
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Data Science

A diffusion generative model on atom

distances for de novo molecular design

Supervisor Master Candidate
Prof. Sperduti Alessandro Marco Ballarini
Department ofMathematics

Co-supervisors Student ID
Rigoni Davide 2096997
Department of Pharmaceutical and Pharmacological Sciences

Cognolato Samuel
Department ofMathematics
Fondazione Bruno Kessler

Academic Year
2023-2024

ii

iv

Abstract

The use of arti昀椀cial intelligence is revolutionising almost every aspect of our lives; among the
most impactful advances in AI, generative models are getting days by days more important
thanks to their abilities in generating text, video, images and many other data. In recent years,
following this trend, there has been a growing interest in development of generative models
focused on de novo design of molecules for drug or material discovery. Many models avail-
able in literature nowadays consider 3D information, in particular the position in the three-
dimensional space. This can pose a problem for learning architectures which do not incorpo-
rate rotational invariance. In this thesis an attempt is made to consider the information about
the arrangement of the molecule in the space, overcoming problems related to coordinates in
3D space, by considering the distance matrix between between each atom. This allows to ex-
ploit information about the relationship of each atom in the space and overcome the problem
related to the rotation of the molecule .This is done by considering a di昀昀usion model that gen-
erates atoms, bonds and distance between each atom.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 De novo molecular design . 1
1.2 Generative Models for molecular generation 1
1.3 Notable Works . 2
1.4 Goals and objectives . 4

2 Background 7
2.1 Represent Chemical information . 8

2.1.1 SMILES . 9
2.1.2 Molecules as graphs . 10

2.2 Denoising Di昀昀usionModels . 12
2.3 Discrete Denoising Di昀昀usion Probabilistic Models 18
2.4 Discrete Denoising Di昀昀usion Probabilistic Model for graphs 20
2.5 Graph Transformer . 23

3 State of the art 29

4 ProposedModel 37

5 Experiments 45
5.1 Dataset . 45

5.1.1 QM9 . 46
5.1.2 GDB13 . 48

5.2 Pre-Processing . 49
5.3 EvaluationMetrics . 50
5.4 Model Selection . 52
5.5 Implementation details . 53
5.6 Results . 54

vii

6 Conclusion 63

7 Appendix 65
.1 Loss function - Di昀昀usionModels . 65

References 69

viii

Listing of 昀椀gures

2.1 Representation of Graph Transformer as in [1] 26

3.1 MiDi model architecture, at the top, the outline of the overall architecture is
visible. Within the dotted lines, the details of the transformer architecture are
shown. 31

4.1 MiDi model architecture, at the top, the outline of the overall architecture is
visible. Within the dotted lines, the details of the transformer architecture are
shown. 40

4.2 Update block architecture of proposed model 43

5.1 Exploratory analysis - QM9 . 47
5.2 Exploratory analysis - GDB13 . 49
5.3 Input pipeline for creating the dataset, the part inside dotted line is done once,

when the dataset is processed for the 昀椀rst time 50
5.4 Density plot and boxplot of molecular weight - QM9 56
5.5 Density plot and boxplot of molecular weight - GDB13 57
5.6 Density plot and boxplots for generated distances of QM9 59
5.7 Density plot and boxplots for generated distances of GDB13 60
5.8 Non curated generated samples of proposed model - QM9 61
5.9 Non curated generated samples of proposed model - GDB13 62

ix

x

Listing of tables

5.1 Generated vs test atom distribution for QM9 54
5.2 Generated vs test bond distribution for QM9 55
5.3 Generated vs test atom distribution for GDB13 55
5.4 Generated vs test bond distribution for GDB13 55
5.5 MiDi vs Proposed model metrics QM9 . 56
5.6 MiDi vs Proposed model metrics GDB13 57

xi

xii

Listing of acronyms

SMILES Simpli昀椀edMolecular Input Line Entry System [2, 3]

DiGress Discrete Denoising Di昀昀usion For Graph Generation [4]

MiDI Mixed Graph + 3D denoising di昀昀usion [5]

EGNN Equivariant Graph Neural Network [6]

rEGNN relaxed Equivariant Graph Neural Network [5]

MLP Multi Layer Perceptron

FiLM Feature-wIse Linear Modulation [7]

QM9 QuantumMechanics 9 [8]

GDB13 Generated Database 13 [9]

GDB17 Generated Database 17 [10]

WLN Wiswesser Line Notation [11]

MDS Multidimensional Scaling [12]

PNA Principal Neighbour Aggregator [13]

SE(3) Special Euclidean in 3D group

C Carbon

O Oxygen

N Nitrogen

F Fluorine

S Solfur

Cl Chlorine

xiii

xiv

1
Introduction

1.1 De novo molecular design

De novo molecular design refers to the process of creating new chemical molecules with spe-
ci昀椀c properties. This process is crucial for various applications, including pharmaceuticals and
material science. In particular, considering the vastness of chemical space, there are potentially
millions of molecules that could be created, but only a small subset of those are chemically pos-
sible andwith favourable properties: so it’s fundamental to have e昀케cientmethods that helps in
this task. Traditional in vitromethods can be slow and costly, requiring extensive experimental
validation with a try-and-error approach. The challenge is to develop an in silico process capa-
ble of generating a set of candidate molecules, guided by prede昀椀ned rules, that can serve as a
warm start for subsequent in vitro experiments.

1.2 GenerativeModels for molecular generation

In recent years there has been a growing interest in developing computer based methods fo-
cused on de novo design of molecules for drug or material discovery and, particularly, the ap-
plication of generativemodels to this 昀椀eld have been grown over the last years thanks to techno-
logical advancements and the dedicated e昀昀orts of the scienti昀椀c community. These models al-
low researchers to explore chemical space more e昀케ciently and quickly compared to traditional

1

methods, which involve screening millions of compounds through a trial-and-error approach.
By exploring better the chemical space it’s possible to generate hundreds ofmolecules with spe-
ci昀椀c pharmacological pro昀椀les that have not been synthetized before and also optimize some
molecular properties that could enhance the molecule’s performance. In particular pharma-
ceutical research could bene昀椀t a lot from these methodologies, 昀椀rstly by reducing the time and
costs to develop and produce new drugs, but also by considering future methods able to gener-
ate newmedicine personalized for individual patients basing on their therapy or genetic pro昀椀le.
The use of Arti昀椀cial Intelligence (AI) is transforming nearly every aspect of our lives. Among
the most signi昀椀cant breakthroughs in AI, generative models are becoming increasingly impor-
tant. These models are capable of creating a wide range of content, including text, images,
videos, and more. This is allowed by technical advance along with theoretical developments,
which permit to face complex problems with an huge computational load. In particular, neu-
ral networks have represented a game changer inside pattern recognition task, mainly due to
their ability in exploiting complex pattern inside data.

Generativemodels are a class ofmachine learning algorithms that aims to learn the unknown
underlying probability distribution that rules a phenomenon, with the main purpose of being
able to sample from it. This is done using a learning architecture that is trained with examples
collected from the analyzed phenomenon. The use of deep neural network is particularly suit-
able for these types of models, since, they can e昀昀ectively approximate extremely complex dis-
tributions thanks to their generalization capabilities. Furthermore, they can be sampled from,
allowing the generation of newdata not present in the training set. Currently there exist several
frameworks able to implement a generative model, ranging from variational autoencoder [14]
and Generative Adversarial Networks [15] moving to Flow based methods [16] and di昀昀usion
models [17, 18].

1.3 NotableWorks

Over the last years the literature about generative models has grown signi昀椀cantly, and on the
same level also their application to molecular generation has expanded. In particular many
di昀昀erent models have been designed and adapted to molecular generation task.

One of the 昀椀rst of this kind dates back dates 2018 and was done in [19]. This approach is
based on variational autoencoder, a particular architecture based on an encoder-decoder struc-
ture, that aims to approximate the unkwnown data distribution by mapping a discrete repre-
sentation of the molecule to a latent continuous space and then, from this, rebuild the original

2

one. Di昀昀erent points in the latent space encode molecules with di昀昀erent chemical properties,
so exploring such a space and sampling from it, allows to generate newmolecules with speci昀椀c
desired properties. This was the main focus of this work, and not that of that of generating a
large number of chemically valid molecules. Moreover, the general architecture is based on a
string representation, the SMILE,which doesn’t contain all the structural information that are
necessary to generate chemically valid molecules. Despite this criticality, this work represents a
milestone in the 昀椀eld of generative models for chemistry and a starting point for many future
works in this sector.

The work of [20] follows the same line of the previous one but with shifts the aim to im-
proving chemical validity of generated molecules. In order to accomplish this, authors have
studied a way of generating molecules by assembling smaller structure inside a larger one; this
approach led to good results in terms of chemical validity of generatedmolecules, since it allows
to expand each generated compound while keeping it chemical valid.

Another successful work is [21]. The authors represent molecules as graphs, increasing the
expressiveness of the input, allowing the extractionof topological information inside themodel.
The generative approach is conditional: 昀椀rst themodel generates bonds (edges) and then atoms
(nodes), 昀椀nally they are combined into the 昀椀nalmolecule. Themain architecture of thismodel
is the normalizing 昀氀ow generative model, which learns an invertible transformation from the
data distribution to a simpler, tractable distribution, with the 昀椀nal aim of approximating the
former by sampling from the latter.

Given thehuge success of large languagemodels inmany昀椀elds, researchers are trying to apply
these models also to the generation of new molecules. A notable example of this approach is
[22], which uses large-scale molecular language models, trained on SMILES data, to generate
molecules with speci昀椀c chemical properties.

Recently there has been a huge clamour around di昀昀usion model. This is motivated by the
fact that, for image generation, these models achieve astonishing performances, so researchers
worked to adapt them also to molecular generation task. In [23] the main idea is to apply di-
rectly the theory at the base of di昀昀usion models for images by modelling each atom of the
molecule as a particle in the three dimensional space, ensuring to create valid and realistic con-
formations. A di昀昀erent approach is taken by authors of [4], in which a discrete denoising dif-
fusion models is trained on molecular graphs. Here atoms and bonds are considered as classes
and the di昀昀usion is performed in the discrete space. A mixed discete-continuous approach is
considered in [5], in which a di昀昀usionmodels is built to deal with both graph discrete features
and continuous structural information.

3

1.4 Goals and objectives

Themain objective of this thesis is to study the impact of enriching the graph representation of
amoleculewith thedistancebetween atoms,with the aimof improving chemical validity. From
an intuitive point of view the injection of information about the relation in the space between
atoms should be bene昀椀cial in terms of new molecules generation. Chemical compounds are
complex object compose of atoms that are arranged in the three dimensional space; the spatial
conformation indeed plays a crucial role in determining physical and chemical properties. In
[5] and [23] these information are provided as atom’s coordinates in 3D space, but this brings
the problem to another level: positions are not uniquely determined. Intuitively, any rotation
of 3D coordinates of a molecule should correspond to the same exact molecule. This problem
is faced by developing learning architecture that are equivariant respect to rotation, making the
output of the model as robust as possible to these changes.

In this thesis there is the attempt of using the distance matrix between each atom instead of
coordinates in 3D space, circumventing the need of having a rotation equivariant architecture.
This approach makes it possible to overcome issues related to rotation, as it allows the model
to exploit information that depends solely on the relation between each atom in a molecule,
rather than the spatial 3D arrangement of its atoms. In fact distance matrix doesn’t change
with rotation of coordinates. Moreover it would be possible to exploits the fact that distances
between atoms depend on bond type (for example, bond length of triple bonds is smaller com-
pared to single bonds) and use this information to produce more accurate conformer. In fact,
also coordinate models deals implicitly with distance features, but exploiting this explicitly in
the model could improve the 昀氀ow of information inside the learning architecture and helps to
produce better results. This thesis proposes a di昀昀usion based generative model to create chem-
ically valid molecules using also the information provided by atomic distance. Moreover this
is the starting point for a future conditional di昀昀usion model that generates distance features
conditioned to bond information; In this case, the conditioning is applied during the di昀昀usion
process, unlike the proposed model, where no explicit conditioning is incorporated.

It’s also important, before starting the proper theoretical part, 昀椀x the notation that will be
used in this thesis: vector are indicated in lowercase, x ∈ R

n, matrix in upper case X ∈ R
n×n

and tensors in bold upper caseX ∈ R
n×n×n This thesis will be structured as follows: chapter

2 is focused on the background concepts on which the proposed model will be based; chapter
3 contains the state of the art model that will be used as a benchmark inside this work; chapter
4 contains the explanation of the model proposed in this work. Finally in chapter 5 proposed

4

model’s results are discussed and compared with state of the art ones. The appendix 7 includes
the proof related to di昀昀usion denoising probabilistic models loss

5

6

2
Background

This chapter will 昀椀x some prior concepts that are essential to fully understand the work of this
thesis. The 昀椀rst Section 2.1 will treat how to represent molecules in an informative and com-
plete way, considering two di昀昀erent approaches that will be used further in next chapters. The
second Section 2.2 will be about the underlying theory of di昀昀usion model: 昀椀rst considering
the original formulation [18], in which, taking inspiration from non-equilibrium statistical
physics, authors propose to learn data distribution by gradually adding noise to data samples
in the dataset, and learn the backward denoising process through a neural networkmodel. The
concepts are in [18] then expanded with new implementation choices in [17], focusingmainly
on continuous di昀昀usion for image generation and exploring new implementation choices, 昀椀x-
ing some parameter and considering an alternative loss function that is easily manageable.

The third 2.3 and the fourth Sections 2.4 of this chapter are dedicated to exploring the im-
plementation of di昀昀usionmodels in the discrete case, speci昀椀cally focusing on graph-structured
data. A thorough explanation of discrete di昀昀usion models can be found in the seminal paper
[24]. Since in this thesis all the learning architecture will be implemented to take molecular
graphs as input, these will be considered inside a discrete di昀昀usion framework, as done in [4]
and [5].

Since all the learning models in this thesis are based on graph transformer, the Section 2.5
will treat the reasons behind it and the main implementation detail, the information used to
write this section are mainly from [1].

7

2.1 Represent Chemical information

For any learning method, the ability of represent valuable information in a suitable way is cru-
cial, since performance depends heavily on the ability of chosen data structure to retain and
express valuable information, and on the capacity of models to discover fundamental pattern
inside these.

Representing chemical molecules in a highly expressive manner is a complex challenge that
has led to the development of manymethods over the years. Not only must the representation
be e昀昀ective, but it also needs to be both mathematically and computationally e昀케cient; data
must be pre-processed in a way that’s both informative and accessible for deep learningmodels,
allowing them to extract meaningful patterns from the encoded molecular information.

Acomprehensive overviewofmethods for representing chemical information in a computer-
processable format can be found in [25]. This section will review the key historical develop-
ments that led to the creation of today’s most widely used molecular representations, high-
lighting their main features.

IUPAC (International Union of Pure andAppliedChemistry) provided, between 1919 and
1930 [26], a systematic way of naming chemical compounds, that is still used and updated
nowadays, and represents an essential tool for clarity in academic and technical reports, espe-
cially for complex molecules. IUPAC nomenclature is essential for human communication
in chemistry, but it results extremely hard to process by computers due to its complexity and
length. As a matter of fact, during the 1950s, with the rises of the 昀椀rst computer, there was the
new necessity of produce or adapt the current notation for the usage in ASCII format. Back
in that time the main necessity was just print and typewrite molecules and, eventually, being
able to store them in databases. To solve these speci昀椀c challenges, theWiswesser LineNotation
(WLN)was introduced [11], o昀昀ering a compact and unambiguousway to representmolecules.
As one of the earliest line notations for encoding chemical information, it became the standard
for computational processing and data storage on early systems like punched cards. Despite
this, with the times, WLN notation has become obsolete, in favour of other modern meth-
ods, that are more intuitive, easier to read and, especially, to be processed by machines. In the
next subsections two of the main modern method to represent chemical information will be
discussed.

8

2.1.1 SMILES

SMILES (Simpli昀椀ed Molecular Input Line Entry System) is a particular notation that aims to
represent a molecular composite as a ASCII string. This notation was originally formulated
in 1988 [2, 27, 3]; the main concept is to represent a molecular graph as a string, as a matter
of fact atoms and bonds are written as letters, branches as parenthesis and ring closures with
matching numbers. In particular, atoms are represented by their atomic symbol, using letters;
generally each non-hydrogen atoms is written between square brackets, but for organic subset
atoms (including B, C, N, O, P, S, F, Cl, Br and I) it’s possible to omit the brackets notations.
In the case in which is important to consider the formal charge, the brackets may include not
only the letter representing the atom, but also a plus or minus symbol (+/-) and, if necessary, a
digit to indicate the magnitude of the charge.

Cycles are represented with numbers, which indicate where the cycle starts and ends.
Regarding bonds, these are generally represented asASCII symbols like−, # and$ for respec-

tively single, double and triple; generally for single bonds the symbol is omitted and considered
for granted. Aromaticity can be represented in multiple ways: either by using the : symbol
or by employing lowercase atom symbols to indicate aromaticity. Kekulé form refers to the
conversion of aromatic bonds into alternating series of single and double bonds. To better
understand this concept, consider benzene as an example: its SMILES representation before
kekulization is ”c1ccccc1”, while after kekulization it becomes ”C1=CC=CC=C1”.

Another structural characteristic that needs to be take in consideration inside the SMILE
notation is the presence of branches: these are descried with parentheses, in particular the 昀椀rst
atomwithin the parentheses group is bounded with the 昀椀rst atom after the parentheses group.

Another important point to consider is that, in its original formulation, there is no one-
to-one correspondence between a SMILES string and a molecule. This means that a single
molecule could be represented by multiple di昀昀erent SMILES strings. To address this issue, au-
thors of SMILES introduced a canonicalization process in 1989 [27], which ensures that each
molecular structure is assigned to unique SMILES representation, eliminating ambiguities.

In the end it’s possible to consider SMILES as a real language with its own vocabulary and
syntax, but it has no mechanism to ensure that strings are valid from a chemical point of view:
it’s indeed possible to create a SMILE string that is syntactically correct but semantically incor-
rect, so endingwith amolecule that is not physically possible. This problem impacts heavily on
computer generated molecules relying on the SMILES representation, as the algorithm need
to be robust against these edge cases.

9

In recent years some attempt has been done to develop methods that are robust both syn-
tactically and semantically. Notably, in 2020, an article was published [25] proposing a new
string-based notation, called SELFIES, that includes mechanisms for verifying the physical va-
lidity of the representedmolecules. In this work SELFIES will not be used, but it still worth to
mention it, since it will play an important role in future molecular generation models.

An important downside of the SMILES notation is that it is linear, so the representation is
indeed not fully expressive, since molecules are three dimensional objects.

2.1.2 Molecules as graphs

From a chemical point of view the fundamental part of a molecule is constituted by a set of
atoms that are placed in a 3D space and interconnected with di昀昀erent sorts of bond; this way
of think amolecule could be immediately converted into awell de昀椀nedmathematical structure:
a graph, de昀椀ned by nodes and edges. By proceeding on this line it’s possible to consider atoms
as nodes and bond as edges: in this way the entire molecular object could be treated as a graph.

From amathematical point of view let G = (X , E) be a graph, whereX is the set of vertices
and E ⊆ X × X a set of undirected edges. Let n = |X | be the number of nodes, m = |E|
the number of edges. It’s possible to write X ∈ R

n×dv the one hot encoding matrix of atom
type and E ∈ R

n×n×de the one hot encoding tensor of edge type for each atom couple, where
dv and de is the number of atom and bond classes; in particular each element xi,j = 1 means
that the i-th atom in the molecule is associated with type j-th, similarly for edge type tensor,
ei,j,k = 1 means that the bond between the i-th and the j-th atom in the molecule is of type k-
th. Since the graph is undirected the edge type tensor E is symmetric with respect the 昀椀rst two
dimensions. Moreover letM = R

n×dv × R
n×n×de denote the a set molecules where a single

molecule is represented asM = (X,E).

X =

x11 x12 x13 . . . x1dn
x21 x22 x23 . . . x2n
...

...
...

xn1 xn2 xn3 . . . xndn

xi,j =

1 if the i-th atom is of type j

0 otherwise
(2.1)

10

E =

e111 · · · e11de
· · · · · · · · ·
e1n1 · · · e1nde

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

en11 · · · en1de
· · · · · · · · ·
enn1 · · · ennde

ei,j,k =

1
if the atom i-th is bonded with j-th one

with k-th bond type

0 otherwise

It’s possible to include also new features with di昀昀erent characteristic. Graph level features
describe global properties and they are represented as y ∈ R; node level features will be rep-
resented by R ∈ R

n×dp , where the dimension dp is the number of node features (in further
section this will represents the coordinate in the 3-D space, so dp = 3); the same is valid for
edge level features, in this case the feature vectors is represented by a tensorD ∈ R

n×n×dd .

This last part is essential, indeed graph representation of a molecule allows to inject any type
of information that is important for a speci昀椀c task, from chemical information (like formal
charges) to geometric information about the arrangement of the molecule in the space (like
3D coordinate or distance between atoms). This is a crucial advantage of molecular graph over
SMILES: these, in fact, allow just a linear notation of themolecule information with just some
additional feature: the arrangement of the molecule in the space get lost and it’s necessary to
use ad-hoc packages to recompute it through molecular optimization framework.

On the other hand molecular graph representations have an important issue: this is related
to the fact that somemolecular structures contain bonds that cannot be represented by simple
relations between two atoms; among these types of structure there are polycentric bond, ionic
bonds or metal-metal bond.

Molecular graphs are related also to computational problems: it’s in fact extremely di昀케cult
todeal directlywithmatrices and tensors,mainlydue tomemory limitations; it’sworthnothing
that amolecule with 8 atoms chosen among 4 di昀昀erent types and 4 di昀昀erent bond types would
lead to store in memory 32 elements for atom type matrix and 128 elements for bond type
tensor. Since both atom type matrix and edge type tensor are built using one hot encoding
vectors, to circumvent the issue in larger molecules, some work adopt a sparse representation

11

of a graph, given by its adjacency list.

2.2 Denoising DiffusionModels

DenoisingDi昀昀usion ProbabilisticModels (DDPMs) [17] are a type ofmachine learning gener-
ative model inspired by non-equilibrium thermodynamics. Originally introduced in the 昀椀eld
of statistical mechanics, di昀昀usion models were developed to estimate complex probability dis-
tributions. The approach involves applying a di昀昀usion process to the initial data, gradually
transforming it into a known distribution from which it’s easy to sample from. Then, start-
ing from this simpler distribution, a denoising architecture is used to learn the reverse process,
leading from a simple distribution to the original one.

Di昀昀usion models are build upon three main blocks:

1. The forward process is dedicated to the corruption of original dataset until arriving to a
known noise distribution.

2. The reverse process starts from the corrupted data and reverse the noise, arriving to the
original denoised data

3. The sampling stage, once that the learning architecture is fully trained, it’s possible to
sample fromthenoise distribution and apply the reverse process until arriving to aproper
data.

Let’s de昀椀ne the real generative data distribution as x0 ∼ q(x0) where x0 is an example of
the input dataset. The distribution is unknown and the 昀椀nal goal of generative models is to
estimate this distribution in order to sample from it. During the forward phase a noise process,
with the Markov property, will add noise progressively to the initial representation, creating a
sequence of noisy data, that will be denoted as (x1, x2, · · ·, xT). Given theMarkovian structure
of the noise, the distribution of each sequence is:

q(x1, · · ·, xT|x0) = q(x1|x0)
T∏

t=2

q(xt|xt−1); (2.2)

q(x0, · · ·, xT) = q(x0)
T∏

t=1

q(xt|xt−1). (2.3)

12

The 昀椀nal distribution, when t→∞, is called steady state distribution, in practice, this will
be approximated by using a large, 昀椀xed arrival time T. In particular the distribution of the last
state should be known and simple since it’s necessary to sample from it in order to generate new
examples. To ensure this and other nice properties [17] gaussian transitions are chosen for the
di昀昀usion process. In particular let’s de昀椀ne the noise process as:

q(xt|xt−1) = N (xt;
√
1− ´txt−1, ´tI), (2.4)

where {´t ∈ (0, 1)}Tt=1 is called variance scheduling and de昀椀nes the amount of error to in-
ject in the data representation at each di昀昀usion step t. As the sample becomes more noisy,
so as t increase, the variance scheduling parameter becomes higher, until arriving near to one.
Thanks to the de昀椀nition of the variance scheduling and the noise trajectory, it’s easy to see that
limt−→∞ q(xt|xt−1) = N (0, I): in practice, using the gaussian di昀昀usion it’s possible to inject
progressively noise inside the initial data representation, until arriving to a standard normal, a
distribution that is well known and from which it’s easy to sample from during the sampling
stage.

The forward process as de昀椀ned previously, is meant to be run sequentially from t = 0 to T.
This is quite unpractical during the training phase, in which at each iteration a di昀昀erent time
t should be sampled. In fact in [17] authors propose to sample uniformly just one t, allowing
to train the model in parallel and approximate the expected value of the loss. Using a simple
property of normal distribution is possible to sample xt at any arbitrary time step t in closed
form. Let’s de昀椀ne ³t = 1 − ´t and ³t̄ =

∏t
i=1 ³t, considering xt ∼ N (xt|

√³txt−1, (1 − ³t)I),
it’s possible to write:

xt =
√
³txt−1 +

√
1− ³t·t−1; (2.5)

=
√³t³t−1xt−2 +

√
1− ³t³t−1·̄t−2; (2.6)

= · · ·
=
√
³̄tx0 +

√
1− ³̄t·; (2.7)

where, ·̄t−2 merges two gaussian distribution and the 昀椀nal · is distributed asN (0, I). Thanks
to this notation is possible to jump directly from the initial representation to the noised data
at time t.

13

The reverse process starts from the noised data produced by forward pass and the main idea
behind this is to learn how to recover the denoised representation of the data. This is done by
learning a parametrized reverse process de昀椀ned as follows:

pθ(x0, · · ·, xT) = p(xT)
T∏

t=1

pθ(xt−1|xt), (2.8)

where p(xT) is known in advance since, as explained before, it’s equal to a standard normal
distribution, pθ(xt−1|xt) is the reverse parametrized process that needs to be learnt. A neural
network model could parametrize this distribution . Using a Gaussian di昀昀usion kernel in the
forward phase, it is possible to also de昀椀ne the functional form of the reverse process, as demon-
strated in [28]. Since both a Gaussian transition and its inverse share the same functional form,
this allows for the derivation of the reverse dynamics in a mathematically tractable form and so
obtain:

pθ(xt−1|xt) ∼ N (μθ(xt, t),Σθ(xt, t)). (2.9)

The learning architecture will estimate the value of the mean function and variance func-
tion of the parametrized reverse function, since the functional form is known but not the
parametrization. Indeed, the di昀昀usion is a variational method, that tries to approximate q(xt−1

|xt, x0) with pθ(xt−1|xt), where q(x0) is unknown. This is the main reason for the parametriza-
tion of the reverse process.

In many applications the variance term is not estimated at all, and considered as constant
over all the time steps, since this work is based on the theory of [17], the variance term will be
considered 昀椀xed; other works, like [29], propose to learn the variance function, this lead to an
increase computational burden.

In order to learn the parametrizedmean μθ(xt, t) it’s necessary towrite the forward trajectory
in reverse formwith respect to x0 (thanks toMarkovproperty the conditioningdoesn’t have any
e昀昀ect on the results but helps to make the results tractable). Applying the Bayes rule together
withMarkov property it results:

14

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)

; (2.10)

= exp(− 1
2
(
(xt −

√³tx2t−1)
2

´t
))exp(− 1

2
(
(x2t−1 −

√
³̄t−1x0)2

1− ³̄t−1
))exp(− 1

2
(
(x2t −

√
³̄tx0)2

1− ³̄t
));

(2.11)

= exp(− 1
2
((
³t
´t

+
1

1− ³̄t−1
)x2t−1 − (

2√³t
´t

xt +
2
√
³̄t−1

1− ³̄t−1
x0)xt−1 + C(xt, x0))). (2.12)

So the reverse conditional probability is tractable since it’s possible to write it as a gaussian
with a speci昀椀c mean and variance term. Particularly the mean function depends on the initial
data:

q(xt−1|xt, x0) ∼ N (xt−1; μ̃(xt, x0), σ2t I), (2.13)

where σ2t =
1−³̄t−1
1−³̄t ´t and μ̃(xt, x0) =

√³t(1−³̄t−1)

1−³̄t xt +
√

³̄t−1´t
1−³̄t x0.

This formulation is essential in order to train the di昀昀usionmodel, since the initial data could be
written in terms of error injected at any pass by simply rearranging the equation xt =

√
³̄tx0 +√

1− ³̄t· in this way x0 = 1√
³̄t (xt −

√
1− ³̄t·t). By plugging inside the riparametrization of

input data, the mean formulation is rewritten with respect to the noisy data at time t and the
error injected:

μ̃t =
1√
³t
(xt −

1− ³t√
1− ³̄t

·t). (2.14)

In the end the learning architecture will try to predict the amount of error injected at each
forward pass, this depends on the current time step t and on the current noised data repre-
sentation. Since the functional form of the reverse parametrized distribution is gaussian, with
variance 昀椀xed, it’s necessary to learn a parametrized mean function that remove noise inside
data at the current time step t, this is represented by

μθ(xt, t) =
1√³t

(xt −
1− ³t√
1− ³t

·θ(xt, t)). (2.15)

15

The noise predictor network ·θ(xt, t) is trained to estimate the noise added to each noisy
representation, enabling it to denoise the current representation and recover the original one.

Once de昀椀ned the forward and reverse process, it remains to de昀椀nes the loss function that
will be optimized during the learning phase. The 昀椀nal goal is to learn a set of parameter such
that μθ(xt, t) ≈ μ̃t. This could be done bymaximizing the log likelihood criterion associated to
the 昀椀nal parametrized distribution of initial data, and by applying Jensen inequality together
with importance sampling criterion, the 昀椀nal formula to optimize is:

argmin
θ

Ex0∼q− log(pθ(x0)) = argmin
θ

∫
−q(x0) log(pθ(x0))dx0 (2.16)

≤ argmin
θ

Ex0 [DKL(q(xT|x0)||pθ(xT)) +
T∑

t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))− log pθ(x0|x1)],

(2.17)

where DKL is the Kullback Leibler divergence. The proof of this result could be found in the
Appendix 7.

It’s easy to see that in gaussian case it’s possible to compute each component of the loss
function, in particular the 昀椀rst part could be ignored, since the term pθ(xT) is known to be
a standard normal; the last component of the formula is considered di昀昀erently in the liter-
ature, in particular in [17] authors consider it as a separate discrete decoder derived from a
N (x0; μθ(x1, 1),Σθ(x1, 1)), but in general the treatment of this part depends heavily on the data
type in analysis. The fundamental part for the training phase is in the term∑T

t=2DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)). As pointed out before the learning architecture should
predict the noise injected at each time step, since both q(xt−1|xt, x0) and pθ(xt−1|xt) are dis-
tributed as a gaussian, it’s possible to use closed form for the Kullback-Leibler divergence and
arrive to the following formulation:

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) = Ex0,·

[
(1− ³t)2

2³t(1− ³t)||Σθ||22
||·t − ·θ(

√
³̄tx0 +

√
1− ³̄t·, t)||

]
.

(2.18)

In [17] the extended formula is shrinked into a more compact one that doesn’t consider
weighting term andwhere the variance parameter is 昀椀xed to a constant σ2t =

1−³̄t−1
1−³̄t ´t. The 昀椀nal

formula that will be optimized is :

16

Ex0,·
[
||·− ·θ(

√
³̄tx0 +

√
1− ³̄t·, t)||

]
. (2.19)

All these formulas could be rewritten inside two di昀昀erent crucial algorithms that represents
the core of di昀昀usion models. The 昀椀rst algorithm is for train the noise predictor network to
recognise and remove the error form a sampled time step.

Algorithm 2.1 Training stage
1: repeat
2: x0 ∼ q(x0)
3: t ∼ U(0,T)
4: · ∼ N (0, 1)
5: ∇θ

∥∥·− ·θ(
√
³̄tx0 +

√
1− ³̄t·, t)

∥∥
6: until convergence

Algorithm 2.2 Sampling stage
1: xT ∼ N (0, 1)
2: for t = T to 0
3: z ∼ N (0, 1)
4: xt−1 =

1√³t (xt−
1−³t√
1−³̄t

·θ(xt, t))+σtz
5: end for
6: return x0

The second algorithm is dedicated to the sampling stage: by sampling from a standard nor-
mal it’s possible to create new examples that comes from the same generative distribution of
the input dataset. Particularly the formula 1√³t (xt−

1−³t√
1−³̄t

·θ(xt, t))+σtz is derived from the fact
that given a standard normal distribution it’s possible to rewrite a general normal distribution
in terms of mean and standard deviation, in such form X = μ + σZ, where X ∼ N (μ, σ) and
Z ∼ N (0, 1).

It’s important to consider also the parametrization of ³t over all the di昀昀usion time steps: in
[17] it is 昀椀xed to a constant equal to 10−4 when t = 1 and to 0.02 when t = T so for the
last steps of the di昀昀usion. In [29] authors have proposed several improvements to the contin-
uous di昀昀usion model, including the use of a cosine-based variance schedule. In particular the
choice of this scheduling function provide a non-linear drop during the training process, the
formulation with respect to ³ is:

³̄t =
f(t)
f(0)

f(t) = cos(
t/T+ s
1+ s

· π
2
)2, (2.20)

17

where s is a small o昀昀set to avoid values becomes too small near to t = 0. It’s also possible to
write this variance scheduling formulation with respect to ´t as seen previously, in this case it’s
appropriate to clip ´ value to be no larger than 0.999, in order to avoid any singularities when
the di昀昀usion is approaching the end.

In the end this is the mathematical background at the base of di昀昀usionmodels, as treated in
[18], andwith some focuses on the implementation choices taken by authors of [17]; these two
works have laid the basis for many works about di昀昀usion models that are still being publishing
in these times. Recently there is a 昀氀orid literature that aims to solve di昀昀usion models problem
using stochastic di昀昀erential equations (SDE) and score basedmethods; one of themost notable
works about is [30]. This thesis will not treat these type of di昀昀usion models, but they will
certainly represent an interesting area for future development of molecular generative models,
especially [31] proposes a graph di昀昀usion process that models the joint distribution of nodes
and edges with SDE

2.3 DiscreteDenoisingDiffusionProbabilisticMod-
els

In Section 2.2, the fundamental theory and concepts underlying the di昀昀usion model were re-
viewed, in this section therewill be the focus on the application of di昀昀usionmodels for treating
discrete dataset.

The main idea behind discrete di昀昀usion process is the same as the ones seen in previous
section, what changes is the mathematical formulation used to add noise inside the graph rep-
resentation, which is built on discrete classes [24].

Given the original discrete data input x0 ∼ q(x0) represented as a one hot encoding vector
with respect to some discrete classes, let’s call the sequence of noised input over time step as
(x1, · · ·, xT); the forward pass works similarly to the continuous case: as before the structure of
the forward pass is Markovian and we are mainly interested in the distribution as t → ∞, so
q(x0) and q(xT), where T is the 昀椀nal time step. Since we are in a discrete environment, it’s not
practical to use the gaussian di昀昀usion kernel, de昀椀ned in the section before. A simpler approach
would be to use transition matrices derived from Markov chain theory. This matrix will be
calledQ ∈ R

n×n and the value qi,j ∈ Qwill indicates the probability of move from i-th class to
the j-th. Following this idea, it’s possible to express the forward pass as follows:

18

q(xt|xt−1) = xt−1Qt, (2.21)

where xt represents a one-hot encoding vector for the discrete class, Qt is the transition proba-
bility matrix at time t and the 昀椀nal distribution for q(xt|xt−1) is categorical.

This setting allows to move sequentially from a class to another with a certain probability;
as before it’s convenient to be able to make several forward passes with just one computation.
This could be done by multiplying several transition matrices of multiple times together:

q(xt|x0) = x0Q1Q2 · · · Qt = x0Qt¯ , (2.22)

where Q̄t = Q1Q2 · · · Qt.

As explained in Chapter 2, the key objective of the forward process is to reach a limiting dis-
tribution that is simple and easy to treat; in continuous case this is done considering a gaussian
noise, in discrete case the noising process is ruled by a transition matrix Qt. To build this kind
of matrix it’s necessary to asses that each row sum to one, to conserve the probability distribu-
tion, and that Q̄t converge to a known stationary distribution, as t increases. In literature many
di昀昀erent methods has been proposed to design the transition matrix [24], since the structure
is heavily task dependent a larger discussion will be considered in Section 2.4.

It’s possible also to write the posterior distribution of the forward process. The reason for
retrieving the reverse process is the same as before: it will be necessary during the learning phase
to have a supervision. Also in this case the derivation is done by applying the Bayes theorem
together withMarkov property:

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)

=
xtQT

t ⊙ x0Q̄t−1

x0Q̄txTt
. (2.23)

Using Markov property it’s possible to write q(xt−1|xt, x0) = q(xt−1|xt). The parametriza-
tion of the reverse process is done according to what’s written in Section 2.2, focusing on a
learning architecture, calledφθ(·), that predicts the logits of the distribution pθ(x0|xt). By com-
bining with the previous formula, it’s possible to write:

19

pθ(xt−1|xt) =
∑

x0̃

q(xt−1|xt, x̃0)pθ(x0̃|xt), (2.24)

where the term q(xt|x0) is discarded since it doesn’t depends on xt−1 and the summation is done
over all the one hot representation of x0.

All the implementations details regarding variance scheduling parameter could be consid-
ered in the same way as done in Section 2.2, similarly for the loss speci昀椀cation: in this case
the general theory explained in Section 2.2 is still valid and could be speci昀椀ed considering the
Kullback Leibler divergence for discrete case.

2.4 DiscreteDenoisingDiffusionProbabilisticModel
for graphs

In Section 2.3, we have worked with a single one-hot vector representing a discrete class, how-
ever, in the case of molecular graphs, the amount of input data increases. Let’s establish the
notation that will be used for discrete di昀昀usion models applied to molecular graphs. Let’s de-
昀椀ne amolecule, in the same way as expressed in 2.1,M = (X,E)where the termXwill be used
to de昀椀ne a one hot encoding on the type of node (so in our case the type of atom), and E to
de昀椀ne the one hot encoding tensor for the type of bond. The node type matrix is so de昀椀ned
as X ∈ R

n×dx , where dx are number of atom types and n the number of atoms in a speci昀椀c
molecule; the edge type tensor is de昀椀ned as E ∈ R

n×n×de , where de is the number of bond class.
The general elements xi of X and ei,j of E represent respectively a one hot vector for a single
atom and bond class.

Given the preceding notation for molecular graph it’s possible to de昀椀ne two transition ma-
trices, as done in [4]: one for bond and the other for atom types:

[Qt
X]ij = q(xt = j|xt−1 = i); (2.25)

[Qt
E]ij = q(et = j|et−1 = i); (2.26)

where the single elements of [Qt
X]ij indicate the probability of passing at time step t from the

class i to the class j, and similarly for [Qt
E]ij.

20

It’s also possible to think the forward process as constituted of di昀昀erent categorical distribu-
tion such that q(xt|xt−1) ∼ Cat(xt−1Qt).

Thedi昀昀usion step in this case is doneon the entire graph, so keeping in consideration thepair
node and edge; the di昀昀usion is de昀椀ned by categorical distribution over edge and node types:

q(Gt|Gt−1) = (Xt−1Qt
X,Et−1Qt

E). (2.27)

Considering the fact that molecular graphs are undirected, E is symmetric with respect the
昀椀rst two dimensions.

Once that the di昀昀usion process is de昀椀ned, it misses to consider how to design the transition
matrix in order to produce the proper di昀昀usion. The key point to keep in consideration is the
fact that the limit distribution need to be known and easy to treat in sampling stage. The 昀椀rst
ideas of authors in [4] is to design the transition matrix in order to arrive to a uniform distri-
bution over all the classes as time steps increases. In this case he formulation for the transition
matrix is the following:

Qt
X = ³tI+ (1− ³t)

1X1TX
dx

; (2.28)

Qt
E = ³tI+ (1− ³t)

1E1TE
de

; (2.29)

where 1X is a column vector of ones with the length of atom classes, the same for 1E and {³t}Tt=1

value is the variance scheduling parameter (in this case it’s 昀椀xed for both edge and nodes values,
but it can also be di昀昀erent), which increases with the time until arriving near to 0 when t = T;
all the parametrization of variance scheduling are the same as the ones already discussed. This
kind of transition matrix lead to a limit distribution q(XT) and q(ET) that is uniform over
all the classes. This approach is simple to understand and to implement practically. Other
methods are reported in [24], like the use of absorbing states or a discretized version of gaussian
distribution, and they are applied to molecular generation inside [32].

As in the previous section, once that the forward pass is de昀椀ned it remains only to work on
reverse process. All this part will treat directly the case in which the reverse process is done
on a molecular graph. Following directly what written in section about continuous di昀昀usion
models, it’s necessary to de昀椀ne a parametrized reverse process able to denoise the input repre-

21

sentation at a speci昀椀c time step, to do so with graph it’s possible to write:

pθ(Gt−1|Gt) =
∏

i=1,...,n

pθ(xt−1
i |Gt)

∏

i,j=1,...,n

pθ(et−1
i,j |Gt). (2.30)

The 昀椀nal parametrized reverse process is de昀椀ned by the product of the node and edge reverse
process over all the elements. The basic assumption of this formulation is that the reverse pro-
cess is independent for both nodes and edges. This assumption is strong, but it motivated by
looking at di昀昀usion models for images, in which the noise is applied independently on each
pixel [17, 24]

It’s possible to marginalize the reverse parametrized transition with respect the distribution
of all the classes:

pθ(xt−1
i |Gt) = pθ(xt−1

i |xti) =
∑

x∈X
pθ(xt−1

i |xi = x,Gt)p̂Xθ (xi|xt) (2.31)

=
∑

x∈X
q(xt−1

i |xi = x, xti)p̂
X
θ (xi|xt);

pθ(et−1
i,j |Gt) = pθ(et−1

i,j |eti,j) =
∑

x∈X
pθ(et−1

i,j |ei,j = e,Gt)p̂Eθ (ei,j|et) (2.32)

=
∑

e∈E
q(et−1

i,j |ei,j = e, eti,j)p̂
E
θ (ei,j|et).

Since it’s possible to assume that pθ(xt−1
i |xi = x,Gt) = q(xt−1

i |xi = x, xti) if q(xti|xi =

x) > 0, motivated by the independence between node and edge forward process. In particular,
q(xt−1

i |xi = x, xti) represents the probability ofmoving froman atomclass to another in passing
at t step, considering the fact that the original class is 昀椀xed, xt represents the noised class at time
t and p̂Xθ (xi|xt) represents the learning architecture estimate for the probability that atom xi in
the clean graphGt is of type x. All this holds also for edge tensor case.
This last formulation is extremely important and highlights themain di昀昀erencewith contin-

uous di昀昀usionmodels: in this case, the learning architecture does not predict the error injected
at each time step to subtract it from the sample. Instead, it directly learns the node and edge dis-
tribution over the support. Using a neural network, it predicts the clean graph for each noised
graph. The neural network architecture φθ(xt, et) = G0̂ takes as input the nodes and edges
representation in a speci昀椀c time step, and return the denoised representation of the graph, so
original representation given the noised one at time t.

22

The loss function used in this case is derived from [4]. Authors have specialized the loss
explained in Section 2.2, to graph discrete case and obtain the following formulation:

l(G,Gt) = λxCE(X, pθ(Xt)) + λeCE(E, pθ(Et)), (2.33)

where CE(·, ·) is the cross-entropy.
In the case of graph di昀昀usion implemented in [4] and [5] the objective function is indeed

a cross entropy over edge and node support. The main goal of the learning architecture is to
predict the right class of nodes and edges for each molecule in order to denoise it.

2.5 Graph Transformer

Once that the general theoretical background of di昀昀usion models is established it’s necessary
to explain the structure of Graph transformer as explained inside [1]. So far, only the funda-
mental theory behind Denoising Di昀昀usion Probabilistic Models (DDPMs), discrete DDPMs,
and graph-based DDPMs has been reviewed, in this chapter there will the explanation of the
learning architecture used to learn the parameterized reverse process. To accomplish this, the
model proposed in this work uses a graph-based transformer architecture that takes noisy data
representations as input and learns to denoise them.

Authors of reference article [1]consider two di昀昀erent architecture: one with just node in-
formation and the other with both node and edge information. Since this latter is the one that
will be used in the proposed model and in the baseline, the analysis will be done according to
this setting.

The main idea behind the graph transformer is to bridge the gap between original Trans-
former architecture [33] and Graph Neural Network [34] in dealing with graph representa-
tion, allowing the self attention mechanism to exploit information from both edge and node.
In fact original Transformer deals with relationship inside a sequence by representing all tokens
of the input as a fully connected graph, this in order to learn relations between each component.
From one hand it could be possible to use a traditional transformer architecture also inside
graph structured dataset, but it’s worth to notice that for large graphs the computational load
would be unfeasible and all the structure information provided by edge connectivity would be
lost. To overcome this problem, graph transformers were developed to handle irregular and
non-sequential input. The self-attention mechanism is implemented in order to study node-

23

to-node relationship just between connected ones, making the attention sparse and so less com-
putational demanding. Moreover thanks to these features is possible to exploit both local and
global structure information.

The general outline of the graph transformer could be divided in three main blocks: the
input block, the transformer block and then the output block. It could be also visualized in
Figure 2.1. The input phase acts as a preprocessing stage in which node and edge features are
passed through subsequent fully connected layer, in order to produce an initial informative
embedding. In this stage there is also a procedure that mimics the positional encoding of orig-
inal transformer: in fact in order to inject information about structural relationship of nodes
inside the graph, one way is to compute the eigenvectors of the Laplacian matrix associated to
the adjacency matrix of the molecular graph:

L = I−D− 1
2AD− 1

2 , (2.34)

where I is the identity matrix, D is the the diagonal matrix 昀椀lled with zero values outside the
diagonal and the elements di,i represent the number of bond of the i-th atom and A is the
adjacency matrix.

In particular, given a graphGwith n nodes, let xi represent the one-hot encoding vector that
denotes the class of each atom, and similarly, let ei,j represent the one-hot encoding vector for
each edge. It’s possible to write the input embedding for each node and edge element through
a linear projection:

ĥ
0
i = A0xi + a0; (2.35)

ê0ij = B0eij + b0; (2.36)

where A0 ∈ R
k×dx and B0 ∈ R

k×de are the parameters of linear projection, a0 and b0 are
two bias terms, k is the dimension of hidden dimension. These values could be then passed
through a non linear activation function, in order to increase their expressiveness. Eventually
all the procedure is donemultiple times to increase the generalization. Given a laplacianmatrix
L ∈ R

n×n, eigenvectors are de昀椀ned with the factorization L = ΓTΛΓ, where µi is the eigenvec-
tor associated to the i-th atom and Λ is the diagonal matrix with eigenvalues. It’s possible to
compute a linear projection to obtain an embedding of each eigenvector:

24

µ0i = C0µi + c0; (2.37)

h0i = ĥ
0
i + µ0i ; (2.38)

where C0 ∈ R
k×n is the coe昀케cient matrix associated with the bias term c0 that maps each

lapalcain vector into the same hidden space with dimension k as the node embedding, µ0i is the
linear embedding associated to the laplacian eigenvector and hi is the augmented embedding
with both node and positional information.

Once that the input stage is ended, both the embedding x̂i and êij are used as input of trans-
former stage. The graph transformer layer works similarly to the original transformer, in par-
ticular the node update equation for a general layer l is:

ĥ
l+1
i = Ol

h

∥∥∥
H

k=1
(
∑

j∈Ni

wk,l
ij Vk,lhlj); (2.39)

êl+1
ij = Ol

e

∥∥∥
H

k=1
(ŵk,l

ij); (2.40)

wk,l
ij = softmaxj(ŵk,l

i,j); (2.41)

ŵk,l
i,j = (

Qk,lhli · Kk,lhlj√
dk

) · Ek,lêlij; (2.42)

where Qk,l, Kk,l and Vk,l are the three query, keys and values matrix necessary for attention
mechanism, the number h = 1, ...,H denotes the number of attention heads, the operator

∥∥∥
indicates the concatenation,Ol

h ∈ R
d×d andOl

e ∈ R
d×d are the learnable parameters associated

to the concatenated embedding.
Then each attentionoutput is passed to a feed forwardneural network, followedby a residual

connection layer and a normalization layer. The output of transformer layer is then processed
with a feed forward network with skip connection and normalization layer:

h̃
l+1
i = Norm(hli + ĥ

l+1
i); (2.43)

h̃˜l+1
i = Wl

h,2ReLu(Wl
h,1h̃

l+1
i); (2.44)

hl+1
i = Norm(h̃˜l+1

i + h̃
l+1
i); (2.45)

25

whereWl
h,1 ∈ R

2d×d andWl
h,2 ∈ R

d×2d, regarding h̃˜l+1
i and h̃

l+1
i these are the intermediate

representation of the node embedding. Regarding edge attention outputs, these are computed
in the same way as node ones so:

ẽl+1
i,j = Norm

(
eli,j + êl+1

i,j

)
; (2.46)

ẽ̃l+1
i,j = Wl

e,2ReLU
(
Wl

e,1ẽl+1
i,j

)
; (2.47)

el+1
i,j = Norm

(
ẽ̃l+1
i,j + ẽl+1

i,j

)
; (2.48)

where Wl
e,1 ∈ R

2d×d and Wl
e,2 ∈ R

d×2d, regarding ẽ̃l+1
i,j and ẽl+1

i,j these are the intermediate
representation of the edge embeddings.

After all the graph transformer layers, all the attention representation are thenpassed through
aMulti Layer Perceptron (MLP) to obtain a task dependent output for the model.

Figure 2.1: Representa琀椀on of Graph Transformer as in [1]

The explanation of this architecture has been done following the original work [1], which
is not totally suitable for generative models, in 昀椀rst stage since it doesn’t contain the di昀昀usion
time step variable. In the following chapters this architecturewill be revised andmodi昀椀ed twice:

26

in Chapter 3, when explaining the benchmark model, and in Chapter 4. when explainin the
original model of this work. Despite themodi昀椀cation, the general structure of the architecture
remains the same.

27

28

3
State of the art

This chapter will introduce and explain the main features behind MiDi model[5], a discrete
di昀昀usion model that generates jointly 2D and 3D structure of each molecule; before explain-
ing the main details at the base of MiDi, it’s worth to mention some other methods that deals
with atomic coordinates in the space. In [6], authors uses a continuous denoising di昀昀usion
probabilistic model, explained in Section 2.2 of Chapter 2, to generate both atom type and
coordinate. In this approach atom type are treated as continuous and there is no bonding in-
formation inside the learning architecture: this is predicted from results using distance between
atoms and atom class.

A di昀昀erent approach is used by authors of [35], here they propose a newmodel called JODO
(Joint 2D and 3DDi昀昀usionModel) that simultaneously models both the 2D bonding graphs
and 3D geometries ofmolecules, this is done using a di昀昀usion graph transformer, where nodes,
edges and geometric features interact using a relational attention mechanism.

The general theory ofMiDI derives directly fromwhat iswritten inChapter 2, there are only
some changes in order to consider a mixed approach between discrete and continuous features.
Let’s de昀椀ne a moleculeM = (X,E) with the same notation used Chapter 2. In addition to
atom and bond information it’s possible to consider C ⊆ R

n×3 the one hot encoding matrix
of formal charge class as a node level feature. With this speci昀椀cation the term ci is the one
hot encoding vector associated to the formal charge of each atom. The use of formal charge
is crucial since it provides valuable information about the chemical structure of the generated
compound. Regarding coordinates, R ⊆ R

n×3 is the matrix of coordinates, where the single

29

ri ∈ R
3 is the position vector of one atom.

Let’s consider a discrete noise process that corrupts edges, atoms and charges independently;
for what concern coordinate data, it is used a gaussian noise with the zero center of mass sub-
space such that · ∼ NCoM(³tRt−1, σ2t I). This type of noise is essential in order to obtain a
roto-translational equivariant architecture [23] and works by centering the matrix of coordi-
nate with respect the center of mass each time the noise is sampled; this step is crucial because
it ensures that the system remains stable and does not deviate signi昀椀cantly from its central po-
sition.

In the end the forward process that controls the noise injection inside molecular representa-
tions is given by the product of all the noise together:

q(Gt|Gt−1) ∼ NCoM(³tRt−1, σ2t I)× Cat(Xt−1Qt
E)× Cat(Et−1Qt

E)× Cat(Ct−1Qt
C), (3.1)

where Q is the transition matrix de昀椀ned at each di昀昀usion time step for charges, atoms and
bonds, the parameter {³}Tt=1 is the variance scheduling parameter that works as explained in
previous chapter; similarly σ2t is the variance term that will be considered 昀椀xed as done in Chap-
ter 2.
The reverse process is de昀椀ned as the product of all the marginal parametrized posteriors:

pθ(Gt−1|Gt) =
n∏

i

pθ(rt−1
i |Gt)pθ(xt−1

i |Gt)pθ(ct−1
i |Gt)

n∏

i,j

pθ(et−1
i,j |Gt); (3.2)

It’s possible to calculate each discrete term by marginalizing over the network prediction as
explained in the previous chapter:

pθ(xt−1
i |Gt) = pθ(xt−1

i |xti,Gt) =
∑

x∈X
pθ(xt−1

i |xi = x,Gt)p̂Xθ (xi|xt,Gt) (3.3)

=
∑

x∈X
q(xt−1

i |xi = x, xti)p̂
X
θ (xi|xt,Gt);

Regarding positional feature, the di昀昀usion is done in continuous space, so the parametrized
reverse process is de昀椀ned as pθ(Rt−1|Gt) = pθ(Rt−1|Rt,Gt) ∼ N (μθ(xt, t,Gt),Σθ(xt, t,Gt)), as
done in Chapter 2. By considering the variance term as 昀椀xed to a constant σ2t , it’s possible to

30

write the whole expression in terms of predicted error:

Rt−1 =
1√³t

(Rt −
1− ³t√
1− ³̄t

ϕθ(Rt, t,Gt)) + σtz, (3.4)

where ϕθ(·) is the predictor network, implemented with a neural network architecture, that
predicts the coordinate system starting from the noised one. The learning architecture ϕθ(Gt)

takes in input a noisy graph Gt and predict the clean one G: this is done by considering the
discrete-continuous approach, where for discrete class it returns a categorical distribution over
the classes and for continuous feature it return the clean coordinate system.

Figure 3.1: MiDi model architecture, at the top, the outline of the overall architecture is visible. Within the do琀琀ed lines, the
details of the transformer architecture are shown.

The denoising network is implemented using a Graph Transformer, where coordinate fea-
tures are treated in order to guarantee SE(3) equivariance. SE(3) equivariance refers to the abil-
ity of a learning model to be consistent with respect rotation and translation in three dimen-
sional space. It’s possible to learn this by augmenting the dataset withmultiple transformation,
this lead to a consistent increase in computational burden, since the model is forced to learn
by seeing the same molecule multiple times, but with di昀昀erent conformation in the space. To

31

avoid this in literature many others models have been proposed; [36, 37, 38] manage to solve
this problemwith spherical harmonics, leading to e昀昀ective results but still extremely expansive.
Other generative models [39, 40] use EGNN (Equivariant Graph Neural Network) layers [6].
In EGNN there is the attempt to learn graph neural networks that are equivariant to rotation,
translation, re昀氀ections and permutations, by using some proxy variable instead of coordinate
directly; in this case, the bias is not learned during training; instead, it is built directly into the
model’s de昀椀nition. Coordinates are updated recursively using node, edge and proxy features:

ri = ri +
∑

j

ci,j¸(||ri − rj||, xi, xj, yi,j)(ri − rj); (3.5)

where ci,j represents a normalization term and ¸() a MLP, the position is updated considering
the weighted sum of all relative distances, this in order to ensure the translation and rotation
equivariance, as proven in [6]. The key idea behind this method is to provide the learning
functionwith only rotation and translation invariant parameters, such as the distance between
atoms. MiDI model take in consideration the SE(3) problem and manage to solve it by con-
sidering a modi昀椀ed version of EGNN. In particular, the attention module is based on rota-
tional invariant proxy descriptors such as pairwise distance ||ri − rj||, magnitude of each co-
ordinate ||ri|| and the angle between each coordinate cos (ri, rj). This approach is feasible be-
cause eachmolecule’s coordinate system is centered on its center ofmass, making it translation-
equivariant. All these information are concatenated in one tensor:

[Δr]i,j = cat(||ri − rj||, ||ri||, ||rj||, cos (ri, rj)). (3.6)

This vector will be considered inside the self-attention mechanism to update node and edge
embedding, and, also, to produce the embedding of coordinate data.
All the values reported are to be considered as centred with respect the center of mass, this
incorporates information into a coordinate representation that is independent from rotation.
Finally the coordinate is updated combining rotation-invariant message function, here called
φm with node and edge information:

ri = ri +
∑

j

φm(xi, xj, [Δr]i,j, ei,j)(rj − ri). (3.7)

The approach is called rEGNN(relaxed EquivariantGraphNeuralNetwork) [5] and it’s im-

32

plemented inside the self attention module of the graph transformer. An overview of Graph
Transforemer used in MiDi could be seen in Figure 3.1 and it’s built using the framework ex-
plained in the previous Chapter 2, but with some modi昀椀cations. The self-attention layer is
implemented inside an update block that process all the feature simultaneously, it takes as in-
put also the di昀昀usion step t, which includes information about the amount of error injected
in molecular representation. The edge features are 昀椀rst updated using positional Δr and node
information; are then processed independently of attention representation. This is the 昀椀rst
di昀昀erence with respect the original graph transformer architecture [1]. Edge features are com-
puted as follows:

ei,j = φe(ei,j, xi ⊙ xj, [Δr]i,j); (3.8)

where φ are particular aggregator functions that helps to inject context information inside
edge, node and position embedding as long as self-attention weights. In the case in analysis
aggregator functions are represented by a昀케ne transformation of current embedding where
the context information is passed through a linear layer before augmenting the embedding.
Node features are updated with a self-attention mechanism, using global information of dif-
fusion time step t, the positional information of Δr and the edge information E already com-
puted. The procedure to obtain the self attention weight for node representation is nearly
the same as the one exposed in previous chapter, it changes only how edge and positional
representation are injected inside 昀椀nal node embedding. Authors of MiDi have used a PNA
(Principal Neighbour Aggregator) [13] to pool pairwise information of (Δr,E) inside node
representation, this is done for both coordinate and edge representation in the following way:
PNA(E)i = WTCat(mean,min,max, std)j(ei,j). The aggregatorworks by concatenating sum-
mary statistics (mean, minimum,maximum and standard deviation) of the embedding (in this
case, the vector ei,j) and then multiply the results with a learnable weight matrix. It’s possible
to see the update block procedures in these formulas:

³i,j = softmax(φ³(ei,j,W
T
keyxi,WT

queryxj, [Δr]i,j)), (3.9)

xi = φX(
∑

j

³i,jWT
valxj, PNA(E)j, PNA(Δr)j, t), (3.10)

ri = ri +
∑

j

φr([Δr]i,j, ei,j)(rj − ri). (3.11)

33

These formulas represents what’s is done inside the update block, as shown in 昀椀gure 3.1 all
computed embedding, except for time step information, are then processed with other layers.
For node and edge representation a dropout layer followed by a normalization layer and 昀椀nally
a MLP layer are stacked one over the other, to produce a 昀椀nal rich embedding. Regarding
coordinate features, these are passed through a normalisation layer and a MLP layer, which
are speci昀椀cally modi昀椀cation to take in consideration the SE(3) equivariance. TheMLP layer is
modi昀椀ed as follows:

PosMLP(R) = ψCoM(MLP(||R||) R
||R||+ ¶

). (3.12)

The norm ||R|| ∈ R
n×1 is the magnitude information of each coordinate vector, which is

invariant to rotation. This modi昀椀cation is motivated by the necessity of not treat separately
each coordinate, that would cause a break in the SE(3) equivariance, but consider a MLP that
process the magnitude of each coordinate. The operator ψCoM is the projection of the coordi-
nates into a linear subspace with center of mass at zero: ψCoM(R)i = ri − 1

n
∑n

i=1 ri. Also the
normalization layer [36] is modi昀椀ed in order to maintain SE(3) equivariance, in particular the
formulation is the following:

E3Norm(R) = µ
R

n̄+ ¶
, (3.13)

where n̄ =
√

1
n
∑n

i=1 ||ri||2, µ is a learnable parameter and ¶ is a small o昀昀-set.
In the end the whole procedure consists of an update block, with inside the self-attention

mechanism, a dropout, a normalization and a multi-layer perceptron. The output values of
each multilayer perceptron are added to the input values from before the MLP in a residual
layer. The whole procedure is repeated many times.

Once that the whole learning architecture is de昀椀ned it’s necessary to consider the loss func-
tion that will be optimized during the training phase. Since the learning architecture is trained
to denoise a corrupted representation of the molecular graph, considering both 2D and po-
sitional features, the whole loss function is formed of two main blocks: a cross entropy part,
used to train the classi昀椀cation of the right edge, atom and charge class, and amean square error
part, used to solve the regression problem one the coordinates. The 昀椀nal loss is formed by the
weighted sum of each component:

34

l(G,Gt) = λxCE(X, pθ(Xt)) + λeCE(E, pθ(Et)) + λcCE(C, pθ(Ct)) + λpos||R̂− Rt||2,
(3.14)

where Gt is the noised graph at time t, G is the clean graph ,CE(·, ·) stands for cross entropy,
pθ(·) is the results of the parametrized learning architecture which takes in input a noisy value
and return the clean one, this for each feature set; regarding positional features, R̂ represents
the denoised coordinate matrix, obtained as result of the neural network model. It’s possible
to notice that this formulation derives directly fromwhat written in Chatper 2. It’s possible to
encapsulate all the main procedure of MiDi model inside two algorithms:

Algorithm 3.1MiDi - Training
1: G = (X,E,C,R)
2: Sample t ∼ U(1, ...,T)
3: z ∼ N (0, 1)
4: Gt ∼ NCoM(³tRt−1, σ2t I)× Cat(XQt

E)× Cat(EQt)× Cat(CQt
C)

5: p̂x, p̂e, p̂c, R̂← fθ(Gt)

6: Optimize.step l(G, Ĝt) = λxCE(X, pθ(x))+λeCE(E, pθ(e))+λcCE(C, pθ(c))+λpos||R̂−
R||2

The learning algorithm follows the same procedure of what explained in previous chapter:
sampling a noise graph, perform a forward pass, denoise the structure and 昀椀nally optimize the
loss function.

Values for λ hyperparameters are 昀椀xed inside [5] to these values: λX = 0.4, λE = 2, λC = 1
and λpos = 3.

In the sampling stage, the initial step involves drawing samples from the noise distribution.
This is achieved by independently considering the limiting distribution for each component: a
standard normal distribution for positional data and a uniform distribution for discrete data,
such as class labels. Next, a denoising process is applied to each component, followed by com-
puting the posterior, which ultimately generates the 昀椀nal graph.

35

Algorithm 3.2MiDi - Sampling stage
1: GT ∼ N (0, 1)× qX(dx)× qE(de)× qC(dc)
2: for t = T to 0
3: p̂x, p̂e, p̂c, R̂t = fθ(Gt)

4: z ∼ N (0, 1)
5: Rt−1 =

1√³t (Rt − 1−³t√
1−³̄t

R̂t) + σtz
6: pθ(xt−1

i |Gt) =
∑

x q(x
t−1
i |xi = x, xti)p̂

X
i (x)

7: pθ(et−1
ij |Gt) =

∑
e q(e

t−1
ij |eij = e, etij)p̂

E
ij(e)

8: pθ(ct−1
i |Gt) =

∑
c q(c

t−1
i |ci = c, cti)p̂

X
i (x)

9: (Xt−1,Ct−1,Et−1) ∼
∏

i pθ(x
t−1
i |Gt)pθ(ct−1

i |Gt)
∏

i,j pθ(e
t−1
ij |Gt)

10: Gt−1 = (Xt−1,Et−1,Ct−1,Rt−1)
11: end for
12: return G0

36

4
ProposedModel

This chapter will explain the main details at the base of the model proposed in this work. The
main core of this model is to apply di昀昀usion on atom distance matrix; this approach deletes
all issues related to SE(3) equivariance and enriches the model with additional information.
Speci昀椀cally, the direct relationship between distances and bond types can be used to generate
more realistic structures.

The general outline of the proposedmodel is similar towhat seen inMiDI case: let’s consider
amoleculeM = (X,E), where xi and ei,j have the same interpretation given inChapter 2. Let’s
further consider also formal charge information ci, as done in Chapter 3. It’s possible to de昀椀ne
the distance matrix related to a molecular graph asD ∈ R

n×n, where n is the number of atom
for each molecule. This type of information is an edge level information that is propagated for
all themolecular graphs, the vector di ∈ R

n represents the distances between the i-th atom and
all other atoms within the molecule.

The di昀昀usion process is done with the same steps considered in Chapter 3: during the for-
ward process, a gaussian noise is applied to each distance matrix with the same procedures seen
in Chapter 2 for continuous di昀昀usion. As pointed out before, in this case there is no need to
consider a gaussian noise with center of mass, but it’s worth to use a simple gaussian transition
kernel. The forward process is written like in MiDI, so as follows:

q(Gt|Gt−1) ∼ N (³tDt−1, σ2t I)× Cat(Xt−1Qt
X)× Cat(Et−1Qt

E)× Cat(Ct−1Qt
C); (4.1)

37

Similarly the parametrized reverse process is written as the product of all the marginal poste-
riors, considering the fact that distance matrix is a edge level feature:

pθ(Gt−1|Gt) =
n∏

i

pθ(xt−1
i |Gt)pθ(ct−1

i |Gt)
n∏

i,j

pθ(et−1
i,j |Gt)pθ(dt−1

i,j |Gt); (4.2)

where the distance dt−1
i,j is the distance between i-th and j-th atom at time t, all the other ele-

ments have the same meaning seen in Section 2.4 of Chapter 2. Each term in computed by
marginalizing over network prediction as explained in Section 2.4 of Chapter 2. In the case of
distance the the reverse pass is done as in a standard continuous case:

Dt−1 =
1√³t

(Dt −
1− ³t√
1− ³̄t

ϕDθ (Dt−1|Dt,Gt)), (4.3)

whereϕθ(·) is the learning architecture that takes in input a noisy graph and return the denoised
representation. The learning architecture is based on graph transformer seen in Chapter 2,
some modi昀椀cation are implemented following what seen in Chapter 3 and other are proposed
speci昀椀cally for this model. It’s possible to see at Figure 4.1 a visual explanation of the trans-
former architecture.

The encoding part is similar to what seen in original graph transformer: an embedding is
computed for bond type tensor, distance matrix and atom type matrix (as before all the com-
putations done inside the transformer consider the concatenated version of atom type matrix
and formal charge). The main di昀昀erence with respect MiDi formulation is that, in this case,
also the positional embeddings are used. In order to exploits fully the topological information
at the base of graph structure, an embeddings of non trivial eigenvector associated to laplacian
matrix are produced, these are then summed with the node/charge embedding as seen in the
original graph transformer architecture in Chapter 2.

This version of graph transformer is based on several self-attention module, dropout layers,
normalization layer and feedforward layers; it could be visualized in Figure 4.1. The architec-
tural choices to implement self-attention stage are expressively designed to encapsulate also ex-
ternal information inside node attention weight. All the modi昀椀cations done to ensure SE(3)
modi昀椀cation are not considered anymore, because of this all the dropout, normalization and
feedforward layer are in the usual version. The update block, which contains the self-attention

38

mechanism, is built using implementation choices from [5] and from [4], and it could be visual-
ized inFigure 4.2. In昀椀rst stage, the output embedding for edge information are processedusing
information from distance, node and di昀昀usion time step embedding. In order to incorporate
these information inside the edge embedding a FiLM (Feature-wise Linear Modulation layer)
[7] is used. This particular method is used for a dynamic modulation of the edge embedding,
injecting external information inside it; this is done by considering a昀케ne transformation of
some external features: let’s considerM as a general external features and A as the embedding
matrix in which inject external information, the network will learn an a昀케ne transformation
that will augment values of attention scores in this way:

FiLM(A,M) = MW1 + (MW2)⊙ A+ A; (4.4)

whereW1 andW2 are twomatrices of learnable parameter associated to a昀케ne transformation.
In this case, a single FiLM layer is used to inject global di昀昀usion step information inside edge

representation. In the case in analysis, in which it’s necessary to consider the edge embedding,
let’s consider E as the initial edge embedding. Then, the FiLM layer associated to di昀昀usion
time step embedding is:

Ê = FiLM(E, y) = yWy
1 + (yWy

2)⊙ E+ E; (4.5)

where Wy
1 and Wy

2 are learnable weights that produces an a昀케ne transformation of edge em-
bedding. The result of this operation is then passed to a linear layer and 昀椀nally used in self-
attention.

Once that the edge embedding is computed, the proper self-attention take place. This com-
pute the key and query matrix as explained in Chapter 2. The matrix A represents the scaled
outer product ofQ andKmatrices, that contains valuable information about how each node is
relate to other node. A FiLM layer is used to inject bonding and distance information together
with di昀昀usion time step inside the attention weights. This is done as shown before by learn-
ing an a昀케ne transformation through parameterized linear transformation of distance, bonding
and time step information. In particular:

A1 = FiLM(A, Ê) = ÊWe
1 + (ÊWe

2)⊙ A+ A, (4.6)

39

A2 = FiLM(A1,D) = DWd
1 + (DWd

2)⊙ A1 + A1, (4.7)

A3 = FiLM(A2, y) = yWy
1 + (yWy

2)⊙ A2 + A2; (4.8)

where W1 and W2 learnable weights associated to each feature injected inside self-attention
layer to produce an a昀케ne transformation.

Figure 4.1: MiDi model architecture, at the top, the outline of the overall architecture is visible. Within the do琀琀ed lines, the
details of the transformer architecture are shown.

It’s important to consider that distance embeddings of the self-attentionphase are computed
through a dense layer starting from the attention score matrix. This allow to have all the infor-
mation about the atomic structure and the bonding scheme of the molecule inside the 昀椀nal
distance representation.

The remaining part follows the general graph transformer structure explained in Chapter 2;
in the end, following what is done in [4], another FiLM layer is used, to inject again di昀昀usion
time step information inside the 昀椀nal representation.

As mentioned earlier, after the update block, a dropout layer is followed by a normalization
layer and a feedforward layer, stacked sequentially for a chosen number of layers. The dropout
layer is not used for distance embedding, in fact the regularization introduced by dropout lead

40

to a decrease of performance in generating distances. In the case of distances, also the skip
connection between initial embedding and the results of update block is removed for the same
reason.

The optimization is done in the same way as in MiDi, the learning architecture is trained
to denoise each graph representation together with distance values. The objective function
is di昀昀erent from what was seen before. Inside the learning architecture there are indeed four
bond type, the three classes corresponding to single, double and triple bond and a class for no
bond case. All the learning architecture exploited up to now have considered the no bond class
inside the cross-entropy cost function, equally to other bonds. In the proposed model the loss
associated to bond terms is split in two part: a binary cross entropy that control the presence
or absence of bond and, if the bond is present, a cross entropy on the type of bond. The cost
function to optimize is the following:

l(G, Ĝt) = λxCE(X, pθ(x)) + λe(BCE(B, pθ(b)) + CE(Eb, pθ(eb))+ (4.9)

λcCE(C, pθ(c)) + λD||D̂−D||2.

where BCE stands for binary cross entropy, B is the one hot encoding matrix with bond/no
bond information, Eb is the one hot encoding tensor with bond type information. It’s impor-
tant to notice that the cross entropy on bond type is computed only when the bond actually
exists between two atoms.

As done for MiDI it’s possible to write the whole training and sampling procedure inside
two algorithms. The training phase is built as explained in previous chapters, sampling a time
step and then training the learning algorithm to denoise the noised representation. The main
di昀昀erences with respect to previous examples is the new loss function and in the usage of dis-
tance matrix.

Algorithm 4.1 ProposedModel - Training
1: G = (X,E,C,D)
2: Sample t ∼ U(1, ...,T)
3: Gt ∼ N (³tDt−1, σ2t I)× Xt−1Qt

E × Et−1Qt
E × Ct−1Qt

C
4: p̂x, p̂e, p̂c, D̂ = fθ(Gt)

5: Optimize.step l(Gt, Ĝt) = λxCE(X, pθ(x)) + λe(BCE(B, pθ(b)) + CE(Eb, pθ(eb)) +
λcCE(C, pθ(c)) + λD||D̂−D||2

41

Algorithm 4.2 ProposedModel - Sampling stage
1: GT ∼ N (0, 1)× qX(dx)× qE(de)× qC(dc)
2: for t = T to 0
3: p̂x, p̂e, p̂c, D̂t = fθ(Gt)

4: z ∼ N (0, 1)
5: Dt−1 =

1√³t (Dt − 1−³t√
1−³̄t

D̂t) + σtz
6: pθ(xt−1

i |Gt) =
∑

x q(x
t−1
i |xi = x, xti)p̂

X
i (x)

7: pθ(et−1
ij |Gt) =

∑
e q(e

t−1
ij |eij = e, etij)p̂

E
ij(e)

8: pθ(ct−1
i |Gt) =

∑
c q(c

t−1
i |ci = c, cti)p̂

X
i (x)

9: (Xt−1,Ct−1,Et−1) ∼
∏

i pθ(x
t−1
i |Gt)pθ(ct−1

i |Gt)
∏

i,j pθ(e
t−1
ij |Gt)

10: Gt−1 = (Xt−1,Et−1,Ct−1,Dt−1)
11: end for
12: return G0

The sampling stage is implemented in the same way as done for the previous chapter, the
only di昀昀erence stay in the fact that in this case we are treating distance matrices.

The model proposed is based on atomic distances, for this reason the ability to recover the
three-dimensional structure from these distance relationships is crucial for this work. Com-
puted coordinates should maintain the relative distances between each atom and ensure the
triangular inequality. The method used in this work for generating three-dimensional coordi-
nates from a distance matrix relies on principles of distance geometry and linear algebra tech-
niques: in literature this method is called Principal Coordinates Analysis or classical Multidi-
mensional scaling [41, 12]. This methods is based on the eigendecomposition of the Gram
matrix associated to distance matrix, in particular the eigendecomposition enables the extrac-
tion of key geometric information encoded within the distance matrix, facilitating the rapid
and accurate reconstruction of the spatial structure. There are other extensions of the Multi-
dimensional Scaling (MDS) algorithm, such as non-metric MDS and generalized MDS [12].
These approaches are more 昀氀exible as they handle non-Euclidean spaces. However, since they
rely on an iterative optimization process, they tend to be slower compared to classical MDS,
which is based on pure linear algebra. Since coordinates of atoms are expressed in euclidean
space, this work will use classic MDS.

42

Figure 4.2: Update block architecture of proposed model

43

44

5
Experiments

In this chapter the benchmark and the proposedmodelwill be evaluatedwith respect to uncon-
ditional molecular generation. The whole methodology is done for both the proposed and the
benchmark model, asserting the goodness of the generated molecules from a chemical point
of view and from a geometrical prospective, comparing the generated distance with the test
distribution.

5.1 Dataset

Both the benchmark model and the proposed one will be tested using two datasets. Both the
dataset will be split in 75% training, 15% validation and 10% testing. In the context of gen-
erative models the usage of each split dataset is not trivial, so I will sped few lines to explain
what each part will be used for; the training set is used to train the generative model, the neu-
ral network architecture is fed with data from this to learn how to denoise corrupted graph
structures. The validation set is used to guide the training process and monitor the model’s
real generalization capabilities. The evaluation of the model’s denoising performance is done
on the validation set, using a dataset that was not seen during training. Finally the test set is
used as a benchmark to assess the quality of generated structure. Themain focus is to compare
generated molecules with a set that was not seen during the training.

It is also important to highlight the primary reasons for using two di昀昀erent datasets in the
experiments: the main objective is to evaluate the robustness of the proposed methods com-

45

pared to benchmark models. In second stage, it’s extremely important to consider how mod-
els scales with molecular dimension, especially when considering position and distance matrix.
This work will treat two di昀昀erent dataset built with small molecules, the 昀椀rst one is QM9 [8]
and the second is GDB13 [9]. The 昀椀rst dataset contains molecules up to 9 heavy atoms and
the second up to 13. There exists other dataset with bigger molecules, like ZINC [42], where
the average number of atom for molecule is 23 and the maximum 38, or Geom-Drugs [43] in
which the average number of atoms is 44, with amaximumof 181; these datasets lead to a huge
computational load both in training and in sampling phase, whichmade them unfeasible since
the computational resources available for this thesis.

5.1.1 QM9

The 昀椀rst dataset used is QM9, short for ”QuantumMechanics 9” [8]. This dataset has become
widely utilized in computational chemistry and machine learning, and over time, it has been
established as one of the benchmarks datasets for evaluating molecular generative models.

It contains 134.000 small orgamic molecules, built using carbon (C), nitrogen (N), oxygen
(O) and 昀氀uorine (F). These molecules have up to 9 heavy atoms. Regarding bonds type the
dataset is built considering single, double and triple bonds. The dataset contains molecular
information in SMILES format. In addition to the linear notation, the dataset also provides
geometric information for each molecule, including the spatial coordinates of atoms.

The dataset results extremely unbalanced with respect both atom and bond classes; this
makes totally sense since it re昀氀ects the distribution in natural compounds. As it could be seen
from Figure 5.1, the carbon is the most abundant atom type in the dataset, with more than
the 72% of frequency with respect the training set. Oxygen and nitrogen together account for
approximately 27% of the remaining atom types in the dataset, with 昀氀uorine being the least
abundant, comprising about 0.3% of the atom types.

Things goes similarly for bond type class: the single bond forms the 87% of the bond in the
training set, double bond about the 10% and triple bonds only the 3%.
In order to fully understand proposed results, it’s important to consider also how QM9

dataset was built. QM9 is a subset of GDB17 [10], a database of 166 billion of molecules up to
17 heavy atoms. This subset has been selected among GDB17, considering just atoms with up
to 9 atoms and only the nicest one from a chemical point of view. In particular regarding this
last point, QM9 is a manually curated dataset built only by energetic stable molecules without
isomers; this provide a set of chemical compounds with an simple and regular chemical struc-

46

ture, from which is possible to compute experimentally geometrical and quantum features,
which could be helpful in di昀昀erent applications. In particular in this work, coordinate features
are extracted directly from the dataset, since they were prior computed experimentally.

During the part dedicated to the purposes of this work, it was mentioned the fact that dis-
tances information is conditioned tobond type information. This couldbe visualize by looking
at Figure 5.1c: it’s easy to see that distances relative to single bonds are generally higher respect
to distances associated to double and triple bonds. At the same time, this holds also for double
bond distances respect to triple bond. In this sense there is an interesting fact to notice: at 1.2A
there is an overlap between the mode of double and triple bond.

C O N F
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc
y

Atoms distribution

(a) Atom distribu琀椀on for QM9 training set

Triple Double Single
0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y

Bonds distribution

(b) Bond distribu琀椀on for QM9 training set

(c) Distance histrogram condi琀椀oned to bond type ‐ QM9

Figure 5.1: Exploratory analysis ‐ QM9

47

5.1.2 GDB13

The second dataset used in this work is GDB13 [9], namely Generated Database 13. This
dataset is formed by small organic molecules that are generally slightly bigger than QM9 ones.
In fact it’smainly built usingmolecules of 11, 12 or 13 atoms. Thewhole dataset contains about
1 billion of chemical compounds, due to computational constraint, in this work only a random
subset of 169.550, will be considered. In this datasetmolecules are built with carbon (C), nitro-
gen (N), oxygen (O), sulfur (S) and chlorine (Cl); regarding bond types, also in this case, there
are only single, double and third bonds.

As for the previous case, also in this one, the dataset results extremely imbalance for both
atom and class types. The most abundant atom is carbon, with the 72.5% of all the atoms in
the dataset. Together oxygen and nitrogen represents the 26.7% of the atom types (respectively
10.2% for carbon and 16.5% for nitrogen). Lastly sulfur is present in 0.7% of atoms and the
chlorine in 0.1%. The distribution of bond types is similar to that in QM9: single bondsmake
up 84% of all bonds, double bonds account for 14%, and triple bonds represent 1.6% of the
total bonds.

UnlikeQM9, in this case, the only constraint for building this dataset is themaximumnum-
ber of atomspermolecule. This results in a set ofmolecules that aremore challenging to handle,
as there is no experimental supervision to focus solely on structures with a well-de昀椀ned ener-
getic con昀椀guration. For this reason, in this case the dataset doesn’t contain any structural in-
formation about the conformation of each molecule in the space, but indeed just the SMILES
string. To compute the coordinate of each string, a Universal Force Field (UFF) [44] optimiza-
tion process is used, taking advantage of the implementation provided in RDKit [45]; UFF
method is a computational method used to model and simulate a chemical system, the opti-
mization process adjusts the atom positions to minimize the energy of the system, producing
a physically realistic 3D structure. This method is not the most precise, but it is the most ver-
satile that work with pretty much all the molecules, since each dataset could contains organic
compounds with di昀昀erent chemical conformation.

It’s possible to see fromFigure 5.2c, the histogramof training distance: in this case, the di昀昀er-
ence between the three distance distributions, conditioned on bond type, is more pronounced;
generally themainmodes of the three distribution are similar towhat seen inQM9case, double
bonds are little shifted far from 1.2 A, not causing anymore an overlapping.

48

C O N S Cl
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

Atoms distribution

(a) Atom distribu琀椀on for GDB13 training set

Single Double Triple
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc

y

Bonds distribution

(b) Bond distribu琀椀on for GDB13 training set

(c) Distance histogram condi琀椀oned to bond type ‐ GDB13

Figure 5.2: Exploratory analysis ‐ GDB13

5.2 Pre-Processing

Both of the previously considered datasets are built using SMILES notation, making it essen-
tial to have a processing pipeline that converts the molecular line notation into a graph format.
Before this stage, it is important to perform certain preprocessing operations directly on the
SMILESnotation. The昀椀rst operation is the removal of all hydrogen atoms fromeachmolecule;
as pointed out before, this doesn’t a昀昀ect the goddness of generated molecules, since it’s gen-
erally possible to infer hydrogens from heavy atom presence. After this step each SMILES is
kekulized: this procedure allow to rewrite all the aromatic bond in an alternating formof single
and double bond. This procedure is essential in order to produce more precise graph represen-

49

tation when converting from SMILES string. Finally canonicalization algorithm is applied to
each SMILES to ensure that there is an unique representation between molecule and string
notation. After these transformation, all the SMILES are converted to a molecular graph rep-
resentation and used for training the generative model.

In the case of GDB13, it is also necessary to generate three-dimensional coordinates. This
is achieved by using SMILES before converting them into molecular graphs, and by leverag-
ing RDKit’s implementation of the Universal Force Field (UFF). The UFF takes the SMILES
representation as input and returns a set of coordinates that minimize the molecule’s energy
landscape.

A schematic representation of both the processing pipelines is shown in 昀椀gure 5.3 for both
QM9 and GDB13 case.

Figure 5.3: Input pipeline for crea琀椀ng the dataset, the part inside do琀琀ed line is done once, when the dataset is processed
for the 昀椀rst 琀椀me

5.3 EvaluationMetrics

In order to avoid over昀椀tting, the 昀椀nal testing procedure is done on the best checkpoint in terms
of denoising loss computed on the validation set; all the results of generated examples are com-
puted using a sample of 10.000 generate molecules. Proposed model and MiDI results are
shown in terms average and 95% con昀椀dence intervals on 5 generated examples set.

To evaluate the goodness of proposedmodel compared to benchmark one, it’s important to
consider some metrics that helps to understand if proposed generative model is able to create
e昀昀ective new molecules. To do so di昀昀erent types of metrics will be used [46].

First of all it’s fundamental to assess if generated molecules are valid chemically: to do so
the validity metric is used. Validity consider the percentage of generated molecules, which are
chemically valid, over all the generated ones. To do so RDkit is used to verify the atomic com-
position and the bonding structure considering valency rules.

50

It’s also important to assess the ability of themodel to produce di昀昀erentmolecules in output,
the uniqueness measure the ratio of uniques molecules; evaluating this metric is essential, as a
model may generate many valid molecules, but they could all end up being identical. This
particular type of problem is called model collapse and it’s a sign that the learning architecture
fails in exploiting the unknown generative distribution.

In order to assess the generalization capabilities of the model, it’ important to measure the
number of generated molecules that are di昀昀erent from the ones present in the dataset; this
is done with novelty metric, which measure the percentage of new generated molecules with
respect the training set.

It is also essential to establish a point of comparison between the benchmark model and
the proposed model to evaluate the quality of the three dimensional conformation. Since the
benchmark model works with coordinates, we can compute a distance matrix from these coor-
dinates and compare it with the one generated by the proposed model. In fact, the original pa-
per uses generated distance as a measure to evaluate the quality of three-dimensional conform-
ers. The two generated distribution will be compared using the Wasserstein distance method
[28]. The Wasserstein distance is a distance function of two probability distribution P and Q
de昀椀ned as follows:

W(P,Q) = infµ∼Π(P,Q) E(p,q)∼µ[|p− q|], (5.1)

where Π(P,Q) is the set of all possible joint probability distribution between P andQ and µ is
a particular distribution among this set. From a practical point of view, it’s possible to see this
quantity as themeasure of the smallest distance between two distributionweighted by the joint
probability of the two. For discrete case probability it’s easy to see that the previous equation
could be rewritten as:

infµ∼Π(P,Q) E(p,q)∼µ[|p− q|] =
∞∑

p,q

µ(p, q)|p− q|. (5.2)

In the case in analysis the main aim is to measure the distance between target distance val-
ues and generated ones. In this situation the Wasserstein distance represents the minimum
”cost” of transforming one distribution into the other. To compute this metric in discrete case,
the process involves the creation of histograms for both the generated and target distributions,

51

where each bin holds the counts of values that fall into it. These two discrete distributions are
then sorted and the absolute di昀昀erence between corresponding points are computed. To assess
the real capabilities of themodel, it’s also necessary to consider distance as conditioned to bond
information, since the type of bond has a huge impact on distance and viceversa. This allows
to check if generated distances are also meaningful from a chemical point of view. To do so the
Wasserstein distance metric is computed as follows:

Wbonds(Dt,Dg) =
∑

b∈bond types

p(b)W(Dt
b,D

g
b), (5.3)

where p(b) is the frequency of a particular bond type inside the test set, Dt
b is the discretized

distribution of distances inside the test set, marginalized by the bond type, Dg
b is the same dis-

tribution, but with distances generated by the model. Then the 昀椀nal sum is weighted by the
bond frequency. This metric will be called distance error from now on.

5.4 Model Selection

Model selection is a fundamental process in any deep learning basedmethod: themain scope is
to choose the best-performing model version among di昀昀erent con昀椀gurations. In this case, the
proposed method consists in a graph transformer, where many architectural choices are done
in according to what done [5] and [4]. Because of computational limitations all the model
selection has been done only for QM9 case: the parameters chosen for this case will be used
also in GDB13 one. Model selection was performed using a grid search strategy, focusing on
two key hyperparameters: the learning rate and the loss function weights.

For the learning rate, various con昀椀gurations were tested, beginning with two widely spaced
values: 0.001 and 0.01. As values around 0.01 resulted in an unstable learning trajectory, addi-
tional con昀椀gurations were tested starting from this value, decreasing incrementally by 0.002.
Regarding loss function weights, the strategy adopted was the same used for learning rate.

In this case the starting con昀椀guration was the one used in [5], then other con昀椀guration were
tested moving around this starting point with an initial step of 0.5, then using a smaller one of
0.1 around the chosen one.

The con昀椀gurations of the learning rate and loss function weights were tested independently
of each other. This approach is not the most correct, since they should be tested together, but,

52

due to computational constraint, this wasn’t feasible.

5.5 Implementation details

All the model exposed here have been trained with a batch size of 1024 and for 2000 epochs.
For reproducibility this whole experimental set is done in according towhat proposed inMiDI
article [5]. To ensure the full reproducibilitywithMiDi, its code has been integrated and tested
into the framework utilized in this thesis: all the results are coherent with original ones.

The learning rate for both the dataset is 昀椀xed at 0.002, chosen as the best one among other
di昀昀erent con昀椀guration. The selection of loss function hyperparameters was initially based on
the starting con昀椀guration used for MiDI, followed by adjustments made by exploring neigh-
boring con昀椀gurations. In the end the 昀椀nal chosen parameters are: λx = 1, λc = 1, λe = 2 and
λd = 1.
Regarding architectural choices, many decisions were made in alignment with the setup de-

scribed in [5]. More in detail each MLP used in initial encoding phase is structured with two
linear layer divided by a non linear activation function. For all the features, except for distances,
the number of neurons are chosen in according to what seen in already mentioned articles, for
distance feature the choice has been done testing several di昀昀erent con昀椀guration. The number
of attention heads as well as the number of layers inside the graph attention are the same as
[5]; the same is valid also for hidden dimension size of transformer embedding. After the at-
tention phase, node, edge and di昀昀usion time step embedding are processed, as usual in graph
transformer, by a dropout, a normalization layer and aMLP layer, where the hyperparameters
are chosen according to [5] and [4]. Distance embedding are processed without a dropout
layer: this because the regularization performed lead to produce inaccurate distance embed-
dings (especially for double and triple bonds). In order to produce a richer embedding, the
MLP layer for distance embedding is built by four layer, instead of two as for other embeddings:
this con昀椀guration has been chosen after many attempt, considering deeper and shallowermod-
els, which leads to worse results. The proposed model uses the SiLU (Sigmoid Linear Unit)
function for all activation layers. This choice was made because the SiLU function o昀昀ers sev-
eral key advantages: its smooth gradient and ability to handle both positive and negative input
values. These properties enhance the model’s stability and performance, particularly in gener-
ating accurate distance values within molecular structures.

All the models will be tested with the same experimental settings: in particular, since hydro-
gens atoms could be easily inferred form heavy atoms, in this work they will not be considered.

53

This procedure is extremely used in literature [5, 6, 4], mainly to reduce computational costs.
The proposedmodel is coded in Python using Pytorch [47], together with pytorch-lighting

[48]. All the pre-processing and post-processing stages performed onmolecules are done using
RDkit [45], a popular open source toolkit for cheminformatics, with an python API. This
package containsmanymethods that permit to deal withmolecular object with computational
chemistry tool.

In the end it’s important to mention the model dimension together with training time for
both the proposed and MiDi model. Proposed model consists of about 20 million of param-
eters (precisely 20.003.660) and it’s trained for 3 days. MiDi model consists of 20 million of
parameters (precisely 20.124.219) and it’s also trained for three days. Both the models have
been trained on one Nvidia A5000 GPU.

5.6 Results

Let’s start considering the ability of proposedmodel in generating suitable 2Dconformerswith
respect testing distribution, then chemical property of generated molecules will be revised and
昀椀nally therewill be the assessment of distance generation, with a comparisonwithMiDimodel.
To evaluate the quality of the generated examples, the 昀椀rst step is to check if the atom and bond
distributions are similar to those in the test set: forQM9all the results are reported inTables 5.1
and 5.2; in these it’s possible to see that generated distribution is extremely similar to test one,
for both atomandbond type. The proposedmodel is able to deal equallywith over represented
data type (like single bond and carbon atom) and with under represented data (like Fluorine
and triple bond).

C O N F

Test Distribution 0.725 0.114 0.159 0.003
Generated Distribution 0.745 ± 0.005 0.098 ± 0.005 0.156 ± 0.001 0.003 ± 0.001

Table 5.1: Generated vs test atom distribu琀椀on for QM9

For GDB13 dataset (Table 5.1 and Table 5.4) the situation is similar to the previous one:
in this case the dataset is much more complex but, in the end, the proposed model succeed
in learning the atom and bond distribution. The model is robust enough to not over昀椀t on
the most distributed classes (like single bond and carbon atom) and it is also able to exploit
information related to the least abundant classes.

54

Single Double Triple

Test Distribution 0.870 0.099 0.030
Generated Distribution 0.889 ± 0.006 0.082 ± 0.008 0.031 ± 0.004

Table 5.2: Generated vs test bond distribu琀椀on for QM9

C O N S Cl

Test Distribution 0.725 0.102 0.165 0.007 0.001
Generated Distribution 0.759 ± 0.004 0.083 ± 0.001 0.151 ± 0.004 0.005 ± 0.0010.002 ± 0.001

Table 5.3: Generated vs test atom distribu琀椀on for GDB13

Single Double Triple

Test Distribution 0.843 0.141 0.016
Generated Distribution 0.852 ± 0.013 0.118 ± 0.010 0.019 ± 0.004

Table 5.4: Generated vs test bond distribu琀椀on for GDB13

It’s necessary also to consider the property of each generated molecule with respect the test
set. As shown in Table 5.5, for QM9, over 99% of generated molecules are chemically valid,
this result agrees totally with MiDI results. Looking at uniqueness and novelty values, the
proposed model generates a similar proportion of unique molecules compared to the baseline,
however, many of these molecules are already present in the test set. In general, scienti昀椀c liter-
ature emphasizes the importance of maximizing both uniqueness and novelty, in the speci昀椀c
case of QM9 this is not totally true. Authors of [4] and [49] highlight the fact that QM9 is a
curated dataset which contains speci昀椀c molecules that verify a set of constraint; given speci昀椀c
constraints, QM9 represent an exhaustive enumeration of molecular types, generating a large
number of molecules outside this dataset could indicate that the learning architecture is strug-
gling to capture the chemical space represented by QM9. Given this interpretation the pro-
posed model achieve better results compared toMiDi, since it produces a lower value of novel
molecules (41% against 49% of baseline model) and an higher number of uniques molecules
among the generated ones.

In line with these considerations, it’s important to verify whether the proposed model can
generate molecular compounds that are structurally similar to those in the test set. Speci昀椀cally,
the generated molecules should not be excessively large or overly small. On average, the gener-
ated molecules contain 8.23 atoms, ranging from a minimum of 4 to a maximum of 9 atoms,

55

while the averagemolecule size in the test set is 8.4 atoms. Also looking at themolecular weight
distribution, for both test and generated molecules of proposed model, it’s possible to ensure
that, generally, generated molecules are structurally similar to what’s contained in the dataset.
The molecular weight plots (Figures 5.4) reveal that both the proposed model and the MiDI
model struggle to generate outlier structures; they tend to favor average-sized molecules, mak-
ing it more challenging to produce particularly large or small molecules.

50 100 150
Atomic Mass Unit

0.00

0.02

0.04

0.06

0.08

0.10

Molecular weight distribution
Test set
Proposed model
MiDi

(a)

Test Proposed MiDi

20

40

60

80

100

120

140

At
om
ic
M
as
s U
ni
t

Boxplot of test vs generated molecular weight

(b)

Figure 5.4: Density plot and boxplot of molecular weight ‐ QM9

Validity Uniqueness Novelty Distance Error

MiDi 0.995 ± 0.001 0.958 ± 0.002 0.492 ± 0.000 0.008 ± 0.003

Proposed Model 0.995 ± 0.001 0.957 ± 0.001 0.412 ± 0.004 0.005 ± 0.001

Table 5.5: MiDi vs Proposed model metrics QM9

It’s possible towrite similar consideration also forGDB13case. The amountof validmolecules
is comparable between proposed andMiDimodel, and in both case the number is generally ex-
tremely high. In this case, since the dataset is built without a speci昀椀c supervision, the shape and
con昀椀guration of molecules in the dataset is extremely heterogeneous, and so there are more
possible con昀椀gurations to learn. For this speci昀椀c reason, in this case, the value of novelty is
near to 1, just like the value of uniques molecules. The proposed model performs similarly to
baseline model: both approaches generally succeed in generating chemically valid molecules
that are unique and free from redundancy relative to the test set. By examining the molecular
weights of the generated compounds, we observe that, on average, the proposed model pro-
duces molecules with structural characteristics closely resembling those in the test set. Speci昀椀-

56

cally, the generated molecules have an average atom count of 12.2, which aligns well with the
average atom count of molecules in the test set, which is 12. This similarity suggests that the
model e昀昀ectively captures the structural patterns andmolecular composition ofmolecules also
in the test data. On the other hand, also in this case both proposed and MiDI model struggle
in dealing with outlier structures, as could be seen in Figures 5.5.

125 150 175 200 225 250
Atomic Mass Unit

0.00

0.02

0.04

0.06

Molecular weight distribution
Test set
Proposed model
MiDi

(a)

Test Proposed MiDi

140

160

180

200

220

240

At
om
ic
M
as
s U
ni
t

Boxplot of test vs generated molecular weight

(b)

Figure 5.5: Density plot and boxplot of molecular weight ‐ GDB13

Validity Uniqueness Novelty Distance Error

MiDi 0.997 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.026 ± 0.008

Proposed Model 0.998 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.004 ± 0.003

Table 5.6: MiDi vs Proposed model metrics GDB13

It’s very important to look also at generated distances results. In the case ofMiDI, distances
are computed starting from generated positions. Generated distances from both models will
be considered in a 昀椀rst stage, in terms of bonded and not bonded atoms: this will be done in
order to assess the ability of both models to exploit the general structure of distances within a
molecule. In a second stage, all the bonded distances will be considered as conditioned to bond
type.

In QM9 case, from Table 5.5, it is possible to see that, overall, the distances generated by
the proposed models are more realistic and similar to those in the test set compared to those
generated byMiDI. In the case of bonded atoms, visible in Figures 5.6a 5.6b, the generated dis-
tances follows better the trend of test set and succeeds in generating values around the mode.
Themodel strugglesmore in dealingwith smaller distances (related to double and triple bonds)

57

but performances are still better compared to MiDI case. Regarding distances of non bonded
atoms, depicted in Figures 5.6c 5.6d, overall the proposed model is able to generate distances
that are extremely close to the test distribution and, comparing with MiDI, it’s possible to see
that the generation is more precise with proposed model. The proposed model also outper-
forms MiDI in predicting single bond distances, as could be seen in Figures 5.6e 5.6f, gener-
ating a center of mass around the correct mode. Regarding double and triple bond distances,
visible at Figures 5.6g 5.6h 5.6i 5.6j, performances drop signi昀椀cantly and this could be caused
by two main facts: the 昀椀rst concerns the fact that these bonds together represents about the
15% of the bonds in the dataset, so it could be possible that there is not enough information
to learn su昀케ciently the generated distribution; this is particularly valid for triple bonds, that
are around the 1% of all bonds. Moreover to make things even harder there is the fact that, at
1.2A, both double and triple bond distance distribution have a mode, this can make it more
di昀케cult for learning architecture to 昀椀gure out the real shape of generated distribution. Overall
it’s possible to say that, even though the proposed model struggle in dealing with these situa-
tion, it performs better thanMiDI, in placing themass of generated examples in the right range
of values.

Generated distances can also be considered for the GDB13 case: as pointed out in Table
5.6, it’s possible to see that proposed model perform remarkably better than MiDI model in
generating new distances. Density plot together with boxplots for bonded and non-bonded
atoms, depicted at Figures 5.7a 5.7b 5.7c 5.7d, demonstrate that the proposed model captures
more e昀昀ectively the shape of the generated distance distribution than MiDI. The generation
for non bonded atoms is indeed less precise respect the QM9 case, but it’s worth to mention
thatGDB13molecules are bigger andmore complex, so itmake sense that generally non boned
distance are less precise. Regarding single bonds, seen in Figures 5.7e 5.7f, it’s evident that the
distances generated by the proposedmodel alignwell with the test distribution, outperforming
MiDI signi昀椀cantly. Double and triple bonds distances depicted at Figures 5.7g 5.7h 5.7i 5.7j
remain di昀케cult to generate. For double bonds, the proposed model produced a unimodal
distribution, whereas the actual distribution is notably more complex. Triple bonds distances
are still di昀케cult tomanage, since the generateddistributionofproposedmodel fails in detecting
the real test distribution.

In Figures 5.8 and 5.9 they are reported 25 di昀昀erentmolecules generated by proposedmodel
trained on QM9 and GDB13 dataset, with both 2D and 3D. Three dimensional features are
extracted using the method mentioned in Chapter 4.

58

1.0 1.2 1.4 1.6 1.8
Å

0

2

4

6

8

Density+plot+of+test+vs+gene ated+distance+dist ibution+-+BONDED+ATOMS
Test+dist ibution
P oposed+Model
MiDi

(a)

Test Proposed MiDi

1.2

1.4

1.6

1.8

2.0

Å

Boxplot+of+test+vs+generated+distrib tion+-+BONDED

(b)

2 4 6 8 10
Å

0.0

0.2

0.4

0.6

0.8

1.0

Density+plot+of+test+vs+gene ated+distance+dist ibution+-+NOT+BONDED+ATOMS
Test+dist ibution
P oposed+Model
MiDi

(c)

Test Proposed MiDi
2

4

6

8

10

Å

Boxplot+of+test+ s+generated+distribution+-+NOT+BONDED

(d)

1.0 1.2 1.4 1.6 1.8
Å

0

2

4

6

8

10

Density+pl t+ f+test+vs+generated+distance+distributi n+-+SINGLE+BOND
Test+distributi n
Pr p sed+M del
MiDi

(e)

Test Proposed MiDi
1.0

1.2

1.4

1.6

1.8

Å

Boxplot of test vs generated distribution - SINGLE BOND

(f)

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Å

0

5

10

15

20

25

Density+ lot+of+test+vs+generated+distance+distribution+-+DOUBLE+BOND
Test+distribution
Pro osed+Model
MiDi

(g)

Test Proposed MiDi

1.0

1.1

1.2

1.3

1.4

1.5

Å

Boxplot of test vs generated distribution - DOUBLE BOND

(h)

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Å

0

10

20

30

40

50

60
Density+pl t+ f+test+vs+generated+distance+distributi n+-+TRIPLE+BOND

Test+distributi n
Pr p sed+M del
MiDi

(i)

Test Proposed MiDi

1.10

1.15

1.20

1.25

1.30

1.35

Å

Boxplot of test vs generated distribution - TRIPLE BOND

(j)

Figure 5.6: Density plot and boxplots for generated distances of QM9

59

1.0 1.2 1.4 1.6 1.8 2.0
Å

0

1

2

3

4

5

6

7

8
Density plot of test vs generated distance distribution - BONDED ATOMS

Test distribution
Proposed Model
MiDi

(a)

Test Proposed Generated
0.5

1.0

1.5

2.0

2.5

3.0

Å

Boxplot+of+test+ s+generated+distribution+-+BONDED

(b)

2 4 6 8 10 12
Å

0.0

0.2

0.4

0.6

0.8

Density+plot+of+test+vs+gene ated+distance+dist ibution+-+NOT+BONDED+ATOMS
Test+dist ibution
P oposed+Model
MiDi

(c)

Test Proposed MiDI0

2

4

6

8

10

12

Å

Boxplot of test vs generated distribution - NOT BONDED ATOMS

(d)

1.0 1.5 2.0 2.5 3.0
Å

0

2

4

6

8

10

Density+p ot+of+test+vs+generated+distance+distribution+-+SINGLE+BOND
Test+distribution
Proposed+Mode
MiDi

(e)

Test Proposed MiDi
1.0

1.5

2.0

2.5

3.0

Å

Boxplot of test vs generated distribution - SINGLE BOND

(f)

1.2 1.4 1.6 1.8
Å

0

2

4

6

8

10

12
Density+plot+of+test+vs+gene ated+distance+dist ibution+-+DOUBLE+BOND

Test+dist ibution
P oposed+Model
MiDi

(g)

Test Proposed MiDi

1.2

1.4

1.6

1.8

Å

Boxplot of test vs generated distribution - DOUBLE BOND

(h)

1.0 1.1 1.2 1.3 1.4
Å

0

5

10

15

20

25

30

35
Density+ lot+of+test+vs+generated+distance+distribution+-+TRIPLE+BOND

Test
Pro osed+Model
MiDi

(i)

Test Proposed MiDi

1.15

1.20

1.25

1.30

1.35

Å

Boxplot of test vs generated distribution - TRIPLE BOND

(j)

Figure 5.7: Density plot and boxplots for generated distances of GDB13
60

Figure 5.8: Non curated generated samples of proposed model ‐ QM9

61

Figure 5.9: Non curated generated samples of proposed model ‐ GDB13

62

6
Conclusion

Recently, deep generative models have made signi昀椀cant advances in addressing the complex
challengeofmodelingmolecular structures. Thesemodels havedemonstrated impressiveprogress
in their ability to generate, analyze, and optimize molecular con昀椀gurations, which allows re-
searchers to explore chemical space with unprecedented depth and precision. In particular,
since a chemicalmolecule exists in space, utilizing both 2D features, which represent the atomic
and bonding scheme, alongwith the 3D conformation of atoms, is essential to fully exploit the
information underlying the chemical space and generate realistic examples. All the methods
available in the literature to exploit spatial conformation use Euclidean coordinates. This ap-
proach is problematic because it requires researchers to develop models that are rotationally
invariant or capable of learning the rotational bias. This thesis propose a new approach in
dealing with spatial conformation, by utilizing the atomic distancematrix instead of Euclidean
coordinates. This approach overcomes issues related to coordinate rotation and enables the
model to exploit new information about the strong relationship between atomic distances and
the bonding scheme.
The model proposed in this work is built using a discrete denoising di昀昀usion probabilistic
model for graphs implemented with a graph transformer. The learning architecture is cus-
tomized to facilitate the 昀氀ow and reconstruction of the 2Dmolecular structure, including the
distances between all atoms. Looking at results in chapter 5, it’s possible to see that proposed
model generates molecules that are chemically valid, unique and free from redundancy rela-

63

tive to the test set. This demonstrates that the model is robust and capable of generalizing
e昀昀ectively with respect to the test set. It also performs comparably to the baseline model de-
scribed in chapter 5, based on key metrics used to evaluate the structural integrity of generated
molecules. MiDi, along with many other models based on three-dimensional coordinates, em-
ploys a distance errormetric to assess the quality of generated 3D conformers. When compared
with the results of the proposed model, it is clear that, for both datasets used in this thesis, the
performance of the proposedmodel signi昀椀cantly outperforms the baselinemodels. This is due
to the fact that in the proposed model, distance information 昀氀ows explicitly, whereas in the
baseline models, it is computed implicitly, starting from coordinates. Proposed model outper-
forms baseline one in generation of both bonded and not bonded distances, despite this, both
models have a problem in generating distances of triple bonds: this is probably due to the low
number of these bonds inside the datasets in analysis.
The key point of proposed model is in the dependency between bond class and distance in-
formation: in fact exploiting this information is bene昀椀cial, since the learning architecture can
learn more about how one variable in昀氀uences another, leading to more accurate and realistic
generated outputs. This particular fact could be further investigate in future works, in fact
this thesis represents just a 昀椀rst step for a more ambitious project: develop a denoising di昀昀u-
sion probabilistic model that generates distances conditioned to bond type information. This
model by considering explicitly the dependence between distance and bond information, prob-
ably will generated even better molecules, with even more precise triple bond distance.
The implementation code of this work is available at https://github.com/MrcBalla/
D4-code

64

https://github.com/MrcBalla/D4-code
https://github.com/MrcBalla/D4-code

7
Appendix

.1 Loss function - DiffusionModels

The training is done according the maximum likelihood method, the idea is to 昀椀nd out the
parameters necessary to train the model.
Let’s consider the following marginalization with importance sampling:

pθ(x0) =
∫

pθ(x0, ..., xT)dx1, ..., dxT;

=

∫
pθ(x0, ..., xT)

q(x1, ..., xT|x0)
q(x1, ..., xT|x0)

dx1, ..., dxT;

=

∫
q(x1, ..., xT|x0)p(xT)

T∏
t=1

pθ(xt−1|xt)
q(xt|xt−1)

dx1, ..., dxT.

This way of writing will be useful inside the actual proof of the loss function.
The loss function is derived using the maximum likelihood criterion:

argmax
θ

Ex0∼q log(pθ(x0)) = argmax
θ

∫
q(x0) log(pθ(x0))dx0.

From now on the argmax term will be omitted; it’s possible to plug in the formulation of pθ

65

derived previously, by applying the Jensen inequality and the Markov property:
∫

q(x0) log(pθ(x0))dx0;

=

∫
q(x0) log

∫
q(x1, ..., xT|x0)p(xT)

T∏
t=1

pθ(xt−1|xt)
q(xt|xt−1)

dx1, ..., dxTdx0;

≤

∫
q(x0, ..., xT) log p(xT)

T∏
t=1

pθ(xt−1|xt)
q(xt|xt−1)

dx0, ..., dxT;

=

∫
q(x0, ..., xT) log p(xT)

T∏
t=1

pθ(xt−1|xt)
q(xt|xt−1)

dx0, ..., dxT;

= Eq[log p(xT)
T∏
t=1

pθ(xt−1|xt)
q(xt|xt−1)

];

= Eq[log
T∏
t=1

pθ(xt−1|xt)
q(xt|xt−1)

] + Eq[log p(xT)];

=
T∑

t=2

Eq[log
pθ(xt−1|xt)
q(xt|xt−1)

] + Eq[log
pθ(x0|x1)
q(x1|x0)

] + Eq[log p(xT)];

=
T∑

t=2

Eq[log
pθ(xt−1|xt)
q(xt|xt−1, x0)

] + Eq[log
pθ(x0|x1)
q(x1|x0)

] + Eq[log p(xT)];

=
T∑

t=2

Eq[log
pθ(xt−1|xt)
q(xt−1|xt, x0)

q(xt−1|x0)
q(xt|x0)

] + Eq[log
pθ(x0|x1)
q(x1|x0)

] + Eq[log p(xT)];

=
T∑

t=2

Eq[log
pθ(xt−1|xt)
q(xt−1|xt, x0)

] + Eq[log
q(x1|x0)
q(xT|x0)

] + Eq[log p(xT)] + Eq[log
pθ(x0|x1)
q(x1|x0)

];

=
T∑

t=2

Eq[log
pθ(xt−1|xt)
q(xt−1|xt, x0)

] + Eq[log
pθ(xT)
q(xT|x0)

] + Eq[log pθ(x0|x1)].

The preceding formula could be written in terms of minimum and with kullback leibler
divergence:

Eq[DKL(q(xT|x0)||pθ(xT))+
T∑

t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))− log pθ(x0|x1)].

This is the analytical computable loss that needs to be minimized during the learning phase.

66

It’s possible to recognise three elements depending on the time step of the reverse process:
LT,Lt−1 and L0.

67

68

References

[1] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,”
arXiv preprint arXiv:2012.09699, 2020.

[2] D.Weininger, “Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules,” Journal of chemical information and computer sci-
ences, vol. 28, no. 1, pp. 31–36, 1988.

[3] ——, “Smiles. 3. depict. graphical depiction of chemical structures,” Journal of chemical
information and computer sciences, vol. 30, no. 3, pp. 237–243, 1990.

[4] C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard, “Digress:
Discrete denoising di昀昀usion for graph generation,” arXiv preprint arXiv:2209.14734,
2022.

[5] C. Vignac, N. Osman, L. Toni, and P. Frossard, “Midi: Mixed graph and 3d denoising
di昀昀usion for molecule generation,” in Joint European Conference onMachine Learning
and Knowledge Discovery in Databases. Springer, 2023, pp. 560–576.

[6] E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling, “Equivariant di昀昀usion for
molecule generation in 3d,” in International conference on machine learning. PMLR,
2022, pp. 8867–8887.

[7] E. Perez, F. Strub, H.DeVries, V. Dumoulin, andA. Courville, “Film: Visual reasoning
with a general conditioning layer,” in Proceedings of the AAAI conference on arti昀椀cial
intelligence, vol. 32, no. 1, 2018.

[8] R.Ramakrishnan, P.O.Dral,M.Rupp, andO.A.VonLilienfeld, “Quantumchemistry
structures and properties of 134 kilo molecules,” Scienti昀椀c data, vol. 1, no. 1, pp. 1–7,
2014.

[9] L.C. Blum and J.-L. Reymond, “970million druglike smallmolecules for virtual screen-
ing in the chemical universe database gdb-13,” Journal of the AmericanChemical Society,
vol. 131, no. 25, pp. 8732–8733, 2009.

69

[10] L. Ruddigkeit, R. VanDeursen, L. C. Blum, and J.-L. Reymond, “Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17,” Journal of
chemical information and modeling, vol. 52, no. 11, pp. 2864–2875, 2012.

[11] W. J. Wiswesser, “The wiswesser line formula notation,” Chem. Eng. News, vol. 30,
no. 34, pp. 3523–3526, 1952.

[12] W. S. Torgerson, “Multidimensional scaling: I. theory and method,” Psychometrika,
vol. 17, no. 4, pp. 401–419, 1952.

[13] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal neighbourhood
aggregation for graph nets,”Advances inNeural Information Processing Systems, vol. 33,
pp. 13 260–13 271, 2020.

[14] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,
2013.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the
ACM, vol. 63, no. 11, pp. 139–144, 2020.

[16] D. Rezende and S. Mohamed, “Variational inference with normalizing 昀氀ows,” in Inter-
national conference on machine learning. PMLR, 2015, pp. 1530–1538.

[17] J. Ho, A. Jain, and P. Abbeel, “Denoising di昀昀usion probabilistic models,” Advances in
neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[18] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised
learning using nonequilibrium thermodynamics,” in International conference on ma-
chine learning. PMLR, 2015, pp. 2256–2265.

[19] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and
A. Aspuru-Guzik, “Automatic chemical design using a data-driven continuous repre-
sentation of molecules,” ACS central science, vol. 4, no. 2, pp. 268–276, 2018.

[20] W. Jin,R.Barzilay, andT. Jaakkola, “Junction tree variational autoencoder formolecular
graph generation,” in International conference onmachine learning. PMLR, 2018, pp.
2323–2332.

70

[21] C. Zang and F. Wang, “Mo昀氀ow: an invertible 昀氀ow model for generating molecular
graphs,” in Proceedings of the 26th ACM SIGKDD international conference on knowl-
edge discovery & data mining, 2020, pp. 617–626.

[22] J. Ross, B. Belgodere, V. Chenthamarakshan, I. Padhi, Y. Mroueh, and P. Das, “Large-
scale chemical language representations capture molecular structure and properties,”
NatureMachine Intelligence, vol. 4, no. 12, pp. 1256–1264, 2022.

[23] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodi昀昀: A geometric di昀昀u-
sion model for molecular conformation generation,” arXiv preprint arXiv:2203.02923,
2022.

[24] J. Austin,D.D. Johnson, J.Ho,D.Tarlow, andR.VanDenBerg, “Structured denoising
di昀昀usion models in discrete state-spaces,” Advances in Neural Information Processing
Systems, vol. 34, pp. 17 981–17 993, 2021.

[25] M. Krenn, F. Häse, A. Nigam, P. Friederich, and A. Aspuru-Guzik, “Self-referencing
embedded strings (sel昀椀es): A 100% robust molecular string representation,” Machine
Learning: Science and Technology, vol. 1, no. 4, p. 045024, 2020.

[26] D. Fauque, “1919-1939: the 昀椀rst life of the union,” Chemistry International, vol. 41,
no. 3, pp. 2–6, 2019.

[27] D.Weininger, A.Weininger, and J. L.Weininger, “Smiles. 2. algorithm for generation of
unique smiles notation,” Journal of chemical information and computer sciences, vol. 29,
no. 2, pp. 97–101, 1989.

[28] L. N. Vaserstein, “Markov processes over denumerable products of spaces, describing
large systems of automata,” Problemy Peredachi Informatsii, vol. 5, no. 3, pp. 64–72,
1969.

[29] A. Q. Nichol and P. Dhariwal, “Improved denoising di昀昀usion probabilistic models,” in
International conference on machine learning. PMLR, 2021, pp. 8162–8171.

[30] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-
based generative modeling through stochastic di昀昀erential equations,” arXiv preprint
arXiv:2011.13456, 2020.

71

[31] J. Jo, S. Lee, and S. J. Hwang, “Score-based generativemodeling of graphs via the system
of stochastic di昀昀erential equations,” in International conference on machine learning.
PMLR, 2022, pp. 10 362–10 383.

[32] X. Chen, J. He, X. Han, and L.-P. Liu, “E昀케cient and degree-guided graph generation
via discrete di昀昀usion modeling,” arXiv preprint arXiv:2305.04111, 2023.

[33] A. Vaswani, “Attention is all you need,”Advances in Neural Information Processing Sys-
tems, 2017.

[34] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural networkmodel,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80,
2008.

[35] H. Huang, L. Sun, B. Du, and W. Lv, “Learning joint 2-d and 3-d graph di昀昀usion
models for complete molecule generation,” IEEE Transactions onNeural Networks and
Learning Systems, 2024.

[36] Y.-L. Liao and T. Smidt, “Equiformer: Equivariant graph attention transformer for 3d
atomistic graphs,” arXiv preprint arXiv:2206.11990, 2022.

[37] J. Gasteiger, F. Becker, and S. Günnemann, “Gemnet: Universal directional graph neu-
ral networks formolecules,”Advances inNeural Information Processing Systems, vol. 34,
pp. 6790–6802, 2021.

[38] N.Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K.Kohlho昀昀, andP.Riley, “Tensor 昀椀eld
networks: Rotation-and translation-equivariant neural networks for 3d point clouds,”
arXiv preprint arXiv:1802.08219, 2018.

[39] E.Hoogeboom,D.Nielsen, P. Jaini, P. Forré, andM.Welling, “Argmax 昀氀ows andmulti-
nomial di昀昀usion: Learning categorical distributions,”Advances in Neural Information
Processing Systems, vol. 34, pp. 12 454–12 465, 2021.

[40] A. Schneuing, Y. Du, C. Harris, A. Jamasb, I. Igashov, W. Du, T. Blundell, P. Lió,
C. Gomes, M. Welling et al., “Structure-based drug design with equivariant di昀昀usion
models,” arXiv preprint arXiv:2210.13695, 2022.

[41] G. Crippen, “Note rapid calculation of coordinates from distance matrices,” Journal of
Computational Physics, vol. 26, no. 3, pp. 449–452, 1978.

72

[42] J. J. Irwin and B. K. Shoichet, “Zinc- a free database of commercially available com-
pounds for virtual screening,” Journal of chemical information and modeling, vol. 45,
no. 1, pp. 177–182, 2005.

[43] S. Axelrod and R. Gomez-Bombarelli, “Geom, energy-annotated molecular conforma-
tions for property prediction and molecular generation,” Scienti昀椀c Data, vol. 9, no. 1,
p. 185, 2022.

[44] A. K. Rappé, C. J. Casewit, K. Colwell, W. A. Goddard III, andW.M. Ski昀昀, “U昀昀, a full
periodic table force 昀椀eld formolecularmechanics andmolecular dynamics simulations,”
Journal of the American chemical society, vol. 114, no. 25, pp. 10 024–10 035, 1992.

[45] G. Landrum, “Rdkit documentation,”Release, vol. 1, no. 1-79, p. 4, 2013.

[46] D.Rigoni, N.Navarin, andA. Sperduti, “A systematic assessment of deep learningmod-
els for molecule generation,” arXiv preprint arXiv:2008.09168, 2020.

[47] J. Ansel, E. Yang, H.He, N. Gimelshein, A. Jain,M. Voznesensky, B. Bao, P. Bell, D. Be-
rard, E. Burovski et al., “Pytorch 2: Faster machine learning through dynamic python
bytecode transformation and graph compilation,” in Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Programming Languages and Oper-
ating Systems, Volume 2, 2024, pp. 929–947.

[48] W. A. Falcon, “Pytorch lightning,”GitHub, vol. 3, 2019.

[49] H. Huang, L. Sun, B. Du, and W. Lv, “Conditional di昀昀usion based on discrete graph
structures for molecular graph generation,” in Proceedings of the AAAI Conference on
Arti昀椀cial Intelligence, vol. 37, no. 4, 2023, pp. 4302–4311.

73

74

