

Abstract

In recent neuroscientific literature, task representation has received a lot of attention. A major
open question is how the architecture of clusters of neurons relates to the cognitive processes
they execute and to the neurons’ functional specialization. Artificial neural networks are a
powerful, widely employed tool to model and therefore comprehend the activity of these neural
clusters. By training artificial networks to perform the same tasks of biological ones and looking
at their structure and dynamics, significant insight can be gained into task representation
by biological brains. This thesis focuses specifically on recurrent neural networks (RNNs),
characterized by connections between layers which are shared over time and trained with the
backpropagation-through-time method. The RNN at hand is trained to perform a simple
cognitive task (“Go”), and the resulting response is analyzed both by examining the input
and output signals, as well as the network parameters, and through the lens of a dynamical
systems approach.

ii

Contents

1 Introduction 1

2 General use of RNNs 3

2.1 ANNs and RNNs in neuroscientific research . 3
2.2 RNN learning method: backpropagation through time 5

2.2.1 The classic backpropagation algorithm 5
2.2.2 Backpropagation through time (BPTT) 6

3 Network architecture and tasks 8

3.1 Architecture of the RNN . 8
3.2 The input and output signals . 9
3.3 The Go task . 11

4 RNN output 12

5 Analysis of RNN dynamics 16

5.1 Task representation and compositionality . 16
5.2 The dynamical systems approach . 17

6 Conclusions 24

iii

Chapter 1

Introduction

The understanding of how neural activity is related to behavior is a key, highly challenging
endeavour of modern-day brain studies. Clusters of neurons first encode incoming sensory
stimuli in terms of electrical activity. They later transform this information into perceptual
decision or motor action by weighing evidence for choice alternatives, thus implementing com-
putations that generate behavior (Wang 2002). To reach a simple, mechanistic grasp of such
processes is therefore a central research goal in neuroscience.

A powerful way to address this problem is to rely on simplified, computational models
of neural networks to provide a testing ground for theoretical hypotheses on cognitive task
performance. Moreover, mathematical, physical and information theory techniques can be
employed to examine artificial brain-like networks and elucidate the underlying neural mech-
anisms (Mastrogiuseppe et al. 2018, Yang et al. 2019).

One promising approach in this direction is to analyze “vanilla” recurrent neural networks
(RNNs) that have been optimized to perform the same tasks as behaving animals by means of
the backpropagation-through-time (BPTT) training algorithm (Yang et al. 2020, Song et al.
2016, Werbos 1990). Among artificial neural network architectures, only RNNs can adequately
represent time, as they are provided with a dynamic memory. Including this feature in neural
models is particularly important as time is inextricably bounded with many behaviors (such as
natural language understanding) which unfold as sequential actions (Elman 1990, LeCun et al.
2015). In the context of handling large data sets, e.g. long time series, the effectiveness of the
machine learning paradigm resides in not needing to explicitly instruct the networks on how
to infer predictions from the given input. Employing automatic learning algorithms though
results in a significant drawback: as RNNs are intrinsically constructed as “black boxes”, the
exact nature of how neural computation mechanisms are implemented is not easily recognizable
(Sussillo et al. 2013).

The opening of the aforementioned “black boxes” is aided by multiple analysis techniques,
among which is viewing the RNN as a nonlinear dynamical system. Specifically, the equation
describing network dynamics can be obtained and studied both with computational and clas-
sical mathematical tools (Sussillo et al. 2013, Golub et al. 2018). Moreover, an RNN trained
to perform several tasks can also be examined from the point of view of task representation,
that is the way the network encodes the cognitive processes which transform the sensory input
signal into a motor output signal. It was hypothesized (Yang et al. 2019) that such repre-
sentations strongly depend on the motion and spatial distribution of high-dimensional neural
activity vectors, visualized in an appropriate state space as a dynamical landscape.

1

2 CHAPTER 1. INTRODUCTION

The aim of this thesis is to simulate the dynamics of an RNN trained to perform a simple
cognitive task (indicated as “Go”) and to investigate the claim made by Yang et al.

In Chapter 2, a more detailed overview of the role played in neuroscientific studies by artifi-
cial, and specifically recurrent, neural networks is presented along with a general mathematical
description of RNN structure. A thorough presentation of the backpropagation training algo-
rithm is included, both for its classical version and for the BPTT variant.

Chapter 3 instead illustrates the architecture of the specific RNN which is the object of
the thesis. The input and output signal encoding is also described, along with Go and other
related tasks.

The results of the computational implementation of RNN dynamics, are presented in Chap-
ter 4. The obtained output is compared to the input and to the expected “target” output signal.
This Chapter also reports the connectivity parameter matrix resulting from training, as well
as a qualitative description of neural activity.

Lastly, task representation and activity dynamics are investigated through dynamical sys-
tems analysis techniques in Chapter 5. In this context, the notion of task vector and the
compositionality property are also presented.

Chapter 2

General use of RNNs

2.1 ANNs and RNNs in neuroscientific research

From the early 2010s on, there has been a significant rise in interest regarding machine learning
methods, such as artificial neural networks (ANNs) and deep learning, paralleled by an explo-
sive development of techniques and applications. A major field in which artificial intelligence
finds application and sources of inspiration is neuroscience, with a continuous flow of ideas
between the two disciplines, and cross-validation of key hypotheses about cognitive processes.
Nowadays machine learning algorithms are indeed one of the main computational tools to
study brain circuits and other similar biological systems: according to Yang and Wang 2020
they can be successfully employed in the analysis of neuroscientific data, providing efficient
tracking and processing of behavioural and neurophysiological patterns.

However, while applying generic artificial intelligence methods in the analysis of neurosci-
entific problems can offer relevant interpretations of existing biological processes, it often fails
to provide simplified models of such processes, that can be easily modified and adapted to
different real-life situations (i.e. by the introduction of appropriate physical or mathematical
constraints) without the need to conduct experiments in vivo.

Figure 2.1: Example of a simple 3-
layer (or 2-hidden-layer) neural net-
work, from LeCun et al. 2015. Hid-
den layers interact exclusively with
other internal nodes and not with
the outside. Each connection is
characterized by the weight wij .

The required modelling capacity is instead allowed by
the employment of ANNs specifically designed to repro-
duce neural circuit structures, as in Figure 2.1. Biological
justification and adherence to available data is not the pri-
mary concern when developing these networks, which are
rather aimed at offering a wide range of fresh, diverse ap-
proaches to meet new challenges in this rapidly evolving
field of study.

As living organisms learn from and adapt to their sur-
roundings with a series of trial-and-error steps, so must ar-
tificial brains behave with the aid of “deep learning” meth-
ods. This term specifically refers to a class of representation
learning methods, which allow a machine to be fed with
raw data and to automatically discover the representations
needed for detection or classification (LeCun et al. 2015).
Using “deep”, multilayered architectures enables the acqui-
sition of functions which can be very complex, thanks to
the fact that each layer implements a different, higher level
of abstraction with respect to the original data. Moreover,

3

2.2. RNN LEARNING METHOD: BACKPROPAGATION THROUGH TIME 5

current (Yang and Wang 2020). Such curve is usually nonlinear and typically takes the form of
a Rectified Linear Unit (ReLU, f(x)=max(x, 0)), a hyperbolic tangent (tanh) or variants of
these two. Lastly, brec is the bias or background input term, that introduces an n-dimensional
shift degree of freedom to the learning algorithm (Yang et al. 2019).

The output of the network is instead

zt = g(W out
rt + bout) (2.2)

This equation introduces a third connection matrix W out and an additional activation function
g, which strongly depends on the expected output. A typical choice is the sigmoid logistic
function g(x)= 1

1+e−x
that returns values between 0 and 1 and is therefore suitable for a digital

readout. This term is also provided with a bias bout.

2.2 RNN learning method: backpropagation through time

In order to efficiently predict the desired output, ANNs must learn from data itself the param-
eters of the network, commonly denoted collectively as a vector θ. In the case of Equations 2.1
and 2.2 these are the entries of the three connection matrices as well as the biases. The stan-
dard way to do this is by implementing a supervised learning protocol such as the Stochastic
Gradient Descent (SGD), paired with the employment of the backpropagation technique, an
effective and exact method for calculating all the derivatives of a single target quantity (in
this case, the pattern classification error) with respect to a large set of parameters (Werbos
1990).

2.2.1 The classic backpropagation algorithm

The most basic example of a multi-layer ANN is the multi-layer perceptron (MLP), a feedfor-
ward system that doesn’t involve processing information in time (Figure 2.3).

Figure 2.3: Example of an MLP
from Yang et al. 2020.

The following equations describe a generic N -layer MLP

r(1) = u

r(l) = f(W(l)
r(l−1) + b(l)), 1 < l < N

z = g(W(N)
r(N−1) + b(N))

where the same symbols as Equations 2.1 and 2.2 are used
and the time variable is substituted with the layer counter
l. W (l) is then the connection matrix between the (l−1)-
th and the l-th layer (Yang and Wang 2020). To this the
classic version of the backpropagation algorithm is typically
applied, the understanding of which is crucial to compre-
hend how recurrent neural networks are trained.

The first step is to compute the loss (or cost) function of the network. This is defined as the
sum of distances d (in whichever metric of the output vector space is most convenient) between
the obtained and desired outputs, with respect to the training data examples. Because it is
usually very expensive to evaluate the entire training set, a minibatch B (a small, randomly
created subset with M items) is used for the summation instead.

L(θ) =
1

M

∑

i∈B

d(zi(θ), z
train
i) (2.3)

6 CHAPTER 2. GENERAL USE OF RNNS

To calculate such a function, a multilayered network needs to be “run in a forward pass” (Yang
and Wang 2020), that is the output has to be computed with the existing parameters. These are
typically initialized at random and are possibly subjected to appropriate, context-dependent
mathematical constraints.

The random weights are then updated to minimize the (non-negative) “error” L: the gra-
dient of the loss function ∂L

∂θ
is therefore estimated. Because it represents the direction in

parameter space in which a small (approximately infinitesimal) parameter change leads to
the maximum increase in L itself, the algorithm slightly shifts the vector θ in the opposite
direction

θnew = θ − η
∂L

∂θ
(2.4)

where η ≪ 1 is the learning rate.

A key phase of the SGD is then to efficiently compute this gradient, which means com-
puting as many partial derivatives of the loss function as the dimension of θ, equal to the
combined number of weights of the connection matrices plus the entries of the bias vector.
For multilayered ANNs this can be achieved through the backpropagation method, which starts
by calculating the derivatives of L with respect to the output layer. This task is a relatively
simple one, as the vector zt is already known thanks to the forward pass.

Moving to the generic l-th layer, a calculation procedure can be derived

∂L

∂r(l)
= [W (l+1)]T

∂L

∂r(l+1)
(2.5)

where [W (l+1)]T is the transpose of the connection matrix between the l-th and the (l+1)-
th layer. It is therefore possible to recursively compute each gradient, starting from ∂L

∂z
and

moving backwards across the network. Equation 2.5 is valid under the simplifying assumption
that all activation functions f(x) = g(x) = x are linear: otherwise, an analogous equation
including the partial derivatives of f should be computed at each iteration. For the bias term,
an similar equation can be derived.

Once the ∂L
∂r(l)

are known, it is finally possible to determine the derivatives with respect to

the weights by applying the chain rule.

∂L

∂W (l+1)
=

∂L

∂r(l+1)
r
T
(l) (2.6)

After the appropriate update of the weights, the loss function is diminished. The entire
algorithm is run multiple times until a (relative) minimum of L is reached. At this point the
network is considered trained: it is possible to evaluate its performance in different tasks and
to study its dynamical response to any input signal.

2.2.2 Backpropagation through time (BPTT)

With respect to RNNs, the backpropagation algorithm can still be applied, with a significant
modification that takes into account the dependency of their dynamics on previous states.
Indeed, computing the gradient for an RNN involves propagating information backwards in
time, as it can be “unrolled” and viewed as an MLP where each layer actually corresponds to
a different time step (Figure 2.4).

In the forward pass phase, the loss function is calculated from the outputs at the last time
point tlast and a linear activation function is again assumed for simplicity.

2.2. RNN LEARNING METHOD: BACKPROPAGATION THROUGH TIME 7

Figure 2.4: Example of an RNN unrolled in
time as a feedforward system with each layer
corresponding to the network state at one time
step. Figure from Yang and Wang 2020, where
xt is the input and ct is the cell state.

To estimate the gradients at time t with re-
spect to the entries of W out, that are comprised
in θ, the chain rule is applied on time steps,
resulting in the backpropagating equation

∂L

∂W out
=

tlast
∑

t=1

∂L

∂zt
r
T
t (2.7)

Considering now the recurrent connection ma-
trix W rec, an iterative computation similar to

that of Equation 2.5 can be implemented (Yang and Wang 2020)

∂L

∂rt
= [W rec]T

∂L

∂rt+1
= [W rec]2

∂L

∂rt+2
= ... (2.8)

from which the derivative ∂L
∂W rec is estimated as in Equation 2.7. It must however be taken

into account that the hidden state at time step t+1 is dependent on the hidden state at time
step t, a second temporal summation is required within the first (Werbos 1990). ∂L

∂W in is also
then estimated in the same way.

Backpropagation through time is a very powerful tool, but not devoid of criticalities. Specif-
ically, particular care should be employed when dealing with large matrix products (as in
subsequent steps of the Equation 2.8), as they can either explode or vanish if the involved
eigenvalues are respectively big or very small. Modern techniques that tend to preserve the
norm of the backpropagated gradients (Yang and Wang 2020) can be exploited to alleviate
these problems.

Chapter 3

Network architecture and tasks

3.1 Architecture of the RNN

This thesis studies a trained, given RNN which replicates the ones employed in Yang et al. 2019.
Before time discretization, the activity vector r follows the continuous dynamical equation

τ
dr

dt
= −r+ f(W rec

r+W in
u+ brec +

√

2τσ2rec ξ) (3.1)

Figure 3.1: Graph representing the de-
scribed RNN. Recurrent connections are
shown in grey.

where the number of hidden units, corresponding
to the dimension of r, is N rec=256. The input layer,
modelled by the vector u, is instead comprised of
N in=85 units.

In the equation above, τ=100ms is the neuronal
time constant, slightly longer than the typical 20ms
of real nerve cells. This choice was originally made
to mimic the slower synaptic dynamics on the ba-
sis of N-methyl-D-aspartate (NMDA) receptors, cru-
cial for activity-dependent synaptic plasticity, which
in turn underpins many higher functions including
learning and memory (Wang 2002, Furukawa et al.
2005).

Regarding the utilized symbols, the neuronal non-
linearity is a re-parameterized standard softplus ac-
tivation function

f(x) = log(1 + ex) (3.2)

the non negativity and non-saturation properties of
which are crucial to effectively mimic the correspond-
ing biological system. The vector ξ contains N rec in-
dependent Gaussian white noise processes with zero
mean and unit variance, while σrec = 0.05 is the
strength of the noise. As for the Nout = 33 output
units, they read out nonlinearly from the network

z = g(W out
r+ bout) (3.3)

where g(x) = 1
1+e−x

is the logistic function, bounding output activities between 0 and 1. No
constraint on the sign or the structure of the weight matrices is imposed.

8

3.2. THE INPUT AND OUTPUT SIGNALS 9

After using a first-order Euler approximation with a time-discretization step ∆t= 20ms,
Equation 3.1 becomes

rt = (1− α)rt−1 + αf(W rec
rt−1 +W in

ut + brec +
√

2α−1σ2rec N(0, 1)) (3.4)

where α= ∆t
τ
=0.2 and N(0, 1) stands for the standard normal distribution.

3.2 The input and output signals

This RNN architecture is a toy mathematical model of complex neural processes, the input
signal of which represents the combination of sensory stimuli and task-dependent cues. The
latter are internal rules that instruct the hidden decision layer, composing the “heart” of the
network, to perform 20 different cognitive tasks, some of which will be described in more
detail in the following paragraphs. The output indicates the decision resulting from recurrent
computations in the form of a motor signal, e.g. an eye saccade1.

For each task the network learns, it receives four types of input signals: fixation, two stimuli
and rule

u = (ufix,umod1,umod2,urule) + unoise (3.5)

supplied with random Gaussian noise unoise=
√

2
α
σ2in N(0, 1), with σin=0.01.

Figure 3.2: Example of a fully connected, 256-recurrent units RNN (middle, 1% of connections shown,
with the softplus activation function depicted above) from Yang et al. 2019. The activities of input,
recurrent and output neurons are shown for a 1s trial time series. The fixation is depicted as a
continuous line, with activity on the vertical axis, while the time-discretized 32-dim ring units are cells
the colour of which becomes darker as the correspondent activity increases.

The 1-dimensional fixation input indicates whether the network state should be fixed (ufix=
1) or it should respond (ufix=0). Indeed, the decrease in this input provides a “go signal” to
the RNN (Yang et al. 2019). The stimulus input consists instead in two modalities umod1 and
umod2, each represented by a “ring” of units that encodes a one-dimensional angular variable.
The rings contain 32 units i each, whose preferred directions θi are uniformly spaced from 0
to 2π, and whose neural activities ui are calculated as

ui(ψ) = 0.8γ e
−

1
2

(

|ψ−θi|

π/8

)2

(3.6)

1Saccades are a class of eye movements that involve a rapid shift of gaze generated to a location of in-
terest and allow individuals to explore the visual environment (from Pierce, Clementz, and McDowell 2019).
Correspondingly, the RNN at hand orients the direction of the 32-unit output ring to mimic eye orientation.

Chapter 5

Analysis of RNN dynamics

5.1 Task representation and compositionality

One of the main contributions in Yang et al. 2019 is the analysis of how RNNs represent
learned tasks as single high-dimensional vectors in an appropriate state space.

To compute one of these “task vectors” r̃, network activities across all trials are averaged,
in order to examine all possible stimulus conditions at once. Considering (for simplicity) only

Figure 5.1: Obtaining task vectors from neural output
activities (Yang et al. 2019)

the neural population steady-state re-
sponse during the stimulus epoch, at
time tmod1,last corresponding to the end
of stimulus presentation, a representa-
tion of how the RNN processes a partic-
ular task input is obtained:

r̃ =

Ntrials
∑

j=1

r(j, tmod1,last) (5.1)

where r(j, t) is the vector of recurrent
network activities at trial j and time t.
Task vectors change in different epochs, as the network responds in a unique way for each
given task. Indeed, this idea is confirmed using principal component analysis (or PCA)1,
which reveals that task vectors are distinct for all 20 different tasks when visualized in a state
space that spans the top two principal components (Yang et al. 2019).

Task vector representation makes it possible to analyze the compositionality of the executed
tasks. This property consists in the ability of the network to correctly perform new tasks
with modest amounts of training, specifically composing pre-learned elementary processes. At
the level of neural representations, the compositions could be implemented in several ways,
for instance algebraically by summing task vectors in state space to yield representations
for complex actions. Analyzing the degree of correspondence between these algebraic sum
vectors and task vectors obtained by training the RNN to perform the respective composite
tasks could thus yield insight into the way artificial and biological neural networks implement
compositionality.

1Principal component (PC) analysis is a dimensionality reduction technique used to extract information
from a high-dimensional space by projecting it into a lower-dimensional subspace, easier to visualize. It strives
to preserve data features with more variation and remove non-essential ones.

16

5.2. THE DYNAMICAL SYSTEMS APPROACH 17

Figure 5.2: Task vectors repre-
sented in a rotated and reflected
PC space, suitable for visualization
(from Yang et al. 2019).

As an example, Figure 5.2 presents the relative positions
in PC space of task vectors referring to the Go and Anti
task families as in Yang et al. 2019. It can be observed that
the vector pointing from Go to Dly Go is very similar to the
one pointing from Anti to Dly Anti, thus suggesting that
they are likely to represent the cognitive process of work-
ing memory (abbreviated as “Dly”), the ability to maintain
and manipulate information for several seconds during the
planning and execution of a task (Song et al. 2016). The
presence of many task vector points for the same task in-
dicates that the analysis described above was repeated for
many different RNNs, showing that results are consistent
across networks.

This finding suggests that networks trained to perform
complex cognitive processes involving “Dly” as a key sub-
process do exploit a form of compositionality, at least at the level of task representation.
Further studies are needed to investigate whether compositionality extends to the level of task

execution, i.e., whether jointly activating several rule units corresponding to subprocesses is
sufficient to have the network perform the complex task.

5.2 The dynamical systems approach

The present paragraph concentrates on transcending a static view of neural representation
to focus instead on a dynamical approach, particularly suitable as RNNs are computational
models for which temporal development is crucial. As their dynamics is that of a complex,
high-dimensional nonlinear system, it is useful to analyze it around fixed points, locations in
state space where the motion of the system is approximately nullified and the dynamics can
therefore be greatly simplified with a linearization. It was indeed argued (Sussillo et al. 2013)
that this kind of study can aid the “opening of the black box” of RNN mechanisms of operation,
that is it can shed light on how the networks implement their computations.

Let the following be the continuous dynamical equation describing a generic RNN

dr

dt
=

1

τ

(

− r+ f(W rec
r+W in

u+ brec +
√

2τσ2rec ξ)
)

≡ F (r,u) (5.2)

where r is the activity of the recurrent units and the notation u refers to the input. A fixed
point (r∗,u∗) is a state such that F (r∗,u∗) = 0, around which the network dynamics can be
linearized through Taylor first-order expansion (Strogatz 2001).

F (r∗ + δr,u∗ + δu) ≈ F (r∗,u∗) +
∂F

∂r
(r∗,u∗)δr+

∂F

∂u
(r∗,u∗)δu ≈ J(r∗,u∗)δr (5.3)

where δr ≡ r−r
∗ and δu ≡ u−u

∗. Indeed, the second order terms and δu are negligible
since during all task periods the input is kept constant (apart from the noise). Moreover, the
term ∂F

∂r
(r∗,u∗) is the Jacobian matrix evaluated at the fixed point, which can be written

element-wise as

Jij =
∂Fi

∂rj
(r∗,u∗) =

1

τ

(

− δij + f ′(r∗,u∗) W rec
ij

)

(5.4)

where δij indicates the Kronecker delta function and the activation function is derived with
respect to its argument, the cell state.

18 CHAPTER 5. ANALYSIS OF RNN DYNAMICS

By studying the eigendecomposition of J(r∗,u∗), useful information on network dynamics
can be inferred. Specifically, if λ is defined as the real part of an eigenvalue, the associated
eigenvector corresponds to a contracting dimension of the state space if λ>1, to an expanding
dimension if λ< 1 and to a marginally stable one if λ≈ 1. A fixed point that is contracting
in every dimension is a basin of attraction, a state particularly useful to prepare an optimal
initial condition for the next task period (Driscoll et al. 2022).

The key step of this analysis is then the research of fixed points in the dynamical landscape
referring to each task period of interest. In ANNs, they are found through gradient-based
optimization of the auxiliary “kinetic energy” scalar function

q(r,u) =
1

2
|F (r,u)|2 (5.5)

which leads to minimizing |F (r,u)|.

From an analytical viewpoint the following inequalities must be verified around fixed points.

|F ′(r∗,u∗)δr| > |F (r∗,u∗)| (5.6)

|F ′(r∗,u∗)δr| >

∣

∣

∣

∣

1

2
δrF ′′(r∗,u∗)δr

∣

∣

∣

∣

(5.7)

This kind of approach relies on hard-coded analytic derivatives of the function f and
can therefore become cumbersome as the complexity of the RNN models increases. The
problem could be partially alleviated by employing numerical derivation methods, although
these include additional computational costs which typically make them unfeasible (Golub and
Sussillo 2018), so semi-analytical algorithms or specifically designed computational tools are
instead to be preferred.

A way to understand how fixed points fit into a wider description of the computations im-
plemented by RNNs is to infer dynamical motifs2 from locally linearized dynamical equations.
This type of analysis is aided by graphically visualizing how neural activity vectors move in
state space, typically in a 2-dimensional PCA space as shown in Figure 5.3. Here, it can
be observed that activity tends to converge to a line in the Cartesian plane for all stimulus
conditions, thus indicating the presence of a line attractor.

Figure 5.3: From Yang and Wang 2020. (left) Trial-averaged activity during the delay period (triangles
indicate the start) for different stimulus values. (right) Fixed points found through optimization, in
orange. A line attractor was estimated around them by finding the eigenvector with a corresponding
eigenvalue close to 0.

2According to Driscoll et al. 2022, a dynamical motif is the high-dimensional nonlinear dynamics around a
fixed point, that implements computation for a specified input.

5.2. THE DYNAMICAL SYSTEMS APPROACH 23

units in all different task periods, and that the top three principal components are sufficient
to get a clear view of such trajectories and infer their key properties. On the other hand, the
presence of fixed points at times 65 and 90 can be ruled out, and the presence of a fixed point
at time 30 must remain hypothetical, as the 3-dimensional trajectories seem to converge but
the employed numerical root-finding algorithm is not able to directly detect it.

This discrepancy with respect to the hypothesis put forward by Driscoll et al. 2022 may be
due to the fact that the RNN was trained to perform only one task, which may be insufficient
for a full-scale fixed point structure to arise. To further investigate these assumptions, more
comprehensive analyses should be carried out on networks able to execute multiple cognitive
tasks, as in Yang et al. 2019.

Chapter 6

Conclusions

The general goal of this thesis was to investigate how the computational properties of a re-
current neural network relate to its dynamics, specifically to phase space trajectories and
attractors.

In order to accomplish this objective, two major hypotheses advanced by previous literature
were tested. The first one is that task variables are collectively represented by all units, by
means of neural activity trajectories unfolding in a low dimensional space. Moreover, according
to the second claim, such trajectories cross the fixed points of the dynamical landscape during
one or more phases in each trial.

This study results can confirm the first hypothesis, but not the second one. However, it
only focused on an RNN trained for one simple task (“Go”). Whether networks trained for
multitasking might display a clearer fixed points structure remains an open question.

Further advances in this research area will require improving the biological plausibility
of RNN brain models. Directions for progress are suggested in Yang et al. 2020 as well
as in Miconi 2017, and they specifically involve modifying the network training algorithm.
Indeed, the backpropagation-trough-time mechanism is known to be unrealistic, but RNNs
can be trained with other methods, much more adherent to biological neuroplasticity, such as
a reward-modulated “Hebbian” learning rule (Miconi 2017). This type of training has been
successfully used to effectively reproduce the neural dynamics observed in mammalian brains
during cognitive tasks.

24

Bibliography

Wang, X.-J. (2002). “Probabilistic Decision Making by Slow Reverberation in Cortical Cir-
cuits”. In: Neuron 36, pp. 955–968. doi: https://doi.org/10.1016/S0896-6273(02)
01092-9.

Mastrogiuseppe, F. and S. Ostojic (2018). “Linking Connectivity, Dynamics, and Computa-
tions in Low-Rank Recurrent Neural Networks”. In: Neuron 99.3, 609–623.e29. issn: 0896-
6273. doi: https://doi.org/10.1016/j.neuron.2018.07.003.

Yang, G.R., M.R. Joglekar, et al. (2019). “Task representations in neural networks trained
to perform many cognitive tasks”. In: Nature Neuroscience 22, pp. 297–306. doi: https:
//doi.org/10.1038/s41593-018-0310-2.

Yang, G.R. and X.-J. Wang (2020). “Artificial Neural Networks for Neuroscientists: A Primer”.
In: Neuron 107, pp. 1048–1070. doi: https://doi.org/10.1016/j.neuron.2021.01.022.

Song, H.F., G.R. Yang, and X.-J. Wang (2016). “Training Excitatory-Inhibitory Recurrent
Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.” In: PLoS Com-

putational Biology 12. doi: https://doi.org/10.1371/journal.pcbi.1004792.
Werbos, P.J. (1990). “Backpropagation through time: what it does and how to do it”. In:

Proceedings of the IEEE 78.10, pp. 1550–1560. doi: https://doi.org/10.1109/5.58337.
Elman, J.L. (1990). “Finding structure in time”. In: Cognitive Science 14, pp. 179–211. doi:

https://doi.org/10.1016/0364-0213(90)90002-E.
LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning”. In: Nature 521, pp. 436–444.

doi: https://doi.org/10.1038/nature14539.
Sussillo, D. and O. Barak (2013). “Opening the Black Box: Low-Dimensional Dynamics in

High-Dimensional Recurrent Neural Networks.” In: Neural Comput. 25, pp. 626–649. doi:
https://doi.org/10.1162/neco_a_00409.

Golub, M. and D. Sussillo (Nov. 2018). “FixedPointFinder: A Tensorflow toolbox for identifying
and characterizing fixed points in recurrent neural networks”. In: The Journal of Open

Source Software 3, p. 1003. doi: https://doi.org/10.21105/joss.01003.
Furukawa, H. et al. (2005). “Subunit arrangement and function in NMDA receptors”. In: Nature

438, pp. 185–192. doi: https://doi.org/10.1038/nature04089.
Pierce, J.E., B.A. Clementz, and J.E. McDowell (2019). In: Eye Movement Research: An Intro-

duction to its Scientific Foundations and Applications. Springer International Publishing.
Chap. Saccades: Fundamentals and Neural Mechanisms, pp. 11–71. isbn: 978-3-030-20085-
5. doi: https://doi.org/10.1007/978-3-030-20085-5_2.

Levitt, J. B. (2018). “Encyclopedia Britannica”. In: chap. "Receptive field". url: https :

//www.britannica.com/science/receptive-field.
Driscoll, L., K. Shenoy, and D. Sussillo (2022). “Flexible multitask computation in recurrent

networks utilizes shared dynamical motifs”. In: bioRxiv. doi: https://doi.org/10.1101/
2022.08.15.503870.

Kingma, D.P. and J.L. Ba (2015). “Adam: A method for stochastic optimization”. In: ICLR.
doi: https://doi.org/10.48550/arXiv.1412.6980.

25

26 BIBLIOGRAPHY

Strogatz, S.H. (2001). Nonlinear Dynamics And Chaos With Applications to Physics, Biology,

Chemistry and Engineering. Westview Press. isbn: 0-7382-0453-6. doi: https://doi.org/
10.1201/9780429492563.

Miconi, T. (2017). “Biologically plausible learning in recurrent neural networks reproduces
neural dynamics observed during cognitive tasks”. In: eLife 6, e20899. doi: https://doi.
org/10.7554/eLife.20899.

