
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria dell’Informazione

Libreria Bluetooth in React Native per

dispositivo di allenamento muscolare del

pavimento pelvico

Relatore: Laureando:

Prof. Damiano Varagnolo Jaswant Singh Bogan

Correlatrice:

Dott. Roya Doshmanziari

Anno Accademico 2021-2022

23 Settembre 2022

Ai miei genitori e ai miei fratelli,

che mi hanno sempre sostenuto

Al mio relatore e alla mia correlatrice,

per la loro disponibilità e gentilezza

Ai miei più cari amici,

per il loro supporto

ii

Abstract

The pelvic floor muscles have an important function which is to support organs such

as the bladder, bowel and uterus. However, in women, these muscles are weakened

or damaged due to many factors such as childbirth or injuries. A way to strengthen

these muscles is to carry out exercises, which can be dull or done incorrectly.

An app was created to make these exercises entertainment, the application

should also make it easier to track the user’s progress over time, and ensure that

the exercises are training the pelvic muscles according to public health recommen-

dations. This report shows the team’s efforts in creating such an application.

This thesis is the continuation of the project for developing and delivering an

adaptable mobile game for pelvic floor muscle training.

The application was requested by Damiano Varagnolo, head of a research group

at NTNU and my professor of digital systems. The requested project goal was

almost completed by late 2021 and few things remained to implement, one of those

was to connect the device with the app through a Bluetooth connection, for this

purpose I have created Bluetooth library to connect the pelvic floor muscle training

device to the mobile game.

In order to test the library I created a test application, with the same technologies

that the group used to create the game.

In conclusion, I documented and videotaped the test application, showing that

the data requested by the pressure monitoring device was displayed correctly and

responded to user input.

iii

Sommario

I muscoli del pavimento pelvico hanno un’importante funzione che è quella di sostenere

organi come la vescica, intestino e utero. Tuttavia, nelle donne, questi muscoli sono

indeboliti o danneggiati a causa di molti fattori come parto o lesioni. Un modo per

rafforzare questi muscoli è eseguire esercizi, che può essere noioso o fatto in modo

errato.

È stata quindi creata un’app per rendere questi esercizi coinvolgenti, l’applicazione

dovrebbe anche renderli più semplice per monitorare i progressi dell’utente nel tempo

e assicurarsi che gli esercizi stiano allenando il pavimento pelvico secondo le racco-

mandazioni di salute pubblica. Questo rapporto mostra gli sforzi del team nella

creazione una tale applicazione.

Questa tesi è la continuazione del progetto per lo sviluppo e la consegna di un

gioco mobile adattabile per l’allenamento muscolare del pavimento pelvico.

L’applicazione è stata richiesta da Damiano Varagnolo, capo di un gruppo di

ricerca presso NTNU e mio professore di sistemi e modelli. L’obiettivo proget-

tuale richiesto era stato raggiunto verso la fine del 2021 in però mancavano da

implementare alcune funzionalità, una di queste era collegare il dispositivo con

l’applicazione tramite una connessione Bluetooth, per questo scopo ho creato una li-

breria Bluetooth per collegare il dispositivo di allenamento muscolare del pavimento

pelvico al gioco mobile.

Allo scopo di testare la libreria ho creato una applicazione di prova, con le stesse

tecnologie che il gruppo ha utilizzato per creare il gioco.

In conclusione, ho documentato e videoregistrato l’applicazione di prova, mostrando

che i dati richiesti dal dispositivo che monitorava la pressione venivano mostrati cor-

rettamente e rispondevano all’input dell’utente.

iv

Contents

1 Introduction 1

1.1 Kegel exercising . 2

1.2 Exercises gamification . 2

1.3 Femfit device . 2

1.4 Kegeland application . 4

1.5 Fatigue modelling problem . 5

2 Project description 9

2.1 Choices of Technical Solutions . 9

2.1.1 Firebase . 10

2.1.2 React Native . 10

2.1.3 Jest . 11

2.1.4 Redux Toolkit . 11

2.1.5 NativeBase . 11

2.1.6 React Native Game Engine . 12

2.1.7 Matter . 12

2.2 Use Case Diagram . 13

2.3 Architectural Views . 14

2.3.1 Process View . 14

2.3.2 Physical view . 15

3 Security 17

3.1 Firebase Authentication . 17

3.2 Google Cloud Functions . 18

4 Application screens 19

4.1 Login and Registration . 19

4.2 Main Menu . 20

4.3 Game . 21

v

vi CONTENTS

5 Bluetooth library development 23

5.1 BLE protocol . 23

5.1.1 GATT . 24

5.2 Femfit BLE Test App . 25

5.2.1 Femfit Utils class . 25

5.2.2 React Context API . 27

5.2.3 Application test . 34

6 Conclusion 37

Bibliography 39

List of Figures

1.1 Illustration of female pelvic floor - Source: continence.org.au 1

1.2 Photo of a Femfit pressure sensor. Source: aucklandnz.com 3

1.3 In-game screenshot from an exercising session. Source: [3] 4

2.1 Use Case Diagram Source: [3] . 13

2.2 Process diagram. Source: [3] . 14

2.3 Physical view. Source: [3] . 15

4.1 Home and Login Screens. Source: [3] . 19

4.2 Registration Screens. Source: [3] . 20

4.3 Main Menu Screen. Source: [3] . 20

4.4 Game Screens. Source: [3] . 21

5.1 GATT, the Generic Attribute Profile, groups conceptually related attributes

into a common parent container. Source: cardinalpeak.com 24

5.2 Props drilling vs Context API - Source: reactjs.org 27

5.3 Main screen . 34

5.4 Searching started . 34

5.5 Pressures details . 35

5.6 Monitoring started . 35

vii

reactjs.org

viii

Chapter 1

Introduction

The Pelvic Floor Muscles (PFM), are important as it supports the pelvic organs such as

the bladder, the intestines, and in females, the uterus (Figure 1.1). If the pelvic floor

muscles become damaged or lose their strength, usually due to pregnancy, childbirth,

or injuries. This could lead to pelvic floor lapses and 1 in 3 women experience urinary

incontinence. These conditions become more prominent in women following menopause.

Therefore, to relieve and cure the above issues, women are encouraged to strengthen the

PFM, by carrying out the Kegel exercises.

Figure 1.1: Illustration of female pelvic floor - Source: continence.org.au

1

2 CHAPTER 1. INTRODUCTION

1.1 Kegel exercising

This exercise is known to be successful in reinforcing the muscles through repeated con-

tractions and relaxations. The Kegel exercises, although helpful, are required to be carried

properly and it needs to be repeated over a long period, to fully strengthen the pelvic

floor muscles. About 30% of the women perform the exercise incorrectly, this is given

to different factors, including the nature of the location of the muscles and the inability

to acknowledge the activation of the pelvic floor muscles, or the surrounding pelvic, ab-

dominal, or hip muscles. Most women also tend to neglect or do not exercise sufficiently,

this is given due to many reasons and one of them is the lack of feedback that women

receive in regards to whether the exercise is performed correctly. In addition, among

other factors, female sexual health is considered a taboo subject, therefore women find

themselves exercising within the confines of their homes, away from the company.

To tackle this issue, of women performing the Kagel exercise in private without feed-

back, leading to possible harm to their PFM due to wrong exercises, women are offered

to play a game app that uses real data from vaginal pressure sensors.

1.2 Exercises gamification

This app not only provides biofeedback about the performance of the exercise, but it also

provides a midterm increase in fitness due to the training outcome and motivates women

in a suitable chosen game. Furthermore, it encourages women in exercising by making it

fun and engaging, it also increases awareness and destigmatizes female health. The data

collected during exercises using the game is not only beneficial for research purposes, but

it allows for adapting the game difficulty to the players’ current fitness and fatigue status

to ensure effectiveness and fair game dynamics.

1.3 Femfit device

The Auckland Bioengineering Institute, University of Auckland (NZ) developed an intra-

vaginal pressure sensor array to better understand the dynamics of the PFM. The proto-

type known as Femfit (Figure 1.2) it has eight equal-spaced pressured sensors, connected

to a flexible printed circuit board (PCB) and encapsulated in a soft medical grade silicone.

The Bluetooth communications are transmitted by the telemeter, which is attached to

the PCB, enclosed in plastic, which sits outside the body. The Femfit is 80 mm long,

24 mm at its widest point, and 4 mm thick, allowing the device to be flexible and able

1.3. FEMFIT DEVICE 3

to conform to the vaginal anatomy. The sensor array enables the simultaneous measure-

ment of the pressure profile along the length of the vaginal duct. Thus, the sensors at the

most distal end of the vaginal canal (sensors 7 and 8) will measure abdominal pressure,

while sensors 3 to 6 are most likely to measure the pressures developed by the pelvic floor

muscles. The Femfit is thus able to provide feedback on whether the Kegel exercises are

being performed correctly (e.g., contracting the PFM and not the abdominal muscles) or

not.

Figure 1.2: Photo of a Femfit pressure sensor. Source: aucklandnz.com

The device consists of 8 pressure sensors within a soft medical grade silicon enclosing,

connected to a Bluetooth communication module through a dedicated flexible wiring.

4 CHAPTER 1. INTRODUCTION

1.4 Kegeland application

Figure 1.3: In-game screenshot from an exercising session. Source: [3]

Due to many limitations caused, including the application only being accessible on An-

droid devices and the inability to implement functions that were necessary to make the

application production ready, a new version has been created removing these limitations,

and more features have been incorporated allowing more flexibility and compatibility

with different operating systems such as Android and IOS. In addition, by using machine

learning algorithms the research group was able to explore the game configuration and

this allowed to adapt its difficulty and make it more specific for each player based on

their performance, giving the possibility to give both users and physicians information

and statistical data about the users’ estimated current level of fitness.

The game is a type of running game where the character has to move to avoid ob-

stacles. While playing, the application collects measurement data from the Femfit via

Bluetooth. The user wears the Femfit and uses the pressure sensor as a game controller.

By contracting the PFMs, the user sets off a jumping action to avoid incoming obstacles.

1.5. FATIGUE MODELLING PROBLEM 5

(See Figure 1.3). When it avoids an obstacle it gains one point and when it hits an obsta-

cle it loses a life. The starting lives are 3 and the game ends when all lives are lost. Lives

and points are shown on the top of the screen. The speed of the game, shown as well on

the top of the screen, can be changed from 1 up to 5 to increase the difficulty of the game.

The aim of the exercises is thus to avoid obstacles. Before each gaming session, the user

can set her personal, maximum contraction pressure through a calibration routine. This

information is then used to set the threshold pressure, which the measured pressure is re-

quired to exceed to actuate a jumping action in the game. The most relevant parameters

of each exercise are the required length and frequency of the jumping actions, combined

with the number of jumping actions required from the user to finish one course.

1.5 Fatigue modelling problem

The Adaptive Pelvic Floor Muscle Trainer research project developed a piecewise linear

dynamical model to study the short-term effects of fatigue and recovery on the strength

of pelvic floor muscles [1].

The final model presented by the research group is based from an existing model for

skeletal muscle fatigue, proposed in [2], and then adapted because it did not include any

driving force or dynamics for muscles to get back into a resting state after activation. For

example when playing the game, women’s only activate their muscles when intending to

jump over an obstacle.

The model presents the following quantities:

• ma(t) := number of motor units that are in an active state at time t, and that are

activated by a voluntary drive;

• mf(t) := number of motor units that are in a fatigued state at time t;

• mr(t) := number of motor units that are in a resting state at time t;

• u(t) := muscular activation signal, sometimes referred to as the “brain stimulus” or

“brain force”;

• M := total number of motor units present in the muscles, assumed to be constant

over time, i.e., ma(t) +mf(t) +mr(t) = M for all t ;

6 CHAPTER 1. INTRODUCTION

The adapted model is:

ṁf(t) = −θf 7→amf(t) + θa7→fma(t), (1.1)

ṁa(t) = −θa7→fma(t) + θf 7→amf(t) + u(t)θr7→amr(t)− (1− u(t))θa7→rma(t), (1.2)

mr(t) = M −ma(t)−mf(t), (1.3)

Where the four parameters describe:

• θf 7→a > 0 describes the recovery of fatigued motor units back into an active state;

• θa7→f > 0 captures the intuition that active motor units fatigue;

• θa7→r describes how fast active muscles transition to resting state in case no brain

force is applied;

• θr7→a describes the recovery of resting motor units back into an active state.

The input term u(t)mr(t) captures the fact that the brain stimulus u(t) activates the

resting motor units so that they become active.

To enable estimating the model from measured data using standard discrete-time

approaches, it was performed a first order forward Euler discretization of the dynamics

(1.1), (1.2) and (1.3), and obtain the piecewise-linear system:
mf(k + 1) = ϕf 7→amf(k) + (1− ϕa7→f)ma(k)

ma(k + 1) = ϕa7→fma(k) + (1− ϕf 7→a)mf(k) + u(k)ϕr7→amr(k)− (1− u(k))ϕa7→rma(k)

mr(k) = M −ma(k)−mf(k)

(1.4)

where T is the length of the discretization period, and where the piecewise-linearity is

induced by the fact that in our assumptions u(k) ∈ {0, 1}, and the continuous and

discrete-time parameters are connected by the relations:

ϕf 7→a := 1− θf 7→aT, ϕa7→f := 1− θa7→fT, ϕa7→r := θa7→rT, ϕr7→a := θr7→aT.

The results obtained after training the piecewise-linear model using experimental data

shows that the model is capable of reproducing the main dynamics of fatiguing and re-

covering effects of the PFMs. In particular, the model is able to reproduce the the general

1.5. FATIGUE MODELLING PROBLEM 7

trend of the exerted muscular pressure and enables to predict the fatigue levels of the

PFMs.

Note: Due to the purpose of the thesis which is the Bluetooth connection development,

the section about the estimation problem and data preprocessing is not discussed here.

8

Chapter 2

Project description

In the first chapter we discussed the Kegeland application and the model of fatigue related

to the PFMs. In this chapter the structure of the project and the technologies used to

reach the objective set by the client will be discussed.

The client wants an application that works with both Android and on iOS devices.

The machine learning algorithms should be deployed to the cloud and the code should

be retrieved from a version control system such as GitHub. If a researcher makes changes

to the algorithms and publishes them to the cloud, the process of sharing these updates

and using the new algorithms in the application should be automated. This also means

that the user will automatically benefit from the new algorithms without updating their

application.

The game should be customizable with different background images and level difficul-

ties. In addition, a questionnaire will appear at the end of each game to monitor how the

user is feeling. This data must be stored securely and the physicians need to be able to

have access to this data. Physicians should also have access to more advanced statistics

related to each patient. Users need to be able to see simple statistics on how they are

improving.

2.1 Choices of Technical Solutions

To meet the goal of the project, the team has chosen the following technical solution such

as libraries, frameworks and services.

9

10 CHAPTER 2. PROJECT DESCRIPTION

2.1.1 Firebase

Firebase (Google 2021a) is a cloud service to build mobile and web applications. Firebase

is created and maintained by Google, and it provides a wide range of services, such

as cloud hosted databases, authentication through multiple providers, web storage and

cloud functions. Firebase runs on Google Cloud which makes its services very reliable

and accessible.

To store data, the team has chosen the document database called Cloud Firestore.

Since Cloud Firestore is a non-relational document database, it provides dynamic and

flexible data scheme’s, which can comfortably handle a changing data model during the

project life cycle.

Note: no costumer reference but put: the goal of the project was a recommender

The team used Firebase’s built-in authentication with email and password as the

main authentication provider, which ensures secure password hashing, and reliable web

tokens for managing user sessions. The customer requested a recommender system that

runs in a separate environment than the client application. Cloud Functions can trigger

on changes in the database, get a request from an external service or execute certain

operations on a specific time interval. The team chose to use Cloud Functions because it

fulfilled all the requirements for the recommender system that the customer described to

us in the beginning of the project.

One main advantage for using Firebase compared to other alternative Software as a

service (SaaS) providers such as Microsoft Azure and Amazon Cloud, is that Firebase

makes it very fast and easy to set up the cloud components. Firebase offers a lot more

built-in functionality compared to Azure and Amazon, such as authentication, authori-

sation and web tokens for managing user sessions. Microsoft Azure and Amazon Cloud

may provide more advanced features, but they also requires more effort to get up and

running. Since the project had very simple cloud service requirements, Firebase was the

best alternative because of all it’s developer friendly features and effortless set-up.

2.1.2 React Native

React Native (Facebook 2021b) is a framework for building mobile applications. It is a

hybrid framework, which makes it possible to run the same applications on both Android

and iOS. The developers can write JavaScript/TypeScript, which will compile to native

code at run-time. With a native framework for app development, the developers will

usually have to write the code in both Java/Kotlin for Android and Swift/Objective-C

for iOS. By using a hybrid framework such as React Native, the team got the benefit of

2.1. CHOICES OF TECHNICAL SOLUTIONS 11

providing the application for both Android and iOS, without developing the application

in two different developer environments.

React Native is provided by Facebook and it is very similar to React, which is a very

popular library for creating web applications. The React Native developer community

is immense, and there are numerous third-party libraries that can be used to achieve

advanced functionality in very little time.

2.1.3 Jest

React Native ships with Jest (Facebook 2021a) as it’s default testing framework, which

makes it very easy to get started writing tests. Jest is a testing framework with focus on

simplicity, easy configuration and a feature-rich API. Jest can be used for both unit- and

state management testing.

2.1.4 Redux Toolkit

A very important part of an application is state management. The game which is already

developed is based on Redux Toolkit (Abramov 2021) to handle state in the applica-

tion because it is a robust framework with good documentation and a lot of developer

resources. Redux Toolkit provides a global store, which will be provided to every com-

ponent in the application. Every component can then subscribe to parts of the global

state, which will trigger a re-render every time the state they are subscribing to changes,

making it efficient and uncomplicated to create dynamic applications where user input or

data changes are reflected throughout the application.

Redux Toolkit recommends to store data fetched from API requests, and its corre-

sponding request status inside the global store. This makes it very easy to share data

fetched from the database into the different components of the application. By storing

the API request’s status it is trivial to show loading spinners, disable buttons and show

reassuring user feedback to enhance the usability of the application.

2.1.5 NativeBase

NativeBase is an accessible component library to build user interfaces with React Native

and Web. NativeBase includes over 40 components such as buttons, forms and layout

elements (NativeBase 2021). NativeBase assists developers to create a consistent user

interface, consisting of ARIA accessible components.

12 CHAPTER 2. PROJECT DESCRIPTION

2.1.6 React Native Game Engine

React Native Game Engine is a component based game library to construct “dynamic

and interactive scenes using React Native” (Berak 2018). It runs a game engine, game

loop and is responsible for controlling the interaction between game entities.

2.1.7 Matter

As physics engine, the team chose to use Matter.js (brm.io 2021) which works seamlessly

together with React Native Game Engine. Matter offers eminent simulations of concepts

found in the real world such as gravity, velocity and momentum. Programming a simula-

tion of e.g., gravity to make it behave close to the real world is very challenging and time

consuming, which makes Matter.js a very good choice to use as physics engine.

2.2. USE CASE DIAGRAM 13

2.2 Use Case Diagram

Figure 2.1 illustrates the project’s use case diagram. The project has two actors, User

and Doctor. The user has access to the app through logging in, that allows them to start

a game session or view statistics. The first time the user uses the application, they have

to sign up. The doctor has access to a web dashboard where they can view their patients

statistics and suggest exercises.

Figure 2.1: Use Case Diagram Source: [3]

14 CHAPTER 2. PROJECT DESCRIPTION

2.3 Architectural Views

2.3.1 Process View

Figure 2.2: Process diagram. Source: [3]

This view shows how the user can transition between different states in the application.

The user will start on the welcome screen, and by clicking on the “Get started”-button

they are sent to the login screen. Here, the user can either log in with an existing user

account, or click “Register” to go to the “Register”-screen. When logged in, the user will

be at the main menu. Here they can either choose to play a single game, or start an

exercise session. If the user plays a single game, they will be sent to the “Game Over”-

screen after the game. In this screen, they can choose to go back to the main menu to

start a new game. If they choose to play an exercise session, they will have to answer

a self assessment form before and after the session. The exercise session consists of N

games (where N is a modifiable parameter), where the user have to answer the SAM

questionnaire before and after every game. After the last self assessment form, the user

can go back to the main menu.

2.3. ARCHITECTURAL VIEWS 15

2.3.2 Physical view

Figure 2.3: Physical view. Source: [3]

Figure 2.3 shows how our application is running on different physical devices. The user

has the game installed on their Android or iOS device. The game communicates with

a Google Cloud server which includes a Python script and a Firestore database. After

every game the game score gets stored in the database. This triggers the Python script

which will calculate the difficulty parameters for the user’s next game. These parameters

in turn are stored in the database. The next time the user starts a new game, the game

application retrieves the updated difficulty parameters from the database so that they

can be used in the game.

16

Chapter 3

Security

Security has not been a priority of the project is tested in a closed environment and is

still in a very early phase. The team, however, advocated for implementing some security

practices early on as it can be difficult to integrate security standards late in the project.

Lack of security in an application can be critical and many companies experience the cost

of a breach into their system. It is predicted that the cost of cyber crime in 2021 will

reach 6 trillion USD (Morgan 2020). Being aware of these grim figures, the team chose

to implement security through the use of third party providers.

Implementing a secure system can be a difficult and complex task. Getting it wrong

can be critical, as it can leave the application vulnerable to attacks. Cloud providers such

as Microsoft, Amazon and Google have solutions for security as they need to provide

secure servers and data storage solutions to all their customers. By using Google Cloud

services the team is secured through Google’s security implementations, which provides

much better and more reliable security than they would be able to implement ourselves.

3.1 Firebase Authentication

Firebase Authentication is a Google service providing authentication systems for many

different uses (Google 2021a). They have many different ways of providing authentication,

including Google Sign-in, but the team decided to go with e-mail and password as the

customer requested it. It was also simple to set up and secure from the start, making it

an optimal choice for the project.

17

18 CHAPTER 3. SECURITY

3.2 Google Cloud Functions

Google Cloud Functions is a server-less solution for having code run in the cloud (Google

2021c). Google uses gVisor internally to ensure that functions cannot access other func-

tions’ operating systems (gVisor 2021). With this solution, Google handles the server for

the team, meaning there is no need to worry about the security of the server. Considering

they are a trusted provider, this is the most secure approach the group could have chosen

as opposed to implementing a home-made security system for the project. This would

most likely be less secure and more error-prone as the team lacks the expertise needed to

implement a solid security system.

Chapter 4

Application screens

The following figures show the new version of the application, with screenshots of each

section of the game: how to log in and register, main menu and the playing session.

4.1 Login and Registration

Figure 4.1: Home and Login Screens. Source: [3]

19

20 CHAPTER 4. APPLICATION SCREENS

Figure 4.2: Registration Screens. Source: [3]

4.2 Main Menu

Figure 4.3: Main Menu Screen. Source: [3]

4.3. GAME 21

4.3 Game

Figure 4.4: Game Screens. Source: [3]

22

Chapter 5

Bluetooth library development

The project goal was to deliver a game with a cloud backend server that is functional on

both Android and iOS. The project met this goal, and a prototype was developed that

can be used for further development in the research project.

Although the prototype is functional, there are still some functionalities and improve-

ments that should be considered for the further development of the application. These

are measures to ensure that the prototype can be used further in the research project.

One of which is the development of the Bluetooth library to connect the game with Femfit

devices. Before starting the development I needed to understand the Bluetooth protocol,

since the team had already developed an old version of the game that was based on Java,

which is the language used for the development of the applications for Android smart-

phones.

In the old game the team had created a class from which they connected the game to

the device, there I found that the Bluetooth protocol used was the new version of the

protocol, called Bluetooth Low Energy (BLE).

5.1 BLE protocol

Bluetooth Low Energy (BLE), sometimes referred to as ”Bluetooth Smart”, is a light-

weight subset of classic Bluetooth and was introduced as part of the Bluetooth 4.0 core

specification [4].

The BLE standard was specifically designed for data exchange at low power and low cost

for low-bandwidth applications.

The original target market for BLE technology was lower-rate data transfer for the per-

sonal smart device, smart home and fitness sensor markets [5].

23

24 CHAPTER 5. BLUETOOTH LIBRARY DEVELOPMENT

5.1.1 GATT

GATT is an acronym for the Generic ATTribute Profile, and it defines the way that

two Bluetooth Low Energy devices transfer data back and forth using concepts called

Services and Characteristics. It makes use of a generic data protocol called the Attribute

Protocol (ATT), which is used to store Services, Characteristics and related data in a

simple lookup table using 16-bit IDs for each entry in the table (See figure 5.1) [6].

Figure 5.1: GATT, the Generic Attribute Profile, groups conceptually related attributes into a common parent
container. Source: cardinalpeak.com

GATT services for Femfit device

The team used only two services from the Femfit device in the old application:

• Pressure service, UUID: 0d9e0001-c111-49cd-bba3-85c7471cb6fa: this service is used

to measure the pressure of each sensor, with the following characteristics:

1. Pressure ch. 0-1, UUID: 0d9e0002-c111-49cd-bba3-85c7471cb6fa: characteris-

tic for the first sensor and the second one;

2. Pressure ch. 2-3, UUID: 0d9e0003-c111-49cd-bba3-85c7471cb6fa: characteris-

tic for the third sensor and the fourth one;

3. Pressure ch. 4-5, UUID: 0d9e0004-c111-49cd-bba3-85c7471cb6fa: characteris-

tic for the fifth sensor and the sixth one;

4. Pressure ch. 6-7, UUID: 0d9e0005-c111-49cd-bba3-85c7471cb6fa: characteris-

tic for the seventh sensor and the eighth one.

• Housekeeping service, UUID: b92a0001-4bf9-4870-8aa1-881b3a20ada4 : this service

is used to monitor the battery level of the device:

– Battery ch., UUID: b92a0002-4bf9-4870-8aa1-881b3a20ada4 : characteristic

for the battery level.

5.2. FEMFIT BLE TEST APP 25

5.2 Femfit BLE Test App

In order to test the library I have create a simple app with React Native, which is the

same technology used by the team’s new developed app.

5.2.1 Femfit Utils class

In the BLE Test App I have created a class called FemfitUtils.ts that contains the costants

and functions used to connect the app to the Femfit device, for example:

• MIN PRESSURE : the minimum pressure value that can be measured by the sen-

sors;

• MAX PRESSURE : the maximum pressure value that can be measured by the sen-

sors;

• HOUSEKEEPING SERVICE : the service UUID for the Housekeeping;

• HOUSEKEEPING CH : array of characteristics UUID for the Housekeeping service;

• PRESSURE SERVICE : the service UUID for the Pressure;

• PRESSURE CH : array of characteristics UUID for the Pressure service;

• convertPressure: this function converts the pressure value from the Femfit device

to a value that can be displayed in the app.

• pressurePercentage: this function converts the pressure value from the Femfit device

to a value that can be displayed in the app.

• convertSensorTemperature: this function converts the temperature value from the

Femfit device to a value that can be displayed in the app.

• convertToBatteryVoltage: this function converts the battery value from the Femfit

device to a value that can be displayed in the app.

• batteryPercentageForDisplay : this function converts the battery value from the Fem-

fit device to a value that can be displayed in the app.

1 import BatteryStatus from "./../types/BatteryStatus.enum";
2
3 const HOUSEKEEPING_SERVICE = "b92a0001-4bf9-4870-8aa1-881b3a20ada4"; //battery charge level
4 const HOUSEKEEPING_CH = "b92a0002-4bf9-4870-8aa1-881b3a20ada4";
5
6 const PRESSURE_SERVICE = "0d9e0001-c111-49cd-bba3-85c7471cb6fa";
7 const PRESSURE_CH = [
8 "0d9e0002-c111-49cd-bba3-85c7471cb6fa", //1 and 2
9 "0d9e0003-c111-49cd-bba3-85c7471cb6fa", //3 and 4
10 "0d9e0004-c111-49cd-bba3-85c7471cb6fa", //5 and 6
11 "0d9e0005-c111-49cd-bba3-85c7471cb6fa", //7 and 8
12 "0d9e0006-c111-49cd-bba3-85c7471cb6fa",
13];
14
15 const MIN_PRESSURE = 760;
16 const MAX_PRESSURE = 970;
17
18 const convertPressure = (b1: number, b2: number) => {
19 return parseFloat(
20 (--------).toPrecision(8)
21);
22 };
23
24 const pressurePercentage = (pressure: number) => {
25 if (pressure < MIN_PRESSURE) return 0;
26 else if (pressure > MAX_PRESSURE) return 100;
27 else
28 return parseInt(
29 ((pressure - MIN_PRESSURE) / (MAX_PRESSURE - MIN_PRESSURE)).toFixed(0)
30);
31 };
32
33
34
35
36
37
38
39
40
41

const convertSensorTemperature = (b: number) => {
 return -------;
};

const convertToBatteryVoltage = (b: number, b2: number) => {
 return (--------);

const batteryPercentageForDisplay = (d: number) => {

42 if (d <= 3.5) {
43 return BatteryStatus.VeryLow;
44 }
45 if (d <= 3.65) {
46 return BatteryStatus.Low;
47 }
48 if (d <= 3.75) {
49 return BatteryStatus.Medium;
50 }
51 if (d <= 3.85) {
52 return BatteryStatus.MediumHigh;
53 }
54 if (d <= 3.95) {
55 return BatteryStatus.High;
56 }
57 if (d <= 4.1) {
58 return BatteryStatus.Full;
59 }
60 return BatteryStatus.Unknown;
61 };
62
63 export {
64 MIN_PRESSURE,
65 MAX_PRESSURE,
66 HOUSEKEEPING_SERVICE,
67 HOUSEKEEPING_CH,
68 PRESSURE_SERVICE,
69 PRESSURE_CH,
70 convertPressure,
71 pressurePercentage,
72 convertSensorTemperature,
73 convertToBatteryVoltage,
74 batteryPercentageForDisplay,
75 };

26 CHAPTER 5. BLUETOOTH LIBRARY DEVELOPMENT

5.2. FEMFIT BLE TEST APP 27

5.2.2 React Context API

Context provides a way to pass data through the component tree without having to pass

props down manually at every level.

In a typical React application, data is passed top-down (parent to child) via props, also

known as prop drilling, but such usage can be cumbersome for certain types of props (e.g.

locale preference, UI theme) that are required by many components within an application.

Context provides a way to share values like these between components without having to

explicitly pass a prop through every level of the tree [7].

Figure 5.2: Props drilling vs Context API - Source: reactjs.org

FemfitProvider

The FemfitProvider is the class that implements the Context API. Here I have used an

already existing library for managing the BLE connection, which is called react-native-

ble-manager [8].

In the FemfitProvider I have made available the following functions:

• batteryStatus : this function returns the battery status of the Femfit device.

• bluetoothStatus : this function returns the bluetooth status of the Femfit device.

• isSearchingDevice: this function returns a boolean value that indicates if the app is

searching for the Femfit device.

reactjs.org

28 CHAPTER 5. BLUETOOTH LIBRARY DEVELOPMENT

• peripheral : this function returns the peripheral of the device, the peripheral contains

the information about the device id, name, received signal strength indicator (RSSI),

and also the services and characteristics of the device.

• searchFemfit : this function starts the search for the Femfit device.

• startMonitoring : this function starts the monitoring of the Femfit’s Pressure and

Battery level characteristics.

• stopMonitoring : this function stops the monitoring of the Femfit’s Pressure and

Battery level characteristics.

• isMonitoring : this function returns a boolean value that indicates if the app is

monitoring the Femfit device status.

• disconnectFemfit : this function disconnects the Femfit device.

• getPressuresAndTemperatures : this function returns the pressure and temperature

values of all the sensors as an array.

1 import React, { useState, useContext, createContext, useEffect } from "react";
2 import {
3 NativeEventEmitter,
4 NativeModules,
5 PermissionsAndroid,
6 Platform,
7 } from "react-native";
8 import BleManager from "react-native-ble-manager";
9 import BluetoothStatus from "../types/BluetoothStatus.enum";
10 import FemfitContext from "../types/FemfitContext";
11 import Peripheral from "../types/Peripheral.interface";
12 import BatteryStatus from "../types/BatteryStatus.enum";
13 import {
14 batteryPercentageForDisplay,
15 convertPressure,
16 convertSensorTemperature,
17 convertToBatteryVoltage,
18 HOUSEKEEPING_CH,
19 HOUSEKEEPING_SERVICE,
20 pressurePercentage,
21 PRESSURE_CH,
22 PRESSURE_SERVICE,
23 } from "../utils/FemfitUtil";
24
25 const femfitContext = createContext({} as FemfitContext);
26
27 export function FemfitProvider(props: any) {
28 const ffP = useProvideFemfit();
29
30 return (
31 <femfitContext.Provider value={ffP}>
32 {props.children}
33 </femfitContext.Provider>
34);
35 }
36
37 export const useFemfit = () => {
38 return useContext(femfitContext);
39 };
40
41 const BleManagerModule = NativeModules.BleManager;
42 const bleEmitter = new NativeEventEmitter(BleManagerModule);
43
44 function useProvideFemfit() {
45 const [isSearchingDevice, setIsSearchingDevice] = useState(false);
46 const [isMonitoring, setIsMonitoring] = useState(false);
47 const [bluetoothStatus, setBluetoothStatus] = useState(BluetoothStatus.Idle);
48 const [peripheral, setPeripheral] = useState<Peripheral>({} as Peripheral);
49 const [batteryStatus, setBatteryStatus] = useState(BatteryStatus.Unknown);
50 const [pressureS1, setPressureS1] = useState(0);
51 const [pressureS2, setPressureS2] = useState(0);
52 const [pressureS3, setPressureS3] = useState(0);
53 const [pressureS4, setPressureS4] = useState(0);
54 const [pressureS5, setPressureS5] = useState(0);
55 const [pressureS6, setPressureS6] = useState(0);
56 const [pressureS7, setPressureS7] = useState(0);
57 const [pressureS8, setPressureS8] = useState(0);
58 const [temperatureS1, setTemperatureS1] = useState(0);
59 const [temperatureS2, setTemperatureS2] = useState(0);
60 const [temperatureS3, setTemperatureS3] = useState(0);
61 const [temperatureS4, setTemperatureS4] = useState(0);
62 const [temperatureS5, setTemperatureS5] = useState(0);
63 const [temperatureS6, setTemperatureS6] = useState(0);
64 const [temperatureS7, setTemperatureS7] = useState(0);
65 const [temperatureS8, setTemperatureS8] = useState(0);
66
67 useEffect(() => {
68 console.log("Mount");
69
70 // initialize BLE modules
71 BleManager.start({ showAlert: false });
72
73 // add ble listeners on mount
74 bleEmitter.addListener(
75 "BleManagerDiscoverPeripheral",
76 handleDiscoverPeripheral

5.2. FEMFIT BLE TEST APP 29

77);
78 bleEmitter.addListener("BleManagerStopScan", handleStopScan);
79 bleEmitter.addListener(
80 "BleManagerDisconnectPeripheral",
81 handleDisconnectedPeripheral
82);
83 bleEmitter.addListener(
84 "BleManagerDidUpdateValueForCharacteristic",
85 handleUpdateValueForCharacteristic
86);
87
88 // check location permission only for android device
89 if (Platform.OS === "android" && Platform.Version >= 23) {
90 PermissionsAndroid.check(
91 PermissionsAndroid.PERMISSIONS.ACCESS_FINE_LOCATION
92).then((r1) => {
93 if (r1) {
94 console.log("Permission is OK");
95 return;
96 }
97
98 PermissionsAndroid.request(
99 PermissionsAndroid.PERMISSIONS.ACCESS_FINE_LOCATION
100).then((r2) => {
101 if (r2) {
102 console.log("User accept");
103 return;
104 }
105
106 console.log("User refuse");
107 });
108 });
109 }
110
111 // remove ble listeners on unmount
112 return () => {
113 console.log("Unmount");
114
115 bleEmitter.removeAllListeners("BleManagerDiscoverPeripheral");
116 bleEmitter.removeAllListeners("BleManagerStopScan");
117 bleEmitter.removeAllListeners("BleManagerDisconnectPeripheral");
118 bleEmitter.removeAllListeners(
119 "BleManagerDidUpdateValueForCharacteristic"
120);
121 };
122 }, []);
123
124 const handleDiscoverPeripheral = async (peripheral: Peripheral) => {
125 if (!peripheral.name) {
126 peripheral.name = "NO NAME";
127 console.log("TROVATO", peripheral.name);
128 }
129
130 setPeripheral(peripheral);
131
132 await BleManager.connect(peripheral.id);
133
134 BleManager.isPeripheralConnected(peripheral.id, []).then((isConnected) => {
135 if (isConnected) {
136 setBluetoothStatus(BluetoothStatus.Connected);
137
138 console.log("Peripheral is connected!");
139 } else {
140 setBluetoothStatus(BluetoothStatus.Disconnected);
141 console.log("Peripheral is NOT connected!");
142 }
143 });
144 };
145
146 const handleStopScan = () => {
147 console.log("Scan is stopped");
148 setIsSearchingDevice(false);
149 };
150
151 // handle disconnected peripheral
152 const handleDisconnectedPeripheral = (data: any) => {
153 console.log("Disconnected from peripheral: ", data.peripheral);

30 CHAPTER 5. BLUETOOTH LIBRARY DEVELOPMENT

154
155 setBluetoothStatus(BluetoothStatus.Disconnected);
156 setPeripheral({} as Peripheral);
157 };
158
159 const handleUpdateValueForCharacteristic = ({
160 , value,
161 , peripheral,
162 , characteristic,
163 , service,
164 , }: {
165 , value: any;
166 , peripheral: string;
167 , characteristic: string;
168 , service: string;
169 , }) => {
170 try {
171 if (
172 service === HOUSEKEEPING_SERVICE &&
173 characteristic === HOUSEKEEPING_CH
174) {
175 let cBv = convertToBatteryVoltage(value[4], value[5]);
176 let bPd = batteryPercentageForDisplay(cBv);
177 // let temp= convertTemperature(value[6], value[7]);
178
179 setBatteryStatus(bPd);
180 } else {
181 // let counter = value[1] & 255;
182
183 let channel = PRESSURE_CH.findIndex((ch) => ch === characteristic);
184
185 if (channel === -1) return;
186
187 let sensor1 = channel * 2;
188
189 //pressures samples
190 let sample1s1 = convertPressure(value[2], value[3]);
191 let sample2s1 = convertPressure(value[5], value[6]);
192 let sample3s1 = convertPressure(value[8], value[9]);
193
194 let sample1s2 = convertPressure(value[11], value[12]);
195 let sample2s2 = convertPressure(value[14], value[15]);
196 let sample3s2 = convertPressure(value[17], value[18]);
197
198 let samplesTemperature1s1 = convertSensorTemperature(value[4]);
199 let samplesTemperature2s1 = convertSensorTemperature(value[7]);
200 let samplesTemperature3s1 = convertSensorTemperature(value[10]);
201
202 let samplesTemperature1s2 = convertSensorTemperature(value[13]);
203 let samplesTemperature2s2 = convertSensorTemperature(value[16]);
204 let samplesTemperature3s2 = convertSensorTemperature(value[19]);
205
206 let averageA = parseInt(
207 ((sample1s1 + sample2s1 + sample3s1) / 3).toFixed(0)
208);
209 let averageB = parseInt(
210 ((sample1s2 + sample2s2 + sample3s2) / 3).toFixed(0)
211);
212
213 let averageC = parseInt(
214 (
215 (samplesTemperature1s1 +
216 samplesTemperature2s1 +
217 samplesTemperature3s1) /
218 3
219).toFixed(0)
220);
221 let averageD = parseInt(
222 (
223 (samplesTemperature1s2 +
224 samplesTemperature2s2 +
225 samplesTemperature3s2) /
226 3
227).toFixed(0)
228);
229

5.2. FEMFIT BLE TEST APP 31

230 if (sensor1 === 0) {
231 setPressureS1(pressurePercentage(averageA));
232 setPressureS2(pressurePercentage(averageB));
233 setTemperatureS1(averageC);
234 setTemperatureS2(averageD);
235 } else if (sensor1 === 2) {
236 setPressureS3(pressurePercentage(averageA));
237 setPressureS4(pressurePercentage(averageB));
238 setTemperatureS3(averageC);
239 setTemperatureS4(averageD);
240 } else if (sensor1 === 4) {
241 setPressureS5(pressurePercentage(averageA));
242 setPressureS6(pressurePercentage(averageB));
243 setTemperatureS5(averageC);
244 setTemperatureS6(averageD);
245 } else if (sensor1 === 6) {
246 setPressureS7(pressurePercentage(averageA));
247 setPressureS8(pressurePercentage(averageB));
248 setTemperatureS7(averageC);
249 setTemperatureS8(averageD);
250 }
251 }
252 } catch (e) {
253 console.log(e);
254 }
255 };
256
257 const searchFemfit = () => {
258 // skip if scan process is currenly happening
259 if (isSearchingDevice) {
260 return;
261 }
262
263 setPeripheral({} as Peripheral);
264
265 // then re-scan it
266 BleManager.scan([HOUSEKEEPING_SERVICE, PRESSURE_SERVICE], 5, true)
267 .then(() => {
268 console.log("Scanning...");
269 setIsSearchingDevice(true);
270 })
271 .catch((err: any) => {
272 console.error(err);
273 });
274 };
275
276 const startMonitoring = async () => {
277 if (!peripheral.id) return;
278
279 await BleManager.retrieveServices(peripheral.id, [
280 PRESSURE_SERVICE,
281 HOUSEKEEPING_SERVICE,
282]);
283
284 PRESSURE_CH.forEach((ch) => {
285 BleManager.startNotification(peripheral.id, PRESSURE_SERVICE, ch).then(
286 () => {
287 console.log("Started notification on " + ch);
288 }
289);
290 });
291
292 BleManager.startNotification(
293 peripheral.id,
294 HOUSEKEEPING_SERVICE,
295 HOUSEKEEPING_CH
296).then(() => {
297 console.log("Started notification on " + HOUSEKEEPING_CH);
298 });
299
300 setIsMonitoring(true);
301 };
302
303 const stopMonitoring = async () => {
304 if (!peripheral.id) return;
305
306 PRESSURE_CH.forEach((ch) => {

32 CHAPTER 5. BLUETOOTH LIBRARY DEVELOPMENT

307 BleManager.stopNotification(peripheral.id, PRESSURE_SERVICE, ch).then(
308 () => {
309 console.log("Stopped notification on " + ch);
310 }
311);
312 });
313
314 BleManager.stopNotification(
315 peripheral.id,
316 HOUSEKEEPING_SERVICE,
317 HOUSEKEEPING_CH
318).then(() => {
319 console.log("Stopped notification on " + HOUSEKEEPING_CH);
320 });
321
322 setIsMonitoring(false);
323 };
324
325 const disconnectFemfit = () => {
326 if (!peripheral.id) return;
327
328 BleManager.disconnect(peripheral.id).then(() => {
329 console.log("Disconnected from " + peripheral.id);
330 setBluetoothStatus(BluetoothStatus.Disconnected);
331 setPeripheral({} as Peripheral);
332 });
333 };
334
335 const getPressuresAndTemperatures = () => {
336 let pt = [
337 [pressureS1, temperatureS1],
338 [pressureS2, temperatureS2],
339 [pressureS3, temperatureS3],
340 [pressureS4, temperatureS4],
341 [pressureS5, temperatureS5],
342 [pressureS6, temperatureS6],
343 [pressureS7, temperatureS7],
344 [pressureS8, temperatureS8],
345];
346
347 return pt;
348 };
349
350 return {
351 batteryStatus,
352 bluetoothStatus,
353 isSearchingDevice,
354 peripheral,
355 searchFemfit,
356 startMonitoring,
357 stopMonitoring,
358 isMonitoring,
359 disconnectFemfit,
360 getPressuresAndTemperatures,
361 };
362 }

5.2. FEMFIT BLE TEST APP 33

34 CHAPTER 5. BLUETOOTH LIBRARY DEVELOPMENT

5.2.3 Application test

Finally I have created two simple views that are used to test the library:

Femfit connection (Main screen)

In the Main screen we found a button in the middle of the screen that starts the search

for the Femfit device.

Figure 5.3: Main screen Figure 5.4: Searching started

After pressing the button a ripple effect is shown around the button, which indicates

that the search for the Femfit device has started (see figure 5.4).

Pressures status

When the search for the Femfit device is finished, and the device is found, the app shows

the device’s information, such as name and the MAC address. We will not see the battery

5.2. FEMFIT BLE TEST APP 35

status as well as the pressure and temperature values immediately, because the monitoring

of the device is not started yet. In the top right corner of the screen we found a button

that disconnects the device from the app.

Figure 5.5: Pressures details Figure 5.6: Monitoring started

At the bottom of the screen we found a button that starts the monitoring of the

device (see figure 5.5).

36

Chapter 6

Conclusion

In this thesis we developed a new version of the game app for controlling the PFM. The

importance of Kegel exercises and why they need to be done, and why they need to be

done under the supervision of a doctor has been discussed. How studying the fatigue

modeling problem of PFM can help assess players’ health. It was discussed why the team

decided to create a new App, and the technologies used and the architecture of the app.

Finally I have discussed the Bluetooth technology and the development of the BLE

library for the Femfit device.

The Bluetooth library functionalities are working as requested, also the information as

well as the data given by the sensors are shown in the BLE Test App. The project is not

completed yet, since the library needs to be imported into the Kegeland App and tested

with actual players (e.g. patients). Until now the game was tested with mockup data

recorded from the Femfit device. I have made a documentation of the library and a video

where I explain how the library works, this will help the next person who’s going to be

part of the project to understand and implement the library into the Kegeland App.

The BLE Test App was shown as a proof of concept, it’s not a finished product, but

it’s a good example of how the library can be used, the code was also given to the client

to help them to understand how the library works.

37

38

References

[1] N. Kas, D. M. Budgett, J. Kruger, P. M. F. Nielsen, D. Varagnolo, S. Knorn, Data-

driven modelling of fatigue in pelvic floor muscles when performing Kegel exercises,

2019.

[2] J. Liu, R. Brown, and G. Yue, A dynamical model of muscle activation, fatigue, and

recovery, Biophysical Journal, 2002.

[3] I. Crivellari, S. Dahl, S. Husnes, T. Ravndal, T. Woldseth, Practical Assignment

Adaptive Pelvic Floor Muscles Trainer, 2021.

[4] Introduction to bluetooth low energy, https://learn.adafruit.com/introductio

n-to-bluetooth-low-energy/introduction

[5] What is ble, and how do its related gap and gatt profiles work?

https://www.cardinalpeak.com/blog/what-is-ble-and-how-do-its-related

-gap-and-gatt-profiles-work

[6] GATT, https://learn.adafruit.com/introduction-to-bluetooth-low-energ

y/gatt

[7] Context, https://reactjs.org/docs/context.html

[8] React Native BLE manager, https://github.com/innoveit/react-native-ble

-manager

39

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://www.cardinalpeak.com/blog/what-is-ble-and-how-do-its-related-gap-and-gatt-profiles-work
https://www.cardinalpeak.com/blog/what-is-ble-and-how-do-its-related-gap-and-gatt-profiles-work
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://reactjs.org/docs/context.html
https://github.com/innoveit/react-native-ble-manager
https://github.com/innoveit/react-native-ble-manager

	Introduction
	Kegel exercising
	Exercises gamification
	Femfit device
	Kegeland application
	Fatigue modelling problem

	Project description
	Choices of Technical Solutions
	Firebase
	React Native
	Jest
	Redux Toolkit
	NativeBase
	React Native Game Engine
	Matter

	Use Case Diagram
	Architectural Views
	Process View
	Physical view

	Security
	Firebase Authentication
	Google Cloud Functions

	Application screens
	Login and Registration
	Main Menu
	Game

	Bluetooth library development
	BLE protocol
	GATT

	Femfit BLE Test App
	Femfit Utils class
	React Context API
	Application test

	Conclusion
	Bibliography

