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Abstract

Background: Neuroinflammation is a critical feature across various brain disorders, including

neurological and neurodegenerative conditions such as multiple sclerosis, Alzheimer’s disease,

and Parkinson’s disease, as well as neuropsychiatric disorders likemajor depressive disorder and

schizophrenia. Positron emission tomography (PET) targeting the 18-kDa translocator protein

(TSPO) is the primary tool for in vivo imaging of neuroinflammation. However, significant

methodological challenges have limited the development of reliable biomarkers.

Objective: This study aimed to advance non-invasive TSPO PET imaging by using a novel

blood-free methodology for estimating the blood-to-brain influx rate constant (K1). The ob-

jective was to validate this approach using the first-generation [11C]-PK11195 and the second-

generation [11C]-PBR28 TSPO radiotracers, and to extend it to voxel-level analysis. The pri-

mary hypothesis posited that elevated levels of peripheral inflammation would negatively cor-

relate with K1, indicating reduced delivery of TSPO tracers to the brain.

Methods: A novel non-invasive method utilizing an image-derived input function (IDIF) was

employed to estimate the blood-to-brain influx rate constant (K1) and generate parametric maps.

Analyses were conducted at both regional and voxel levels. The method was validated across

datasets representing various psychiatric conditions, including major depressive disorder and

schizophrenia. Additionally, the impact of peripheral inflammatory markers, body weight and

gender on K1 was systematically assessed.

Results: The methodology was successfully applied to all tracers under investigation and ef-

fectively generated meaningful K1 parametric maps. The study confirmed the hypothesized

negative correlation between peripheral inflammation and K1. Remarkably, the parameter was

not influenced by the psychiatric disease. Additionally, significant effects of body weight and

gender on K1 were observed.

Conclusion: This work represents a significant advancement in TSPO PET imaging by pro-

viding a reliable, non-invasive method for mapping the blood-to-brain influx of TSPO radio-

tracers. The study confirms the hypothesis that increased peripheral inflammation is associated

with reduced TSPO tracer delivery to the brain and supports the emerging model of peripheral-

to-central immune interaction. By accounting for key variables such as body weight, gender,
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and peripheral inflammatory status, this research offers crucial insights and improves the po-

tential for biomarker validation in psychiatric disorders. This methodological advancement is

pivotal for enhancing the interpretability of TSPO PET measures and advancing the field of

neuroinflammation imaging.
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Chapter 1

Introduction

Neuroinflammation is a significant pathological hallmark across various brain disorders, ranging

from neurological and neurodegenerative conditions such as multiple sclerosis, Alzheimer’s dis-

ease, and Parkinson’s disease, to neuropsychiatric disorders like major depressive disorder and

schizophrenia. Positron emission tomography (PET) targeting the 18-kDa translocator protein

(TSPO) is currently the primary tool for imaging neuroinflammation in vivo. However, signifi-

cant methodological challenges have hindered the development of robust biomarkers, which are

crucial for the advancement of innovative treatments for brain disorders.

Additionally, current research is exploring the link between peripheral and central immunity,

investigating how inflammation in the body can trigger neuroinflammation and ultimately lead

to clinical symptoms. In the field of immunopsychiatry, new models of peripheral-to-central

inflammation are emerging, emphasizing the critical modulatory role of the blood-brain barrier

(Turkheimer et al., 2023). This barrier selectively regulates the passage of solutes from the

blood to the brain, playing a crucial role in maintaining brain homeostasis.

In this context, a recently developed non-invasive methodology leverages the full poten-

tial of TSPO PET imaging to extract a parameter representing the brain-to-blood influx rate of

the radiotracers used to image inflammation (Maccioni et al., 2024). A simplified one-tissue

compartmental model, representing the first minutes after tracer injection and approximating

the arterial input function with an image-derived input function (IDIF), allows for the straight-

forward estimation of the microparameter K1. This novel technology could not only provide

unique insights into the regulatory mechanisms of the blood-brain barrier but also be instrumen-

tal in assisting TSPO quantification, which has faced significant methodological challenges,

particularly in the context of schizophrenia (Marques et al., 2019).

The project aims to expand this innovative non-invasive methodology to new datasets, uti-

lizing both first and second-generation TSPO radiotracers, computing regional blood-to-brain

influx rate constants. Furthermore, it seeks to refine the methodology to the voxel-level, uti-
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lizing a computationally efficient linear estimation approach. This advancement enables the

unique possibility of obtaining parametric maps of the TSPO radiotracers’ blood-to-brain influx

rate constant. The estimates of K1 at both the region of interest (ROI) and voxel levels are in-

vestigated to identify potential alterations in psychiatric disease or in the presence of peripheral

inflammation, as well as the possible influence of demographic and experimental variables.

The hypothesis of this study is to replicate previous findings that have identified an inverse

association between the concentration of peripheral inflammatory markers and the influx of

tracers from the blood into the brain (Turkheimer et al., 2021). Moreover, this work is expected

to extend these findings to the voxel level, utilizing statistical analyses on parametric maps. The

results are further elucidated and expanded by imaging transcriptomics analysis, which offers

insight into the underlying biological processes involved.

The expected impact of this work is to provide a blood-free, computationally efficient, com-

prehensive, and generalizable framework capable of mapping the blood-to-brain influx rate of

TSPO PET tracers. This tool will enable the acquisition of valuable physiological insights,

facilitate the interpretation of TSPO PET signals, and ultimately support research on neuroin-

flammation biomarkers.
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Chapter 2

Background

2.1 Neuroinflammation

2.1.1 Principles of central nervous system inflammation

Neuroinflammation refers to the inflammatory response within the central nervous system

(CNS). This process involves the release of various substances, such as cytokines, chemokines,

reactive oxygen species, and other second messengers like nitric oxide and prostaglandins.

These mediators are produced by resident CNS glial cells, including astrocytes and microglia,

endothelial cells, and infiltrating peripheral immune cells (DiSabato et al., 2016).

The effects of neuroinflammation depend on the severity and duration of the initial insult

that triggers it. Neuroinflammation is not inherently negative; in fact, microglia play a crucial

role in immune surveillance within the brain parenchyma, protecting against injuries and infec-

tions (Nimmerjahn et al., 2005). Additionally, neuroinflammatory signaling promotes synaptic

plasticity as well as learning and memory (Cornell et al., 2022).

However, unlike beneficial inflammation, severe and chronic neuroinflammation is highly

destructive and pathological. It is characterized by significant activation of CNS glia, increased

production of cytokines and chemokines, infiltration of peripheral immune cells, edema, and in-

creased permeability and breakdown of the blood-brain barrier (BBB). This is evident inmultiple

sclerosis (MS), where microglia shift from being protectors to destroyers, leading to demyeli-

nation, oligodendrocyte death, and neuroaxonal injury and loss in the CNS (Yong, 2022).

Furthermore, the activation of microglia and astrocytes is implicated in the pathogenesis and

progression of other neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkin-

son’s disease (PD) (Kwon & Koh, 2020). In AD, the binding of misfolded and aggregated

proteins to receptors on microglia and astroglia triggers an innate immune response that exacer-

bates disease progression and severity (Heneka et al., 2015). In addition to neurodegenerative
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diseases, neuroinflammation has been linked to neuropsychiatric disorders, such as depression

and schizophrenia. Further details about these associations will be elucidated in subsequent

sections.

Figure 2.1: Roles of microglia in neuroinflammation: from neuroprotection to neurotoxicity

2.1.2 The blood-brain barrier

Figure 2.2: Structural components of the blood-brain barrier (BBB)

The blood-brain barrier (BBB) serves as the regulated interface between peripheral blood cir-
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culation and the CNS. Anatomically, it constitutes a neurovascular unit primarily composed of

cerebral microvascular endothelium, astrocytes, pericytes, neurons, and the extracellular matrix

(Fig. 2.2). A complex of transmembrane and cytoplasmic proteins linked to the actin cytoskele-

ton constitutes the tight junctions between endothelial cells of the BBB (Hawkins & Davis,

2005). The function of this barrier is to restrict paracellular diffusion of hydrophilic substances

from the blood to the brain, thereby controlling the influx and efflux of biological substances

essential for the brain’s metabolic activity and neuronal function. Therefore, the functional and

structural integrity of the BBB is crucial to maintaining the homeostasis of the brain microen-

vironment (Kadry et al., 2020). The BBB is not the only regulated interface between the CNS

and the periphery. At the level of the choroid plexus, ependymal cells are joined with tight junc-

tions, forming the blood-CSF barrier (BCSFB). In the retina, the vessels are surrounded by the

blood-retinal barrier (BRB) and at the level of the spinal cord by the blood-spinal cord barrier

(SCB) (Choi & Kim, 2008)

The mechanisms of solute transfer across the blood-brain barrier are diverse and are graph-

ically summarized in Fig. 2.3. A thorough understanding of these processes is essential for

comprehending a broad spectrum of significant biological phenomena. For instance, these bar-

riers are critical for drug delivery to the CNS, presenting significant challenges and serving as

targets for emerging strategies, such as nanotechnologies (Nguyen et al., 2021). Additionally,

investigating the processes at the BBB level is crucial for elucidating the interplay between pe-

ripheral and central immunity. These complex phenomena will be discussed in the context of

psychiatric disorders, following the introduction of the primary tool for imaging neuroinflam-

mation in vivo.

Figure 2.3: Solute transfer across the blood-brain barrier (BBB)
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2.2 Neuroinflammatory imaging

2.2.1 Positron emission tomography

Positron emission tomography (PET) is a nuclear medicine technology that allows for the detec-

tion of small amounts of radiolabeled compounds, called radiotracers, inside the body (Coura-

Filho et al., 2022). A PET tracer is typically derived from natural substances or compounds

that interact with specific biochemical processes in the body, such as pharmaceuticals. To ac-

curately follow physiological or biochemical processes, an ideal tracer should possess several

specific characteristics (Cherry et al., 2012). First, the tracer’s behavior within the organism

should closely mimic that of the natural substance. Additionally, the injected mass should be

sufficiently small so as not to alter the physiological process being studied, while the tracer’s

specific activity should be high enough to allow for imaging and blood (or plasma) activity

evaluation. Finally, any isotope effect should be negligible. These substances are tagged with

short-lived positron-emitting isotopes, such as 11C and 18F, which are produced in a cyclotron.

During beta-plus decay, a proton within a radionuclide nucleus is converted into a neutron, re-

leasing a positron and a neutrino. The emitted positron travels a few millimeters in tissue before

being annihilated by an electron from the surroundings (Tai & Piccini, 2004). This annihilation

event produces two equally energetic photons (511 keV) traveling in opposite directions (180°)

along the same line. PET scanners consist of multiple rings of scintillation detectors, which

simultaneously capture the photon pairs produced from a single annihilation event, identifying

what is known as a coincidence event. The paths followed by each photon pair, referred to as

lines of response (LORs), can be traced, and the collected data are used to determine the location

of a positron annihilation at a specific time point. Reconstruction software then converts these

data into tomographic images.

After injecting a known dose of a radiolabeled compound, expressed inBq, the concentration
of radioactivity within the region or voxels of interest, evaluated in Bq/ml, can be measured.
In static scans, primarily used for clinical applications, tracer activity is counted over a single

fixed period. In dynamic scans, typically for research purposes, it is measured at multiple time

points during an examination lasting approximately 60-90 minutes. The resulting scans can be

further analyzed for quantification purposes, i.e., extracting parameters that provide physiologi-

cal information. Depending on the objective of the PET study, different quantification methods

can be employed (Bertoldo et al., 2014).

Static protocols often lead to the computation of semi-quantitative indices, such as the stan-

dardized uptake value (SUV), which provides an index of tracer uptake in a region or voxel of

interest, normalized to the injected dose of radiotracer and a normalization factor (NF) based on

the subject’s anthropometric features (e.g., body surface area or body weight):
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SUV =
radiotracer concentration

injected dose
NF

(2.1)

The integration of the SUV over a time interval of interest yields the area under the curve

(AUC), another commonly used index. Furthermore, through the so-called ratio method, it is

possible to estimate the volume of distribution VT (ml of plasma/cm3 of tissue), computed as

the ratio at true equilibrium between the tracer concentration in tissue Ctissue (kBq/cm3) and

the tracer concentration in plasma Cp (kBq/ml). In receptor studies, this method is used to

estimate binding potential BPND (unitless) by using the concentration of tracer in tissue and in

a reference region without specific binding, thus avoiding arterial sampling, which is otherwise

needed to obtain VT.

Transitioning from static to dynamic acquisition protocols allows for the introduction of

more informativemethodologies. Themain techniques in this context are spectral analysis meth-

ods, graphical methods, and compartmental modelling. The latter, considered the gold standard

for dynamic PET quantification, will be explored in detail as it is crucial for this research work.

Compartmental modelling aims to recapitulate the mechanisms of functioning of the investi-

gated biological system and therefore requires a full mathematical description of the system

processes. A compartment is defined as a volume within which the tracer rapidly becomes uni-

formly distributed, such that it exhibits no significant concentration gradients (Cherry et al.,

2012). Among the different models proposed in different quantification contexts, the starting

reference model for this study is the two-tissue four-parameter model for receptor ligand binding

studies (Mintun et al., 1984), depicted in Fig. 2.4.

Figure 2.4: Two-tissue four-parameter compartmental model

The first compartment represents the arterial blood pool, with Cp(t) describing the input
function, i.e., the measured tracer concentration in plasma. The other two compartments rep-
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resent the kinetic of the radiotracer in the tissue, describing the free and non-specific bind-

ing (C1(t)) and the specific binding (C2(t)), respectively. These compartments are connected
through the rate constants K1, k2, k3, and k4, often referred as microparameters. Among these,
K1, denoted with a capital letter, represents the blood-to-tissue influx rate constant and is mea-

sured in ml/cm3/min, while the other parameters are in min–1. From the microparameters, some

macroparameters of interest can be derived, e.g., the binding potential (BPND) or the volume

of distribution (VT).

BPND =
k3
k4

, VT =
K1

k2
·
(︃
1 +

k3
k4

)︃
. (2.2)

The gold-standard procedure for fully identifying the model, i.e., estimating its parameters, ne-

cessitates arterial blood sampling throughout the entire duration of the exam. Despite the sub-

stantial safety of radial arterial catheterization, with only a few cases of clinical complications

(Everett et al., 2009), it can be a source of distress for the patients, potentially discouraging their

participation in clinical trials. Furthermore, this procedure adds additional costs to the PET

exam: specialized clinical personnel are needed, and the presence of radiometabolites compli-

cates the direct measurement of the parent (unchanged) concentration in plasma, which must be

determined using chromatographic techniques (Tonietto et al., 2016).

2.2.2 The methodology of TSPO PET imaging

Figure 2.5: TSPO PET imaging in vivo

The 18 kDa translocator protein (TSPO), also referred to as the peripheral benzodiazepine

receptor (PBR), is a transmembrane protein situated on the outer membrane of mitochondria. In

the CNS, TSPO is highly expressed in glial cells, such as astrocytes and microglia, as well as in
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endothelial cells and some populations of neurons (Lee et al., 2020). TSPO is commonly em-

ployed as a marker for neuroinflammation or microglia activation, as its expression significantly

increases in activated glial cells, particularly microglia, during neural disorders or injury (Kim

& Yu, 2015). Consequently, TSPO is a central focus for molecular approaches aimed at imag-

ing neuroinflammation in vivo (Turkheimer et al., 2015). The first developed PET radiotracer

enabling TSPO density imaging in the brain is the isoquinoline-carboxamide derivative [11C]-

(R)-PK11195, a radiolabeled TSPO antagonist with nanomolar affinity (9.3 nmol). However,

quantifying PK11195 data poses several challenges. The first issue is the compound’s affinity

for multiple binding sites in blood, such as platelets, monocytes, and plasma proteins. Platelets

and monocytes have high TSPO densities, which vary with diseases. Normally, the fraction of a

radioligand bound to blood cells remains stable at equilibrium but not necessarily at capillaries,

where exchanges with tissue occur. Correcting arterial radioactivity by separating blood cells

from plasma can be approximate only if the bound fraction is small compared to the free fraction

in plasma. This is a problem for PK11195, which has a low free fraction in plasma (about 1-5%),

making accurate measurements difficult. Additionally, PK11195 binds to plasma proteins that

can be up-regulated during peripheral inflammatory events, which can sometimes accompany

brain disorders. If plasma-based quantification is not possible, the time-activity curve (TAC) of

a reference brain region can be used instead. However, this method is complicated by the un-

predictable location of microglial activation and the widespread presence of TSPO in the brain

and blood-brain barrier (BBB).

To overcome these challenges, significant work has been devoted to creating novel radioli-

gands with high affinity for TSPO like [18F]-DPA714 and [11C]-PBR28. These efforts aim to

enhance the signal-to-noise ratio compared to PK11195 (Chauveau et al., 2008). However, the

anticipated improvements in image quality have not been fully achieved, possibly due to several

factors (Turkheimer et al., 2015). First, genetic variations in the TSPO gene, particularly the

rs6971 polymorphism, result in different binding affinities among individuals. This variation

categorizes people into high-affinity binders (HABs), low-affinity binders (LABs), and mixed-

affinity binders (MABs), impacting the interpretation of PET signal. Second, the extremely high

affinity of some new ligands can cause a disproportionate signal from TSPO at the BBB com-

pared to brain tissue. This phenomenon occurs because of the high concentration of free ligand

near the BBB, masking signals from tissue-bound tracer. Addressing this requires sophisticated

kinetic modelling to accurately differentiate these signals (Veronese et al., 2018). Third, chal-

lenges in accurately measuring free plasma concentrations persist and pose significant hurdles,

as mentioned earlier. Significant research efforts have been made to address the methodological

issues of TSPO quantification, including the development of supervised clustering techniques

for reference region definition (J. Schubert et al., 2021; Turkheimer et al., 2007).
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2.3 Neuroinflammation in neuropsychiatric disorders

This section provides an overview of current research concerning the connection between neu-

ropsychiatric disorders and neuroinflammation, encompassing the rapidly evolving field of

immunopsychiatry. It emphasizes the current challenges and the ongoing pursuit of suitable

biomarkers, highlighting the critical need for innovative methodologies to shed light on this

intricate field, such as the one proposed in this study.

2.3.1 Neuroinflammation in depression

Depression, often referred to asmajor depressive disorder (MDD), is a prevalent conditionwhich

ranks among the top three causes of disability worldwide, impacting approximately 5% of adults

globally (WHO, 2021). Several medications used to treat MDD primarily function by increasing

levels of monoamines in the brain. However, treatment efficacy varies widely, and up to one-

third of patients do not attain complete relief from symptoms (Rush et al., 2006).

The pressing need for improved treatments has prompted the exploration of newmechanisms

for treating MDD, with extensive research into the relationship between neuroinflammation

and depression. In this context, inflammatory processes are suggested to play a substantial

role in the pathophysiology of major depressive disorder (Bullmore, 2018). Historically, the

neuroinflammatory hypothesis of depression has been supported by strong evidence of increased

peripheral inflammatory markers in a significant portion of MDD patients (Osimo et al., 2020;

Osimo et al., 2019; Pitharouli et al., 2021). The most reliable markers of inflammation in MDD

relate to the acute-phase C-reactive protein (CRP) and cytokines of the innate immune response,

e.g., TNF-α. Significantly, patients resistant to treatment exhibit notably higher CRP levels,

averaging around 5 mg/l (Chamberlain et al., 2019).

Studies utilizing positron emission tomography (PET) with ligands targeting the 18 kDa

translocator protein (TSPO) have demonstrated brain microglial activation in response to pe-

ripheral immune challenges. For example, high levels of TSPO binding have been observed

following acute lipopolysaccharide (LPS) administration, which induces robust peripheral cy-

tokine responses (Peters van Ton et al., 2021). In patients with MDD, TSPO PET imaging has

revealed increased microglial activity, although to a lesser extent compared to severe peripheral

inflammation models. In previous studies involving MDD cohorts, significantly higher TSPO

binding has been observed in the anterior cingulate cortex (ACC) compared to healthy controls

(Holmes et al., 2018; Richards et al., 2018; Setiawan et al., 2015, 2018), as well as in the frontal

cortex (Holmes et al., 2018; Li et al., 2018; Richards et al., 2018; Setiawan et al., 2015, 2018)

and the insula (INS) (Setiawan et al., 2015, 2018). Furthermore, a significant correlation has

been found between TSPO binding and depression severity scores in MDD (Setiawan et al.,
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2015), as well as a decrease in TSPO binding in MDD patients receiving cognitive behavioral

therapy (Li et al., 2018). Additionally, TSPO binding was found to be significantly higher in

MDD patients with suicidal thoughts compared to those without (Holmes et al., 2018). A more

recent investigation within the Biomarkers in Depression Study (BIODEP) under the NIMA

consortium (https://www.neuroimmunology.org.uk/) revealed that TSPO binding, expressed as

relative binding potential (BPND), was significantly elevated in depressed subjects compared to

controls, particularly in the ACC, without showing correlations between TSPO PET measures

and peripheral inflammatory markers (as indicated by CRP blood levels) or body mass index

(BMI) (J. J. Schubert et al., 2021). Moreover, the cited paper offers a comprehensive review of

the previously reported case-control differences in TSPO binding studies (Fig. 2.6).

Figure 2.6: Review of TSPO PET studies in depression (J. J. Schubert et al., 2021)

Forest plot summarizing TSPO PET findings from case-control studies of depression in the ACC,

frontal lobe, and INS regions.

Importantly, another TSPO PET study observed a marked inverse association between

blood-to-CSF exchange measures and peripheral inflammation, as measured by CRP, in healthy

subjects and MDD patients of the BIODEP study (Turkheimer et al., 2021). The same study re-

vealed an association between an increase in CRP and a reduction in blood-to-brain tracer per-

colation in a cohort of seven healthy volunteers, part of the FLAME study (Nettis et al., 2020),

after an immune challenge with IFN-α injection. Notably, there was no association of these

effects with the marker of BBB leakage, S100β, which remained unchanged.

These recent advancements and new perspectives have led to the development of an inno-
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vative model that transcends the conventional view of microglia cells as the primary drivers

of depression (Turkheimer et al., 2023). Challenging the traditional understanding of the re-

lationship between peripheral and central immunity in the context of sickness behavior in de-

pression, this theory proposes a more intricate interaction involving peripheral inflammation,

blood-brain barrier (BBB) permeability, and central nervous system (CNS) immune responses.

The model is applicable to MDD patients who have mild peripheral inflammation (CRP < 10

mg/l), including those who are resistant to traditional antidepressant medications. This new

theory, which is graphically schematised in Fig. 2.7, suggests that, in a healthy condition, cir-

culating cytokines are absent or minimal, barrier permeability is normal, and microglial cells

remain inactive. Moreover, temporary elevation of circulating cytokines reduces barrier perme-

ability temporarily, disrupting homeostasis and causingmild sickness behavior, whilemicroglial

cells remain inactive. Furthermore, with persistent inflammation becoming chronic, structural

changes in barrier function occur, leading to depressive behavior accompanied by activated mi-

croglia responding to prolonged disturbances in solute concentrations and the BBB. These ob-

servations suggest that microglial activity does not directly cause depressive symptoms; rather,

it is a consequence of the closure of barriers and subsequent disruption of homeostasis.

Figure 2.7: A new model of peripheral-central immune interactions (Turkheimer et al., 2023)
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2.3.2 Neuroinflammation in schizophrenia

Schizophrenia is marked by psychotic symptoms and often social and occupational decline,

posing significant etiological and therapeutic challenges. Affecting about 1% of the population,

this condition is slightly more prevalent in men than in women (Jauhar et al., 2022). The ex-

act mechanisms of schizophrenia are not fully understood, and current antipsychotic treatments

have significant limitations (Stępnicki et al., 2018). The therapeutic effects of antipsychotics are

generally attributed to their interactions with various neurotransmitter receptors. These treat-

ments are effective for only about half of the patients and primarily address positive symptoms

like hallucinations and thought disorders, leaving negative symptoms (e.g., flat affect, social

withdrawal) and cognitive symptoms (e.g., learning and attention disorders) largely untreated.

Additionally, antipsychotics can cause severe neurological and metabolic side effects, such as

agranulocytosis in the case of clozapine. Recent research has increasingly linked inflamma-

tion to schizophrenia through genetics, epidemiology, and clinical studies. Infection history,

autoimmune diseases, and genetic variants in immune-related genes elevate risk (Benros et al.,

2011). Additionally, prenatal infections, through maternal inflammatory responses, are linked

to schizophrenia and other neurodevelopmental disorders, with studies indicating that maternal

immune activation and cytokines like IL-6 play crucial roles (Aguilar-Valles et al., 2020). Fur-

thermore, altered concentrations of peripheral pro-inflammatory cytokines have been reported in

schizophrenic patients (Na et al., 2014). Numerous imaging studies have aimed to assess poten-

tial alterations in brain microglial activation in patients with schizophrenia spectrum disorders

compared to healthy controls, often yielding contradictory findings and inconclusive evidence.

A recent meta-analysis by Marques et al. (2019) synthesized findings from TSPO PET studies.

Figure 2.8: Results of meta-analysis on TSPO PET studies in schizophrenia (Marques et al., 2019)

Comparison of BP and VT outcomes between patients with schizophrenia and healthy controls.
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The main outcome measured was the difference in TSPO binding, specifically within the

total grey matter, quantified by either binding potential (BP) or volume of distribution (VT).

The results, presented in Fig. 2.8, revealed moderate increases in TSPO tracer binding within

greymatter in schizophreniawhen usingBP as an outcomemeasure, but no significant difference

was found when VT was used.

However, Plavén-Sigray and Cervenka (2019) criticized this meta-analysis, arguing that

BP outcomes with [11C]-PK11195 are unreliable due to low brain uptake and low specific-to-

background binding ratios. Additionally, the meta-analysis combined BP measures from differ-

ent studies, including both binding potential over plasma (BPp) and non-displaceable binding

potential (BPND), making the results difficult to interpret. Conversely, according to Plavén-

Sigray and Cervenka, the conclusions based on VT are more reliable as they were derived from

studies using second-generation tracers and did not include outcomes expressed relative to tis-

sue, such as distribution volume ratios (DVR), due to the lack of a suitable normalizing region.

In summary, the varied TSPO imaging outcomes likely reflect methodological challenges

and prompt questions about accurately interpreting tracer binding in grey matter, warranting

further investigation.
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Chapter 3

Materials & methods

3.1 Study participants and image acquisition

The data analyzed in this work comprise two datasets, each including TSPO PET imaging data

acquired using a different radiotracer. All datasets were made available through a formal col-

laboration with King’s College London.

Dataset 1 consists of 51 subjects diagnosed with major depressive disorder (MDD) and 27

matched healthy controls (HC) (details in Tab 3.1). These data are part of the Biomarkers in

Depression Study (BIODEP) under the NIMA consortium (https://www.neuroimmunology.org.

uk/), which aims at investigating the role of neuroinflammation in depression. Details on partici-

pant enrollment and clinical assessment, as well as information about venous blood sampling for

measuring C-reactive protein (CRP) levels, are available in (J. Schubert et al., 2021; Turkheimer

et al., 2021). In these previous studies, MDD patients were further stratified based on their blood

C-reactive protein (CRP) level, CRP > 3 mg/L corresponding to the high CRP group (n=20) and

CRP <= 3mg/L forming the low CRP group (n=31). Notably, one healthy subject lacks CRP

assessment. All subjects underwent a 60-minute dynamic PET scan on a GE SIGNA PET/MR

scanner (GE Healthcare, Waukesha, USA) following an intravenous bolus injection of [11C]-

PK11195 (injected dose 361 ± 53 MBq). The data were reconstructed using a multi-subject

atlas method with enhancements for the MRI brain coil component. Corrections for scatter, ran-

dom events, and dead time were applied using the GE scanner software. Consistent with best

practices for [11C]-PK11195 PET imaging (Turkheimer et al., 2007), no arterial blood data were

collected during the PET imaging. During PET data acquisition, each subject also underwent a

high-resolution T1-weighted brain MRI scan (BRAVO).
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Group Subjects Female Male Age (years) Weight (kg) CRP (mg/l)

HC 27 16 11 37.3 ± 7.8 73.6 ± 14.5 2.9* ± 2.8

MDD 51 36 15 36.2 ± 7.4 80.3 ± 14.4 1.1 ± 0.9

Table 3.1: Demographic information of subjects included in Dataset 1.

*not considering one missing value

Dataset 2 was part of the data already investigated in (Maccioni et al., 2024). Specifically,

King’s College London (KCL) provided dynamic [11C]-PBR28 PET and MR images from 94

subjects. The participants included 52 healthy controls (HC), 15 schizophrenia (SCZ) patients,

14 individuals at ultra high risk of psychosis (UHRP), and 13 subjects in the “STRESS” group.

The latter participants were healthy individuals exposed to psychosocial risk factors during

childhood and adulthood (for further details see Dahoun et al., 2019). Detailed information on

the healthy and psychotic subjects, as well as data acquisition protocols, can be found in (Bloom-

field et al., 2016). Notably, 7 SCZ patients underwent a second PET scan after administration of

XBD173, a drug that selectively binds to the 18 kDa translocator protein, blocking the specific

binding signal of the radiotracer (see Marques et al., 2021). Demographic information about all

the subjects included in Dataset 2 is reported in Tab. 3.2. In summary, all acquisition protocols

began with a low-dose computed tomography (CT) scan for attenuation and scatter correction

using a Siemens Biograph TruePoint PET/CT scanner (Siemens Medical Systems, Germany).

This was followed by a 90-minute dynamic PET scan after a bolus injection of [11C]-PBR28

(Injected Dose: 327.6 ± 28.5 MBq). The dynamic PET data were reconstructed using filtered

back projection with 5 mm isotropic Gaussian smoothing and corrected for random noise, at-

tenuation, and scatter effects. T1-weighted MR brain scan data were collected using a Siemens

3-T MR scanner, either a Siemens Tim Trio or Siemens MAGNETOM Verio.

Group Subjects Gender (F/M) Genotype (HAB/MAB) Age (y) Weight (Kg)

HC 52 16/36 32/20 34.0 ± 14.6 74.4 ± 13.9

SCZ 15 3/12 13/2 45.8 ± 10.1 87.5 ± 20.2

UHRP 14 7/7 7/7 24.3 ± 5.4 76.4 ± 13.9

STRESS 13 6/7 11/2 27.7 ± 6.8 72.0 ± 15.6

Table 3.2: Demographic information of subjects included in Dataset 2.
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3.2 Methodological framework

In this work, a new non-invasive and simplified methodological framework was utilized for

the computation of the blood-to-brain influx rate constant K1 . This parameter, expressed in

ml/cm3/min represents the rate at which the tracer crosses the blood-brain barrier (BBB) from

plasma and, following Fick’s law, can be expressed as the product of cerebral blood flow (blood

perfusion, F) and the tracer’s BBB extraction fraction (E) (Renkin, 1959).

K1 = F · E (3.1)

The extraction fraction (E) is described by the following equation:

E = 1 – e–PS
F (3.2)

PS represents the permeability-surface product (cm3/min/100 g of tissue), which corresponds

to the maximum capillary clearance achievable in a capillary bed of specific permeability and

surface area.

This method was crafted in a very recent work (Maccioni et al., 2024) and consists of fit-

ting a limited time window of the tracer kinetic after its injection (within 10 minutes), with a

simplified model composed by a single irreversible compartment and a non-invasive image-

derived input function (IDIF) (1T1K-IDIF). Designed to be completely blood-free, the method

relies on three key assumptions, which facilitate further simplification starting from the gold-

standard two-tissue compartmental model (Fig. 3.1). First of all, early after injection, exchanges

between compartments and venous efflux are minimal, allowing the tracer kinetics to predom-

inantly reflect influx into brain tissue. Consequently, a two-compartment reversible model can

be simplified to a single irreversible compartment model. A further simplification involves re-

moving the parameterization of the blood volume fraction (Vb = 0), resulting in the final linear

model for estimating theK1 parameter (1T1K-Cp). Notably, while assumingVb = 0 is standard

in brain PET parametric imaging (voxel resolution), it is a significant approximation for region-

of-interest (ROI) analysis. Second, shortly after injection, metabolite production from parent

radiotracers remains minimal (<10% of the total parent), as observed with many PET tracers

(Souza et al., 2021; Tonietto et al., 2016). During this period, assuming an even distribution be-

tween red blood cells and plasma is reasonable, making whole blood tracer concentration (Cb)

a suitable approximation for parent plasma tracer concentration. This approach uses Cb as the

input function for the model. Third, adopting a robust protocol for extracting IDIF and assum-

ing that computed IDIF closely approximates Cb, it can effectively serve as the input function

for the compartmental model (1T1K-IDIF). Therefore, this method offers a blood-sampling-free
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alternative for estimating the K1 parameter.

Figure 3.1: Novel blood-free methodological framework for K1 estimation (Maccioni et al., 2024)

Panel A illustrates the gold standard compartmental model for kinetic modelling of TSPO radiotracers.

Panels B, C, and D present the simplified models for K1 estimation derived by considering a limited

time window for model fitting. The reported time intervals were optimized for that previous study,

which validated the methodology for the tracers [11C]-PBR28 and [18F]-DPA714.

3.2.1 Data preprocessing and TAC extraction

The provided neuroimaging data had already been pre-processed using different combina-

tions of in-house codes and neuroimaging analysis software, including Statistical Paramet-

ric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm), FMRIB Software Library (FSL, http:

//www.fmrib.ox.ac.uk/fsl), and MIAKAT (http://Invicro.org). The pipeline included a step

of motion correction of the dynamic PET data, computation of integral PET images, deriva-

tion of brain and grey matter masks from structural MR images, performed using FreeSurfer

(https://surfer.nmr.mgh.harvard.edu), and registration of brain and tissue masks to the subject’s

native PET space. Afterwards, the CIC v2.0 neuroanatomical atlas (Tziortzi et al., 2011) was

co-registered to each subject’s image space. This atlas was masked using a FreeSurfer-derived
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mask to isolate voxels belonging to cortical and subcortical regions, excluding white matter and

CSF voxels, thus minimizing partial volume effects. The results of this process in a represen-

tative subject are shown in Fig. 3.2. Finally, mean regional time-activity curves (TACs) were

computed for each subject from the resulting regions of interest (ROIs).

(a) (b) (c)

Figure 3.2: CIC v2.0 neuroanatomical atlas masking and ROI definition. Results for a representative
subject from Dataset 1: (a) ROIs of the CIC v2.0 atlas, (b) FreeSurfer-derived mask, and (c) resulting

ROIs after masking.

Unless explicitly specified otherwise, the analyses described below, including kinetic mod-

elling and parameter estimation, were performed using MATLAB R2022a (MathWorks) and

encompassed all subjects introduced in Section 3.1.

3.2.2 Image-derived input function (IDIF)

The image-derived input function (IDIF) (Zanotti-Fregonara et al., 2011) is an elegant technique

that has emerged to address the limitations of the standard PET input function, which requires

the invasive procedure of arterial cannulation (see Section 2.2.1). The IDIF extraction process

primarily involves carotid segmentation to obtain raw blood time-activity curves. This segmen-

tation is typically performed using MRI images (Fung et al., 2009) or by placing regions of

interest (ROIs) directly on PET images (Mourik et al., 2008). MRI segmentation theoretically

offers better carotid identification, but practical implementation is hindered by unreliable coreg-

istration algorithms primarily focused on brain structures above the carotids. This can lead to

alignment errors exacerbated by the carotid artery’s small, elongated, and flexible nature, influ-

enced by head positioning differences between PET and MRI scans (Zanotti-Fregonara et al.,

2011). Conversely, direct PET image segmentation of carotids currently appears more reliable,
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avoiding MRI and coregistration issues. Despite challenges in PET image segmentation due to

low signal-to-noise ratios, carotid arteries are generally visible in early summed frames post-

tracer injection. In recent years, significant progress in PET scanner technology, characterized

by enhanced sensitivity, improved spatio-temporal resolution, and extended axial field of view

(FOV), has the potential to overcome the challenges associated with IDIF methods (Volpi et al.,

2023). These technological advancements, combined with more robust automated techniques,

promise to improve the accuracy of measuring blood activity levels, particularly during the cru-

cial early phase, essential for compartmental modelling.

In this work a semi-automated pipeline was utilized to extract the image-derived input func-

tion for each dynamical PET scan, in the PET native space, mainly usingMATLAB. For Dataset

1, the procedure was applied for the first time in this study, while for Dataset 2, the final extracted

IDIFs were already available from previous research (Maccioni et al., 2024). Nevertheless, all

the necessary steps are described for all the datasets under investigation. The first step involved

arterial carotid siphons segmentation. A preliminary binary mask defining an area including

the carotid siphons was already available and obtained by subtracting the individual brain mask

with a mask delineating cortical and subcortical regions (Freesurfer “aparc.a2009s+aseg”), us-

ing FMRIB Software Library (FSL, version 6.0.3) function fslmaths. This initial image was then

cropped further to isolate a smaller area containing the siphons. Subsequently, morphological

operations were applied to refine this cropped area, aiming to obtain a single connected compo-

nent. Next, voxels within this refined area were selected based on a lower threshold set to 60%

of the maximum peak amplitude in the early dynamic PET frames. Following this, slightly dif-

ferent strategies were applied to the two datasets. For Dataset 2, erosion and dilation operations

were performed to remove isolated voxels and delineate the left and right siphons. Conversely,

for Dataset 1, the MATLAB function bwconncomp was used to extract the two largest con-

nected components representing the carotid siphons. Results for the siphons mask definition

are reported in Fig. 3.3. For both datasets, the next step involved computing the correlation

between each voxel in the selected area and the dynamics of all other voxels in that region. This

step aimed to exclude voxels with highly noisy activities. For Dataset 1, 50% of voxels with the

most correlated dynamics were selected, while for Dataset 2, this percentage was set at 70%.

Finally, for Dataset 1, an additional selection was made based on voxels with the highest peak

amplitude in the early frames, selecting 50 voxels. This step enhances the characterization of

the initial peak, which is critical for the methodology. For each scan, the IDIF was obtained by

computing the median of the time-activity curves (TACs) of all selected voxels.

Compartmental modelling presumes a noise-free input function. Therefore, the IDIF for

each subject was ultimately fitted using a tri-exponential model. This involved applying linear

regression to the ascending part of the curve and fitting the descending part with a sum of three
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Figure 3.3: Representative result of siphons mask definition

Subject from Dataset 1. The left column displays various PET views (axial, sagittal, and coronal) at

peak activity in the carotid siphons area. The center column shows an intermediate step before

achieving optimal siphons segmentation, depicted on the right.

exponential functions (Parsey et al., 2000). Specifically, for each dataset, IDIFswere normalized

and aligned based on the peak activity, allowing for the calculation of a representative mean

curve. This mean curve was fitted using weighted non-linear least squares (WNLLS) (lsqnonlin

MATLAB function) to estimate the model parameters. The model was then applied individually

to each subject’s IDIF, with parameter refinement to ensure fitting quality. Model weights for

each PET mid-frame were defined as the reciprocal of the length of the respective scanning

interval. Particular attention was placed on the last samples; their weights were reduced by a

factor of ten if they tended to show aberrant increases due to noise. A representative result of

this procedure is depicted in Fig. 3.4.

For Dataset 1, where the IDIF was extracted for the first time, the physiological significance

of the final IDIF was evaluated by fitting a linear model with the injected dose of radiotracer

21



Figure 3.4: Representative outcome of IDIF fitting

Model fit, normalised residuals and model weight are illustrated for a subject in Dataset 1

normalized by body weight (DW) as the independent variable and the IDIF area under the curve

(AUC) as the dependent variable. The resulting R2 value of the linear relationship was 0.44,

indicating a good reliability of the extracted IDIFs.

3.2.3 K1 estimation

After extracting the TAC and IDIF, the parameterK1, which represents the blood-to-brain influx

rate constant, was estimated using the blood-free 1T1K-IDIF model (see Section 3.2). The

first analysis included the computation of this parameter at region of interest (ROI)-level. The

previously described assumptions allowed to derive a simple mono-compartmental dynamic in

the first minutes after tracer injection, which is mathematically represented by the following

system of equations: ⎧⎨⎩Ċ1(t) = K1IDIF(t), C1(0) = 0

C(t) = C1(t)
(3.3)

The only measured quantity (C(t)) is the tracer’s concentration in the tissue, represented by

PET signal, while the input function is represented by the IDIF. Furthermore, K1 estimate is

achievable by using the gold-standard weighted non-linear least squares (WNLLS) estimator
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(lsqnonlinMATLAB function). The model weights are defined as:

wROI(ti) = dtiCROI(ti), (3.4)

where ti is the time instant, dti is the length of the scanning interval, and CROI(ti) is the ROI

average time activity at time ti (Cobelli et al., 1982).

Furthermore, another advantage of the one-tissuemodel is the possibility formodel lineariza-

tion (Carson, 1993). The differential equation describing the tracer dynamic can be integrated

on both sides, resulting in the following expression:

C1(t) =
∫︂ tfit(end)

0
IDIF(τ) dτ (3.5)

This approach avoids the need for iterative non-linear methods to estimate K1 , allowing for

the use of a linear estimator. Model weights are defined as in Eq. 3.4. Denoting the integral

of the IDIF by the vector x, the ROI TAC by y, the vector of model weights by w, and the
K1 estimate by β̂, the explicit formula for regional K1 estimation using weighted linear least

squares (WLLS) is:

β̂ =
(︂

xTwx
)︂–1

xTwy (3.6)

In this study, K1 rate constant was estimated using both WNLLS (considered the gold stan-

dard) and WLLS methods. The aim was validating, in this context, the linear estimation tech-

nique, which offers significant computational advantages and facilitates extending the method-

ology to the voxel-level. The study evaluated the inter-subject correlation and the difference

between the estimates obtained with the two algorithms and assessed the precision of ROI esti-

mates using the coefficient of variation (CV).

Remarkably, before linear estimation, the IDIFs, the vector containing the lengths of the

scanning intervals for weights definition, and the ROI TACs were all interpolated onto a denser

virtual time grid. Designing this grid was a crucial algorithmic detail, as it was carefully opti-

mized to ensure that the original PET sampling grid was fully contained within it. This required

the step size of the virtual grid to be a divisor of the time points in the original sampling grid.

This detail was essential for optimizing parameter precision and ensuring the success of the

methodology.

A pivotal validation step involved determining the appropriate time interval for fitting the

reduced model. For Dataset 2, the window length had already been optimized (Maccioni et al.,

2024). Specifically, they selected the interval following tracer administration when the plasma

parent fraction (PPf) was greater than 90% to ensure adherence to the study’s assumptions,
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resulting in a 4-minute time window for [11C]-PBR28. They were also able to evaluate the cor-

relation between K1 estimates obtained from the reduced model fitted at different time intervals

and the gold-standard K1 of the two-tissue model. For Dataset 1, where K1 estimates using

full compartmental modelling were unavailable due to the absence of blood data, model fit was

evaluated in windows of varying lengths between 0 and 10 minutes with both linear and non-

linear algorithms. The selection criteria balanced the need to restrict model fitting to a short time

window to maintain model hypotheses and the necessity to include sufficient data points for ac-

curate model fitting. Evaluation metrics included the mean of ROI K1 estimates, their precision

(CV) and the sum of squares of weighted residuals (WRSS). Consistency with previous TSPO

PET studies, where K1 computations were performed (Jučaite et al., 2012), and information on

[11C]-PK11195 PPf population curves (Souza et al., 2021) were crucial for guiding the window

selection. The results from the validation of the fitting windows, which were determined to have

an optimal duration of 5 minutes for Dataset 1, as well as the validation of the linear estimation

method, will be presented in Chapter 4.

3.2.4 Methodology extension to voxel-level and parametric mapping

As previously mentioned, the use of WLLS for parameter estimation theoretically allows for a

straightforward translation of the methodology from regional to voxel-level. The algorithmic

details remain the same as for linear ROI-level quantification, including the selected time in-

terval for model fitting (see Section 3.2.3). However, noise could impact voxel-level TACs,

potentially hindering the application of kinetic modelling (Kotasidis et al., 2014). Therefore, a

rigorous validation procedure for voxel-wise K1 estimates is essential.

Similar to ROI-level estimation, voxel-wise quantification was performed in MATLAB af-

ter selecting voxels within each scan’s individual brain mask. Subsequently, the relationship

between ROI-levelK1 estimates and the distribution of voxel-wiseK1 estimates within each re-

gion was evaluated. Specifically, this evaluation included assessing the inter-subject correlation

between ROI voxel medians and ROI-level estimates, as well as calculating the mean relative

difference (MRD) between ROI-level estimates and the respective voxel-wise K1 distributions.

Results of the validation process are reported in Section 4.3.

The resulting brain K1 parametric maps were converted from MATLAB (.mat) format to

NIfTI format before the normalization procedure, using ANTs software (Advanced Normal-

ization Tools, https://github.com/ANTsX/ANTs). The obtained maps were co-registered to the

MNI152 template. For each image, the transformation consisted of a combination of rigid,

affine, and SyN (Symmetric Normalization) transformations, computed with the antsRegistra-

tion function. The obtained transformations were applied to individual K1 maps using antsAp-

plyTransforms. Subsequently, each normalized map underwent smoothing with a Gaussian ker-
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nel of 5 mm full-width at half-maximum (FWHM). This operation, performed with the FMRIB

Software Library (FSL, version 6.0.3) function fslmaths, aimed to remove residual noise in the

K1 maps.

3.3 Statistical analysis

The statistical analysis that will be presented aimed to deepen the physiological significance

of the extracted parameter, assessing its adherence to the study hypothesis and previous stud-

ies. The analysis was initially carried out at the regional level and subsequently extended to the

voxel level. At both levels and across all datasets, the main investigations included assessing

potential differences in the blood-to-brain influx rate between healthy subjects and patients with

psychiatric disorders, further exploring the possible link between K1 and subjects’ demograph-

ics. Another important evaluation involved examining the potential connection between this

microparameter and markers of peripheral inflammation. For this purpose, C-reactive protein

(CRP) blood concentration was available for Dataset 1, while a direct marker of peripheral in-

flammation was not available for Dataset 2. Importantly, for Dataset 1, which included both

healthy controls and patients diagnosed with MDD, all available participants were included in

the investigations. For Dataset 2, which comprised healthy participants (HC and STRESS), in-

dividuals at Ultra-High Risk for Psychosis (UHRP), and patients diagnosed with Schizophrenia

(SCZ), all available subjects were included in the investigations, except for the second scan of

the 7 SCZ patients from the TSPO blocking study (Marques et al., 2021).

3.3.1 ROI-level analysis

This level of statistical analysis was fully performed using MATLAB R2022a (MathWorks).

Lilliefors tests were conducted using lillietest, t-tests with ttest2, correlations with corr, and

analysis of covariance (ANCOVA) with anovan. The latter function performs an analysis of

variance (ANOVA) (Constrained Type III sum of squares) and accommodates continuous fac-

tors, allowing for the conduction of ANCOVA. The significance level for the reported analysis

was set at α = 0.05. A Lilliefors test for normality was conducted for the samples prior to every

parametric test application. If the Gaussianity test indicated non-normality, a Wilcoxon rank-

sum test (MATLAB function ranksum) was employed in place of the t-test, and Spearman’s

correlation was used instead of Pearson’s correlation. Importantly, for this ROI-level statistical

analysis, the validated K1 estimates derived from the linear estimator (WLLS) were utilized.

For Dataset 1, which includes healthy controls (HC) and major depressive disorder (MDD)

patients, the regions under investigation were those studied in (J. J. Schubert et al., 2021), specif-

ically the anterior cingulate cortex (ACC), prefrontal cortex (PFC), and insular cortex (INS). The
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three ROIs were originally selected based on previous findings, motivated by their role in mood

regulation (Goldin et al., 2008; Talbot & Cooper, 2006), together with previous suggestions of

the involvement of the ACC in the link between inflammation and depression (Hannestad et al.,

2012; Harrison et al., 2009). The PFC region is the aggregate of the medial and dorsolateral

frontal cortex regions, and the ACC region is the aggregate of the ventral cingulate subcallosal

gyrus, anterior cingulate gyrus, and dorsal anterior cingulate regions from the original parcella-

tion (see Section 3.2.1). The aggregation method was the arithmetic mean of the corresponding

ROIs. Then, for each region, an analysis of covariance (ANCOVA) was performed with group

(HC or MDD), C-reactive protein (CRP) concentration, and the interaction between the two

as factors. Subsequently, other features (gender, body weight, age, radiotracer injected dose)

were added to the statistical model to assess their effect on the parameter of interest. From this

investigation, the factors that resulted significant were further analyzed. In particular, group

differences between genders were evaluated with a two-tailed unpaired t-test. The same statisti-

cal test was then applied to assess group differences between controls and patients. Finally, the

association between CRP levels and regionalK1 was evaluated with Pearson’s correlation. CRP

values were log-transformed beforehand to achieve normality and enable the use of parametric

tests, in accordance with previous research practices (Turkheimer et al., 2021). Although the

ANCOVA did not show a significant effect of body weight on K1, this relationship was fur-

ther examined using Pearson’s correlation, considering that collinearity with CRP (see Section

4.4.1) might have masked the effect. For this dataset only, SUVR and AUC30-60 of the lateral

ventricle signal was available from previous studies (Turkheimer et al., 2021), and Pearson’s

correlation with this metrics was also evaluated after their logarithmic transformation.

For Dataset 2, which focuses on psychosis, the selected regions of interest were those in-

vestigated in (Bloomfield et al., 2016): frontal grey matter (GM), temporal GM, and total GM.

The regional K1 values were obtained for each region, analogous to Dataset 1, by averaging the

values of their corresponding subregions. Insights from the analysis of Dataset 1 highlighted

significant effects of certain demographics on K1. Therefore, a preliminary sensitivity analy-

sis on all the subjects with ANCOVA was conducted with gender, age, body weight, injected

dose, and TSPO genotype as variables of interest. Subsequently, to assess the potential effect

of the disease on the K1 parameter, unpaired t-tests were used to identify differences specif-

ically between the HC group (excluding STRESS and UHRP individuals) and patients with

schizophrenia. Furthermore, upon suspecting a possible confounding factor in this comparison,

an ANCOVA was conducted for these two groups, covarying for gender and body weight. Ad-

ditionally, for this dataset, group differences in K1 between genders were evaluated. Finally,

Pearson’s correlation between body weight and K1 was examined.

Importantly, for the above-reported analyses, correction for multiple comparisons was un-
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necessary due to the targeted selection of regions in each disease context, which is supported by

the reported literature.

3.3.2 Voxel-level analysis

Statistical analysis at the voxel level was performed using the FMRIB Software Library (FSL,

version 6.0.3). The randomise function was utilized for all analyses of K1 maps, employing

the general linear model (GLM) framework. The GLM is a flexible approach that models the

relationship between observed data and explanatory variables. It is defined as:

Y = Xβ + ϵ (3.7)

where:

• Y represents the voxel-wise measurements (e.g., K1 maps).

• X is the design matrix that encodes the experimental design, with each column represent-

ing different conditions, groups, or covariates.

• β is the vector of parameters to be estimated, indicating the contribution of each explana-

tory variable.

• ϵ is the error term.

Contrasts are specified to test specific hypotheses about the parameters in β. They are defined

as a vector that combines the parameter estimates to examine differences or effects of interest.

In this context, an unpaired t-test is a specific case of general linear model, where the design

matrix X specifies the groups or conditions being compared. The t-test evaluates whether the

difference between group means is significantly different from zero using the contrast vector

c = [1, –1]. This contrast tests whether the mean of the first group is significantly greater than
the mean of the second group. Alternatively, the contrast vector c = [–1, 1] can be used to test
the reverse hypothesis, assessing whether the mean of the second group is significantly greater

than the mean of the first group. After fitting the GLM, the randomise function computes t-

statistics for each parameter β to assess whether its estimated effect onY is statistically different

from zero. In addition to t-statistics, randomise employs Threshold-Free Cluster Enhancement

(TFCE) for cluster-based inference, which adjusts for multiple comparisons without requiring

an arbitrary threshold for cluster formation (Smith & Nichols, 2009). Importantly, all regressors

were demeaned before being input into the randomise function.

For Dataset 1, an unpaired two-sample t-test was used to evaluate the group difference be-

tween HC andMDD patients in both directions. Subsequently, a GLMwas constructed to assess
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both the negative and positive effects of covariates (gender, age, injected dose, body weight) on

K1 maps. An additional GLM was implemented to assess the isolated effect of body weight,

which approached but did not reach statistical significance in the initial model, indicating po-

tential masking due to collinearity. Finally, a GLM was developed to examine the effect of

C-reactive protein (CRP), whether negative or positive, following its log-transformation. Re-

markably, one healthy subject, who lacked CRP quantification, was not included in the afore-

mentioned analyses.

For Dataset 2, a GLMwas conducted on all included subjects (see Section 3.3) to investigate

the potential effects of gender, age, injected dose, TSPO genotype, and body weight on K1,

examining both positive and negative effects of these covariates. The potential effect of the

disease onK1was assessed by evaluating the group differences betweenHC (excluding STRESS

and UHRP subjects) and SCZ patients using a two-sample t-test in both directions. The same

test was repeated with additional nuisance variables, specifically gender and body weight.

3.3.3 Imaging transcriptomics analysis

The final investigation presented in this work aimed to exploit the approach of integrating neu-

roimaging and transcriptomics data, known as Imaging Transcriptomics (Martins et al., 2021).

The analysis was conducted using the Imaging Transcriptomics toolbox (Giacomel et al., 2022),

a new package providing a complete pipeline. This toolbox enables the identification of gene

expression patterns that correlate with specific neuroimaging phenotypes and performs gene

set enrichment analyses (GSEA) to offer biological insights into the findings. This framework,

which operates with Python 3, was applied to statistical maps representing the association be-

tween measures of peripheral inflammation and the blood-to-brain influx rate of PET tracers,

aiming to identify the physiological substrates of the key findings of this work.

Specifically, the images under investigation were the maps of the t-statistics (outputs of

the FSL randomise function, see Section 3.3.2) related to the negative linear association be-

tween the K1 parameter and log(CRP) for Dataset 1 and the maps of the t-statistics related to
the negative linear association between the K1 parameter and body weight for both datasets.

The software utilizes gene expression data from the Allen Human Brain Atlas (AHBA, http:

//human.brain-map.org/) and maps genetic and neuroimaging data into the same space using the

Desikan-Killiany (DK) parcellation. For neuroimaging data, the average signal across all vox-

els in each parcel is considered in the following steps. A mass-univariate Spearman correlation

analysis was selected from the package options to quantify the association between each gene’s

expression and the neuroimaging phenotype. To calculate statistical significance, permutation

testing, which accounts for the spatial autocorrelation inherent in the imaging data, was em-

ployed. This method generates one thousand null spatial maps through spin rotations of cortical
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regions and resampling of subcortical regions. The output of this analysis is a ranked list of

genes with their respective correlation coefficients, uncorrected p-values, and False Discovery

Rate (FDR)-corrected p-values.

Additionally, Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was im-

plemented to determine which categories of genes were significantly related to the imaging

phenotype. The first gene set investigated was the “Lake” gene set, which includes genes ex-

pressed in 30 brain cell types (Lake et al., 2018). Other gene sets used for GSEA included “GO

Biological Processes”, “GO Cellular Components” and “GO Molecular Functions”. The out-

puts of this analysis are tabular files containing, for each term of the gene set, the enrichment

score (ES), uncorrected p-values, and FDR-corrected p-values. Specifically, the enrichment

score (ES) reflects the extent to which a gene set is overrepresented at the top (positive score) or

bottom (negative score) of the ranked gene list from the correlation analysis. The p-values indi-

cate the significance of the observed enrichment, with the FDR-corrected p-values accounting

for multiple comparisons.
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Chapter 4

Results

4.1 Fitting window optimization

The methodological framework described in Section 3.2 necessitates defining a restricted time

interval after tracer injection where PET data are fitted using a reduced kinetic model (1T1K-

IDIF). This validation step was required for Dataset 1, since the methodology was applied for

the first time. Insights from the scientific literature, combined with visual inspection of model

fit and assessment of model fitting performance metrics, were crucial for optimizing the fitting

window. The precision of parameter estimates (CV) and the evaluation of the absolute model

estimates at different fitting intervals are depicted in Fig. 4.1 for Dataset 1. For this dataset,

the suitable time interval for model fitting was determined to be 0-5 minutes. This choice was

guided by previous findings on the metabolism of the radiotracer [11C]-PK11195 and insights

from prior works where the K1 parameter was estimated using this tracer. Specifically, earlier

studies indicated that more than 90% of [11C]-PK11195 tracer remained intact after 5 minutes

post-injection (Souza et al., 2021), which aligns with the kinetic modelling assumptions (see

Section 3.2). Furthermore, selecting this window ensured that the mean absolute value of theK1

rate constant was consistent with physiological values extrapolated from previous investigations

with this first-generation tracer (Jučaite et al., 2012). Additionally, this interval ensures accurate

parameter estimates, as assessed by the coefficient of variation (CV). Importantly, extending

the window further would not only undermine the initial assumptions about kinetic modelling,

but also lead to unacceptable model residuals and an unacceptable Weighted Residual Sum of

Squares (WRSS), due to the inherent challenge of a simple mono-compartmental dynamic in

accurately representing the experimental data.

Remarkably, the optimal windows were the same for both estimators used (weighted linear

least squares (WLLS) and weighted non-linear least squares (WNLLS)).
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Figure 4.1: Fitting window definition (Dataset 1): mean K1 estimates magnitude and precision (CV).
Results related to WLLS are shown in blue, and results for WNLLS are shown in red.

4.2 Validation of linear least squares estimates

The linear estimates of K1 were compared to those of the gold standard non-linear algorithm as

reported in Section 3.2.4. For all datasets, the intra-subject correlations between the estimates

obtained with the two methods were extremely high, as depicted in Fig. 4.2. Notably, only

for Dataset 1, a limited number of linear ROI estimates, in a total of 5 subjects, were deemed

unacceptable (close to zero) and discarded. This is likely due to the high level of noise in the

related regional TACs and the limited signal-to-noise ratio of [11C]-PK11195 data. For Dataset

2, all linear estimates were successfully obtained.

(a) Dataset 1 (b) Dataset 2

Figure 4.2: Distribution of intra-subject correlations between linear and non-linear algorithm ROI
estimates.
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(a) Dataset 1

(b) Dataset 2

Figure 4.3: Bias and relative bias of linear with respect to non-linear algorithm estimates. Each dot
represents the average across ROIs for one subject.

The bias and relative bias of the linear estimates with respect to the reference WNLLS pa-

rameter estimates showed a small underestimation by the linear algorithm, as depicted in Fig.

4.3. In particular, the magnitude of this underestimation was around 4% for Dataset 1 and 10%

for Dataset 2.

The precision of the parameter estimates obtained with the two algorithms was comparable,

as shown in Fig. 4.4. For Dataset 1, the average CV (%) was 14.2 ± 1.6 for WLLS and 14.2 ±
1.4 for WNLLS; for Dataset 2, it was 13.5 ± 2.6 for for the linear estimator and 12.8 ± 2.5 for

the non-linear estimator.
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(a) Dataset 1 (b) Dataset 2

Figure 4.4: Distribution of subjects’ average precision of the estimates (CV)

4.3 Validation of voxel-wise K1 estimates

The level of agreement between voxel-wise estimates and ROI-level estimates was evaluated

by examining the results in representative subjects and using quantitative measures. The first

metric consists in the intra-subject correlation between ROI-level estimates and the median of

voxel-wise estimates within corresponding regions. The results of this initial investigation are

presented in Fig. 4.5. The intra-subject correlations were high, indicating strong agreement

between the two types of estimates. Only isolated cases in Dataset 1 showed lower values,

likely due to noisy dynamics and poor signal-to-noise ratio (SNR) of [11C]-PK11195.

(a) Dataset 1 (b) Dataset 2

Figure 4.5: Distribution of intra-subject correlations between ROI estimates and voxels’ medians
within a region
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A second metric used was the mean relative difference (MRD [%]), measured for each re-

gion, between the ROI-level estimate and the voxel-wise estimates within the ROI (Fig. 4.6).

On average, voxel-level estimates tended to be moderately lower than their respective ROI-level

estimates, with the magnitude of this difference varying across the three radiotracers. In Dataset

1, the underestimation was approximately 20% on average, whereas in Dataset 2, it is only 2%.

(a) Dataset 1

(b) Dataset 2

Figure 4.6: Mean relative difference (MRD %) between each ROI-level estimate and voxel estimates
within the region. The x-axis represents the ROIs, and the MRD values were averaged across subjects.
The minimum MRD was reached in the medulla oblongata for both datasets. The only case of positive

MRD (%) was observed in the right lingual gyrus in Dataset 2.

Examples of the resulting K1 parametric maps, after normalization to MNI space and Gaus-

sian smoothing (FWHM = 5 mm), are shown for each dataset in Fig. 4.7
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Dataset 1 ([11C]-PK11195)

Dataset 2 ([11C]-PBR28)

Figure 4.7: K1 parametric maps [ml/cm
3/min]. All representative subjects were healthy controls.

Maps are in MNI space, and a Gaussian filter (FWHM = 5 mm) was applied.
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4.4 K1 statistical analysis

4.4.1 ROI-level analysis

For Dataset 1, in the context of major depressive disorder, the first ANCOVA with group (HC

vs. MDD), CRP, and their interaction as factors revealed significant effects of CRP and the

interaction term in all the studied regions.

• ACC: No significant effect of group (F = 2.61, P = 0.11). CRP showed signifi-

cant effects (F = 6.51, P = 0.01), as did the interaction between group and CRP

(F = 4.90, P = 0.03).

• PFC: No significant effect of group (F = 2.53, P = 0.12). CRP showed signifi-

cant effects (F = 5.93, P = 0.02), as did the interaction between group and CRP

(F = 4.17, P = 0.04).

• INS: No significant effect of group (F = 2.20, P = 0.14). CRP showed significant effects
(F = 6.40, P = 0.01), as did the interaction between group and CRP (F = 4.58, P =

0.04).

Moreover, by adding other covariates to the model (age, gender, body weight, injected dose),

the interaction term between group and CRP lost its significance in all the ROIs, while gender

revealed a significant effect in all three regions:

• ACC: The only significant effects were those of CRP (F = 5.81, P = 0.02) and gender
(F = 6.41, P = 0.01).

• PFC: The only significant effects were those of CRP (F = 5.23, P = 0.03) and gender
(F = 5.58, P = 0.02).

• INS: The only significant effects were those of CRP (F = 5.56, P = 0.02) and gender
(F = 5.40, P = 0.02).

As anticipated by the ANCOVA, post-hoc tests revealed no significant difference between

healthy controls’ and depressed patients’ blood-to-brain influx rate in any of the regions under

investigation (two-tailed unpaired t-test, all p-values > 0.05) (Fig. 4.8). Conversely, there was

a significant group difference between genders, as indicated by the two-tailed unpaired t-test

(Fig. 4.9). Results of the statistical tests as well as an indication of the percentage gap between

females’ and males’ average K1 values are provided as follows:

• ACC: Male vs. female: t = –2.37, df = 76, P = 0.02, CI = [–0.023, –0.002]. On

average, K1 was 12.8 % higher in females compared to males.
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• PFC: Male vs. female: t = –2.10, df = 76, P = 0.04, CI = [–0.022, –0.001]. On

average, K1 was 10.7 % higher in females compared to males.

• INS: Male vs. female: t = –2.25, df = 76, P = 0.03, CI = [–0.024, –0.001]. On average,
K1 was 11.7 % higher in females compared to males.

Figure 4.8: Distribution of K1 in ACC, PFC, and INS, grouped by HC vs. MDD. No significant
differences were found between the groups.

Figure 4.9: Distribution of K1 in ACC, PFC, and INS, grouped by gender. P-values refer to the results
of two-tailed unpaired t-tests.

Furthermore, investigation on the link between K1 and C-reactive protein (CRP) blood con-

centration revealed significant negative linear association between the rate constant and the nat-

ural logarithm of CRP, as stated by Pearson’s correlation (ACC: r = –0.30, P = 0.008; PFC:
r = –0.31, P = 0.006; INS: r = –0.30, P = 0.007) (Fig. 4.10).
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Figure 4.10: Scatter plots showing, for each region, the negative linear association between log(CRP)
and K1

Pearson’s correlation suggested a negative trend but not a significant association between

body weight and K1 (ACC: r = –0.18, P = 0.116; PFC: r = –0.17, P = 0.127; INS:
r = –0.19, P = 0.099). Remarkably, body weight was significantly positively correlated with
log(CRP) (Pearson’s r = 0.33, P = 0.003). Finally, the only significant association between
the lateral ventricle TSPO signal and blood-to-brain influx rate was found in the prefrontal cor-

tex, using the log-transformed version of the area under the curve (AUC) of the lateral ventricle

signal (Pearson’s r = 0.28, P = 0.04) (Fig. 4.11).

Figure 4.11: Scatter plots showing the positive linear association between the area under the curve
(AUC) of the lateral ventricle TSPO signal and K1, for PFC.

For Dataset 2, in the context of psychosis, the preliminary sensitivity analysis using AN-

COVA (gender, age, injected dose, body weight, TSPO genotype) revealed significant effects

of gender and body weight in all three areas. The effect of the injected dose was significant
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only in the temporal grey matter, being just above the threshold for significance. However, the

magnitude of this effect was considerably smaller compared to those of gender and weight and

was not considered in the subsequent analyses.

• Total GM: significant effect of gender (F = 8.86, P = 0.004) and weight (F =

10.53, P = 0.002).

• Temporal GM: significant effect of gender (F = 8.12, P = 0.005), weight (F =

10.21, P = 0.002) The effect of dose was just below the threshold for significance

(F = 4.17, P = 0.044).

• Frontal GM: significant effect of gender (F = 8.58, P = 0.004), weight (F = 10.74, P =

0.002).

A one-tailed t-test revealed a significant reduction of temporal GM K1 in SCZ compared to

HC (HC vs. SCZ: t = 1.99, df = 65, P = 0.02) (Fig. 4.12) . No differences between HC and

SCZ were found in total and frontal GM (all P-values > 0.05).

Figure 4.12: Distribution of K1 in total GM, temporal GM, and frontal GM, grouped by HC vs. SCZ.
P-values refers to the results of the one-tailed t-tests (HC>SCZ).

Furthermore, a deeper analysis of the sensitivity results revealed a significant group differ-

ence between genders, as indicated by two-tailed Wilcoxon rank-sum tests (after failure of the

normality test) in all brain areas under investigation (Fig. 4.13). Notably, to provide an indi-

cation of the percentage gap between females and males, the medians of the groups were used

instead of the means, given the non-Gaussian distribution of the data.

• Total GM: Male vs. female: z = –4.33, P < 0.001. On average, K1 was 30.5 % higher

in females compared to males.

• Temporal GM: Male vs. female: z = –4.30, P < 0.001. On average, K1 was 26.5 %

higher in females compared to males.
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• Frontal GM: Male vs. female: z = –4.27, P < 0.001. On average, K1 was 33.3 %

higher in females compared to males.

Figure 4.13: Distribution of K1 in total GM, temporal GM, and frontal GM, grouped by gender.
P-values refer to the results of the Wilcoxon rank sum tests.

Furthermore, there was a negative linear association between body weight and regional K1

values, as indicated by Pearson’s correlations (Total GM: r = –0.42, P < 0.001; Temporal

GM: r = –0.41, P < 0.001; Frontal GM: r = –0.43, P < 0.001) (Fig. 4.14).

Figure 4.14: Negative linear association between body weight and K1 in total GM, temporal GM, and
frontal GM

Finally, the higher body weight of SCZ patients compared to HC (one-tailed t-test, P =

0.003), along with the disproportionate number of males and females in the SCZ cohort relative
to HC, with a large prevalence of males in the pathological group (see Table 3.2), underscored
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the necessity of adjusting for these potential confounding factors in examining group differences

between HC and SCZ. After including body weight and gender as covariates in an ANCOVA,

alongside the group factor (HC vs. SCZ), the group factor did not demonstrate significance in

any region (allP-values > 0.05). However, weight continued to exhibit significant effects, while
gender showed significance only in total GM, with levels just above the threshold of significance

in temporal and frontal GM.

• Total GM: no significant effect of group (F = 0.29, P = 0.59); significant effect of
weight (F = 5.87, P = 0.02) and gender (F = 4.27, P = 0.04).

• Temporal GM: no significant effect of group (F = 1.03, P = 0.31); significant effect of
weight (F = 4.88, P = 0.03); the effect of gender was just above threshold for signifi-
cance (F = 3.82, P = 0.055).

• Frontal GM: no significant effect of group (F = 0.22, P = 0.64); significant effect of
weigth (F = 6.21, P = 0.02); the effect of gender was just above threshold for signifi-
cance (F = 3.88, P = 0.053).

Importantly, what emerges from this latter investigation is that in the temporal GM, where

a significant decrease in K1 was found in SCZ, the disease’s effect ceases to be significant

after adjusting for the confounding effect of body weight. This correction helped mitigate any

misleading results in the group comparison.

4.4.2 Voxel-level analysis

The relevant results of the statistical analysis on parametric maps are subsequently reported. For

each finding, a map of the “raw” t-statistics will be depicted to allow for comparison between

spatial patterns observed in the different datasets. Moreover, a map of the t-statistics with the

significant clusters is depicted. When referring to statistical significance in this context, it in-

dicates that the p-value adjusted for multiple comparisons with TFCE (see Section 3.3.2) is not

greater than 0.05.

For Dataset 1, the unpaired two-sample t-test did not reveal any significant differences be-

tween HC and MDD patients in either direction. The GLM demonstrated a significant effect

of gender, specifically a widespread increase in K1 in females compared to males (Fig. 4.15a,

4.15b). The model did not identify any other significant effects among the covariates studied.

However, as previously noted, body weight exhibited a negative trend that reached statistical

significance when assessed independently in a separate model. (Fig. 4.16a, 4.16b). The final
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GLM, designed to investigate the effect of log(CRP) on brain-to-blood tracer influx rate, re-
vealed brain areas of significant negative association between the log-transformed CRP levels

and K1 (Fig. 4.17a, 4.17b).

For Dataset 2, the preliminary GLM with covariates revealed a significant effect of gender,

with a widespread increase in K1 in females compared to males (Fig. 4.15c, 4.15d). Addition-

ally, the model identified areas with significant negative effects of body weight (Fig. 4.16c,

4.16d). The two-sample unpaired t-test did not reveal any significant differences between HC

and SCZ patients, even after adjusting for the confounding effects of gender and body weight.

(a) Dataset 1: t-statistics. (b) Dataset 1: thresholded t-statistics.

(c) Dataset 2: t-statistics. (d) Dataset 2: thresholded t-statistics.

Figure 4.15: Comparison of t-statistics maps for gender effect (F > M) across the two datasets. Each
row displays the t-statistics map (left) and the thresholded t-statistics map (right) with corrected

P < 0.05.
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(a) Dataset 1: t-statistics. (b) Dataset 1: thresholded t-statistics.

(c) Dataset 2: t-statistics. (d) Dataset 2: thresholded t-statistics.

Figure 4.16: Comparison of t-statistics maps for negative effect of body weight across datasets 1 and
2. Each row displays the t-statistics map (left) and the thresholded t-statistics map (right) with corrected

P < 0.05.
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(a) Dataset 1: t-statistics. (b) Dataset 1: thresholded t-statistics.

Figure 4.17: T-statistics maps for the negative effect of log(CRP) on the K1 parameter. The left panel
shows the t-statistics map, while the right panel displays the thresholded t-statistics map with corrected

P < 0.05.

When comparing the spatial extent of the observed effects across all datasets, several con-

siderations emerge. Firstly, the effect of gender (F > M) was consistent across all datasets,

showing no distinct pattern and being widespread throughout the brain, with symmetry between

hemispheres (Fig. 4.15a,4.15c). Regarding the negative effect of body weight, it was broadly

distributed in Dataset 1, with only a marginally notable cluster of higher magnitude observed

in the brainstem (Fig. 4.16a). In Dataset 2, the effect was again substantially widespread and

symmetric across hemispheres, with a more elevated impact extending to areas where it was less

pronounced in dataset 1, including parts of the cerebral white matter, subcortical areas, and the

cerebellum (Fig. 4.16c).

In Dataset 1, the negative effect of CRP onK1was significant across various cortical regions.

This effect was particularly pronounced and widespread in the frontal areas, as well as in a large

region encompassing the cerebellum and brainstem, spanning the fourth ventricle (Fig. 4.17a).

Moreover, an intriguing, albeit partial, correspondence can be observed between these patterns

and those representing the negative effect of body weight in the same dataset (Fig. 4.16a),

particularly in terms of the elevation observed in the brainstem and frontal lobe.
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4.4.3 Imaging transcriptomics

For this analysis, the images examined were maps of the t-statistics related to the negative linear

association between the K1 parameter and log(CRP) (Dataset 1) and the inverse linear associ-
ation between K1 and body weight (datasets 1 and 2).

Regarding the effect of C-reactive protein in Dataset 1, Gene Set Enrichment Analysis

(GSEA) revealed no significant associations with brain cell types (Lake gene set), cellular

components, or molecular functions after FDR correction. However, among the biological

processes, genes associated with “Peptide Antigen Assembly With MHC Protein Complex

(GO:0002501)” were found to be significantly overrepresented after FDR correction for multi-

ple comparisons (ES = 0.673, FDR-corrected P < 0.05).
Concerning the effect of body weight in Dataset 1, GSEA revealed no significant associa-

tions with brain cell types (Lake gene set) or cellular components. Conversely, genes associ-

ated with three biological processes were found to be significantly underrepresented after cor-

recting for multiple comparisons: “Receptor Metabolic Process (GO:0043112)” (ES = -0.624,

FDR-corrected P < 0.05); “DNA Modification (GO:0006304)” (ES = -0.651, FDR-corrected

P < 0.05); “Regulation Of Mitochondrial Fission (GO:0090140)” (ES = -0.710, FDR-corrected

P < 0.05). Additionally, among the molecular functions, genes related to “Voltage-Gated

Monoatomic Ion Channel Activity (GO:0005244)” were significantly underrepresented (ES =

-0.666, FDR-corrected P < 0.05).
Finally, in regard to the negative effect of body weight in Dataset 2, GSEA revealed no

significant associations with brain cell types, cellular components, or molecular functions af-

ter FDR correction. Nevertheless, gene sets related to three different biological processes

were found to be significantly overrepresented: “tRNAAminoacylation For Protein Translation

(GO:0006418)” (ES = 0.578, FDR-corrected P < 0.05); “Regulation Of Ubiquitin Protein Lig-
ase Activity (GO:1904666)” (ES = 0.683, FDR-corrected P < 0.05); “Cytoplasmic Translation
(GO:0002181)” (ES = 0.702, FDR-corrected P < 0.05). On the other hand, gene sets related to
two different biological processes were found to be significantly underrepresented: “Eye Mor-

phogenesis (GO:0048592)” (ES = -0.587, FDR-corrected P < 0.05); “Detection Of Chemical
Stimulus Involved In Sensory Perception Of Bitter Taste (GO:0001580)” (ES = -0.602, FDR-

corrected P < 0.05).
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Chapter 5

Discussion

5.1 Methodological advancements

This work presents a significant methodological advancement in mapping the blood-to-brain

exchange of TSPO PET radiotracers. The new blood-free methodology (Maccioni et al., 2024)

was successfully validated for the first-generation tracer [11C]-PK11195. Especially for this ra-

diotracer, the methodology assumes a crucial importance, being the plasma-based quantification

unfeasible, due to the low free fraction in plasma (Turkheimer et al., 2007). For both TSPO ra-

diotracers under investigation, including [11C]-PBR28, the methodology was further extended

to the voxel level. This extension was enabled by the use of a linear estimation method, whose

estimates showed excellent agreement with those of the non-linear estimator (see Section 4.2).

In the original work where the novel methodology was developed (Maccioni et al., 2024), high

and variable bias was reported for the 1T1K-IDIFK1 estimates. This bias depended on the vari-

ability of the IDIF in approximating blood input functions, typically leading to overestimation

compared to the gold standard K1 estimates obtained using the 2T2K-Cp compartmental model

with blood data. Consequently, while this parameter can be used to quantify inter-subject dif-

ferences in tracer delivery, the high bias renders it unsuitable for absolute quantification. The

linear estimation methodology employed in the present study offers a significant advantage in

terms of computational efficiency compared to iterative estimation procedures. Additionally, its

slight tendency to underestimate K1, relative to estimates obtained with the nonlinear algorithm

(see Section 4.2), may help mitigate the overestimation observed by Maccioni et al. (2024) in

the reduced model with IDIF.

Moreover, the transition from the ROI to the voxel level was supported by the optimal align-

ment between estimates at the two levels (see Section 4.3). This was evidenced by very high

intra-subject correlations between regional estimates and the voxel medians within ROIs. More-

over, the mean relative difference of the voxel estimates with respect to their corresponding

47



ROI-level estimates was limited, with only a small tendency for average underestimation at the

voxel level. This underestimation could be attributed to the noisy dynamics of TSPO PET voxel

TACs, which may have impacted the estimation procedure, resulting in some voxel estimates

being close to zero. This is supported by the observation that the mean relative difference was

higher for [11C]-PK11195, which is known to exhibit a lower signal-to-noise ratio compared to

second-generation tracers.

The methodology enabled the computation of K1 parametric maps with high definition and

physiological relevance. As proof of this significance, the maps highlight and clearly distinguish

areas of higher perfusion, such as the grey matter, compared to those of lower perfusion, such

as white matter.

5.2 Physiological insights from key findings

Of great importance, the novel non-invasive methodology not only replicated previous findings

but also suggested new insights that could prove fundamental for further technological advance-

ments in neuroinflammation quantification, in a transdiagnostic context. Before discussing the

main findings of this study, it is worth to reiterate the physiological meaning of the blood-to-

brain influx rate constant K1. This parameter represents the rate at which the tracer crosses the

blood-brain barrier (BBB) from plasma and consists in the product of cerebral blood flow (blood

perfusion) and the tracer’s BBB extraction fraction (Renkin, 1959).

5.2.1 Peripheral inflammation and TSPO tracers influx rate

The primary finding of this study is the negative association between markers of peripheral

inflammation and measures of blood-to-brain exchange of TSPO PET radiotracers. This result

was consistently observed at both the regional and voxel levels in the dataset where C-reactive

protein (CRP) measurements were available. Specifically, for Dataset 1 (BIODEP study), a

reduction in blood-to-tissue TSPO ligand perfusion was indicated, in a previous work, by an

inverse relationship between blood-to-CSF exchange parameters and CRP levels, with elevated

CRP levels corresponding to lower SUVR and AUC30-60 of the TSPO signal in the lateral

ventricle for both MDD patients and healthy controls (Turkheimer et al., 2021).

The new finding gains further credibility when considering the significant positive associa-

tion between the K1 parameter in the prefrontal cortex and the lateral ventricle AUC30-60, as

measured in the previous study investigating Dataset 1. This suggests strong coherence between

the two measures of blood-to-tissue tracer exchange and supports the physiological relevance

of the K1 parameter obtained with the novel blood-free methodology. Given that no effect of

the psychiatric disease on the K1 parameter was observed, these results support the idea of a
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disease-agnostic link between increased peripheral inflammation and reduced delivery of TSPO

radiotracers to the brain. Supporting this hypothesis, elevated serum peripheral C-reactive pro-

tein (CRP), induced by IFN-α injection in healthy individuals (FLAME study), was associated

with reduced brain barrier permeability, as indicated by lower K1 rate constants for the TSPO

tracer [11C]-PBR28 (Nettis et al., 2020; Turkheimer et al., 2021). Remarkably, the latter find-

ing was replicated with the novel non-invasive methodology for K1 estimation (Maccioni et al.,

2024).

The present study cannot determine whether the observed inverse association between

CRP and K1 reflects an effect of cerebral blood flow or extraction. However, current litera-

ture suggests that reduced extraction is the primary mechanism for decreased tracer exchange

(Turkheimer et al., 2021). PET radioligands, which are typically lipophilic, are tought to cross

the blood-brain barrier via a transcellular route (Bagchi et al., 2019). The exact mechanisms

for their passage through other layers of the barrier, such as gaps between astrocytic end-feet or

aquaporin channels, are less understood and require further research. Interestingly, given that

TSPO ligands have a molecular weight and lipophilicity similar to other lipid-soluble drugs, it

is possible that reduced transport of these small lipophilic molecules could contribute to drug

resistance (Turkheimer et al., 2021). Additionally, research involving the FLAME study co-

hort identified changes in the availability of free ligand in the plasma after peripheral immune

challenges. Specifically, higher peripheral inflammation was associated with increased ligand

binding to plasma proteins and decreased ligand availability for brain entry (Nettis et al., 2020).

Given the collinearity between plasma protein binding and C-reactive protein (CRP) blood lev-

els, other investigations on the same cohort studied their interaction with the parameterK1. Par-

tial regression between K1 and CRP, controlling for plasma protein binding (fp), still showed
a significant association for GM tissue (Turkheimer et al., 2021). Additionally, when they di-

rectly corrected the transfer rate K1 by multiplying it with fp, they found the same significant
associations between tracer perfusion and CRP for both CSF and GM. Therefore, although this

is insufficient to disentangle the effects of CRP and fp on K1, it suggests that the observed

reduction in perfusion could be due to the direct influence of peripheral inflammation on the

permeability of the barrier to TSPO radiotracers. However, the present work did not investigate

the effect of tracer binding to plasma proteins.

Moreover, although recent research found no significant changes in [11C]-PBR28 radiotracer

kinetics associated with alterations in cerebral blood flow, this evidence is insufficient to rule

out the influence of cerebral blood perfusion on TSPO tracer delivery and uptake.

Insights from imaging transcriptomics analysis can provide valuable information about the

underlying mechanisms. This analysis revealed a significant overrepresentation of genes in-

volved in peptide-antigen assembly with Major Histocompatibility Complex (MHC) protein
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complexes. According to the official definition (https://amigo.geneontology.org), this biologi-

cal process involves the binding of a peptide to the antigen-binding groove of an MHC protein

complex, which is crucial for antigen presentation to immune cells. For example, MHC class I

molecules are expressed on the luminal side of brain endothelial cells, which are capable of anti-

gen presentation (Galea et al., 2007). Additionally, both microglia and astrocytes can function

as antigen-presenting cells (APCs) (Gimsa et al., 2013). Specifically, microglia express MHC

class II readily upon activation both in vivo and in vitro, whereas astrocytes express MHC class

II during prolonged inflammation in vivo (Kreutzberg, 1996) or in vitro upon stimulation by

interferon-γ (Aloisi et al., 1999).

These cells may interact at the blood-brain barrier (BBB), potentially modulating its per-

meability. A recent study (Haruwaka et al., 2019) used a peripheral chronic LPS model to

demonstrate that microglia respond to inflammation by becoming activated and migrating to-

ward brain blood vessels before any detectable change in BBB permeability occurs. Although

this model involves severe peripheral immune activation that eventually disrupts the BBB, the

initial interactions between microglia and endothelial cells help maintain BBB integrity through

the expression of the tight-junction protein Claudin-5. Similar protective effects of microglia on

BBB stability during inflammation have also been reported in vitro (Spampinato et al., 2022).

Furthermore, recent work (Suo et al., 2023) suggests that activated astrocytes also play a role in

protecting BBB integrity.

Furthermore, future investigation could explore the role of the BBB’s basement mem-

brane, which is a highly organized extracellular matrix consisting of two distinct layers: the

endothelial-derived layer and the astrocyte (glial)-derived layer (Galea, 2021). Located in the

space between these layers are CD163-positive perivascular macrophages (Mato et al., 1996).

These macrophages express surface molecules that allow them to respond to systemic inflam-

mation, as well as antigen presentation molecules, including MHC class II. They play a crucial

role in scavenging and presenting antigens to lymphocytes. Overall, the basement membrane is

critical in regulating BBB permeability to cells (Galea, 2021).

Altogether, the results of the GSEA and subsequent observations regarding the involvement

of immunological processes at the blood-brain barrier could support a role for BBB permeability

and, consequently, tracer extraction in the observed phenomena.

5.2.2 Body weight and K1 measures

The analyses indicated a significant inverse association between body weight and the K1 pa-

rameter across all datasets and levels, except at the ROI level for Dataset 1. This effect could

be partially attributed to alterations in cerebral blood flow, as elevated body mass index (BMI)

is associated with reduced cerebral blood perfusion (Knight et al., 2021). Additionally, reduced
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extraction may also play a role in this inverse association. Increased body mass and obesity

have been linked to chronic peripheral inflammation (Forsythe et al., 2008; Murray et al., 2015;

Visser et al., 1999). Therefore, the same mechanism that links elevated CRP to reduced K1

could explain the inverse relationship between body mass measures and K1. This is supported

by the significant positive association between log(CRP) and body weight in Dataset 1 (see

Section 4.4.1). Additionally, the partial alignment between the patterns showing the negative

effect of weight and the negative effect of CRP levels onK1 (see Section 4.4.2) suggests that the

underlying mechanisms of these effects might partially overlap. The imaging transcriptomics

analysis conducted on the maps representing the negative effect of body weight on K1 could

potentially help elucidate the underlying biological mechanisms driving this effect. However,

for a comprehensive and insightful interpretation of the results from the gene set enrichment

analysis, future clinical consultation will be necessary.

5.2.3 Gender differences in TSPO tracers influx

This work also revealed a significant effect of gender on the blood-to-brain influx rate of TSPO

radiotracers across all three datasets and levels, with an increase observed in females compared

to males. This effect is unlikely linked to extraction. Instead, it could be explained by the higher

cerebral blood flow found in females, who exhibit an increase of around 15% compared to males

(Aanerud et al., 2017; Mazzucco et al., 2024; Rodriguez et al., 1988). Given the magnitude of

the increase observed in women in the present study (see Section 4.4.1), the variability could

largely be attributed to differences in blood perfusion.

5.3 Implications of the findings

5.3.1 Support for a new model of peripheral-central immune interactions

The main finding of this work, represented by the negative association between the concentra-

tion of C-reactive protein (CRP) and the blood-to-brain influx rate of TSPO radiotracers, further

supports the emerging model of peripheral-to-central immune interactions (Turkheimer et al.,

2023). Indeed, if the potential reduction in BBB permeability affects more than just lipophilic

molecules like TSPO radiotracers, it could strengthen the hypothesis that the permeability of a

healthy BBB decreases in response to increased peripheral inflammation, as indicated by CRP

levels. According to this theory, the elevation of circulating cytokines reduces blood-brain bar-

rier permeability, disrupting homeostasis and causing mild sickness behavior. Subsequently,

when persistent inflammation becomes chronic, structural changes in barrier function occur,

leading to depressive behavior accompanied by activated microglia responding to prolonged
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disturbances in solute concentrations and the blood-brain barrier (BBB). The persistent distur-

bance of homeostasis particularly affects neotenic regions, such as the prefrontal cortex, which

retain high synaptic density in the adult brain and are consequently the most metabolically active

(Petanjek et al., 2011). In the present study, both ROI-level and voxel-level analyses revealed

that frontal regions are among those where the impact of peripheral inflammation on barrier

permeability is most pronounced. These findings are especially valuable given that these areas

are well known to be involved in mood regulation and depression (Goldin et al., 2008; Talbot

& Cooper, 2006).

While this model originally applies to depressive patients with a mild grade of peripheral

inflammation, the present study could potentially posit the effect theorized in this model as both

a disease-agnostic and transdiagnostic effect across healthy and psychiatric populations. Future

research could investigate the relation of barrier permeability with shared clinical symptoms

among different neuropsychiatric cohorts. Additionally, further research is needed to deepen

our understanding of the critical interplay between central and peripheral immunity. Recent

findings have highlighted the role of skull bonemarrow and venous sinuses inmediating immune

interactions, showing significant associations between extra-axial inflammatory signals in the

skull and parameningeal spaces and both central and peripheral immune activity in depression

(Eiff et al., 2024).

5.3.2 Methodological considerations in TSPO quantification

The insights from the present work could shed light on several methodological issues encoun-

tered in TSPO quantification. Importantly, variations in the rate constant K1 are reflected in the

calculations of the volume of distribution and may be misinterpreted as changes in TSPO den-

sity. Changes in tracer blood-to-tissue transport have been shown to account for up to 77 % of

the variation inVT measures in [11C]-PBR28 PET data (Nettis et al., 2020). Given that this study

found variations in the K1 rate due to differences in body mass, gender, and especially periph-

eral inflammatory status, these factors should be carefully considered when interpreting TSPO

PET outcomes. This could explain the paradoxical and inconclusive results found in the context

of schizophrenia, specifically when VT was used as the representative outcome (Marques et al.,

2019). Additionally, the findings from this work could elucidate the results of a [11C]-PBR28

imaging study on healthy individuals (Tuisku et al., 2019). This study observed that VT had a

significant negative correlation with BMI and differed significantly between males and females,

with women exhibiting a higher VT (approximately 17% increase in total grey matter). Given

the direct proportionality between K1 and VT, the observed effects of body weight and gen-

der on the blood-to-brain influx rate of TSPO PET tracers could account for the discrepancies

reported by Tuisku et al. (2019).
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These findings underscore the importance of meticulously matching healthy and patient

groups in cross-sectional TSPO studies with regard to body weight, gender, and potentially

peripheral inflammatory status. In the context of psychiatric disorders, this can be challenging

given the higher prevalence of males in the schizophrenic population (Jauhar et al., 2022) and

the higher BMI of schizophrenic patients (Annamalai et al., 2017), particularly after antipsy-

chotic treatment (Correll et al., 2011). This observation also applies to the major depressive

disorder population, where weight gain is a known effect of antidepressant treatment (Gafoor

et al., 2018). Additionally, it is worth noting that patients in both MDD and schizophrenia popu-

lations are generally associated with a status of peripheral inflammation (Na et al., 2014; Osimo

et al., 2020; Osimo et al., 2019; Pitharouli et al., 2021).

5.4 Study limitations

From a methodological point of view the work exhibited some limitations, mainly linked to

the extraction of the image-derived input function and the optimization of the time window for

model fitting. The first, despite representing a crucial and necessary step to enable the blood-free

estimation, is affected by the relatively low spatial and temporal resolution in PET dynamic data.

This might have caused relevant partial volume effects and could have impaired the possibility of

accurately following the fast rising and descending parts of the curve, thus introducing variable

bias across subjects. Technological advancements in PET scanners would hopefully lead to a

more reliable decription of IDIF (Volpi et al., 2023). In addition, the selection of the optimal

time interval for model fitting was not trivial, specifically for the tracer [11C]-PK11195, where

the framework was applied for the first time. The absence of blood data from arterial sampling to

assess the radiotracer’s metabolism may have affected the first validation of the methodology.
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Chapter 6

Conclusion

This study presents a significant advancement in the non-invasive quantification of TSPO PET

radiotracer dynamics, applying a robust methodology for estimating the blood-to-brain influx

rate constant (K1) without the need for blood sampling. By validating this approach with the

first-generation tracer [11C]-PK11195 and extending it to the second-generation tracer [11C]-

PBR28, the methodology has demonstrated both versatility and reliability. The transition from

region-of-interest (ROI) to voxel-level analysis has provided an invaluable tool for detailedmap-

ping of the K1 parameter, enhancing spatial resolution and enabling unique insights into brain

TSPO tracers uptake.

Key findings include a consistent negative association between peripheral inflammation, as

indicated by CRP levels, and K1 across multiple datasets and neuropsychiatric conditions. Re-

markably, the microparameter was unaffected by the psychiatric disease. These results support

the emerging model of peripheral-to-central immune interaction and highlight the influence of

peripheral inflammation on blood-brain barrier (BBB) permeability. Additionally, significant

effects of body mass index and gender on K1 underscore the necessity of controlling for these

variables and peripheral inflammatory status in TSPO PET studies to avoid misinterpretation of

TSPO density measures.

This work not only supports new insights into the mechanisms of neuroinflammation and its

relationship with peripheral immune markers but also addresses critical methodological chal-

lenges in TSPO PET quantification. The findings suggest a potential transdiagnostic effect of

peripheral inflammation on brain function and emphasize the need for careful consideration of

demographic and physiological variables in future neuroimaging studies. The development of

this non-invasive, blood-free methodology paves the way for more accessible and comprehen-

sive investigations into neuroinflammatory processes and their implications for various brain

disorders.
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