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ABSTRACT

Embankments or otherwise known as levees or dikes are typical flood defence structures. Levees
have allowed people to settle along rivers and low-lying countries where the risk of flooding is
high. Although levees provide protection against floods, they are not exempt from being prone to
failure. The risks posed by levee failure can be catastrophic. This makes it crucial to assess the
consequences of levee failures. The limit equilibrium method (LEM) and finite element method
(FEM) are two techniques capable of simulating levee failure. However, the former does not allow
for a progressive simulation of the complete failure process, while the latter encounters
convergence issues and cannot simulate large displacements. To overcome these issues, the
material point method (MPM) is introduced. In this study, two numerical simulations are
conducted to replicate an experimental slope failure of a full-scale earthen levee known as [JkDijk
South Dike that took place in the Netherlands in 2012. The first simulation employed FEM for
pre-failure analysis, while the second employed MPM for the post-failure analysis where large
deformations are present. Before simulating the experiment, a basic slope was modelled as a
benchmark to ensure consistency between the two different methods for simulating the same
problem. This helped to validate post-failure analysis results which involved mapping of stresses
from the onset of failure. Furthermore, sensitivity analysis was performed for the strength and
consolidation parameters in the pre-failure analysis, as well as for the stiffness and assignment of
the number of material points per element in the post-failure analysis. Overall, the models managed
to capture the deep sliding failure mechanism reported in the experiment, with the MPM model

permitting the evolution of the failure over time.
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1.1

INTRODUCTION

LEVEE OVERVIEW

One typical engineering solution to protect an area adjacent to a body of water or
with an elevation below the sea level from the risk of flooding is building levees. These are
embankments which act as a defence system against floodwaters.

Levees have made it possible for people to settle and build towns or cities along
rivers. A prime example is the Mississippi River and Tributaries levees, which now provide
protection against catastrophic floods for over 4 million citizens, 1.5 million homes, 33,000
farms and numerous important transportation routes (Mississippi Valley Division, U.S. Army
corps of Engineers, n.d.).

In lowland countries, flood risk is high. For instance, most of the Netherlands lies
below sea level, hence making it prone to flood risk. To mitigate this, levees have been built.
Levees along the coasts of highly populated and heavily industrialized regions of the
Netherlands are required to be designed to withstand a storm event that has a return period of
10,000 years (Silva et al., 2004).

Despite the effectiveness of levees in combating flood-related disasters, it can still
be subject to failure. Owing to climate change, weather patterns become more unpredictable
and extreme events such as intense precipitation and floods become more frequent. As a
result, sea-level rises and water levels in rivers or other water bodies fluctuate more often.

Fluctuations in rivers lead to rapid filling and drawdown conditions. Hence, this
causes geotechnical problems to occur which may potentially cause levees to fail. In 2007,
flooding in the Grijalva watershed in Tabasco State, Mexico, highlighted the susceptibility of
levees by showing that their stability was undermined due to hydraulic gradients (seepage
forces) generated by rapid filling and drawdown conditions as well rain infiltration in their
crests (Lopez-Acosta & Tarantino, 2018).

Moreover, the risks associated with levee failure, especially during an extreme event,
should not be taken lightly and must be assessed by relevant authorities of places where they
are built. This is because their breach and destruction not only cause huge economic losses

but loss of human and animal lives as well.
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1.2 PROBLEM STATEMENT

The simulation of failure of levees can be conducted through the limit equilibrium
method (LEM) and finite element method (FEM). The failure criterion which is used by LEM
does not consider the stress path to failure. It identifies failure from the stress state only and
the failure surface must be determined a-priori. Hence, levee failure cannot be simulated
progressively and failure modes due to high seepage forces such as uplift at the landside of
levees cannot be appropriately captured. On the other hand, stress-strain behaviour of soil is
considered by FEM which implies that the model generates the failure surface and there is no
need for it to be pre-defined (Griffth & Lane, 1999). Therefore, an accurate slope stability
analysis is achieved, and progressive simulation of failure permitted. However, to evaluate
the impact of levee failures and perform risk assessment, it is vital to understand the failure
from initiation to the entire collapse mechanism which includes the post-failure displacement.
This cannot be conducted with LEM and FEM but can be done with the material point method
(MPM). Large displacement beyond the onset of failure is capable of being simulated by
MPM as it does not suffer from elements distorting and solutions diverging which is typical
of FEM. This report presents two numerical models (FEM and MPM) that simulate an
experimental slope failure of a full-scale earthen levee. The experiment was carried out in
September 2012 in Bad Nieuweschans, Groningen province, the Netherlands, by a Dutch

research program known as the 1Jkdijk (‘calibration levee’).
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1.3 OBJECTIVES
The following are the objectives of this research:
1. To simulate the failure of the experimental levee from start to the onset of
failure using FEM including all experimental loading stages.
2. To simulate the post-failure large displacements of the experimental levee
occurring beyond the onset of failure using MPM.

3. To compare the results obtained from FEM, MPM, and the experiment.

Although an attempt has been made by Melnikova et al. (2015) to numerically
simulate the levee failure, this attempt involved simplifications, such as reducing the total
number of simulation stages compared to the actual number of experimental stages.
Additionally, the investigation was solely on the pre-failure, with no post-failure analysis of
the levee conducted, a step crucial for risk assessment. Hence, the primary aim of this study
is to include all the experimental stages in the simulation and to perform not only pre-failure

analysis but also post-failure analysis.
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2 THE 1JkDijk TRIAL EMBANKMENT EXPERIMENT

2.1 SITE

The Dutch research program, 'IJkdijk', which refers to 'calibration levee', has built
multiple levees starting from 2007 for experimental purposes. The two specific goals of this
research program are to test different types of sensors for levee monitoring under field
conditions and to better understand the mechanisms involved in levee failures.

A three million Euro fund had been awarded to the 1Jkdijk foundation in 2011 by the
Dutch Department of Economic Affairs, Agriculture and Innovation to conduct tests which
include an All-in-One Sensor Validation Test (AIO-SVT). This test was carried out in August
and September 2012 (Koelewijn, 2012). The following are the aims of the test:

1. To test sensor-systems installed in and on levees along with data processing and an
information system capable of providing an alert in the event of failure.
2. To acquire further knowledge on failure mechanisms of levees and their prevention

methods.

Three separate dikes (levees) were built to undertake the AIO-SVT. These levees are
called the West Dike, East Dike and South Dike, which reflect their relative position on the
test site at Booneschans, in the North-East of the Netherlands. In this study, only the South
Dike was replicated to perform the numerical simulations. Figure 2.1 shows an aerial view of

the position of the levees.
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Figure 2. 1. Aerial view of the position of the East, West and South Dike in Booneschans (Koelewijn & Peters,
2012).
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2.2 LEVEE GEOMETRY

2.2.1 Levee construction material
The core of the levee is made of sand. It is covered by a layer of clay with a thickness
of 0.5m on both sides of the levee slope, making it impermeable. On the left side of the levee,
a small embankment is built from soil on the surrounding test site to mimic sea-side conditions
by forming a basin of Im depth. In the numerical models, this embankment is modelled as the

same material as the base clay upon which the levee is built.

2.2.2 Monitoring devices

The levee had been installed with sensors supplied by companies which participated
in the experiment. These are piezometers, inclinometers, strain and temperature meters as well
as settlement gauges. ‘GeoBeads’ sensors which measure both the pore water pressure and
inclination are provided by ‘Alert Solutions’ while other installed inclinometers are provided
by ‘SAAF’ and ‘StabiAlert’. Moreover, the strain measurements are recorded with fibre-optic
cables provided by ‘Koenders’. Figure 2.2 displays the cross-section of the levee and the
position of the sensors while the elevation of the GeoBeads sensors with respect to the
‘Amsterdam Ordnance Datum’ or ‘Normaal Amsterdams Peil” (NAP) is presented in Table

2.1 (Melnikova et al., 2015).
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Figure 2. 2. Levee transversal cross section (a) with 1m grid intervals and longitudinal cross section (b) with
dimensions in m.

Table 2. 1. GeoBeads sensors elevation with respect to m NAP.

Cross-section GeoBeads sensor Depth: m NAP
A GB-AG-1 (sand core) -1.52
GB-AG-2 (thick peat layer) -3.00
GB-AG-3 (thick clay layer) -4.30
GB-AG-4 (base sand layer) -5.62
B GB-AG-5 (sand core) -1.70
GB-AG-6 (thick peat layer) -2.97
GB-AG-7 (thick clay layer) -4.30
GB-AG-8 (base sand layer) -6.02
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2.2.3 South Dike geometry
At the end of the construction stage, the geometry of the levee according to the report
of (Koelewijn, 2012) are as follows:
e Height of levee: 4m above the ground.
e Side slopes of the levee: 1:1.5 (V:H)
e Thickness of clay layer: 0.5m
e Excavation of ditch 1.5m from the toe of the levee on the North side.
e Depth of ditch: 2m below the ground level.
e Bottom width of ditch: 4m
e Slope of ditch: 1:1 on the left side (levee side) and 1:2 on the right side.

A schematization of the levee geometry along with the small embankment and ditch

during the final stage of the construction used in the numerical simulations is presented in

Figure 2.3.
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Figure 2. 3. 2D schematization of the entire model during the final construction stage (dimensions in m).
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2.3 STRATIGRAPHY

It is stated in the report by Koelewijn (2012) that the levee is constructed on
alternating layers of clay and peat with a total thickness of 4.5m. Moreover, in the article
authored by Melnikova et al. (2015), it is mentioned that approximately 4m below the ground
surface, a stiff sand layer is present upon which the clay and peat composition is situated. The
article also reports that the groundwater elevation is the same as the ground level as obtained
from the groundwater level map of the Netherlands. The soil stratigraphy depth with respect

to NAP determined by 4 manual drillings along with the thickness of each soil layer is

provided in Table 2.2 (Koelewijn & Peters, 2012).

Table 2. 2. Soil stratigraphy depth and thickness of the levee test site.

Soil material | Depth: m NAP | Thickness (m)
Clay -1.1 0.7
Peat -1.8 0.4
Clay 2.2 1.3
Peat -3.5 2.4
Sand -5.9 5
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24 GEOTECHNICAL PARAMETERS

It is reported by Koelewijn & Peters (2012) that the geotechnical parameters used to
estimate initial settlement due to construction of the levee are determined through back
analysis of the levee’s collapse. It is also noted that some of these parameters are obtained
from laboratory tests, which may be less reliable because of the small sample size of the soil
and measurements not being conducted in-situ. In addition, it is crucial to acknowledge that
the slope instability design calculations performed using Bishop’s method are based on
similar calculations conducted prior to and following the September 2008 slope stability test
and that certain parameters provided in the report, specifically those related to settlement have
been adjusted to fit this test at the [JKdijk site.

Moreover, in the numerical simulation of the 2012 South Dike experiment initial
settlement resulting from construction carried out by Melnikova et al. (2015), it is informed
that drained soil properties, particularly the effective cohesion and friction angle for peat and
clay, are derived through the consolidated drained triaxial tests. As for the numerical
simulation of the levee failure, an average undrained shear strength is utilized which is
obtained from cone penetration tests (CPT) for clay and peat conducted prior to construction.
The value for both is assumed to be the same. Then, the undrained Young’s modulus for clay
and peat are estimated from the average undrained shear strength. This has been done by
obtaining the modulus at 50% of failure strain for clay and peat through laboratory triaxial
tests and plotted against the undrained shear strength to deduce a relationship between the two
parameters for each soil.

Furthermore, Table 2.3 presents a summary of the initial settlement and stability
analysis parameters reported in Koelewijn & Peters (2012) [1] as well as those utilized by

Melnikova et al. (2015) [2].
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Table 2. 3. Summary of the geotechnical parameters.
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2.5 LOAD SEQUENCE

Construction of the South Dike commenced on June 13, 2012, and reached

completion approximately two weeks later, on June 26, 2012 (Koelewijn, 2012). This is three

months ahead of the start of the experiment, allowing for soil consolidation to take place

through the dissipation of excess pore pressure (Melnikova et al., 2015).

According to the report by Koelewijn (2012), the levee experiment followed the

loading sequence outlined below, along with their corresponding time (chronology):

1.

10.

1.

12.

First day of the test, 12:12pm, September 3"9, 2012 (t=0hrs): The sand core of
the levee is gradually infiltrated with water until a phreatic level of 0.5m above the
Northern toe level is attained.

From t=1.90 to t=9.55hrs: The basin at the South side of the levee is filled (1m).
Second day: At the Northern side of the levee, a ditch is excavated 1.5m from the
toe in multiple stages.

From t=23.17 to t=24.05hrs, 1% excavation stage: Depth of 0.5m and a bottom
width of 2m. The left side slope is 1:1 while the right-side slope is 1:1.5.

From t=24.88 to t=26.30hrs, 2"® excavation stage: Depth of Im and the bottom
width remains as 2m. Slopes are maintained as well.

From t=26.80 to t=28.30hrs, 39 excavation stage: Bottom width widened to 4m
while depth of Im is maintained.

Third day of the test: Excavation is continued.

From t=45.80 to t=47.30hrs, 4™ excavation stage: Depth of ditch is now 1.5m
with a bottom width of 4m as the previous stage. Left side slope is 1:1 and right-
side slope is 1:2.

From t=49.80 to t=52.55hrs, 5" excavation stage: This is the final stage where
the depth is now 2m below ground surface. The bottom width and sides slopes are
as before.

Fourth day of the test, from t=67.63hrs: Sand core of the levee is infiltrated with
water again.

At t=67.97hrs: Infiltration is stopped as settlement and horizontal deformation is
observed.

At t=69.83hrs: Infiltration is resumed.
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13. From t= 76.85hrs: The six tanks on top of the levee are filled with water starting
with an initial level of 0.25m which is completed within 30 minutes. Typically,
every seven hours, another round of filling takes place.

14. At t=117.65hrs: A water level of about 1.75m in the tanks is reached.

15. Sixth day of the test, Saturday September the 8t: This is the final day of the test.
The levee sand core is completely infiltrated with water. In addition, water is

pumped out of the ditch.

The numerical simulations conducted in this study tries as much as possible to
replicate these load sequences. There are some differences. For instance, the water level in
the container is set at 1.4m. This value is derived from the information reported in Melnikova
et al. (2015) which states that the volume of each container is 28m?. Therefore, considering
its placement on top of the levee with a crest width of 3m and a container length of 6.7m, the
resulting height amounts to about 1.4m. Moreover, some simplifications have been made such
as omitting the inclusion of water in the ditch. The numerical models will be further explained

in Chapters 5 and 6 of this thesis.
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2.6 FAILURE DESCRIPTION

It has been anticipated before the start of the levee experiment aimed at examining
macro-instability failure mechanisms that two potential modes of failure were possible. The
first involved the uplift or rupture of the clay cover due to the generation of high pore
pressures resulting from water infiltration into the levee core. The second mode entailed the
occurrence of slope instability, caused by a deep sliding plane within the original subsoil on
which the levee is constructed. Ultimately, the cause of the levee failure was the second mode
(Koelewijn, 2012).

On the sixth day of the test after 122.26 hrs, at 2.27pm on Saturday September the
8t the collapse occurred (Koelewijn, 2012). This happened after the sand core was forcefully
saturated with water. The slope of the ditch that was near to containers 4 and 5 fragmented
(containers position in Figure 2.2). Subsequently, another sliding movement was observed
but on a less deep plane, and there was a rapid reduction in pore pressure within the sand core.
Due to insufficient time for the pore pressures to dissipate, the failure of the levee occurred in
predominantly undrained conditions (Melnikova et al., 2015). An aerial view of the collapsed

levee is shown in Figure 2.4.

Figure 2. 4. An aerial photograph of the South Dike failure by Boertjens Chose (Zomer, 2012).
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The criterion for the deformation of the levee is that a minimum deformation of at
least 20 cm is required. This was met as measured by the inclinometer in the middle section
of the levee, right in front of the toe at 2:13pm on the failure day (Koelewijn, 2012). The post-
failure cross-section of this part of the levee along with the indication of the shear planes,

deformation and skewed peat layer is presented in Figure 2.5.
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Figure 2. 5. Middle section of the South dike, indication of failure after forensic investigation (Koelewijn,
2012).

Moreover, it 1s reported in Koelewijn (2012) that slope stability analysis has been
carried out using Bishop (1955) and Van (2001) methods. It is estimated that after the last
excavation stage, the factor of safety is 1.05 using Van’s method and 1.08 using Bishop’s
method. Both methods yield similar results which are close to 1, indicating a situation close
to failure. At the failure stage of the experiment, the calculated safety factor is 0.94 and 0.98,
using Van’s and Bishop’s methods respectively. Again, similar results are provided by both
methods. The safety factor is below 1 which means that the levee has failed. These values will

serve as a reference for the numerical modelling of this experiment.
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3.1

METHODOLOGY

In this chapter, the numerical tools used to simulate the IJkdijk South Dike
experiment will be explained, specifically the finite element method (FEM) and the material
point method (MPM). Additionally, the constitutive models employed to represent the soil

behaviour will be explained.

COMPUTATIONAL TOOLS
To simulate the levee up to the onset of failure, FEM is utilized. Conversely, for
analysis beyond the onset of failure, in other words, for large displacement analysis, MPM is
employed. Girardi et al. (2022) have suggested utilizing a combination of FEM and MPM to
simulate slope instability. FEM permits the investigation of pre-failure due to its
computational efficiency. However, standard Lagrangian FEM will not converge past the
onset of failure because of extreme element deformation. Hence, subsequently, MPM can be

applied to describe the complete failure mechanism, including post-failure.

3.1.1 Finite element method

The FEM software used is Midas FEA NX (2023). This software allows for the
execution of construction stage analysis. Therefore, the simulation can be performed in stages
to replicate loading stages conducted in the experiment. Each construction stage is not
analysed independently, which implies that structural changes and loading history from the
preceding stage impact the results of the following stage analysis. The analysis features used
to carry out the construction stage analysis in this study include stress analysis and sequential-
stress-seepage-slope analysis.

In stress analysis, time is not considered within its domain, therefore, it is not
possible to specify the duration for applying the boundary condition such as the infiltration of
water into the levee core over a specific time.

The stress-seepage analysis is a one-way coupled approach, where the pressure
distribution obtained from the seepage analysis is used in the subsequent stress analysis to
revise the stress state and soil displacements. This method is not fully coupled, which means
that changes in soil effective stresses do not affect the water pressures. Only the water pressure

distribution influences the effective stresses of the soil.
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There are two types of seepage analysis that are governed by Darcy’s law: steady
state and transient analysis. The difference between the two lies in the boundary conditions at
the interface of the ground or levee. In steady state flow, the boundary conditions remain
constant over time without any changes. For example, this occurs when there is a constant
river level behind a levee. On the other hand, transient analysis takes into account the
influence of time. For instance, it considers variations in river level, such as a rise or fall,
behind a levee.

Furthermore, slope stability is analysed using the strength reduction method (SRM).
Midas FEA NX allows to conduct slope stability analysis using SRM in every stress analysis
performed in the construction stage analysis. The failure point of the slope is determined using
this method when the calculation no longer converges. This is achieved when the calculation
stops converging through the gradual reduction in the soil shear strength and friction angle.
The minimum factor of safety of the slope is then calculated using highest strength reduction
ratio at the failure point.

Additionally, it is possible to allow an undrained material behaviour to be considered
in any stress construction stage or for the entire simulation. When stress is analysed under
drained condition, the software assumes that the dissipation of water has occurred over an
extended period. Conversely, when accounting for undrained soil behaviour, failure triggered

by loading occurs rapidly, allowing no time for water dissipation.
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3.1.2 Material point method

Simulations carried out by FEM are analysed under quasi-static conditions. Its
objective is to seek for an equilibrium condition. In doing so, the computational mesh formed
by discretizing the continuum into discrete elements becomes distorted. This is typical in
problems that involve a large displacement. Elements are entangled because of mesh
distortion, and this exerts a significant impact on the solution for large deformation problems
(Sulsky et al., 1994). For this reason, results are not accurate and ultimately, the solution does
not converge. Figure 3.1 illustrates a case of severe mesh distortion when simulating a large
deformation problem using the standard Lagrangian FEM. Hence, MPM is introduced to

overcome the problems arising from large deformations.
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Figure 3. 1. Severe mesh distortion example when simulating a large deformation problem using the standard
Lagrangian FEM (Rohe & Vermeer, 2014).

While there exist alternative numerical formulations to resolve distortion issues, such
as the arbitrary Lagrangian-Eulerian FEM (ALE FEM) that allows for changes to the
computational mesh, it can be computationally expensive in certain cases. Moreover, the
accuracy of results obtained from remeshing techniques and ALE FEM may be uncertain
because challenges are encountered with history-dependent materials during the remapping

of state variables. In a study by Girardi et al. (2021), similar results were obtained with FEM
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and limit equilibrium method (LEM) at small strains when MPM was used to simulate an
experimental large-scale slope stability problem and it had the advantage of simulating large
strains.

The spatial discretization of the computational domain in MPM consists of two
frameworks which are the material points (MPs) and the computational mesh. The MPs are
considered to represent the continuum body as a set of Lagrangian points. The initialization
and storage of all physical properties of the continuum such as velocities, stresses and strains
are held by the MPs during an analysis. Moreover, the equations that are solved at the MPs
are the mass conservation and that of the constitutive models adopted to describe the
behaviour of the soil materials.

With regards to the computational mesh, it is comparable to the mesh of conventional
FEM. At the nodes of the mesh, the discretized momentum balance equations are solved.
During computation, the MPs can move throughout the mesh, which is referred to as Eulerian
mesh, hence, providing the Lagrangian description of the continuum. It is to be noted that the
mesh covers the entire domain and those without MPs are labelled as inactive.

The existence of MPs and their movement throughout the mesh during an analysis is
what differs MPM from FEM significantly. It is basically an advanced formulation of FEM.
Thus, within the finite element framework, it is categorized under an ALE formulation (Beuth
et al., 2010).

Figure 3.2 demonstrates the MPM algorithm for a single calculation step of a time
increment in four stages. At the start of the time step, all the relevant quantities required to
define the momentum balance equations are mapped from the MPs to the computational mesh
(Fig. 3.2(a)). Next, the equations of motion are solved at the nodes of the mesh to determine
the incremental primary unknown variables (Fig. 3.2(b)). Then, the mapping of the nodal
solution back to the MPs takes place to calculate the stresses and strains along with updating
their positions, velocities, and accelerations (Fig. 3.2(c)). Thereafter, since the mesh does not

store any permanent information, it can be reset freely or kept fixed.
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Figure 3. 2. MPM calculation steps (Ceccato, 2015).

Currently, there are four formulations of the MPM which are one-phase single point,
two-phase single point, two-phase double point, and three-phase single point approach. Single
point refers to one MP carrying all phases involved and double point refers to two MPs
carrying a different phase each. The formulation to be adopted depends on the specific field
of application. This simplifies the problem and reduces the computational time since it is not
required to consider all interactions between the solid, liquid and gas phases that make up a
soil mixture for every geomechanical problem.

Fully saturated drained or undrained soil condition can be modelled by the one-phase
single point formulation. This simplification is possible because, in the drained condition,
excess pore pressure is 0, and in the undrained condition, the relative movement between solid
and liquid phase is set to 0. Therefore, only the solid velocity field is considered and there is
no excess pore pressure generation. As for the two-phase single point formulation, it is
typically applied when simulating consolidation or problems where generation or dissipation
of excess pore pressure are present. Thus, both the solid and liquid movements are accounted
for. Furthermore, the two-phase double point formulation should be applied for cases in which
there is a phase transition, or a role is played by the entry and exit of groundwater and free

surface water. Moreover, in unsaturated soil conditions, all three constituents of the soil are
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found and hence, the three-phase single point formulation should be utilized to take into
consideration the acceleration of the gas phase. Such applications are rainfall infiltration and
effects of drought in slope failure.

As reported earlier, the failure of the IJkDijk levee occurred under undrained
conditions when the core was saturated with water. Therefore, the one-phase single point
formulation of MPM would be used for the post-failure analysis. The general form of the
governing equations are as follows:

1. Mass conservation

The differential equation (Eq.3.1) describes the conservation of mass.

2+ pdiv(®) =0 (3.1)
The total time derivative is denoted by d/dt, p is the mass density of the material and ¥ is the
velocity vector. This relation implies that the mass of each MP remains constant during
deformation.
2. Momentum balance
The conservation of momentum equation is presented in equation 3.2.

p% =div(e") + pg (3.2)

The acceleration vector is denoted by dv/dt, o is the stress matric and g is the gravity vector.
In contrast to FEM, the acceleration term is considered by MPM, enabling it to perform
dynamic simulations.
3. Conservation of energy
Equation 3.3 represents the energy conservation equation. It implies that only mechanical
work is considered as the source of energy while heat or any thermal energy sources are
neglected.

dE _ ¢t
A (3.3)

The internal energy per unit mass denoted by E and &7 is the deformation rate matrix.

There are two boundary condition (BC) types that can be applied to the formulation.
Firstly, the essential BCs or Dirichlet BCs which correspond to prescribed displacements.
These are defined by equation 3.4.

U t) = U(t) (3.4)
The prescribed surface displacement vector is denoted by U ().
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Secondly, the traction BCs, also known as the natural BCs or Neuman BCs which
correspond to prescribed boundary stresses. These are defined by equation 3.5.

a(x,t) n=17(t) (3.5)
The outward unit normal vector of the traction boundary surface on which the stress is applied
is represented by 71 and the prescribed surface traction vector is T(t).

Moreover, the post-failure analysis of the levee simulated in this study is performed
using Anura3D (2023), an open-source code developed by the Anura3D MPM Research
Community. The computational cycle for the one-phase single point MPM formulation for
each timestep, as summarized from the Anura3D Scientific Manual (Anura3D MPM Research
Community, 2022) is as follows:

1. Nodal mass is calculated using shape functions to form a lumped mass
matrix.

2. Internal and external forces at nodes are evaluated.

(98]

Momentum balance equation is solved, and nodal accelerations are
determined.
Velocity at MPs are updated.

. Nodal momentum is updated.

4

5

6. Nodal velocities are updated.

7. Incremental nodal displacement is computed.

8. Strain increment is computed.

9. Stresses are updated using material constitutive model.

10. Volume and mass densities of MPs are updated.

11. MP displacements and positions are updated.

12. As MPs now contain updated information, nodal values are discarded, and

computational mesh is initialized for the next step.
It should be emphasized that that while MPM has the advantage of simulating large

deformations, which FEM struggles with due to element distortion issues, it is not without
drawbacks. Numerical instabilities can arise stemming from MPs crossing element

boundaries, and computational time can be expensive, especially when performing a coupled

analysis for problems involving a low permeability soil.
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3.2 CONSTITUTIVE MODELS

The mathematical idealizations of material behaviour are constitutive models. These
models characterize the stress-strain relationship of a material as well as defining its stiffness.
The model should be selected depending on how well it can simulate the characteristics and
behaviour of the soil. Besides, the availability of data that is used to calculate the model
parameters influences the choice. There are several models available in literature; however,
this thesis focuses on elaborating on only three elastoplastic models used, where the material
behaviour is assumed to be elastic up to the yield stress, after which deformation becomes

plastic.

3.2.1 Mohr-Coulomb
The material behaviour property which defines the Mohr-Coulomb constitutive
model is an elasto-perfect plastic type. This is illustrated in Figure 3.3. The stress (¢")- strain
(&) relationship demonstrates that the deformation is elastic (£¢) below the yield stress. Upon
exceeding the yield stress, the material undergoes permanent plastic deformation (&?)

without any further increase in stress.

Figure 3. 3. Stress-strain relationship of an elasto-perfect plastic material, obtained from Midas FEA NX (2023)
tutorial manual.

Coulomb states that the shear strength of soil is comprised of two components which
are cohesion (c) and friction angle (¢). Equation 3.6 linearly expresses its relationship with

the two components and normal stress (o).
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T =c + otang (3.6)

Mohr-Coulomb’s failure criterion is stress-path independent. In other words, the
yield behaviour is not influenced by the material’s stress history and is determined solely by
its present stress state. Also, because the original model does not capture a material’s
hardening or softening behaviour, this means that the yield function is fixed in the stress space
without considering a hardening rule. Although these assumptions may not precisely simulate
actual soil behaviour, the analysis is simplified.

Figure 3.4 presents the failure envelope for drained (a) and undrained (b) soil
condition. In drained condition, c is the intercept of linear relationship between shear stress
and normal stress while the friction angle is the slope. As for undrained condition, c is equal

to the undrained shear strength (s,,) and friction angle is 0.

ear

-

<

=

A

shear
stress

5
a4 stress
-~ - _n_a

/."'_n_ D= 0
- . i .--"'-._--"'--.
g o rd ™,
~02 N\ N\

) | /— / ' \ C = Sy /[, Ve ~)

= g r‘/ \f normal f \1 1\ normal
o3 02 04 5Iress 73 72 o7 SE5S
a b

Figure 3. 4. Mohr-Coulomb failure envelope for drained (a) and undrained (b) soil conditions, retrieved from
Midas FEA NX (2023) tutorial manual.

Furthermore, other parameters that are included in the model are dilatancy angle and
tensile strength. The dilatancy angle is a strength parameter for roughness. With regards to
tensile strength, it is generally ignored for geo-materials as it is significantly lower than

compressive or shear strength.
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3.2.2 Drucker-Prager

Like the Mohr-Coulomb model, the strength of soil is derived from cohesion and
friction in the Drucker-Prager model. Both models are defined in a very similar manner.
However, the Drucker-Prager model solves the numerical issues that happen on the corners
of the yield shape of the Mohr-Coulomb model. The yield surfaces of both models on the
principle effective stress space and deviatoric plane are shown in Figure 3.5(a) and (b)

respectively.
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Figure 3. 5. Mohr-coulomb and Drucker-Prager yield surfaces on the principle effective stress space (a) and on
the deviatoric plane (b) (Kim et al., 2012).

It can be observed that, as opposed to the Drucker-Prager model, there are six corners
and a common vertex on the tension side of the hydrostatic axis included in the yield function
of the Mohr-Coulomb model. Numerical instabilities in return mapping can emerge from the
discontinuous corners (Borja et al., 2003; Wang et al., 2004). Return mapping is a numerical

method employed to determine stress and strain states during plastic deformation.

3.2.3 Soft Soil

Unlike the Mohr-Coulomb and Drucker-Prager models, the soft soil model is stress-
path dependent. Thus, the stress history of the material is taken into consideration, allowing
amore realistic representation of the soil’s behaviour. This model is well-suited for simulating
materials that have a high degree of compressibility like normally consolidated clay and peat,
etc. Commonly, it is used for the analysis of settlement.

The main nonlinear parameters for the estimation of the soil strength are the

compression index (C.), swelling index (Cs), cohesion, friction angle and the dilatancy angle.
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The C, and C, accounts for the stress-history of the soil and are derived from the plot
of void ratio-effective stress on a logarithmic scale for the material under study. These indexes
are used to calculate the slope normal consolidation line (4) and the slope of the
overconsolidation line (k). Their relationship with the slopes in Midas FEA NX (2023) are
the following:

_ _Cc

A= 2.303 (3.7
_ G

K= 2303 (3-8)

Both lines are shown on a plot of volume change versus pressure in Figure 3.6.

{normal consolidation
S

—~
overconsolidation

volume change

pressure

Figure 3. 6. Normal consolidation and overconsolidation line, obtained from the tutorial manual of (Midas FEA
NX (2023).

Moreover, the cohesion and friction angle are the same failure parameters as used to
define the shear strength in Mohr-Coulomb’s model. As for the dilatancy angle, the
recommended value by Midas FEA NX (2023) is zero. This is because soft soils such as clay
and peat experience negligible dilation when subjected to shear stress. Regardless of the
overconsolidation degree, clays have a very low dilation angle (Hong, 2020).

Furthermore, another important parameter in the soft soil model, but in general for
constitutive models that consider a soil’s stress history is the overconsolidation ratio (OCR).
The influence of past loading and unloading cycles on the mechanical response of the soil is
simulated through the OCR. The OCR value is the ratio of the pre-consolidation stress to the
present stress endured by the soil. Hence, stress distribution of a soil’s in-situ state can be

determined from the current loaded stress distribution through the OCR.
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4.1

4.1.

BENCHMARK SLOPE

Prior to simulating the pre- and post-failure of the IJkdijk experimental levee, a
simple 2D slope is modelled as a benchmark. The slope is analysed up to the failure point
using both FEM and MPM, and a comparison is made in terms of stresses and displacement.
Next, the total stresses and pore pressures from the pre-failure analysis, simulated by FEM,
are transferred to MPM for the post-failure analysis. The goal is to ensure consistency between

the two different techniques in simulating the same problem.

FEM MODEL
This subsection presents the numerical model setup, analysis type and outcomes of

the 2D plane strain FEM model benchmark slope.

1 Geometry and Discretization

The benchmark slope has a cross-section of 2.2 m x 1 m, with a slope angle 0£20.56°.
The depth of the base clay is 0.4 m, while the height of the levee composed of sand is 0.6m
from the top of the base. The crest width measures 0.6 m, and the distance in front of the toe
0.6m. The water level is at the same elevation as the toe. As for the size of the mesh, it is set
to 0.05m and the element type is a combination of triangles and quadrilaterals. The total
number of nodes 1s 708 and for the elements, it is 618. Furthermore, the boundary conditions
imposed are the loads on the crest and the solid fixities at the base, left and right sides of the
model. The load is applied in 5 stages from SkN/m? up to 25kN/m? in increments of SkN/m?.
The base is fully fixed while the sides are fixed normally. Figure 4.1 illustrates the model

geometry, discretization, and boundary conditions.
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Figure 4. 1. Benchmark slope FEM model geometry, discretization, and boundary conditions.

4.1.2 Material
The levee is constructed of sand, whereas the base is made from clay. The
constitutive model selected to describe both materials is the elasto-plastic Mohr-Coulomb
failure criterion. The sand behaviour is drained while for clay, undrained. The effective
stiffness and strength parameters of the material are utilized. To improve convergence,
cohesion of the sand is set to 1kN/m?. Further material properties and mechanical parameters

are provided in Table 4.1.

Table 4. 1. Material properties and mechanical properties of the benchmark slope.

Material property Levee sand Base clay
Saturated unit weight [kN/m?] 20 16
Unit weight [kKN/ m?] 18 16
Initial void ratio [-] 0.5 0.5
Permeability coefficient [m/s] 10 108
Elastic modulus [kN/m?] 30x10° 11.6x10°
Undrained Poisson’s ratio [-] - 0.495
Effective Poisson’s ratio [-] 0.3 0.3
Effective friction angle [°] 30 30
Effective cohesion [kN/m?] 1 6
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4.1.3 Analysis type

A quasi-static stress analysis considering undrained material behaviour is performed.
The maximum negative pore pressure is set to 0 which implies that suction is not considered.
Hence, friction and cohesion are not suction-dependent, and a conservative assumption is
made.

The analysis is performed in six construction stages. Stage 1 is the stress initialization
stage in which stress distribution is established from the self-weight of the levee, in other
words, gravity loading phase. From stage 2 onwards to stage 6, a load of 5kN/m? is
progressively applied, increasing by 5kN/m? in each subsequent stage, with the final stage

applying a load of 25kN/m?. The stages are summarized in Table 4.2.

Table 4. 2. Construction stages of the benchmark slope.

Stage Load applied

1 Self-weight/gravity
5kN/m?
10kN/m?
15kN/m?
20kN/m?
25kN/m?

NN B (W

Furthermore, a slope stability analysis using the strength reduction method is also

performed. This is applied from stage 2 onwards.
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4.1.4 Results

The contour plots of the total stress distribution in the x (S-XX) and y (S-YY)
directions, along with the shear stress (S-X7) in the x-y plane and pore pressure distributions,
are presented in Appendix A.

In the first stage, the initial stress distribution of the benchmark slope is produced by
the application of gravity load. The pore pressure follows a hydrostatic distribution, and the
displacement starts from 0. The total displacement plot is provided in Table 4.4.

As load is applied to the crest starting from the second stage, it can be observed that
the total stresses begin to increase. A sliding slip surface is developed and clearly shown when
a load of 15kN/m? is applied in stage 4.

Furthermore, pore pressure develops when the loads are applied. As expected, the
pressure distribution is 0 for the slope primarily because it is composed of sand, which has a
high permeability and drains water immediately. Also, since suction is not considered in the
analysis, the pressure is limited to 0. Positive values represent suction. Conversely, for the
base clay, it behaves in an undrained condition and a maximum pressure of -27.24kN/m? is
generated at a load application of 15kN/m?.

Moreover, the highest total displacement is about 25mm at the upper portion of the
slope where it is concentrated when a load of 15kN/m? is applied. This is illustrated in Table
4.4(d). Like in the contour plots of the total stresses and shear stress, the slip surface is evident
at this stage.

With regards to the factor of safety (FS), its values are recorded in Table 4.3 for
stages 2 to 4. As the load increases to 15kN/m?, the FS approaches a value of 1, indicating
that failure is imminent. However, in stages 5 and 6, where the load application is 20kN/m?
and 25kN/m?, respectively, convergence cannot be achieved. Hence, post-failure analysis

using FEM cannot be conducted, and all the results are only provided up to stage 4.

Table 4. 3. Safety factors at load application of 5kN/m?, 10kN/m? and 15kN/m?.

Stage Load applied (kN/m?) | Factor of Safety
2 5 1.68
3 10 1.19
4 15 1.00
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Table 4. 4. Total displacement (m) for (a) stress initialization, (b) load application of 5kN/m?, (c) load application of 10kN/m? and (d) load application of 15kN

(a) Stress initialization

(b) Load applied = SkN/m?

g,
1o 000180 000

;+0.00828 +0.00414

+30.01036 +0.00621

+0.00207

(¢) Load applied = 10kN/m?

(d) Load applied = 15kN/m?
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4.2 MPM MODEL

This subsection presents the numerical model setup, analysis type and outcomes of

the 2D plane strain MPM model benchmark slope.

4.2.1 Geometry and Discretization
The geometry of the MPM model benchmark slope is the same as that of the FEM
model, as is the position of the phreatic line (water level). A single point formulation is
adopted, and the mesh size is set to 0.05m, like the FEM model. The model consists of 2320
triangular elements and 1229 nodes. As opposed to Lagrangian FEM models, empty areas
(inactive blue elements) are required to be defined so that MPs (in active red elements — sand
and clay areas) can move into, thus it is also included in the mesh discretization. The number

of MPs per element is 3. The model geometry and discretization are displayed in Figure 4.2.
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Figure 4. 2. Benchmark slope MPM model geometry and discretization.

Moreover, the boundary conditions include the loads applied on the crest, as well as
solid fixities. The load on the crest is applied in stages using the stepwise method, divided
into 6 steps. The first step has a multiplier of 0, and the last step has a multiplier of 1. Thus,
in the final step, the load reaches 25kN/m?. It should be noted that the load is applied to the
MPs because, in large deformation problems, external loads must be assembled in the MPs to

move along with the deforming material. Regarding the fixities, solid fixity is applied in the
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horizontal x-direction on the left and right side of the model, in the vertical y-direction at the

top, and fully fixed at the base. Figure 4.3 presents the boundary conditions.

B Applied load
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Figure 4. 3. MPM boundary conditions: (a) solid traction (loading) and (b) solid fixities.
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4.2.2 Material

As in the FEM model, both the drained levee sand material and the undrained base
clay are described using the Mohr-Coulomb failure criterion. The material type for the sand
is set as ‘dry’ and for the base clay as ‘saturated-undrained effective stress’. Anura3D requires
the solid grains and liquid density to be provided separately, instead of the unit weight of the
material. The initial porosities are obtained from their initial void ratios, and the liquid density
is assumed to be 1000kg/m>. Hence, the solid grains density of the materials was then
calculated from their unit weights, initial porosity, and the liquid density. Their values are

provided in Table 4.5 along with the rest of the material and mechanical parameters that are

identical to ones in the FEM model.

Table 4. 5. MPM material properties and mechanical properties of the benchmark slope.

Material property Levee Base clay
sand
Material type Dry Saturated — undrained effective stress
Initial porosity [-] 0.33 0.33
Density solid [kg/m®] 2247.01 1942.61
Density liquid [kg/m?] - 1000
Effective Young modulus [kN/m?] 30x10° 11.6x10°
Effective poisson’s ratio [-] 0.3 0.3
Undrained Poisson’s ratio [-] - 0.495
Effective friction angle [°] 30 30
Effective cohesion [kN/m?] 1 6
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4.2.3 Analysis type

Apart from conducting a dynamic simulation and mapping the results of the onset of
failure from the FEM model, two quasi-static stress analysis of the benchmark slope are also
performed with different homogeneous local damping conditions (5% and 70%) using the
single point MPM formulation.

The analyses are performed in seven loading stages. Stage 0 is the stress initialization
stage in which stress distribution is generated from the self-weight of the levee (through the
effect of gravity loading). Additionally, the KO-procedure is activated as well as the soil (the
slope, crest, and toe 2D-line) and phreatic surface (phreatic line at 0.4m) specified to initialize
the stresses considering the initial position of the water level. From stage 1 onwards to stage
6, utilizing the load step (stage) multiplier permitted by Anura 3D, the load is gradually

applied until 25kN/m? is reached in stage 6. The stages are summarized in Table 4.6.

Table 4. 6. MPM loading stages of the benchmark slope.

Stage | Load multiplier Load applied

0 0 Gravity

1 0 Gravity + OkN/m?
2 0.2 Gravity +5kN/m?
3 0.4 Gravity +10kN/m?
4 0.6 Gravity +15kN/m?
5 0.8 Gravity +20kN/m?
6 1.0 Gravity +25kN/m?

It should be noted that in the dynamic analysis, quasi-static convergence with a
damping of 70% is implemented only during the stress initialization stage. For the remaining
stages, it is not used, and damping is set to 5%.

Moreover, the time per load step (stage) is set to 0.5 seconds which is only considered
in the dynamic analysis. The quasi-static simulations run based on the convergence criteria
which are the tolerated error of the kinetic energy, the tolerated error of the out-of-balance
force, or the maximum number of time steps. To reduce the computational time, a kinetic
error and a force error of 0.04 for both the liquid and solid have been set. As for the maximum
number of time steps, it is set to 10,000.

In addition, a courant number of 0.98 is used to ensure the stability of the solution,

and the strain smoothing feature is applied to minimize kinematic locking.
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4.2.4 Results

The MPM simulation results, which cover the evolution of the total stresses normal
to the x and y direction of the benchmark slope plane strain model, the evolution of the shear
stresses in the x-y plane, and the evolution of the pressure distribution, can be found in
Appendix B.

As expected, MPM is able to simulate the entire loading stages to which the slope is
subjected to, as opposed to FEM, which stopped when a load of 15kN/m? was applied on the
crest (close to failure point with FS=1).

In terms of stresses and pressure distributions during the pre-failure analysis of the
slope, among the three MPM analyses, the case of the quasi-static simulation with 5%
damping coefficient shows the best agreement with the results of the FEM analysis.

As for the comparison among the MPM analyses, while the quasi-static simulation
with a damping of 5% and the dynamic simulation did yield similar stress and pressure
distributions throughout all stages, the quasi-static simulation with 70% damping coefficient
only did so up to a load of 20kN/m? applied. It is well known in literature that high values of
damping can alter the failure mechanism. This becomes evident as the collapse of the slope
is not captured by the simulation with 70% damping coefficient during the final stage when a
load of 25kN/m? was applied. For instance, the total stresses in the y-direction ranged between
0kN/m? and -48kN/m? for the quasi-static simulation with 5% damping coefficient, while for
the quasi-static simulation with 70% damping coefficient, the range is substantially lower,
between 0.27kN/m? and -37kN/m?.

With regards to the total displacement, at the verge of the slope failure (load
application of 15kN/m?), the maximum value estimated by the quasi-static simulation with
5% damping coefficient, as illustrated in Table 4.7(e) is about 0.70mm. This value is
significantly lower than the displacement (around 25 mm) calculated by the FEM simulation
(see Table 4.4(d)). The reason for this large difference is the convergence issues faced by
FEM at the failure point, making it less reliable in terms of displacement.

Furthermore, increasing the damping coefficient to 70% results in considerably
lower total displacements. This can be observed in Table 4.8(g) during the final loading stage,
where the highest displacement is just over 1.50mm, in contrast to the 131.9mm measured

when the damping coefficient was set to 5%, as presented in Table 4.7(g). In addition, the slip
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surface and collapse of the slope is not evident in the quasi-static simulation with a 70%
damping coefficient.

Moreover, the dynamic case provides similar total displacement results to the quasi-
static simulation with a damping coefficient of 5% up to the stage where a load of 15kN/m?
was applied, as displayed in Table 4.9. However, during the final stage, it can be observed in
Table 4.9(g) that although the result seems similar to the quasi-static simulation with 5%
damping coefficient, there is a difference that should be considered. In the dynamic case, the
displacement is slightly greater. This disparity is attributed to the fact that they relate to
different time periods. The dynamic simulation lasts nearly twice as long (2.5s) compared to

the quasi-static simulation, and as the slope is in motion, the displacements are larger in the

dynamic case.
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Table 4. 7. MPM 5% damping quasi-static analysis total displacement (m) distribution.
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Table 4. 8. MPM 70% damping quasi-static analysis total displacement (m) distribution.
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Table 4. 9. MPM dynamic analysis total displacement (m) distribution.

displacement_solid Magnitude displacement_solid Magnitude

1.000e-16

2.205e-05
i

-1.6538e-5

| S1.1025e-5

£5.5126e-6
0.000e+00

(a) Stress initialization (b) Load stage 1= 0kN/m?

displacement_solid Magnitude displacement_solid Magnitude

E3.003e-04 E4.3301;—04
1 £0.00022525 0 £0.00036603
,00015017 1 -0.00024402

| £7.5084e-5 E[J.[)DD]2201
ED.DOOE+DO ED.DDDe+OO
(c) Load stage 2= SkN/m? (d) Load stage 3= 10kN/m?
displacement_solid Magnitude

displacement_solid Magnifude

7.011e-04 1.100e-03
0005258 R “f 2000082514
00035053 - 0.000501
00017527 0.00027505
0.0006+00 ED.ODDe+DD
(e) Load stage 4 =15kN/m? (f) Load stage 5 =20kN/m?

displacement_solid Magnitude
L E] .160e-01

(2) Load stage 6 =25kN/m?

50




4.3 FEM+MPM MODEL

As seen earlier, FEM analysis could only simulate the loading stages prior to failure
of the benchmark slope. Therefore, it is necessary to transfer the total stresses in the x and y
directions, including shear stress in the x-y plane, along with the pore stresses, to Anura3D
for dynamic post-failure analysis using the MPM. Two simulations were run: the first
involved transferring the FEM results produced using Midas FEA NX when a load of
15kN/m? was applied, with failure imminent; the second simulation involved transferring the
results from an earlier stage where the load application was 10kN/m?.

Both simulations were run with a damping coefficient of 5% since they are dynamic
problems. The stress distributions (normal, shear and pore) from the two simulations are
presented in Appendix C. These stress distributions are similar to those generated by the
dynamic simulation that was run without involving transfer of stresses from FEM (see
Appendix B).

Furthermore, in terms of the total displacement, the results obtained are essentially
the same, having a value of 120 mm at the final loading stage. The displacements during the
final stage are illustrated in Table 4.10(c) for the case where transfer occurred from a load
application of 15kN/m?, and in Table 4.11(d) from a load application of 10kN/m?. Both
figures display the same slip surface, and their displacement values are also comparable to
those generated by the dynamic simulation that was run without involving transfer of stresses
from FEM (see Table 4.9(g) in the previous section).

It can now be concluded that mapping stresses produced at the onset of failure or an
earlier stage using FEM for the purpose of post-failure analysis using MPM on Anura3D has
been validated. Therefore, the simulation of the post-failure analysis of the IJkDijk South

Dike using the same procedure can now proceed.
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Table 4. 10. Total displacement (m) distribution for the case of stresses transferred from load = 15kN/m?.
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Table 4. 11. Total displacement (m) distribution for the case of stresses transferred from load = 10kN/m?.
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5.1

NUMERICAL MODELLING OF PRE-FAILURE

The numerical model adopting FEM to simulate the pre-failure of the 1Jkdijk South
Dike experiment is described in this chapter. The simulation replicates the load sequence
described in section 2.5 chapter 2. The numerical model setup, analysis type, and outcomes

of the 2D plane strain model are presented.

FEM MODEL

5.1.1 Geometry and Discretization

The geometry of the levee is described in detail in section 2.2.3 of chapter 2. The
ground water level is set to the same elevation as the toe and follows the ditch line when
excavations are made. With regards to the size of the mesh, coarse elements (1m) are used for
the base sand layer, less coarse elements (0.5m) for the peat and clay layer just above the base
sand, while finer elements (0.2m) are used for the critical zone. These critical zones include
the location where excavation is to take place, the first three inter-layers of clay and peat, as
well as the levee core and cover. The types of elements used are triangles and quadrilaterals.
The total number of nodes is 9181, and the total number of elements is 3030. In addition, to
improve the accuracy and numerical simulation of the slope stability analysis, higher order
elements are used. The 2D plane-strain FEM model is displayed in Figure 5.1.

Moreover, the boundary conditions include solid fixities at the base and sides of the
model, the load of the container filled with water applied on the crest, and the total head for
both the basin and the levee core. The base is fully fixed while the sides are fixed normally.
The container exerts a pressure of 1.49kN/m?, and the water inside applies an additional water
pressure with a height of 1.4m. The total heads are utilized during the seepage analysis stage,
which include steady-state or transient conditions. Initially, both the basin and levee core have
a head of Om. In the subsequent stages, the basin is filled to Im in a steady state. As for the
levee core, it is first filled to a height of 0.5m over a period of about 75.5 minutes, then to 2.5
m in approximately 20.4 minutes, and finally, it is completely filled within a time span of just
over 20 minutes. The periods are estimated from the experiment conducted. Additionally, a

‘Review’ boundary condition is applied to the right side of the slope including the ditches.
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The Review function is used in Midas FEA NX when it is difficult to locate the exact seepage
line. Iterative calculations are made at the selected nodes, and the seepage surface is
determined based on the pore pressure value being 0. If the pressure is greater than 0, it is
considered as 0, and the node is omitted when it is less than 0. Furthermore, the boundary

conditions and the applied positions are illustrated in Figure 5.1.

Review

Water level Core head

Solid fixity

Figure 5. 1. Discretization and boundary conditions.
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5.1.2 Material

The core of the South Dike is constructed of sand, whereas the cover is made from
low permeable clay. It rests on a foundation composed of interlayers of soft clay and peat,
which in turn lie on a thick layer of sand. This arrangement is depicted in the 2D
schematization of the entire levee, as provided in Figure 2.3, section 2.2.3 of chapter 2.
Additionally, the material used for the small embankment on the left side of the levee is the
same clay as that used in the base.

Moreover, the constitutive model selected to describe materials are the Drucker-
Prager model for both the cover clay and core sand, the Soft-Soil model for the base clay and
base peat, and the Mohr-Coulomb model for the base sand. All of these models are isotropic.
The behaviour of the sand materials is drained, while that of the clay and peat materials is
undrained. The primary parameters utilized are the effective stiffness and strength parameters
for cover clay, core sand and base sand. In addition to the stiffness and strength parameters,
the base clay and peat utilize the OCR and slopes of the consolidation and overconsolidation
lines. The material properties and mechanical parameters are provided in Table 5.1. These
were obtained from Koelewijn & Peters (2012) [1] and Melnikova et al. (2015) [2]. The values
with no references were chosen based on the simulation results that were the closest to the
experiment.

Furthermore, a parametric analysis has been conducted by using various values of
cohesion, friction angle, and slope for both consolidation lines of the base peat to study their

effects on the levee failure. Further information on this can be found in Appendix E.
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Table 5. 1. Material properties and mechanical properties of the South Dike simulation.

Material property Cover Core Base Base Base
clay sand Clay Peat Sand
Saturated unit weight [kN/m?] 20 20? 16 10.1! 20!
Unit weight [KN/ m’] 1812 182 16 10? 18!
Initial void ratio [-] 0.7 0.5 0.5 0.5 0.5
Permeability coefficient [m/s] 107 10 10°® 6.343x10" 10
6
Elastic modulus [kN/m?] 37500% | 30000% | 116007 16002 1500007
Undrained Poisson’s ratio [-] 0.495 - 0.495 0.495 -
Effective poisson’s ratio [-] 0.3? 0.32 0.3? 0.3? 0.32
Effective friction angle [°] 322 30° 30 27.5? 31.12
Effective cohesion [kN/m?] 752 0? 6 9.7 0.5
Over consolidation ratio, OCR - - 2.3! 2.3! -
Slope of consolidation line, A - - 0.132 0.278 -
Slope of over consolidation line, k - - 0.013 0.03 -
Dilatancy angle, [°] - - 0 0 -

5.1.3 Analysis type

The analysis type performed is stress-seepage, which considers undrained material
behaviour, but only for specific stages where it is documented in the literature that failure
occurred under undrained conditions. It is important to note that the material that behaves in
undrained conditions are only the clay and peat, while sand behaves in a drained manner. To
neglect suction effects, the maximum negative pore pressure is set to 0. However, an attempt
was also made to see the effects of taking suction into account.

Moving on to the construction stages, the stress initialization stage in which the stress
distribution is established from the gravity loading phase, is prior to the construction of the
levee. The levee is constructed in 5 stages as reported by Koelewijn & Peters (2012). Hence,
following the stress initialization stage, the construction of the levee is simulated in 5 stages.
It is important to note that during the 5 construction stages of the levee, the ‘Estimate Initial
Stress of Activated Elements’ option is selected to prevent over-estimation of displacement
because FEA NX perform Linear Analysis even if non-linear material is assigned to the
elements to calculate the initial stress of the ground (Midas FEA, 2023).

Furthermore, the subsequent construction stages are based on the loading sequence

described in section 2.5 of chapter 2. These stages are summarized in Table 5.2.
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Table 5. 2. Construction stages of the South Dike.

Stage ID Stage name/load applied | Stage type Analysis control
1 Pre-levee Steady-State -
2 Stress initialization Stress -
3 Levee construction step 1 Stress . )
- Estimation of
4 Levee construction step 2 Stress o
- initial stress of
5 Levee construction step 3 Stress .
; activated elements
6 Levee construction step 4 Stress .
- considered.
7 Levee construction step 5 Stress
8 Container weight Stress material undrained
9 First filing of sand core Transient -
seepage
10 First filing of sand core Stress material undrained
11 Filling of basin Transient -
seepage
12 Filling of basin Stress material undrained
13 First excavation Transient -
seepage
14 First excavation Stress material undrained
15 Second excavation Transient -
seepage
16 Second excavation Stress material undrained
17 Third excavation Transient -
seepage
18 Third excavation Stress material undrained
19 Consolidation Transient -
seepage
20 Fourth excavation Transient -
seepage
21 Fourth excavation Stress material undrained
22 Fifth excavation Transient -
seepage
23 Fifth excavation Stress material undrained
24 Second filing of sand core Transient -
seepage
25 Second filing of sand core Stress material undrained
26 Filling of containers Stress material undrained
27 Sand core filled Transient -
seepage
28 Sand core filled Stress material undrained

Furthermore, the analysis of the slope stability using the strength reduction method

has been initiated from the final stage of excavation.
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5.2 RESULTS

The results of the simulation, starting from the steady-state seepage analysis before
the construction of the levee, where the pore stresses distribution is hydrostatic, as well as the
stress initialization using gravity, also prior to the levee construction, up to the stress analysis
following the seepage analysis of the second filling of the levee’s sand core are provided in
Appendix D.

The final stress analysis performed by the simulation is the stage (26) in which the
containers are filled with water. Figure 5.2 illustrates the total horizontal stress (a), total
vertical stresses (b) and shear stresses (¢).

At the centre of the levee, the S-XX ranges between -133.60kN/m? at the bottom of
the base sand to 1.19kN/m? at the top of the crest. The range is reduced in the section where
the ditch is present, with a value of -116.07kN/m? at the bottom. A similar trend is seen for S-
YY, where the stress starts from -196.12kN/m? at the bottom to -1.58kN/m? at the crest, while
at the ditch section, the stress at the bottom is -155.13kN/m? and approaching OkN/m? at the
ditch level in the lower base clay layer. The reduction in stresses at the ditch section is
expected, as this section carries a lower weight. Both contours exhibit significant stress
concentration at the toes of the levee (magnified in Figure 5.2(a) and (b)), which is a result of
numerical instability.

With regards to the shear stress, a maximum value of 14.40kN/m? is observed close
to the centre of the base sand layer in the section below the ditch. Shear bands are developed
in the cover clays of the levee as a result of the added water load to the container.

As for the pore stress presented in Figure 5.3, it ranges between around 87kN/m? to
nearly OkN/m? at the water table elevation at the ditch level and in the sand core at the point
where the water level reached (2.5m above the toe level) as a result of the second filling,
which took place at an earlier stage. The areas where the pore stress is close to zero infer that
it is the interface between saturated and unsaturated zones. Like in the total stresses, there are
high stress concentrations at the toes of the levee due to numerical instability.

Moreover, the total displacement (a), horizontal (b), and vertical displacement (c)

are presented in Figure 5.4. Although some movement can be seen on the left side of the levee,
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the majority of the displacements take place on the right side. A deep sliding plane with uplift
concentrated at the bottom level of the ditch is generated, as reported in the experiment.

Furthermore, the pore stress distribution extracted from the transient seepage
analysis when the sand core is fully infiltrated with water is displayed in Figure 5.5. In contrast
to the stress analysis performed, positive values indicate compression, while negative values
refer to suction. The maximum pressure developed is close to 90kN/m? which is at the bottom
of the base sand, while at the surface of the water table elevation (tip of the crest and elevation
of the ditch), it is about OkN/m?.

Moving on to the results of the safety factors, they are listed in Table 5.3 with their
corresponding stages. At the final excavation stage, the FS is well above the failure point,
with a value of 1.79. However, after the second infiltration of the sand core, it is substantially
reduced to 1.08, and further decreased to 1.05 after the filling of the containers with water, a
value closer to the verge of failure. At this point, the stress analysis stopped as the solution
fails to achieve convergence. Hence, for the post analysis of large deformation, the plane
strain stresses at this stage and the pore pressure result from the transient seepage analysis,
when the sand core is fully saturated, are transferred to Anura3D.

In the report of Koelewijn (2012), as mentioned before, the factors of safety after the
final excavation stage (Excavation 5) were 1.05 using Van’s method and 1.08 using Bishop’s
method, yielding similar results. These results differ from the FS of 1.79 obtained using the
strength reduction method. Nevertheless, because the failure of the levee occurred after the
levee core was completely filled with water, a FS value of 1.05 at the stage of filling the
containers, which is one stage before the core is fully filled, is in good agreement with the

experiment as the onset of failure.

Table 5. 3. Safety factors at stage 23, 25 and 26.

Stage ID Stage name/load applied | Factor of Safety (FS)
23 Fifth excavation 1.79
25 Second filling of sand core 1.08
26 Filling of containers 1.05

In addition, Table E.1 in Appendix E highlights the parameters of the base peat that
were modified for the sensitivity analysis, which are marked in yellow. The first simulation

run serves as the reference, and its results have been described. For the final simulation stage
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and the corresponding safety factors of each of the six simulation runs, refer to Table E.2 in
the Appendix.

Performing the simulation to consider suction in the second run slightly increased
the FS to 1.064 from 1.050 during the containers filled stage. Taking suction into account
reduces the chances of failure and enhances stability.

In the third run, when the cohesion was decreased by 2kN/m?, and in the fourth run,
when the friction angle was dropped to 24" from 27.5° the solutions started diverging at an
earlier stage and stopped in excavation 5 with FS of 1.138 and 1.739, respectively. This
indicates that the reduction in strength has a significant effect on failure, highlighting the
greater influence of cohesion in the overall stability.

Overall, all the simulations developed the same failure mechanism - deep sliding
plane. This is evident in the total displacement contour of each run, as generated by the slope
stability analysis in Figures E.1 to E.6, corresponding to runs 1 through 6 respectively. Despite
the same failure mechanism, differences can be observed in the total displacement. When
suction was considered in run 3, the maximum displacement dropped to 0.10m from 0.33m
(in run 1), which again proves that taking suction into account is less conservative. Reducing
the cohesion in run 3 and friction angle in run 4, a maximum displacement of around 0.10m
is achieved. This value mainly refers to the uplift produced at the bottom of the ditch, as
expected due to the onset of failure being at an earlier stage (5™ excavation). In runs 5 and 6,
the displacements decreased at the base because lower consolidation coefficients were used.

Regarding the slopes of the normal (run 5) and over-consolidation (run 6) lines, their
decreased values had slightly dropped the FS to 1.031 during the filling of containers. While
reducing the normal consolidation slowed down settlement at the final step of the levee
construction, as illustrated in Figure E.7 (b), the slight decrease of the over-consolidation
slope did not have any visible changes in the settlement (Figure E.7 (c)) compared to the
reference run in (a) of the same Figure. This is because the over-consolidation slope would

have a considerable effect in the reloading stages.
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Figure 5. 2. Total stresses and shear stress (kN/m?) at the time of filling of containers.
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Figure 5. 3. Pore stress (kN/m?) at the time of filling of containers.
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Figure 5. 5. Pore stress (kN/m?) from transient seepage analysis at the time of sand core filled to the crest.
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6 NUMERICAL MODELLING OF POST-FAILURE

In the previous chapter, the FEM model of the South Dike was able to simulate
up to the stage where the containers were filled with water for the stress analysis, which
is the point of imminent failure. Concerning the seepage analysis, the complete infiltration
of the sand core with water was the last stage the model simulated. To investigate the
post-failure behavior of the levee, the 2D plane stresses of the containers-filled stage and
pore pressures generated from the seepage analysis are transferred to Anura 3D to perform

the MPM simulation, which accounts for large displacement.

6.1 MPM MODEL

6.1.1 Geometry and Discretization

The South Dike geometry for the MPM model is akin to the FEM model,
including the elevation of the water level. The adopted MPM formulation is a one-phase
single point approach, where the behavior of the sand materials is considered to be fully
drained, whereas that of the clay and peat is considered undrained. A mesh size of 0.6m
for the entire geometry. There are 3228 triangular elements and 1696 nodes. For the
movement of MPs into empty elements during the deformation process, an empty area
covering the width of the entire levee and a height of one meter just above the crest are
defined. Each element covering the levee and its base contains 3 MPs. Figure 6.1 depicts
the model geometry and discretization. The red elements represent the active components,
indicating they have been assigned with MPs. On the other hand, the blue elements
represent inactive components with no assigned MPs. As previously mentioned, inactive
elements are required so that the MPs are allowed to move into them when the levee starts

to deform.
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Figure 6. 1. South Dike MPM model geometry and discretization (red =active elements, blue = inactive
elements).

Pertaining to the boundary conditions, they consist of the weights of the containers
filled with water on the crest, amounting to 15.22kN/m?, as shown in Figure 6.2(a), as well as
solid fixities as illustrated in (b). The load applied to the MPs is maintained throughout the
simulation. Furthermore, for the solid fixities, the sides of the model are fixed horizontally,

while the top side is fixed vertically, and the base is fully fixed.
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Figure 6. 2. South Dike MPM boundary conditions: (a) solid traction (load) and (b) solid fixities.
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6.1.2 Material

Due to the unavailability of some of the constitutive models in Anura3D that were
used in the pre-failure analysis of the levee, only the Mohr-Coulomb failure criterion is
utilized to describe the material behaviors for the post-failure analysis. Similar to the FEM
model, the material behavior type is set the same, where sand is drained, and base clay and
peat are undrained. To ensure numerical stability and to obtain results consistent to the
experiment, the Young’s modulus of the base clay and core sand has been reduced. Similarly,
the effective cohesion of the base clay and peat has been adjusted. The initial porosities used
are derived from their initial void ratios, and liquid density is assumed to be 1000kg/m>. As
for the solid grain density of the materials, they were derived from their unit weights used in

the FEM model. Table 6.1 summarizes the material and mechanical properties employed.

Table 6. 1. MPM material properties and mechanical properties of the South Dike.

Material propert Cover Core Base Base Base
property clay sand clay Peat sand
Saturated Saturated | Saturated
- - - Saturated
Material type undrained | Dry | undrained | undrained -
effective effective | effective | drained
stress stress stress
Initial porosity [-] 0.41 0.33 0.33 0.33 0.33
Density solid 2761.75 |2551.39 | 1942.61 | 1044.64 | 2551.39
[kg/m”’]
Density liquid 1000 ; 1000 1000 1000
[kg/m”’]
Effective Young 3 3 3 3 3
modulus [kN/m?] 37.5x10° | 25x10 1.6x10 1.6x10 150x10
Effective poisson’s 0.3 0.3 0.3 0.3 0.3
ratio [-]
Undrained Poisson's | 495 : 0495 | 0495 :
ratio [-]
Effectlzfe friction 3 30 30 275 311
angle [°]
Effective cohesion
(KN/m?] 75 0 2.5 1.8 0.5
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6.1.3 Analysis type

The post-failure dynamic simulation of the levee is conducted using the one-phase
single point MPM formulation. Since the simulation is dynamic, the homogeneous local
damping coefficient is set to 5% in order to improve stability.

As the plane stresses of the containers filled stage and pore stresses from the seepage
analysis when the sand core is fully filled are transferred to Anura3D from the FEM model,
this essentially constitutes the stress initialization stage. Clearly, gravity load is maintained
for the entire simulation. Additionally, the load of the filled containers is activated and kept
constant throughout the simulation.

Moreover, the total number of load steps run is 125, with each step lasting 0.1
seconds. Also, for the stability of the numerical simulation, the courant number is set to 0.98,

while for the reduction of kinematic locking, the strain smoothing feature is activated.
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6.2

RESULTS

The transferred plane strain stresses generated at the onset of failure during the stage
when the containers are filled are illustrated in Figure 6.3. The total horizontal stress in Figure
6.3(a) is quite similar to the FEM output in Figure 5.2(a) in section 5.2 of chapter 5. The
differences in the overall stress distribution arise due to the extreme stress concentration at
the toes of the levee in the pre-failure analysis. This is a typical numerical FEM problem
caused by issues in numerical convergence, which the MPM model fortunately does not
encounter. Also, the stresses were transferred using an average mesh size of 0.6m,
contributing to the observed discrepancies. The same can be said for the total vertical stresses
in Figure 6.3(b) when compared to the FEM result in Figure 5.2(b) and the shear stresses in
Figure 6.3(c) when compared to the FEM result in Figure 5.2(c).

Regarding the transferred pore stresses generated by the transient-seepage analysis
of the levee core being completely saturated with water, as shown in Figure 6.4, the overall
stress distribution is similar to the FEM output as provided in Figure 5.5 in section 5.2. It
should be noted that in the seepage analysis, negative pore pressures represent suction, while
positive compression. Hence, when transferring the results, the signs were changed because
in Anura3D, suction is positive while compression is negative.

Moreover, Table 6.2 provides the evolution of the deviatoric strain in the levee over
the entire period of the simulation, which lasted 12.5 seconds. The MPM model effectively
captures the development of failure over time. The emergence of the sliding plane is evident,
with strain primarily occurring at the interface between peat and sand, the left slope of the
bottom ditch located within the interlayers of clay and peat, as well as within the levee core.
A slight development of a slip surface on the left side of the levee is noticeable, which was
not observed in the experiment. This disparity is attributed to the simulation’s container being
applied uniformly across the MPs, covering the entire width of the crest, whereas in the
experiment, the container was placed mostly towards the right side of the levee. Nonetheless,
this difference is minor as compared to the significant strain that developed on the right side

of the levee. Note that results are scaled for improved visualization.
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Furthermore, the corresponding evolution of total displacement throughout the
duration is presented in Table 6.3. The magnitude of the displacement, as depicted in Figure
6.5(a), is broken down into its horizontal and vertical component at the end of the simulation,
when load step = 125 and time = 12.5 s, shown in (b) and (¢), respectively. The sliding plane
failure surface and uplift at the bottom of the ditch are observed, analogous to the experiment.

In Appendix F, the vertical stress for the entire duration of the simulation is provided
in Table F.1. The stresses start to increase from 2.5s, and at 7.5s, stress rises on both slopes
of the levee. From t =10s, a stress increase at the left-side slope of the ditch is noticeable, and
stresses on both side slopes of the levee decrease at the end of the simulation when the levee
stops moving. As for the pressure evolution, it is presented in Table F.2, where the pressure
generally starts to drop (towards suction) from 2.5s and remains somewhat constant for the

rest of the period.
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Table 6. 2. South Dike post-failure deviatoric strain evolution (0.0s to 12.5s).
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In addition, a parametric analysis has been performed. The modified properties of
the four runs are given in Table 6.4. The first run serves as the reference, corresponding to the
simulation in which the results have been described. Table 6.5 lists the final load step at which
the simulation stopped, along with its corresponding duration. The time per load step for each

run is set to 0.1s.

Table 6. 4. Mechanical and numerical properties modified for each post-failure analysis run.

First run | Second | Third | Fourth
(reference) run run run
MPs per element 3 3 3 3,12,16

Base clay Young’s
Modulus, kN/m? 1600 11600 | 11600 | 1600

Base peat Young’s
Modulus, kN/m? 1600 11600 | 1600 1600

Properties

Table 6. 5. Final load step of each post-failure analysis run.

Run Final load step Duration (s)
First 125 12.5
Second 1 0
Third 10 0.9
Fourth 13 1.2

For the first three runs, the number of MPs assigned to each element is 3, as depicted
in Figure 6.6(a). In the fourth, the distribution is set to 3, 12 and 16, with the highest assigned
to the zones that experienced the larges displacements, i.e. the levee itself and the first three

layers of the base composed of clay and peat, which are the critical zones, as shown in (b).
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The contour results depicting the evolution of the deviatoric strain and the total
displacement for the second through fourth runs can be found in Tables 6.6 to 6.11. It can be
observed that all simulations, with the exception of the second run, produce the sliding plane
failure mechanism. However, due to numerical issues, notably the cell-crossing problem
encountered by MPM, the models (run 2,3 and 4) explode and are unable complete the
analysis. An in-depth view of the distribution and crossing of the MPs during the final load
step of each run is provided in Appendix G.

In run 1 (reference run), where both the base clay and peat had a stiffness value of
1600kN/m?, the simulation managed to complete the 125 load steps with minimum MPs cross
cell issue close to the ditch as depicted in Figure G.1.

When the stiffness was increased to 11,600kN/m? for both materials in run 2,
crossing of MPs is observed at the base sand and near the ditch, as depicted in Figure G.2.
This caused the simulation to stop at the end of the first load step.

Next, in run 3, assigning 11,600kN/m? of stiffness value to the base clay and
1600kN/m? to the peat causes the simulation to explode mostly near the interface between the
clay and peat below the ditch by the 10" load step, as depicted in Figure G.3. This can be
attributed to the large difference in stiffness values, which causes numerical instability when
an averaging of the material values is performed by the model.

Finally, in the fourth run, when higher MPs per element is assigned, the simulation
lasts only till the 13" load step because of the intense MP cross-cell issue close to the left
slope of the ditch, as depicted in Figure G.4. A higher number of MPs per element increases

the chance of crossing of one element’s MP to another.
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Run 2

Table 6. 6. Second run South Dike post-failure deviatoric strain evolution (0.0s to 0.6957E-03s).
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Table 6. 7. Second run South Dike post-failure total displacement evolution (0.0s to 0.6957E-03s).
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Run 3

Table 6. 8. Third run South Dike post-failure deviatoric strain evolution (0.0s to 0.9s).
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Table 6. 9. Third run South Dike post-failure total displacement evolution (0.0s to 0.9s).
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Run 4

Table 6. 10. Fourth run South Dike post-failure deviatoric strain evolution (0.0s to 1.2s).
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7.1

COMPARISON WITH EXPERIMENT

Comparing the simulation results of the South Dike before and after failure with

the experimental findings is done in this section.

DISCUSSION

Following the completion of the levee construction, as simulated in stage 7 of the
FEM model, the settlement beneath the center of the levee is approximately 0.90m. This is
illustrated in Figure D.18(c) in Appendix D. This value falls within the range of 0.85m and
0.99m, as reported in Koelewijn (2012), for the east and west sections of the levee,
respectively. Indeed, subsoil characteristics are not uniform; ground conditions exhibit
spatially variability (heterogeneity), which contributes to the variation in settlement between
the east and west sections of the levee.

Furthermore, the difference in the numerical value of the settlement can be attributed
to the lack of provided consolidation parameters. While consolidation parameters such as the
OCR (2.3) and consolidation coefficient (6.7E-06m?/s) were provided by Koelewijn & Peters
(2012), these values were insufficient for the soft soil constitutive model used to describe the
behaviour of base clay and peat. The determination of the consolidation slopes was set through
a trial-and-error process to obtain settlement values closest to the experiment. For base clay,
the normal consolidation line slope of 0.132 was used, and for the overconsolidation line
slope, it was 0.013. For the peat, 0.238 and 0.03 were determined for the normal consolidation
line slope and overconsolidation line slope, respectively.

The FEM model simulated the onset of failure at the stage when the containers were
filled with water, attaining a safety factor of 1.05. Subsequently, the simulation that took place
before the solution failed to converge was the transient seepage analysis of the complete
saturation of the levee core. These results are reasonable because, in the experiment, failure
of the levee occurred after the core was forcefully pumped with water. The safety factors
calculated using Van’s and Bishops’s methods, once the maximum pressures were reached at

this stage, were 0.92 and 0.95, respectively (Koelewijn, 2012).
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Proceeding to the post-failure analysis results, the experimental slope configuration
is compared by superimposing its initial and final displacements, marked by black and red
lines respectively, onto the magnitude of the final displacement contour generated by
Anura3D. This comparison is illustrated in Figure 7.1 for the west cross-section of the South
Dike and in Figure 7.2 for the middle cross-section of the South Dike.

As observed, the simulation results generally bear a closer resemblance to the failure
in the west cross-section than in the middle cross-section.

The vertical downward displacement at the top of the middle of the crest by the end
of the 12.5s simulation period is about 1.4m. This information is derived from the tracking of
‘MP 6111° showcased in Figure F.1 in Appendix F. In contrast to the experimental findings,
the drop in the crest measures around 0.9m for the west cross-section, whereas for the middle
cross-section, this drop is approximately 2m, as indicated in Figures 7.1 and 7.2, respectively.

With regards to the horizontal displacement at the toe, tracked by ‘MP 6196’ located
in the levee toe (refer to Figure F.1 in Appendix F), the simulation yields a value of around
1.45m upon completion. This value is lower compared to the horizontal displacement
measured by the inclinometer at the west cross-section’s toe on the day of the failure, which
was recorded as 0.83m. In the case of the middle cross-section, the horizontal displacement
is 1.65m in front of the toe, closer to the simulation results. These measurements were taken
on Saturday, September 8", at 2:30pm. Recorded values at different times of the same day are

available in Table 7.1.

Table 7. 1. Horizontal displacements measured by the inclinometers, extracted from Koelewijn (2012).

East Middle | Middle | Westin West
Time on failure day in under | in front | front of in
(8t Saturday 2012) toe crest of toe toe toe

(mm) | (mm) | (mm) (mm) (mm)
1:53 PM 115 145 160 140 135
2:13 PM 145 190 200 175 155
2:27 PM 180 430 470 310 320
2:30 PM 225 1450 1650 900 830
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Moreover, at the bottom of the ditch, the simulation produces an uplift of
approximately 0.70m in magnitude. Although no measurements are available for comparison
with the west cross-section, it is evident from the middle cross-section that the uplift occurs
to a greater extent.

The disparities in the results of the MPM simulation may stem from the constitutive
model used. For all the materials, only the Mohr-Coulomb failure criterion was adopted,
owing to its ready availability in Anura3D. As opposed to other more sophisticated models
such as soft-soil or modified cam-clay, this does not take into consideration the soil’s loading
history. It is vital to use models that can appropriately capture the soil’s behaviour to prevent
any underestimation of deformations.

Another potential explanation can be due to certain differences in replicating the
loading stages. For instance, while the model applied the container load to cover the entire
width of the crest, in reality, the containers did not extend along the full width (3m). Also, the
height of the water in the containers was set to 1.4m in the model. This value was calculated
by considering the width of the crest (3m) and container length of 6.7m, and a reported volume
of 28m? according to Melnikova et al. (2015). However, during the experiment, the height of
the water reached in the containers was 1.75m (Koelewijn, 2012).

In addition, the MPM formulation used is the one-phase single point method, which
is a simplified approach and does not take into account the unsaturated state of the levee core
(before its complete saturation). Provided that more information on the soil properties is
available, a more advanced formulation of MPM can be applied, which could potentially
better simulate the levee failure to match the experiment.

Nevertheless, the simulation generally is able to reproduce the overall failure
mechanism as observed in the experiment. By the end of the dynamic simulation, the deep
sliding plane reaches the bottom peat layer located just above the base sand. This aligns with
the middle cross-section of the South dike, where the sliding planes are recorded in the
interlayers of clay and peat. Figure 7.3(a) depicts the layers in which the sliding plane occurs
in the middle cross-section, while (b) illustrates the sliding plane failure mechanism (outlined

in the red box) captured by MPM, which is superimposed on the material ID contour.
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CONCLUSION

In this study, two numerical simulations were conducted to replicate an experiment
carried out by the Dutch research program, 'IJkdijk'. The experiment involved inducing failure
in a full-scale earthen levee named South Dike, located in the North-East of the Netherlands
in 2012. The failure was as a result of forcefully infiltrating the levee’s core with water.

Before simulating the pre- and post-failure of the levee using FEM and MPM,
respectively, a benchmark slope was simulated to ensure consistency of results between the
two methods. This step also served as a validation process for when stresses are transferred
from the onset of failure in Midas FEA NX to Anura3D for the post-failure analysis. This was
successful, demonstrating that simulations involving stress mapping yielded similar results to
the MPM simulation that simulated the entire failure mechanism of the benchmark slope.

Moreover, the onset of failure of the South Dike was at the stage in which the
containers were filled with water, obtaining a safety factor of 1.05. This safety factor is
deemed acceptable, as it occurred before the levee’s core was fully infiltrated with water, the
stage that led to its failure. Next, the plane stresses at the onset of failure and pore stresses
generated by the transient seepage analysis when the core was fully saturated were transferred
to Anura3D for post-failure analysis. The evolution of the post-failure deformation was
captured over a period of 12.5s, resulting in a maximum horizontal displacement of
approximately 1.45m at the toe.

The simulations successfully managed to replicate the overall deep sliding failure
mechanism observed in the experiment. The development of the sliding plane was reproduced
in both the pre-failure analysis and was also captured in the dynamic simulation for the post-

failure analysis, which simulated the large displacement (run-out).
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Further improvement in the future can be made by employing constitutive models in
the post-failure analysis, especially for the base materials (clay, peat, and sand), which
consider the stress path dependency to failure. This is crucial because run-out prediction might
be potentially underestimated due to the chosen constitutive model’s limitations in best
capturing the soil’s mechanics.

Another enhancement that can be considered is incorporating the unsaturated soil
state and its evolution with suction in the levee’s core while it is being infiltrated with water.
The soil’s water retention curve and hydraulic conductivity curve would be required. This
improvement will help in providing a more realistic mimic of the slope behavior when its
water table rises, for instance, due to rainfall or by an upstream recharge as done in (Girardi
et al., 2023).

Furthermore, the significance of this study lies in its application to risk assessment,
which encompasses the evaluation of levee failure run-out. The factor of safety alone cannot
fully account for slope movement. This is where MPM proves valuable, facilitating the post-
failure-analysis necessary for simulating large displacements and understanding their

behavior over time.
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APPENDIX A
In this Appendix, the results of the FEM analysis carried out for the benchmark
slope are presented. Table A.1(a) depicts the contour plot of S-XX for stress initialization,
while (b) to (d) of the same figure provide the stress distributions for SkN/m?, 10kN/m?, and
15kN/m?. Similarly, Table A.2(a) to Table A.2(d) and Table A.3(a) to Table A.3(d) show the
contour plots of S-YY and S-XY for the same load sequence, respectively. Negative values
indicate compression, while positive values indicate tension. In addition, the pore pressure

evolution is illustrated in Table A.4.
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Table A. 1. Total stress in x-direction for (a) stress initialization, (b) load application of 5kN/m?, (c) load application of 10kN/m? and (d) load application of
15kN/m?.

(c) Load applied = 10kN/m? (d) Load applied = 15kN/m?
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Table A. 2. Total stress in y-direction for (a) stress initialization, (b) load application of SkN/m?, (c) load application of 10kN/m? and (d) load application of
15kN/m?.

(¢) Load applied = 10kN/m? (d) Load applied = 15kN/m?

95



Table A. 3. Shear stress for (a) stress initialization, (b) load application of 5kN/m?, (c) load application of 10kN/m? and (d) load application of 15kN/m?.

(¢) Load applied = 10kN/m? (d) Load applied = 15kN/m?
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Table A. 4. Pore stress for (a) stress initialization, (b) load application of SkN/m?, (c) load application of 10kN/m? and (d) load application of 15kN/m?.

(a) Stress initialization (b) Load applied = SkN/m?

(c) Load applied = 10kN/m? (d) Load applied = 15kN/m?
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APPENDIX B

This Appendix presents the results of the benchmark slope conducted using MPM.
The post-processing software employed to display these results is Paraview.

The components representing the stress tensor in 2D in Paraview are provided in
Figure B.1. Horizontal stress is indicated by 0 and vertical stress by 4 while shear stress in

the x-y plane by 1.

Oxx Txy 0 0 1 2
0 0 o0y 6 7 8

in 2D

Figure B. 1. 2D stress tensor components in Paraview.

The total number of load steps for both the quasi-static and dynamics simulations is
6. The time per load step set for the dynamic simulation is 0.5s, and it lasted about 2.52s.
Figure B.2(a) displays the position of a selected MP, and in (b), its plot of horizontal (Ux) and
vertical (Uy) displacement generated by the two quasi-static and one dynamic simulation. As
expected, in the highly damped (70%) quasi-static simulation, the displacements are null as
compared to the quasi-static simulation damped with a 5% coefficient. The displacements of
the dynamic simulation for this selected MP are slightly lower than the quasi-static simulation
at the end of the period. It’s important to note that time is not considered in the quasi-static

analysis, unlike the dynamic case, which explains the difference.
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(b) Displacement plot comparison
Figure B. 2. Selected MP position (a) and displacement comparison (b).

Furthermore, Table B.1 to B.4 illustrate the stresses (horizontal, vertical and shear
stress), including the pressure distribution, for the entire load stages of the quasi-static MPM
simulation with a 5% damping coefficient. Similarly, Table B.5 to B.8 display the results of
the quasi-static simulation with a 70% damping coefficient, while Tables B.9 to B.12 present

the results of the dynamic MPM simulation.
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Damping Coefficient = 5%

Table B. 1. MPM 5% damping quasi-static analysis total stress in the x-direction distribution.
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Table B. 2. MPM 5% damping quasi-static analysis total stress in the y-direction distribution.
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Table B. 3. MPM 5% damping quasi-static analysis shear stress distribution.
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Table B. 4. MPM 5% damping quasi-static analysis pressure evolution.
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Damping Coefficient = 70%

Table B. 5. MPM 70% damping quasi-static analysis total stress in the x-direction distribution.
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Table B. 6. MPM 70% damping quasi-static analysis total displacement in the y-direction distribution.
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Table B. 7. MPM 70% damping quasi-static analysis shear stress distribution.
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Table B. 8. MPM 70% damping quasi-static analysis pressure evolution.
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Dynamic Analysis

Table B. 9. MPM dynamic analysis total stress in the x-direction distribution.

total_stress_solid 0
0.000e+00

-3.782e+00

total_stress_solid 0

5 [9.315e-05
0o E1816

3631
E-3.5447
-4,7260+00

(a) Stress initialization (t= 0s)

(b) Load stage 1= OkN/m (t= 0.02s)

total_stress_solid 0
-7.765e-01
-1.9482

-3.8963
=5.8445

E—8.E>é>‘7e+00

total_stress_solid 0

-1.041e+00

(¢) Load stage 2= 5kN/m? (t= 0.52s)

(d) Load stage 3= 10kN/m? (t= 1.02s)

total_stress_solid 0
-1.764e+00

Wil

3 :

=-8.016
--12.024

E-] .780e+01

total_stress_solid 0

-1.621e+00

(e) Load stage 4

total_stress_solid 0

ED.DDOe+OD

A

DA

e T

L

!

-2.992e+01

(g) Load stage 6 =25kN/m? (t= 2.52s)
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Table B. 10. MPM dynamic analysis total stress in the y-direction distribution.

total_stress_solid 4 total_stress_solid 4
-1.477e-01 -1.108e-01
e o] Faan L -3.6083
L 7.3367
- 10263 £ -11.005
: t—1.3&39+0'| -1.4788+01
(a) Stress initialization (t= 0s) (b) Load stage 1= OkN/m (t= 0.02s)
total_stress_solid 4 fotal_siress_solid 4
2.651e-01 2.6756-01
£-4.6198 R E_—5.7837
=.9.2396 L =11.567

(¢) Load stage 2= 5kN/m? (t= 0.52s) (d) Load stage 3= 10kN/m? (t= 1.02s)

fotal_stress_solid 4 total_stress_solid 4
-2.671e-01 -2.704e-01

-0.9869

~13.974

--20.961
E-2.82 le+01

total_stress_solid 4
0.000e+00

e

(2) Load stage 6 =25kN/m? (t= 2.52s)
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Table B. 11. MPM dynamic analysis shear stress distribution.

total_stress_solid 1

1.000e-16

‘: t7.5e-17

3 —5e-17
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T e
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L e
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fotal_siress_solid 1
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(a) Stress initialization (t= 0s)

(b) Load stage 1= OkN/m (t= 0.02s)

fotal_stress_solid 1

6.261e-01
Lo

=-0.67359

£-1.3472

-2.068e+00

total_stress_solid 1
8.316e-01

(¢) Load stage 2= SkN/m? (t= 0.52s)

(d) Load stage 3= 10kN/m? (t= 1.02s)

total_stress_solid 1

1.198e+00

ko

1.5208

- 3.0417

-4.885e+00

total_stress_solid 1
1.571e+00
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=2.0001

() Load stage 5 =20kN/m? (t= 2.02s)

fotal_stress_solid 1

] t4.8'I 8e+00

i 48292
E-o.osaa
1.450e+01

(g) Load stage 6 =25kN/m? (t= 2.52s)
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Table B. 12. MPM dynamic analysis pressure evolution.

pressure_liquid

0.000e+00

e

(a) Stress initialization (t= 0s)

pressure_liquid
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pressure_liquid

(b) Load stage 1= OkN/m (t= 0.02s)

pressure_liquid

S e

3.2848

(¢) Load stage 2= 5kN/m? (t= 0.52s)

pressure_liquid

1.733e-01

=]

s

(d) Load stage 3= 10kN/m? (t= 1.02s)

pressure_liquid

2.034e-01

o

2.181e+01
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pressure_liquid

e,

£ 00000400

-15.95
E-2.1276+O]

(2) Load stage 6 =25kN/m? (t= 2.52s)
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APPENDIX C

The post-failure analysis of the benchmark slope results in terms of the stresses
(horizontal, vertical and shear) as well as the pressure distributions are provided in this
Appendix. These findings are from two dynamic MPM simulations. In the first simulation,
stresses calculated using FEM are transferred from the onset of failure (load applied =
15kN/m?). Conversely, in the second simulation, the stresses are transferred from a load
application of 10kN/m?.

When transferring the plane strain stresses from the FEM model with a load
application of 15kN/m?, the number of load steps set was 2 to reach 25kN/m?, and it lasted
for a duration of 1s. As for the case when transfer occurred from a load application of
10kN/m?, the total load steps required to reach 25kN/m? were 3. This simulation took 1.5s to
complete. Time per load step set is 0.5s for both cases.

Furthermore, an MP is selected, as shown in Figure C.1(a), and its horizontal (Ux)
and vertical (Uy) displacements over time generated by the simulations involving mapping of
stresses from FEM and without mapping are compared (b). As observed, despite the
differences in simulation times, the displacement values from all three simulations are nearly
identical by the end of their periods. Hence, this benchmark mapping serves as validation for
the post-failure analysis of the South dike, involving the mapping of stresses from its onset of

failure.
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(c) Selected MP (ID =4061)
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-0.01 0 ¥
rg -0.02 — = = Dynamic Ux
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-0.04
g — — = Mapped_15 Ux
g -0.05 Mapped_15 U
< apped_ y
.%-006
/A -0.07 — = = Mapped_10 Ux
-0.08 Mapped_10 Uy
-0.09
-0.1

Time (s)

(d) Displacement plot comparison
Figure C. 1. Selected MP position (a) and displacement (m) comparison (b).

Moreover, Tables C.1 to C.4 illustrate the stress and pressure distributions using
Paraview for the case where the load is transferred from the onset of failure. On the other
hand, Tables C.5 to C.8 depict the stress and pressure distributions for the case of load where

the load is transferred from an earlier stage (load applied = 10kN/m?).
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Stresses transferred from load application = 15kN/m?

Table C. 1. Horizontal stress (kN/m?) distributions for the case of stresses transferred from load = 15kN/m?.

total_stress_solid 0 total_stress_solid 0
[-2.307e+00

0.000e+00 VY AVA YA A VAV AV AV VAV AV VA AVAVAAV AV AV AVAVLYa¥)
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(a) Transfer (stage 4) = 15kKN/m? (t= 0s) (b) Load stage 5 = 20kN/m? (t= 0.5s)
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(c) Load stage 6 = 25kN/m? (t= 1s)

Table C. 2. Vertical stress (kN/m?) distributions for the case of stresses transferred from load = 15kN/m?.

total_stress_solid 4

total_stress_solid 4
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(c) Load stage 6 = 25kN/m? (t= 1s)
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Table C. 3. Shear stress (kN/m?) distributions for

the case of stresses transferred from load = 15kN/m?.
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(c) Load stage 6 = 25kN/m? (t= 1s)

Table C. 4. Pressure (kN/m?) distributions for the case of stresses transferred from load = 15kN/m?.

pressure_liquid
000e+00

pressure_liquid
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= 25kN/m? (= 1s)
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Stresses transferred from load application = 10kN/m?

Table C. 5. Horizontal stress (kN/m?) distributions for the case of stresses transferred from load = 10kN/m?.
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(c) Load stage 5 = 20kN/m (t= 1.0s)

(d) Load stage 6 = 25kN/m? (t= 1.5s)

Table C. 6. Vertical stress (kN/m?) distributions for the case of stresses transferred from load = 10kN/m?.
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(c) Load stage 5 = 20kN/m (t= 1.0s)

(d) Load stage 6 = 25kN/m? (t= 1.5s)
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Table C. 7. Shear stress (kN/m?) distributions for the case of stresses transferred from load = 10kN/m?.
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(b) Load stage 4 = 15kN/m? (t= 0.5s)
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(d) Load stage 6 = 25kN/m? (t= 1.5s)

Table C. 8. Pressure (kN/m?) distributions for the case of stresses transferred from load = 10kN/m?2.
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(c) Load stage 5 = 20kN/m (t= 1.0s)

(d) Load stage 6 = 25kN/m? (t= 1.5s)
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APPENDIX D

The seepage and stress analysis results of the pre-failure analysis of the South Dike,
consisting of 25 out of the 27 stages (from Stage 1: steady-state seepage analysis to Stage 25:
stress analysis of the second filling of the sand core), are illustrated in Figure D.1 to D.53.

Stage 1: Pre-levee steady-state seepage analysis

PORALEE s

Figure D. 1. Pore stress (kN/m?) from steady state seepage analysis at pre-levee stage.
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Stage 2: Pre-levee stress initialization

SRSTRL ThTRRS
+0.00

(a) Total horizontal stress, S-XX

S-OTRL Tk
+0.02

(b) Total vertical stress, S-YY

gWmefg STRESS

+0.02
+0.02
+0.01

(¢) Shear stress, S-XY

Figure D. 2. Total stresses and shear stress (kN/m?) at pre-levee stage.
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Figure D. 3. Pore stress (kN/m?) at pre-levee stage.
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Stage 3: Levee construction step 1 stress analysis

- BRI

(a) Total horizontal stress, S-XX

SAVRGIAL e

(b) Total vertical stress, S-YY

EW?%@UE STRESS

&

(¢) Shear stress, S-XY
Figure D. 4. Total stresses and shear stress (kN/m?) at levee construction step 1.
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POESTRERL Wl

Figure D. 5. Pore stress (kN/m?) at levee construction step 1.
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(b) Horizontal displacement, TX
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-0.07
-0.08
-0.09

(¢) Vertical displacement, TY

Figure D. 6. Displacements (m) at levee construction step 1.
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Stage 4: Levee construction step 2 stress analysis

ELRTGTAL D 3"

+120.87

(a) Horizontal stress, S-XX

EURSTAL i3

+7.53

(b) Vertical stress, S-YY

LANE STRAIY STRESS
ExPrale

(¢) Shear stress, S-XY
Figure D. 7. Total stresses and shear stress (kN/m?) at levee construction step 2.
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AR

-8.01

Figure D. 8. Pore stress (kN/m?) at levee construction step 2.
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+0.46

(a) Total displacement, T

[lliSPLACEMENT
, m
+0.04

(b) Horizontal displacement, TX

[LSPLACEMENT
40,00

(¢) Vertical displacement, TY

Figure D. 9. Displacements (m) at levee construction step 2.
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Stage 5: Levee construction step 3 stress analysis

BRI GTRC T /RES?
+201.61

(a) Horizontal stress, S-XX
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(b) Vertical stress, S-YY

gwg%ﬂg STRESS
+124.32
+103.34
+82.36
+61.38
+40.40
+19.41

(¢) Shear stress, S-XY

Figure D. 10. Total stresses and shear stress (kN/m?) at levee construction step 3.
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BAETRRAL T

Figure D. 11. Pore stress (kN/m?) at levee construction step 3.
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PR GERNT

+0.72

(a) Total displacement, T

[RISPLACEMENT
40,09

(b) Horizontal displacement, TX

[SPLACEMENT
’+0.00

(¢) Vertical displacement, TY
Figure D. 12. Displacements (m) at levee construction step 3.
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Stage 6: Levee construction step 4 stress analysis

SRS AL RS

+187.82

(a) Horizontal stress, S-XX

| SSIRE MR

(b) Vertical stress, S-YY

L ANE STRAIN STRESS
BTy

68

(¢) Shear stress, S-XY

Figure D. 13. Total stress and shear stress (kN/m?) at levee construction step 4.
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Figure D. 14. Pore stress (kN/m?) at levee construction step 4.
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(a) Total displacement, T
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+0.02

(b) Horizontal displacement, TX

[SPLACEMENT
" +0.00

(¢) Vertical displacement, TY
Figure D. 15. Displacements (m) at levee construction step 4.

131



Stage 7: Levee construction step 5 stress analysis
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(a) Horizontal stress, S-XX
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(b) Vertical stress, S-YY
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(¢) Shear stress, S-XY

Figure D. 16. Total stresses and shear stress (kN/m?) at levee construction step 5.
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PORESTHESS Wlfi 2

Figure D. 17. Pore stress (kN/m?) at levee construction step 5.
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(a) Total displacement, T

[ISPLACEMENT
4014
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Figure D. 18. Displacements (m) at levee construction step 5.
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Stage 8: Container weight stress analysis

BTN

(a) Horizontal stress, S-XX

| NI NS

(b) Vertical stress, S-YY

= PLANE STRAIY STRESS
B2ttty

63
+115.94
+92.26

(¢) Shear stress, S-XY

Figure D. 19. Total stresses and shear stress (kN/m?) at container weight stage.
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Figure D. 20. Pore stress (kN/m?) at container weight stage.

136



Stage 9: First filling of sand core transient seepage analysis

PEREbEES ffm 2
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Figure D. 21. Pore stress (kN/m?) from transient seepage analysis at first filling of sand core stage.
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Stage 10: First filling of sand core stress analysis
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Figure D. 22. Total stresses and shear stress (kN/m?) at first filling of sand core stage.
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Figure D. 23. Pore stress (kN/m?) at first filling of sand core stage.
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(¢) Vertical displacement, TY
Figure D. 24. Displacements (m) at first filling of sand core stage.
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Stage 11: Filling of basin transient seepage analysis

R

+90.06

Figure D. 25. Pore stress from transient seepage analysis when basin is filled.
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Stage 12: Filling of basin stress analysis
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Figure D. 26. Total stresses and shear stress (kN/m?) when basin is filled.
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Figure D. 27. Pore stress (kN/m?) when basin is filled.
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Figure D. 28. Displacements (m) when basin is filled.
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Stage 13: First excavation transient seepage analysis

R

+89.14

Figure D. 29. Pore stress (kN/m?) from transient seepage analysis at first excavation stage.
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Stage 14: First excavation stress analysis
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Figure D. 30. Total stresses and shear stress (kN/m?) at first excavation stage.
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Figure D. 31. Pore stress (kN/m?) at first excavation stage.
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Figure D. 32. Displacements (m) at first excavation stage.
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Stage 15: Second excavation transient seepage analysis

DR

+85.04

Figure D. 33. Pore stress (kN/m?) from transient seepage analysis at second excavation stage.
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Stage 16: Second excavation stress analysis
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Figure D. 34. Total stresses and shear stress (kN/m?) at second excavation stage.
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Figure D. 35. Pore stress (kN/m?) at second excavation stage.
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Figure D. 36. Displacements (m) at second excavation stage.
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Stage 17: Third excavation transient seepage analysis

DORELSEE

+82.78

Figure D. 37. Pore stress (kN/m?) from transient seepage analysis at third excavation stage.
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Stage 18: Third excavation stress analysis
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Figure D. 38. Total stresses and shear stress (kN/m?) at third excavation stage.
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Figure D. 39. Pore stress (kN/m?) at third excavation stage.
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Figure D. 40. Displacements (m) at third excavation stage.
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Stage 19: Consolidation (transient seepage analysis)

POREDEL i

+80.92

Figure D. 41. Pore stress (kN/m?) from consolidation analysis at third excavation stage.

Stage 20: Fourth excavation transient seepage analysis

PORE G i 2
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Figure D. 42. Pore stress (kN/m?) from transient seepage analysis at fourth excavation stage.
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Stage 21: Fourth excavation stress analysis
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Figure D. 43. Total stresses and shear stress (kN/m?) at fourth excavation stage.
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Figure D. 44. Pore stress (kN/m?) at fourth excavation stage.
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Figure D. 45. Displacements (m) at fourth excavation stage.
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Stage 22: Fifth excavation transient seepage analysis

POREDEES 2

Figure D. 46. Pore stress (kN/m?) from transient seepage analysis at fifth excavation stage.
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Stage 23: Fifth excavation stress analysis
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Figure D. 47. Total stresses and shear stress (kN/m?) at fifth excavation stage.
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Figure D. 48. Pore stress (kN/m?) at fifth excavation stage.

163



| RGFRGENENT

+0.04700

(a) Total displacement, T

b [ISPLACEMENT
. 10.03553

(b) Horizontal displacement, TX

§ DISPLACEMENT
' 40.03947

(¢) Vertical displacement, TY

Figure D. 49. Displacements (m) at fifth excavation stage.
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Stage 24: Second filling of sand core transient seepage analysis

POREERES Mm2

Figure D. 50. Pore stress (kN/m?) from transient seepage analysis at second filling of sand core.
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Stage 25: Second filling of sand core stress analysis
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Figure D. 51. Total stresses and shear stress (kN/m?) at second filling of sand core (scaled for better visualization).
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Figure D. 52. Pore stress (kN/m?) at second filling of sand core (scaled for better visualization).
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Figure D. 53. Displacements (m) at second filling of sand core.
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APPENDIX E

The parametric analysis performed on the base peat property of the South Dike, and

the corresponding changes made to each of the simulation runs are listed in Table E.1. As

stated earlier, the first run serves as the reference.

Table E.2 provides the simulations and safety factors for each stage at which the

simulation stopped. Their total displacement contour at the end of each of their SRM

simulations is illustrated in Figures E.1 to E.6. All show that the failure mechanism developed

is a deep sliding plane.

Regarding Figure E.7, it presents the settlement at the end of the levee construction

step, with (a) representing the base run result, (b) representing the fifth run and, (c)

representing the sixth run.

Table E. 1. Modified base peat properties and their respective simulation runs.

First | Second | Third | Fourth | Fifth | Sixth
Base peat property

run run run run run run
Suction considered no yes no no no No
Effective friction angle [°] 27.5 27.5 27.5 24 27.5 | 27.5
Effective cohesion [kN/m?] 9.7 9.7 7 9.7 9.7 9.7
Slope of consolidation line, 0.278 | 0.278 | 0.278 | 0.278 | 0.265 | 0.278
Slope of over consolidation line, k| 0.03 0.03 0.03 0.03 0.03 | 0.0261

Table E. 2. Factor of safety of each run and their respective final simulation stages.

Run Final seepage simulation Final stress Safety
stage simulation stage Factor (FS)

First Sand core filled Containers filled 1.050
Second Sand core filled Containers filled 1.064
Third Second sand core filling Excavation 5 1.138
Fourth Second sand core filling Excavation 5 1.739
Fifth Sand core filled Containers filled 1.031
Sixth Sand core filled Containers filled 1.031
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First run:
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+0.26
+0.22
+0.19
+017
4014
4013
+0.11
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+0.04
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Figure E. 1. Total displacement (m) contour of the first run at its final stage (Containers ﬁlled).

Second run
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Figure E. 2. Total displacement (m) contour of the second run at its final stage (Cotainers filled).
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Third run
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Figure E. 3. Total displacement (m) contour of the third run at its final stage (Excavation 5).

Fourth run
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Figure E. 4. Total displacement (m) contour of the fourth run at its final stage (Excavation 5).
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Fifth run
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Figure E. 5. Total displacement (m) contour of the fifth run t its final stage (Containes filled).

Sixth run
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Figure E. 6. Total displacement (m) contour of the sixth run at its final stage (Containers filled).

172



Stage 7: Levee construction step 5
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Figure E. 7. Settlement (m) results of the reference run, run 5 and run 6.
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APPENDIX F

This Appendix presents the post-failure analysis results of the South Dike generated

using Anura3D.

Tables F.1 and F.2 present the development of the vertical stress and pore pressure
respectively. The total number of load steps is 125 with each step lasting 0.1s. Overall, the

simulation took 12.5s to complete. Note that the results are scaled for the best visualization.

Moreover, three MPs have been selected to plot their displacements over the 12.5s
period. Figure F.1(a) illustrates their locations, the first at the crest, the second at the toe while
the third is at the ditch. Their corresponding horizontal and vertical displacements are given

in Figure F.1(b).

Observing the initial phase up to around 1.4s, a significant increase in the horizontal
movement of the MPs becomes evident at the toe, ditch and crest, reaching approximately
0.63m, 0.50m and 0.24m respectively. Afterwards, the displacement steadily rises until the
simulation stops at 12.5s. At this point, the largest horizontal displacement is recorded at the
toe, with a value of about 1.45m, and the smallest at the crest at 0.66m. During the experiment,
the inclinometer measured a horizontal displacement of 0.83m at the toe, in the west cross
section of the levee, and 1.65m in front of the toe, at the middle cross-section (see Table 7.1
in Chapter 7). Thus, the result of the simulation falls within the measurement of the

inclinometer.

Furthermore, while the vertical movement of the of the MPs at the ditch and crest
steadily drop throughout the simulation, the MP at the crest experiences a sharp decrease up
to 1.4s, reaching a value of -0.79m, and then steadily decreases to -1.4m by the end of the
simulation at 12.5s. This is the maximum vertical displacement, which is not very far from
the experimental result that saw a drop of roughly -0.9m at the crest in the west cross section,

as seen in Figure 7.1 in Chapter 7.
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In addition, the plot of kinetic energy of the levee failure throughout the simulation
is provided in Figure F.2. Several peaks are evident, with the highest being nearly 125kJ at
about 1.5s. The first three peaks seen are due to the initial movement of the large deformation
process. After the third peak at 2.5s, the kinetic energy drops, indicating that the slope’s
attempt to seek a new stable configuration. During this phase, at around 5s, a minor peak
emerges due to numerical instability. Subsequently, starting from t = 7s, there is a notable rise
in kinetic energy and a number of peaks produced with the highest having a value of
approximately 16.4kJ. This corresponds to the reactivation of the levee movement, further
advancing the sliding plane failure mechanism, causing bulking of the left ditch slope and
uplift at the bottom of the ditch. By t = 9s, the kinetic energy falls to nearly 0 and remains
constant till the end of the plot, although extremely small peaks can be noticed at around 11s
due to numerical instabilities. Nevertheless, the constant values at the last part of the plot infer

that the deformation of the levee has stopped.
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Table F. 1. South Dike post-failure vertical stress evolution (0.0s to 12.5s).
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Table F. 2. South Dike post-failure pressure evolution (0.0s to 12.5s).
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(b) Horizontal (Ux) and vertical (Uy) displacement plots

Figure F. 1. Location of MPs (a) and their respective displacements in m (b).
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Figure F. 2. South Dike kinetic energy (kJ) plot.
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APPENDIX G

Information about the distribution of MPs resulting from the parametric analysis
performed for the post-failure analysis of the South Dike is provided in this appendix. Figures
G.1 to G.4 display the distribution of the MPs during the final step of each of the runs, where
the time per load step set is 0.1 s, along with the magnified location of the cross-cell and

numerical instability issues.

Run 1: Final load-step = 125, duration = 12.5s
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Figure G. 1. Final MP distribution of the first run.

Run 2: Final load-step = 1, duration = 0s
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Figure G. 2. Final MP distribution of the second run.
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Figure G. 3. Final MP distribution of the third run.
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Figure G. 4. Final MP distribution of the fourth run.
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