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Abstract

Abstract interpretation is an establishedmathematical framework introduced by Cousot
and Cousot in 1977 and ubiquitously used in static program analysis. In recent years,
many noteworthy works have shown how abstract interpretation can be successfully
applied to formally verify robustness properties of some major machine learning tech-
niques like (deep) neural networks, decision trees and support vector machines.

This research work aims to pursue this line of research by proposing a novel abstract
interpretation-based framework for designing a sound abstract version of the 𝑘-Nearest
Neighbors (𝑘NN) algorithm, a well-known non-parametric supervised learning method
widely used for classification and regression tasks, which is then instantiated to the
standard interval domain approximating the range of numerical features, to verify its
robustness and stability properties. This verification approach has been fully imple-
mented and evaluated on several datasets, including standard benchmark datasets for
individual fairness verification, and then compared with some related works finding
adversarial examples on 𝑘NNs. The experimental results turned out to be very promis-
ing and showed high percentages of provable robustness and stability in most of the
reference datasets, thus making a step forward in the current state-of-the-art of formal
verification of machine learning models.
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1
Introduction

Adversarial machine learning [16, 43, 19] is an emerging research field that combines
machine learning (ML) and computer security to design methodologies for making ML
techniques safer and more robust to adversarial attacks. ML algorithms have become
increasingly popular, and are recently being used in a variety of real-world applications
including image classification, face recognition, autonomous driving, and many more.
Despite their huge and unexpected success in performing various complex tasks, secu-
rity has never been in the spotlight, at least until now.

Motivated by the fact that real-world applications need to be resilient to arbitrary
input data, adversarial examples, inputs obtained by applying small perturbations to ex-
amples from the input space in order to change the decision of a classifier with high
confidence, are now more than ever study and research topic. A ML classifier is in fact
defined to be robust for a (typically very small) perturbation of its input samples, rep-
resenting a possible adversarial attack, when it assigns the same correct class to all the
samples within that perturbation, thus avoiding misclassifying examples that are only
slightly different from correctly classified examples drawn from the data distribution. In
many works, robustness is often mistakenly called stability, as if they were synonyms,
but these two properties are actually quite different: while stability requires the classi-
fier to maintain its (unique) decision within the perturbation, robustness goes further
and imposes also a correctness constraint, that is, the decreed class must coincide with
the one associated with the tested sample before any perturbation was applied.
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Robustness, both to accident and malevolent agents, is clearly a crucial determinant
of the desired quality of machine learning systems. Currently, there are several defense
techniques to increase the robustness of ML models, ranging from adversarial training
and input validation to testing and automatic verification. There is a large spectrum
of possible negative impacts from poorly secured systems, particularly issues around
sensitive applications such as medical and transportation systems, where a failure can
lead to potentially irreversible and life-threatening consequences [2]. For example, an
attacker may wish to cause a self-driving car to incorrectly recognize road signs, most
likely causing a car crash, or cause a medical device to falsely reconstruct a body scan
leading the doctor to overlook a particular disease or to think of a less serious or com-
pletely different one. Although machine learning models have become part of everyday
life, many of them, even the most advanced, are still easily susceptible to the almost
imperceptible perturbations of their inputs and therefore it becomes necessary to have
efficient strategies that allow us to analyze and verify their robustness property in a
precise and provable way.

In this research work, we focused on the formal verification problem for robustness
and stability properties of the 𝑘-nearest neighbors algorithm [1, 14], also known in liter-
ature as 𝑘NN or 𝑘-NN. The idea behind this ML algorithm is very simple and consist in
predicting the outcome for a test sample by inferring its 𝑘 closest neighbors ranging in
a given dataset, according to some distance metric, hence the name 𝑘-nearest neighbors.
It is mainly used for classification tasks, namely, when we want to attribute a discrete
label representing a certain category to an input sample, but can also be instantiated for
regression tasks, which are more concerned with predicting a continuous value. Despite
being one of the most straightforward supervised machine learning techniques, 𝑘NN is
a well-liked and reliable predictive model with a wide range of applications [18]. In par-
ticular, 𝑘NNs are successfully applied in different fields where adversarial attacks must
be taken into account, notably in chemistry since the early 1970s. For instance, 1NN
was used to classify molecular structures using its nuclear magnetic resonance spectra
[17], while the general version was exploited to classify sensor array data for two types
of chemical warfare agents [34], substances whose toxic properties are meant to kill,
injure or incapacitate human beings.

We propose a novel approach to automatically infer when a 𝑘-nearest neighbors clas-
sifier is provably robust and/or stable for an input sample in a test dataset with respect to
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a given perturbation. Our methodology is based on the long-established framework of
abstract interpretation [7, 8, 32] for designing correct and precise over-approximations
of dynamic computations, which has already been successfully exploited for the formal
verification of several different machine learning models [42]. Specifically, we leverage
a numerical abstract domain to define computer-representable abstract versions of both
the 𝑘NN classifier and the adversarial perturbation. The resulting over-approximate
classifier turns out to be a sound version of the concrete one, i.e., its outcome is always
a superset of the outcome of the latter, and has been designed to be fast and scalable in
the size of the training set as well as in the value of 𝑘 , to which no upper bound has been
set. This abstract interpretation-based technique allows to obtain provable robustness
and stability percentages of any dataset consisting of training and test sets. Our formal
verification methodology has been instantiated to the well-known numerical abstract
domain of intervals [8] and has been implemented in Python, leading programming
language when it comes to machine learning, in a tool called 𝑘NAVe (kNN Abstract
Verifier). We performed an exhaustive experimental evaluation of the final verifier on
7 datasets commonly used in formal robustness verification and on 4 standard datasets
for individual fairness verification, achieving very promising results in most of these.
Moreover, robustness results were compared with the output data of the GeoAdEx tool
by Sitawarin et al. [38], which computes minimum-norm adversarial examples on 𝑘NNs
classifiers by solving an optimization problem.

The rest of the thesis is organized as follows:

Chapter 2 describes the background needed to better understand the concepts covered
in this research work, providing some basic notions about used notation, and
on what concerns machine learning and abstract interpretation;

Chapter 3 reviews state-of-the-art formal methods currently applied to verify major
machine learning models and highlights some recent works finding adver-
sarial examples on 𝑘NNs;

Chapter 4 describes our formal verification method based on abstract interpretation,
explaining in detail how it works and why it is sound;

Chapter 5 shows the experimental results obtained by executing our abstract verifier
on the reference datasets, and compares the latter with those of GeoAdEx;

Chapter 6 sums up the contribution of this research work and proposes future improve-
ments to possibly obtain even better results.
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2
Background

This chapter will introduce and describe all the knowledge needed to fully understand
the thesis topic. It begins by reporting some of the notations that will often recur in the
various chapters, and then moves on to discuss the topics in two macro-sections: the
first provides the reader with an overview of what machine learning is, what supervised
classification means and how 𝑘NN classifiers work, ending up analyzing their safety
and fairness issues, and the properties that must be consequently evaluated; while the
second introduces basic concepts of the abstract interpretation framework, specially
numerical abstract domains and the interval domain.

2.1 Notation

An input space of feature vectors𝑋 ⊆ R𝑛 and a set of classification labels 𝐿 are assumed.
Let x, y ∈ R𝑛 , 𝑧 ∈ R and 𝑖 ∈ [1, 𝑛] ⊂ N be, respectively, two vectors of 𝑛 real numbers,
a real number and a natural number between 1 and 𝑛. We denote with x𝑖 ∈ R, x ·
y ≜

∑𝑛
𝑖 x𝑖 + y𝑖 ∈ R, x + y ∈ R𝑛 , 𝑧x ∈ R𝑛 , ‖x‖1 ≜

∑𝑛
1 |x𝑖 | ∈ R, ‖x‖2 ≜

√
x · x ∈ R,

‖x‖∞ ≜ max{|x𝑖 | | 𝑖 ∈ [1, 𝑛]} ∈ R, respectively, 𝑖-th component, dot product, vector
addition, scalar multiplication, ℓ1 (i.e, Manhattan) norm, ℓ2 (i.e., Euclidean) norm, and ℓ∞
(i.e., maximum) norm. Moreover, if ℎ : 𝑋 → 𝑌 is any function, then ℎ𝑐 : ℘(𝑋 ) → ℘(𝑌 ),
defined by ℎ𝑐 (𝑆) ≜ ⋃

𝑥∈𝑆 {ℎ(𝑥)}, denotes the standard collecting lifting of ℎ.
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2.2 Machine Learning

Deep Learning

A technique to

perform ML

Machine Learning

Allows computers to

“learn” from data

Artificial Intelligence

Mimicking human

intelligence or behavior

Figure 2.1: Venn diagram showing the relation between artificial intelligence, machine learning
and deep learning.

Nowadays, we hear more and more about artificial intelligence (AI), machine learning
and deep learning. These terms are frequently confused or used as synonyms, but they
are actually quite different from one another.

Artificial intelligence is a burgeoning field with numerous practical applications and
active research topics. According to its father John McCarthy [20], AI can be defined
as:

“The science and engineering of making intelligent machines, especially intelligent
computer programs.”

Its main goal is to develop intelligent software to automate mind- and time-consuming
tasks. For instance, AI is suitable for solving problems that are intellectually challenging
for humans, but at the same time easily definable in a formal mathematical manner that
is understandable by computers. Instead, if we consider tasks that our minds can carry
out effortlessly, such as, for example, recognizing object, faces or sounds, categorizing
the subject of documents or identifying entities (places, titles, names, actions, etc.) in
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a phrase or an image, it can be difficult to comprehend how to formalize the problem
in a way that is understandable from a computer, since we learned how to do it by
developing and gaining experience. The real challenge arises when it is not possible to
precisely formalize the problem, when there is some level of uncertainty in the input or
output, and when the solution is too complex or inefficient.

Machine learning is the branch of artificial intelligence that tackle those issues and
explains squarely how to enable computer systems to learn and improve themselves
automatically without being explicitly programmed or supervised by humans. A ML al-
gorithm is capable of adapting to its environment while improving its performance on a
specific task, which is typically defined in terms of how the system should process input
data. Data are therefore crucial in the learning process, and are commonly represented
as vectors in R𝑛 where each vector entry is called attribute or feature. For example, the
features of an image, represented as a vector, can be its pixels ranging from 0 to 255.

Data and tasks also determine which ML method is most suitable and performing
for each specific case. Within machine learning, the following learning paradigms are
identified:

• supervised learning: data are presented as a set of examples
⋃𝑛

𝑖=1{(x𝑖, 𝑙𝑖)} called
training set, each of which is a pair comprising an input feature vector in R𝑛 and
its correct output, typically a literal. It is particularly suitable for classification
and regression tasks: if the output is discrete a classification function is learnt;
otherwise, if the output is continuous, a regression function is learnt. The learned
function is then used to infer the output of unseen data.

• unsupervised learning: data are presented as a set of unlabelled vectors
⋃𝑛

𝑖=1{x𝑖}.
In this case, the outputs represent the data structure, which is determined by a
cost function that must be minimized. It is particularly suitable for clustering and
dimensionality reduction tasks.

• reinforcement learning: as for unsupervised learning, data are presented as a
set of unlabelled vectors

⋃𝑛
𝑖=1{x𝑖}. In contrast, however, a scalar reword signal

is used to evaluate input-output pairs by trial and error in order to find the best
outputs for each input. It is used in all fields where the system must respond to
changes in the environment, therefore attributable to regression problems.

Machine learning can appear in many guises, and deep learning is one of them, but we
will focus on it use for supervised classification tasks, precisely exploiting the 𝑘-nearest
neighbors algorithm.
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2.2.1 Supervised Classification

Classification is the process of assigning new input vectors to the class to which they are
most likely to belong, using a classification model built from previously labeled training
data. The goal is to learn a mapping from inputs x ∈ R𝑛 to outputs 𝑙x representing
some category. This problem can be formalized as approximating an ideal unknown
function 𝑓 : 𝑋 → ℘(𝐿) such that 𝑓 (x) = 𝑙x, by selecting a function ℎ : 𝑋 → ℘(𝐿) in the
hypothesis space containing all the possibilities, such that ℎ ≈ 𝑓 on all training data, to
make predictions on previously unseen inputs in a test dataset. The number of possible
outputs determines the type of supervised classification we need: when each instance
of data can be assigned to one of two possible class labels is called binary classification;
when classification involves more than two class labels, and each instance is assigned
to only one class label, is calledmulticlass classification. In some cases, a single example
can be classified as belonging to more than one class, which is referred to as multilabel
classification. In this thesis, however, we will consider only the first two types, i.e.,
binary and multiclass classification.

2.2.2 𝑘NN Classifiers

One of the simplest and trivial form of learning is the Rote learning for classification
tasks [10], memorizing the entire training data and performing classification only if the
attributes of the test sample exactly match the attributes of one of the training examples.
There are two obvious drawbacks to using this approach: many test samples will not
be classified because they do not match any of the training examples exactly, and when
two or more training examples have identical attributes but different class labels it is not
possible to infer which is the correct one. One possible way to mitigate these problems
is to adopt a more refined approach based on similarity rather than strict equality.

The 𝑘-nearest neighbors algorithm is a non-parametric supervised learning method
that exploits data proximity to make classifications or predictions about the grouping of
an individual sample, assuming that similar data can be found nearby. Non-parametric
means that no assumptions are made about the underlying data distribution, so that the
model structure is uniquely determined by the dataset itself, which is extremely useful
in practice, as most real-world datasets do not adhere to mathematical models. A 𝑘NN
classifier assigns an unknown feature vector x ∈ R𝑛 into the class 𝑙x where the majority
of its 𝑘 nearest neighbors belong, thus avoiding getting stuck when there is no identical
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data. In its straight-forward application, i.e 1NN, such a classifier simply assigns a test
sample the class of its nearest neighbor. The number 𝑘 ∈ N of neighbors, as well as the
distance function used to compare vectors in R𝑛 , are hyperparameters of this prediction
model. As Sebastian Raschka pointed out [31], although technically plurality voting is
used, the termmajority voting is almost ubiquitous in literature. The difference between
these two terms is that “majority voting” requires a majority of more than 50%, which
only works when there are only two classes. When there are multiple classes, e.g. four
categories, it is not always necessary a 50% of the vote to make a decision about a class,
and it is in fact possible to assign a class label with a vote of more than 25%. As we will
see in Chapter 4, this last consideration will be fundamental in discarding more labels.

The left picture in Figure 2.2 shows an example of classification performed with a
𝑘NN model instantiated at the case 𝑘 = 3, over a dataset in R2 with three classes red,
green, and blue. By applying the 3NN algorithm to every vector in the input space,
the right picture represents the dataset after the classification has been completed. For
an unknown input vector represented by a gray dot in the left picture, this algorithm
therefore computes the 3 closest samples in the dataset, which are the ones within the
dashed circle, and then the most common label among them is inferred. Following
this strategy, it may happen that two or more labels receive the same number of votes,
resulting in a tie. For instance, replacing a red point inside the dashed circle with a blue
one would result in a tie because each label would receive exactly 1 vote.

1 2 3 4 5 6

1

2

3

4

5

6

𝑥

𝑦

1 2 3 4 5 6

1

2

3

4

5

6

𝑥

𝑦

Figure 2.2: 3NN over a dataset with 3 classes, which shows how a new point is classified (left),
as well as its label after being classified (right).
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As can be seen from the example above, a 𝑘NNmodel does not need a learning phase,
which is instead required in most supervised ML algorithms, because all the examples
are stored and entirely used at classification time, a feature that makes 𝑘NN a so-called
lazy (or just-in-time) learning algorithm [3]. While this makes it quite simple to imple-
ment, it can potentially results in a high computation time due to the effort of computing
and sorting the distances, especially when so many neighbors must be found. For this
reason, 𝑘 is usually a low value, very often below 9 and in any case always smaller than
the square root of the total number of samples in the dataset. Being lazy, on the other
hand, makes it perform well in many situations. Under certain reasonable assumptions,
a well-known result by Cover and Hart [9] shows that the classification error of the
nearest neighbor rule is bounded above by twice the optimal Bayes error. Furthermore,
the error of the generai 𝑘NN method approaches that of the Bayes error asymptotically
and can be used to approximate it.

Algorithm 2.1 provides a high-level summary of the 𝑘NN algorithm for classification
tasks. Given a ground truth dataset 𝐷 = {(x1, 𝑙1), . . . , (x𝑁 , 𝑙𝑁 )} ⊆ 𝑋 × 𝐿, a number of
neighbors 𝑘 ∈ N ∖ {0}, and a distance function 𝛿 : 𝑋 × 𝑋 → R≥0, a 𝑘NN classifier is
modeled as a total function𝐶𝐷,𝑘,𝛿 : 𝑋 → ℘(𝐿), which maps an input sample x ∈ 𝑋 ⊆ R𝑛

into a nonempty set of labels, by first selecting the 𝑘 samples in 𝐷 that are closest to
x in terms of 𝛿 , and then computing the set of their most frequent labels. Since a tie
vote means to output a set including more than one label, we consider sets of labels as
co-domain of classifiers.

Algorithm 2.1 𝑘NN algorithm time complexity (for small 𝑘): 𝑂 (𝑛 · |𝐷 |)
1: 𝑀,𝑂 ← ∅
2: for all (y, 𝑙y) ∈ 𝐷 ⊲ Computation of distances from x

3: 𝑑y ← 𝛿 (x, y)
4: 𝑂.Append

(
(𝑑y, 𝑙y)

)
5: end for
6: Heapify(𝑂) ⊲ Turns 𝑂 into a heap structure in linear time
7: for all 𝑖 ∈ [1, 𝑘]
8: 𝑀 [𝑖] ← 𝑂.ExtRactMin() ⊲ Logarithmic time complexity
9: end for

10: return arg max
𝑙∈𝐿

∑
(y,𝑙y)∈𝑀 s.t. 𝑙=𝑙y 1 ⊲ Labels with the highest number of votes
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2.2.3 Adversarial Examples

Adversarial examples in machine learning are inputs to a model that are intentionally
designed to cause the algorithm make mistakes in its predictions, yet appearing to be
a legitimate inputs to a human. In this thesis, we will look at these kinds of inputs in
the context of 𝑘NN classifiers. Given a classifier 𝐶 : 𝑋 → ℘(𝐿), adversarial examples
can be formally defined as inputs x̄where the difference between x̄ and non-adversarial
inputs x is minimal under some distance metric 𝛿 : 𝑋 × 𝑋 → R≥0, but enough to make
𝐶 infer a different output. To obtain such an x̄, a perturbation 𝑃 is applied to x to cause
a variation in the feature values of x, defining a potential adversarial region 𝑃 (x) ⊆ 𝑋

in which x̄ belong. Generally, adversarial examples attempt to satisfy:

0 < 𝛿 (x, x̄) ≤ 𝜖 such that 𝐶 (x) ≠ 𝐶 (x̄)

where 𝜖 ∈ R is a (small) constant bounding the magnitude of the perturbation.
Resisting adversarial perturbations is a fundamental requirement for a good ML model,
and therefore the classifier is expected to keep its decision for minor feature variations.
In some cases, this is taken for granted, but unfortunately, it is not always true. If the
chosen distance function is too simple, 𝑘NN may significantly suffers when adversarial
perturbations are applied to vectors having limited precision features. Digital images,
for example, frequently use only 8 bits per pixel (with values from 0 to 255), discarding
all information below 1/255 of the dynamic range. Because of this, if we consider a
value 𝜏 > 0 strictly below such a threshold, it is unrealistic for the classifier to respond
differently to input x than to input x̄ = x + y if every element of y is less then or
equal to 𝜏 . However, if the distance between two vectors is computed, for example,
by summing the difference feature by feature, as happens using the Manhattan metric,
then 𝛿 (x, x̄) = 𝛿 (x, x + [𝑛𝜏, 0 . . . 0]) holds, which is not what we want: due to limited
precision, adding a value 𝑛𝜏 > 𝜏 to the first feature while leaving the others as they
are, or adding 𝜏 to all the 𝑛 features, have a completely different impact, but with this
distance metric they appear to have the same weight.

Whenwewill instantiate the generic perturbation to a specific one, wewill look at the
well-studied ℓ∞-perturbation [5], which affect uniformly all features, avoiding the above
problem: given an input vector x ∈ R𝑛 and a magnitude 𝜖 ≥ 0, the ℓ∞-perturbation is
defined by the adversarial region 𝑃𝜖∞(x) ≜ {w ∈ R𝑛 | max( |w1−x1 |, . . . , |w𝑛−x𝑛 |) ≤ 𝜖},
i.e., the ℓ∞-ball of radius 𝜖 centered in x.

11



2.2.4 Stability and Robustness

Classifiers are usually evaluated and compared through multiple metrics. A simple
and intuitive metric is accuracy on a test set: given a ground truth test dataset 𝑇 =

{(x1, 𝑙1), . . . , (x𝑁 , 𝑙𝑁 )} ⊆ 𝑋 × 𝐿, the accuracy of a classifier 𝐶 : 𝑋 → ℘(𝐿) on 𝑇 rep-
resents the proportion of samples with correct predictions out of the total number of
samples, and is defined by the ratio:

AccuRacy(𝐶,𝑇 ) ≜ |{(x, 𝑙x) ∈ 𝑇 | 𝐶 (x) = {𝑙x}||𝑇 | (2.1)

In adversarial scenarios, assessing a classification model solely on this standard met-
ric is far from adequate. Although accuracy is useful in assessing the model’s overall
performance, it does not highlight any safety concerns. We now define two relevant
properties in this context, which will be formally verified by our verification method.

Definition 2.1 (Stability). A classifier 𝐶 : 𝑋 → ℘(𝐿) is stable on an input x ∈ 𝑋 for a
given perturbation 𝑃 : 𝑋 → ℘(𝑋 ), denoted by Stable(𝐶, 𝑃, x), when

⋃
x̄∈𝑃 (x) 𝐶 (x̄) = {𝑙}

holds for some 𝑙 ∈ 𝐿.

Definition 2.2 (Robustness). A classifier 𝐶 : 𝑋 → ℘(𝐿) is robust on an input (x, 𝑙x) ∈
𝑋 × 𝐿 for a given perturbation 𝑃 : 𝑋 → ℘(𝑋 ), denoted by Robust(𝐶, 𝑃, x, 𝑙x), when
∀x̄ ∈ 𝑃 (x) . 𝐶 (x̄) = {𝑙x} holds.

Stability means that a classifier does not change its output on a region of similar
inputs, and it is orthogonal to accuracy in the sense that it does not require prior knowl-
edge of the ground truth labels. Robustness, on the other hand, requires the classifier to
be stable and correct, which means that it must output the same label that the input has
in the dataset to which it belongs. It should be noted that for null ℓ∞-perturbations, i.e.
with 𝜖 = 0, the definitions of accuracy and robustness coincide, leading us to conclude
that the latter property expresses accuracy in adversarial scenarios.
As we did in (2.1), we define the stability and robustness of𝐶 on some test set𝑇 ⊆ 𝑋 ×𝐿
by the ratios:

Stability(𝐶,𝑇 ) ≜ |{(x, 𝑙x) ∈ 𝑇 | Stable(𝐶, 𝑃, x)}||𝑇 |

Robustness(𝐶,𝑇 ) ≜ |{(x, 𝑙x) ∈ 𝑇 | Robust(𝐶, 𝑃, x, 𝑙x)}||𝑇 |

(2.2)
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It is worth remarking that if we have a tie vote using the 𝑘NN algorithm, |𝐶 (x) | > 1

always holds, and hence 𝐶 can be neither stable nor robust on x by definition.

2.2.5 Individual Fairness

When it comes to individual fairness of ML classifiers, as the name suggests, we want
to know if similar inputs will receive a similar class label. The similarity relation on the
input space 𝑋 is expressed in terms of a distance 𝛿 and a threshold 𝜖 > 0 by considering
𝑆𝛿,𝜖 ≜ {(x, y) ∈ 𝑋 ×𝑋 | 𝛿 (x, y) ≤ 𝜖}. According to Dwork’s work [11], a model is biased
(or unfair) if there is a pair of valid inputs that are close to each other for some distance
function 𝛿 , but are treated differently by the model, leading to a different outcome, and
it is instead unbiased (or fair) if such a pair does not exist. Consequently, given an input
x ∈ 𝑋 , we say that a classifier 𝐶 : 𝑋 → ℘(𝐿) is fair on x with respect to 𝑆𝛿,𝜖 when:

∀y ∈ 𝑋 . (x, y) ∈ 𝑆𝛿,𝜖 ⇒ 𝐶 (x) = 𝐶 (y).

In light of the foregoing, we now formally define the individual fairness property in
adversarial scenarios.

Definition 2.3 (Individual Fairness). Given an input x ∈ 𝑋 and perturbation 𝑃𝛿,𝜖 : 𝑋 →
℘(𝑋 ) such that 𝑃𝛿,𝜖 (x) ≜ {y ∈ 𝑋 | 𝛿 (x, y)} for some distance function 𝛿 , a classifier
𝐶 : 𝑋 → ℘(𝐿) is fair on (x, 𝑙x) with respect to 𝑃𝛿,𝜖 , denoted by FaiR(𝐶, 𝑃𝛿,𝜖, x), when
∀x̄ ∈ 𝑃𝛿,𝜖 (x). 𝐶 (x) = 𝐶 (x̄) holds.

By leveraging on Definition 2.3, we observe that individual fairness boils down to
stability, namely, for all inputs x, FaiR(𝐶, 𝑃𝛿,𝜖, x) ⇔ Stable(𝐶, 𝑃𝛿,𝜖, x) holds.
For the individual fairness metric on a given test set𝑇 ⊆ 𝑋 × 𝐿 we therefore have that:

FaiRness(𝐶,𝑇 ) ≜ |{(x, 𝑙x) ∈ 𝑇 | FaiR(𝐶, 𝑃𝛿,𝜖, x)}||𝑇 | (2.3)

In our experiments, we have considered the Noise-Cat similarity relation as defined
in [33], where two inputs x, y ∈ 𝑋 are similar when: (i) given a subset 𝑁 ⊆ N of indexes
of numerical features and a threshold 𝜖 ∈ R≥0, for all 𝑖 ∈ 𝑁 , |x𝑖 − y𝑖 | ≤ 𝜖 ; (ii) given a
subset 𝐶 ⊆ N of indexes of categorical features, both x and y are allowed to have any
category for features with indexes in 𝐶; (iii) every other feature of x and y, i.e. with
index not in 𝑁 nor 𝐶 , must be the same, namely, for any index 𝑖 ∉ 𝑁 ∪ 𝐶 , x𝑖 = y𝑖
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holds. For example, if we wanted to make a classification for statistical purposes, two
individuals having two numerical features age and height and two categorical features
gender and country, could be considered similar if their ages are both within the same
reference range (e.g. in the age group 25-30) regardless of their country, while having
the same gender and height.

2.3 Abstract Interpretation

In adversarial scenarios, to determine whether a classifier 𝐶 : 𝑋 → ℘(𝐿) is robust on
a feature vector (x, 𝑙x) ⊆ 𝑋 × 𝐿 for a certain perturbation 𝑃 : 𝑋 → ℘(𝑋 ), one should
verify that ∀x̄ ∈ 𝑃 (x). 𝐶 (x̄) = {𝑙x} holds, namely, all (possibly infinite) feature vectors
within the adversarial region drowned by 𝑃 (x) should be classified as x. Clearly this is
not feasible, and many people make the mistake of testing the classifier 𝐶 on a finite
subset 𝑅 ⊂ 𝑃 (x), asserting it robust if ∀x̄ ∈ 𝑅.𝐶 (x̄) = {𝑙x}, which is obviously incorrect.
We must therefore rely on an alternative strategy that does not limit itself to testing a
set of vectors in 𝑃 (x), but instead verifies the robustness (and stability) of the classifier
in a provable, safe, and fast manner.

The framework of abstract interpretation, where numerical properties can be studied
with different abstract domains, is a good candidate for solving this kind of problem. The
underlying concept in abstract interpretation is that of over-approximation: providing
an abstraction of a complex behavior with fewer details. Over-approximations are con-
servative in that they can be used to prove safety properties, e.g. “inferring robustness
in the abstraction” means “inferring robustness in the concrete version”. Each abstract
domain encodes a set of properties with a trade-off between precision and efficiency.
For instance, the domain of intervals captures the constant lower and upper bounds of
a variable, such as 0 ≤ 𝑧 ≤ 1, and provides operations like intersection or union that are
linear in terms of the number of variables. In this thesis, we will leverage the interval
domain to deigned the formal verification method, which turned out to be particularly
suitable for the task.

In order to better understand the notions of abstraction and abstract domain, a few
definitions will be provided in the sections that follow.
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2.3.1 Orders and Lattices

{𝑥,𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

{∅}

{𝑥,𝑦, 𝑧}

Figure 2.3: Hasse diagram of a partially‐ordered complete lattice of three‐element set subsets.

Definition 2.4 (Partially ordered set). A partially ordered set (also poset) is a nonempty
set 𝑆 together with a binary relation v denoting a partial order such that:

1. v is reflexive: ∀𝑎 ∈ 𝑆. 𝑎 v 𝑎;

2. v is transitive: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆. 𝑎 v 𝑏 ∧ 𝑏 v 𝑐 ⇒ 𝑎 v 𝑐;

3. v is antisymmetric: ∀𝑎,𝑏 ∈ 𝑆. 𝑎 v 𝑏 ∧ 𝑏 v 𝑎 ⇒ 𝑎 = 𝑏.

Figure 2.3 shows the graphical representation (Hasse diagram) of a finite poset of
three-element set subsets. Because it is possible for two elements to be incomparable,
like {𝑥,𝑦} and {𝑥, 𝑧} which lie in the same level, the ordering is not necessarily total,
that is, ∀𝑎, 𝑏 ∈ 𝑆. 𝑎 v 𝑏 ∨ 𝑏 v 𝑎 not always holds.

Definition 2.5 (Lattice). A lattice, denoted by 〈𝐿, v,t,u〉, is a partially ordered set 〈𝐿, v〉
such that ∀𝑎, 𝑏 ∈ 𝐿. ∃𝑎 t 𝑏 ∧ ∃𝑎 u 𝑏, namely, any pair of elements 𝑎, 𝑏 ∈ 𝐿 has a least
upper bound (or supremum) 𝑎 t 𝑏 and a greatest lower bound (or infimum) 𝑎 u 𝑏.

We remark that if 𝑎,𝑏, 𝑐 are elements of a lattice 〈𝐿, v,t,u〉, then 𝑎,𝑏, 𝑐 v (𝑎 t 𝑏) t 𝑐 ,
and if 𝑎, 𝑏, 𝑐 v 𝑧, then (𝑎 t𝑏), 𝑐 v 𝑧 so (𝑎 t𝑏) t 𝑐 v 𝑧. Hence, (𝑎 t𝑏) t 𝑐 is a least upper
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bound of 𝑎, 𝑏, 𝑐 . By induction one shows that any finite set of elements of a lattice has a
least upper bound. Similarly, any finite subset has a greatest lower bound.

Definition 2.6 (Complete Lattice). A complete lattice, denoted by 〈𝐿 v,⊥,>,t,u〉, is a
partially ordered set 〈𝐿, v〉 such that ∀𝑄 ⊆ 𝐿. ∃t𝑄 ∧∃u𝑄 , namely,𝑄 has a least upper
bound (or supremum) t𝑄 and a greatest lower bound (or infimum) u𝑄 . In particular, 𝐿
has a least element ⊥ = t∅ and a greatest element > = t𝐿.

By Definition 2.6, the poset of Figure 2.3 is also a complete lattice, where> = {𝑥,𝑦, 𝑧}
and ⊥ = ∅. An example of a lattice that is not a complete lattice is showed in Figure 2.4:
since 𝐿 = N, 〈𝐿, v〉 is an infinite totally ordered set having a least element ⊥ = 0, but
not a greatest element >, in contrast to the definition of complete lattice.

3

2

1

0

N

Figure 2.4: Hasse diagram of a lattice that is not a complete lattice.

2.3.2 Galois Connections

Definition 2.7 (Galois Connection). Given two posets 〈𝐶, ⊆〉 and 〈𝐴,v𝐴〉, a pair of maps

(𝛼𝐴, 𝛾𝐴) : (𝐶 → 𝐴) × (𝐴 → 𝐶) is a Galois connection, denoted by 〈𝐶, ⊆〉 −−−−→←−−−−
𝛼𝐴

𝛾𝐴

〈𝐴, v𝐴〉,
when:

∀𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶. 𝑐 ⊆ 𝛾𝐴 (𝑎) ⇔ 𝛼𝐴 (𝑐) v𝐴 𝑎 (2.4)

In abstract interpretation, 𝛼𝐴 : 𝐶 → 𝐴 and 𝛾𝐴 : 𝐴 → 𝐶 are known as the abstraction
map and the concretization map, respectively. If (𝛼,𝛾) is given for an abstraction𝐴 of𝐶 ,
since 𝑐 ⊆ 𝛾𝐴 (𝑎), or equivalently 𝛼𝐴 (𝑐) v𝐴 𝑎, then𝐴 is a sound abstraction of𝐶 , that is, it
correctly over-approximates its information. While the monotonic concretization map
𝛾𝐴 is enough to reason about soundness, the property (2.4) of Galois connections pro-
vides a stronger connection between the concrete and abstract worlds in a very compact
form, allowing us to design sound and accurate analyzes.
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2.3.3 Numerical Abstract Domains

According to the most general definition, a numerical abstract domain (or abstraction)
[23] is a partially ordered set 〈𝐴,v𝐴〉, very often a complete lattice, whose order relation
represents the notion of approximation between abstract values. 𝐴 is equipped with, at
least, a concretization map 𝛾𝐴 : 𝐴 → ℘(R𝑛) which defines the concrete set of vectors
represented by an abstract value while monotonically preserving the ordering relation,
namely, 𝑎1 v𝐴 𝑎2 ⇔ 𝛾𝐴 (𝑎1) ⊆ 𝛾𝐴 (𝑎2) holds. Several numerical domains, including
intervals and octagons, are also equipped with an abstraction map 𝛼𝐴 : ℘(R𝑛) → 𝐴,
thus admitting a definition via Galois connections, whereas others, notably zonotopes
and convex polyhedra, do not have an abstraction map. We say that a subset of vectors
𝑆 ∈ ℘(R𝑛) is over-approximated by 𝑎 ∈ 𝐴 when 𝑆 ⊆ 𝛾 (𝑎), while 𝑆 is exactly represented
by 𝑎 when 𝑆 = 𝛾𝐴 (𝑎) holds. The main idea behind this approach is that an abstract
domain serves as symbolic representation of a concrete domain, in our case the powerset
of vectors in R𝑛 . Given a concrete 𝑘-ary operation on vectors 𝑓 : (R𝑛)𝑘 → R𝑛 , for some
𝑘 ∈ N, an abstract function 𝑓 𝐴 : 𝐴𝑘 → 𝐴 is called sound (or correct) approximation of 𝑓
when for all (𝑎1, ..., 𝑎𝑘) ∈ 𝐴𝑘 , {𝑓 (x1, ..., x𝑘) | ∀𝑖 . x𝑖 ∈ 𝛾𝐴 (𝑎𝑖)} ⊆ 𝛾𝐴 (𝑓 𝐴 (𝑎1, ..., 𝑎𝑘)) holds,
while 𝑓 𝐴 is defined to be complete (or exact) when equality holds. Put simply, this means
that soundness holds when 𝑓 𝐴 (𝑎1, ..., 𝑎𝑘) takes into account all concrete computations
of 𝑓 on some input (x1, ..., x𝑘), abstractly represented by (𝑎1, ..., 𝑎𝑘), while completeness
implies that each abstract computation 𝑓 𝐴 (𝑎1, ..., 𝑎𝑘) is an exact abstract representation
of the set of concrete computations of 𝑓 on all the concrete inputs abstractly represented
by (𝑎1, ..., 𝑎𝑘).

The abstractions of the concrete domain fall into two major categories, depending
on whether or not the relationships between variables are taken into account when ab-
stracting each variable: if they are considered, we talk about relational domains; other-
wise we refer to non-relational domains. The latter are clearly the simplest and include
sign, constant, interval and congruence domains. Well-known examples of relational
abstract domains are instead zonotopes, octagons, octahedra and polyhedra [23].

As previously anticipated, in this thesis we will consider the abstract domain of real
intervals, which is one of the most popular non-relational domains. In the end, however,
some considerations will be made for future improvements obtainable by exploiting a
relational abstract domain.
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2.3.4 The Interval Domain

Introduced for numeric analysis by Moore in 1966 [25], the interval domain is based on
the homonymous arithmetic and it is currently the most used (non-relational) abstract
domain. In this domain, a set of real values are (over-)approximated by the least single,
possibly unbounded, real interval enclosing them. Formally, it represents a complete
lattice:

I ≜ {[𝑙, 𝑢] | 𝑙 ∈ R ∪ {−∞}, 𝑢 ∈ R ∪ {+∞}, 𝑙 ≤ 𝑢} ∪ {⊥I}

where the top element>I = [−∞, +∞] = R is implicitly defined, and the bottom element
⊥I coincides with the empty interval, for which the operators vI,tI,uI are defined as
follows:

[𝑙1, 𝑢1] vI [𝑙2, 𝑢2] ≜ 𝑙1 ≥ 𝑙2 ∧ 𝑢1 ≤ 𝑢2

[𝑙1, 𝑢1] tI [𝑙2, 𝑢2] ≜ [min(𝑙1, 𝑙2),max(𝑢1, 𝑢2)]

[𝑙1, 𝑢1] uI [𝑙2, 𝑢2] ≜

[max(𝑙1, 𝑙2),min(𝑢1, 𝑢2)] if max(𝑙1, 𝑙2) ≤ min(𝑢1, 𝑢2)
⊥I otherwise

The monotone concretization map 𝛾 I : I→ ℘(R) is standard:

𝛾 I(⊥I) ≜ ∅
𝛾 I([𝑙, 𝑢]) ≜ {𝑧 ∈ R | 𝑙 ≤ 𝑧 ≤ 𝑢}

𝛾 I( [−∞, 𝑢]) ≜ {𝑧 ∈ R | 𝑧 ≤ 𝑢}
𝛾 I([𝑙, +∞]) ≜ {𝑧 ∈ R | 𝑧 ≥ 𝑙}

𝛾 I(>I) ≜ R

Intervals are also endowed with an abstraction map 𝛼 I : ℘(R) → I providing the best
correct approximation [7]. Its definition is:

𝛼 I(𝑋 ) ≜

[inf 𝑋, sup 𝑋 ] if 𝑋 ≠ ∅
⊥I otherwise

Although 𝛼 I is not always define in Q ⊂ R because the minimum and maximum may
not exist, e.g. {𝑧 ∈ Q | 𝑧 ≤

√
2} has no maximum in Q, we slightly abuse the notation
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𝛼 I to indicate the best computer-representable abstraction, hence inf 𝑋 and sup 𝑋 will
be the closest computer-representable real values less than or equal to inf𝑋 and greater
than or equal to sup 𝑋 , respectively. Thus, (𝛼 I, 𝛾 I) : (℘(R) → I) × (I → ℘(R)) defines
a Galois connection between the concrete domain 〈℘(R), ⊆〉 and the abstract domain
〈I, vI〉.

This lattice is very intuitive and easy to deal with, but it has some severe drawbacks
that we will discuss in greater detail later in the thesis. For example, the set {0, 1} ⊂ R
with cardinality |{0, 1}| = 2, will be approximated through𝛼 I as [0, 1], which concretized
is a much larger set 𝛾 I( [0, 1]) = {𝑧 ∈ R | 0 ≤ 𝑧 ≤ 1} with the same cardinality as R,
resulting in an immense over-approximation.
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3
Related Works

Abstract interpretation-based techniques have been successfully applied for designing
precise and scalable robustness verification algorithms as well as adversarial training
techniques for a wide range of ML models [27, 4, 15, 24, 26, 28, 29, 30, 35, 36, 37, 42]. To
the best of our knowledge, no prior work has ever used abstract interpretation to the
formal verification of 𝑘-nearest neighbors.

Formal verification methods in adversarial machine learning have been extensively
researched for (deep) neural networks, whereas different major ML models, particularly
non-parametric ones, have received far less attention. Specifically, adversarial exam-
ples on 𝑘-nearest neighbor algorithms have been studied only recently using various
methodologies based on solving some minimization problems [45, 44, 46, 39, 41, 38].
The most relevant related work is [38], in which the authors propose a higher-order
Voronoi diagram-based algorithm, called GeoAdEx, that aims to find the smallest pertur-
bation that moves an input feature vector (x, 𝑙x) ∈ 𝑋 × 𝐿 in an adversarial cell, that is,
an order-𝑘 Voronoi cell with a different majority label than 𝑙x. GeoAdEx has been able
to infer the smallest (up to 25% smaller than the second best result) adversarial distance
compared to the baseline in most experiments. Although our goal is to verify rather
than compute adversarial examples, an analyzer that outputs the shortest distance to
an adversarial example can be transformed into a complete verifier, if the optimality is
guaranteed, or into a sound verifier otherwise, as described in Section 5.4. Obviously,
finding the optimal perturbation or a certified lower bound may often need a very long
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time, owing to a combinatorial time complexity, and therefore the resulting verifier will
probably be extremely inefficent but, for our case, having comparable results regardless
of the total execution time is more than enough.

This chapter will provide a brief overview of the aforementioned stream of works
finding adversarial examples on 𝑘NNs, up to GeoAdEx with which our experimental
results have been carefully compared to.

3.1 QP-based Attack

In 2019, Wang et al. [44] studied the problem of evaluating the robustness of 𝑘-nearest
neighbor classifiers, focusing more on 1NNs. They showed that finding the minimum
adversarial perturbation can be formulated as a set of convex quadratic programming
(QP) problems, with an exact solution in polynomial time for 1NNs. When applied to
general 𝑘NN models, however, the number of constraints in the QP formulation grows
exponentially with 𝑘 , becoming quickly infeasible, and hence NP-hard. As a result, for
𝑘 > 1, their method finds valid lower and upper bounds of the minimum adversarial
perturbation. Given a classifier 𝐶 : 𝑋 → 𝐿 and an input sample (x, 𝑙) ∈ 𝑋 × 𝐿, an
adversarial perturbation is defined as d ∈ R𝑛 s.t. 𝐶 (x + d) ≠ 𝑙 , and is the minimum if
∀d′ ∈ R𝑛 . ‖d′‖2 < ‖d‖2 ⇒ 𝐶 (x + d′) = 𝑙 . For instance, let 𝐿 = {𝐴, 𝐵}, (x, 𝐴) ∈ 𝑋 × 𝐿 and
𝑘 = 1, the problem of finding the minimum perturbation such that x+d is closer to some
xj labeled with 𝑙 𝑗 = 𝐵 than to all class-𝐴 samples, can be formulated as the quadratic
primal problem:

𝜖 ( 𝑗) ≜ arg min
d

1
2
d𝑇d s.t. ‖x + d − xj‖22 ≤ ‖x + d − xi‖22, ∀𝑖, 𝑙𝑖 = 𝐴

Although it is simple to solve, by scaling to 𝑘 = 3 it become necessary to list all the
possible combinations of {( 𝑗1, 𝑗2, 𝑗3) | 𝑙 𝑗1 = 𝑙 𝑗2 = 𝐵, 𝑙 𝑗3 = 𝐴} and then solve the QP primal
problem to force x+d to be closer to xj1, xj2 than to all class-𝐴 samples except xj3 , hence:

𝜖 ( 𝑗1, 𝑗2, 𝑗3) ≜ arg min
d

1
2
d𝑇d s.t. ‖x + d − xj‖22 ≤ ‖x + d − xi‖22, ∀𝑖, 𝑖 ≠ 𝑗3, 𝑙𝑖 = 𝐴, 𝑗 ∈ { 𝑗1, 𝑗2}

Thus, it is more expensive to solve. For general 𝑘 > 1, the QP formulation will have
𝑂 (𝑛𝑘) constraints, but due to the sparsity of solutions, greedy coordinate ascent can
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still solve a subproblem efficiently, computing both an upper and a lower bound, corre-
sponding to attack and verification.

3.2 Region-based Attack

Back in 2020, Yang et al. [46] investigated adversarial examples for the most popular
non-parametric classifiers, including 𝑘-nearest neighbors, decision trees and random
forests. They devised a general attack technique, known as region-based attack, designed
to work well for multiple non-parametrics. Since the difficulty in finding adversarial
examples stems from the fact that these classifiers have complicated decision regions,
the main idea behind this attack is to decompose the decision regions of many classifiers,
such as 𝑘NN or random forest, into convex sets. Precisely, they leverage the concept
of (𝑠,𝑚)-decomposition, that is, a partition of R𝑛 into convex polyhedra 𝑃1, . . . , 𝑃𝑠 such
that each 𝑃𝑖 can be described by up to𝑚 linear constraints, to state a classifier𝐶 : 𝑋 → 𝐿

(𝑠,𝑚)-decomposable when there is an (𝑠,𝑚)-decomposition such that 𝐶 is constant on
𝑃𝑖 for each 𝑖 ∈ [1, . . . , 𝑠]. In this way, given such a classifier with a decomposition
𝑃1, . . . , 𝑃𝑠 , where 𝐶 (y) = 𝑙𝑖 when y ∈ 𝑃𝑖 for labels 𝑙𝑖 ∈ 𝐿, to find an adversarial example
for an input sample x ∈ 𝑋 it is sufficient to output x̄ minimizing:

min
𝑖 : 𝐶 (x)≠𝑙𝑖

min
z∈𝑃𝑖
‖x − z‖𝑝∈{1,2,∞}

Thus, solving the inner minimization problem results in candidates z𝑖 ∈ 𝑃𝑖 . Taking then
the outer minimum over 𝑖 with 𝐶 (x) ≠ 𝑙𝑖 leads to the optimal adversarial example:

x̄ ≜ arg min
z𝑖

‖x − z𝑖 ‖𝑝∈{1,2,∞}

The exact attack algorithm’s performance is determined by two factors: (i) the number
of regions, which is determined by the complexity of the classifier, and (ii) the number
of constraints and dimensionality of the polyhedra. For 𝑘NN classifiers the number of
convex polyhedra scales with 𝑂 (𝑛𝑘): when 𝑘 = 1, this is efficiently solvable, because
polyhedra have at most 𝑛 constraints and the adversarial examples can be found quickly
using a linear program for ℓ∞-perturbations. Unfortunately, for 𝑘 > 1, region-based
attacks do not scale well, and an approximation algorithm for larger values of 𝑘 is also
discussed.
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3.3 Gradient-based Attack

Inspired by their previous work [40] on the robustness of deep 𝑘NNs, in 2020 Sitawarin
and Wagner [41] proposed a new state-of-the-art attack, called gradient-based attack,
to evaluate the robustness of 𝑘NN classifiers. Their method also outperforms Yang
et al [46] in that when 𝑘 > 1, an adversarial example with a smaller perturbation
is found in less than 1% of the running time. Moreover, increasing the value of 𝑘
only slightly increases the algorithm’s running time. In order to find the minimum
d∗ ∈ R𝑛 s.t. x̄ ≜ x + d∗ is an adversarial example classified differently than x ∈ 𝑋 , the
following minimization problem is solved:

d∗ ≜ arg min
d

𝑚∑
𝑖=1

max
{
𝑤𝑖

(
‖xī − (x + d)‖22 − 𝜂2

)
+ Δ, 0

}
where𝑚 denote the mean of examples with different class closest to x in ℓ2-norm,𝑤𝑖 = 1

if xī is adversarial, otherwise𝑤𝑖 = −1, and 𝜂 is the distance to the 𝑘-th nearest neighbor.
The changes compared to the original version are in using the rectifier max(𝑧 ∈ R, 0)
instead of sigmoid, which avoids the need to deal with overflow and underflow issues
caused by the exponential in distance computation, and the introduction of a small gap
Δ to ensures that xī is a bit closer to the guide samples from the incorrect class than
the ones from the correct class. Unfortunately gradient-based approaches generally do
not work well for finding minimum ℓ∞-norm adversarial examples, therefore only ℓ2-
norm is considered. Furthermore, this method does not guarantee the optimality of the
solution, not even for 𝑘 = 1.

3.4 Geometric-based Attack

GeoAdEx [38], which stands for geometric adversarial example, is the product of the
most recent work finding adversarial examples on 𝑘NNs. This novel tool was proposed
by Sitawarin et al. back in 2021, and is the first using geometric approach to perform a
search that expands outwards from the given input sample. The main idea of GeoAdEx
is to perform a principled geometric exploration around the test sample by processing
order-𝑘 Voronoi cells à la breadth-first search until it discovers an adversarial cell. For-
mally, the goal of this algorithm is to find the smallest perturbation d∗ ∈ R𝑛 that moves
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a test point (x, 𝑙x) ∈ 𝑋 × 𝐿 to an adversarial cell, that is, an order-𝑘 Voronoi cell that
has different majority than label 𝑙x. Such objective can be expressed as the following
optimization problem:

d∗ ≜ argmin
d

‖𝛿 ‖22 s.t. x + d ∈ 𝐴(𝑥)

where 𝐴(𝑥) is the set of all adversarial cells with respect to (x, 𝑙x) and ℓ2-norm. The
above constraint implies that x+dmust be a member of an adversarial cell from𝐴(𝑥). A
simple approach to solve this minimization is to build a series of optimization problems,
one for each of the cells in 𝐴(𝑥), and pick the solution with the minimum adversarial
distance. Unfortunately, this would require solving𝑂

( (𝑛
𝑘

) )
QP problems, each of which

has 𝑘 (𝑛 − 𝑘) constraints. While this complexity may be manageable when 𝑘 = 1 and
𝑛 is small, as it was in the other works, it does not scale well with 𝑘 becoming quickly
unusable. To deal with 𝑘 > 1, the authors of this tool have added an approximated
version of the algorithm which consists in bounding the number of neighboring cells
taken into account according to a fast heuristic. However, the main drawback of this
approach is that the approximation may affect the optimality, which is therefore no
longer guaranteed. Overall this geometric-based attack finds an adversarial distance
that is closer to the optimal than the baselines, but its main limitation is the excessively
long runtime of the non-approximated version.
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4
Abstract Verification Framework

This chapter will describe our main contribution, that is, a novel formal verification
method for inferring when a 𝑘NN classifier is provably robust and/or stable for an input
sample with respect to a given perturbation. Following the stream of works applying
abstract interpretation for verifying ML models, we design a sound abstract version
𝐶𝐴
𝐷,𝑘,𝛿𝐴

of a 𝑘NN classifier 𝐶𝐷,𝑘,𝛿 based on a ground truth dataset 𝐷 of examples, and a
distance function 𝛿 quantifying in R the proximity between two samples. The resulting
over-approximate classifier 𝐶𝐴

𝐷,𝑘,𝛿𝐴
is domain agnostic and thus defined on a numerical

abstract domain𝐴 that can be instantiate to any abstract domain capable of representing
input space properties, i.e., sets of vectors in ℘(R𝑛).

In this thesis, it has been instantiate to the numerical abstract domain of intervals,
which represents exactly the perturbations based on Minkowski distance. Furthermore,
𝐶𝐴
𝐷,𝑘,𝛿𝐴

leverages a sound abstract approximation 𝛿𝐴 : 𝐴×𝐴→ 𝐴 of the distance function
𝛿 , which in turn relies on correct abstract approximations of basic numerical operations
such as addition, subtraction, modulus and exponential.

Definition 4.1 (Sound Abstract Classifier). Given a numerical abstract domain 𝐴 and a
classifier 𝐶 : 𝑋 → ℘(𝐿), an abstract classifier 𝐶𝐴 : 𝐴→ ℘(𝐿) is a sound abstraction of 𝐶
on 𝐴 when ∀𝑎 ∈ 𝐴,

⋃
x∈𝛾𝐴 (𝑎) 𝐶 (x) ⊆ 𝐶𝐴 (𝑎) holds, that is, the abstract classifier 𝐶𝐴 (𝑎)

over-approximates all the output labels of 𝐶 on inputs abstractly represented by 𝑎.
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Definition 4.2 (Complete Abstract Classifier). Given a numerical abstract domain 𝐴

and a classifier𝐶 : 𝑋 → ℘(𝐿), an abstract classifier𝐶𝐴 : 𝐴→ ℘(𝐿) is a complete abstrac-
tion of𝐶 on 𝐴 when ∀𝑎 ∈ 𝐴,

⋃
x∈𝛾𝐴 (𝑎) 𝐶 (x) = 𝐶𝐴 (𝑎) holds, that is, the abstract classifier

𝐶𝐴 (𝑎) produces all and only the output labels of 𝐶 on inputs abstractly represented by
𝑎.

Given an abstract value 𝑎 ∈ 𝐴 which provides a sound symbolic approximation of an
adversarial region drown by a perturbation 𝑃 : 𝑋 → ℘(𝑋 ) applied on an input sample
(x, 𝑙x) ∈ 𝑋 × 𝐿,𝐶𝐴

𝐷,𝑘,𝛿𝐴
(𝑎) returns an over-approximation (superset) of the set of classes

computed by 𝐶𝐷,𝑘,𝛿 for all the samples in 𝑃 (x).

Theorem 4.1 (Abstract Stability Verification). Let𝐶𝐴 : 𝐴→ ℘(𝐿) be a sound abstraction
of 𝐶 : 𝑋 → ℘(𝐿) and assume that an adversarial region 𝑃 (x) ⊆ 𝑋 , corresponding to some
perturbation of a feature vector x ∈ 𝑋 , is over-approximated by some 𝑎 ∈ 𝐴. If |𝐶𝐴 (𝑎) | = 1

then Stable(𝐶, 𝑃, x).

Proof. By hypothesis, there exists a label 𝑙 ∈ 𝐿 such that𝐶𝐴 (𝑎) = {𝑙}. By the soundness
hypothesis of 𝐶𝐴, we have that

⋃
x∈𝛾𝐴 (𝑎) 𝐶 (x) ⊆ 𝐶𝐴 (𝑎) = {𝑙}. Since, for all x, 𝐶 (x) ≠ ∅,

we have that for all x ∈ 𝛾𝐴 (𝑎),𝐶 (x) = {𝑙}. Since 𝑃 (x) is over-approximated by 𝑎, 𝑃 (x) ⊆
𝛾𝐴 (𝑎) holds, and we obtain that for all x̄ ∈ 𝑃 (x), 𝐶 (x̄) = {𝑙}, namely, Stable(𝐶, 𝑃, x)
holds. □

Theorem 4.2 (Abstract Robustness Verification). Let𝐶𝐴 : 𝐴→ ℘(𝐿) be a sound abstrac-
tion of 𝐶 : 𝑋 → ℘(𝐿) and assume that an adversarial region 𝑃 (x) ⊆ 𝑋 , corresponding to
some perturbation of a sample (x, 𝑙x) ∈ 𝑋 × 𝐿, is over-approximated by some 𝑎 ∈ 𝐴. If
𝐶𝐴 (𝑎) = {𝑙x} then Robust(𝐶, 𝑃, x, 𝑙x).

Proof. By the soundness hypothesis of 𝐶𝐴, we have that
⋃

x∈𝛾𝐴 (𝑎) 𝐶 (x) ⊆ 𝐶𝐴 (𝑎) = {𝑙x}.
Since, for all x, 𝐶 (x) ≠ ∅, we have that for all x ∈ 𝛾𝐴 (𝑎), 𝐶 (x) = {𝑙x}. Since 𝑃 (x)
is over-approximated by 𝑎, 𝑃 (x) ⊆ 𝛾𝐴 (𝑎) holds, and we obtain that for all x̄ ∈ 𝑃 (x),
𝐶 (x̄) = {𝑙x}, namely, Stable(𝐶, 𝑃, x, 𝑙x) holds. □

Thus, by Theorems 4.1 and 4.2, if |𝐶𝐴
𝐷,𝑘,𝛿𝐴

(𝑎) | = 1 then we can safely infer that 𝐶𝐷,𝑘,𝛿

is stable on the sample (x, 𝑙x) for the perturbation 𝑃 , while 𝐶𝐷,𝑘,𝛿 is also robust for the
same if 𝐶𝐴

𝐷,𝑘,𝛿𝐴
(𝑎) = {𝑙x} holds. It is worth observing that Robust(𝐶𝐷,𝑘,𝛿 , 𝑃, x, 𝑙x) ⇒
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Stable(𝐶𝐷,𝑘,𝛿 , 𝑃, x), but Stable(𝐶𝐷,𝑘,𝛿 , 𝑃, x) ⇏ Robust(𝐶𝐷,𝑘,𝛿 , 𝑃, x, 𝑙x). Our abstract
interpretation-based method does not satisfy Definition 4.2, therefore the converse of
Theorems 4.1 and 4.2, in general, does not hold, meaning that this verification method
is incomplete.

4.1 Abstract Distance

The 𝑘NN algorithm fully relies on a distance function 𝛿 : R𝑛 × R𝑛 → R≥0 to determine
the 𝑘 closest feature vectors to a given input sample. Although 𝑘NN is parametric on
𝛿 , hence can be freely chosen, Minkowski distance is the most common choice: given
𝑝 ∈ N, 𝛿𝑝 (x, y) ≜ 𝑝

√∑𝑛
𝑖=1 |x𝑖 − y𝑖 |𝑝 . In particular, we just consider the twomost common

instances:

𝑝 = 1, Manhattan distance: 𝜇 (x, y) ≜ ∑𝑛
𝑖=1 |x𝑖 − y𝑖 |

𝑝 = 2, Euclidean distance: 𝜂 (x, y) ≜
√∑𝑛

𝑖=1(x𝑖 − y𝑖)2

Because 𝑘NN only uses distances for relative comparisons, we can safely remove the
𝑝-th root to simplify the computations and, more importantly, to reduce the verifier’s
overall complexity. As a result, a numerical abstract domain must provide complete,
or at least sound, abstractions of the operations used to compute distances, i.e., addi-
tion, subtraction, absolute value, and exponential, as well as a comparison test between
distances. The most precise abstractions of these numerical operations on the interval
domain I are well-known in literature [23]. They are:

addition: [𝑙1, 𝑢1] +I [𝑙2, 𝑢2] ≜ [𝑙1 + 𝑙2, 𝑢1 + 𝑢2]

subtraction: [𝑙1, 𝑢1] −I [𝑙2, 𝑢2] ≜ [𝑙1 − 𝑢2, 𝑢1 − 𝑙2]

multiplication: [𝑙1, 𝑢1] ·I [𝑙2, 𝑢2] ≜ [min(𝑙1𝑙2, 𝑙1𝑢2, 𝑢1𝑙2, 𝑢1𝑢2),max(𝑙1𝑙2, 𝑙1𝑢2, 𝑢1𝑙2, 𝑢1𝑢2)]

modulus: | [𝑙, 𝑢] |I ≜

[min(|𝑙 |, |𝑢 |),max( |𝑙 |, |𝑢 |)] if 𝑙𝑢 ≥ 0

[0,max( |𝑙 |, |𝑢 |)] otherwise

exponential: [𝑙, 𝑢]𝑝I ≜

[𝑙𝑝, 𝑢𝑝] if 𝑝 odd or 𝑙 ≥ 0
𝑝∏
1

I [𝑙, 𝑢] uI [0, +∞] otherwise

with meet: [𝑙1, 𝑢1] uI [𝑙2, 𝑢2] ≜ [max(𝑙1, 𝑙2),min(𝑢1, 𝑢2)]
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To compare two abstract distances obtained with the aforementioned arithmetic op-
erators, we introduce the notions of dominance and strict dominance for the interval
abstract domain.

Definition 4.3 (Interval Dominance). Given two intervals [𝑙1, 𝑢1] and [𝑙2, 𝑢2], we say
that:

• [𝑙1, 𝑢1] is dominated by [𝑙2, 𝑢2], denoted by [𝑙1, 𝑢1] ≤I [𝑙2, 𝑢2], when 𝑢1 ≤ 𝑙2;

• [𝑙1, 𝑢1] is strictly dominated by [𝑙2, 𝑢2], denoted by [𝑙1, 𝑢1] <I [𝑙2, 𝑢2], when𝑢1 < 𝑙2.

We remark that the order relation ≤I is the so-called interval order [13], and does
not coincide with the partial order vI of the domain’s lattice. Figure 4.1 graphically
highlights the difference.

1 6 7 10

[1, 6] ≤I [7, 10]

1 3 7 10

[3, 7] vI [1, 10]

Figure 4.1: The order relation ≤I holds only in the left picture, while the partial order vI holds
only in the right picture.

Moreover, numerical operators can also be defined for the hyperrectangle product do-
main I𝑛 simply by independently applying those for the interval domain component-
wise. Such an abstract Minkowski distance computation (without the 𝑝-th root 𝑝

√·) on
the hyperrectangle abstraction I𝑛 does not lose precision and is thus complete.

Theorem 4.3 (Completeness of Interval Minkowski Distance). The abstract computa-
tion for Minkowski distance over hyperrectangles is complete, namely, for all a, b ∈ I𝑛 :⋃

x∈𝛾 I𝑛 (𝑎),y∈𝛾 I𝑛 (𝑏)
{𝛿𝑝 (x, y)}I = 𝛿 I𝑝 (a, b) ≜ ( |a1−I b1 |I)

𝑝I+I · · · +I ( |a𝑛−I b𝑛 |I)
𝑝I
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Proof. Since the composition of locally complete abstract functions preserves their com-
pleteness, it is enough to show that all the abstract operations involved in the distance
computation are. In fact, if 𝐴 is a numerical abstraction of ℘(R𝑛) and 𝑓 𝐴 : 𝐴𝑖 → 𝐴 𝑗 and
𝑔𝐴 : 𝐴 𝑗 → 𝐴𝑘 are two abstract functions that are complete with respect to, respectively,
𝑓 : ℘(R𝑛)𝑖 → ℘(R𝑛) 𝑗 and 𝑔 : ℘(R𝑛) 𝑗 → ℘(R𝑛)𝑘 then 𝑔𝐴 ◦ 𝑓 𝐴 : 𝐴𝑖 → 𝐴𝑘 is complete for
𝑔◦ 𝑓 : ℘(R𝑛)𝑖 → ℘(R𝑛)𝑘 because 𝛾𝐴 ◦𝑔𝐴 ◦ 𝑓 𝐴 = 𝑔◦𝛾𝐴 ◦ 𝑓 𝐴 = 𝑔◦ 𝑓 ◦𝛾𝐴. We observe that if
[𝑙1, 𝑢1] and [𝑙2, 𝑢2] are intervals inR, then so isℎ( [𝑙1, 𝑢1], [𝑙1, 𝑢1]) providedℎ : I×I→ I is
continuous on a domain containing [𝑙1, 𝑢1] × [𝑙2, 𝑢2]. This last point stems from some of
the general properties of continuous functions, namely, that continuous functions map
connected sets into connected sets, and map compact sets into compact sets, and since
the compact sets of R are just the closed and bounded subsets, then ℎ does too. Because
addition, subtraction, multiplication, modulus, and exponential are continuous in both
arguments, we conclude that those operation are complete. Hence, we have shown that
the definition of the interval Minkowski distance 𝛿 I𝑝 (a, b) is a composition of complete
abstract operations, so that 𝛿 I𝑝 turns out to be complete. □

Although completeness of the distance function improves precision, it is insufficient
to achieve completeness of the abstract classifier. The following example shows an ab-
stract 𝑘NN classifier on hyperrectangles which is incomplete.

Example 4.1 (Incompleteness of Interval Abstract Classifier). Let us consider a ground
truth dataset 𝐷 = {(v, 𝑙1), (w, 𝑙2)}, where v = (0, 0),w = (2.1, 0) ∈ R2, and its cor-
responding 1NN classifier 𝐶𝐷,𝜂,1 for the Euclidean distance 𝜂. Consider an adversarial
region 𝑅 = {x ∈ R2 | 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}. The Euclidean distances of a generic
vector x from v and w are as follows:

𝜂 (x, v) =
√
(x1 − v1)2 + (x2 − v2)2 =

√
x21 + x22

𝜂 (x,w) =
√
(x1 − 2.1)2 + x22 =

√
x21 − 4.2x1 + 4.41 + x22

The comparison between 𝜂 (x, v) and 𝜂 (x,w) is therefore as follows:

𝜂 (x, v) < 𝜂 (x,w) ⇔
√
x21 + x22 <

√
x21 − 4.2x1 + 4.41 + x22

⇔ 0 < −4.2x1 + 4.41⇔ x1 < 4.41/4.2 = 1.05

which holds for every adversarial sample in 𝑅, where x1 < 1.05. Hence, v is always the
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closest neighbor, and every sample in 𝑅 is classified by 𝐶𝐷,𝜂,1 as 𝑙1, so robustness holds.
When performing the abstract verification on the interval abstraction I, where 𝑅 is ex-
actly represented by 𝑎 = 〈[0, 1], [−1, 1]〉 ∈ I2, and the two vectors v,w are represented,
respectively., by vI = 〈[0, 0], [0, 0]〉 and wI = 〈[2.1, 2.1], [0, 0]〉, the abstract Euclidean
distances, without square roots, turns out to be:

𝜂2
I (𝑎, vI) = ( | [0, 1] −I [0, 0] |I)2I +I ( | [−1, 1] −I [0, 0] |I)2I

= ( | [0, 1] |I)2I +I (| [−1, 1] |I)2I

= [0, 1]2I +I [0, 1]2I = [0, 1] +I [0, 1] = [0, 2]

𝜂2
I (𝑎,wI) = ( | [0, 1] −I [2.1, 2.1] |I)2I +I (| [−1, 1] −I [0, 0] |I)2I

= ( | [−2.1,−1.1] |I)2I +I ( | [−1, 1] |I)2I

= [1.1, 2.1]2I +I [0, 1]2I = [1.21, 4.41] +I [0, 1] = [1.21, 5.41]

Hence, these abstract distances do not allow us to infer the closest vector because neither
𝜂2
I (𝑎, vI) <I 𝜂2I (𝑎,wI) nor 𝜂2I (𝑎,wI) <I 𝜂2I (𝑎, vI) hold. This lack of precision is rooted

in non-relational domains, as they are unable to represent any relationship between
variables and therefore, at the end of the computation, we lose sight of the fact that, in
this example, proximity is solely determined by x1. □

4.2 Formal Verification Method

In this section, we will go over our formal verification method based on abstract inter-
pretation in detail. The algorithm steps will be divided into subsections, each with its
own pseudocode. Finally, the pseudocode of the whole abstract verifier as well as the
proof of soundness will be provided.

Let𝐴 be a numerical abstract domain supporting the aforementioned basic operations
and having, at the very least, a concretizationmap𝛾𝐴 : 𝐴→ ℘(R). Then, given a ground
truth dataset𝐷 = {(x1, 𝑙1), ..., (x𝑁 , 𝑙𝑁 )} ⊆ 𝑋×𝐿, a number of neighbors𝑘 ∈ N∗ ≜ N∖{0},
and an abstract distance function 𝛿𝐴 : 𝐴 × 𝐴 → 𝐴, the sound abstract version of the
𝑘NN classifier that we will describe is modeled as the total function𝐶𝐴

𝐷,𝑘,𝛿𝐴
: 𝐴→ ℘(𝐿),

mapping an abstract value 𝑎 ∈ 𝐴 into a nonempty set of labels.
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4.2.1 Computation of Abstract Distances

Algorithm 4.1 Computation of abstract distances time complexity: 𝑂 (𝑛 · |𝐷 |)
1: 𝑀,𝑂 ← ∅
2: for all (y, 𝑙y) ∈ 𝐷
3: y𝐴 ← 𝛼 (y)
4: 𝑑y ← 𝛿 (𝑎, y𝐴)
5: 𝑂 ← 𝑂.Append

(
(𝑑y, 𝑙y)

)
6: end for
7: Heapify(𝑂)

Let (x, 𝑙x) ∈ 𝑋 × 𝐿 and 𝑃 : 𝑋 → ℘(𝑋 ) be, respectively, the input sample and an adver-
sarial perturbation. First, we need a sound abstraction 𝑎 ∈ 𝐴 for 𝑃 (x), and an abstract
representation y𝐴 ∈ 𝐴 for every y occurring in the dataset as (y, 𝑙y) ∈ 𝐷 . For abstract
domains endowed with an abstraction map 𝛼𝐴 : ℘(R𝑛) → 𝐴, this preliminary stage is
trivial, and it is enough to use it for both 𝑃 (x) and y. If a best-correct approximation
for 𝐴 does not exist, any function providing a sound over-approximation can be used.

We proceed by computing the abstract distances𝑑y = 𝛿𝐴 (𝑎,𝑦𝐴) ∈ 𝐴 for every (y, 𝑙y) ∈
𝐷 , and consider the pairs (𝑑y, 𝑙y) ∈ 𝐴 × 𝐿 to which we extend the ordering relation <𝐴

by disregarding labels: we say that (𝑑v, 𝑙v) <𝐴×𝐿 (𝑑w, 𝑙w) if and only if 𝑑v <𝐴 𝑑w, and
similarly, (𝑑v, 𝑙v) ≤𝐴×𝐿 (𝑑w, 𝑙w) if and only if 𝑑v ≤𝐴 𝑑w. We store such pairs into a very
efficient ordered data structure 𝑂 , implemented using a min-heap, that is, a binary tree
where the value of a node is greater than or equal to the value of its parent node. In
this structure, if an element 𝑜 𝑗 in position 𝑗 strictly dominates an element 𝑜𝑖 in posi-
tion 𝑖 , then every element 𝑜ℎ after 𝑜 𝑗 also strictly dominates 𝑜𝑖 , i.e., 𝑜𝑖 <𝐴×𝐿 𝑜 𝑗 ⇒ ∀ℎ ≥
𝑗 : 𝑜𝑖 <𝐴×𝐿 𝑜ℎ . In the optimal case, i.e. 𝑜1 <𝐴×𝐿 𝑜2 <𝐴×𝐿 . . . <𝐴×𝐿 𝑜 |𝐷 | , picking the 𝑘 near-
est neighbors corresponds to extracting the first 𝑘 elements. In more complex scenarios,
distances may overlap as described in Example 4.1. The time complexity for computing
each distance is 𝑂 (𝑛), where 𝑛 is the number of features in a sample, therefore for |𝐷 |
distances is𝑂 (𝑛 · |𝐷 |). Furthermore, inserting (or extracting) a pair to a min-heap has a
logarithmic time complexity, hence for |𝐷 | pairs both actions are𝑂 ( |𝐷 | · log |𝐷 |). Insert-
ing a pair requires the min-heap to place it in the correct position in the tree to ensure
that the above property holds, however, if the tree is built starting from a list of pairs,
this can be done in linear time. Thus, distances are computed and stored in 𝑂 (𝑛 · |𝐷 |).
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4.2.2 Computation of Score Intervals

Algorithm 4.2 Computation of score intervals time complexity: 𝑂 (|𝐷 | · log |𝐷 |)
1: for all 𝑙 ∈ 𝐿
2: lb(𝑙), ub(𝑙) ← 0

3: end for
4: for all 𝑖 ∈ [1, 𝑘]
5: 𝑀 [𝑖] ← 𝑂.ExtRactMin()
6: end for
7: for all (𝑑z, 𝑙z) ∈ 𝑀
8: ub(𝑙z) ← ub(𝑙z) + 1
9: if �(𝑑y, 𝑙y) ∈ 𝑂 such that 𝑙z ≠ 𝑙y ∧ 𝑑z ≮𝐴 𝑑y

10: lb(𝑙z) ← lb(𝑙z) + 1
11: end if
12: end for
13: 𝜎𝑘 ←

∑
𝑙∈𝐿 lb(𝑙)

14: if 𝜎𝑘 < 𝑘

15: for all (𝑑y, 𝑙y) ∈ 𝑂
16: if ∃(𝑑z, 𝑙z) ∈ 𝑀 such that 𝑙z ≠ 𝑙y ∧ 𝑑z ≮𝐴 𝑑y

17: if ub(𝑙y) − lb(𝑙y) < 𝑘 − 𝜎𝑘
18: ub(𝑙y) ← ub(𝑙y) + 1
19: end if
20: end if
21: end for
22: end if

Once the ordered structure is created, we compute abstract scores for labels using the
interval abstract domain I. We first initialize a score s[𝑙] = [0, 0] for each label 𝑙 ∈ 𝐿,
where lb(𝑙) denotes the lower bound of s[𝑙], and ub(𝑙) its upper bound, then we extract
the first 𝑘 pairs from 𝑂 . For each extracted pair (𝑑z, 𝑙z), we check whether exists a pair
(𝑑y, 𝑙y) ∈ 𝑂 such that 𝑙z ≠ 𝑙y and 𝑑z ≮𝐴 𝑑y. If such pair does not exist, then there are no
feature vectors with label different than 𝑙x which are closer to 𝑃 (x) than z, hence 𝑙z will
be surely in the neighborhood of every point in 𝑃 (x). It is therefore sound to increase
both lower and upper bounds of s[𝑙z], i.e., lb(𝑙z) = lb(𝑙z) + 1 and ub(𝑙z) = ub(𝑙z) + 1.
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Otherwise, it is not possible to assert whether 𝑙z or 𝑙y will be considered, so the lower
bound of s[𝑙z] cannot be increased. In this last case the sum 𝜎𝑘 ≜

∑
𝑙∈𝐿 lb(𝑙) of the

current lower bounds will be less than 𝑘 , meaning that there are unprocessed pairs
(𝑑y, 𝑙y) in 𝑂 whose distances do not strictly dominate all the distances of the first 𝑘
extracted pairs. Since those ones can potentially be neighbors, it is sound to increase
their upper bounds, thus representing a possible vote.
The computation of score intervals is the computationally most relevant part of the
algorithm. Comparisons are𝑂

(
𝑘 · ( |𝐷 | −𝑘)

)
, and for small values of 𝑘 the running time

of the algorithm increases linearly with the size of 𝐷 . Since 𝑂 could be non-linearly
ordered, the worst possible case is that all the distances overlap leading us to look at all
|𝐷 | distances in the min-heap, for a total time complexity of 𝑂 (|𝐷 | · log |𝐷 |).

4.2.3 Abstract Classification

Algorithm 4.3 Abstract classification time complexity: 𝑂 ( |𝐿 |2)
1: for all 𝑙 ∈ 𝐿
2: if ub(𝑙) = 0

3: 𝐿 ← 𝐿 ∖ {𝑙}
4: end if
5: end for
6: if (|𝐿 | = 1 or 𝑘 = 1)
7: return 𝐿

8: end if
9: for all 𝑙 ∈ 𝐿

10: 𝜇 ← min(𝑘,∑𝑙 ′≠𝑙 ub(𝑙′))
11: lb(𝑙) ← max(lb(𝑙), 𝑘 − 𝜇)
12: end for
13: 𝜏 ← d 𝑘

min(𝑘,|𝐿 |) e
14: return {𝑙 ∈ 𝐿 | ub(𝑙) ≥ 𝜏, ∀𝑙′ ∈ 𝐿 ∖ {𝑙}. s[𝑙] ≮I s[𝑙′]}

At this point, we leverage the interval scores to perform the classification. First, we
remove all interval scores having ub(𝑙) = 0, as by soundness their labels never occur
in the nearest neighbors, and then we try to narrow each of remaining interval scores.
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For example, let us consider the binary classification case with 𝑘 = 7 and three labels
whose scores are s[𝐴] = [2, 4], s[𝐵] = [1, 3] and s[𝐶] = [0, 0]. We can safely remove 𝐶
from the final set of labels, and then wen see that both lower bounds of s[𝐴] and s[𝐵]
can be increased in a sound way: since the sum of the two labels must be 7, the only
possible way is that s[𝐴] = [4, 4] and s[𝐵] = [3, 3]. It follows that 𝐴 is the most voted
label. Formally, we can safely set each score lower bound lb(𝑙) to 𝑘−∑𝑙 ′≠𝑙 ub(𝑙′) if this is
improving. When we consider the sum of all the other upper bounds, we are explicitly
taken the worst case scenario with respect to 𝑙 . Thus, if we still not have 𝑘 neighbors in
the worst case scenario, those that remain must be of class 𝑙 , as it is the only one that
has not yet been considered.
After this refinement, we return the set of labels whose score intervals are numerically
significant and maximals for <I:

output ≜ {𝑙 ∈ 𝐿 | ub(𝑙) ≥ d 𝑘
min(𝑘,|𝐿 |) e, ∀𝑙′ ∈ 𝐿 ∖ {𝑙}. s[𝑙] ≮I s[𝑙′]} (4.1)

We are thus excluding only those labels whose score interval either has an upper bound
strictly less than d 𝑘

min(𝑘,|𝐿 |) e or is not maximal, i.e., the labels whose number of votes is
surely less than that of another label. This definition is sound because in (4.1) no real
classification label is forgotten, while the lack of precision in comparing the abstract
distances may lead to an over-approximation that includes some spurious labels. For
example, let us consider a 5NN and four labels such that s[𝐴] = [0, 5], s[𝐵] = [1, 5],
s[𝐶] = [0, 1] and s[𝐷] = [1, 1]. By applying the refinement nothing change, but we
observe that both 𝐶 and 𝐵 will surly not appear in the concrete set of labels; in fact,
if they are both taken into account, 3 other neighbors remains to be considered, and
their labels must be 𝐴 or 𝐵. Hence, either 𝐴 or 𝐵 will receive 2 votes, thus excluding 𝐶
and 𝐷 . The final set of labels will therefore be {𝐴, 𝐵}, which follows from the fact that
ub(𝐶) = ub(𝐷) < 2 = d 5

min(5,4) e and s[𝐴] as well as s[𝐵] are maximal.
The time complexity of this classification process is solely determined by |𝐿 |, Since |𝐿 | is
typically very small, usually 2 (e.g. binary classification), it is asymptotically irrelevant.

4.2.4 Full Algorithm

Algorithm 4.4 shows the whole pseudocode of the abstract classifier 𝐶𝐴
𝐷,𝑘,𝛿𝐴

(𝑎) with
input 𝑎 abstracting 𝑃 (x). Its time complexity is the same as that of computing score
intervals.
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Algorithm 4.4 Abstract classifier 𝐶𝐴
𝐷,𝑘,𝛿𝐴

(𝑎) time complexity: 𝑂 (|𝐷 | · log |𝐷 |)
1: 𝑀,𝑂 ← ∅
2: for all (y, 𝑙y) ∈ 𝐷
3: y𝐴 ← 𝛼 (y)
4: 𝑑y ← 𝛿 (𝑎, y𝐴)
5: 𝑂 ← 𝑂.Append

(
(𝑑y, 𝑙y)

)
6: end for
7: Heapify(𝑂)
8: for all 𝑙 ∈ 𝐿 do lb(𝑙), ub(𝑙) ← 0

9: for all 𝑖 ∈ [1, 𝑘] do𝑀 [𝑖] ← 𝑂.ExtRactMin()
10: for all (𝑑z, 𝑙z) ∈ 𝑀
11: ub(𝑙z) ← ub(𝑙z) + 1
12: if �(𝑑y, 𝑙y) ∈ 𝑂 such that 𝑙z ≠ 𝑙y ∧ 𝑑z ≮𝐴 𝑑y then lb(𝑙z) ← lb(𝑙z) + 1
13: end for
14: 𝜎𝑘 ←

∑
𝑙∈𝐿 lb(𝑙)

15: if 𝜎𝑘 < 𝑘

16: for all (𝑑y, 𝑙y) ∈ 𝑂
17: if ∃(𝑑z, 𝑙z) ∈ 𝑀 such that 𝑙z ≠ 𝑙y ∧ 𝑑z ≮𝐴 𝑑y

18: if ub(𝑙y) − lb(𝑙y) < 𝑘 − 𝜎𝑘 then ub(𝑙y) ← ub(𝑙y) + 1
19: end if
20: end for
21: end if
22: for all 𝑙 ∈ 𝐿
23: if ub(𝑙) = 0 then 𝐿 ← 𝐿 ∖ {𝑙}
24: end for
25: if ( |𝐿 | = 1 or 𝑘 = 1) then return 𝐿

26: for all 𝑙 ∈ 𝐿
27: 𝜇 ← min(𝑘,∑𝑙 ′≠𝑙 ub(𝑙′))
28: lb(𝑙) ← max(lb(𝑙), 𝑘 − 𝜇)
29: end for
30: 𝜏 ← d 𝑘

min(𝑘,|𝐿 |) e
31: return {𝑙 ∈ 𝐿 | ub(𝑙) ≥ 𝜏, ∀𝑙′ ∈ 𝐿 ∖ {𝑙}. s[𝑙] ≮I s[𝑙′]}
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Theorem 4.4. The abstract classifier 𝐶𝐴
𝐷,𝑘,𝛿𝐴

described by Algorithm 4.4 is a sound approx-
imation of 𝐶𝐷,𝑘,𝛿 , namely, given an abstract value 𝑎 ∈ 𝐴:⋃

x′∈𝛾𝐴 (𝑎)
𝐶𝐷,𝑘,𝛿 (x′) ⊆ 𝐶𝐴

𝐷,𝑘,𝛿𝐴
(𝑎) (4.2)

Proof. We prove that all the steps in Algorithm 4.4 are sound and no label returned by
𝐶𝐷,𝑘,𝛿 is forgotten. By definition of ordered structure, extracting the first 𝑘 pairs from
𝑂 means taking the 𝑘 feature vectors that are most likely to be considered. If their
distances are all strictly dominated by those in 𝑂 , then these represent indeed the 𝑘

closest samples and we can assign a vote to both their lower and upper bounds. If this
is not the case, and therefore there is at least one distance that does not strictly dominate
one of these, only if this distance is associated with a differently labeled feature vector
does it make sense to give a vote to the upper bound. In fact, if there is an uncertainty
between two or more identical labels, letting one of these out among the 𝑘 closest to
bring in another identical label does not change the score for that label. When a distance
in 𝑂 strictly dominates all the first 𝑘 distances, the following ones will do the same by
definition of𝑂 , and it is not necessary to continue iterating over them. The same is then
done from the point of view of the pairs still in 𝑂 : if there is a pair outside 𝑂 that is
not strictly dominated by a distance in 𝑂 , and the relative sample has a different label,
the latter can receive a vote to its upper bound, as this could potentially be considered,
but we do not know it for sure due to incompleteness. Increasing the upper bound of a
score by a quantity𝑚 > 0 is always a sound operation. Then, discarding all labels whose
score upper bound is less then 𝜏 ≜ d 𝑘

min(𝑘,|𝐿 |) e is also sound because being below such a
threshold implies that there is at least another label with a strictly dominant score, as 𝜏
represents the maximum vote in the case of equal vote distribution. Finally, discarding
the labels whose score is not maximal is sound by definition of 𝑘NN.
Although the computation of the distances may be complete, that of the bounds is not.
This is due to the non-relationality of the interval domain, which does not allow to
identify andmanage relations between scores. One of themain relational properties that
cannot be expressedwith this domain is themutual exclusion: if the label 𝑙x is considered
𝑛 times, then the label 𝑙y is considered𝑚−𝑛 times, which cannot be abstracted precisely
using real intervals as we lose the fact that the score of 𝑙y depends on that of 𝑙x. Since
all these steps are sound, namely, no relevant label is discarded, then so is the abstract
classifier 𝐶𝐴

𝐷,𝑘,𝛿𝐴
combining them all. Hence,

⋃
x′∈𝛾𝐴 (𝑎) 𝐶𝐷,𝑘,𝛿 (x′) ⊆ 𝐶𝐴

𝐷,𝑘,𝛿𝐴
(𝑎) holds. □
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4.2.5 Illustrative Example
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Figure 4.2: Abstract 𝑘NN classification on a toy dataset with 3 classes.

Figure 4.2 shows a toy dataset 𝐷 of vectors in R2 consisting of points p1, ..., p7 having
three labels: red, green and blue. We consider an unlabeled point v = (4, 4) and an
adversarial region 𝑃0.5

∞ (v) ≜ {w ∈ R2 | max(|w1 − v1 |, |w2 − v2 |) ≤ 0.5}, which is the
ℓ∞ ball of radius 0.5 centered in v. This perturbation can be exactly represented with
the interval domain I as 𝑎 = 〈[3.5, 4.5], [3.5, 4.5]〉 ∈ I2. For the Euclidean distance 𝜂, the
abstract distances between each (abstracted) point and 𝑎, computed in I, are as follows:

𝜂2
I (𝑎, p1I) = ([3.5, 4.5] −I [2, 2])2

I +I ( [3.5, 4.5] −I [2, 2])2I

= [1.5, 2.5]2I +I [1.5, 2.5]2I

= [2.25, 6.25] +I [2.25, 6.25]
= [4.5, 12.5]

𝜂2
I (𝑎, p2I) = ([3.5, 4.5] −I [2.5, 2.5])2

I +I ([3.5, 4.5] −I [6, 6])2I

= [1, 2]2I +I [2, 3]2I

= [1, 4] +I [4, 9]
= [5, 13]

𝜂2
I (𝑎, p3I) = ([3.5, 4.5] −I [3.5, 3.5)2

I +I ([3.5, 4.5] −I [4.5, 4.5])2I

= [0, 1]2I +I [−1, 0]2I

= [0, 1] +I +[0, 1]
= [0, 2]
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𝜂2
I (𝑎, p4I) = ([3.5, 4.5] −I [5, 5])2

I +I ( [3.5, 4.5] −I [4.5, 4.5])2I

= [−1.5,−0.5]2I +I [−1, 0]2I

= [0.25, 2.25] +I [0, 1]
= [0.25, 3.25]

𝜂2
I (𝑎, p5I) = ([3.5, 4.5] −I [5, 5])2

I +I ( [3.5, 4.5] −I [3.5, 3.5])2I

= [−1.5,−0.5]2I +I [0, 1]2I

= [0.25, 2.25] +I [0, 1]
= [0.25, 3.25]

𝜂2
I (𝑎, p6I) = ([3.5, 4.5] −I [6, 6])2

I +I ( [3.5, 4.5] −I [6.5, 6.5])2I

= [−2.5,−1.5]2I +I [−3,−2]2I

= [2.25, 5.25] +I [4, 9]
= [6.25, 15.25]

𝜂2
I (𝑎, p7I) = ( [3.5, 4.5] −I [6.5, 6.5])2

I +I ([3.5, 4.5] −I [4.5, 4.5])2I

= [−3,−2]2I +I [−1, 0]2I

= [4, 9] +I [0, 1]
= [4, 10]

Let us observe that p3, p4 and p5 are the closest points to 𝑎, and thus to 𝑃0.5
∞ (v), as their

intervals are strictly dominated by the other intervals, namely, 𝜂2I (𝑎, piI) ≤I 𝜂2
I (𝑎, pjI)

for all 𝑖 ∈ {3, 4, 5}, 𝑗 ∈ {1, 2, 6, 7}. It follows that these are the first 3 distances in the
ordered structure. However, we do not know their relative dominance order, because
these intervals overlap, e.g. [0, 2] ≮ [0.25, 3.25] and [0.25, 3.25] ≮ [0, 2].
Therefore, for 𝑘 = 1 both labels red and green of p3, p4, p5 will get a score interval of
[0, 1], namely, s[red] = s[green] = [0, 1], meaning that these labels may or may not be
considered. This implies that 𝐶I

𝐷,1,𝜂I
(𝑎) = {red, green}, and we cannot infer that 1NN is

robust on 𝑃0.5
∞ (v).

However, for 𝑘 = 3 the robustness verification turns out to be complete, because the 3
samples p3, p4, p5 will all be considered, being 3 ≤ 𝑘 , and will have the same weight
regardless of their concrete values, so that the labels red and green get, respectively,
the score intervals [1, 1] and [2, 2], i.e., s[red] = [1, 1] and s[green] = [2, 2]. Thus,
𝐶I
𝐷,3,𝜂I
(𝑎) = {green}, and we can therefore infer that 3NN is robust on 𝑃0.5

∞ (v).
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4.3 Dealing with Categorical Features

So far we have considered only numerical features, but some datasets may contain both
numerical and categorical features. A categorical feature can assume an alphanumeric
value belonging to a certain set of alphanumeric values, e.g. gender ∈ {male, female},
and cannot be processed by machine learning models based on proximity or any other
parameter that needs a mathematical computation. To overcome this limitation, well-
known strategies for converting categorical features to numerical values exist, the most
prominent ofwhich is one-hot encoding. By applying one-hot encoding every categorical
feature having 𝑐 possible values is substituted by a set of 𝑐 numerical ones 〈𝑛1, 𝑛2 . . . 𝑛𝑐〉
with 𝑛𝑖 ∈ {0, 1} for all 𝑖 ∈ [1, 𝑐]. This operation implicitly introduces a constraint on
the values of the features: if a sample has a categorical feature whose one-hot represen-
tation is spread from index 𝑖 to index 𝑗 , then

∑ 𝑗
𝑚=𝑖 𝑥𝑚 = 1 must hold, otherwise a single

sample will have
∑ 𝑗

𝑚=𝑖 𝑥𝑚 different categories at the same time. If this constraint is not
honored by the abstract domain of choice, a loss of precision can occur as illustrated by
the following example.

Example 4.2 (Loss of Precision due to One-Hot Encoding). Suppose we have a dataset
𝐷 describing two features, that is, color ∈ {red, green, blue} and price ∈ R, and contains
two vectors v = 〈𝑟𝑒𝑑, 1〉,w = 〈𝑟𝑒𝑑, 3〉, labeled as −1 and +1, respectively. A one-hot
encoding generates features isRed, isGreen, isBlue ∈ {0, 1}, and converts points to v′ ≜

〈1, 0, 0, 1〉,w′ ≜ 〈1, 0, 0, 3〉. An adversarial region 𝑅 is built such that every point within
it has 𝑝𝑟𝑖𝑐𝑒 ∈ [0, 1], and any color is allowed: 𝑅 = {(r, g, b, price) | r, g, b ∈ {0, 1}, price ∈
[0, 1]}. We observe that v′ is always closer than w′ to any point x in 𝑅:

𝛿𝑝 (v′, x) < 𝛿𝑝 (w′, x)
⇔ 𝑝

√
|v′1 − 𝑥1 |𝑝 + |v′2 − 𝑥2 |𝑝 + |v′3 − 𝑥3 |𝑝 + |v′4 − 𝑥4 |𝑝

< 𝑝
√
|w′1 − x1 |𝑝 + |w′2 − x2 |𝑝 + |w′3 − x3 |𝑝 + |w′4 − x4 |𝑝

⇔ 𝑝
√
|1 − x1 |𝑝 + | − x2 |𝑝 + | − x3 |𝑝 + |1 − x4 |𝑝

< 𝑝
√
|1 − x1 |𝑝 + | − x2 |𝑝 + | − x3 |𝑝 + |3 − x4 |𝑝

⇔ 𝑝

√
|1 − x1 |𝑝 + x𝑝2 + x

𝑝
3 + |1 − x4 |𝑝 < 𝑝

√
|1 − x1 |𝑝 + x𝑝2 + x

𝑝
3 + |3 − x4 |𝑝

⇔ |1 − x4 | < |3 − x4 |
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which is always satisfied by x4 ∈ [0, 1], hence a 1NN would label any point in 𝑅 as −1.
By running an abstract verification using the hyperrectangle domain and Manhattan
distance, 𝑅 is exactly abstracted as 〈[0, 1], [0, 1], [0, 1], [0, 1]〉 and abstract distances from
v′,w′ are [0, 1] + [0, 1] + [0, 1] + [0, 1] = [0, 4] and [0, 1] + [0, 1] + [0, 1] + [2, 3] =

[2, 6], respectively. Since distance intervals overlap, it is not possible to infer which
point is the closest, and therefore the abstract classifier returns {−1, +1}. This issue is
caused by the hyperrectangle abstraction not being able to represent the constraints
isRed, isGreen, isBlue ∈ {0, 1} and isRed + isGreen + isBlue = 1. □

To avoid loss of precision, we partition the original adversarial region 𝑅 abstracted
by 𝑎 ∈ 𝐴 into 𝑐 adversarial regions 𝑅𝑖 ⊆ 𝑅 abstracted by 𝑎𝑖 ∈ 𝐴, where 𝑐 is the number
of possible values of the categorical features involved in the perturbation, and execute
the classification procedure for each adversarial region or until all labels are returned (at
this point soundness is given by definition). Partitioning is done in such a way that each
categorical feature of each component has exactly one possible value, thus eliminating
the need for abstraction within the component. The classification is given by:

𝐶𝐴
𝐷,𝑘,𝛿𝐴

(𝑎) =
⋃

𝑖∈[1,𝑐]
𝐶𝐴
𝐷,𝑘,𝛿𝐴

(𝑎𝑖)

For instance, the partitions for the adversarial region 𝑅 in Example 4.2 are:

𝑅1 = {(1, 0, 0, price) | price ∈ [0, 1]}, 𝑎1 = 〈[1, 1], [0, 0], [0, 0], [0, 1]〉
𝑅2 = {(0, 1, 0, price) | price ∈ [0, 1]}, 𝑎2 = 〈[0, 0], [1, 1], [0, 0], [0, 1]〉
𝑅3 = {(0, 0, 1, price) | price ∈ [0, 1]}, 𝑎3 = 〈[0, 0], [0, 0], [1, 1], [0, 1]〉

Thus, by computing abstract distances for 𝑎1 we obtain:

𝜇I(v′, 𝑎1) = [0, 0] + [0, 0] + [0, 0] + [0, 1] = [0, 1]
𝜇I(w′, 𝑎1) = [0, 0] + [0, 0] + [0, 0] + [2, 3] = [2, 3]

yielding 𝐶I
𝐷,𝑘,𝜇I
(𝑎1) = {−1}. The same can be done for 𝑎2 and 𝑎3, obtaining:

𝜇I(v′, 𝑎2) = 𝜇I(v′, 𝑎2) = [2, 3]
𝜇I(w′, 𝑎2) = 𝜇𝐴 (w′, 𝑎2) = [4, 5]
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hence 𝐶I
𝐷,𝑘,𝜇I
(𝑎2) = 𝐶I

𝐷,𝑘,𝜇I
(𝑎3) = {−1}. Then, by collecting all these sets, we finally

get 𝐶I
𝐷,𝑘,𝜇I
(𝑎) = 𝐶I

𝐷,𝑘,𝜇I
(𝑎1) ∪ 𝐶I𝐷,𝑘,𝜇I (𝑎2) ∪ 𝐶

I
𝐷,𝑘,𝜇I
(𝑎3) = {−1}, proving robustness and

consequently stability.
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5
Experimental Evaluation

We implemented our formal verification method for 𝑘-nearest neighbor classifiers in a
tool called 𝑘NAVe (KNN Abstract Verifier), whose name literally means “an unprinci-
pled and dishonest person” and is a pun on our verification of adversarial perturbations
caused by an attacker. It has been written entirely in Python and is available open
source on the author’s GitHub page [12], together with all the datasets and results. Our
experimental results were run on an Ubuntu 22.04.1 LTS with AMD Ryzen 5 3500U
2.1GHz CPU, and show that 𝑘NAVe is fast and scalable, with significant high provable
percentages in most of the datasets.

This chapter will present the findings of our experimental evaluations of robustness,
stability, and individual fairness, as well as comparisons with the GeoAdEx tool by
Sitawarin et al. [38].

5.1 Datasets

For our experiments, we considered 7 standard datasets used in the most recent stream
of works studying the robustness of 𝑘NNs [45, 44, 46, 39, 41, 38], on which we also
carried out stability tests, and 4 datasets for fairness verification of deep neural networks
[21].
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The datasets used for the formal verification of robustness and stability properties are
taken from LIBSVM [6]. They are:

• Australian: dataset concerning credit card applications, consisting of categorical
and numerical features. All attribute names and values have been changed to
meaningless symbols to protect confidentiality of the data.

• BreastCancer: classic and very easy binary classification dataset for diagnostic
purpose, where the classification is whether the cancer is benign or malignant.

• Diabetes: dataset taken from the National Institute of Diabetes and Digestive and
Kidney Diseases. The objective is to predict, based on diagnostic measurements,
whether a patient has diabetes.

• Fourclass: non-linear separable dataset consisting of 862 two-dimension data
points.

• Letter: letter recognition dataset, where the objective is to identify each of a large
number of black-and-white rectangular pixel displays as one of the 26 capital
letters in the English alphabet.

• Pendigits: digit database created by collecting 250 samples from 44 writers. The
samples written by 30 writers are used for training and the digits written by the
other 14 are used for testing.

• Satimage: database consisting of the multi-spectral values of pixels in 3×3 neigh-
bourhoods in a satellite image, and the classification associated with the central
pixel in each neighbourhood. The aim is to predict this classification, given the
multi-spectral values.

Those for individual fairness verification are instead:

• Adult: dataset extracted from the 1994 US Census database. Every sample assigns
a yearly income (below or above 50K US$) to an individual based on personal
attributes such as gender, race, and occupation.

• Compas: dataset containing data collected on the use of the COMPAS risk assess-
ment tool in Broward County, FL. Each sample predicts the risk of recidivism for
individuals based on personal attributes and criminal history.

• Crime: dataset containing socio-economic, law enforcement, and crime data for
communities within the US. Each sample indicates whether a community is above
or below the median number of violent crimes per population.
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• German: dataset containing individuals with either a good or bad credit score.

The main characteristics of these datasets, as well as their accuracy, are summarized in
Table 5.1 and Table 5.2, respectively.

Name #training #test #features #features (one-hot) #classes
Australian 483 207 14 39 2
BreastCancer 479 204 10 10 2
Diabetes 556 230 8 8 2
Fourclass 604 258 2 2 2
Letter 15000 5000 16 16 26
Pendigits 7494 3498 16 16 10
Satimage 4435 2000 36 46 6
Adult 30162 15060 14 103 2
Compas 4222 1056 10 370 2
Crime 1595 399 102 147 2
German 800 200 20 56 2

Table 5.1: Datasets used in experimental evaluations.

Accuracy (%)
Name 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

Australian 77.8 80.2 82.6 82.6
BreastCancer 92.6 94.6 93.6 93.6
Diabetes 70.9 72.2 70.0 71.3
Fourclass 100 100 100 100
Letter 95.7 94.6 94.2 94.3
Pendigits 97.7 97.8 97.5 97.5
Satimage 88.8 90.3 89.5 90.1
Adult 78.4 81.1 81.8 82.3
Compas 58.4 59.1 60.2 61.1
Crime 77.7 79.7 80.7 81.2
German 73.0 71.5 74.5 77.0

Table 5.2: Accuracy of each dataset for 𝑘 ∈ {1, 3, 5, 7}.
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5.2 Perturbations

We instantiated our parametric abstract 𝑘NN classifier𝐶𝐴
𝐷,𝑘,𝛿𝐴

to the interval abstraction
I, and we considered the ℓ2-norm perturbation discussed in Subsection 2.2.3 for our
robustness and stability experiments, with a magnitude 𝜖 ranging in [0.001, 0.05], i.e.,
numerical features can be altered from ±0.1% to ±5%. Individual fairness for Adult,
Compas, Crime, and German datasets has been evaluated for the Noise-Cat similarity
relation defined in Subsection 2.2.5, where we applied a ℓ2-norm Noise perturbation to
numerical features, also in this case with 𝜖 ranging in [0, 0.05], and a Cat perturbation
for the following categorical sensible features: for Adult and German: gender, having 2
categories; for Compas: race, having 2 categories; for Crime: state, having 46 categories.

5.3 Results

First, we preprocessed each dataset, in accordance with Ruoss et al. [33], as follows: (i)
rows and columns with missing values are dropped; (ii) for fairness datasets, numeri-
cal features have been normalized to zero mean and unit variance; (iii) when needed,
datasets are split into training (≈ 70-80%) and test (≈ 20-30%) sets. Letter, Pendigits and
Satimage are the only datasets having an independent test set. (iv) categorical features
are one-hot encoded; (v) numerical features are scaled to [0, 1].
Thus, if the space 𝑋 consists of 𝑛-dimensional real vectors scaled to [0, 1], an ℓ2-norm
perturbation having magnitude 𝜖 ≥ 0 on a feature vector x ∈ 𝑋 defines the adversarial
region:

𝑃𝜖∞(x) ≜ {w ∈ R𝑛 | ∀𝑖 ∈ [1, 𝑛] . w𝑖 ∈ [x𝑖 − 𝜖, x𝑖 + 𝜖] uI [0, 1]}

where uI is applied only when 𝛾 I( [0, 1]) includes all possible values for x𝑖 . For instance,
if we have a pixel ranging in [0, 255] that is scaled between 0 and 1, where the latter
represent, respectively, 0 e 255, it makes no sense to have a perturbation that results in
values less than 0 or greater than 1, as they correspond to values outside [0, 255]. For
our datasets, we applied uI to all the features (scaled in [0, 1]) of Letter and Pendigits, as
their feature range is known, i.e., [0, 15] for Letter and [0, 100] for Pendigits, and holds
for all of them.

Due incompleteness, the results are intended to be lower bounds of the real ones.
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Table 5.3 shows the average verification time highlighting average times per sample
and for the whole test set, in milliseconds and seconds, respectively. These runtimes
refer to the execution of 𝑘NAVe on all 𝑘 ∈ {1, 3, 5, 7}, and coincide with the time needed
to obtain a row of Subsection 5.3.1 and Subsection 5.3.2 tables. We remark that once
the distances for a test sample have been computed, 𝑘NN can exploit such distances
for each value of 𝑘 , without having to re-compute them as 𝑘 changes. This results in a
considerable saving of time in using 𝑘NAVe with multiple values of 𝑘 at the same time.

Name Avg. Verif. Time per Sample (ms) Avg. Verif. Time per 𝜖 (s)
Australian 19 4
BreastCancer 13 3
Diabetes 13 3
Fourclass 4 1
Letter 399 1993
Pendigits 197 688
Satimage 239 478
Adult 3497 52667
Compas 1597 1686
Crime 3589 1432
German 80 16

Table 5.3: Average verification time.

The results for stability, robustness and individual fairness are shown in the following
two subsections. As we will see, in many datasets, we are able to infer excellent stability
percentages with 𝜖 < 0.02, even greater than 90% in some of these. The percentages
of robustness are obviously lower than those of stability, as a correct label is required;
however, this does not depend on the quality of the abstract classifier because the label is
entirely determined by the data distribution. For individual fairness the percentages will
tend to decrease linearly as 𝜖 grows, but not all datasets turn out to be fair with respect
to the chosen category; in fact with 𝜖 = 0, meaning no Noise perturbation is applied,
such percentages are already too small. Let us stress that experiments with 𝜖 = 0 involve
the solely application of a Cat perturbation to the chosen categorical features, leaving
numerical features unaltered: this makes our verification method complete as stated in
Section 4.3.
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5.3.1 Stability and Robustness Verification

Tables below reports the percentages of provable stability and robustness for all the test
samples ranging in each ground truth test dataset 𝑇 , namely, Stability(𝐶I

𝐷,𝑘,𝛿 I
,𝑇 ) and

Robustness(𝐶I
𝐷,𝑘,𝛿 I

,𝑇 ) metrics defined in (2.2). We performed our experiments with
𝑘 ∈ {1, 3, 5, 7}, and, following the standard practice for the 𝑘NN algorithm, we avoided
even values of 𝑘 as they are more likely to introduce tie votes in the classification.

Australian Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 100.0 100.0 100.0 100.0
0.002 99.0 99.5 100.0 100.0
0.005 97.1 98.6 97.6 99.0
0.01 95.2 96.6 96.1 97.1
0.02 92.8 91.3 91.8 94.7
0.03 91.3 88.9 89.4 92.3
0.04 88.4 85.0 87.9 88.9
0.05 86.0 84.1 85.5 86.0

Australian Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 77.8 80.2 82.6 82.6
0.002 77.8 79.7 82.6 82.6
0.005 76.8 79.2 81.2 81.6
0.01 75.4 77.8 79.7 80.7
0.02 73.9 75.8 77.8 79.2
0.03 72.9 74.4 76.8 77.8
0.04 70.5 72.5 76.3 75.4
0.05 68.6 71.5 74.4 73.9

Table 5.4: Provable stability and robustness on the whole Australian test set.
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Figure 5.1: Provable stability and robustness on the whole Australian test set.
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BreastCancer Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 99.5 100.0 99.0 99.5
0.002 98.5 100.0 99.0 99.0
0.005 96.6 99.5 98.0 98.5
0.01 96.6 99.0 96.6 97.1
0.02 92.2 93.1 91.7 93.1
0.03 86.8 88.7 87.7 88.2
0.04 80.4 83.3 83.3 85.3
0.05 75.0 77.9 81.4 83.8

BreastCancer Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 92.6 94.6 93.6 93.1
0.002 92.2 94.6 93.6 92.6
0.005 91.2 94.1 93.1 92.6
0.01 91.2 93.6 91.7 92.2
0.02 88.2 89.7 88.7 89.7
0.03 84.3 86.8 86.8 87.3
0.04 78.9 82.4 82.4 84.8
0.05 74.5 77.5 80.9 83.3

Table 5.5: Provable stability and robustness on the whole BreastCancer test set.
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Figure 5.2: Provable stability and robustness on the whole BreastCancer test set.
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Diabetes Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 95.2 96.1 98.7 98.7
0.002 89.1 91.3 94.8 94.3
0.005 78.7 80.4 80.0 77.4
0.01 62.6 59.6 56.5 54.3
0.02 31.3 25.7 23.9 23.0
0.03 13.0 9.1 7.8 6.1
0.04 7.8 4.3 4.8 3.0
0.05 3.0 1.7 0.9 0.9

Diabetes Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 69.1 71.3 69.6 71.3
0.002 65.7 68.7 67.4 69.6
0.005 60.0 62.2 61.3 59.1
0.01 49.1 49.6 47.0 46.5
0.02 25.2 23.0 22.6 21.7
0.03 11.7 8.7 7.4 6.1
0.04 7.4 4.3 4.3 3.0
0.05 2.6 1.7 0.9 0.9

Table 5.6: Provable stability and robustness on the whole Diabetes test set.
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Figure 5.3: Provable stability and robustness on the whole Diabetes test set.
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Fourclass Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 100.0 100.0 100.0 100.0
0.002 99.6 99.6 100.0 100.0
0.005 99.6 99.6 99.2 98.8
0.01 99.2 99.6 98.4 97.7
0.02 93.4 91.5 86.8 85.3
0.03 78.3 75.6 75.6 72.9
0.04 62.0 60.5 59.3 55.8
0.05 45.0 42.6 40.3 37.6

Fourclass Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 100.0 100.0 100.0 100.0
0.002 99.6 99.6 100.0 100.0
0.005 99.6 99.6 99.2 98.8
0.01 99.2 99.6 98.4 97.7
0.02 93.4 91.5 86.8 85.3
0.03 78.3 75.6 75.6 72.9
0.04 62.0 60.5 59.3 55.8
0.05 45.0 42.6 40.3 37.6

Table 5.7: Provable stability and robustness on the whole Fourclass test set.
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Figure 5.4: Provable stability and robustness on the whole Fourclass test set.
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Letter Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 98.0 96.3 95.2 95.6
0.002 96.7 94.4 92.7 92.1
0.005 91.7 88.6 85.4 83.1
0.01 82.7 75.1 69.5 65.2
0.02 54.6 45.4 40.3 37.0
0.03 31.0 24.9 21.3 19.2
0.04 16.2 13.4 11.5 10.6
0.05 7.7 6.6 5.8 5.2

Letter Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 94.7 93.6 92.9 93.0
0.002 93.9 92.3 91.1 90.5
0.005 90.4 87.8 84.8 82.7
0.01 82.2 75.0 69.4 65.1
0.02 54.6 45.4 40.3 37.0
0.03 31.0 24.9 21.3 19.2
0.04 16.2 13.4 11.5 10.6
0.05 7.7 6.6 5.8 5.2

Table 5.8: Provable stability and robustness on the whole Letter test set.
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Figure 5.5: Provable stability and robustness on the whole Letter test set.
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Pendigits Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 99.6 99.5 99.4 99.6
0.002 99.3 99.1 99.1 99.2
0.005 98.3 98.1 98.1 97.8
0.01 96.7 96.1 95.7 95.0
0.02 91.4 90.5 89.5 89.1
0.03 82.0 82.0 81.0 80.0
0.04 71.3 71.5 71.0 70.2
0.05 59.0 60.6 59.8 58.9

Pendigits Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 97.6 97.5 97.4 97.4
0.002 97.4 97.5 97.3 97.2
0.005 96.8 96.8 96.7 96.3
0.01 95.6 95.3 94.9 94.1
0.02 90.9 90.2 89.2 88.7
0.03 81.7 81.7 80.8 79.8
0.04 71.2 71.4 71.0 70.2
0.05 58.9 60.6 59.7 58.9

Table 5.9: Provable stability and robustness on the whole Pendigits test set.
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Figure 5.6: Provable stability and robustness on the whole Pendigits test set.

55



Satimage Provable Stability (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 93.8 93.8 93.7 94.3
0.002 88.7 88.9 88.9 88.1
0.005 73.7 72.9 72.4 72.4
0.01 56.0 54.9 54.0 54.2
0.02 31.4 31.1 31.8 32.8
0.03 19.3 18.6 18.3 18.6
0.04 12.6 12.6 12.6 12.7
0.05 9.6 9.7 9.7 9.8

Satimage Provable Robustness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 86.1 87.4 87.0 87.5
0.002 83.0 84.3 84.1 83.4
0.005 71.7 71.7 71.0 70.8
0.01 55.4 54.6 53.8 53.8
0.02 31.4 31.0 31.7 32.6
0.03 19.3 18.6 18.3 18.6
0.04 12.6 12.6 12.6 12.7
0.05 9.6 9.7 9.7 9.8

Table 5.10: Provable stability and robustness on the whole Satimage test set.
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Figure 5.7: Provable stability and robustness on the whole Satimage test set.
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5.3.2 Individual Fairness Verification

Tables below reports the percentages of provable individual fairness for all the test sam-
ples ranging in each ground truth test dataset 𝑇 , namely, FaiRness(𝐶I

𝐷,𝑘,𝛿 I
,𝑇 ) metric

defined in (2.3). As for stability and robustness, we performed our experiments with
𝑘 ∈ {1, 3, 5, 7}, thus avoiding even values of 𝑘 as they are more likely to introduce tie
votes in the classification.

Adult Provable Individual Fairness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0 95.4 97.3 97.7 97.8
0.001 92.3 94.6 95.3 95.3
0.002 89.9 92.0 93.0 93.2
0.005 82.4 84.7 85.9 86.5
0.01 72.7 75.5 76.5 77.1
0.02 60.2 64.1 66.0 66.5
0.03 52.2 58.3 60.4 61.4
0.04 47.0 54.4 57.0 58.2
0.05 43.5 51.3 54.6 56.2

Table 5.11: Provable individual fairness on the whole Adult test set.
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Figure 5.8: Provable individual fairness on the whole Adult test set.
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Compas Provable Individual Fairness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0 58.3 62.7 69.1 71.1
0.001 48.2 54.5 61.1 62.5
0.002 45.6 50.9 56.8 57.6
0.005 35.3 41.4 45.4 46.1
0.01 25.7 30.7 32.8 36.4
0.02 17.8 20.9 23.9 27.5
0.03 13.6 16.7 19.5 21.7
0.04 11.7 13.8 16.1 18.1
0.05 10.2 12.7 14.3 16.5

Table 5.12: Provable individual fairness on the whole Compas test set.
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Figure 5.9: Provable individual fairness on the whole Compas test set.
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Crime Provable Individual Fairness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0 7.5 13.0 15.8 18.5
0.001 6.5 12.3 14.5 17.8
0.002 6.0 11.5 13.3 16.0
0.005 4.8 9.8 10.8 13.0
0.01 4.0 5.0 7.0 7.8

Table 5.13: Provable individual fairness on the whole Crime test set.
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Figure 5.10: Provable individual fairness on the whole Crime test set.
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German Provable Individual Fairness (%)
𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0 85.0 83.0 83.5 82.5
0.001 85.0 83.0 83.0 82.0
0.002 85.0 82.5 82.5 82.0
0.005 85.0 81.5 82.5 81.5
0.01 83.0 78.0 81.0 81.5
0.02 80.0 75.5 78.0 78.5
0.03 76.0 72.5 75.0 73.5
0.04 73.0 71.5 72.5 71.0
0.05 72.0 68.5 69.0 69.5

Table 5.14: Provable individual fairness on the whole German test set.
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Figure 5.11: Provable individual fairness on the whole German test set.
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5.4 Comparisons with GeoAdEx

To assess the quality of our lower bounds on robustness, we leverage the GeoAdEx
tool [38]. As it compute the minimum-norm adversarial perturbation, as we saw in
Section 3.4, a transformation was performed to achieve an output comparable with
ours. More precisely, let 𝜖 be the minimum-norm adversarial perturbation returned
by GeoAdEx. To retrieve the 𝜖∞ of the ℓ∞-norm perturbation, we applied the following
inversion:

𝜖 ≜ ‖d∗‖2 =

√√
𝑛∑
𝑖=1

(d∗𝑖 )2 ⇒ 𝜖∞ ≜

√
‖d∗‖22
𝑛

This inversion formula is correct when for all 𝑖, 𝑗 ∈ [1, 𝑛], d∗𝑖 = d∗𝑗 , which is precisely
the case of the ℓ∞-norm. Once the 𝜖∞ has been computed for each verification sample
in𝑇 , we can assess the quality of our robustness verification algorithm simply by using
perturbation magnitudes close to 𝜖∞: a good result is obtained if magnitude perturba-
tions slightly less than 𝜖 cannot affect the robustness of our abstract classifier.

GeoAdEx, on the other hand, has a few drawbacks. To begin with, GeoAdEx does
not support one-hot encoding, so it assigns a progressive positive integer to each cate-
gorical value, introducing unwanted side-effects during distance computation. Second,
GeoAdEx returns the optimal adversarial distance d∗ only when either no time limit
is set or the time limit is not reached; due to the high complexity of the minimization
problem to be solved, in practice a time limit is always needed, and this makes GeoAdEx
unsuitable for our goal onmedium/large datasets and/or for large values of 𝑘 , typically k
> 3. As mentioned in Section 3.4, it relies on an approximation which limits the number
of explored neighboring cells, obtained through a fast heuristics. The main problem of
this approximation is that it makes impossible to knowwhether the adversarial distance
d∗ returned by GeoAdEx is actually precise or simply a lower bound.

We therefore chose to restrict our experiments on the quality of our robustness lower
bounds to: (i) datasets with no categorical feature, and (ii) discharging the GeoAdEx
approximation and just using a time limit of 2minutes, so that if this time limit is reached
then we still have a lower bound on the optimal adversarial distance d∗. Because of the
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limitation, it was unfeasible to go beyond 𝑘 = 1 for datasets having more than 1000

samples. Table 5.15 reports precision percentages of 𝑘NAVe obtained by comparing the
optimal result d∗ of GeoAdEx, i.e., when the time limit was not met, to our uncertainty,
according to the ratio:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≜
|{(x, 𝑙x) ∈ 𝑇 | ¬Robust(𝐶I𝐷,𝑘,𝛿 I, 𝑃

𝜖
∞, x, 𝑙x) ⇒ GeoAdEx(x, 𝑙x) = d∗ ≤ 𝜖}|

|{(x, 𝑙x) ∈ 𝑇 | ¬Robust(𝐶I𝐷,𝑘,𝛿 I, 𝑃
𝜖
∞, x, 𝑙x) ⇒ GeoAdEx(x, 𝑙x) = d∗}|

Thus, this metric intuitively expresses the exactness of our verification method, i.e., how
many of the samples that our tool does not prove to be robust are actually not robust
because there is a minimum optimal adversarial distance which is less than or equal to
the distance between the center of the adversarial region and one of its corners.

Precision of our Robustness Verification on BreastCancer, Diabetes and Fourclass
BreastCancer Diabetes Fourclass

𝜖 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7 𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 7

0.001 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.002 99.0 100.0 100.0 100.0 97.0 98.0 99.0 99.0 100.0 100.0 100.0 100.0
0.005 99.0 100.0 100.0 100.0 97.0 96.0 93.0 90.9 100.0 100.0 100.0 100.0
0.01 100.0 99.0 97.0 99.0 95.0 91.0 87.9 91.4 100.0 100.0 100.0 100.0
0.02 96.0 98.0 97.0 99.0 84.0 76.8 88.9 91.2 99.0 98.0 96.0 95.9
0.03 94.0 95.0 97.0 98.0 84.0 85.7 85.9 87.0 95.0 87.0 94.7 96.3
0.04 92.0 94.0 96.9 97.9 88.0 91.1 94.9 92.9 83.0 84.0 94.1 95.8
0.05 91.0 91.8 98.9 100.0 92.0 94.7 94.5 94.7 81.0 81.0 98.5 100.0

Table 5.15: Precision of our robustness verification on BreastCancer, Diabetes and Fourclass.

These data are encouraging because we reach 100% precision in 33 out of 96 case studies
(34.37%), while the worst case is 76.8% of precision for Diabetes with 𝑘 = 3 and 𝜖 = 0.02.
In particular, we observe a precision close to 100% for 𝜖 ≤ 0.01 in all datasets, and always
above 90% for BreastCancer. These percentages are very accurate for 𝑘 = 1, where
GeoAdEx returns optimal adversarial distances for almost all test samples, and they
gradually become less meaningful as 𝑘 increases, because for them GeoAdEx returns
less optimal adversarial distance.
Table 5.16 also shows the precision in datasets with more than 1000 samples. As we
stated above, for the latter we have evaluated the robustness only with 𝑘 = 1. Again,
the percentages are still very promising.
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Precision of our Robustness Verification on Letter, Pendigits and Satimage
Letter Pendigits Satimage

𝜖 𝑘 = 1

0.001 100.0 100.0 100.0
0.002 98.0 100.0 100.0
0.005 100.0 100.0 100.0
0.01 99.0 100.0 96.0
0.02 97.0 99.0 84.0
0.03 99.0 94.0 80.0
0.04 100.0 97.0 73.0
0.05 100.0 89.0 82.0

Table 5.16: Precision of our robustness verification on Letter, Pendigits and Satimage.
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6
Conclusion and Future Works

With this research work, we have shown how to design an abstract interpretation of
𝑘-nearest neighbor classifiers, and how this methodology defines, to the best of our
knowledge, the first robustness verification framework for this popular ML algorithm.
The experiments carried out on our implementation have highlighted that this approach
is effective and precise, and that a 𝑘NN classifier is generally robust for small numerical
perturbation. We are confident that the precision of our abstract interpretation-based
technique can be further improved by leveraging more refined abstract domains, specif-
ically the relational ones. Notably, the standard interval abstraction, used in this thesis,
is not able to express the mutual exclusion of two or more scores. For example, if we
have 𝑘 = 3 and the score intervals s[𝐴] = [1, 3], s[𝐵] = [0, 1], and s[𝐶] = [0, 1], to
be sound we are forced to not consider the classifier robust, because the case where all
labels are considered exactly once exists. However, if we knew that between 𝐵 and 𝐶

there is a mutual exclusion, the outcome would be different: If 𝐵 and 𝐶 cannot occur
at the same time, then 𝐴 would receive at least 2 votes, thus making it the most voted
label, and therefore the classifier would have been decreed robust.

It may be a future challenge to use the so-called reduced affine forms (RAFs) [22] as
they allow us to keep track of the correlations between features. RAFs have already been
successfully exploited for the formal verification of support vector machine classifiers
[28].
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