de�nition: PV

For the PV system, real data from an existing 4kWp PV plant sited in an house-
hold rooftop in Loughborough (UK) are taken. Data have been collected for an
entire year, from 01/01/2017 to 31/12/2017, with a 5 minutes resolution. For this
analysis, a coarser hour resolution is considered. Data are reported in table 2.3.
Afterwards, all the data have been scaled to the similar (same characteristics) PV
plant but with a smaller capacity of 3kWp, since it is a common installed size.
The average daily pro�les per each month for a 3kWp PV system installed on a
household's rooftop sited in Loughborough are presented in �gure 2.7a. From
calculus, an annual yield of 888 kWh/kWp resulted for the considered plant.
This value appears to be extremely low. Indeed, as reported in [71], in 2014 the
average annual yield for solar PV system in UK was found to be close to 960
kWh/kWp. Therefore, thanks to an improved module performance and reduced
system losses we should expect an higher value. For this reason, a second value
of 1000 kWh/kWp is taken into consideration for the analysis. A this little value
(888 kWh/kWp) can be due to:

• Measurements' errors. Data were a�ected by errors, noticeable in the nigh
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registration where values must be zero. To clean data from these uncertain-
ties a simple Matlab code was written

• A particularly rainy and cloudy year

• Missing values in the data. Indeed, data had to be manipulated since, due
to failures of the meter, several data were missing or classi�ed as 'NaN' (Not
a Number). Some data have been handled personally, some others with a
simple code written in Matlab.

In �gure 2.7b the average annual daily production for the two di�erent values
of annual yield are presented and in Table 2.4 the corresponding values can be
found.
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CHAPTER 2. METHODOLOGY

Table 2.4: Daily average pro�le for a 3kWp rooftop PV system sited in Lough-
borough (UK) for two di�erent annual yield's values

t
Average
pro�le 1

Average
pro�le 2

1 0.000 0.000
2 0.000 0.000
3 0.000 0.000
4 0.001 0.001
5 0.027 0.030
6 0.076 0.085
7 0.163 0.184
8 0.302 0.340
9 0.467 0.526
10 0.672 0.757
11 0.832 0.937
12 0.915 1.030
13 0.924 1.041
14 0.861 0.970
15 0.735 0.828
16 0.555 0.625
17 0.364 0.410
18 0.214 0.241
19 0.094 0.106
20 0.054 0.061
21 0.024 0.027
22 0.000 0.000
23 0.000 0.000
24 0.000 0.000

Daily production
[kWh]

7.280 8.200

Annual production
[kWh]

2663.298 3000

Yield [kWh/kWp] 887.766 1000

2.3.2 Data de�nition: Household load pro�le

For this analysis, two very di�erent household demand pro�les are chosen.
Load pro�le of 'house 1' in table 2.5 was obtained using the CREST Demand
Model, that is a high-resolution stochastic model of domestic thermal and elec-
tricity demand that can be found in [72]. The model produces one-minute res-
olution demand data, dis-aggregated by end-use, using a bottom-up modeling
approach based on patterns of active occupancy and daily activity pro�les de-
rived from time-use survey data. From a generated pro�le, the load pro�le with
hourly resolution was computed and reported in Figure 2.8. The load pro�le of
'house 2' in table 2.5 was found in a database of the Northumbria University and
is and average load pro�le of a residential unit. The �rst pro�le is related to an
annual consumption of 4776 kWh and the second one to an annual consumption
of 3800 kWh more or less. Those two values make sense since, in accordance with
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(a) Average daily production per month for a 3kWp PV system in Loughborough (UK).

(b) Average daily production for di�erent yield.

Figure 2.7: PV production based on a real PV plant installed in an household's
rooftop in Loughborough (UK)
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Table 2.5: Daily average load pro�le for two di�erent households

t house 1 house 2
1 0.367 0.235
2 0.091 0.235
3 0.097 0.205
4 0.085 0.200
5 0.081 0.195
6 0.096 0.200
7 0.110 0.480
8 0.205 0.480
9 1.358 0.400
10 0.290 0.390
11 0.103 0.320
12 0.375 0.330
13 0.359 0.480
14 0.266 0.400
15 2.100 0.320
16 0.218 0.310
17 0.103 0.320
18 0.179 0.650
19 0.867 0.660
20 1.815 0.850
21 1.572 0.830
22 0.771 0.700
23 0.658 0.700
24 0.918 0.500

Total [kWh] 13.085 10.390
Annual
cons. [kWh] 4776.206 3792.350

a national statistic of the Department for Business, Energy & Industrial Strategy,
the average household consumption in the last 10 years (from 2008 to 2017) was
of about 3880 kWh.[73]

2.3.3 Financial evaluation

To evaluate the cost-e�ectiveness of the PV plant and eventually of the PV plant
coupled with a Li-ion battery storage, the LCOE (see subsection 1.1.3 ) and the
net present value (NPV) will be evaluate.

The NPV is the di�erence between the present value of cash in�ows and the
present value of cash out�ows over a period of time. It is used to analyze the
pro�tability of a projected investment. NPV is de�ned as:

NPV =
∑
t

(
Rt

(1 +WACCreal)
t

)
(2.1)

where:

• Rt: net cash in�ow-out�ows during a single period t

• WACCreal: real discount rate
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Figure 2.8: Household pro�le chosen for the �nancial analysis.

• t: number of time periods (years)

In this analysis, according to the literature presented, some assumptions are
made:

• Lifetime of the PV system: 30 years

• CAPEX: 1800 ¿/kWp

• OPEX(t)= 18 ¿/kWp/year

• PV system degradation: 0.5%

• Lifetime of battery: 10 year. This value is considered taking into account
warranty on the batteries given by manufacturers[74]

• No O&M costs related to the battery

• SOCmin=0%, SOCmax=100%

• Unitary battery e�ciency

• BESS cost, according to analysis of section 2.2 is considered 570 ¿/kWh
for installation at year 0, 230 ¿/kWh for replacement at year 10, and 200
¿/kWh for replacement at year 20.

• In�ation: 2.20% �xed along the years. This value is the average computed
on the historic in�ation rates of the last 10 years.[75] This is an optimistic
value if we consider that in�ation rate in 2017 was about 2.7% and in 2018
was 2.5% [76, 77], but the last projections shows a decreasing trend in the
near future[78], therefore a this value should be representative (even if an
higher level would give a better result).

• WACCnom=4%
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Table 2.6: Case study for the �nancial evaluation of the PV system, eventually
coupled with the BESS, in UK

Annual cons.
[kWh]

PV power
[kWp]

Yield
[kWh /kWp/year]

BESS capacity
[kWh]

Case 1 4776 3 1000 2
Case 2 4776 3 888 2
Case 3 3792 3 1000 2
Case 4 3792 3 888 2

• Given these data of WACCnom and In�ation, the WACCreal results equal to
1.76%, in accordance with Equation 1.2.

• Annual consumption �xed during the years

• The variable retail electricity price equal to 0.16 ¿/kWh and an average
�xed cost of 77 ¿/year are kept constant over the years.
To choose these values, various reports of the O�ce for National Statistic
were evaluated. In particular in [79] an average variable unit price of 0.144
¿/kWh and an average �xed cost of 72.03 ¿/year for 2017 was presented,
with a change on the average annual domestic standard electricity bill in
the period 2016-2017 of +5.7%[80]. The same study for 2018 [81] reports
an average variable unit price of 0.158¿/kWh and an average �xed cost of
¿77.02 ¿/year.

• Price of fed-in surplus PV generation paid by the grid: 4.614 c¿/kWh.
This has been computed as the average of day ahead base-load contracts
in 2017/2018 in the UK reported by O�ce of Gas and Electricity Markets
(Ofgem) [82] reduced by a 10% administrative fee, as suggested in [12].

• The price o�ered in the market for surplus PV generation is considered to
be the LCOE of the system

Four case study presented in Table 2.6 have been analysed from a �nancial point
of view. To perform the analysis an Excel worksheet is used. Here, just one case
is presented and then a discussion about the sensitivity of the results for the other
cases is presented.

2.3.4 Financial analysis: Results

Case 1

In Figure 2.9, the household load pro�le and the solar PV generation pro�le for
case 1 are visible. From here, a SC=47.24% is computed. After that, input data
are entered in the excel worksheet shown in Figure 2.10. Then, the �nancial plan
is computed and shown in Figure 2.11.

We can notice that from this evaluation, with these input data and without
incentives, the PV system seems not to be cost-e�ective. In fact, the NPV at 30
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Figure 2.9: Household load pro�le (blue) and average PV production pro�le
(orange) in case 1

years is negative and the real value of energy is lower than the LCOE. Things get
better if an installation cost of 1700 ¿/kWp that is the real median value reported
by UK government (see section 2.1) is considered since the 300¿ less in CAPEX
bring to a positive NPV and equal to 127¿ thanks to a reduced LCOE=0.0979
¿/kWh that is lower than the RVE=0.0999¿. Therefore, we ask now what rate
of SC should be achieved for this plant to become cost e�ective for the user.
To answer to this question, the SC is varied ad the result is then plotted and
visible in Figure 2.12. Results show that, with these input data, the solar PV
plant become cost e�ective for a SC=49.6%. In the case of an installation cost
of 1700 ¿/kWp, this value decrease to 45.5%. Therefore, it's clear how much the
expected reduction in installation cost analysed in section 2.1 will determine the
cost-e�ectiveness of the solar PV system in UK. The battery system is now added.
Let's assume that the battery can do 1 full cycle per day. The SC increases to
a level of 71.63%. New input data are shown in �gure 2.13, results are shown in
�gure 2.14 instead.

We can observe that the LCOE of the system increased because of the presence
of the battery. The outcomes due to the battery system can be observed in the
�rst column of costs in Figure 2.14, at year 0, 10 and 20. The LCOE increased
from 0.1025 ¿/kWh to 0.1304 ¿/kWh (that is anyway lower than the variable
cost of energy), but also the real value of the energy increased from 0.0999 to
0.1277¿/kWh. Note that the NPV got worse of only 5¿. Many simplifying
assumptions were made on the battery and therefore results must be treated
with cautions, but we can certainty a�rm that the battery coupled with the PV
system almost repay itself. This will make Li-ion desirable soon, especially if UK
government won't renew support scheme of feed-in tari�. Let's now suppose the
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Figure 2.10: Data and features of solar pv system, case 1

Figure 2.11: Output of �nancial evaluation, case 1
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Figure 2.12: Trend of NPV and RVE when varying the SC rate in case study 1

Figure 2.13: Data and features of solar PV system, case 1+BESS
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Figure 2.14: Output of �nancial evaluation, case 1+BESS

Table 2.7: NPV for case 1, with and without battery, if LM is present

NPV case 1
Power sold to
LM [kWh]

no BESS BESS

425.5 362 599
851 866 1375
1583 1761 -

presence of a local market (LM) where a P2P energy trading is implemented and
let's suppose that the 50% of the surplus PV energy injected into the grid is sold
among users in this market at the LCOE of the system. The results of Figure 2.15
is cheering. Indeed, a positive NPV(30) of 599¿ is obtained, this value increases
up to 1375¿ when all the surplus injected energy is sold within the local market.

Let's turn back to the case 1 without the BESS and let's consider the pos-
sibility to sell in the local market at the LCOE the surplus energy injected into
the grid. It results that selling the same amount of energy considered previously
is not as pro�table as the case with battery; if there's the possibility to sell all
the energy produced, it is more pro�table instead. Data are shown in Table 2.7
and compared with the case with battery. This table shows us that having the
battery in this case is more pro�table than not having, at least up to a certain
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Figure 2.15: Output of �nancial evaluation, case 1+BESS+P2P in LM

value of energy.

Discussion on the �nancial plan for case 2,3,4

Based on the case presented above and all the other cases analyzed (see Table 2.6),
some results are now illustrated and discussed.

• From the analysis, it emerges that for the cases 2 and 4, where the PV yield
is very low (888 kWh/kWp) the PV plant is cost e�ective with at least a
SC=60.90%. An empiric curve that shows, for each value of the yield, the
minimum SC needed to make the NPV positive after 30 years for the data
presented, can be found in �gure 2.16. Obviously, lower the yield, higher
the minimum SC needed.

• Case 4 presents the same PV plant of case 1 but an higher SC, equal to
52.98%. As shown in Figure 2.12 this value is su�cient to make the in-
vestment of the PV system pro�table, indeed the NPV results equal to
251¿.

• In all the cases, the battery system repays itself in the lifetime and therefore
it represent, from the �nancial point of view, an interesting choice for the
next future.

• in all the cases, the LCOE of the PV plant is lower than the variable retail
energy price (grid parity).

• In all the cases, the possibility of selling the surplus energy (or part of
it) within a local market at the LCOE of the system improves the money
balance.
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Figure 2.16: Minimum SC to have NPV positive after 30 years for di�erent values
of the yield and prices previously presented

• The battery increased the self-consumption of about 25% in the cases pre-
sented here.

• The PV system not always appeared to be cost e�ective, but things get a
bit better if the median value of the PV system installation cost reported
by UK government (see section 2.1) is considered.

In conclusion, based on the data found in literature, the solar PV system
in UK seems not to be always cost e�ective without incentives, even if the grid
parity has already been reached. The installation of BESS represents a possible
solution to increase the SC, particularly in absence of remuneration for the fed-in
energy. The presence of a decentralised (local) market for the trading of surplus
energy represent a bene�cial option to reduce not only the PV system owners'
(prosumers) bills but also other consumers' bills since energy at a lower value
than retail price is trade.

2.4 Forecast

2.4.1 Solar PV plant generation pro�le

Based on the literature review, I tried to develop a forecasting model for the
PV production of a real roof-top grid connected PV system, based on weather
information and calendar data. After several tries, an acceptable model was found
using the "nntool", a Matlab Arti�cial Neural Network Toolbox. A MLP with the
back-propagation (BP) was selected for the time-series prediction. In particular
a feed-forward neural network with 2 layers and 12 neurons in the hidden layer
is visible in �gure 2.17. To train the network, a training function that updates
weight and bias values according to gradient descent with momentum (GDM) is
chosen. This function was used, instead of the more common network-training
function that updates weight and bias values according to Levenberg-Marquardt
optimization, since better results were obtained. The Mean squared normalized
error performance function (mse) is used to measure the network performance
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Figure 2.17: Representative scheme of the ANN used for PV power production
forecasting

Table 2.8: Performance parameters of forecast tool

MAE [%] MBE [%] RMSE [%] R [%]
4.63 0.32 6.50 94.67

function. Then, the Hyperbolic tangent sigmoid transfer function (tansig) was
chosen as neural transfer function. This is the function that calculates layer's
output from its net input. After that the training was concluded, a correlation
coe�cient of almost 95% was found for training, validation and test set, as shown
in �gure 2.18.

As you can see from �gure 2.18, the NN takes in input 49 elements:

• 1-24: hourly Global horizontal irradiation (GHI) at ground level, collected
from Copernicus Atmosphere Monitoring Service (CAMS) [83]

• 25-48: hourly air temperature, collected from the Global Forecast System
(GFS), a weather forecast model produced by the National Centers of En-
vironmental Prediction (NCEP) [84]

• 49: calendar e�ect was considered through the use of the following func-
tion: f(x) = sin(2π/365(x − 91.25)) + 1 where x is the number of the
corresponding day along the year, from 1 to 365.

After the training, the neural network was ready to forecast the 24h ahead
PV power production. To improve the o�set error in the forecast, a reasonable
�lter that put to zero the forecasted data when the GHI is zero was implemented.
Eventually, some performance parameters have been computed and reported in
table 2.8. These parameters are the MBE, the MAE and the RMSE as de�ned
by equation 1.4 1.5 and 1.6, respectively (see Table 2.8). The results obtained are
in line with the ones found in literature (see subsection 1.3.1), even if not in all
the parameters. Considered the aim of the project, the errors and uncertainties
related to input data, and the inexperience in this �eld, these data were con-
sidered acceptable. Moreover, data come from di�erent sources, therefore a full
correlation among them is not assured. Now, some results of the forecast will be
presented. Doing that, some considerations about the correlation between GHI
and real values, and between forecast results and real data will be deduced.

In �gure 2.19 the time interval between 17/04 and 26/04 is presented. A
satisfying forecast can be observed in the �rsts 6 days, a bit less in the others.
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Figure 2.18: Linear training regression in output from "nntool" Matlab Toolbox
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Figure 2.19: Forecast and real PV power production, and GHI. Period from 17/04
to 26/04

Figure 2.20: Forecast and real PV power production, and GHI. Period from 11/05
to 20/05

At day nine of the set, the real production shows a strange behavior not well
explained by the GHI. This anomalous behavior can be due to:

• Uncertainties in the measurement of the pv production (the meter proved
to be not always reliable)

• Scarce correlation between GHI and PV production

• Other parameters not present in the input data can a�ect the pv production

the period from 11/05 to 20/05 is shown in �gure 2.20. Here, something
anomalous in day 3 can be observed. T real production's line (in blu) has a
period of null generation, while according to GHI, it should have a peak in it.
This is probably due to a failure of the measurement system.

During the analysis of data, a failure of the measurement system lasting for
an entire day has been noticed, and this increased the error. Therefore, a better
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(a) Absolute error. (b) Relative error.

Figure 2.21: Absolute and relative error for the PV forecast with ANN

data collection system together with a more correlated weather data are desired
for future analysis and to get better results. Moreover, an improvement of the
ANN and further training is desirable to get a better forecast performance.
Finally, the absolute and relative errors have been computed as:

absolute error (t) = yforecast (t)− yreal (t) (2.2)

relative error (t) =
yforecast (t)− yreal (t)

yreal (t)
(2.3)

Both those graphs are shown in �gure 2.21a and 2.21b.
Then, the same histograms have been divided in a number of clusters based

on the generation power, and some conclusions regarding the performance of
the ANN have been educed. Since the maximum output power is more or less
2.428kW, 20 clusters of 0.1214kW each have been created. Figure 2.22 shows the
absolute error. Note that the ANN tends to overestimate the low level of power,
it tends to underestimate the high levels of power instead.

In �gure 2.23 the relative error splitted in the same intervals is presented,
instead. It's clear that the scale changes considerably, but what is notable is
that, while the sum of absolute error is negative, the sum of relative error is
positive. Indeed:

• Sum of absolute error: -46.2701

• Sum of relative error: 447.2245

This means that the forecast tool makes mistakes in excess less frequently than
in defect, but more seriously. From the practical point of view, in the following
it will be shown if these uncertainties represent an issue for the management of
the batteries.

2.4.2 Households: electricity load forecast model

An ANN architecture to forecast the electricity load pro�le of a household in
Loughborough, whose consumption had been metered for one year, was devel-
oped, but not good results were found. The reasons of the failure can be due to
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Figure 2.22: Absolute error splitted in clusters of power

Figure 2.23: Relative error splitted in clusters of power
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Figure 2.24: Example of real and forecast trend for a single household

the recurrent faults of the measurement system, to the really strange and inexpli-
cable pattern consumption, and to the little experience in developing those types
of ANN. Then, a single household presents a large variation in pattern from day
to day, due to high unforeseeable people behaviors and irregularities in the power
consumption not always easy to predict, as discussed in Figure 2.24. Moreover,
not enough di�erent load pro�les and data were available to be applied to the
case study that will be presented in the next chapter.

For this reason, the forecast of the household's electricity demand is carried
out with a di�erent approach.
Referring to equation 2.4 starting from the real values P(t), to simulate the fore-
casted value P*(t) a random error of ±ef with ef=10% is added. Subsequently, a
superimposed Gaussian error eg with mean value µ = 0 and standard deviation
σ = 10% · P (t) is further added, as proposed in [85].

P ∗ (t) = (1 +R {−1,+1} · ef ) · P (t) + eg (2.4)

An example of the real trend and the forecast for a single household is shown in
Figure 2.24. It must be pointed out that for real-life applications, information
on the past demand patterns should be collected and a forecast based on that
should be performed.

2.5 Control/operating strategies

In this section we go deep in the scenarios that have been choose to be studied and
precisely in the design of BSCS. The case studies and all the scenarios mentioned
in the introduction chapter are summarized in Table 2.9.
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Table 2.9: Summary of the implemented scenarios

Base case Centralised case Decentralised case
Control strategy / / Aggregated control Grid support Market approach
Scenario S1 S1m S2 S3 S3e S4 S4e
BESS 7 7 3 3 3 3 3

MEM 7 3 3 3 3 3 3

MBM 7 7 7 7 3 7 3

Two scenarios belong to the base case:

• S1 Reference scenario: The lack of BESS and the presence of a traditional
energy market characterize this scenario.

• S1m Reference+MEM scenario: Di�erently from S1, the MEM for the P2P
energy trading is implemented here. However, BESS are still not deployed
in this scenario.

The centralised case represents one scenario:

• S2 Aggregated control: A hypothetical but plausible distributed deployment
of stationary storages (BESSs) is considered, and an aggregated BSCS to
control all the batteries present within the grid is implemented.

Four di�erent scenarios are implemented for a decentralised case:

• S3 Grid support: BESSs are deployed in a distributed way in this scenario.
The batteries are independently controlled by their owners. The aim is to
provide grid support, reducing the variability of the net power exchange
with the grid at the point of delivery (POD).

• S3e Enhanced grid support: This scenario di�ers from S3 by the presence
of MBM through which the prosumers that own BESSs contribute to the
system balancing and environmental bene�ts.

• S4 Market approach: This scenario provides an e�ective customer side
BSCS based on prosumers' interest.

• S4e Enhanced market approach: This scenario is still based on prosumers'
interest; however, the same MBM as in S3e is implemented here to provide
a service to DSO for the bene�t of the grid.

Figure 2.25 shows the structure related to the centralised and decentralised
cases. Two di�erent lines are used to visualize power �ow as well as the data �ow
inside the microgrid. Parameters exchanged between the elements of the system
are reported in the two tables at the bottom of the �gure.

The control strategies of the stationary storage within a micro-grid are now
presented. Three BSCS have been developed, namely aggregated control, grid
support and market control for S2, S3 and S3e, S4 and S4e, respectively. All the
strategies are optimized over a period of time T. The meaning of the variables
are presented in the appendix.
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Figure 2.25: Schematic representation of the centralised and decentralised struc-
ture
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2.5.1 Aggregated control

In this scenario, decentralised deployed batteries are centrally controlled by an
aggregator in order to reduce the standard deviation (or variance) of the net power
exchange at the point of common coupling (PCC). Hereafter, all the variables are
assumed to be constant within a time-step. The optimal batteries scheduling is
formulated in the following optimization problem.

min
T∑
t=1

(
P PCC
net (t) +

∑
bi

(
pchbi (t)− pdisbi

(t)
))2

T
(2.5)

s.t.

P PCC
net (t) =

B∑
i=1

(Ploadi(t)− PPVi
(t)) (2.6)

0 ≤ pchbi (t) ≤ pchbi max ∀t ,∀bi (2.7)

0 ≤ pdisbi
(t) ≤ pdisbi max ∀t ,∀bi (2.8)

Ebi min ≤ Ebi(t) ≤ Ebi max ∀t ,∀bi (2.9)

Ebi(t) +

(
ηchbi · p

ch
bi

(t)− 1

ηdisbi

· pdisbi
(t)

)
·∆t = Ebi(t+ 1) ∀t ,∀bi (2.10)

In Equation 2.5 the aim is to minimise the variance of the net power ex-
change at the PCC, respecting the underlying constraints. Equation 2.6 de�nes
the net power at PCC, expressed by the sum of all the loads and generation
units within the micro-grid. Equation 2.7 and Equation 2.8 set the limits of the
charge/discharge power of batteries, and Equation 2.9 expresses the lower and up-
per bound of battery capacity. Finally, Equation 2.10 de�nes the energy stored in
the battery for each time step, which depends on the power charged in/discharged
from the battery in that time-step. The objective function adopted in this sce-
nario is non-linear, therefore convex optimization algorithms have been employed
for resolving the problem [86].

2.5.2 Decentralised control strategy: grid relief

In this scenario, locally deployed batteries are individually controlled by their
owners in order to reduce the variability of their own net power exchange. The ob-
jective function adopted in this and the previous scenario are non-linear, therefore
convex optimization algorithms have been employed for resolving the following
problem. Every bus i that has a BESS optimizes the following problem:
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min

√∑T
t=1

(
Pnet i(t) + pchbi (t)− pdisbi

(t)
)2

T
(2.11)

s.t.

Pnet i(t) = Ploadi(t)− PPVi
(t) (2.12)

0 ≤ pchbi (t) ≤ pchbi max(t) ∀t (2.13)

0 ≤ pdisbi
(t) ≤ pdisbi max(t) ∀t (2.14)

Ebi min ≤ Ebi(t) ≤ Ebi max ∀t (2.15)

Ebi(t) +

(
ηchbi · p

ch
bi

(t)− 1

ηdisbi

· pdisbi
(t)

)
·∆t = Ebi(t+ 1) ∀t (2.16)

The objective of the problem formulated in Equation 2.11 is to minimise the
standard deviation of the net power exchange of the bus with the grid. It is sub-
ject to the underlying constraints, which are equivalent to the �rst scenario, but
referred to only one battery since decentralised control is implemented. Equa-
tion 2.12 de�nes the net power at bus i without the battery, given by the dif-
ference between the load and the power generated by the PV system at bus i.
Equation 2.13 and Equation 2.14 express the maximum battery power during
charging and discharging mode. Equation 2.15 controls the operation of the bat-
tery within the allowed maximum and minimum battery capacity. Equation 2.16
is equivalent to Equation 2.10. As with aggregated control, convex optimization
has been employed due to the non-linearity of the objective function.

2.5.3 Decentralised control strategy: market approach

In the following problem, battery owners individually control their assets in order
to minimize their own cost function. To this end, the optimization problem has
been implemented as a mixed-integer linear programming (MILP).
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min
T∑
t=1

[
c∗p i(t) · xp i(t)− c∗s i(t) · xs i(t) + Cdegr

bi
·
(
pchbi (t)− pdisbi

(t)
)
·∆t

]
(2.17)

s.t.

Pnet i(t) + ηchbi · p
ch
bi

(t)− 1

ηdisbi

· pdisbi
(t)− xp i(t) + xs i(t) = 0 ∀t (2.18)

Ebi(t) +

(
ηchbi · p

ch
bi

(t)− 1

ηdisbi

· pdisbi
(t)

)
·∆t = Ebi(t+ 1) ∀t (2.19)

Ebi min ≤ Ebi(t) ≤ Ebi max ∀t (2.20)

pchbi (t) ≤ pchbi max(t) · kchbi (t) ∀t (2.21)

pdisbi
(t) ≤ pdisbi max(t) · kdisbi

(t) ∀t (2.22)

kchbi (t) + kdisbi
(t) ≤ 1 ∀t (2.23)

xp i(t) ≤ α · kp i(t) ∀t (2.24)

xs i(t) ≤ α · ks i(t) ∀t (2.25)

kp i(t) + ks i(t) ≤ 1 ∀t (2.26)

Equation 2.17 expresses the cost function to be minimised, where the energy to
be purchased or sold in each time-step is evaluated based on the corresponding
forecasted cost of energy for the same time, whereas the charge and discharge of
the battery is evaluated based on the degradation cost. Equation 2.18 expresses
the load and supply balance of the single household at time step t; Pnet i(t) is
de�ned by Equation 2.12. Equation 2.19 and Equation 2.20 control the energy
stored in the battery, Equation 2.21 and Equation 2.22 control the maximum
charge and discharge power of the battery instead. As in [87], Equation 2.23
and the binary variables kchbi and kdisbi

are introduced as charge and discharge of
the battery cannot coexist. The parameter α de�ned for the MILP problem in
Equation 2.24 and Equation 2.25 is an arbitrary value that is larger than xp i or
xs i, and is set to 1000. Equation 22 ensures that selling and purchasing electricity
do not coexist in the same time step, using other two binary variables, kp i and
ks i.

2.6 Micro market

The proposed micro market is applied to the decentralised control and it is im-
plemented in a platform coordinated by an aggregator. The market comprises
two separated sections: one to allow P2P trading of energy and the other to al-
low capacity trading (micro balancing market, reserved to prosumers that have
BESSs). Both are here presented.

2.6.1 Micro energy market: peer-to-peer trading

The proposed MEM platform allows prosumers to trade their surplus energy with
other prosumers/users within the micro-grid. The market is run every time step
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Figure 2.26: Example of the MEM equilibrium for a time step. In this example the
total PV generation within the microgrid is lower than the total energy demand

and enables P2P energy trading at a price that could di�er from the retail price.
In the event of generation surplus, the market price will be set to a value lower
than the spot price. Electricity consumers (users) simply communicate the power
they need to buy, whereas each prosumer, after having calculated their net power,
communicates the prospective energy that they intend to trade. The prosumers
sell their surplus energy at the LCOE of their systems. The submitted energy
demands are cumulated under a demand curve that is assumed inelastic, and the
o�ers of energy are ordered in ascending price order. The DSO is always the last
participant in the marked and is assumed to have unlimited capacity. Finally,
the equilibrium in the market is found and the market-clearing price (MCP) is
determined, as shown in Figure 2, where the total PV+BESS generation within
the microgrid is lower than the total demand. This represents the trading price,
set for the buyers and sellers in the MEM. If any energy o�er is not sold within the
MEM, it is then purchased by the DSO at a price lower than the clearing price. In
particular, the price paid for this energy (DDSO

trade = 0.046£/kWh) has been chosen
for the reasons explained in subsection 2.3.3. The spot price o�ered in the market
by the DSO is a RTP that re�ects the trend of the N2EX Day Ahead Auction
Prices [88], scaled to the average price of 0.16 ¿/kWh (see subsection 2.3.3). An
example of this is given in Figure 2.27.

2.6.2 Micro balancing market: congestions and contingen-

cies balance

The proposed micro balancing market (MBM) is an additional platform where
prosumers can subscribe the capacity of their batteries to the aggregator. Battery
owners may commit all or part of their total battery capacity in the negotiated
time steps, in order to balance the grid in case of contingencies or congestion, or
any unforeseen events that need extra power. The providers are payed an avail-
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Figure 2.27: Examples of the real time spot price for the month of december.

Figure 2.28: Schematic representation of the rolling window operation

ability rate (per kW committed for all the commitment hours) and a utilization
rate for the actual energy exchanged. In this work, the contracted prices have
been set to 0.0043 ¿/kW/h for availability and 0.14228 ¿/kWh for utilization, as
the average contracted price in the short-term operation reserve annual market
report 2016/17 [89]. A number of 275 interventions/year will be considered in
the analysis (as reported in [89]).

2.7 Rolling window optimization

The real-time optimal scheduling of BESSs proposed in section 2.5 are imple-
mented with a rolling window of length T, where T is the number of time step.
For this study ∆t = 1 hour resolution and T=24 time steps have been chosen
in order to cover a day. A graphical representation of the concept of the rolling
window is shown in Figure 2.28. Measurements and predictions of the electricity
demand and PV generation are employed in this approach. In the �rst, and cur-
rent, time step t of the rolling window, measurements of the electricity demand
and PV generation are available. On the contrary, for the remaining time steps,
t = t+1,. . . , T, the aforementioned parameters are forecasted. The optimization
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is then performed over the whole window and only the scheduling for the �rst
time step is implemented. For the following time step t+1, the horizon window
slides one step forward and then the process is repeated.

2.8 Assessment metrics

In this section, I present some metrics that quantify the techno/economic bene�ts
of the di�erent scenarios. To evaluate the results from an economic point of
view, two cost parameters, for the customer and for the DSO, are de�ned in
Equation 2.27 and Equation 2.28 respectively.

Ci (t) =EPVi
(t) · LCOEPVi

+
(
Ech

bi
(t) + Edis

bi
(t)
)
· Cdegr

bi
+

+ Ebuyi(t) ·MCP (t) + ELM
selli

(t) ·MCP (t)+

+ EDSO
selli

(t) · CDSO
trade + Elossesi(t) · Closses(t)

(2.27)

CDSO (t) = Esell(t) · Cprofit
selling − Ebuy(t) ·

(
Caverage

sell − CDSO
trade

)
(2.28)

Subsidy schemes for renewable energies or any other incentives are not con-
sidered in this study. For the users, the PV generation is valued at the levelized
cost of electricity (LCOEPVi

) of the installation. Prosumers with ESS incur in
battery degradation, which has been quanti�ed as Cdegr

bi
. The energy purchased

and sold in the MEM are valued at the MCP while the energy sold to the DSO
receives a di�erent remuneration CDSO

trade. The term Elossesi(t) is computed after
and AC power �ow is computed, and it is the proportion of network losses as-
signed to bus i. This term is calculated splitting the total losses in proportional
way to the use of the grid, i.e. proportionally to the net exchange at the point of
delivery (POD) of bus i. Finally, losses are valued at the spot price in the same
time step.
Regarding Equation 2.28, it is assumed that the DSO has a pro�t of Cprofit

selling =
0.02£/kWh on every kWh sold to customers, then the surplus energy purchased
from the microgrid at CDSO

trade is assumed to be sold at an average price of Caverage
sell =

0.16£/kWh.
To assess the performance of the scenarios some technical assessment metrics are
de�ned. The self-consumption (SC) and self-su�ciency (SS) calculated at the
POD are de�ned in Equation 2.29 and Equation 2.30, and at the PCC in Equa-
tion 2.31 and Equation 2.32. The SC is the ratio between the energy directly
consumed from the PV plant and the overall PV energy generated. The SS is the
energy directly consumed from the PV plant over the total demand.

SCPODi
=

∑
tmin

(
PPVi

(t), Ploadi(t) + pchbi (t)
)∑

t PPVi
(t)

(2.29)

SSPODi
=

∑
tmin

(
PPVi

(t), Ploadi(t) + pchbi (t)
)∑

t Ploadi(t)
(2.30)
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SCPCC =

∑
tmin

(∑B
i=1 PPVi

(t), (
∑B

i=1

(
Ploadi(t) + pchbi (t)

))
∑

t

∑B
i=1 PPVi

(t)
(2.31)

SSPCC =

∑
tmin

(∑B
i=1 PPVi

(t), (
∑B

i=1

(
Ploadi(t) + pchbi (t)

))
∑

t

∑B
i=1 Ploadi(t)

(2.32)
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Case study

3.1 Residential low voltage distribution grid

The proposed methodology is applied to a Low Voltage (LV) feeder of a typical UK
distribution network model [90]. A portion of a residential area located in Newcas-
tle upon Tyne (UK) is shown in �gure 3.1.

Figure 3.1: Typical UK distribution net-
work

For an e�cient simulation in line with
the scope of the present work, a sym-
metric and balanced three-phase sys-
tem is assumed, hence a single-phase
equivalent circuit is considered. Then,
the feeders connected to the 327 houses
are neglected and a distance of 10 me-
ters between each house in the other
branches is assumed. Three nominal
cross section area are presents, type
parameters of cables are speci�ed in ta-
ble 3.1. Overall, 19 households are connected to this network. A 40% of roof-top
solar PV is considered, randomly distributed, in line with [91]. Moreover, all the
PV plant are assumed to have the same standard capacity of 3kWp, and since the
households are distributed in a small area, the PV production pro�les are taken
the same. Then, a 50% of BESS coupled with the PV systems are assumed. A
schematic representation of the simulated distribution grid is presented in �gure
3.2 and the characteristics of the lines are summarized in table 3.2. Bus `a' at
the substation transformer (corresponding to the PCC) is assumed as slack bus
and its voltage is �xed at 1pu. The Points of Delivery (PODs) correspond to the
connection points of the buses to the grid. Both active and reactive power �ows
are considered with a power factor pf=0.9 for every residential load. Di�erently,
PV output and power exchanged with BESS are assumed to have pf=1.

3.2 Load and photovoltaic pro�les

Daily households demand pro�les for the 19 di�erent houses showed in the net-
work in 3.2 were obtained from the Centre for Renewable Energy Systems Tech-
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Figure 3.2: Representative framework of the network

Table 3.1: Type of cables and main parameters

Cable impedances and max current
Imax [A] R/km XL/km

Al Consac 240 mm2 218 0.125 0.068
Al Consac 120 mm2 150 0.253 0.0685
Al Consac 70 mm2 110 0.443 0.0705

Table 3.2: Network's characteristics

Line R [Ω/Km] X [Ω/Km] L [m] Imax [A]
a-b 0.125 0.068 7.45 218
b-c 0.253 0.0685 95 150
c-d 0.253 0.0685 133.75 150
d-e 0.443 0.0705 34 110
e-f 0.443 0.0705 37.5 110
f-g 0.443 0.0705 65 110
g-h 0.443 0.0705 100 110

leftovers 0.443 0.0705 10 110
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Table 3.3: Percentage of residents/house in UK [92, 93]

People/house Percentage
1 30%
2 25%
3 35%
4+ 10%

Table 3.4: Percentage of residents/house considered for the network in �gure3.2

People/house Percentage
2 32% (6 houses)
3 37% (7 houses)
4 26% (5 houses)
5 5% (1 house)

nology (CREST) demand model tool [72], choosing for each house, manually and
randomly, a set of appliances. Therefore for each household and for each day
simulated a daily electricity demand pro�le was generated. Data were generated
with one minute resolutions, then hourly averages were computed. The number
of residents for the houses was chosen taking into account some statistics. In
particular, from [92, 93] an average of 2.4 people/home was extracted, and in
table 3.3 is showed the number of people per dwelling extracted from the two ref-
erences. However, since the area is meant to be residential with single houses, the
assumption of an higher average number of residents/house and a di�erent per-
centage distribution is considered. In particular, the new distribution of houses
presented in table 3.4 has an average of 3 residents per house.

Generation pro�le of PV system is the result of one year metering (year 2017)
on a real rooftop solar PV system installed in a household located in Loughbor-
ough, a city in the East Midlands of the UK. Data were collected with 5 minutes
resolutions, then hourly averages were computed. More information have been
previously presented in 2.3.1 and won't be replicated.

3.3 PV plant and BESSs: speci�cations

The PV systems and BESSs deployed in the distribution network are consid-
ered to be all the same size and to have the same characteristics. The system
speci�cations for all the network components are reported in Table 1. Moreover,
only stationary Li-ion batteries are considered in this study. In line with the UK
government values a range of prices between 1600 and 1900 ¿/kWp was chosen
to give a variability to the LCOE of all the PV systems. Then, all the other
data chosen for the simulations are the ones presented in subsection 2.3.3. To
account for the degradation of residential stationary BESS, the market research
and future projection analysed in section 2.2 is take into account. Current and
future installation costs (10 and 20 years), resulting from the projections, are
reported in Table 3.5. The economic life of the BESSs is taken as 10 years and it
is assumed that they perform at their best during their life. To quantify the cost
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Table 3.5: PV and BESS parameters used in simulations

PV system
Nominal capacity 3 kWp
Yield 1000 kWh/kWp
Degradation 0.50%/year
CAPEX 1600÷1900 ¿/kWp
OPEX(t) 18 ¿/kWp/year
Life time 30 years
WACCnom 4%
In�ation 2.20%
WACCreal 1.76%

BESS
Nominal capacity 2 kWh
Ebi max 2 kWh
Ebi min 0 kWh
P dis
bi max 2 kW
P ch
bi max 0.820 kW

E�ciency 100%
Life time 10 years
CAPEX(0) 570 ¿/kWh
CAPEX(10) 230 ¿/kWh
CAPEX(20) 200 ¿/kWh
OPEX(t) 0 ¿/kWh

of degradation, 5000 charge/discharge cycles are considered. Investment has been
actualized as explained in subsection 1.1.3. A �nal average cost of degradation
of 0.028 ¿/kWh was obtained (see Equation 3.1) and a conservative degradation
cost of Cdegr

bi
= 0.03£/kWh was used for this study. This is in line with the

current market practice, as some manufacturers already give 10 years or 10000
cycles warranty on their batteries (with an expected residual capacity of 80%)
[94].

Cdegr
bi

=
570

2∗5000
(1 + 0.0176)10

+
230

2∗5000
(1 + 0.0176)10

+
200

2∗5000
(1 + 0.0176)10

= 0.028 (3.1)

Note that the obtained value is similar to the contribution the BESS gave to the
LCOE in subsection 2.3.4. To be thorough, the parameters of interest for the
simulations are also summarized in Table 3.5.

3.4 Time periods and simulation details

As anticipated, the months of June and December 2017 have been chosen for the
simulations since they are the months of maximum and minimum PV generation
of the analyzed PV system. For each month, the simulation was run for an 8
days' period. All the scenarios presented at the beginning of the previous section
have been simulated. The results and a comparative analysis will be presented
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in the next section. For those scenarios where the MBM is present, the contracts
are stipulated for periods where critical operation can happen. In this study a
minimum SOC=0.2 of all the BESS in the grid is reserved for the MBM from
4:00 pm to 11:00 pm. As anticipated in the subsection 2.6.2, a number of 275
interventions per year will be considered. For further study, also some contracts
regarding the max SOC allowed in some time period could be considered.

3.5 Matlab implementation

All the simulations were carried out on a PC having 3.5GHz AMD PRO A4-
8360B, and 8GB of RAM running MATLAB software version R2018a.
All that has been previously introduced has been implemented in Matlab, starting
from the de�nition of the buses and the grid, to proceed with the MEM and
MBM and the BSCS of the batteries. Two di�erent solvers were employed for
the optimization: the nonlinear programming solver `fmincon' [95] performing
interior point algorithm for S2 and S3 and the mixed-integer linear programming
solver `intlinprog' for S4 [96].
The power �ow (or load �ow as often called) is computed using the Newton-
Raphson Algorithm, as explained in [97]. For the Matlab implementation, the
code implemented by Neelam Kumar [98], available on MATLAB Central's File
Exchange, has been used. Then, appropriate modi�cations to adapt the code to
the project and to the rest of the code have been made.
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Results and discussion

This work aims to evaluate the e�ects of the di�erent BSCS and to make a com-
parison between the scenarios presented at the beginning of 2.5 and observe from
di�erent points of view which is the best for the stakeholders, in particular for
the customers and for the DSO. The scenarios have been compared from many
aspects. A �rst discussion is based on the visualization of trends over time of
demand and DERs (PV and BESS). A qualitative comparison of the main char-
acteristics of scenarios is thus presented. A quantitative analysis on physical
parameters and techno-economic assessment is carried out in the following. In
particular, the scenarios considered have been compared using the following cri-
teria:
Technical assessment:

• The net power exchange at PCC: Total value, mean value and standard
deviation

• Total micro-grid losses

• Voltage at the farthest bus (19): magnitude and standard deviation

• Max demand peak power and reverse peak power �ow at PCC

• SC and SS at bus level (POD) and at PCC level

Economic assessment:

• Economic bene�t

For the month of June 2017, base scenario S1 is �rst analysed, then scenarios S3,
S4 and �nally S2 are here presented.
Figure 4.1 represents the series over the time with hourly resolution of load de-
mand and PV generation for two random buses of the grid that have a PV system
installed. Then, Figure 4.2 shows the same time-series at the aggregated level
(at PCC). It's visible that the cumulated load presents a characteristic pattern
with two visible peaks, typically one in the morning and one in the evening. An-
other consideration can be made on the PV production: except for day 2 and
3 (from h=24 to h=72) that represents two cloudy days, during some hours on
sunny days the PV production exceeds the microgrid demand and the power �ow
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Figure 4.1: Metering at bus level for scenario S1 in June

reverses in the medium-voltage grid. This reverse power �ow appear huge and
highly variable.

In the following scenarios BESSs are introduced. Comparing Figure 4.3 with
Figure 4.1 it's clear that the presence of the battery coupled to the PV system
at bus level visibly a�ects the Pnet curve, reducing generously the variance of
the power exchanged at the POD on the bus. Clearly, the Pnet injected into the
microgrid is not completely leveled because of the errors due to the PV and load
forecast. Nevertheless, results with the assumptions of a perfect forecast is not
here presented since not of interest for the project.

A bene�t at PCC level is also shown in Figure 4.4 even if in a less visible way.
Quantitative analysis in the following will help to clarify the bene�ts given to the
grid.

The SOC of the batteries distributed in the microgrid is shown in Figure 4.5.
In this image image the same curve for the scenario S3e is shown for comparison.
It's visible that in the presence of the contingency market, the batteries discharge
less or postpone the discharge since they have to guarantee a minimum SOC as
settled with the contract.

In Figure 4.6 the load demand, PV generation and BESS charge/discharge in
scenario S4 for the same two buses as before is presented. A completely di�erent
behavior of the battery can be observed, since now a minimization of a cost
function is performed. Therefore the battery charges when the price to buy
energy is forecasted low and discharges during time slots in which the forecasted
price to sell the energy is high, in accordance to Equation 2.17.

A wider vision is given in Figure 4.7, where the results of the simulation at
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Figure 4.2: Metering at PCC level for scenario S1 in June

Figure 4.3: Metering at bus level for scenario S3 in June
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Figure 4.4: Metering at PCC level for scenario S3 in June

Figure 4.5: SOC of distributed BESSs for scenario S3 and S3e in June
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Figure 4.6: Metering at bus level for scenario S4 in June

PCC level is shown. Here also the spot price is shown. It's visible that the
batteries charge when there's surplus of generation given by RES, i.e. when the
price of the energy is low. Di�erently batteries discharge in the evening, when
PV generation is missing and precisely in the time step in which the spot price
is the highest.

Figure 4.8 shows the SOC of batteries present in the micro-grid. A comparison
with Figure 4.5 highlights the di�erences between the two BSMS. Moreover, the
comparison of the curves for the S4 and S4c scenario underlined what previously
said about the S3 scenario. This time the di�erences due to the presence of the
contingency market are more signi�cant, however here it's not shown the calls to
operate in the contingency market. Adding the operations in that market would
reduce the di�erences between the scenarios S4 and S4e.

Finally results of simulation of scenario S2 are presented. Figure 4.9 shows
what happen at house level in ths scenario, however since batteries are centrally
controlled this �gure is not discussed because it's not signi�cant.

High relevance has Figure 4.10 instead, where the metering at the trans-
former for scenario S2 is shown. The optimization of the battery management
is performed at the PCC level with the aim of reducing the variance of energy
exchanged with the MV grid, as previously explained. The bene�t on the grid
is visible here on the reduction of variability of net power exchanged, specially
compared to the previous scenarios presented.

Figure 4.11 �nally underlines that the batteries in this scenario are exploited
the most. Further discussions are presented afterwards.
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Figure 4.7: Metering at PCC level for scenario S4 in June

Figure 4.8: SOC of distributed BESSs for scenario S4 and S4e in June
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Figure 4.9: Metering at bus level for scenario S2 in June

Figure 4.10: Metering at PCC level for scenario S2 in June
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Figure 4.11: SOC of distributed BESSs for scenario S2 in June
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Figure 4.12: Metering at bus level for scenario S1 in December

The same analysis is now carried out for the simulation in December. As
before, the base scenario S1 is �rst analysed, then scenario S3, S4 and �nally S2
are presented.
Figure 4.12 represents the series over the time with hourly resolution of load
demand and PV generation for two random buses of the grid that have a PV
system installed. The PV generation is much lower compared to June, and the
load consumption is higher compared to June instead. This will give rise to new
discussions.

Figure 4.13 shows the same time-series at the aggregated level (at PCC). We
can again observe that the PV generation pro�le varies day by day. Sunny and
cloudy days are noticeable. Because of the lower PV generation compared to June,
the reverse power �ow at PCC is not frequent. Only two events are present in
this simulation. Moreover, the entity of this events are much lower than the ones
in June. Then, comparing to the June simulation in Figure 4.2, it's noticeable
that the cumulated demand in December is higher. This is essentially due to
the higher consumption of lights and heating in the winter season, compared to
summer season.

In the following scenarios BESSs are introduced. Comparing Figure 4.14 to
Figure 4.12 it's clear that the presence of the battery coupled to the PV system
at bus level visibly a�ects the Pnet curve, reducing generously the variance of the
power exchanged at the POD on the bus. As for the case in June, the errors due
to the PV and load forecast are the cause of a non completely paved curve.

A bene�t at PCC level is also shown in Figure 4.15 even if in a less visible
way. We can observe that sometimes the peak demand is not lowered much;
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Figure 4.13: Metering at PCC level for scenario S1 in December

Figure 4.14: Metering at bus level for scenario S3 in December
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Figure 4.15: Metering at PCC level for scenario S3 in December

this happen because the battery is individually optimized, without being aware
of the existence of a cumulated peak. When the cumulated peak corresponds
to the peak demand of users having the BESS, the peak of demand is lowered
successfully instead. Quantitative analysis in the following will help to clarify the
bene�ts given to the grid.

The SOC of the batteries distributed in the microgrid is shown in Figure 4.16.
Same discussion as before can be made.

In Figure 4.17 the load demand, PV generation and BESS charge/discharge in
scenario S4 for the same two buses as before is presented. A completely di�erent
behavior of the battery can be observed, since now a minimization of a cost
function is performed. Therefore the battery charges when the price to buy
energy is forecasted low and discharges during time slots in which the forecasted
price to sell the energy is high, in accordance to Equation 2.17.

A wider vision is given in Figure 4.18, where the results of the simulation
at PCC level is shown. Here also the spot price is shown. It's visible that the
batteries charge when the spot price is the lowest. Di�erently batteries discharge
in the evening, when the spot price is the highest.

Figure 4.19 shows the SOC of batteries present in the micro-grid. A com-
parison with Figure 4.16 highlights the di�erences between the two BSMS once
again.

Finally results of simulation of scenario S2 are presented. Figure 4.20 shows
what happen at house level in this scenario, however since batteries are centrally
controlled this �gure is not discussed because it's not signi�cant.

High relevance has Figure 4.21 instead, where the metering at the transformer
for scenario S2 is shown. The bene�t on the grid is visible here on the reduction of
variability of net power exchanged and on the reduction of max peak of demand,
specially compared to the previous scenarios presented.

Figure 4.22 �nally underlines that the batteries in this scenario are exploited
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Figure 4.16: SOC of distributed BESSs for scenario S3 and S3e in December

Figure 4.17: Metering at bus level for scenario S4 in December
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Figure 4.18: Metering at PCC level for scenario S4 in December

Figure 4.19: SOC of distributed BESSs for scenario S4 and S4e in December
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Figure 4.20: Metering at bus level for scenario S2 in December

Figure 4.21: Metering at PCC level for scenario S2 in December
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Figure 4.22: SOC of distributed BESSs for scenario S2 in December

the most compared to the others scenarios. Further discussions are presented in
the following.
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Now, as anticipated at the beginning of this chapter, a techno-economic eval-
uation and comparison among the scenarios is presented. The results of the
simulation of the grid under the di�erent scenarios in June 2017 are graphically
presented in Figure 4.23 whereas numeric values are shown in Table 4.1.

From a �rst analysis, it turned out that the total and mean value of P PCC
net and

the mean value of voltage magnitude at bus 19 are the same in all the scenarios.
Since they are not of interest to draw conclusions they are no longer discussed.
Consequently, Figure 5 shows the standard deviation of the net power at the PCC
for the di�erent scenarios. The standard deviation of P PCC

net in scenarios S2, S3
and S4 is lowered compared to scenario S1. Better results are obtained in S2,
thanks to a wide view on the entire state of the grid given by the central control.
The better redistribution of power �ows within the micro-grid due to the use of
the batteries a�ect the total micro-grid losses. The same happens also in the
evaluation of the standard deviation of the voltage magnitude at bus 19. It is
visible that S2 performs better from a DSO point of view on all the assessment
here presented: S3 also brings grid relief, but to a lesser extent, since the BSCS
is performed as a decentralised case. Regarding to the P PCC

max , it can be noticed
that in scenario S4 the control of the batteries does not allow to lower the peak
of demand. Scenario S3 does not perform as good as scenario S2 since the peak
of demand of the houses that have batteries does not always coincide with the
peak demand at the PCC. Finally, the reverse power �ow at PCC is evaluated.
For the same reason as before, the scenario S2 performs better than S3. However,
this time a reduction is appreciable also for scenario S4.

Figure 4.23: Comparison of main metrics for di�erent scenarios for the month of
June 2017

A similar analysis is carried out for December 2017. Results are graphically
shown in Figure 4.24 whereas numeric values are shown in Table 4.2. This period
is characterized by a much lower PV generation than June. This, in combination
with an expected higher electricity demand in winter, results in average net power
exchanged at PCC more than double the volume with respect to the period in
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Table 4.1: Assessment metrics for the June 2017's simulation

S1 S2 S3 S4
P PCC
net [kW] 580.790 580.790 580.996 580.790

Mean [kW] 3.025 3.025 3.026 3.025
Std [kW] 6.511 5.397 5.721 6.066
Total losses [kWh] 15.901 12.894 13.569 14.654
Reduction [%] / 18.91 14.67 7.84
V19 mean [pu] 0.995 0.995 0.995 0.995
Std [pu] 0.0109 0.0091 0.0095 0.0102
P PCC
max [kW] 15.63 13.30 14.43 15.63

Reduction [%] / 14.91 7.68 0.00
P PCC
Rmax [kW] 12.66 9.376 10.39 11.52

Reduction [%] / 25.94 17.93 9.00

June. Even for this case the total and mean values of P PCC
net are the same in all the

scenarios presented. The average voltage magnitude in scenarios S2, S3 and S4
improves slightly (0.2%) as compared to S1 instead. However, since they are not
useful for further discussions, they are no longer considered. All the other results
obtained are presented in �gure. Similar conclusions to the simulation in June
presented before can be derived. Due to a higher demand, the losses are much
higher than in the period of June. The results con�rm the better performances
of scenario S2 over scenario S3, thanks to the wider view of the control strategies
of the batteries. S4 gives lower bene�ts with regards to the network parameters.
Once again, the BSCS adopted in this scenario is not able to considerably reduce
the peak power demand at the PCC and it does not reduce at all the reverse
power �ow. This is because the price signals are not always coincident with the
peak demand. Reverse power �ow is �nally eliminated in S2 scenario.

Figure 4.24: Comparison of main metrics for di�erent scenarios for the month of
December 2017
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Table 4.2: Assessment metrics for the December 2017's simulation

S1 S2 S3 S4
P PCC
net [kW] 1456.26 1456.26 1456.45 1456.26

Mean [kW] 7.585 7.585 7.586 7.585
Std [kW] 5.747 4.589 5.026 5.247
Total losses [kWh] 26.338 23.453 24.347 24.979
Reduction [%] \ 10.95 7.56 5.16
V19 mean [pu] 0.9849 0.987 0.987 0.987
Std [pu] 0.0096 0.0083 0.0089 0.0093
P PCC
max [kW] 20.76 18.36 19.95 20.59

Reduction [%] \ 11.56 3.90 0.82
P PCC
Rmax [kW] 2.297 \ 0.332 2.297

Reduction [%] \ \ 85.56 0.00

Table 4.3: Comparison of the average number of charge/discharge cycles per day
of BESS

S2 S3 S4
June 2.19 1.45 1.19
December 2.03 1.54 1

The results presented above have been achieved by di�erent BSCS that char-
acterize the scenarios, aimed to optimize di�erent functions, and that implies
di�erent batteries utilization. In fact, during June, the BESSs are used in av-
erage 2.19, 1.45 and 1.19 cycles/day for scenarios S2, S3 and S4 respectively.
Similarly, the average utilization in December is 2.03, 1.54 and 1 cycles/day, as
shown in Table 4.3. Therefore, the centralized control strategy exploits storages
the most for the bene�t of the grid. In fact, from the previous results it is visible
that S2 is the scenario that ensures the highest grid relief.

Other aspects to be considered are the self-consumption and self-su�ciency,
which have been de�ned in section 2.8. Table 4.4 shows the average value of these
parameters computed at POD and at the PCC. Since S2 employs centralized
control, SC and SS at a house level would not provide any insight, therefore they
are omitted. Analyzing the two decentralized scenarios, it is clear that S3 is able
to increase the SC and SS more than S4. The �rst one is due to the fact that
the control strategies in S4 is driven by price signals. The lower utilization of the
batteries highlighted above is mainly the cause of the lower SS. At the PCC, S2

Table 4.4: Self-consumption and self-su�ciency from POD and PCC level in
di�erent time periods.

June December
S1 S2 S3 S4 S1 S2 S3 S4

POD
level

SC 36.82% / 53.44% 48.86% 57.69% / 91.26% 58.08%
SS 49.64% / 72.20% 65.89% 17.59% / 28.17% 17.72%

PCC
level

SC 71.49% 79.31% 77.22% 75.66% 98.78% 100% 99.86% 98.78%
SS 43.14% 47.86% 46.60% 45.65% 13.71% 13.88% 13.86% 13.71%

89



CHAPTER 4. RESULTS AND DISCUSSION

performs better than S3 and S4 both in June and December, since the aggregator
has a global view on the entire grid. This fact is meaningful since it increases
the energy autonomy of the micro-grid that may delivers social, �nancial and
environmental bene�ts. In the following, the economic analysis for S1, S3 and
S4 is presented, as the economic pro�tability of S2 could only be assessed on a
case by case basis and therefore is beyond the scope of this work. For analysis of
S2, additional information regarding the investment, ownership and operation of
batteries is required.

The �rst analysis determines the most bene�cial scenario from the customers'
perspective. Results regarding the total cost are shown in Figure 4.25. To present
a comparative analysis, all the results are referred to scenario S1, whose value
is scaled to 100. The MEM is bene�cial for all the customers in every scenario;
although prosumers have the most bene�ts from the introduction of a MEM, the
electricity consumers also take advantage from it by purchasing the electricity
from the MEM at a lower price as compared to the utility price. This agrees
with other results achieved in the literature [54, 56, 58]. Prosumers with only
PV installations can achieve higher electricity bill reduction, since they have an
LCOE lower than the prosumers owning both PV and BESS. However, it should
be pointed out that with high penetration of RES, there would be signi�cant
reverse power �ow if BESS were not in place. Since the cost of degradation of
the battery is included in the objective function, a reduction in the total cost
means that the BESS repays itself. Whereas it may have been expected for
prosumers that they own a battery, since the control strategy in this scenario
aims to minimize a cost function, the same cannot be said for the other users.
Finally, the introduction of the MBM in S3e and S4e adds a source of income for
those who have a BESS without signi�cantly a�ecting the bene�ts of the other
customers. The slight increment of expenditures of the other customers in S4e is
mainly due to the higher energy bought from the DSO instead of buying it from
the prosumers that own a BESS.

In Figure 4.26, scenarios S3 and S4 are compared to S1m, which is scaled to
100. As can be seen, with the MEM implemented, the expenditure of simple users
and users with PV systems do not change signi�cantly in all scenarios. On the
other hand, the change in the expenditure of prosumers equipped with a BESS is
considerable. Note that the presence of the battery in S3 results in a higher cost
of 0.8%, which means that scenario S3 will not encourage installations of BESS in
future MEM. Therefore, some incentives would be required to make the economic
case pro�table for the prosumers. The introduction of the MBM, which adds an
additional source of income as can be seen in Figure 4.26, could be a good option
to lower the energy bill and incentivize new BESS installations. Therefore, it can
be concluded that S4 is the best scenario from the point of view of customers
while S3 requires some incentives to stimulate new BESSs installations. Also,
although from the DSO perspective S3 is the best approach for a decentralised
BESSs control, it requires additional incentives to encourage the participation of
the prosumers.

The DSO's pro�t for the di�erent scenarios considered is presented in Ta-
ble 4.5. As mentioned earlier, the economic evaluation of S2 is beyond the scope
of this study, therefore only scenarios S1, S1m, S3, S3e, S4 and S4e are analyzed
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Figure 4.25: Customers' expenditures for di�erent scenarios compared to S1
(S1=100)

Figure 4.26: Customers' expenditures for di�erent scenarios compared to S1m
(S1m=100)
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Table 4.5: DSO's pro�t for di�erent scenarios

S1 S1m S3 S3e S4 S4e
Esell [kWh] 2291.819 2291.819 2241.973 2243.835 2256.879 2262.688
Ebuy [kWh] 672.4 254.77 204.52 204.73 219.83 222.44

Cprofit
selling [¿/kWh] 0.02 0.02 0.02 0.02 0.02 0.02

CDSO
trade [¿/kWh] 0.046 0.046 0.046 0.046 0.046 0.046

Caverage
sell [¿/kWh] 0.16 0.16 0.16 0.16 0.16 0.16

Pro�t from Esell [¿] 45.836 45.836 44.839 44.877 45.138 45.254
Expense from Ebuy [¿] -30.93 -11.719 -9.408 -9.418 -10.112 -10.232
Revenue from Ebuy [¿] 107.584 40.763 32.723 32.757 35.173 35.59
Expense for MBM [¿] / / / -3.42 / -3.42
Total pro�t [¿] 122.49 74.88 68.15 64.8 70.2 67.19

(for June and December together). The data in this table refer to the items of
the economic assessment (see Equation 2.28). The �rst row represents the energy
sold by DSO to customers, the second row shows the surplus energy purchased
by the DSO from the microgrid. In the second block, the pro�ts and costs re-
lated to the energy purchased and sold by the DSO are presented. Then, all the
cost/revenue elements are shown in the third block and the total pro�t of the
DSO is shown in the last row.
As expected, the results show that S1 ensures the highest income for DSO. How-
ever, this scenario may necessitate grid reinforcement to ensure enough grid ca-
pacity and reliable electricity provision. Note that under this scenario, reverse
power �ow and voltage variability are at their highest. Further, it is assumed
that the DSO can sell all the energy purchased from the MEM outside the micro-
grid, which is not guaranteed. If this is not the case, than S1 will provide less
revenues. The presence of the MEM in S1m reduces considerably the energy
purchased from the micro-grid since part of that is now traded between pro-
sumers and consumers. Having batteries in S3 and S4 further reduces the energy
purchased from the micro-grid (since BESS increases the SS at PCC level). Ac-
cordingly, the total revenue is decreased. Note that S4 leads to a higher revenue
for the DSO as compared to S3, however this scenario does not ensures grid
relief as much as S3, as previously presented. Also, the presence of the MBM
reduces the DSO's revenues one again but encourages prosumers participation
and avoids keeping expensive peak-plants on standby (to provide for contingen-
cies). A subsequent analysis could be made by the DSO to evaluate the cost of
an investment on BAU approach and to see which approach is more cost-e�ective.

To demonstrate the capability of BESSs to deal with congestions, an unfore-
seen congestion was created in a way that the voltage magnitude in some buses
dropped below the threshold of 0.94 pu. Also, the current in the section `b-c'
of the network of Figure 3.2 exceeded the maximum capability of that feeder,
as shown in Table 4.6, where results for the scenarios S4 and S4e are presented.
The simulation showed that distributed BESS with the presence of a MBM could
deal with these events and maintain the grid quantities (voltage and current mag-
nitude) within the allowed range (see Figure 4.27). Therefore, they can reduce
over-capacity required from the distribution grid to face unexpected contingen-

92



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.27: Voltage magnitude in the case that an unforeseen congestion happen
without the MBM (S4) and with the MBM (S4e).

cies. Note that a distributed injection of power in the opposite direction of the
congestion in the section `b-c' is the only way to solve it. Finally, it resulted
that scenario S3, for its peculiar modus operandi, can face this type of situations
better than scenario S4.

Based on the obtained results, it emerged that the centralized control, since
it has control on the whole system, performs better from the point of view of the
parameters of the grid. However, it is worth pointing out that the centralised
control requires higher communications and computational costs and provides
lower �exibility and reliability as compared to decentralised control [99]. In fact,
the computational time to upload data and perform the optimization problem
was on average 0.2754 s, 0.1632 s and 0.1397 s for scenarios S2, S3 and S4 respec-
tively. Moreover, whilst computational cost in S2 rise in a quadratic way with
the numbers of controlled devices, it does not change at all in scenarios S3 and
S4. The computational e�ort required for S2 would constitute a major obstacle
as the size of the grid increases. The results obtained show that decentralization
of the system and the development towards a smart grid and active prosumers is
an attractive investment option for future energy systems with high penetration
of DERs. Between the two decentralised cases considered, S3 provides better
bene�ts for the grid, as it can defer or avoid investments in grid reinforcement,
but does not provide the same revenues as S4 for the �nal customer and the DSO.
Therefore, S3 would require some incentives for the prosumers to encourage new
BESS installations. This is not necessary in scenario S4, where all the customers
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Table 4.6: Bus and line congested in the case of an unforeseen event without the
MBM (S4) and with the MBM (S4e).

V magnitude [pu]
bus S4 (7 MBM) S4e (3 MBM)
h 0.9389 0.9416
16 0.9382 0.9410
17 0.9377 0.9405
18 0.9375 0.9402
19 0.9373 0.9401

I/Imax
line S4 (7 MBM) S4e (3 MBM)
b-c 1.010 0.9639

are incentivize by lower energy bills.
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Conclusions

The expected increase of customers' electricity demand and the need to reinforce
the grid provides business opportunities for the DSO and customers to invest in
BESSs. In this work, a techno-economic evaluation of several scenarios simulated
in a typical UK residential LV distribution grid with a high penetration of DERs
is presented. Five scenarios dealing with di�erent BSCS and market structures
in addition to two reference scenarios are considered: these include one central
control (S2), and four with distributed control (S3, S3e, S4, S4e). Since P2P
energy trading is one of the promising frameworks of future smart grids, a decen-
tralised MEM controlled by an aggregator was introduced in the four scenarios
with decentralised control. Moreover, a MBM was also introduced in scenarios
S3e and S4e to balance the micro-grid in the case of unforeseen events. The
results provided useful insights, as follows:

• As expected, the BAU reference scenario (S1) does not need management
e�ort. It ensures the higher pro�t for the DSO but it requires signi�cant
investment in grid infrastructures.

• The aggregated control (S2) is the scenario that performs better in terms
of grid relief. However, it requires signi�cant management e�ort from a
computational cost and communication technology point of view. Then, it
exploits stationary storages the most for the bene�t of the grid.

• Between scenarios where the MEM is implemented:

� Market approach (S4) is the best for customers (lower electricity bill)
but it does not provide the best bene�ts for the DSO. In fact, it does
not provide grid relief and consequently it does not defer investments
in grid infrastructures. The introduction of the MBM in S4e is an
option to provide services that defer reinforcement of the network.

� The S3 scenario provides higher grid relief, but does not stimulate
new BESS installations, therefore some incentives are needed. Adding
MBM is an option to get the most value from DERs for both the users
and DSO.

Based on this work, key points to be investigated for future research to ensure
a more thorough analysis are the following:
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• Increase the network size and period of simulations

• Add performance degradation to the system

• Diversify sizes of PV systems and BESSs

• Include responsive demand (Controllable loads)

• Consider the presence of EV and electric heat-pump

• Move to a multi-conductor approach
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Acronyms

ANN Arti�cial neural network

BAU Business as usual

BESS Battery Energy Storage System

BNEF Bloomberg New Energy Finance

BoS Balance of System

BP Back-Propagation

BSCS Battery start control strategy

CAMS Copernicus Atmosphere Monitoring Service

CAPEX Capital expenditure

CL Controllable load

DER Distributed Energy Resource

DG Distributed generation

DNO Distribution network operator

DSO Distribution system operator

DSR Demand Side Response

ETIP European Technology ad Innovation Platform

EV Electric vehicle

FiT Feed in tari�

GCPV Grid connected PV

GDM Gradient descent with momentum

GFS Global forecast system

GHI global horizontal irradiation

ICT Information and Communication Technology

IEA International Energy Agency

IRENA International Renewable Energy Agency

ISEA Institut fur Stromrichtertechnik und Elektrische Antriebe

LCOE Levelised cost of energy

LIP Lithium Iron Phosphate
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LM Local market

LV Low voltage

MAE Mean absolute error

MBE Mean bias error

MBM Micro balancing market

MCP Market clearing price

MEM Micro energy market

MILP Mixed-integer linear programming

MLP MultiLayer Perceptron

MSE Mean squared error performance function

NCEP National centers of environmental production

NMC Nichel Manganese cobalt oxide

NN Neural network

NPV Net Present Value

NWP Numerical weather prediction

Ofgem O�ce of gas and electricity market

O&M Operation & Maintenance

OPEX Operating expenses

P2G Peer-to-grid

P2P Peer-to-peer

PCC Point of common coupling

POD Point of delivery

PV Photovoltaic

PVPS Photovoltaic Power Systems Programme

REmap Renewable Energy Roadmap

RES Renewable Energy Source

RMSE Root mean square error

RTP Real time price

RVE Real value of energy

SC Self Consumption

SEFEP Smart Energy for Europ Platform GmbH

SOC State of charge

tansig Hyperbolic tangent sigmoid transfer function

VRES Variable RES

WACC Weighted Average Cost of Capital

99



Parameters

B Number of buses in the network

T Optimization window length

∆t Time-step resolution

ηch
bi
, ηdis

bi
Charge/discharge e�ciency of bi

Pch
bimax,P

dis
bimax Maximum charge/discharge power of bi

Ebimin,Ebimax Minimum/maximum storage energy of bi

Cdegr
bi

Degradation cost for charge/discharge of bi

α Constant arbitrary value for MILP implementation

LCOEPVi
LCOE of solar PV plant installed in bus i

CDSO
trade Price payed by DSO/received by the prosumers for the energy traded

Cprofit
selling Pro�t of DSO every kWh sold to customers (Esell(t)) at time t

Caverage
sell Average price at which the DSO sell Ebuy(t)

er Random error used for the household load forecast model

Variables

i Index referring to bus i
bi ∈ B Stationary BESS installed in bus i
t ∈ T Time slot t in the optimization window T
PPCC

net (t) Net power exchange at PCC at time step t
pch

bi
(t),pdis

bi
(t) Charge/discharge power of bi at time step t

Ebi
(t) Energy of bi at time step t

Pneti(t) Net power at bus i without battery
c∗

pi(t), c∗
si(t) Forecasted price the prosumer in bus i expect to purchase/sell

energy at time step t
xpi(t),xpi(t) Energy to be purchased/sold by the prosumer in bus i at time
step t
kch

bi
(t),kdis

bi
(t) Binary decisional variables governing the charge and discharge

of bi
kpi(t),kpi(t) Binary decisional variables governing the energy traded by the
prosumer in bus i
EPVi

(t) Energy produced by solar PV plant installed in bus i at time t
Ebch

i
(t) Energy charged in bi at time t

Ebdis
i

(t) Energy discharged from bi at time t

Ebuyi
(t) Energy bought by bus i at time t

EMEM
selli

(t) Energy sold by bus i to the MEM at time t
EDSO

selli
(t) Energy sold by bus i to the DSO at time t

Elossesi(t) Losses assigned to bus i for the use of the grid at time t
Esell(t) Energy sold by the DSO to the customers at time t
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Ebuy(t) Surplus energy from micro-grid bought by the DSO at time t
MCP(t) Market clearing price at time t
Closses(t) Cost of the losses inside the micro-grid at time t
Cspot(t) Spot price at time t
PPVi

(t) Power generated by PV plant in bus i at time t
Ploadi

(t) Load power of bus i at time t
PPCC

max (t) Max net power demand at PCC in the simulation
PPCC

R max(t) Max reverse power �ow at PCC in the simulation
eg(t) Gaussian error for the household load forecast model
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