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S U M M A RY

The purpose of this thesis is to implement a computational model
of insulin signaling pathway. Insulin pathway is a complex system
that permits, upon insulin binding on its receptor, to trigger a cas-
cades of signals which realize the most typical insulin actions. Due to
its high degree of complexity, simple reasoning on experimental data
cannot permit a detailed analysis of insulin system, making necessary
the introduction of new and more powerful mathematical tools, such
as computational models. Computational models allow to describe a
complex system populated by many chemical species by means of a
network, in which nodes represent these elements and edges (with
sign) describe the type of interaction. In particular, we use rule-based
modeling as computational approach because it offer a easy way to
implement a biological system, respect to common methods using
ordinary differential equations (ODEs), with a remarkable saving in
time and reducing the risk of error. Thus, insulin model was imple-
mented using BioNetGen language, a software for rule-based mod-
eling, making use of information taken from scientific literature. In
particular, we referred to three published models describing different
parts of insulin signaling pathway and, after a integration procedure,
we obtained the final insulin model. Insulin model was used to pre-
dict the outcome of the system. The resulting time series mimicking
the concentrations of chemical species populating the insulin signal-
ing pathway were used to characterize the dynamic behavior of the
system. Since defects in insulin pathway, often responsible of insulin

resistance and diabetes type 2, are caused by network malfunctioning,
we think that to characterize the dynamic behavior of system working
under physiological conditions may be a cunning approach to distin-
guish it from those pathologic. Moreover, model characterization may
reveal new insight about complex mechanisms governing insulin sys-
tem. Hence, we realized a system characterization by classification
of the qualitative behaviors of simulated time series, thereby accord-
ing to their pattern. We distinguished four main pattern sets and we
related them to their function in insulin system. Using pattern clas-
sification and parametric description of each pattern, we validated
of insulin model comparing simulations with experimental data ac-
cording to most significant dynamic features. In future perspective,
insulin model characterization may be used to further investigate the
origin of network disregulations and to find a drug or combination
of drugs able to counterbalance the effect of disease.
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S O M M A R I O

Lo scopo di questa tesi è quello di implementare un modello com-
putazionale del pathaway dell’insulina. Il pathway dell’insulina è un
sistema complesso che permette, in seguito al legame dell’insulina
con il suo recettore, di innescare una cascata di segnali biologici che
realizzano le azioni tipiche dell’insulina. Dovuto al suo alto grado
di complessità, il semplice ragionamento su dati sperimentali non
permette un’analisi dettagliata del sistema dell’insulina e rende nec-
essario l’utilizzo di metodi matematici nuovi e più potente, come i
modelli computazionali. I modelli computazionali permettono di de-
scrivere un complesso sistema biologico popolato da molte species
chimiche per mezzo di una semplice rete, in cui i nodi rappresen-
tano questi elementi e gli archi (dotati di segno) descrivono il tipo
di interazione. In particolare, abbiamo usato il rule-based modeling
come approcio computazionale perchè offre un metodo semplice per
implementazione di sistemi biologici rispetto ai metodi classici che
fanno uso di equazioni differenziali ordinarie (ODEs), con un sensi-
bile risparmio di tempo e riducendo la possibilità d’errore. Quindi,
il modello dell’insulina è stato implementato usando il linguaggio
BioNetGen, un software per il rule-based modeling, utilizzando in-
formazioni prese dalla letteratura scientifica. In particolare, si è fatto
uso di tre modelli pubblicati che descrivono diverse parti del path-
way dell’insulina e, dopo una procedura d’integrazione, si è ottenuto
il modello finale dell’insulina. Il modello dell’insulina è stato usato
per realizzare delle predizioni del sistema. Le risultanti serie tem-
porali che descrivono le concentrazioni delle specie chimiche che
popolano il pathway dell’insulina sono state usate per caratterizzare
il comporatamento dinamico del sistema. Visto che i difetti del path-
way dell’insulina, spesso responsabili dell’insulino resistenza e del dia-

bete di tipo 2, sono causati da malfunzionamenti della rete, riteniamo
che caratterizzare il comportamento dinamico del sistema in con-
dizioni fisiologiche possa essere un approcio utile per distinguerlo
da quelli patologici. Inoltre, la caratterizzazione del modello può per-
metterci di comprendere meglio i complessi meccanismi che gover-
nano il sistema dell’insulina. Quindi, abbiamo realizzato la caratteriz-
zazione del sistema classificando le serie temporali simulate a sec-
onda dell’andamento qualiticativo, ovvero secondo il loro pattern.
Abbiamo distinto quattro principali insiemi di pattern e li abbiamo
collegati alla loro funzione all’interno del sistema dell’insulina. Us-
ando la classificazione mediante pattern e la descrizione parametrica
di ciascuno di essi, abbiamo realizzato una nuova validazione del
modello dell’insulina comparando le simulazioni con i dati sperimen-
tali e valutando le loro caratterische dinamiche più significative. In
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futuro, la caratterizzazione del sistema dell’insulina potrebbe essere
utile per ulteriori indagini circa le origini delle dis-regolazioni della
rete e per trovare un farmaco o una combinazione di farmaci capaci
di riportare il sistema in condizioni di normalità.
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I’ll drown my beliefs

To have you be in peace

I’ll dress like your niece

And wash your swollen feet

Just don’t leave

Don’t leave

And true love waits

In haunted attics

And true love lives

On lollipops and crisps

Just don’t leave

Don’t leave

I’m not living, I’m just killing time

Your tiny hands, your crazy-kitten smile

Just don’t leave

Don’t leave

— Radiohead, true love waits
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1
I N T R O D U C T I O N

1.1 signaling pathways and malfunctioning

Cellular processes of life are controlled by complex regulatory sys-
tems including signaling pathways, the transcription network, and
specialized circuits for cell cycle control, growth regulation, stress re-
sponse, and many other cell functions [13].

In particular, signaling pathways are complex, interdependent cas-
cades of signals that sense input stimuli (e. g. extracellular ligands
or intracellular metabolites) and transmit, process, and integrate this
information to provide output signals that accordingly regulate the
activity of transcription factors or other effector proteins. Signaling
networks permit cells to communicate with each others and with
external environment, such as extracellular matrix, and to undergo
phenotypic changes, such as cellular division, differentiation, death
and others. Hence, these networks can be considered as information-
processing devices that translate input signals into output signals in
which information is often coded by concentrations, modifications,
and localization of proteins, either in the stationary levels or in tem-
poral patterns. Insulin Resistance:

physiological

condition

characterized by

inability of tissues to

respond to the

normal actions of

insulin. Cells are

not able to take in

glucose, amino acids

and fatty acids.

Diabetes type 2:

chronic metabolic

disorder

characterized by

increased blood

glucose caused by

insulin resistance

and relative insulin

deficiency. This is in

contrast to diabetes

mellitus type 1, in

which there is an

absolute insulin

deficiency due to

destruction of islet

cells in the pancreas.

Malfunctioning of signaling networks may alter physiological pro-
cesses of cells, potentially leading to severe consequences on the or-
ganism. The most common pathologies caused by altered cellular
signaling networks concern heart diseases, congenital abnormalities,
metabolic disorders and immunological abnormalities. Moreover, it
has been recently demonstrated that network malfunctioning is in-
volved with oncogenic properties of cancer cells [26, 1].

Insulin signaling pathway is an essential pathway due to its biolog-
ical functions and its connection with pathologies which increased
their importance in these recent years: insulin resistance and diabetes

type 2 (diabetes mellitus). Rates of diabetes increased markedly over
the last 50 years in parallel with obesity and, to the present day, this
pathology afflicts at least 285 million people [44]. Diabetes involves
many long-term complications including heart diseases, strokes, dia-
betic retinopathy, kidney failure and poor circulation of limbs which
may lead to amputations. Even in the absence of diabetes, insulin
resistance is often associated with central obesity, hypertension, poly-
cystic ovarian syndrome, dyslipidemia and atherosclerosis.

Thus, detailed analysis of regulatory processes constituting insulin
signaling pathway may permit to develop new insights about the ori-
gin of these disregulations and, in future perspective, to find a drug
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2 introduction

or combination of drugs able to counterbalance the effect of the dis-
ease.

1.2 computational models of insulin signaling network

Due to high degree of complexity, the detailed and rational analysis of
insulin signaling pathway represents a new challenge that cannot be
undertaken by means of simple reasoning on experimental data. Dur-
ing recent years, new and more powerful methods have been intro-
duced to be used in combination with experimental results. Computa-
tional methods provide useful information to guide experimental de-
sign obtaining more informative experiments, whereas data collected
from experiments help implementation and refinement of computa-
tional models, providing more accurate predictions of biological sys-
tems. Computational models permits to model a signaling pathway
as a network, in which nodes represent the distinct chemical species
populating the system, and edges (with sign) their interactions.

There are different approach to construct these network but the
most relevant make use of mass action law to describe the dynam-Mass action law:

law stating that the

rate of any chemical

reaction is

proportional to the

product of the

masses of the

reacting substances,

with each mass

raised to a power

equal to the

coefficient that

occurs in the

chemical equation.

ics of chemical species. There are several dynamic networks published
in scientific literature and all of them have in common that the rate
of change of chemical species is described by a ordinary differential
equation (ODEs). These models allows to make assumptions about
the behavior of the network. However, difficulties in their implemen-
tation are related to the fact that mathematical description of dynamic
models requires a great deal of knowledge about concentrations and
kinetic rate constants, often hard to obtain.

Several models of insulin control system have been published in
last 10 years, providing new insights at three different levels: (i) in-
sulin binding to its receptor, (ii) insulin signaling to cellular responses,
and (iii) integration of intracellular insulin signaling with whole-body
glucose homeostasis [31].

Insulin signaling pathway may find a description using models be-
longing to the first two levels. In particular, currently available dy-
namic models describe:

• insulin binding to its receptor [6],

• insulin receptor autophosphorylation and subsequent phospho-
rylation of its substrate, together with receptor cycling and en-
docytosis [30, 29]

• downstream signaling activation focusing on translocation of
GLUT4 glucose transporter [22], on mTOR regulation system
[33, 34], on dendritic protein synthesis [2], on eukaryotic trans-
lation initiation [41], and on breast cancer therapy [10], on joint
regulation of insulin and amino acids [42] and on crosstalk
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with epidermal growth factor (EGF) signaling and the mitogen-
activated protein kinase (MAPK) pathway [12].

1.3 chapters overview

The purpose of this thesis is to realize a computational model of in-
sulin signaling pathway. The model should comprise many of the
chemical species populating insulin system and most of their inter-
actions. Such detailed model will permit to simulate concentrations
of chemical species. Concentration time series will be used to mainly
characterize the dynamic behavior of insulin system and to gain new
insights about its regulatory mechanisms. In the following Chapters
we will deal with:

chapter2 Insulin signaling pathway. An overview of the main el-
ements constituting insulin network, focusing mainly on kinet-
ics characteristics of processes occurring upon insulin binding,
such as molecular interactions and phosphorylation events. In-
sulin pathway will be presented dividing it in three main sub-
pathways, that are PI3K-PKB/Akt pathway, Ras/MAPK path-
way and Cbl/CAP pathway.

chapter3 Computational models of biochemical systems. An overview
of the main computational modeling techniques focusing on
rule-based modeling approach and on BioNetGen language, the
software implementing it.

chapter4 Insulin model implementation. We started from three
published models describing different part of insulin pathway
to realize a final and more complete model of insulin pathway.
We also analyze step by step its implementation using BioNet-
Gen language.

chapter5 Insulin model analysis and validation. We used insulin
model to obtain predictions of the system. Using simulated time
series describing concentrations of chemical species we charac-
terized the dynamic behavior of the system and we gain new
insights about its regulatory processes. Moreover, we realize a
further validation of insulin model using some experimental
data focusing on most significant dynamic features.





2
I N S U L I N S I G N A L I N G PAT H WAY

2.1 introduction

Insulin signaling pathway starts with binding of insulin to its recep-
tor. This event triggers a complex cascade of signals culminating in
several biological responses by means of the activation of two major
signaling sub-pathways:

• PI3K-AKT/PKB pathway, which is responsible for most of the
metabolic actions of insulin, and

• Ras-MAPK pathway, which regulates expression of some tran-
scription factors and cooperates with the PI3K pathway in con-
trolling cell growth and differentiation.

The PI3K-AKT/PKB pathway is aided in its action by another path-
way, the Cbl/CAP pathway, and their cooperation regulates the main
insulin actions, such as the glycogen synthesis and the glucose trans-
port inside the cell. The Ras-MAPK pathway is a general pathway
that can be triggered by different growth factors, including insulin,
and that mainly controls DNA, RNA and protein syntheses.

Fig. 1 depicts insulin signaling pathway as a network of several
molecules connected to each others by different kind of relationships.
For semplicity, the members belonging to the sub-pathways men-
tioned above are identified by circles of different colours. Red circles
indicates elements of PI3K-AKT/PKB pathway, blue circles those be-
longing to Ras/MAPK pahway and purple circles those constituting
Cbl/CAP pathway.

In the following sections we present in more detail the main ele-
ments constituting insulin signaling pathway. A section apart is ded-
icated to insulin receptor due to its key role played in all the above-
mentioned sub-pathways. Since the purpose of this study is to im-
plement a dynamic model mimicking the main features of insulin
network, we mainly focus in catching the key characteristics which
determine the kinetics of the processes occurring upon insulin bind-
ing, such as molecular interactions and phosphorylation events. This
information will be useful in the next chapters where several models
of insulin subsystems will be examined and the final model will be
presented.

5



6 insulin signaling pathway

Figure 1: Insulin signaling pathway. Molecules enclosed by circles of differ-
ent colours belong to dinstict sub-pathways and are, respectively,
red for PI3K-AKT/PKB, blue for Ras/MAPK and purple for Cbl/-
CAP. Adapted figure from [32]
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Figure 2: Insulin receptor. Structure and phosphorylation sites. Figure taken
from [28]

2.2 insulin receptor : structure , functions and substrates

Insulin action is initiated upon insulin binding to its cognate receptor.
The insulin receptor (IR), depicted in Fig. 2, belongs to a family of
receptors characterized by intrinsic tyrosine kinase activity (RTKs) that
includes, in addiction to IR, the insulin-like growth factor-1 receptor
(IGF-1R), the insulin receptor-related receptor (IRR), the epidermal
growth factor receptor (EGFR), the platelet-derived growth factor re-
ceptor (PDGFR) and others.

Generally, each receptor is produced starting from two chains, termed
α and β, that are linked by a disulfide bond. The α chains contribute
to formation of ligand-binding domain, while β chains carry the ki-
nase domain. In the case of insulin, two α chains and two β chains are
linked together forming a biologically active receptor heterotetramer
(α2β2).

IR can be structurally divided in two main parts, the extracellular
and the intracellular regions. Although the chains constituting IR are
covalently linked, these two domains function independently.

In the following subsections we treat in more detail all the main
features regarding IR including structure, functions, substrates, inter-
nalization and degradation processes [15, 32, 4].

2.2.1 Insulin Receptor Structure

X-ray crystallography studies revealed that the extracellular domain
of IR consists of the entire α-subunit and about one third of the β-
subunit. This region is responsible for the insulin binding and, pre-
cisely, the α-subunit contains the primary ligand-binding site.



8 insulin signaling pathway

The intracellular region can be divided into several subdomains
with different functions and characteristics:the juxtamembrane region,
the tyrosine kinase domain and the carboxyl-terminus domain.

The juxtamembrane (JM) region is constituted by 50 amino acids
and includes at least one autophosphorylation site (Tyr999), which
resides in the L-X4-NPXYXSXSD motif. This motif serves as binding
site for IR substrates such as Shc and insulin receptor substrate (IRS)
proteins. These proteins interact with the NPXY motif through their
P-Tyr binding (PTB) domain. The sequences surrounding the phos-
phorylated NPXY motif contribute differentially to either IRS or Shc
proteins recognition. Moreover, the juxtamembrane domain also con-
tains several motifs implicated in regulating IR internalization (see
2.2.4).

The tyrosine kinase domain is composed of two lobes that are linked
together by a single connection. The N-terminal lobe constitutes the
ATP-binding site whereas the C-terminal lobe contains the active site
(catalytic loop), three autophosphorylation sites (activation loop) and
the kinase-insert region.

The carboxyl-terminus domain contains two autophosphorylation
sites and its role is still unresolved.

2.2.2 Ligand Binding and Insulin Receptor Autophosphorylation

Receptor Tyr kinases are activated when ligand binds to their extra-
cellular region. In the case of monomeric receptors (e. g., EGFR and
PDGFR), the ligand binding includes the receptor dimerization, a nec-
essary step before their activation. However, certain RKTs, including
IR, exist in predimerized form even in absence of ligand.

In basal state, the activation loop of IR occludes the catalytic site
so that access to ATP and substrates is blocked. A rapid conforma-
tional change in the receptor occurs when insulin binds to specific
regions on the α-subunit, and this results in activation of the tyrosine
kinase domain. When the receptor is activated, the kinase domain in
one half of the receptor-dimer phosphorylates cytoplasmic tyrosine
residues in the activation loop of the other half of the receptor-dimer.
This transautophospohorylation results in a large increase of the ki-
nase activity of the receptor. Upon autophosphorylation, the activa-
tion loop swings out of the catalytic site and gives unrestricted access
to ATP and substrates.

2.2.3 Insulin Receptor Substrates

Binding of insulin leads to phosphorylation of several intracellular
substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), Shc,
GAB1, Cbl and others (see Fig. 1). The activated insulin receptor ki-
nase (IRK) phosphorylates these substrate proteins on tyrosine residues.
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Each of these phosphorylated proteins serve as docking proteins for
other signaling proteins that contain Src-homology-2 domains (SH2
domains). Some SH2 proteins are enzymes, such as the P-Tyr phos-
phatase SHP2 (SH-PTP2). Other SH2 proteins, such as the p85 regu-
latory subunit of PI 3-kinase, Grb2 and APS, function as adaptor pro-
teins for downstream effectors that further propagate the metabolic
and the growth-promoting effects of insulin.

2.2.4 Insulin Receptor Internalization and Degradation

Upon insulin binding, IR rapidly internalizes. IR internalization is a
multistep process. Stimulation of intrinsic Tyr kinase activity causes
the redistribution of receptor-insulin complexes on the cell surface.
Subsequently, complexes concentrate in clathrin-coated pits that act
as internalization gates. Finally, the internalized receptors undergo
sorting that determines whether they will be subjected to degradation
in lysosomes or they will recycle back to the membrane surface but
how this mechanism occurs is still unclear.

Interestingly, the cellular environment seems to regulate IR inter-
nalization. In particular, the extracellular matrix (ECM) to which the
cells adhere seems to play an important role due to the interaction
of the integrins on the cell surface with the ECM proteins. This inter-
action may results in the different organization of the cytoskeleton,
thereby affecting the rate of endocytosis of IR.

2.3 pi3k-akt/pkb pathway

The PI3K-AKT/PKB pathway (see Fig.3) is the key mechanism regu-
lating cell metabolism. As said before, its main role is to control glu-
cose metabolism and to stimulate protein and lipid syntheses. In this
section, the most important members of the pathway are examined
giving particular attention to molecular interactions which govern
the dynamics of metabolic response triggered by insulin [15, 32, 4].

The PI3K-AKT/PKB pathway can be briefly resummed as follows.
Upon insulin binding and insulin receptor phosphorylation, IRS is
phosphorylated on tyrosine residues that serve as docking sites for
SH2 domain of PI3K, leading to its activation. Activated PI3K cat-
alyzes the production of PI(3,4,5)P3 that activatse the Ser/Thr ki-
nase of PDK1. PDK1 phosphorylates and activates two main down-
stream kinases, Akt and PKCζ that mediate translocation of GLUT4
on cell membrane. Moreover, Akt phosphorylates TSC1-TSC2 com-
plex which releases the inhibition of RHEB. RHEB (in GTP-bound
state) activates directly mTORC1 which phosphorylates two main
downstream effectors, 4E-BP and S6K. 4E-BP and S6K promote ri-
bosome biogenesis and the translation of proteins involved in cell
growth and division.
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Figure 3: Schematic representation of PI3K-PKB/Akt pathway. Lines with
arrows show activation and lines with blunt ends show inhibition.

2.3.1 Insulin Receptor Substrate (IRS)

IRS proteins contain a conserved pleckstrin homology (PH) domain, lo-
cated at their amino-terminus, that serves to anchor the IRS proteins
to membrane phosphoinositides and helps to localize the IRS pro-
teins in close proximity of the receptor. PH domain of IRS proteins is
flanked by a P-Tyr binding (PTB) domain. The PTB domain functions
as a binding site to the NPXY motif of the juxtamembrane region of
IR. C-terminal region of IRS proteins is poorly conserved and con-
tains multiple Tyr phosphorylation motifs that serve as docking sites
for SH2 domain-containing proteins like the p85α regulatory subunit
of PI 3-kinase, GRB2, SHP-2 and others. In particular, IRS interacts,
via phosphorylated YXXM motifs, with p85 subunit of PI 3-kinase
thus activating it.

Moreover, IRS proteins contain several Ser/Thr phosphorylation
sites that, if phosphorylated, reduce the ability of this protein to un-
dergo Tyr phosphorylation by the IRK shutting off the insulin signal-
ing. Serine phosphorylation of IRS is reckoned as one of the mech-
anisms involved in insulin resistance. In particular, Ser312 phospho-
rylation inhibits insulin action through disruption of IRS interaction
with insulin receptor. IRS is also phosphorylated at Ser270, Ser307,
Ser636 and Ser1101 by S6K (see 2.3.5) constituting one of the most
important negative-feedback loop (NFL) present in the pathway and
which inhibits upstream insulin signaling upon mTORC1 activation.
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2.3.2 Phosphatidylinositol 3-Kinase (PI3K) and PI(3,4,5)P3

PI 3-kinase plays a central role in the metabolic and growth-promoting
actions of insulin.

It is constitued of a p110 catalytic subunit and a p85 regulatory sub-
unit. The regulatory subunit, which contains two SH2 domains, main-
tains the p110 catalytic subunit in a low-activity state. Activation of PI
3-kinase occurs upon direct interaction of the regulatory subunit with
Tyr-phosphorylated YMXM and YXXM motifs of activated growth
factor receptors, or with adaptor proteins such as IRS proteins. In
particular, the association of p85–p110 complex with IRS molecules re-
sults in production of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3).
The most relevant function of PI(3,4,5)P3 is the ability to interact with
PH domains of phosphoinositide-dependent kinase 1 (PDK1), protein
kinase B (PKB) and other signaling molecules. These interactions re-
sult in recruitment of these proteins to the plasma membrane trigger-
ing changes in their structure, function and their substrate availability.
In the case of PDK1, binding of its PH domain to PI(3,4,5)P3 enables
it to phosphorylate several downstream effectors, such as PKC and
PKB/Akt and thus to further propagate the metabolic and growth-
promoting functions of insulin.

Moreover, two important lipid phosphatases are commonly present
in the system and whose mainly operate decreasing levels of PI(3,4,5)P3:
PTEN and SHIP2. In particular, the phosphatase and tensin homo-
logue (PTEN) acts removing the phosphate in the D3 position of
the inositol ring from phosphatidylinositol PI(3,4,5)P3 to produce
PI(4,5)P2. The SH2 domain–containing inositol-5-phosphatase (SHIP2)
specifically hydrolyzes the 5-phosphate of PI(3,4,5)P3 to produce PI(3,4)P2.
Thus both enzymes cooperate as antagonists of the PI3K-PKB/Akt
pathway modulating cell cycle progression and cell survival.

2.3.3 Atypical Protein Kinase C Isoforms (PKCζ and PKCλ)

PI 3-kinase and PDK1 trigger the activation of the atypical PKC iso-
forms (PKCζ and PKCλ) via their N-terminus region. Two specific
sites, Thr410 in the activation loop of the kinase domain and Thr560
in the turn motif, need to be phosphorylated for full activation of this
molecule.

The main function of PKC concerns the regulation of GLUT4 translo-
cation to the cellular membrane and subsequent induction of glucose
transport inside the cell. PKC also plays an important role constitut-
ing a negative feedback control mechanism that serves to terminate
insulin action. This feedback loop involves phosphorylation of IRS
proteins and leads to IRS dissociation from IR, thereby terminating
insulin signaling.
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2.3.4 Protein Kinase B (PKB/Akt), GSK3β and GYS

PKB, also known as Akt, is one of the major substrates of PDK1. PKB
is implicated in mediating numerous aspects of insulin action, includ-
ing the regulation of glucose transport, glycogen synthesis, protein
synthesis, the antilipolytic effects of insulin, as well as cell growth
and cell survival induced by insulin.

PKB contains a PH domain that allows the binding to phosphatidyli-
nositol 3,4,5-trisphosphate (PI(3,4,5)P3) following phosphatidylinosi-
tol 3-kinase (PI3K) activity and its targeting to the plasma membrane.
PKB association with PI(3,4,5)P3 brings it to the proximity of plasma
membrane facilitating phosphorylation of PKB at Thr309 in the T loop
by PDK1. Thr309 phosphorylation is necessary and sufficient for PKB
activation. However, maximal activation requires additional phospho-
rylation in its hydrophobic motif at Ser474 by PDK2, that has been
recently identified with mTORC2 complex [Dalle Pezze et al. 2012].
Phosphorylation at these two sites stimulates the catalytic activity of
PKB, resulting in the phosphorylation of a series of proteins that af-
fect cell metabolism and growth, cell cycle entry, and cell survival.
PKB phosphorylates many of its substrate proteins on Ser residues in
a consensus RXRXXS/T site, and most of the known protein targets
of PKB become inhibited by this event.

The three most important roles played by PKB are connected to the
regulation of glucose uptake, glycogen and protein synthesis.

The first action is achieved by PKB mediating the translocation of
GLUT4 glucose transporter to the cell membrane. This mechanism
involves RAB GAP AS160 (TBC1D4) and RAL-GAP complex for the
GLUT4 vesicles translocation and targeting to plasma membrane, and
SNARE regulatory proteins, including Synip and CDP138, for the fu-
sion event [5, 25]. Despite recent studies tried to uncover this mecha-
nism, several steps in GLUT4 trafficking, including endocytosis, sort-
ing and GSV formation are still unclear (see also 2.5).

The second one involves phosphorylation and inactivation by PKB
of glycogen synthase kinase 3β (GSK3β) at Ser9. Phosphorylation
at this site causes conformational change, preventing access of sub-
strates to the active site. GSK3β acts phosphorylating the glycogen
synthases (GYS) at Ser641, Ser645, Ser649 and Ser653. GYS functions
transferring glycosyl residue from UDP-Glc to the non-reducing end
of alpha-1,4-glucan which catalyses the conversion of glucose in glyco-
gen. Since GSK3β phosphorylates and inactivates glycogen synthase
(GYS), inhibition of GSK3β upon PKB phosphorylation promotes GYS
activity and glycogen synthesis in response to insulin.

The third action implicates the phosphorylation of TSC2 (in com-
plex with TSC1) (see 2.3.5) at Ser939 and Thr1462 activating mTORC1
signaling and leading to both phosphorylation of 4E-BP1 and p70-
S6K.
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Finally, PKB phasphatase activity can be prevented by Ser50 phos-
phorylation of PTP. This results in a negative modulation of PKB ac-
tion that avoids the dephosphorylation of insulin receptor and the
attenuation of insulin signaling.

2.3.5 Mammalian Target of Rapamycin (mTOR), TCS1-TSC2, S6K and

4E-BP

As already said, PKB phosphorylates and inhibits the tuberous scle-
rosis complex 1⁄2 dimer (TSC1–TSC2). TSC1-TSC2 complex acts as a
GTPase-activating protein (GAP) for the small GTPase RHEB which
is a direct activator of the protein kinase activity of mTOR.

The mammalian target of rapamycin (mTOR) is a central controller
of cellular metabolism and also of cellular growth. In particular, mTOR
regulates the anabolic and catabolic processes, including translation,
ribosome biogenesis and autophagy, in response to hormones, growth
factors (insulin), nutrients (amino acids), energy and stress signals
[24, 33].

mTOR exists in a multiprotein complex, termed mTORC1. mTORC1
is constituted by DEP domain-containing mTOR-interacting protein
(DEPTOR), mammalian lethal with SEC13 protein 8 (mLST8 or GβL),
regulatory-associated protein of mTOR (RAPTOR) and 40 kDa Pro-
rich Akt substrate (PRAS40) and, as already mentioned, it controls the
cellular growth. Another form also exists, termed mTORC2, which is
functionally and structurally distinct from mTORC1. mTORC2 has
DEPTOR and mLST8 in common with mTORC1 but, differently from
it, contains rapamycin-insensitive companion of mTOR (RICTOR) and
the mammalian stress–activated map kinase interacting protein 1 (mSIN1).
The main function of mTORC2 concerns the control of apoptosis as
well as spatial growth via the actin cytoskeleton. mTORC2 is impor-
tant due to its implication in the fully activation of Akt (see 2.3.4).

mTORC1 activation by growth factors, such as insulin, involves
Akt-mediated phosphorylation of TSC1-TSC2 complex, which func-
tions as GTPase activating protein (GAP) for the small GTPase Ras ho- GTPase activating

protein: promotes

hydrolysis of GTP to

GDP by G proteins,

resulting in their

disactivation.

mologue enriched in brain (RHEB) , a potent activator of the protein
kinase activity of mTORC1. Since GDP-loaded RHEB is unable to ac-
tivate mTORC1, TSC1–TSC2 effectively shuts off mTORC1 signaling.
Akt-mediated TSC2 phosphorylation is likely to inhibit its GAP activ-
ity for RHEB, thus promoting mTORC1 activation.

The strongest link between amino acids and mTORC1 is due to
the Rag family of small GTPases (RRAGA, RRAGB, RRAGC and
RRAGD). The active Rag heterodimer physically interacts with RAP-
TOR, causing mTORC1 to cluster onto the surface of lysosomes, where
the Rag GTPases reside. This relocalization may enable mTORC1 to
interact with the small GTPase RHEB (in GTP-bound state) mediating
the action of growth factor inputs.
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Phosphorylation by both insulin and amino acids is carried out at
Ser1261 and promotes autophosphorylation and activation of mTORC1.

mTORC1 pathway indirectly senses low ATP by a mechanism that
involves the AMP-activated protein kinase (AMPK). Both AMP and
ATP are allosteric regulators of AMPK. When the AMP:ATP ratio
increases, AMPK phosphorylates TSC2, possibly stimulating the GAP
activity of TSC1–TSC2 towards RHEB to inhibit mTORC1 signaling.
Moreover, AMPK phosphorylates RAPTOR, causing it to bind 14-3-3
proteins, which leads to the inhibition of mTORC1 through allosteric
mechanisms.

Activated mTORC1 up-regulates protein synthesis by phosphory-
lating key regulators of mRNA translation and ribosome synthesis.
The main mTORC1 substrates are S6-kinase (p70-S6K), the transla-
tion initiation regulator 4E-binding protein (4E-BP) and the mTORC1-
inhibitor PRAS40.

Activation of p70-S6K requires multiple phosphorylation events on
serine/threonine residues. Activation appears to be first mediated by
phosphorylation of multiple sites in the autoinhibitory domain which,
disrupting the autoinhibitory mechanism, facilitates phosphorylation
at Thr412. Phosphorylation at Thr412 is regulated by mTORC1 and
maintained by an agonist-dependent autophosphorylation mechanism.
When mTORC1 phosphorylates p70-S6K, this promotes its effects
by phosphorylating or binding multiple proteins which collectively
affect translation initiation and elongation processes. Between the
most important p70-S6K substrates there is the ribosomal protein S6K
which mediates the translation of mRNAs that have 5´ polypyrimi-
dine tracts. Moreover, active p70-S6K is an important element in in-
sulin pathway due to the phosphorylation and the inhibition it carries
out on IRS. Precisely, p70-S6K phosphorylates IRS at multiple serine
residues, resulting in accelerated degradation of IRS and thus it con-
stitutes a negative-feedback loop (NFL) that inhibits upstream insulin
signaling and that may be involved in insulin resistance.

Unphosphorylated 4E-BP1 suppresses mRNA translation. However,
when phosphorylated by mTORC1 at Thr37, Thr46, Ser65 and Thr70,
4E-BP1 dissociates from eukaryotic translation initiation factor 4E
(eIF4E), allowing eIF4E to recruit the translation initiation factor eIF4G
to the 5´ end of most mRNA and thus enhancing its function as elon-
gation initiation factor. eIF4E is involved in several cellular processes
including enhanced translational efficiency, splicing, mRNA stability,
and RNA nuclear export.

PRAS40 contributes to the inhibition of mTORC1 activity. In re-
sponse to insulin, mTORC1 phosphorylates PRAS40 at Ser183 and
this action causes the release of PRAS40 from the complex and re-
lieves its inhibitory effect on mTORC1 which is allowed to phospho-
rylates the remaining substrates. Also Akt phosphorylates PRAS40
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Figure 4: Schematic representation of Ras/MAPK pathway. Solid lines with
arrows show activation, solid lines with blunt ends show inhibi-
tion and dotted line with arrow shows translocation.

which causes it to bind to 14-3-3 proteins and prevents it from inhibit-
ing mTORC1.

2.4 ras/mapk pathway

MAPK pathway (see Fig.4) mainly promotes cell survival, cell divi-
sion and cell motility. In this section we examine in detail the most
important elements contributing to this pathway focusing in their
interactions in order to unveil the complexity of this network [15]
[Uniprot] [PhosphoSitePlus].

Ras/MAPK pathway can be briefly reassumed as a multistep pro-
cess startingfrom an initial GTPase-regulated kinase (MAPKKK) that
phosphorylates and activates an intermediate kinase (MAPKK) that,
in turn, phosphorylates and activates an effector kinase (MAPK). These
three steps correspond respectively to Ras GTPase and protein ki-
nases Raf, MEK and ERK.

2.4.1 Grb2, SOS and Ras

Insulin triggers Ras/MAPK pathway upon binding of growth fac-
tor receptor binding protein 2 (Grb2) to Tyr-phosphorylated IRS (see
2.3.1). Grb2 can also associates directly with activated receptors, such
as EGFR and PDGFR, via its SH2 domain. Grb2 binds to mammalian
son of sevenless (SOS) by means of SH3 domains in Grb2, forming a
complex. Subsequently SOS, which is a guanine nucleotide exchange
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protein, catalyzes the exchange of guanosine diphosphate (GDP) for
GTP on Ras (a small GTP binding protein), thus resulting in activa-
tion of Ras. The prenylated form of Ras binds the inner leaflet of the
plasma membrane and, upon SOS activation, binds the N-terminal
region of the protein kinase Raf, recruiting Raf to the plasma mem-
brane.

2.4.2 Raf

Ras-GTP recruits Raf to the membrane, thereby promoting its acti-
vation. The inactive conformation of Raf is maintained by autoin-
hibitory interactions occurring between the N-terminal regulatory
domain and the C-terminal catalytic domain and by the binding of
a 14-3-3 protein that contacts two phosphorylation sites, Ser259 and
Ser621. Upon mitogenic stimulation, Ras allows the release of autoin-
hibition and permits the subsequent phosphorylation of activating
sites (Ser338, Tyr341, Thr491 and Ser494) which yields a fully active
kinase.

Raf is a serine/threonine-protein kinase that acts as a regulatory
link between the membrane-associated Ras GTPases and the MAP-
K/Erk cascade, and this critical link functions as a switch for cell fate
decisions including proliferation, differentiation, apoptosis, survival
and oncogenic transformation. Raf activation initiates the mitogen-
activated protein kinase (MAPK) cascade that comprises the sequen-
tial phosphorylation of the dual-specific MAPK kinases (MEK1 and
MEK2) and the extracellular signal-regulated kinases (ERK1 and ERK2).

Moreover, Raf is phosphorylated on Ser29, Ser43, Ser289, Ser296,
Ser301 and Ser642 by ERK2 leading to kinase inactivation and thereby
constituing a negative feedback loop.

2.4.3 MEK1/2

As said before, Ras protein mediates the activation of Raf which,
in turn, activates ERK kinases MEK1 and MEK2. Activation occurs
through phosphorylation of Ser218 and Ser222 on both MEK1 and
MEK2. MEK1 and MEK2 function catalyzing the concomitant phos-
phorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr
sequence located in ERK1 and ERK2 and leading to their activation.

MEK1 is also the target of negative feedback regulation loop by
its substrate kinase ERK2. ERK2 phosphorylates MEK1 on Thr292,
thereby facilitating dephosphorylation of the activating residues Ser218
and Ser222.
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2.4.4 Erk1/2

ERK1 (MAPK1) and ERK1 (MAPK3) are the two MAPKs playing the
most important role in Ras/MAPK cascade.

ERK1 is phosphorylated by MEK1 and MEK2 on Thr202 and Tyr204
whereas ERK2 on Thr185 and Tyr187. Phosphorylations of both sites
are required for ERK1 and ERK2 activation and this event causes
dramatic conformational changes that allows their interaction with
substrates. ERK2 is also phosphorylated on Ser29 by SGK1 and this
results in ERK2 activation by enhancing its interaction with MEK1
and MEK2.

About 160 substrates have already been discovered for ERKs. Many
of these substrates are localized in the nucleus confirming ERKs par-
ticipation in transcript regulation events. However, other substrates
are found in the cytosol as well as in some other cellular organelles,
and those are responsible for processes such as translation, mitosis
and apoptosis.

The phosphorylation sites responsible for the nuclear location are
the autophosphorylation sites at Thr207 for ERK1 and at Thr190 for
ERK2 (in addiction to phosphorylation sites at Ser246 and Ser248 in
the kinase insert domain, KID).

ERK1 and ERK2 nuclear translocation, together with their ability
to phosphorylate transcription factors, constitutes an important con-
nection between cytoplasmic and nuclear events.

One of the most important transcription factors phosphorylated
and activated by ERKs is Elk-1, which leads to the induction of gene
expression.

2.5 cbl/cap pathway

Cbl/CAP pathway (see Fig. 5) controls the glucose transporter type
4 (GLUT4) traffic to the cell membrane in a PI3K–independent man-
ner and, cooperating with the PI3K-PKB/AKT pathway, ensures the
efficient regulation of glucose transport operated by insulin-action
[15, 5, 25].

In absence of insulin, the majority of GLUT4 is distributed be-
tween endosomes, the trans-Golgi network (TGN) and heterogeneous
tubulo–vescicular structures that consist of endosomal sorting inter-
mediates and specialized GLUT4 storage vesicles (GSVs). In basal
state, only about 5% of the total GLUT4 transporter pool is found on
the cell surface but , in response to insulin or exercise, the glucose
uptake is tenfold increased. The failure of GLUT4 translocation to
the plasma membrane in response to insulin is an early step in the
development of insulin resistance and type 2 diabetes mellitus.

Cbl/CAP pathway is triggered by insulin binding to its cognate re-
ceptor. Upon insulin binding, the adaptor protein with pleckstrin ho-
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Figure 5: Schematic representation of Cbl/CAP pathway. Solid lines with
arrows show activation, dotted lines with arrows show tentative
stimulatory action and thin dotted lines with arrows show translo-
cation.

mology (PH) and Src homology 2 (SH2) domains (APS) is recruited
and binds with high affinity to the Tyr-phosphorylated insulin recep-
tor. Subsequently, APS undergoes Tyr-phosphorylation and recruits a
complex that comprises the protooncogene c-Cbl and cCblassociated
protein (CAP) by means of the atypical SH2 domain of Cbl. This
triggers insulin receptor-catalyzed Tyr phosphorylation of cCbl. CAP
protein is recruited with Cbl to IR by means of the interaction of its
third C-terminal SH3 domain with Cbl and another direct interaction
with APS through its N- and C-terminal SH3 domains. Upon Tyr
phosphorylation of Cbl, the Cbl–CAP complex is released from the
receptor and translocates to lipid raft domains in the plasma mem-
brane. This mechanism is mediated by the interaction of the SoHo
domain of CAP with the protein flotillin. Phosphorylated Cbl then
interacts with the adaptor protein CRK, which is in complex with the
guanyl nucleotide-exchange (GEF) protein C3G. Once translocated
into lipid rafts, C3G comes into proximity with Rho family GTPase
TC10 and catalyses the exchange of GTP for GDP, resulting in acti-
vation of TC10. Active TC10 interacts with several effector proteins
that regulate GLUT4 vesicle exocytosis. One TC10binding protein is
CDC42interacting protein 4 (CIP4) which forms a stable complex with
the RAB GEF GAPEX5. This regulates the activity of RAB5 family GT-
Pases that are involved in GLUT4 vesicles retention and translocation.
Another TC10 effector is EXO70 which is a subunit of the exocyst
tethering complex and has been implicated in GLUT4 vesicle target-
ing. Together, these molecular targets play an important role within
Cbl/CAP signaling in the release of intracellular GSV retention mech-
anism and in GLUT4 vesicle targeting to the plasma membrane.

Moreover, the movement of GLUT4 transporters along cytoskeletal
tracks may also be mediated by molecular motors such as the uncon-
ventional myosin Myo1c, which contains a motor domain, three IQ
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motifs, and a carboxy-terminal cargo domain. Proper structural orga-
nization of plasma membrane caveolin and a functional clathrin may
also have a significant role in GLUT4 trafficking regulating GLUT4
endocytosis rate and, thus the overall rate of GLUT4 recycling.





3
R U L E - B A S E D M O D E L I N G O F B I O C H E M I C A L
S Y S T E M S

3.1 introduction

Signal transduction inside cells is carried out by network of interact-
ing signal mediators and is often a very complex process. Complexity
derives not only from the enormous amount of different molecules
involved in the process but also from the presence of numerous feed-
backs and feedforward loops, both negative or positive, concerning
the pathway itself, and ample crosstalks involving distinct pathways.
This high degree of complexity issues new challenges in understand-
ing how cellular signaling works in detail and thus new and more
powerful tools have to be introduced beyond the simple reasoning on
experimental data.

Insulin signaling pathway represents a typical example of complex
network due to the numerous molecules constituting it and the sev-
eral types of interactions between these elements. Hence, in order
to analyse in detail the dynamics which characterizes this network
it is necessary to make use of mathematical tools able to model the
system comprising the majority of its biochemical reactions. The re-
sulting model can be used to make predictions of signaling pathway
in physiological state to gain new knowledge about the process or
may be used to test the system varying some quantities and param-
eters which describe the model to obtain information about network
malfunctioning and mimicking pathological condictions. The most
common approach makes use of a system of ordinary differential
equations (ODEs) to model the kinetics of the molecules populat-
ing the system. This method works well in case of simple networks
comprising just few molecules. When the system under investigation
is particularly large and involves a great amount of interactions be-
tween molecules, the ODEs approach is no more efficient from both
implementational and computational point of view. For this reason
the rule-based modeling approach has been introduced providing an
easy way to implement the system and new simulation tools.

3.2 computational modeling techniques

As already said, experimental biology approach alone does not pro-
vide a reasonable strategy to a detailed analysis of complex signaling
networks. Therefore, some computational methods have been intro-
duced to be used in combination with experimental results. In this

21
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way computational methods provide useful information to guide ex-
perimental design obtaining more informative experiments, whereas
data collected from experiments help implementation and refinement
of computational models, providing more accurate predictions of bi-
ological systems.

Computational methods are typically classified in two main cate-
gories: structural and dynamic network analysis [27]. Structural net-

work analysis gives information about network connectivity and de-
duce some properties of the global network as well as some functions
of individual proteins. An example of structural model analysis is
the boolean network simulation method which uses only signaling
network connectivity information to predict the speed of signal trans-
duction and which produced encouraging results in gene regulatory
networks [17]. In boolean model the signal transduction is discretized
and can be either present or absent, This two-states modeling repre-
sents a extreme simplification of the underlying biochemistry and
cannot be used to predict fine time courses of protein concentrations.
In order to deal with this limitation signaling Petri net-based simula-
tion has been introduced. Petri net-based simulator still represents a
non-parametric modeling approach but is a more fine-grained way to
model and simulate the dynamics of signaling network. This method
was used to study MAPK and AKT signaling network downstream
of EGFR in cancer cells showing good results [23].

Dynamic network analysis makes use, in addiction to network con-
nectivity information, of kinetic parameters characterizing the bio-
chemical reactions in order to obtain more detailed information re-
garding the network behavior. Kinetics parameters, also known as
kinetic rate constants, give information about the speed of a chemical
reaction occurring between species and thus about how fast reactants
are transformed into products. In this way dynamic models permits
to obtain the time courses of the proteins involved in signal trans-
duction. Even though dynamic models are more informative respect
to the structural models, they require additional knowledge of many
numerical values describing the kinetics of the reactions. Thus im-
plementation of dynamic models easily encounter problems due to
the limited data available from experiments. Moreover, the measure-
ments of kinetics parameters often depend on cell type, experimental
conditions and other factors. Thus these values may differ of a order
of magnitude from test to test and in some cases they may remain
under-determined or non-uniquely estimated. Despite these difficul-
ties dynamic models are widespread and they have been currently
used by many research groups with sucessful results.

Nowadays, the most widely used technique to implement dynamic
models consists in the use of a set of ordinary differential equations
(ODEs) able to mime the system. Concentration changing in time of
each chemical species present in the system is described by a differ-
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ential equation exploiting the knowledge of kinetics rate constants.
Unfortunately model implementation using ODEs presents remark-
able problems in describing large and complex networks and thus it
makes necessary the introduction of severe simplifications in the sys-
tem. However in recent years a new approach has been introduced
which makes use of simple reaction rules instead of a set of differ-
ential equations: the rule-based modelling. Rule-based modeling rep-
resents a revolutionary modeling approach which permits to over-
come the limitations imposed by ODEs modeling with an outstand-
ing saving of time and reducing the risk of errors during model imple-
mentation phase. Rule-based modeling permits also new simulation
methods making use of stochastic algorithms. A deeper comparison
between these two modeling approaches and all the peculiarities of
rule-based modeling are presented in the following Section.

In addiction to scientific literature, a good deal of information use-
ful for model implementation is available from numerous online databases.
Generally, databases give lots of heterogeneous information about
signaling pathways and about elements constituting those pathways.
Some of them focus on networks connectivity, such as KEGG [20],
PANTHER [35] and Reactome [40], unveiling the complex connec-
tions between different elements and the presence of feedbacks, feed-
forward loops and crosstalk mechanisms. They usually provide some
information about activation and inhibition actions operated by dis-
tinct proteins avoiding many details about these interactions. These
databases give all the necessary information for the structural mod-
eling approach and represent a starting point for dynamic network
implementation. However, more detailed information concerning the
structure and the function of each protein can be obtained from other
databases, such as PhosphoSitePlus [32] , UniProt [4], HPRD [38],
OMIN [37], UCSD signaling gateway [9] and NetPath [18]. In these
databases it is possible to find information about the presence of par-
ticular molecular domains and motives, phosphorylation and bind-
ing sites with all the related interacting molecules. Unfortunately, no
database already exists collecting kinetic parameters of the chemical
reactions. This makes difficult the research of these important values
and implies the examination of a huge amount of scientific literature.

However, in case of incomplete information, it is still possible to in-
fer the unknown parameters training the model against the available
experimental data. One way implies the use of measured time courses
of phosphorylated proteins as input for a optimization algorithm able
to compute the unknown quantities. This approach gives reasonable
solutions when the missing parameters are few but introduce higher
uncertainties as the quantity of unknown values grows. One example
is represented by the stochastic algorithm termed particle swarm opti-

mization (PSO) that is used to identify the insulin-like growth factor
(IGF-1) signaling network in cancer cell line [19]. However, parame-
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ters estimation and optimization tools are out of the purpose of this
study in which we decide to rely on already existing models includ-
ing the kinetic parameters of all reactions and the initial concentra-
tions of all chemical species.

3.3 rule-based modeling

We mentioned the importance to catch every site-specific detail of
protein-protein interactions in order to achieve the complete compre-
hension of how a signaling pathways works. In addiction to difficul-
ties arising from incomplete experimental data, another impediment
is present due to the intrinsic complexity in describing every inter-
action occurring in the network. Signaling proteins contain multiple
functional components and several sites of post-translational modifi-
cation. As result, interactions among signaling proteins may generate
a myriad of protein complexes and post-translational modification
states. For instance, a protein containing n phosphorylation sites can
be found in up to 2n distinct states. This feature has been called combi-

natorial complexity and has been recognized as a significant challenge
to our understanding about cellular regulation [11].

In conventional model specification using a set of ODEs, each chemi-

cal species that potentially populates the system and each reaction that
can occur must be explicitly specified and this may generate a combi-
natorial number of coupled differential equations making model im-
plementation tedious, prone to errors or even impossible. Since the
same molecule found in a different state represents a different chem-
ical species, to describe completely each molecule as many of dif-
ferential equations as the number of its dinstict states are necassary
(without considering any kind of interaction with other molecules).
Taking the example above, a protein containing n phosphorylation
sites is described by 2n differential equations. Moreover, the amount
of differential equations increases rapidly when molecules with more
than one site bind together forming in a complex which can be found
in a myriad of different possible states.

The most common solution adopted to overcome this limitation
entails the simplification of the model. Proteins with multiple phos-
phorylation sites are represented with a single phosphorylation site
which reassumes the properties of all sites, termed virtual phosphoryla-

tion site [12]. The same procedure is adopted when a complex sequen-
tial multi-step process is taking place by substituting it with a single
step. Obviously these simplifications conflicts with the knowledge of
cellular biochemistry and there is no proof that these assumptions
could not afflict model predictions in some way.

In order to deal with the issue of combinatorial complexity, a new
useful tool has been introduced with the purpose to specify all the
reactions arising from molecular interactions in a more efficient and
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compact way. Rule-based modeling approach [21] is based on the key as-
sumption that the characteristics of molecular interactions depend on
local properties of the protein involved and this modularity mostly de-
termines the network dynamics. According to this assumption, struc-
ture of a reaction occurring in the network can easily be defined by
means of a rule. A rule represents a class of reactions involving re-
actants with common components and component properties. The
important simplification of the rule-based modeling approach is that
all the reactions within a class are assigned the same rate law. An im-
pressive example offered by rule-based modeling approch is the one
described in [14] in which EGF receptor signalling is implemented us-
ing 70 rules and which generate over 1023 dinstict molecular species
and thus 1023 differential equations would be necessary using ODEs
modeling.

In conclusion, both rule-based model and ODEs model provide a
representation of chemical kinetics but they are different in the model
specification procedure. While in ODEs model the modeler must state
explicitly which chemical species populate the system and how these
are connected and influence each other, in a rule-based model, the
modeler must state only the interactions occurring in the system and
their contextual dependencies [21].

Rule-based modeling approach is implemented by means of two
major languages, termed Kappa [link] and BioNetGen [link]. Due to
its facility of use we chose BioNetGen language to implement our
models but the differences compared with Kappa language are ne-
glegible.

3.4 bionetgen language

BioNetGen[16] is a set of software tools for rule-based modeling and
is a mnemonic for “Biological Network Generator”. The software not
only generates reaction networks starting from reaction rules, but also
simulates such networks using a variety of methods (see 3.4.1).

In order to understand how this software practically implements a
biological system using rule-based modeling, we report a simple ex-
ample taken from [16] that will clear the basic concepts lying beneath
this approach.

bionetgen language (bngl) encoding example Fig. 6 de-
picts the implementation of a simple network in all its essential parts.
Molecules are implemented as structured objects that can be consti-
tuted by different components. These components represent func-
tional elements of proteins and may have associated states repre-
senting covalent modifications or conformations (e.g. phosphorylat-
ed/unsphosphorylated state, active/inactive state etc.). The expres-
sion reported in Fig.6(A) indicates the definition of two molecules
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types. A(a) represents the presence of molecules type A having only
the componet a. B(b1,b2~U~P) represents molecules type B having
two components, b1 and b2. In particular, the expression b2~U~P in-
dicates that component b2 may be found in two possible states, ~U
and ~P, which can be used to indicates respectively the unphophory-
lated and the phosphorylated states.

Components of distinct molecules can link together forming a bond,
thereby building complexes of assembled molecules. Patterns can be
used to select particular molecular attributes. In particular, the pat-
tern B(b1) shown in Fig. 6(B) selects molecules B having the binding
site b1 completely free despite of the phosphorylation and binding
status of b2 component.

Rules are needed to specify the biochemical transformations that
can potentially take place in the system. The term “transformation”
is used instead of “reaction” to indicate that the same reaction rule
is applied to a selected set of reactant species and not necessarily to
only one chemical species. This approach is worthy if, as already said,
the chemical reactions mainly depend on the local properties of pro-
tein components. Modularity feature implies that the same reaction
rule can be used to describe the transformation of different chemi-
cal species sharing common components and component properties.
This selection method of the chemical species permits to write many
complicated chemical reactions in a set of few rules making more
compact and efficient the implementation of the model. In rules, the
“pattern matching” is accomplished specifying two essential parts:

• the protein components directly modified by the transformation
(reaction center) and

• the components and components states needed for the selection
of chemical species (reaction context).

In Fig. 6(C) are reported 3 different rules and their reaction centers
are underlined. Rule 1 A(a) + B(b1) <-> A(a!1).B(b1!1) kp1,km1
represents a common reaction of binding and unbinding between
molecules A and B. Bond formation involves the components a of
molecule A and component b1 of molecules B. Since nothing is spec-
ifyed about component b2, the reaction between the two molecules
takes place indipendently from the phosphorylation state of b2. Since
this reaction is reversible (<->) its kinetics is described by means
of two parameters, kp1 and km1, which respectively determine the
speed of the forward and backward reactions. Rule 2 B(b1!+,b2~U)
-> B(b1!+,b2~P) k2 describes a typical phosphorylation event. Com-
ponent b2 of molecule B changes its state from ~U to ~P according to
kinetics parameter k2. The expression b1!+ specifies that the reaction
takes place only if site b1 is bound to another molecule. Finally, rule 3
B(b2~P) -> B(b2~U) k3 describes a desphosphorylation event. Com-
ponent b2 of molecules B changes its state from ~P to ~U according to
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Figure 6: BioNetGen language encoding example. Figure taken from[16]

rate k3. Since nothing is specifyed about b1, the reaction takes place
indipendently from presence of bond in component b1.

Starting from the seed species the rules are applied generating
other new species and thus new reactions. The process continue it-
eratively until no new reactions are found or some other stopping
criteria are satisfied creating the complete network model. Fig. 6(C)
depicts this phase starting from the seed species A(a) and B(b1,b2~U)
up to the creation of a complete network containing all the possible
species which may populate the system according to rules 1, 2 and 3.

This simple but explicative example depicts some of the typical
events occurring in a biological pathway. Phosphorylation and de-
phosphorylation of a molecular site and binding and unbinding of
two proteins are fundamental events taking place in a signaling path-
way and governing its dynamics. However, this set of few rules can
be extended using more molecules with different components and
components properties opening the door to implementation of very
complex systems.

A BioNetGen input file is mainly constituted by six sections in-
cluding all the information about the biological system and they are
briefly presented here:
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• (parameters) Define the parameters that govern the dynam-
ics of the system such as rate constants, the values for initial
concentrations of chemical species, compartment volumes and
physical constants used in unit conversions. The synthax of a
line in the parameters block is

[index] parameter [=] value ✆
where square brackets indicate optional elements, parameter is
a string consisting of only alphanumeric characters plus the un-
derscore character and containing at least one nonnumeric char-
acter. value may be either a number in integer, decimal or ex-
ponential notation or a formula involving numbers and other
parameters in C-style math synthax;

• (molecule types) Define molecules, including components and
allowed component states. As already said, molecules are struc-
tured objects composed of components able of binding to each
other. Components typically represent physical part of proteins
such as domains and motives and may also be associated with
a list of state labels, which represent states or properties of
the components. Examples of component states modeled using
state labels may concern conformation (e. g. open or closed),
phosphorylation status and location (e. g. extracellular space,
membrane, cytoplasm). The synthax of a line in the molecule
types block is

[index] moleculeTypes ✆
where moleculeTypes has the synthax for a BioNetGen species;

• (seed species) Define the initial state of system such as initial
chemical species to which rules are applied. The synthax of a
line in the seed species block is

[index] species [initialPopulation] ✆
where species has the synthax for a BioNetGen species de-
scribed above and initialPopulation is a number or formula
that specifies the amount of the species present at the start of
the first simulation (default is zero);

• (observables) Define model outputs, which are functions of
the population levels of multiple chemical species sharing a set
of properties. The synthax of a line in the observables block is

[index] [observableType] observableName pattern1[,pattern2] ✆
where observableType is either Molecules or Species (default
is Molecules), observableName is a valid name for a BioNetGen
observable, and each pattern is a valid BioNetGen pattern;
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• (functions) Define the functions describing the kinetic rate
constants which cannot be described by a simple constant value
but which show a kind of dependencies from concentrations of
some chemical species present in the system. The synthax of a
line in the functions block is

f() = formula ✆
where f() is the name of the function and formula is an math-
ematical expression involving the concentration of one or more
chemical species which have to be necessarily listed in the observables
block;

• (reaction rules) Define rules describing which chemical species
are involved in a transformation and which are the consequences
of this transformation. Each rule is similar to a standard chem-
ical reaction notation having four basic elements: reactant pat-
terns, an arrow, product patterns and a rate law specification.
The synthax of a line in the reaction rules block is

[index] rPattern1 [+rPattern2] ... arrow pPattern1 [+
pPattern2] ... rateLaw1[,rateLaw2] [command1] ... ✆

where each Pattern is a valid BioNetGen pattern, arrow is one
of “->” or “<->”, each rateLaw is a parameter or a rate law func-
tion. Rules may transform a selected set of reactant species by
adding or deleting molecules or bonds and by changing compo-
nent state labels. An example for each case is reported below

begin reaction rules
#Add a bond
A(a) + B(b) -> A(a!1).B(b!1) k_a
#Delete a bond
A(a!1).B(b!1) -> A(a) + B(b) k_d
#Change a component state label
A(Y~P) -> A(Y~U) km3
#Add a molecule
I() -> I() + A(a,Y~U) ksynth
#Delete a molecule
A() -> Trash() kdeg

end reaction rules ✆
• (actions) Perform two basic types of actions, generate the chem-

ical reaction network implied by the model specification and
simulate this network using different methods (see 3.4.1). An
example of actions commonly used are reported below

#actions
generate_network({overwrite=>1});

#kinetics
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writeSBML({});
simulate_ode({t_end=>120,n_steps=>120});
resetConcentrations();
simulate_ssa({suffix=>ssa,t_end=>120,n_steps=>120}); ✆
generate_network command directs BioNetGen to generate a
network of species and reactions through iterative application
of the rules starting from the set of seed species. This behaviour
can be overridden setting the option overwrite=>1. writeSBML
indicates that the network is written to an SBML file. simulate_ode
command initiates a simulation of the dynamics implement-
ing and numerically solving a set of ODEs. t_end and n_steps
specify respectively the end time for the simulation and the
number of steps at which the results are written to the out-
put files. resetConcentrations command restores the concen-
trations to the initial values. simulate_ssa command initiates
a stochastic simulation. suffix=>ssa command appends “_ssa”
to the basename for output files of the simulation.

All the information about BioNetGen software and syntax are fully
described in [16].

3.4.1 BioNetGen Simulation Tools

It is worthy to clear some aspects concerning the simulation tools
offered by BioNetGen software.

One possible method (the one presented above) entails the iterative
application of rules to the set of defined seed species in order to gen-
erate a network before the simulation starts. Subsequently, the simu-
lation may be carried out either by numerically solving ODEs or by
implementing a stochastic simulation algorithm (SSA). SSA implies
a kinetic Monte Carlo simulation using the Gillespie algorithm [8]
and produces stochastic trajectories representing the concentrations
of observables species.

Alternatively, the rules may be applied during the simulation as
the set of populated species grows using a procedure that has been
called “on-the-fly” network generation and simulation. As a first step
only the reactions involving seed species are initially generated. Then,
BioNetGen detects when a reaction event occurs that populates one
or more species to which rules have not been previously applied and
automatically expands the network through rule application. This
method is useful when a network is potentially unrestricted such as
in polimerization processes which allows aggregates formation of any
size. For this reason to generate a complete network before prediction
starts may be dangerous unless some stopping criteria are specified.
An example of this simulation method is reported below

#simulation on-the-fly
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generate_network({overwrite=>1,max_iter=>1});
simulate_ssa({t_end=>50,n_steps=>20}); ✆
where max_iter set to 1 indicates that only the reactions involving
seed species are initially generated.

For all the mentioned methods the simulation cost scales with the
network size, hence simulation of large-scale reaction networks may
become impractical. In particular, the CPU time required for model
simulation increases exponentially as the number of network reac-
tions grows. In order to overcome this computational limit, network-

free methods have been introduced such as NFsim. NFsim [7] guar-
antees a constant cost of simulation per reaction event and thereby
implies a linear increase of the CPU time with the number of reac-
tion events in the system. NFsim generalized the rule-based version
of Gillespie’s stochastic simulation algorithm (SSA) and guarantees
very similar results compared with SSA but with a outstanding sav-
ing in time. An example of NFsim is reported below

#network-free simulation
simulate_nf({suffix=>nf,complex=>1,t_end=>50,n_steps=>20}) ✆





4
C O M P U TAT I O N A L M O D E L O F I N S U L I N
S I G N A L I N G PAT H WAY

4.1 introduction

The purpose of this thesis is to implement a computational model
describing the insulin signaling pathway in its essential parts in order
to simulate the most important features of insulin action.

As seen in previous Chapters, insulin signaling pathway is consti-
tuted by great deal of molecules having distinct functions and inter-
acting with each other in different ways. Due to this complexity, the
knowledge concerning how insulin signaling pathway really works
cannot be achieved by means of simple reasoning on data obtained
from experiment. Thus, new and more powerful computational tools
have been recently introduced in order to be used in combination
with experimental data. Insulin pathway can be viewed as a complex
network of interacting elements that can be described by means of a
mathematical model. In order to overcome combinatorial complexity
that often limits the implementation of large models, the rule-based
modeling approach may be used. As said in the previous chapter,
BioNetGen language is a software that permits to implement this new
modeling approach and to encode the model by means of a simple
set of rules.

We decided to realize the model of insulin signaling pathway start-
ing from three models published in literature during the past years.
These models consider only some parts of the entire insulin pathway
but their combination is sufficient to cover the essential elements re-
sponsible for the most of the insulin action. By means of the informa-
tion derived from these models we entirely reconstructed the two ma-
jor sub-systems of the insulin signaling pathway, the PI3K-PKB/Akt
and the Ras/MAPK pathways.. Unfortunately, no information were
available for Cbl/CAP pathway due to the lack of knowledge in some
essential steps involved in GLUT4 translocation.

Models taken from literature were originally implemented using
sets of ordinary differential equations (ODEs) and thus they needed
to be translated using the rule-based modeling approach. First, we
realized the models separately and we verified that the resulting sim-
ulations matched those showed in the papers (see Appendix). Subse-
quently, we integrate them creating a single complete model includ-
ing as many elements as possible of the insulin signaling pathway.

The flow chart depicted in Fig.7 describes all the elements con-
stituting the complete model and mostly define their relationships.

33
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Figure 7: Flow chart of complete model of insulin signaling pathway. The
colors indicates which subsystem elements belong to and are or-
ange for PI3K-Akt/PKB subsystem, blue for mTOR subsystem
and purple for Ras/MAPK subsystem. Solid lines with arrows
show the activation or tyrosine phosphorylation of proteins and
lipids. Dotted lines represent protein-protein complex formation.
Red lines with blunt ends show inhibition.
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The colors of the blocks indicate the sub-system which elements be-
long to and thus the main reference papers, and are orange for PI3K-
PKB/Akt subsystem (Quon’s paper [22]), blue for mTOR subsystem
(Thedieck’s paper [34]) and purple for Ras/MAPK subsystem (Kholo-
denko’s paper [12]). In particular, complete insulin model makes use
of

• 23 differential equations and 55 parameters (42 kinetics param-
eters and 13 initial conditions) taken from Quon’s paper;

• 17 differential equations and 26 parameters (17 kinetics param-
eters and 9 initial conditions) taken from Thedieck’s paper, and

• 19 differential equations and 54 parameters (45 kinetics param-
eters and 9 initial conditions) taken from Kholodenko’s paper.

The resulting model is constituted by total 156 parameters and 52
reactions rules involving 67 dinstict chemical species. Since in tra-
ditional ODEs approach concentration of each chemical species is de-
cribed using a ordinary differential equations, model implementation
using ODEs would required the use a set of 67 equations (instead of
52 rules using rule-based modeling). Hence, rule-based modeling ap-
proach permits to describe the model making use of a lower number
of rules respect to that needed using traditional approach. This is an
example of the advantages carried by rule-based modeling but, in
some particular cases, the number of rules respect to ODEs may be
more significantly reduced leading to a remarkable saving in time
and a lower risk of errors during whole the implementation proce-
dure.

In the following sections, we present the most important details
concerning complete model implementation using BioNetGen lan-
guage. The sections will treat separately three main portions in which
we divide the system and which correspond to information mostly
taken from the same paper. In addiction, for each section we collected
useful information about the referential paper including all the basic
assumptions and simplifications introduced by research groups.

4.2 pi3k-pkb/akt model

To represent insulin receptor and PI3K-PKB/Akt signaling pathway
discussed in Chapter 2 (Sections 2.1 and 2.2) we used the model pre-
sented in the paper “A Mathematical model of metabolic insulin sig-
naling pathways” by Quon M. J et al. in 2002 [22]. The purpose of
the study was to realize a comprehensive model ables to represent
the knowledge available from experimental data and to gain new in-
sight regards to molecular mechanisms underlying the insulin signal
transduction pathway. In particular, the model was realized using
concentrations and kinetics parameters taken from literature mostly
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Figure 8: Complete model of metabolic insulin signaling pathway with feed-
backs. Positive and negative feedback loops are indicated by dot-
ted lines. PKC-ζ serine phosphorylates IRS-1 to create a negative
feedback (red line) and Akt phosphorylates PTP1B to create a pos-
itive feedback (blue line). Figure adapted from [22].

refering to experiments on 3T3-L1 adypocytes, and then used to run
predictions of the system under different condictions. The model is
depicted in Fig.8 where the compartments represent the molecules
and the molecule states considered in the model and the arrows indi-
cates the interactions between these elements. Despite it is dated 2002,
the model contains several of the most accepted mechanisms and
intermediates in the downstream signaling controlling the glucose
uptake, such as activation of phosphoinositide 3-kinase (PI3K), phos-
phorylation of protein kinase B (PKB), and translocation of GLUT4 to
the plasma membrane. This model has reigned for several years and
has been used by many researcher groups. Here we present a brief
description of the model followed by some details about its imple-
mentation in the original paper and using BioNetGen language.

4.2.1 Model description

Upon insulin binding, insulin receptor (IR) undergoes autophospho-
rylation and enhances its tyrosine kinase activity. Subsequently, in-
sulin receptor substrate-1 (IRS-1) is phosphorylated on tyrosine residues.
Tyrosine residues of IRS-1 function as docking sites for downstream
SH2 domain containing proteins, such as the p85 regulatory sub-
unit of phosphatidylinositide 3-kinase (PI3K). The p85 binding to
phosphorylated IRS-1 results in activation of the p110 catalytic sub-
unit of PI3K that catalyzes production of phosphatidylinositol 3,4,5-
trisphosphates [PI(3,4,5)P3] that activates the Ser/Thr kinase 3-phosphoinositide-
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dependent protein kinase (PDK)-1. PDK-1 phosphorylates and ac-
tivates two major downstream kinases, Akt and protein kinase C
(PKC)-γ, that mediate the translocation of GLUT4. The protein ty-
rosine phosphatase (PTPase) PTP1B is also included and it negatively
regulates insulin signaling pathway by dephosphorylating IR and
IRS-1.

4.2.2 Model implementation in original paper

In Quon’s paper two mathematical models of metabolic insulin path-
way were presented. The work started implementing a complete model
without feedback mechanisms. This first model was then extended in
order to incorporate informations about feedback loops resulting in
a second and more accurate model. We decided to reassumed here
the main features of the complete model with feedback loops which
is the one we refer in our work.

Quon’s model uses previously validated models of insulin receptor
binding kinetics, receptor recycling and GLUT4 translocation. These
were integrated with new subsystems generating a complete model
counting 23 state variables. The majority of model parameters and
rate constants characterizing the steps of the metabolic insulin signal-
ing pathway were based on experimental data taken from literature.
In the cases where mechanisms regulating interactions between sig-
naling elements were not fully understood, they modeled these inter-
actions as simple linear functions. This simplification was introduced
for the rate of IRS-1 phosphorylation in response to activated insulin
receptors, the rate of PI(3,4,5)P3 generation in response to activated
PI3K, the rate of PKC-ζ and Akt phosphorylation in response to in-
creased levels of PI(3,4,5)P3, and the rate of exocytosis for GLUT4 in
response to phosphorylated PKC-ζ and Akt.

Despite the effort in including as many elements as possible in the
model, the complete mechanism regulating the metabolic action of
insulin remains still unclear and requires the introduction of marked
simplifications. Thus insulin controlling glucose uptake is simply rep-
resented by a direct control of Akt and PKC-ζ on the trafficking ma-
chinery for GLUT4.

However, the model includes a detailed description of insulin recep-
tor response upon insulin binding. Insulin receptor represents a crit-
ical point within the signaling cascade because its kinetics markedly
influences the following downstream events. Nowadays many theo-
ries and mathematical models are available in literature which pro-
vide mechanistic and quantitative explanations to experimental data.
Models focus mainly on modeling the binding event of insulin to its
receptor, the internalization mechanism of insulin receptor and some
of them offer interesting theories about receptor aggregation and co-
operation phenomena.
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Quon’s group performed several tests on their insulin model. First
they generate model time courses and insulin dose-response curves
observing a good overall match between experimental data and model
simulations. In particular, PKC-ζ activation time course obtained by
model with feedbacks shows the typical biphasic feature, absent in
the simulation of the model without feedbacks. Moreover, to exploit
the model ability to represent pathological conditions, they ran model
simulations examining the effects of increasing level of PTPase on
GLUT4 translocation.

All the details concerning PI3K-PKB/Akt model implementation
using BioNetGen language are presented in the following section.

4.2.3 Model implementation using BioNetGen language

First, in BioNetGen code we define in the molecule types block all
the molecules which populate this part of the system, and that are
listed below

begin molecules types
I(bs)
IR(bs,alpha,alpha,Y~u~p,loc~ex~c)
IR_Gen()
IRS1(bs,YXXM,Y~u~p,S~u~p)
PI3K(SH2)
PI45()
PI345()
PI34()
PKC(T~u~p) #T410_T560
Akt(T308~u~p,S473~u~p)
GLUT4(loc~c~ex)
GLUT4_Gen()
Trash() ✆

For matter of clearness, we present PI3K-PKB/Akt pathway accord-
ing to the method suggested in Quon’s paper dividing the system
in four main parts. These subsystems are discussed in the following
paragraphs and treat the binding and recycling mechanisms of in-
sulin receptor, the signaling of all the downstream molecules and the
translocation of GLUT4 transporters to the cell membrane.

insulin receptor binding subsystem . Referring to the molecules
listed above, I(bs) indicates insulin molecules having the binding site
bs for insulin receptor. IR(bs,alpha,alpha,Y~u~p,loc~ex~c) repre-
sents insulin receptor having the binding site bs for RasGAP (see Sec-
tion 4.4.3) and two alpha subunits for the binding of insulin molecules.
IR can also be found in unphosphorylated (Y~u) or phosphorylated
(Y~p) state on tyrosine residues and can change its location from cell
surface (loc~ex) to cytoplasm (loc~c).
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The reaction rules presented below describe exactly insulin recep-
tor binding event. When a first molecule of insulin binds to it (rule
1), IR is rapidly phosphorylated (rule 2). Subsequently, IR may ei-
ther binds another molecule of insulin (rule 3) or dissociate from
it returning to the free receptor state (rule 4). Binding of a second
molecule of insulin does not affect the phosphorylation state of IR,
whereas IR dephosphorylation occurs when insulin diffuses off leav-
ing IR completely free. Since IR occupancy and phosphorylation are
tightly coupled, IR in unbound phosphorylated state is not included
in the model.

begin reaction rules
# Receptor binding 1st insulin molecule
1 IR(bs,alpha,alpha,Y~u,loc~ex) + I(bs) <-> IR(bs,alpha

!1,alpha,Y~u,loc~ex).I(bs!1) k1,k_1
# Receptor phosphorylation
2 IR(bs,alpha!+,alpha,Y~u,loc~ex) -> IR(bs,alpha!+,alpha,

Y~p,loc~ex) k3
# Receptor binding 2nd insulin molecule
3 IR(alpha!+,alpha,Y~p,loc~ex) + I(bs) <-> IR(alpha!+,

alpha!1,Y~p,loc~ex).I(bs!1) k2,k_2
# Receptor unbinding and dephosphorylation (on the cell

membrane)
4 IR(bs!?,alpha!1,alpha,Y~p,loc~ex).I(bs!1) -> IR(bs,

alpha,alpha,Y~u,loc~ex) + I(bs) ptp1() ✆
In addiction, protein tyrosine phosphatases which dephosphorylate
insulin receptor are inserted in the model. Phosphatases effect is ex-
plicitly represented using the function ptp1() defined in the functions
block, that modulates receptor dephosphorylation rate and whose ac-
tion depends on activated Akt, as shown below

ptp1()=(k_3)*(1-0.25*((100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/
Akt_init))/(100/11))) ✆

where Akt_pT308 represents the observable quantity Akt(T308~p,S473~u),
Akt_pS473 represents Akt(T308~u,S473~p) and Akt_phosph represents
Akt(T308~p,S473~p) (for details see section ).

insulin receptor recycling subsystem . Receptor life cycle
is represented as a multi-step process including synthesis, degrada-
tion, ligand-induced endocytosis and exocytosis to cell membrane.
The reaction rules characterizing this subsystem are shown below

# Phosphorylated receptor internalization/externalization
5 IR(bs!?,alpha!+,Y~p,loc~ex) <-> IR(bs,alpha!+,Y~p,loc~c) k4p,k

_4p
# Receptor unbinding and dephosphorylation (inside the cell)
6 IR(bs,alpha!+,Y~p,loc~c) -> IR(bs,alpha,alpha,Y~u,loc~c) ptp2()
# Free receptor internalization/externalization
7 IR(bs,alpha,alpha,Y~u,loc~ex) <-> IR(bs,alpha,alpha,Y~u,loc~c)

k4,k_4
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# Receptor synthesis
8 IR_Gen() -> IR_Gen() + IR(bs,alpha,alpha,Y~u,loc~c) k5
# Receptor degradation
9 IR(bs,alpha,alpha,Y~u,loc~c) -> Trash() k_5 ✆
Ligand-induced endocytosis is applied to IR in phosphorylated state
located on cell surface, binding one or two insulin molecules (rule
5). Internalized IR are then desphosphorylated and incorporated into
intracellular pool (rule 6) which is continuously repopulated by new
synthesized insulin receptors (rule 8). From intracellular pool, free
and dephosphorylated receptors can be either degraded (rule 9) or
translocated back to cell membrane (rule 7). In order to mime the pro-
duction and degradation of intracellular IR, two fictitious molecules,
termed IR_Gen() and Trash(), where defined in the molecule types
block. IR_Gen() was created with initial concentration equal to 1 and
retaining the rates of synthesis of the original model. In order to keep
fixed the concentration of this fictitious molecule, the transformation
imposes the presence of IR_Gen() as among the reactants as among
the products (rule 8). Trash(), instead, was created with initial con-
centration of 0 and it functions as fictitious compartment collecting
all the molecules (not only intracellular IR) degraded from the system
(rule 9). In order to mime the phosphatases effect leading to the de-
phosphorylation of intracellular IR, the function ptp2() was defined
having similar expression to ptp1().

postreceptor signaling subsystem . IRS1(bs,YXXM,Y~u~p,S~u~p)
indicates IRS-1 molecules which contain the binding site bs for Grb2
and SHP2 (see Section 4.4.3) and the YXXM motif for PI3K. IRS1 can
be phosphorylated either on tyrosine residues (Y~u~p) or on serine
residues (S~u~p). PI3K(SH2) represents PI3K molecules having the
binding site SH2 for IRS-1. Then, PI45(), PI345() and PI34() respec-
tively represent the lipids PI(4,5)P2, PI(3,4,5)P3 and PI(3,4)P2. The
production of PI(3,4,5)P3 regulates two major downstream kinase,
PKC-ζ and Akt. PKC(T~u~p) represents PKC-ζ molecules which may
be phosphorylated on threonine residues (T~u~p). Akt(T308~u~p,S473~u~p)
indicates Akt molecules which may be phosphorylated in Thr308
residue by PDK1 and in Ser473 by mTORC2 (see Section 4.3.3).

All the reaction rules involved in the postreceptor signaling subsys-
tem are presented below

# IRS-1 phosphorylation/dephosphorylation in Tyr
10 IRS1(bs,YXXM,Y~u,S~u) <-> IRS1(bs,YXXM,Y~p,S~u) f7(),ptp3()
# IRS-1_PI3-K complex formation (PI3-K activation)
11 IRS1(YXXM,Y~p,S~u) + PI3K(SH2) <-> IRS1(YXXM!1,Y~p,S~u).PI3K(

SH2!1) k8,k_8
# IRS-1 phosphorylation/dephosphorylation in Ser
12 IRS1(bs,YXXM,Y~u,S~u) <-> IRS1(bs,YXXM,Y~u,S~p) k7p,k_7p
# lipids formation
13 PI45() <-> PI345() f9(),k_9*PTEN
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# lipids formation
14 PI34() <-> PI345() k10,k_10*SHIP
# Akt phosphorylation/dephosphorylation
15 Akt(T308~u) <-> Akt(T308~p) f11(),k_11
# PKC phosphorylation/dephosphorylation
16 PKC(T~u) <-> PKC(T~p) f12(),k_12 ✆

Upon insulin stimulation, activated insulin receptors phosphory-
late IRS-1 on tyrosine residues (rule 10), which then binds and ac-
tivates PI3K (rule 11). IRS may also be phosphorylated on serine
residues (rule 12). The rate constant for IRS-1 phosphorylation (f7())
depends on the concentration of phosphorylated insulin receptors on
the cell surface, and is shown below

f7()=k7*IR_bound ✆
where IR_bound represents the observable quantity IR(alpha!+,Y~p,loc~ex)

which selects both once- and twice-bound phosphorylated surface re-
ceptors.

Activated PI3K converts the substrate PI(4,5)P2 to the product PI(3,4,5)P3
(rule 13). The rate constant for PI(3,4,5)P3 (f9()) conversion is mod-
eled as a linear function depending on the amount of activated PI3K
using the same procedure adopted for f7(). PI(3,4,5)P3 is also pro-
duced starting from PI(3,4)P2 (rule 14). We included in the model
the action of the lipid phosphatases PTEN and SHP2 which convert
PI(3,4,5)P3 respectively to PI(4,5)P2 and PI(3,4)P2. These lipid phos-
phatases are modeled using factors PTEN and SHIP which correspond
to the their relative activity inside the cell and are assigned a value of
1 under physiological conditions.

The level of PI(3,4,5)P3 regulates the activation of downstream ki-
nases Akt (rule 15) and PKC-ζ (rule 16). In particular, Akt is phospho-
rylated and thus activated only on Thr308 residue.

glut4 translocation subsystem . GLUT4(loc~c~ex) indicates
GLUT4 transporters which may be located either in cytoplasm (loc~c)
or translocate to cell membrane (loc~ex). The reaction rules govern-
ing the subsystem are presented below

# GLUT4 translocation
17 GLUT4(loc~c) <-> GLUT4(loc~ex) f13(),k_13
# GLUT4 synthesis
18 GLUT4_Gen() -> GLUT4_Gen() + GLUT4(loc~c) k14
# GLUT4 degradation
19 GLUT4(loc~c) -> Trash() k_14 ✆
Under basal conditions, GLUT4 transporters recycle between an in-
tracellular compartment and the cell surface. On insulin stimulation,
a separate pool of intracellular GLUT4 is recruited to the cell sur-
face. Thus, the insulin-stimulated exocytosis rate may be modeled as
a sum of two contributes, the effect on basal conditions and the effect
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depending on Akt and PKC-ζ activation, thus due to insulin stimula-
tion. However, Akt and PKC-ζ contribute to GLUT4 translocation in
different way. Precisely, 80% of the metabolic insulin signaling effect
is attributed to PKC-ζ and 20% to Akt. This effect is implemented in
BioNetGen by means of function f13() which describes the rate of
GLUT4 translocation (rule 19) according to the following expression

f13()=k13+k13a*(100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/Akt_

init))+k13b*PKC_phosph ✆
where 100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/Akt_init) in-

dicates the concentration of once- and twice- phosphorylated Akt (for
details see Section 4.5) and PKC_phosph indicates the concentration of
phosphorylated PKC. The contribute of these two main quantities is
weighted according to previous assumptions using parameters k13a
and k13b and the overall effect deriving from insulin is summed to
that one under basal condition (k13).

GLUT4 transporters constitutes a cytoplasmatic pool which is con-
tinuously repopulated by new synthesized molecules and reduced by
their degradation. In order to model this mechanism, we introduce
the fictitious molecule GLUT4_Gen() which, likewise intracellular IR,
permits a continuous synthesis of GLUT4 transporters. To delete from
the system the degraded GLUT4 transporters we used Trash() com-
partment introduced before in same way we adopted for degraded IR
in intracellular pool.

4.3 mtor model

Quon’s model may be extended in order to include mammalian tar-
get of rapamycin (mTOR) and some other aspects of insulin signaling
network not considered before that were discussed in Chapter 2 (Sec-
tion 2.2.5). The paper “A modelling-experimental approach reveals
insulin receptor substrate (IRS)-dependent regulation of adenosine
monosphosphate-dependent kinase (AMPK) by insulin” of Thedieck
K. et al. published in 2012 [34] modeled mTOR network, covering
both mTOR complexes and insulin and nutrient inputs. As already
said in Chapter 1, mTOR kinase responds to growth factors, nutri-
ents and cellular energy status and is a central controller of cellular
growth. mTOR exists in two multiprotein complexes (mTORC1 and
mTORC2) that are embedded into a complex network.

The model was implemented starting from a previous model pub-
lished by Dalle Pezze P. et al. the same year [33]. The model was
extended including another essential element which was recently dis-
covered to respond not only to energy deprivation but also to in-
sulin stimulation, AMPK. Adenosine monophosphate-dependent ki-
nase (AMPK) is activated by energy deprivation and shuts off adeno-
sine 5’-triphosphate (ATP)-consuming anabolic processes, in part via
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Figure 9: (A) Schematic representation of the insulin-induced mTOR path-
way, including IRS-dependent AMPK induction. (B) Graphical rep-
resentation of insulin-mTOR-AMPK network including all the vari-
able states and the interactions present in the implemented model.
Figure taken from [34]

the inactivation of mTORC1. AMPK module was included to generate
the to date most comprehensive data-driven dynamic AMPK-mTOR
network model. In order to define which was the interaction connect-
ing AMPK to insulin network, Thedieck’s group compared simula-
tions generated using different hypothesis which suggest the insulin
receptor substrate (IRS) as the most probable linking element of the
network. A simple and intuitive representation of the model is de-
picted in Fig.9(A) whereas Fig.9(B) shows in details all the molecules
and molecule states included in the model and their relations.

The model included the description of the majority of the elements
constituting this pathway. However, mTORC1 activation is a complex
mechanism which is also controlled by other two molecules, Rag GTP-
ases and Ras homologue enriched in brain (RHEB). When activated
by amino acids, Rags physically interact with RAPTOR (a component
od mTORC1 complex), causing mTORC1 to cluser onto the surface of
endosomes and lysosomes. This relocalization may enable mTORC1
interaction with RHEB which is an essential activator of mTORC1 and
that is controlled by growth factors. This mechanism is described in
detail by Zoncu R. et al. [24] but has not already found a reasonable
mathematical description.

Here we present a brief description of the model followed by its
implementation in the original paper and in BioNetGen language.
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4.3.1 Model description

Insulin signaling induces a kinase cascade through the insulin recep-
tor (IR), IR substrate (IRS), class I phosphoinositide 3-kinases (PI3Ks),
phosphoinositide-dependent protein kinase 1 (PDK1), and the AGC
kinase Akt (also known as PKB). Akt inhibits the tuberous sclero-
sis complex 1/2 (TSC1-TSC2) dimer, which is the inhibitory GTPase-
activating protein (GAP) for Rheb. Through this cascade, Akt stimu-
lates mTORC1 activity. The major mTORC1 substrates are the AGC
kinase p70 ribosomal protein S6 kinase (p70S6K), the translation ini-
tiation regulator 4E binding protein (4E-BP), and the proline-rich Akt
substrate PRAS40, which is an inhibitor of mTORC1. By binding
mTORC1, PRAS40 contributes to the inhibition of mTORC1 activ-
ity. In response to insulin, Ser183 of PRAS40 is phosphorylated by
mTORC1, which releases PRAS40 from the complex and relieves its
inhibitory effect on mTORC1, allowing mTORC1 to phosphorylate
its downstream substrates p70S6K and 4E-BP and promote cellular
growth. Furthermore, there is a negative feedback loop (NFL) that
inhibits upstream insulin signaling upon mTORC1 activation. Indeed
active p70S6K phosphorylates and inhibits IRS, which prevents acti-
vation of PI3K in response to insulin. Akt is also phosphorylated by
mTORC2 at Ser473 that, in combination with PDK1 action, permits to
Akt to be twice phosphorylated and thus to be fully active. Moreover,
to inhibit mTORC1 signaling, AMPK multiply phosphorylates and
activates TSC2 when cellular energy is low. In addiction, AMPK also
directly phosphorylates the essential mTORC1 component Raptor on
two serine residues. This phosphorylation induces 14-3-3 to bind to
Raptor and is required for mTORC1 inhibition by energy deprivation.

4.3.2 Model implementation in original paper

To parameterize the network model, Thedieck’s group generated semi-
quantitative dynamic phosphorylation immunoblot data for network
components along the signaling cascade. They analyzed HeLa cells
under starvation conditions (cell deprived of amino acids and growth
factors for 16 hours) and then they stimulated them with amino acids
and insulin monitoring the dynamics of network components from 1
minute up to 2 hours.

They previously decided to minimize the amount of detail of the
model since a precise dynamics of each interacting elements could
not be defined due to the high number of parameters and the diffi-
culty in obtaining sufficient experimental data. Thus they chose the
essential regulation mechanisms governing the dynamic behavior of
the system. They also selected molecules and interactions that could
be detected by reliable measurements. Finally, they calibrated the
model parameters by means of the experimental time courses obtain-
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ing a total of 26 reaction rate constants. In particular, the monitored
chemical species were Tyr1146-phosphorylated IR, Ser636-phosphorylated
IRS1, Ser473- and Thr308-phosphorylated Akt, Ser1387- and Thr1462-
phosphorylated TSC1-TSC2, Ser2448- and Ser2481-phosphorylated mTOR,
Thr246- and Ser183-phosphorylated PRAS40, Thr389-phosphorylated
p70S6K and Thr172-phosphorylated AMPK.

The resulting model present some critical simplifications of the un-
derlying biochemistry governing insulin signaling pathway. The first
one concerns the modeling of IR which can be found only in three
possible states: unphosphorylated receptor, phosphorylated receptor
and internalized receptor (refractory state). The second simplification
concerns the modeling of IRS1-PI3K complex activation that, in or-
der to minimize the amount of state variables of the model, was im-
plemented by phosphorylated IR controlling independently tyrosine
phosphorylation of IRS1 and PI3K activation. Moreover, the possi-
ble states assumed by IRS1 are simplified. Unphosphorylated IRS1
can be phosphorylated only on tyrosine residues, tyrosine phospho-
rylated IRS1 is then phosphorylated on serine residues and finally
only serine phosphorylated IRS1 is subject to complete dephospho-
rylation. However, the above mentioned simplifications do not con-
cern the part of the system that we are going to use in our model,
that starts with Akt phosphorylation and, through TSC1-TSC2 com-
plex and mTORC1, ends with IRS phosphorylation on serine residues
by S6K. A particular issue represents Akt molecule defined in the
previous section. Differently from Quon’s group, Thedieck’s model
takes into account not only Akt phosphorylation on Thr308 by PDK1
but also its phosphorylation on Ser437 by PDK2, recently identified
with mTORC2. This additional information about Akt phosphoryla-
tion state represents an improvement respect to Quon’s model but
the way in which Thedieck’s group implement it presents a critical
simplifications. Probably for sake of simplicity, Thedieck’s group de-
cided to distinguished between the molecules of Akt which may be
potentially phosphorylated in Thr308 from those which may be phos-
phorylates in Ser437. In other words, there are four possible states
that Akt may assumes, that are:

• Thr308-unphosphorylated Akt,

• Thr308-phosphorylated Akt,

• Ser437-unphosphorylated Akt, and

• Ser437-phosphorylated Akt.

To deal with this issue we simply created only one Akt molecule (the
one defined in the previous section) which may potentially be phos-
phorylated either in Thr308 or in Ser437 or in both sites. The same
procedure was adopted for PRAS40 which may be phosphorylated in
Ser183 and in Thr246.
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4.3.3 Model implementation using BioNetGen language

First of all we determine all the molecules populating mTOR subsys-
tem, that are listed below

mTORC2(S2481~u~p)
AMPK(T172~u~p)
TSC1_TSC2(T1462~u~p,S1387~u~p)
Amino_Acids()
mTORC1(S2448~u~p)
p70S6K(T389~u~p)
PRAS40(T246~u~p,S183~u~p) ✆
mTORC2(S2481~u~p) represents mTORC2 molecules having the phos-

phorylation site on Ser2481. mTORC2 phosphorylation is controlled
by PI3K activation, or rather by IRS1-PI3K complex formation (rule
20) and it also presents spontaneous dephosphorylation (rule 21). As
already said, Akt may be phosphorylated on Thr308 and on Ser437 re-
spectively by PDK1 and PDK2. Akt phosphorylation on Thr308 was
presented in the previous section where PDK1 activation was sub-
stituted by directed control of PI(3,4,5)P3 lipids production. Whereas
Akt phosphorylation on Ser437 is accomplished by mTORC2 complex
(PDK2) (rule 22) and it presents spontaneous dephosphorylation (rule
23).

#mTORC2
20 mTORC2(S2481~u) + IRS1(YXXM!1,Y~p,S~u).PI3K(SH2!1) -> mTORC2(S

2481~p) + IRS1(YXXM!1,Y~p,S~u).PI3K(SH2!1) p16
21 mTORC2(S2481~p) -> mTORC2(S2481~u) p15
#Akt
22 Akt(S473~u) + mTORC2(S2481~p) -> Akt(S473~p) + mTORC2(S2481~p)

p11
23 Akt(S473~p) -> Akt(S473~u) p10 ✆
AMPK(T172~u~p) indicates AMPK molecules having phosphoryla-

tion site on Thr172. The phosphorylation event is modulated by the
concentration of phosphorylated IRS-1 on tyrosine residues (rule 24)
and it presents spontaneous dephosphorylation (rule 25).
TSC1_TSC2(T1462~u~p,S1387~u~p) represents TSC1-TSC2 complex

having two phosphorylation sites on Thr1462 and on Ser1387. TSC1-
TSC2 can be either phosphorylated on threonine residue or on serine
residue and the last one site determines the activation of the complex.
Hence, Thr308- phosphorylated Akt determines the phosphorylation
TSC1-TSC2 on Thr1462 (rule 26), thereby inhibiting its action. AMPK,
instead, modulates the phosphorylation of TSC1-TSC2 complex on
Ser1387, thereby enhancing its action (rule 27).

#AMPK
24 AMPK(T172~u) + IRS1(YXXM,Y~p,S~u) -> AMPK(T172~p) + IRS1(YXXM,

Y~p,S~u) p7
25 AMPK(T172~p) -> AMPK(T172~u) p8
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#TSC1-TSC2
26 TSC1_TSC2(T1462~u,S1387~p) + Akt(T308~p) -> TSC1_TSC2(T1462~p,

S1387~u) + Akt(T308~p) p24
27 TSC1_TSC2(T1462~p,S1387~u) + AMPK(T172~p) -> TSC1_TSC2(T1462~u

,S1387~p) + AMPK(T172~p) p23 ✆
mTORC1(S2448~u~p) represents mTORC1 complex having phospho-

rylation site on Ser2448. As already said, mTORC1 activation de-
pends on nutrients input. This effect is modeled defining Amino_Acids()
molecules having fixed concentration which positively regulate mTORC1
complex activation (rule 28). mTORC1 action is also controlled by
growth factors, thus by insulin. This effect is implemented by direct
TSC1-TSC2 complex regulating mTORC1 dephosphorylation, thus
acting on its inhibition (rule 29).

#mTORC1
28 mTORC1(S2448~u) + Amino_Acids() -> mTORC1(S2448~p) + Amino_

Acids() p14
29 mTORC1(S2448~p) + TSC1_TSC2(T1462~u,S1387~p) -> mTORC1(S2448~u

) + TSC1_TSC2(T1462~u,S1387~p) p13 ✆
The last element constituting this negative feedback loop (NFL) is

S6K which is indicated as p70S6K(T389~u~p). S6K has one phospho-
rylation site on Thr389 and its activation is positively controlled by
mTORC1 complex (rule 30). S6K presents also spontaneous dephos-
phorylation (rule 31). S6K exerts its action on a critical upstream
element which belongs to the PI3K/Akt subsystem presented be-
fore, IRS-1. Indeed, S6K regulates IRS-1 phosphorylation on serine
residues (rule 32) thus impeding the phosphorylation on tyrosine
residues which is necessary to IRS1-PI3K complex formation and
PI3K activation.

#p70S6K
30 p70S6K(T389~u) + mTORC1(S2448~p) -> p70S6K(T389~p) + mTORC1(S

2448~p) p18
31 p70S6K(T389~p) -> p70S6K(T389~u) p17
#IRS-1
32 IRS1(YXXM,Y~u,S~u) + p70S6K(T389~p) -> IRS1(YXXM,Y~u,S~p) + p

70S6K(T389~p) p5 ✆
Another elements is also included in the model, PRAS40.
PRAS40(T246~u~p,S183~u~p) presents two phosphorylation sites on

Thr246 and on Ser183, and their activation depends respectively on
Thr308- phosphorylated Akt (rule 33) and on Ser2448- phosphory-
lated mTORC1 complex (rule 35). However, PRAS40 has no control
on other reactions in the mTOR subsystem but it has been used by
Thedieck’s group as simple readout during the experiments.

#PRAS40
33 PRAS40(T246~u) + Akt(T308~p) -> PRAS40(T246~p) + Akt(T308~p) p

22
34 PRAS40(T246~p) -> PRAS40(T246~u) p20
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Figure 10: Schematics representing the signal propagation through EGFR
and IR signaling networks. Tyrosine phosphorylation of proteins
and lipids are represented by solid lines with arrows, protein-
protein and protein-lipid interactions with dotted line, and inhi-
bitions with red lines with blunt ends. Figure taken from [12].

35 PRAS40(S183~u) + mTORC1(S2448~p) -> PRAS40(S183~p) + mTORC1(S
2448~p) p21

36 PRAS40(S183~p) -> PRAS40(S183~u) p19 ✆
4.4 ras/mapk model

One of the most studied signaling network is the epidermal growth
factor (EGF) signaling and, in particular, the activation of the Ras/MAPK
pathway. The Ras/MAPK pathway is also controlled by insulin and
has been discussed in Chapter 2 (Section 2.3). EGF and insulin signal-
ing pathways are thus sub-networks in a larger network of overlap-
ping and crosstalking signaling pathways. One of the most interesting
problems that has not been disclosed yet about signaling mechanisms
regards crosstalk versus pathway specificity, in other words, how
downstream targets distinguish between different inputs despite shar-
ing the same intermediary signals. An attempt in this direction was
realized by Zielinski R. et al. [3] which implemented a Boolean net-
work model that combines three major pro-survival signaling path-
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ways: epidermal growth factor receptor (EGFR), insulin-like growth
factor-1 receptor (IGF-1R), and insulin receptor (IR). Despite the im-
portance of the issue, analysis of crosstalking pathways is out of the
purpose of this work but helps in acquiring awareness about the com-
plexity of cellular signaling mechanisms.

In the paper “System-level interaction between insulin-EGF net-
works amplify mitogenic signaling” by Kholodenko B. N. et al. in
2009 [12] a first larger model was realized including both EGF and in-
sulin signaling. Insulin-specific aspects were developed by selecting
key intermediates and using some previously modeled interactions.
The purpose of the study was to investigate the crosstalk mechanisms
between insulin and EGF signaling pathways. They exploited a com-
bination of experimental and computational approaches revealing a
concordant interplay between insulin and EGF networks in potenti-
ating mitogenic signaling. The flow chart describing the EGF-insulin
model is depicted in Fig.10 where the blocks indicates the elements
included in the model and the lines represent the type of interaction.

As said in Chapter 1, insulin receptor (IR) and epidermal growth
factor (EGF) receptor belong to the family of receptors with intrin-
sic tyrosine kinase activity (referred to as receptors tyrosine kinases,
RTKs), which regulates crucial cellular processes, such as cell pro-
liferation, differentiation, metabolism, survival and apoptosis. How-
ever, the major physiological function of insulin signaling is metabolic
whereas EGF mainly induces proliferative responses. Kholodenko’s
group investigated how EGF and insulin inputs are processed and
integrated in order to result in physiological cellular response. How-
ever, since we are interested in insulin signaling pathway and we have
already explored PI3K-PKB/Akt signaling cascade in Quon’s model,
we decide to ignore EGF signaling mechanism and to consider only
MAPK pathway under insulin control.

In the following Sections we present a brief description of the Ras/MAPK
model followed by some details about its implementation in the orig-
inal paper and using BioNetGen language.

4.4.1 Model description

Upon insulin binding, insulin receptor autophosphorylates on tyro-
sine residues and phosphorylates IRS proteins. These are linked to
the activation of Ras/MAPK pathway through binding to Grb2-SOS
complex. Grb-SOS complex activation leads to a cascade of phospho-
rylation events involving Ras, Raf, Mek and Erk. IR can also bind the
GTPase-activating protein RasGAP, which catalyzes Ras deactivation.
SHP2 positively influences ERK activity by dephosphorylation of the
specific sites involved in RasGAP binding.
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4.4.2 Model development in original paper

The current model derived from previously developed EGFR network
models that were based on in vitro and in vivo measurements of
signaling kinetics. EGFR model was then extended to incorporate
IR signaling and regulatory processes concerning EGFR-IR crosstalk
mechanisms. Since one of the main limitation in implementing large
network model is combinatorial complexity, Kholodenko’s group de-
cided to construct a minimal model considering only its basic fea-
tures. The resulting model involves 78 variables for different molecu-
lar species, 111 chemical reactions and more than 200 parameters. For
many reactions, the parameters values were assumed from previously
published studies. For newly introduced processes and parameters,
the values were computed and optimized using a training set of data.
The signaling dynamics was analyzed comparing experimentally and
simulated in silico time courses of activation of the complete model
stimulated by step changes using different concentrations of EGF and
insulin.

In the model, signal transduction is initiated by insulin binding to
their cognate receptor. This event causes allosteric transition and au-
tophosphorylation of the kinase activation loop of the predimerized
IR, which leads to activation of the IR kinase and autophosphoryla-
tion of its cytoplasmic domain. In the model, phosphorylated IR can
directly associate with IRS, PI3K and RasGAP.

Phosphorylated IRS recruits cytoplasmic proteins PI3K, Grb2 and
SHP2 to the plasma membrane, which results in additional PIP3 pro-
duction and both activatory and inhibitory regulation activity of Ras.
Although IRS has multiple tyrosine phosphorylation sites, they were
simply represented in the minimal model as a single, virtual phospho-
rylation site. This kind of simplification, already discussed in Chapter
2 (Section 2.3), is distant from the reality depicted by current chem-
istry knowledge and does not guarantee the same results respect to
models including all the details about the phosphorylation sites.

Another simplification concerns the description of complex sequen-
tial multi-step processes as a single, semi-mechanistic step. This ap-
proach is commonly used to reduce the model retaining the original
network topology and, in case of not distributed processes, does not
critically influence the model dynamics. For instance, the activation
of Raf by Ras includes a conformational change in Raf caused by
binding to Ras-GTP, followed by the dissociation of 14-3-3 protein,
dephosphorylation of inhibitory Ser259 and phosphorylation of acti-
vatory Ser338 site. In the model, all these processes are condensed in
a single step of Raf activation.

Finally, some feedback circuits are also included in the model, such
as the activated ERK inhibiting SOS.
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The population of different chemical species present in the network
are detected by means of protein immunoprecipitation in HEK293
cells. In particular, the monitored events are Ser217- and S221-phosphorylated
MEK, Tyr1162- and Tyr1163-phosphorylated IR, Tyr612-phosphorylated
IRS-1, Thr202-, Thr185-, Tyr204- and Tyr187-phosphorylated ERK1/2,
and Ser473-phosphorylated Akt.

4.4.3 Model implementation using BioNetGen language

All the molecules populating Ras/MAPK system are defined in the
molecule types block, and are listed below

RasGAP(bs)
Src(state~i~a)
GS(bs,state~i~a)
SHP2(bs)
Ras(state~d~t)
Raf(state~i~a~aa)
Mek(state~u~pp)
Erk(state~u~p~pp) ✆
RasGAP(bs) represents RasGAP molecules having binding site bs

for insulin receptor. In particular, RasGAP binds reversibly to insulin
receptor (rule 37) when is phosphorylated and before it undergoes
internalization process ( IR(bs,Y~p,loc~ex) ). Insulin receptor is sub-
ject to degradation process despite RasGAP binding, leaving RasGAP
molecules in unbound free state (rule 38).

#RasGAP module
37 IR(bs,Y~p,loc~ex) + RasGAP(bs) <-> IR(bs!1,Y~p,loc~ex).RasGAP(

bs!1) kon27,kd27
38 IR(bs!1,alpha!+,Y~p,loc~ex).RasGAP(bs!1) -> RasGAP(bs) kf34 ✆
Src(state~i~a) represents Src molecules which may be found in

inactive (state~i) or active (state~a) state. Activation (v40()) and in-
activation (v41()) rates functions are implemented by means of func-
tions depending on the concentration of active and inactive Src itself.
In addiction, the activation rate function is also modulated by the
amount of phosphorylated insulin receptors located on the cell mem-
brane (observable IR_phosph).

#Src module
39 Src(state~i) <-> Src(state~a) v40(),v41()
#functions
v40()=k_Src*kcat40*(alpha40*IR_phosph)/(Km40+iSrc)
v41()=V41/(Km41+aSrc) ✆

As we have briefly mentioned in PI3K-PKB/Akt Section, IRS-1 is
subject to complex formation involving not only PI3K but also other
two molecules, Grb2 and SHP2. Due to mutual affinity, Grb2 is as-
sumed in a pre-formed complex with SOS and thus we directly refer
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to it as GS. GS(bs,state~i~a) has a binding site bs for IRS-1 and may
be found in inactive (state~i) or in active state (state~a). In partic-
ular, Grb2-SOS complex inactivation (rule 44) is modulated by twice
phosphorylated Erk (v79()) constituting a negative feedback loop in
Ras/MAPK subsystem. The same site involved in IRS1-GS complex
formation is responsible for SHP2 binding establishing a competition
between these two molecules. Both GS (rule 40) and SHP2 (rule 41)
bind to IRS-1 when phosphorylated on tyrosine residues indepen-
dently from PI3K binding (IRS1(bs,Y~p,S~u)) and their dissociation
(only when PI3K is unbound) causes IRS-1 dephosphorylation (rules
42 and 43). Moreover, the complex involving IRS-1 and SHP2 modu-
lates RasGAP dissociation from insulin receptor (v115()).

#IRS1-GS and IRS1-SHP2 complex formation
40 IRS1(bs,Y~p,S~u) + GS(bs,state~a) <-> IRS1(bs!1,Y~p,S~u).GS(bs

!1,state~a) kon45,kd45
41 IRS1(bs,Y~p,S~u) + SHP2(bs) <-> IRS1(bs!1,Y~p,S~u).SHP2(bs!1)

kon47,kd47
#IRS1-GS and IRS1-SHP2 complex distruption and IRS

dephosphorylation
42 IRS1(bs!1,YXXM,Y~p,S~u).GS(bs!1,state~a) -> IRS1(bs,YXXM,Y~u,S

~u) + GS(bs,state~a) v100()
43 IRS1(bs!1,YXXM,Y~p,S~u).SHP2(bs!1) -> IRS1(bs,YXXM,Y~u,S~u) +

SHP2(bs) kf101
#GS inhibition
44 GS(bs,state~a) <-> GS(bs,state~i) v79(),k_79
#SHP2 activity against RasGAP
45 IR(bs!1,Y~p,loc~ex).RasGAP(bs!1) -> IR(bs,Y~p,loc~ex) + RasGAP

(bs) v115()
#functions
v100()=V100/(Km100+IRSp_GS)
v79()=kcat79*ppErk/(Km79+GS)
v115()=k115*IRSp_SHP2 ✆

Grb2-SOS complex binding to IRS-1 starts a multistep kinase pro-
cess. The first element involved this cascade is Ras, indicated with
Ras(state~d~t), which may be found in GDP- (state~d) and GTP-
bound (state~t) state. Ras-GTP formation (v62()) is positively mod-
ulated by GS-IRS1 complex formation (observable IRSp_GS) whereas
Ras-GDP formation (v63()) is controlled by major contributes, the
basal RasGAP action (parameter bRasGAP) and that one given by the
concentration of RasGAP bound to insulin receptor (observable IRp_RasGAP).

#Ras module
46 Ras(state~d) <-> Ras(state~t) v62(),v63()
#functions
v62()=kcat62*(IRSp_GS)/(Km62+dRas)
v63()=kcat63*(bRasGAP+IRp_RasGAP)/(Km63+tRas) ✆

Ras in GTP- bound state induce Raf activation. Raf(state~i~a~aa)
indicates Ras molecules that may be found in inactive (state~i), ac-



4.5 models integration 53

tive (state~a) and double active (state~aa) state. The first activation
of Raf (rule 47) is controlled by Ras-GTP (observable tRas) whereas
its second activation (rule 47) by active Src (observable aSrc). Raf inac-
tivation (rule 49) depends on two main contributes, one given by PKA
(defined in parameters block with fixed quantity) and by Thr308-
phosphorylated Akt (observables Akt_pT308 and Akt_phosph). Since
Akt belongs to PI3K-PKB/Akt subsystem, Raf inactivation constitutes
a crosstalk mechanism between these two important pathways where
PI3K-PKB/Akt subsystem negatively modulates Ras/MAPK subsys-
tem action.

#Raf module
47 Raf(state~i) -> Raf(state~a) v65()
48 Raf(state~a) -> Raf(state~aa) v66()
49 Raf(state~aa) -> Raf(state~i) v67()
#functions
v65()=kcat65*tRas/(Km65+Raf)
v66()=kcat66*aSrc/(Km66+aRaf)
v67()=kcat67*PKA/(Km67+aaRaf)+alpha67*(Akt_pT308+beta67*Akt_

phosph) ✆
Raf in double active state (observable aaRaf) modulates the phos-

phorylation event on Mek (rule 50) which is indicated as Mek(state~u~pp).
Finally, phosphorylated Mek promotes Erk activation. Erk molecules
are defined in the system as Erk(state~u~p~pp) which can be found
in unphosphorylated (state~u), phosphorylated (state~p) and twice
phosphorylated (state~pp) state. Phosphorylated Mek (observable
ppMek) positive modulates both once- (v70()) and twice- (v71()) Erk
phosphorylation.

#Mek module
50 Mek(state~u) <-> Mek(state~pp) v68(),v69()
#functions
v68()=kcat68*aaRaf/(Km68+Mek)
v69()=V69/(Km69+ppMek)

#ERK module
51 Erk(state~u) <-> Erk(state~p) v70(),v73()
52 Erk(state~p) <-> Erk(state~pp) v71(),v72()
#functions
v70()=kcat70*ppMek/(Km70+Erk+pErk*Km70/Km71)
v71()=kcat71*ppMek/(Km71+pErk+Erk*Km71/Km70)
v72()=V72/(Km72+ppErk+pErk*Km72/Km73)
v73()=V73/(Km73+pErk+ppErk*Km73/Km72) ✆
4.5 models integration

The three models we used to realize the complete system of insulin
signaling pathway contain several overlapping parts. Shared elements
have been modeled differently by each research group basing their
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definitions on slightly different assumptions. Hence, these elements
taken from distinct models were carefully analyzed and compared
with each other and with the current knowledges of chemistry. The
most critical elements are presented in the following paragraphs in-
cluding some important details regards to the corresponding interac-
tions with other elements.

ir . In Quon’s paper, a detailed model of insulin receptor was pre-
sented including complex insulin receptor binding and recycling sub-
systems. According to Quon’s group, insulin receptor binds two in-
sulin molecules and subsequently undergoes internalization process
constituting a cytoplasmatic pool of unbound insulin receptors where
it may be either degraded or translocated back to cell membrane.
Kholodenko’s paper, presented a insulin receptor module having less
complex binding subsystem and where the recycling subsystem is
simply replaced by a reversible inactivation of the insulin receptor.
However, Kholodenko’s group included in the model the ability of
insulin receptor to bind several molecules (IRS-1, PI3K and RasGAP)
whereas Quon’s group preferred to introduce insulin receptor mod-
ulation on IRS phosphorylation by means of a kinetic rate function.
Thedieck’s paper presented a very simple system where insulin recep-
tor may be found in only three possible states, that are unbound (or
unphosphorylated) receptor state, bound (or phosphorylated) recep-
tor state and internalized (or inhibited) receptor state. Preferring the
insulin receptor system that more closely matches the current chem-
ical knowledges on the insulin signaling pathway, we chose to base
our insulin receptor subsystem mainly on Quon’s model. However,
we decide to include the information given in Kholodenko’s model
about insulin receptor binding to multiple molecules. Since IRS phos-
phorylation by insulin receptor has been already included in Quon’s
model, we focus on PI3K and RasGAP binding. PI3K binding to in-
sulin receptor mainly controls PI(3,4,5)P3 lipids production whereas
RasGAP binding has a critical role in Ras deactivation process, thus
modulating Ras/MAPK signaling pathway. Since PI(3,4,5)P3 produc-
tion has been modeled according to Quon’s paper we decide to ig-
nore PI3K binding and to create only one binding site for RasGAP
molecules. However, the regions of insulin receptor involved in Ras-
GAP binding are probably different from those one implicated in
PI3K binding, thereby a binding site for both RasGAP and PI3K would
have introduced a false competition between molecules.

irs-1 . In Quon’s paper, IRS-1 is introduced in the system in com-
pletely unphosphorylated state and may be phosphorylated either on
tyrosine or on serine residues. Kholodenko’s model presents a com-
plex IRS-1 module in which they distinguished IRS-1 located in the cy-
toplasm from that bound to PI(3,4,5)P3 lipids (or PIP3) translocated in
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proximity of cell membrane. According to Kholodenko’s group, IRS-1
is available for binding other molecules (PI3K, Grb2 and SHP2) only
in proximity of the cell membrane. Despite the great improvement
in modeling IRS-1 cellular location we prefer to retain IRS-1 defini-
tion made by Quon’s group, not only because the introduction of this
information in the model would be problematic but also because in
Kholodenko’s model IRS-1 phosphorylation on serine is replaced by
a inhibition state which would be difficult to integrate with mTOR
subsystem. Kholodenko’s group also modeled IRS-1 complex forma-
tion with three molecules, PI3K, Grb2-SOS and SHP2. PI3K binding
modulates PI(3,4,5)P3 lipids production which have two major roles,
to translocate IRS-1 to cell membrane and to activate PDK1. Grb2-
SOS binding critically controls Ras activation process, thus starting
Ras/MAPK signaling pathway. SHP2 binding promoted RasGAP un-
binding mechanism from insulin receptor. However, Kholodenko’s
group consider the formation of only three distinct complexes, hence
without considering any other possible combination in which IRS-1
binds more then one molecule at the same time. This assumption
introduces a competition between molecules in binding to IRS-1. To
unravel this issue we checked if the same binding site in IRS-1 was
responsible for the binding of all three molecules. We found that nine
motives YXXM are present for PI3K binding but they do not comprise
the region between aa 896-898 which is responsible for Grb2 binding.
Hence, excluding steric volume issues, we assume that PI3K and Grb2
can bind to IRS-1 independently and thus that Kholodenko’s model
introduced false competition between these two molecules. Since we
couldn’t find any information about SHP2 we assume as IRS-1 bind-
ing site the same responsible for Grb2 binding.

Thedieck’s paper introduces a simple system in which IRS-1 changes
its phosphorylation state according to three consecutive states, that
are unphosphorylated IRS-1, tyrosine phosphorylated IRS-1 and ser-
ine phosphorylated IRS-1. According to Thedieck’s group, S6K consti-
tutes the negative feedback loop (NFL) modulating the transition of
IRS-1 from tyrosine phosphorylated to serine phosphorylated state.
We thought more reasonable to model S6K action modulating IRS-
1 phosphorylation on serine starting from completely unphosphory-
lated IRS-1.

akt. Quon’s paper defines Akt phosphorylation on threonine residue
alone directly modulated by PI(3,4,5)P3 lipids production. Kholodenko’s
paper distinguishes between once- and twice- phosphorylated Akt.
The first phosphorylation is controlled by PDK1 and the second one
by mTOR. Thedieck’s paper, instead, presents Akt having two phos-
phorylation sites, one on threonine and one on serine. Threonine
phosphorylation is controlled by PI3K activation and tyrosine phos-
phorylated IRS-1 whereas serine phosphorylation is modulated by



56 computational model of insulin signaling pathway

mTORC2. We decide to mix all these informations defining Akt molecules
having both phosphorylation sites where threonine phosphorylation
is induced by PI(3,4,5)P3 lipids production and serine phosphoryla-
tion in controlled by mTORC2. The distinction between single and
double phosphorylation of Akt molecules is interesting because of
change in its kinase action. Hence, we take into account this infor-
mation in implementing the crosstalk mechanism between the PI3K-
PKB/Akt and the Ras/MAPK subsystems that, as already said, re-
quires Akt contribute in Raf deactivation process.

Due to lack of information about molecules concentrations, Quon’s
group expresses Akt in percentage instead of mole. We decide to
use the initial concentration suggested in Kholodenko’s paper. Since
GLUT4 translocation on the cell membrane is controlled both by PKC-
ζ and Akt activation we computed the percentage of phosphorylated
Akt to be used as contribute in metabolic “Effect”.

mtor . Thedieck’s paper define mTORC1 and mTORC2 complexes
inside the system. mTORC1 activation is controlled by Akt through
TSC1-TSC2 complex and modulates the upstream element IRS-1 through
S6K. mTORC2 activation is controlled by PI3K activation and induces
serine phosphorylation on Akt. Kholodenko’s model does not distin-
guish between the two complexes but define a mTOR molecule which
is activated by Akt and in turn twice- phosphorylates Akt. Accord-
ing to the current knowledge of chemistry, we decide to choose the
dinstiction between mTORC1 and mTORC2 complexes introduced in
Thedieck’s paper.

Morever, the negative feedback loop (NFL) is modelled in Kholo-
denko’s paper by a simple inhibition on IRS-1 induced by mTOR,
whereas Quon’s group presents a model in which Akt controls IRS-1
tyrosine dephosphorylation and PKC-ζ modulates IRS-1 serine phos-
phorylation. According to the current knowledges, we decide to rea-
sonably replace the entire negative feedback loop using the one sug-
gested in Thedieck’s paper which includes TSC1-TSC2, mTORC1, S6K
and also AMPK.

corrective factors . First of all, homogeneity in time units de-
scribing kinetics parameters must be guarantee. Quon’s and Thedieck’s
models express the parameters in [min

−1] whereas Kholodenko’s model
uses [sec

−1]. Hence, all the parameter expressed in [sec
−1] should be

multiplied for 60 to transform them in [min
−1].

It is worthy to discuss an essential aspect linked to BioNetGen im-
plementation concerning the fact that concentrations should be ex-
pressed in units of copies per cell and thus bimolecular rate constants
in per molecule per cell. This simply means that every time a quantity
is expressed in M or in /M (unless time units) this has to be multiplied
or divided by the product (NA*V), where NA is the Avogadro’s num-
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ber and V indicates cellular volume. Since many biological systems
involve ligands present in extracellular space, receptors spread out
on the cell surface and molecules situated in the cytoplasm, the value
of V changes depending on molecule location. For this reason it is im-
portant to identify where molecules are located, such as IR that binds
to insulin on the plasma membrane and subsequently undergoes in-
ternalization mechanism moving in intracellular space. Therefore, the
computed values of volume, expressed in (L), for the three most im-
portant cellular locations are:

• Vo = 1.0 · 10−10 for extracellular volume,

• Vm = 3.0 · 10−13 for plasmatic membrane volume, and

• V = 3.0 · 10−12 for cytoplasmic volume.

However, Thedieck’s model expresses its concentration in Arbitrary
Units (AU) instead of M, suggesting that the resulting quantities are
proportional to light intensity level obtained during immunoblot ex-
periments. Also Kholodenko’s group obtain its data from immunoblot
experiments but the knowledge of initial concentrations permits to
obtain simulation expressed in M. Unfortunately no information about
initial concentrations are available for those elements constituting
mTOR subsystem. Hence, waiting for these essential information we
decide to integrate the data expressed in copies per cell with those ex-
pressed in AU. In order to do this, some factors were introduced for
those parameters connecting the elements expressed in different units.
These factors were used to correct the IRS-1 tyrosine- phosphoryla-
tion by S6K, AMPK phosphorylation by IRS-1, Akt serine phosphory-
lation by mTORC2, mTORC2 phosphorylation by IRS1-PI3K complex,
TSC1-TSC2 complex inactivation by Akt. Some factors were also in-
troduced to compensate gaps due to slightly different assumptions
made in the complete model respects to the original ones. These so
called “corrective” factors were manually tuned comparing the re-
sults obtained from simulations of the complete model with those of
the original models, and were used to multiply the corresponding
kinetic parameters. In particular, these factors were used to compen-
sate effects due to false competition between molecules. For instance,
if a molecule forms a bond with multiple molecules it is important
to decide if the sites involved in the binding process are distinct or
not. In some cases, it would be useful to check the adjacency of these
sites to avoid problems connected to the steric volume of the bind-
ing molecules. Hence, binding kinetics for each molecule may differ
a lot depending on these information. For sake of simplicity, many
research groups introduce a single binding site for all the molecules
and do not consider all the possible combinations that a complex
may form. In our model, we prefer to more closely match the cur-
rent knowledges of chemistry allowing the formation of complex that
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are different from those presented in the original models. Hence, to
compensate the gap we introduced some corrective factors for the
molecules RasGAP, GS and SHP2.

Finally, the initial quantities of all the molecular species were also
compared and, excluding those expressed in AU, we realized that
Quon’s concentrations were unreal. In fact, multiplying the proposed
quantities for (NA*V) we obtain less the one molecule per cell. This
fact was also confirmed by Nyman E. et al. [31] in explaining the
major limits connected to this model. Thus, we decided to scale all
the initial concentrations taken from Quon’s paper multiplying them
by 105 in order to obtain quantities comparable with those showed in
Kholodenko’s paper.



5
I N S U L I N M O D E L A N A LY S I S A N D VA L I D AT I O N

5.1 introduction

In this Chapter, we use the insulin model described in Chapter 4
to simulate the temporal series of most significant chemical species
in order to analyse the dynamic behavior of the system. Concentra-
tions time series permit to carry out a detailed analysis of dynamic
behavior of the system. This may be useful to develop a deeper under-
standing of network regulation processes and of the main role played
by each chemical species. Moreover, we can consider the dynamic be-
havior of each chemical species as a kind of fingerprint of the system
working under physiological conditions.

Network structure and type of interactions between different species
determine characteristic response of the system upon stimulation. If
some of these characteristic features are lost for different reasons, typ-
ical dynamics may change and then result in inappropriate actions of
the system. System disregulations cause defects in signal transduc-
tion that can be pathologic. In case of insulin signaling, for instance,
insulin resistance and diabetes type 2 originate by disregulation of that
process involving IRS-1 phosphorylation of serine residues, thereby
of the negative feedback loop involving S6K (see Chapter 2). Hence,
to characterize physiological working conditions of a signaling path-
way may be a useful method to distinguish it from those in pathologic
conditions, to investigate the origin of disregulations and, in future
perspective, to find a drug or combination of drugs able to bring the
system back to normal conditions.

In order to do this, a detailed and rational analysis of collected
data from insulin model simulations have to be done. Since the main
purpose is to characterize system response, we decide to classify the
obtained time series according to their dynamic behavior. In other
words, we distinguish them depending on their qualitative behavior,
or pattern.

In next sections, we present the details about classification of main
patterns (Section 5.2), results and analysis of insulin model simula-
tions (Section 5.3), and comparison with experimental data (Section
5.4).

5.2 pattern classification

Classification of resulting time series according to their dynamic be-
havior may be a cunning approach to realize a useful characterization

59
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of the system and it may reveal important information about network
working mechanisms.

System dynamics is strictly related to network structure. It has been
observed that characteristic dynamic behaviors originate often by par-
ticular network topology features. Networks commonly contain sub-
systems characterized by particular configurations of causal relation-
ships. Some of these subsystems appear more frequently and such
subnetworks are called network motifs [13, 39]. Typical motifs are, for
instance, negative feedback loops and feedforward loops, which will
be briefly discussed in the following Subsection.

5.2.1 Network motifs

Network motifs were originally recognized and formalized during
the analysis of complex gene transcription networks. However, same
criteria introduced for the study of this sub- systems may be used in
transduction networks.

The most common network motif observed in transcription net-
works is the feedforward loop, that has been thoroughly studied by
Uri Alon [39]. Extended scientific literature suggests that feedforward
loops may serve in transcription networks as filters, sign-sensitive de-
lays, and pulse generators. However, differrently from transcription
networks where it was rarely observed, transduction networks fre-
quently reveal the presence of negative feedback loops, which remark-
ably determine dynamic behavior of the system. This is probably due
to the fact that signal transduction networks represent faster informa-
tion processing networks (acting on timescale of minutes or seconds)
respect to transcription networks (timescale of hours), thus particular
responsivity requirements of system must be guaranteed.

If we consider a chain of reactions in which the first reaction is in-
hibited by one of the downstream elements, we are observing a neg-
ative feedback loop. In general, without such feedback, the concen-
tration of each element reaches steady state after a certain transition
time. If the second element of the chain acts as inhibitor, the level
of the first element shows an overshooting response. With a long-
ranging feedback involving a longer time delay, this effect becomes
more pronounced and may leads to damped oscillation of the last
element of the chain. The result is that response time (τ1

2
) decreasesResponse time:

time at which the

last element of the

chain reach its

half-maximal level.

from the situation without feedback to that with feedback. In par-
ticular, chains containing long-ranging feedback are faster compared
to those having short-ranging feedback. Hence, presence of negative
feedback loops may be a trick, accurately selected through evolution,
to speed up system response to external changes.

Negative feedback loops may entail various effects on cellular dy-
namics, as: stabilization of the state of cellular network, reduction
of the variance of fluctuations and the variability of steady states, ro-
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bustness to boundary conditions, production of pulse-like overshoots,
and induction of sustained oscillations.

5.2.2 Pattern definitions

Considering the remarkable importance of negative feedback loops
in transduction networks and that this particular network motif usu-
ally entails the presence of overshooting response, it could be helpful
to distinguish the simulated concentrations according this particular
feature. Hence, we can divide them in two sets, one for those concen-
trations characterized by overshoot, and one for those without over-
shoot.

To classify dynamic behaviours according to their speed may also
give useful information about how signaling system works and help
in its characterization.

Thus, we decide to classify predicted time series obtained from
insulin model according to these two criteria, obtaining four main
pattern sets, shown in Fig.11:

• slow (not-overshooting) response,

• rapid (not-overshooting) response,

• slow overshooting response, and

• rapid overshooting response.

Each pattern may be characterized by means of specific parameters.
We already mentioned the response time τ1

2
(or τ50%) [min] that in-

dicates the period of time the concentration takes to reach its half-
maximum level. Similarly, we can define τ90% [min] which indicates
the time to reach the 90% of maximum level, and which may help
to further describe concentration dynamics. These two parameters
may be particularly useful for characterization of increasing (not-
overshooting) responses and for classification of their dynamics ac-
cording to the speed.

For concentrations characterized by overshooting response, we can
easily obtain information about τpeak [min], which indicates the pe-
riod of time the concentration takes to reach its peak value. This pa-
rameter permits to distinguish concentration dynamics according to
their speed. Another parameter which can be easily computed from
simulations is xst

xpeak
[%], which gives indication about steady-state lev-

els respect to the peak value, and which may serve for further consid-
erations on concentration dynamics.
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Figure 11: Representative dynamic behaviour for each pattern: slow (not-
overshooting) response (a), rapid (not-overshooting) response (b),
slow overshooting response (c) and rapid overshooting repsonse
(d).

5.3 insulin model simulations : results and analysis

5.3.1 Model simulations

Simulations of insulin model were realized using a step function of
100 nM insulin as input. Insulin stimulation started at 0 time and was
held for 60 minutes. Using BioNetGen language

#actions
generate_network({overwrite=>1});
# Kinetics
simulate_ode({t_end=>60,n_steps=>200}); ✆

where, as presented in Chapter 3, generate_network command per-
mits to generate the complete reactions network according to an itera-
tive method which terminates when no more new reactions are found.
simulate_ode command indicates that simulation of dynamics is car-
ried out implementing and numerically solving a set of ODEs. Simu-
lation lasts for 60 minutes (t_end=>60) and shows in output 200 time
samples for each observable species (n_steps=>200). Time series of
all the observables species are reported in Appendix.
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5.3.2 Simulation results and classification

According to discussion in Section 5.2.2, we decide to first distinguish
the dynamic behavior of observable species according to the presence
or not of overshooting response. Thus, chemical species characterized
by overshoot are: Tyr- phophorylated IRS1, IRS1-PI3K complex for-
mation, PI(3,4,5)P3 complex production, Thr308- phosphorylated Akt,
GLUT4 translocation on cell membrane, IRS1-GS and IRS1-SHP2 com-
plex formations, GTP- bound Ras, single- and double- activated Raf,
Ser221- and Ser217- phosphorylated Mek and Thr202/185- phospho-
rylated Erk, Thr202/185- and Tyr204/187- phosphorylated Erk. The
remaining time series depict increasing concentrations which reach
the steady state level without any overshoot, and are: Tyr- phospho-
rylated insulin receptor, Ser- phosphorylated IRS1, Ser473- phospho-
rylated Akt, Ser2481- phosphorylated mTORC2, Thr172- phosphory-
lated AMPK, Ser1387- phosphorylated TSC1-TSC2 complex, Ser2448-
phosphorylated mTORC1, Thr389- phosphorylated S6K, IR-RasGAP
complex formation, active Src, and inhibited GS.

We decide to further distinguish concentration dynamics according
to their speed using the parameters introduced in Section 5.2.2. In par-
ticular, among the species characterized by increasing (not-overshooting)
response, we classify:

• as rapid those having τ50% < 1 min, and

• as slow, all the others.

For the concentrations characacterized by overshooting response, we
defined

• as rapid those with τpeak < 5 min, and

• as slow, all the others.

All the detected concentrations classified according to their pattern
are reported in Tab. 1.

Resulting pattern classification is also presented in Fig.12 and 13.
These schematics depict respectively the two main sub-systems of
insulin signaling pathway, the PI3K-PKB/Akt and Ras/MAPK sub-
pathways. Having only few elements in common, we prefer to present
them separately. Fig.12 and 13 show the most important chemical
species considered in insulin model which are represented as distinct
compartments. Compartments show also some colored labels indi-
cating the type of residue involved in phosphorylation event, which
are red for tyrosine, blue for serine and green for threonine. Solid
lines connecting different compartments indicate the transformation
between a chemical species to another. Dotted lines joining two differ-
ent species indicate interactions with complex formation. Dotted lines
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not-overshooting response overshooting response

rapid slow rapid slow

IR(pY) IRS1(pS) IRS1(pY) a_Raf

IR-RasGAP Akt(pS473) IRS1-PI3K aa_Raf

a_Src mTORC2(pS2481) PI(3,4,5)P3 Mek(pS221, pS217)

AMPK(pT172) PKC(pT) Erk(pT202/185)

TSC1-TSC2(pS1387) Akt(pT308) Erk(pT202/185, pY204/187)

mTORC1(pS2448) Akt(pT308, pS473)

S6K(pT389) GLUT4

i_GS IRS1-SHP2

IRS1-GS

Ras-GTP

Table 1: Detected concentrations in insulin model classified according to
their pattern.

are also used to indicate chemical species controlling different reac-
tions. Detected quantities are indicated in red and, in their proxim-
ity, are present plots depicting their qualitative dynamic behaviours.
Plots present colored frames which indicate under which pattern
the detected concentration is classified, and are blue for rapid (not-
overshooting) response, red for slow (not-overshooting) response, green
for rapid overshooting response, and cyan blue for slow overshooting
response.

5.3.3 Classification analysis and discussion

By means of pattern classification we were able to characterize dy-
namic behaviour of some of the most important elements constitut-
ing insulin signaling system. As already said, this characterization
may be useful to distinguish insulin signaling pathway working un-
der normal condictions from those affected by disregulations, such as
in insulin resistance and diabetes type 2.

As already said, pattern classification may also unveil complex
mechanisms involved in insulin signaling transduction. From a first
analysis, we observe that rapid (not-overshooting) response charac-
terizes insulin receptor phosphorylation and those processes strictly
related to this, such as IR-RasGAP complex formation and Src activa-
tion. Tyr- phosphorylated IRS1 is also controlled by phosphorylated
insulin receptor inducing a rapid dynamic. However, Tyr- phospho-
rylated IRS1 concentration presents a overshooting response which
remarkbly determines the complex formation dynamics with its bind-
ing proteins, such as PI3K, Grb2-SOS (GS) and SHP2. By IRS1-PI3K
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Figure 12: Schematics of PI3K-PKB/Akt sub- system.

Figure 13: Schematics of Ras/MAPK sub- system.
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complex, rapid overshooting response extends to PI(3,4,5)P3 lipids
production, Thr308- phosphorylated Akt, Thr- phosphorylated PKC-
ζ, up to GLUT4 translocation on cell membrane. However, pattern
changes from rapid overshooting response to slow (not-overshooting)
response in Ser2481- phosphorylated mTORC2 and Thr172- phospho-
rylated AMPK. Phosphorylated mTORC2 affects dynamics of Ser473-
phosphorylated Akt which presents slow (not-overshooting) response.
Phosphorylated AMPK influences together with Thr308- phospho-
rylated Akt, TSC1-TSC2 complex dynamics which is still character-
ized by a slow (not-overshooting) response. By TSC1-TSC2 complex,
slow (not-overshooting) dynamics extends to Ser2448- phosphory-
lated mTORC1, Thr389- phosphorylated S6K, up to Ser- phosphory-
lated IRS1.

By IRS1-GS complex, instead, rapid overshooting response affects
dynamics of GTP- bound Ras. Raf activation mechanism is controlled
by GTP- bound Ras, active Src and phosphorylated Akt, which im-
plements a crosstalk between the two sub- systems. Complex Raf reg-
ulation determines the pattern changing from rapid overshooting re-
sponse to slow overshooting response, which affects the dynamics of
subsequent kinases cascade, constituted by double- phosphorylated
Mek, and single- and double- phosphorylated Erk. Double- phospho-
rylated Erk implements another negative feedback loop acting on GS,
whose inhibited form assumes a slow (not-overshooting) response.

Hence, pattern classification reveals that, generally:

• rapid (not-overshooting) response characterizes those mecha-
nisms strictly related to insulin receptor,

• slow (not-overshooting) response characterizes those mechanisms
related to negative feedback loops,

• rapid overshooting response characterizes those mechanisms re-
lated to Tyr- phosphorylatead IRS1,

• slow overshooting reponse characterizes those mechanisms re-
lated to MAPK kinases cascade.

We briefly discussed in Section 5.2.1 the meaning of network motifs
and their importance in determining dynamic behavior of the system.
These results are in agrrement with the previous observation that neg-
ative feedback loops are often related to the presence of overshooting
response. This analysis performed using pattern classification con-
firms the important link between network structure and its dynamic
behavior. Indeed, overshooting response affecting all the elements de-
scribed above results from the negative feedback loop involving IRS1
phosphorylation on serine residues operated by S6K. Precise tempo-
ral balance of IRS1 phosphorylation mechanism on tyrosine and ser-
ine residues critically determines the overall dynamic behaviour of
the system. Insulin receptor induces a strong and rapid activation of
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Rapid (not-overshooting) response

xst [nM] τ50% [min] τ90% [min]

IR(pY) 9.37 <0,5 <1

IR-RasGAP 4.01e-05 <0,5 <1

a_Src 0.0097 <0,5 <1

Table 2: Classified concentrations.

all downstream elements immediately after insulin stimulation. Acti-
vation rapidly propagates until it reaches TSC1-TSC2 complex, whose
regulation is doubly controlled by Thr308- phosphorylated Akt and
Thr172- phosphorylated AMPK. Probably due to its kinetics proper-
ties, AMPK assumes a slow (not-overshooting) response even if con-
trolled by Tyr- phosphorylated IRS1. However, mechanism regulat-
ing TSC1-TSC2 complex seems essential in modeling the subsequent
dynamics involving mTORC1 and especially S6K. S6K mediates the
negative feedback loop enhancing Ser- phosphorylation on IRS1, thus
causing a decrease in the concentration of Tyr- phosphorylated IRS1
which determines the characteristic overshooting response.

This complex and precise mechanism is probably the result of evo-
lutive phenomena which, through selection, made possible the per-
fect optimization of insulin signaling network. We previously men-
tioned all the effects that negative feedback loop entails on cellular
dynamics. To speed up response time may be particularly important
in determining the responsiveness of cellular transduction networks.
In this case, insulin secretion by β-cells should guarantee all those
mechanisms which allow to reduce blood glucose level in the short-
est time possible. GLUT4 translocation is one among these mecha-
nisms. Upon insulin stimulation, GLUT4 transporters rapidly move
to cellular membrane allowing glucose to enter into the cell where it
undergoes glycogen conversion. Hence, this negative feedback loop
permits to accelerate this mechanism making the insulin system more
effecient.

Negative feedback loop is present also in Ras/MAPK sub- system
and involves GS inhibition by double- phosphorylated Erk action,
which reduces GS ability in binding IRS1. However, rapid overshoot-
ing response describing IRS1-GS complex formation is mostly due to
Tyr- phosphorylated IRS1, whose dynamics is affected by the negative
feedback we discussed before. Hence, the negative feedback action in-
volving GS is weaker if compared to that one involving S6K and does
not determine remakable changes in system dynamics. However, fur-
ther considerations may be derived from parameters characterizing
each pattern, and which are presented and discussed in the next Sub-
section.
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Slow (not-overshooting) response

xst [nM] τ50% [min] τ90% [min]

IRS1(pS) 65,43 8 31

Akt(pS473) 93,27 2 4

mTORC2(pS2481) 8,05 (AU) 7 29

AMPK(pT172) 19,37 (AU) >1 3.5

TSC1-TSC2(pS1387) 10,29 (AU) 2.5 15

mTORC1(pS2448) 7,21 (AU) 4 12

S6K(pT389) 7,20 (AU) 39 80

i_GS 31,80 38 87

Table 3: Classified concentrations.

Rapid overshooting response

xpeak [nM] xst [nM] τpeak [min] xst

xpeak
[%]

IRS1(pY) 109,09 25.50 ~1 23

IRS1-PI3K 0,72 0,18 ~1 23

PI(3,4,5)P3 7,56 (%) 2,30 (%) ~1 30

PKC 20,67 (%) 6,62 (%) ~1 32

Akt(pT308) 16,05 0,01 ~1 ~0

Akt(pT308, pS473) 14,29 6,61 ~3 46

GLUT4 46,30 (%) 29,67 (%) ~4 64

IRS1-SHP2 1,31 0,31 ~1 23

IRS1-GS 0,02 0,0035 ~1 20

Ras-GTP 2,96 0,70 ~2.5 24

Table 4: Classified concentrations.

Slow overshooting response

xpeak [nM] xst [nM] τpeak [min] xst

xpeak
[%]

a_Raf 16,27 6.22 17 38

aa_Raf 2,85 1,92 22 67

Mek(pS221, pS217) 12,38 8.37 22 68

Erk(pT202/185) 38,27 26,18 23 68

Erk(pT202/185, pY204/187) 5,77 2,59 23 45

Table 5: Classified concentrations.
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5.3.4 Further analysis and discussion on quantitative results

Tab.2-5 present all the observable species classified according to the
mentioned criteria and report the most significant parameters describ-
ing each pattern.

As previously detailed, double- phosphorylated Erk plays a role
in controlling an upstream mechanism in insulin signaling system,
IRS1-GS complex formation. In particular, Erk inhibits the ability of
GS to bind IRS1 thus realizing a negative feedback loop. Although the
major contribute in shaping the overshooting response of IRS1-GS is
given by Tyr- phosphorylated IRS1, the analysis of the parameters
collected is Tab.4 reveals that GS inhibition induces a decrease of the
steady state level of IRS1-GS complex ( xst

xpeak
=20%) respect to Tyr- phos-

phorylated IRS1 ( xst

xpeak
=23%). Consequently, GTP- bound Ras has a

lower steady state and this may be critical in regulating the following
kinases cascade, determining overshoot durations and steady state
levels of Raf, Mek and Erk (see Tab.5). In particular, fine regulation
of Erk may be particularly important due to its role in acting directly
on genetic transcription network.

Further discussion may be done on Akt phosphorylation mecha-
nism observing the values in Tab.3 and 4. Akt phosphorylation on
Thr308 is controlled by PI(3,4,5)P3 lipids production. Akt is also phos-
phorylated on Ser473 by phosphorylated mTORC2. mTORC2 phos-
phorylation is controlled by active PI3K, thus by IRS1-PI3K complex
formation. Due to its kinetics properties, phosphorylated mTORC2 re-
sults in increasing (not-overshooting) response affecting also Ser473
Akt phosphorylation. Simulations indicate that the majority of Akt is
phosphorylated on Ser473 whereas Thr308 phosphorylation increases
rapidly during the first period and then reduces its contribute. In
particular, concentration of Akt phosphorylated uniquely on Thr308
(and not on Ser473) extinguishes after a brief period of time (τmax~1
min, xst

xpeak
~0 %) due to gradual phosphorylation on Ser473 (τ50%=2

min, τ90%=31 min). This mechanism results in a double- phosphory-
lated Akt state characterized by a delayed peak (τmax ~3 min) and by
a higher steady state level ( xst

xpeak
=46%) if compared to the upstream

species analyzed before ( xst

xpeak
~23-30%). Phosphorylated Akt (in any

form) together with phosphorylated PKC-ζ contributes to GLUT4
translocation which, after an overshoot, settles to a significantly high
steady state level (τmax~4, xst

xpeak
=64 %).

It is also worthy to observe that S6K phosphorylation increases
very slowly respect to upstream elements (τ90%~12-15 min) reaching a
steady state level after a long period of time (τ90%=80 min). The same
dynamics characterized GS in inhibited state (τ90%=87 min) revealing
that both elements involved in negative feedback loop presents a dy-
namics which is almost linear during the first 60 minutes. This feature
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may reveal a high sensitivity characterizing these elements, thus may
be responsible of critical disregulations in insulin signaling pathway.

5.4 insulin model validation

Insulin model presented in Chapter 4 is the result of integration of
three different models. Although the difficulties to deal with the over-
lapping parts of these networks, we were able to obtain a final model
which is a counterfeit between state of art chemistry knowledge and
simplicity in implementation procedure. Then, we run simulations
and we compared them with those obtained from original models ver-
ifying a good agreement. Figures showing the comparison between
models are presented in Appendix.

However, we also decided to make a direct comparison of the pre-
dictions obtained from insulin model with the available experimen-
tal data. Hence, we decided to use pattern classification showed in
Section 1.3 to simplify the validation procedure of collected times se-
ries. We used the parameters characterizing each pattern to realize a
comparison between the simulated time series and the data available
from literature. During this procedure, we used experimental data
taken from the same models we referred during model implementa-
tion [34, 12], but also data collected by other research groups [36, 43].
Since experimental data are always expressed in arbitrary units (AU),
parametric characterization of each pattern represents a cunning ap-
proach in data comparison that otherwise would be difficult.

In next Subsections we present the details of experimental data
we refer to during validation procedure (Subsection 5.4.1) and the
comparison with predictions of insulin model (Subsection 5.4.2).

5.4.1 Experimental data

For validation procedure of insulin model we refer to experimental
data collected by four research groups:

• Thedieck’s group [34]- collected experimental data on HeLa
cells starved for 16 hours and restimulated with amino acids
and 100 nM insulin for 3, 20, 45 and 100 minutes. Measured time
series we refer to are IR(pY1146), IRS1(pS636), Akt(pT308,pS473),
mTOR(pS2448), p70S6K(pT389).

• Kholodenko’s group [12]- collected experimental data on HEK293
cells starved from 12 to 16 hours and then stimulated with
100 nM insulin. Number of time samples collected during ex-
periments depends on detected concentration but is generally
about 5 or 10 time samples in a time span of 16 or 30 min-
utes. Measured time series we refer to are MEK (pS217,pS221),
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IR(pY1162,pY1163), IRS1 (pY612), ERK1/2 (pT202/185,pY204/187)
and Akt(pS473).

• Toffolo’s group [36]- collected experimental data on human skele-
tal muscle cells (SkMCs), after starvation, exposed to 100 nM
insulin for 0, 2, 5, 10, 30, and 60 minutes. Measured time se-
ries we refer to are Akt (pS473), ERK1/2 (pT202, pY204), mTOR
(pS2448) and p70S6K (pT389).

• White’s group [43]- collected experimental data on 3T3-L1 adipocytes
stimulated with 150 nM insulin for 0, 5, 15 and 45 minutes. Mea-
sured time series we refer to are IR(pY1175,pY1179 and pY1180
in kinase domain, pY1345 and pY1351 in COOH-terminal), IRS1(pY460,
pY935 and pY983 in YXXM motif), ERK1(pT203, pY205) and
ERK2(pT183,pY185).

We also refer to simulations presented in Quon’s model, which mostly
compared their results with experiments conducted on 3T3-L1 adypocytes,
and which may help in validating those processes involved in PI3K-
PKB/Akt sub- system.

5.4.2 Validation results

In the next paragraphs, we compare the data reported in Tab.2-5 with
experimental data, thus providing a further model validation.

insulin receptor . Insulin receptor dynamics matches exactly
with Quon’s model simulations and shows a rapid (not-overshooting)
response with τ90% <1 min. Strong and rapid activation of insulin re-
ceptor is also confirmed by Thedieck’s , Kholodenko’s and White’s
groups. In particular, White’s data shows an activation increase of
more than 10- fold after 5 min from insulin stimulation which, apart
from a slight decrease to 45 min, confirmed the dynamics of our in-
sulin model.

irs1 . IRS1 dynamics of insulin model do not present oscillatory
behavior as simulations reported by Quon’s group. This is probably
due to the replacement of the original modulation on IRS1 phospho-
rylation on serine carried out by phosphorylated PKC-ζ, with a more
detailed negative feedback loop involving Akt, TSC1-TSC2 complex,
mTORC1 and S6K. However, both steady states levels of Tyr- and Ser-
phosphorylated IRS1 are very close to those reported by Quon’s pa-
per (xst= 27.86 nM for Tyr- phosphorylation and xst= 64.79 nM for
Ser- phosphorylation) and also the peak time of Tyr- phosphorylated
IRS1 (τmax = 2 min).

Kholodenko’s group also reports concentration of Tyr- phosphory-
lated IRS1 increasing during the first minute, then settling to 15%
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of its maximum value. White’s group shows maximal phosphoryla-
tion after 5 min (more than 3- fold increase) followed by a marked
decrease for longer insulin stimulation.

The slower dynamics of Ser- phosphorylated IRS1 was confirmed
by Thedieck’s group which reports that concentration reaches half-
maximum level between 5 and 10 min after insulin stimulation.

akt. T308- phosphorylated Akt dynamics does not present oscilla-
tory behavior as reported in Quon’s simulations but peak time and
steady state level compared to peak value are really close to those
reported in the paper (τmax = 2 min, xst

xpeak
= 42% ). Also Thedieck’s

group confirmed a rapid dynamics and marked decrease (τmax = 2 - 3
min, xst

xpeak
= 56%).

S473- phosphorylated Akt dynamics is in good agreement with
data reported by Thedieck’s (τmax = 3 - 4 min) and Kholodenko’s
groups (τmax = 2- 3 min). Toffolo’s data shows that S473- phospho-
rylated Akt reaches maximum value in 10 min and settles to steady
state level without decrease as we reported in our insulin model pre-
dictions.

mtor . Insulin model simulations show that phosphorylated mTORC1
increases gradually reaching its half-maximum value in 4 min and
this is confirmed by Thedieck’s group in its experiments (τ50%= 4 - 5
min). Also Toffolo’s data reports an increasing trend which reaches its
steady state level in 10 min after stimulation ,without any decrease.

s6k . S6K phosphorylation dynamics matches with that one reported
by Thedieck’s group in its experiment. Toffolo’s data also shows an
increasing trend which is extremely slower respect those one reported
before and which reaches steady state level after 30 min.

ras . Insulin model predicts a GTP- bound Ras concentration hav-
ing a peak after 2.5 min and which reaches a steady state of 24%
respect to its peak value. This is confirmed by experimental data re-
ported by Kholodenko’s group which shows a peak around 2 min
and a decreasing behavior.

mek . Phosphorylated Mek concentration presents a slower dynam-
ics respect to Ras and this is confirmed by Kholodenko’s group ex-
periments, where Mek reaches its peak after 5 min and it slightly
decreases until it reaches its steady state level ( xst

xpeak
=50%).

erk . Insulin model predictions show a single- phosphorylated Erk
concentration similar to Mek and a double- phosphorylated state
with a lower steady state level. Kholodenko’s data reported double-
phosphorylated Erk dynamics with a peak at 5 min and marked de-
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crease. Toffolo’s data shows slower dynamics with a peak after 10 min
and a marked decreases. White’s group classifies Erk among those
proteins which increase their phosphorylation activity more than 10-
folds (after 5 min from stimulation). Reported concentrations have a
peak around 5 min and then decrease, having a higher steady state
for single- phosphorylated Erk and a lower one for double- phospho-
rylated Erk, thus confirming our predictions.





6
C O N C L U S I O N S

In this thesis we implemented a computational model of insulin sig-
naling pathway. We made use of three models already published in
literature that were integrated to realize a final and more complete in-
sulin model. Model was implemented using rule-based modeling ap-
proach which permitted a simple system description by a set of reac-
tion rules. In particular, we used BioNetGen software and, by means
of its tools, we generated predictions of chemical species populating
insulin system. Simulated time series describing the concentrations
were used to characterize dynamic behavior of the system. First, we
distinguished concentrations depending on overshoot presence. Then
,we evaluate response time and we further distinguished between
rapid and slow dynamics. Hence, we classified dynamics according
to four main pattern sets: rapid (non-overshooting) response, slow
(not-overshooting) response, rapid overshooting response, and slow
overshooting response. By this analysis we realized that rapid (not-
overshooting) response characterizes those process related to insulin
receptor phosphorylation, such as IR-RasGAP binding formation and
Src activation. Rapid overshooting response characterizes those mech-
anisms related to Tyr- phosphorylated IRS1, such as IR-PI3K, IR-
SHP2, and IR-GS complex formation, PI(3,4,5)P3 lipids production,
Thr308- phosphorylated Akt, translocated GLUT4, and GTP- bound
Ras. Slow overshooting response characterizes MAPK kinases cas-
cade constituted by once- and double- active Raf, double- phosphory-
lated Mek and once- and double- phosphorylated Erk. Last, slow (not-
overshooting) response characterizes those species implementing neg-
ative feedback loops in insulin system, such as Ser473- phosphory-
lated Akt, phosphorylated AMPK, Ser1387- phosphorylated TSC1-
TSC2 complex, phosphorylated mTORC1, phosphorylated mTORC2,
phosphorylated S6k, Ser- phosphorylated IRS1, and inhibited GS. We
used these results to clear some fundamental regulation processes.
In particular, we observed that system dynamics in markedly deter-
mined by IRS1 phosphorylation mechanism. Insulin receptor induces
rapid phosphorylation of IRS1 on tyrosine residues. Subsequently, ac-
tivation cascade of downstream elements is induced up to S6K, which
controls IRS1 phosphorylation on serine residues. This causes a de-
crease in Tyr- phophorylated IRS1 which describes a overshooting
response. We hypothesized this mechanism responsible in speeding
up system response. System response is a important requirement in
transduction networks which act in a period of time of minutes or
seconds. In particular, insulin signaling pathway, upon stimulation,
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must assure all those mechanisms which allow blood glucose level
to return under physiologic conditions. Glucose transporter GLUT4
is involved in these processes and, as it is possible to observed from
simulations, it translocates to cell membrane very rapidly. Moreover,
we used parametric characterization of each pattern to conduct fur-
ther analysis on system dynamics. Finally, we discussed model vali-
dation comparing predictions with some experimental data obtained
from immunoblot. We mainly focused on description of significant
dynamic features, showing good agreement.

Hence, computational model of insulin signaling pathway permit-
ted dynamic characterization of the system and of involved regula-
tion processes, and to unveil complex mechanisms and function of
chemical species. This can be useful to distinguish pathway in patho-
logic conditions and to recognize the presence of pathologies, such
as insulin resistance and diabetes type 2. Moreover, this model may be
used to analyze cross-talk action with other signaling pathways, in
particular that one induced by EGF which is particularly studied due
to its connection with cancer.
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A P P E N D I X

7.1 insulin model implemented using bionetgen

begin parameters
NA 6.02e23 #Avogadro constant
Vo 1.0e-10 #Volume outside the cell
Vm 3.0e-13 #Volume of the cellular membrane
V 3.0e-12 #Volume inside the cell

PTP 1.0
PTEN 1.0
SHIP 1.0
PKC 1.0
IRp 8.97e-13*NA*Vm*(1.0e5)
PI3K 2.54e-15*NA*V*(1.0e5)
APequil 100/11

nM 1.0e-9
u NA*V*nM
um NA*Vm*nM
uo NA*Vo*nM
s 1/60

# Initial conditions
I_init 1.0e-7*NA*Vo
IR_ext_free_init 9.0e-13*NA*Vm*(1.0e5)
IR_int_free_init 1.0e-13*NA*V*(1.0e5)
IR_gen 35*1.67e-18*NA*V*(1.0e5)
IRS1_init 1.0e-12*NA*V*(1.0e5)
PI3K_init 1.0e-13*NA*V*(1.0e5)
PI45_init 99.4 #%
PI345_init 0.31 #%
PI34_init 0.29 #%
PKC_init 100 #%
GLUT4_in_init 96 #%
GLUT4_ex_init 4 #%
GLUT4_gen 96*0.001155 #%

Amino_Acids_input 10
AMPK_init 20.50644836
mTORC1_init 25.14
mTORC2_init 18.79587754
p70S6K_init 14.30096315
PRAS40_S183_init 13.56128255
PRAS40_T246_init 17.55000883
PRAS40_init 13.56128255+17.55000883
TSC1_TSC2_pT1462_init 14.9175

GS_init 200*u
RasGAP_init 50*u
SHP2_init 300*u
iSrc_init 518*u
dRas_init 150*u
Raf_init 100*u
Mek_init 200*u
Erk_init 400*u
Akt_init 100*u
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# Correction factors
k_p70S6K_IRS1 0.00003
k_IRS1_AMPK 0.0000004
k_mTORC2_Akt 0.05
k_Complex_mTORC2 0.00012
k_Akt_TSC1_TSC2 0.0015

k_RasGAP 0.18
k_Src 0.1
k_GS 0.08
k_SHP2 0.08

# Rate constants min-1 (CONSISTENT UNITS)
k1 0.5*6e7/(NA*Vo) #1st insuline binding
k_1 0.20 #1st insuline unbinding
k2 6e7/(NA*Vo) #2nd insuline binding
k_2 0.5*20 #2nd insuline unbinding
k3 2500 #IR phosphorylation
k_3 0.20 #IR dephosphorylation [PTP]
k4 3.333e-4 #IR free internalization
k_4 0.003 #IR free externalization
k4p 2.1e-3 #IR internalization
k_4p 2.1e-4 #IR externalization
k5 1 #IR internalizated production
k_5 1.67e-18 #IR internalizated degradation
k6 0.461 #IR internalizated unphosphorylation [PTP]
k7 4.16/IRp #IRS-1 phosphorylation in Tyr
k_7 (2.5/7.45)*4.16 #IRS-1 dephosphorylation in Tyr
k7p 0.69/2 #IRS-1 phosphorylation in Ser
k_7p (0.69/2)*((2.5/7.45)*3.7e-13)/(6.27e-13-(2.5/7.45)*3.7e-13) #IRS-1 dephosphorylation

in Ser
k8 10.0*(5.0/70.775)*(1.0e12/(NA*V*1.0e5)) #IRS-1_PI3-k complex activation
k_8 10.0 #IRS-1_PI3-k complex deactivation
k9a (1.39-(0.31/99.4)*(94/3.1)*1.39)*(1/PI3K) #PI(4,5)P2 -> PI(3,4,5)P3
k9b (0.31/99.4)*(94/3.1)*1.39
k_9 (94/3.1)*1.39 #PI(3,4,5)P3 -> PI(4,5)P2 [PTEN]
k10 (3.1/2.9)*2.77 #PI(3,4)P2 -> PI(3,4,5)P3
k_10 2.77 #PI(3,4,5)P3 -> PI(3,4)P2 [SHIP]
k11a (0.1*10*0.69)/(3.1-0.31) #Akt phosphorylation
k11b (0.1*10*0.69*0.31)/(0.31-3.1)
k_11 10*0.69 #Akt dephosphorylation
k12a (0.1*10*0.69)/(3.1-0.31) #PKC phosphorylation
k12b (0.1*10*0.69*0.31)/(0.31-3.1)
k_12 10*0.69 #PKC dephosphorylation
k13 (4/96)*0.167 #GLUT4 basal translocation to cell membrane
k_13 0.167 #GLUT4 internalization
k13a ((40/60)-(4/96))*0.167*(0.2/APequil) #Akt dependent - GLUT4 translocation
k13b ((40/60)-(4/96))*0.167*(0.8/APequil) #PKC dependent - GLUT4 translocation
k14 1 #GLUT4 production
k_14 0.001155 #GLUT4 degradation

p5 k_p70S6K_IRS1*1682.75 #IRS1_p_phosphorylation_by_p70S6K_pT389
p7 k_IRS1_AMPK*9.79766 #AMPK_T172_phosphorylation
p8 0.0107215 #AMPK_pT172_dephosphorylation
p10 0.00640216 #Akt_pS473_dephosphorylation
p11 k_mTORC2_Akt*13.1442 #Akt_S473_phosphorylation_by_mTORC2_pS2481_n_IRS1_p
p13 0.0106652 #mTORC1_pS2448_dephosphorylation_by_TSC1_TSC2_pS1387
p14 0.00438916 #mTORC1_S2448_activation_by_Amino_Acids
p15 0.0183735 #mTORC2_pS2481_dephosphorylation
p16 k_Complex_mTORC2*0.375353 #mTORC2_S2481_phosphorylation_by_PI3K_variant_p
p17 0.0113512 #p70S6K_pT389_dephosphorylation
p18 0.00184043 #p70S6K_T389_phosphorylation_by_mTORC1_pS2448
p19 2.33014 #PRAS40_pS183_dephosphorylation
p20 1.60513 #PRAS40_pT246_dephosphorylation
p21 0.187621 #PRAS40_S183_phosphorylation_by_mTORC1_pS2448
p22 0.137729 #PRAS40_T246_phosphorylation_by_Akt_pT308
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p23 0.0365589 #TSC1_TSC2_S1387_phosphorylation_by_AMPK_pT172
p24 k_Akt_TSC1_TSC2*0.0177562 #TSC1_TSC2_T1462_phosphorylation_by_Akt_pT308

kon27 k_RasGAP*6.66e-8/(u*s)
kd27 2e6*u*kon27/k_RasGAP
kf34 1.85e-4/(s)
kcat40 6.66/(s)
alpha40 2.5e-4
Km40 110*u
V41 6.66*u/(s)
Km41 50*u
kon45 k_GS*6.66e-4/(u*s)
kd45 1e5*u*kon45/k_GS
kon47 k_SHP2*6.66e-4/(u*s)
kd47 1000*u*kon47/k_SHP2
kcat62 5.33/(s)
Km62 50*u
bRasGAP 1e-5*u
kcat63 2e4/(s)
Km63 50*u
kcat65 0.1/(s)
Km65 400*u
kcat66 3.33/(s)
Km66 10*u
kcat67 0.666/(s)
PKA 100*u
Km67 1e4*u
alpha67 (1e-6)/(u*s)
beta67 2
kcat68 0.133/(s)
Km68 50*u
V69 16.6*u/(s)
Km69 675.299*u
kcat70 0.333/(s)
Km70 500*u
Km71 500*u
kcat71 0.666/(s)
V72 33.3*u/(s)
Km72 500*u
Km73 500*u
V73 23.33*u/(s)
kcat79 0.0466/(s)
Km79 5000*u
k_79 6.66e-5/(s)
V100 333*u/(s)
Km100 143.3*u
kf101 0.666/(s)
k115 0.0133/(u*s)
end parameters
begin molecule types
I(bs)
IR(bs,alpha,alpha,Y~u~p,loc~ex~c)
IR_Gen()
IRS1(bs,YXXM,Y~u~p,S~u~p)
PI3K(SH2)
PI45()
PI345()
PI34()
PKC(T~u~p)
GLUT4(loc~c~ex)
GLUT4_Gen()
Trash()

Amino_Acids()
Akt(T308~u~p,S473~u~p)
PRAS40(T246~u~p,S183~u~p)
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TSC1_TSC2(T1462~u~p,S1387~u~p)
mTORC1(S2448~u~p)
mTORC2(S2481~u~p)
p70S6K(T389~u~p)
AMPK(T172~u~p)

GS(bs,state~i~a)
Src(state~i~a)
RasGAP(bs)
SHP2(bs)
Ras(state~d~t)
Raf(state~i~a~aa)
Mek(state~u~pp)
Erk(state~u~p~pp)
end molecule types
begin seed species
I(bs) I_init
IR(bs,alpha,alpha,Y~u,loc~ex) IR_ext_free_init
IR(bs,alpha,alpha,Y~u,loc~c) IR_int_free_init
IR_Gen() IR_gen
IRS1(bs,YXXM,Y~u,S~u) IRS1_init
PI3K(SH2) PI3K_init
PI45() PI45_init
PI345() PI345_init
PI34() PI34_init
PKC(T~u) PKC_init
GLUT4(loc~c) GLUT4_in_init
GLUT4(loc~ex) GLUT4_ex_init
GLUT4_Gen() GLUT4_gen
Amino_Acids() Amino_Acids_input
AMPK(T172~u) AMPK_init
Akt(T308~u,S473~u) Akt_init
mTORC1(S2448~u) mTORC1_init
mTORC2(S2481~u) mTORC2_init
p70S6K(T389~u) p70S6K_init
PRAS40(T246~u,S183~u) PRAS40_init
TSC1_TSC2(T1462~p,S1387~u) TSC1_TSC2_pT1462_init
GS(bs,state~a) GS_init
RasGAP(bs) RasGAP_init
SHP2(bs) SHP2_init
Src(state~i) iSrc_init
Ras(state~d) dRas_init
Raf(state~i) Raf_init
Mek(state~u) Mek_init
Erk(state~u) Erk_init
end seed species
begin observables
Molecules IR_free IR(alpha,alpha,Y~u,loc~ex)
Molecules IR_1bound IR(alpha,alpha!+,Y~p,loc~ex)
Species IR_2bound IR(alpha!+,alpha!+,Y~p,loc~ex)
Molecules IR_phosph IR(bs,Y~p,loc~ex)
Molecules Insulin I(bs)
Molecules IRS1_unphosph IRS1(bs,YXXM,Y~u,S~u)
Molecules IRS1_phosph_tyr IRS1(YXXM,Y~p,S~u)
Molecules IRS1_phosph_ser IRS1(YXXM,Y~u,S~p)
Molecules Complex IRS1(YXXM!1,Y~p).PI3K(SH2!1)
Molecules PI345 PI345()
Molecules PI34 PI34()
Molecules PKC_phosph PKC(T~p)
Molecules Akt_phosph Akt(T308~p,S473~p)
Molecules GLUT4_ex GLUT4(loc~ex)
Molecules IR_bound IR(alpha!+,Y~p,loc~ex)
Molecules AMPK_pT172 AMPK(T172~p)
Molecules Akt_pT308 Akt(T308~p,S473~u)
Molecules Akt_pS473 Akt(T308~u,S473~p)
Molecules Akt_pT Akt(T308~p)
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Molecules Akt_pS Akt(S473~p)
Molecules TSC1_TSC2_pS1387 TSC1_TSC2(T1462~u,S1387~p)
Molecules TSC1_TSC2_pT1462 TSC1_TSC2(T1462~p,S1387~u)
Molecules mTOR_pS2448 mTORC1(S2448~p)
Molecules mTOR_pS2481 mTORC2(S2481~p)
Molecules p70S6K_pT389 p70S6K(T389~p)
Molecules PRAS40_pT246 PRAS40(T246~p)
Molecules PRAS40_pS183 PRAS40(S183~p)
Molecules iSrc Src(state~i)
Molecules aSrc Src(state~a)
Molecules dRas Ras(state~d)
Molecules IRSp_GS IRS1(bs!1,Y~p,S~u).GS(bs!1,state~a)
Molecules tRas Ras(state~t)
Molecules IRp_RasGAP IR(bs!1,Y~p,loc~ex).RasGAP(bs!1)
Molecules Raf Raf(state~i)
Molecules aRaf Raf(state~a)
Molecules aaRaf Raf(state~aa)
Molecules Mek Mek(state~u)
Molecules ppMek Mek(state~pp)
Molecules Erk Erk(state~u)
Molecules pErk Erk(state~p)
Molecules ppErk Erk(state~pp)
Molecules GS GS(bs,state~a)
Molecules iGS GS(bs,state~i)
Molecules IRSp_SHP2 IRS1(bs!1,Y~p,S~u).SHP2(bs!1)
end observables
begin functions
f7()=k7*IR_bound
f9()=k9a*Complex+k9b
f11()=k11a*PI345+k11b
f12()=k12a*PI345+k12b
f13()=k13+k13a*(100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/Akt_init))+k13b*PKC_phosph
#feedback loops
ptp1()=(k_3)*(1-0.25*((100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/Akt_init))/(100/11)))
ptp2()=(k6)*(1-0.25*((100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/Akt_init))/(100/11)))
ptp3()=(k_7)*(1-0.25*((100-(Akt_pT308+Akt_pS473+Akt_phosph)*(100/Akt_init))/(100/11)))
pkc()=(k7p)#*V_max*PKC_del^n/(Kd^n+PKC_del^n)
v40()=k_Src*kcat40*(alpha40*IR_phosph)/(Km40+iSrc)
v41()=V41/(Km41+aSrc)
v62()=kcat62*(IRSp_GS)/(Km62+dRas)
v63()=kcat63*(bRasGAP+IRp_RasGAP)/(Km63+tRas)
v65()=kcat65*tRas/(Km65+Raf)
v66()=kcat66*aSrc/(Km66+aRaf)
v67()=kcat67*PKA/(Km67+aaRaf)+alpha67*(Akt_pT308+beta67*Akt_phosph)
v68()=kcat68*aaRaf/(Km68+Mek)
v69()=V69/(Km69+ppMek)
v70()=kcat70*ppMek/(Km70+Erk+pErk*Km70/Km71)
v71()=kcat71*ppMek/(Km71+pErk+Erk*Km71/Km70)
v72()=V72/(Km72+ppErk+pErk*Km72/Km73)
v73()=V73/(Km73+pErk+ppErk*Km73/Km72)
v79()=kcat79*ppErk/(Km79+GS)
v_79()=k_79
v100()=V100/(Km100+IRSp_GS)
v115()=k115*IRSp_SHP2
end functions
begin reaction rules
# Receptor binding 1st insulin molecule
1 IR(bs,alpha,alpha,Y~u,loc~ex) + I(bs) <-> IR(bs,alpha!1,alpha,Y~u,loc~ex).I(bs!1)

k1,k_1
# Receptor phosphorylation
2 IR(bs,alpha!+,alpha,Y~u,loc~ex) -> IR(bs,alpha!+,alpha,Y~p,loc~ex) k3
# Receptor binding 2nd insulin molecule
3 IR(alpha!+,alpha,Y~p,loc~ex) + I(bs) <-> IR(alpha!+,alpha!1,Y~p,loc~ex).I(bs!1)

k2,k_2
# Receptor unbinding and dephosphorylation (on the cell membrane)
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4 IR(bs!?,alpha!1,alpha,Y~p,loc~ex).I(bs!1) -> IR(bs,alpha,alpha,Y~u,loc~ex) + I(bs)
ptp1()

# Phosphorylated receptor internalization/externalization
5 IR(bs!?,alpha!+,Y~p,loc~ex) <-> IR(bs,alpha!+,Y~p,loc~c) k4p, k_4p
# Receptor unbinding and dephosphorylation (inside the cell)
6 IR(bs,alpha!+,Y~p,loc~c) -> IR(bs,alpha,alpha,Y~u,loc~c) ptp2()
# Free receptor internalization/externalization
7 IR(bs,alpha,alpha,Y~u,loc~ex) <-> IR(bs,alpha,alpha,Y~u,loc~c) k4, k_4
# Receptor synthesis
8 IR_Gen() -> IR_Gen() + IR(bs,alpha,alpha,Y~u,loc~c) k5
# Receptor degradation
9 IR(bs,alpha,alpha,Y~u,loc~c) -> Trash() k_5
# IRS-1 phosphorylation/dephosphorylation in Tyr
10 IRS1(bs,YXXM,Y~u,S~u) <-> IRS1(bs,YXXM,Y~p,S~u) f7(),ptp3()
# IRS-1_PI3-K complex formation (PI3-K activation)
11 IRS1(YXXM,Y~p,S~u) + PI3K(SH2) <-> IRS1(YXXM!1,Y~p,S~u).PI3K(SH2!1) k8,k_8
# IRS-1 phosphorylation/dephosphorylation in Ser
12 IRS1(bs,YXXM,Y~u,S~u) <-> IRS1(bs,YXXM,Y~u,S~p) pkc(), k_7p
# lipids formation
13 PI45() <-> PI345() f9(),k_9*PTEN
# lipids formation
14 PI34() <-> PI345() k10,k_10*SHIP
# Akt phosphorylation/dephosphorylation
15 Akt(T308~u) <-> Akt(T308~p) f11(),k_11
# PKC phosphorylation /dephosphorylation
16 PKC(T~u) <-> PKC(T~p) f12(), k_12
# GLUT4 translocation
17 GLUT4(loc~c) <-> GLUT4(loc~ex) f13(), k_13
# GLUT4 synthesis
18 GLUT4_Gen() -> GLUT4_Gen() + GLUT4(loc~c) k14
# GLUT4 degradation
19 GLUT4(loc~c) -> Trash() k_14
# mTORC2
20 mTORC2(S2481~u) + IRS1(YXXM!1,Y~p,S~u).PI3K(SH2!1) -> mTORC2(S2481~p)
+ IRS1(YXXM!1,Y~p,S~u).PI3K(SH2!1) p16
21 mTORC2(S2481~p) -> mTORC2(S2481~u) p15
# Akt
22 Akt(S473~u) + mTORC2(S2481~p) -> Akt(S473~p) + mTORC2(S2481~p) p11
23 Akt(S473~p) -> Akt(S473~u) p10
# AMPK
24 AMPK(T172~u) + IRS1(YXXM,Y~p,S~u) -> AMPK(T172~p) + IRS1(YXXM,Y~p,S~u) p7
25 AMPK(T172~p) -> AMPK(T172~u) p8
# TSC1-TSC2
26 TSC1_TSC2(T1462~u,S1387~p) + Akt(T308~p) -> TSC1_TSC2(T1462~p,S1387~u) + Akt(T308~p)

p24
27 TSC1_TSC2(T1462~p,S1387~u) + AMPK(T172~p) -> TSC1_TSC2(T1462~u,S1387~p) + AMPK(T172~p)

p23
# mTORC1
28 mTORC1(S2448~p) + TSC1_TSC2(T1462~u,S1387~p) -> mTORC1(S2448~u)
+ TSC1_TSC2(T1462~u,S1387~p) p13
29 mTORC1(S2448~u) + Amino_Acids() -> mTORC1(S2448~p) + Amino_Acids() p14
# p70S6K
30 p70S6K(T389~u) + mTORC1(S2448~p) -> p70S6K(T389~p) + mTORC1(S2448~p) p18
31 p70S6K(T389~p) -> p70S6K(T389~u) p17
# IRS1
32 IRS1(YXXM,Y~u,S~u) + p70S6K(T389~p) -> IRS1(YXXM,Y~u,S~p) + p70S6K(T389~p) p5
# PRAS40
33 PRAS40(T246~u) + Akt(T308~p) -> PRAS40(T246~p) + Akt(T308~p) p22
34 PRAS40(T246~p) -> PRAS40(T246~u) p20
35 PRAS40(S183~u) + mTORC1(S2448~p) -> PRAS40(S183~p) + mTORC1(S2448~p) p21
36 PRAS40(S183~p) -> PRAS40(S183~u) p19
# RasGAP module
37 IR(bs,Y~p,loc~ex) + RasGAP(bs) <-> IR(bs!1,Y~p,loc~ex).RasGAP(bs!1) kon27,kd27
38 IR(bs!1,alpha!+,Y~p,loc~ex).RasGAP(bs!1) -> RasGAP(bs) kf34 DeleteMolecules
# Src module
39 Src(state~i) <-> Src(state~a) v40(), v41()
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# IRS1-GS and IRS1-SHP2 complex formation
40 IRS1(bs,Y~p,S~u) + GS(bs,state~a) <-> IRS1(bs!1,Y~p,S~u).GS(bs!1,state~a) kon45,kd45
41 IRS1(bs,Y~p,S~u) + SHP2(bs) <-> IRS1(bs!1,Y~p,S~u).SHP2(bs!1) kon47,kd47
# IRS1-GS and IRS1-SHP2 complex disruption and IRS1 dephosphorylation
42 IRS1(bs!1,YXXM,Y~p,S~u).GS(bs!1,state~a) -> IRS1(bs,YXXM,Y~u,S~u) + GS(bs,state~a)

v100()
43 IRS1(bs!1,YXXM,Y~p,S~u).SHP2(bs!1) -> IRS1(bs,YXXM,Y~u,S~u) + SHP2(bs) kf101
# GS inhibition
44 GS(bs,state~a) <-> GS(bs,state~i) v79(),v_79()
# SHP2 activity against RasGAP
45 IR(bs!1,Y~p,loc~ex).RasGAP(bs!1) -> IR(bs,Y~p,loc~ex) + RasGAP(bs) v115()
# Ras module
46 Ras(state~d) <-> Ras(state~t) v62(), v63()
# Raf module
47 Raf(state~i) -> Raf(state~a) v65()
48 Raf(state~a) -> Raf(state~aa) v66()
49 Raf(state~aa) -> Raf(state~i) v67()
# Mek module
50 Mek(state~u) <-> Mek(state~pp) v68(), v69()
# ERK module
51 Erk(state~u) <-> Erk(state~p) v70(), v73()
52 Erk(state~p) <-> Erk(state~pp) v71(), v72()
end reaction rules
#actions
generate_network({overwrite=>1});
# Kinetics
simulate_ode({t_end=>60,n_steps=>200});

7.2 insulin model simulations

Figure 14: Temporal series of insulin receptor binding one (IR_1bound) or
two (IR_2bound) insulin molecules and of phosphorylated in-
sulin receptor (IR_phosph). Comparison between insulin model
and Quon’s model.
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Figure 15: Temporal series of IRS-1 phosphorylated on tyrosine
(IRS1_phosph_tyr) and on serine (IRS1_phosph_ser) residues.
Comparison, respectively, between insulin model and Quon’s
model.

Figure 16: Temporal series of IRS1-PI3K complex formation. Comparison,
respectively, between insulin model and Quon’s model.
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Figure 17: Temporal series of Akt phosphorylated on both residues
(Akt_phosph), uniquely on Thr308 (Akt_pT308) and uniquely on
Ser473 (Akt_pS473).

Figure 18: Temporal series of Akt phosphorylated on both residues
(Akt_phosph), on Thr308 (Akt_pT) and on Ser473 (Akt_pS).
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Figure 19: Temporal series of phosphorylated PKC (PKC_phosph). Compar-
ison between insulin model and Quon’s model.

Figure 20: Temporal series of translocated GLUT4 (GLUT4_ex). Comparison
between insulin model and Quon’s model.
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Figure 21: Temporal series of TSC1-TSC2 complex phosphorylated on S1387
(TSC1_TSC2_pS1387). Comparison between insulin model and
Thedieck’s model.

Figure 22: Temporal series of phosphorylated mTORC1 (mTOR_pS2448).
Comparison between insulin model and Thedieck’s model.
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Figure 23: Temporal series of phosphorylated mTORC2 (mTOR_pS2481).
Comparison between insulin model and Thedieck’s model.

Figure 24: Temporal series of phosphorylated S6K (p70S6K_pT389). Com-
parison between insulin model and Thedieck’s model.



7.2 insulin model simulations 89

Figure 25: Temporal series of IR-RasGAP complex formation (IRp_RasGAP).
Comparison between insulin model and Kholodenko’s model.

Figure 26: Temporal series of IRS1-GS complex formation (IRSp_GS). Com-
parison between insulin model and Kholodenko’s model.
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Figure 27: Temporal series of GTP- bound Ras (tRas). Comparison between
insulin model and Kholodenko’s model.

Figure 28: Temporal series of once- (aRaf) and double- (aaRaf) activated Ras.
Comparison between insulin model and Kholodenko’s model.
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Figure 29: Temporal series of double- phosphorylated Mek (ppMek). Com-
parison between insulin model and Kholodenko’s model.

Figure 30: Temporal series of once- (pErk) and double- (ppErk) phosphory-
lated Erk. Comparison between insulin model and Kholodenko’s
model.
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