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Introduction

The Yang{Baxter equation is an important equation coming from statistical

mechanics, �rst appearing in the works of C.N. Yang [37] and R. Baxter [5].

A solution of the Yang-Baxter equation is a pair (V;R) with V a vector

space and R a linear map R : V 
 V ! V 
 V such that

(R
 id)(id
R)(R
 id) = (id
R)(R
 id)(id
R):

In 1992 Drinfeld [16] remarked that was possible to study solutions of the

Yang-Baxter equation studying a set-theoretical solutions, i.e. solutions on

a basis of V . So a set-theoretical solution of the Yang-Baxter equation is a

pair (X; r), where X is a set and r : X � X ! X � X is a map such that

(r� id)(id� r)(r� id) = (id� r)(r� id)(id� r): Recently, subclasses of this

type of solutions has receveid a lot of attention, not only for the applications

of the Yang-Baxter equation in Physics, but also for its connection with

other topics of recent interest in mathematics, like bijective 1-cocycles [17],

knot theory, braid group, radical rings [32], regular subgroups of Hopf-Galois

extensions [15, 19], and others.

If we write the map r by its components, i.e. r(x; y) = (fx(y); gy(x)),

we say that r is non-degenerate if fx; gx are bijective maps. Initially, non-

degenerate solutions were studying under the additional property of invo-

lutivity, that is adding the request that r2 = id, for example by Etingof,

Schedler and Soloviev in [17] and Gateva-Ivanova and Van den Bergh in

[21]. After that, Soloviev [36] and Lu, Yan and Xhu [27], understood that,

by removing the request for involution, with the same techniques it was

possible to obtain results completely similar to those already reached.

In 2007, Rump [32] introduced a new algebraic structure, braces, that

helps to study involutive non-degenerate solutions of the Yang-Baxter equa-
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tion. A brace A is an abelian group (A;+) with a further multiplica-

tion (a; b) 7! ab such that A turns out to be a group with respect to

a� b := ab+a+ b. Rump proved that involutive non-degenerate solutions of

the Yang-Baxter equation correspond exactly to braces. However, braces do

not cover the results of Soloviev, and Lu, Yan, and Zhu for the non-involutive

case. In 2017 Guarnieri and Vendramin [22] generalised the notion of braces,

obtaining a one-to-one correspondence between this new algebraic structure

and bijective non-degenerate solutions of the Yang-Baxter equation. They

introduced what it is called a left skew brace. A skew brace is a triple (A; �; �)
where (A; �) and (A; �) are groups and a � (b � c) = (a � b) � a−1 � (a � c) for

every a; b; c 2 A. The simplest examples of left skew braces are:

(1) For any associative ring (R;+; �), the Jacobson radical (J(R);+; �),
where � is the operation on J(R) de�ned by x � y = xy + x + y for every

x; y 2 J(R).

(2) For any group (G; �), the left skew braces (G; �; �) and (G; �; �op).

In the thesis, we will be concern with the study of the algebraic structure

of skew braces and their connection to the study of set-theoretical solutions

of the Yang-Baxter equation.

In Chapter 1, we de�ne what a left skew braces is, we describe its sub-

structures (subbraces), ideals, and morphisms, and we describe their major

properties. In Chapter 2 and 3 we study the category SKB of left skew

braces. In particular, we consider the Huq commutator and Smith com-

mutators of two ideals. These are two concepts borned respectivitely in

Category Theory and Universal Algebra, and then extended in a number of

directions. After giving the de�nition of the Huq commutator and Smith

commutator for two ideals of a skew brace, we describe a set of generetors

for them. Then we prove that they coincide. The condition "Huq=Smith"

allows us to have a "nice" product between ideals. In this way the lattice

of ideals of a skew brace becomes a multiplicative lattice in the sense of

[18] and hence the notion of prime ideal, semiprime ideal, Zariski spectrum,

nilpotency, solvability, centralizer, center, etc., have a natural meaning. The

results of Chapter 3 are based on a paper written with D. Bourn and A. Fac-

chini [7] that has been submitted for pubblication. In Chapter 4 we give
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an explicit description of the free skew brace over a set. Finally, in Chap-

ter 5, we conclude with studying the Yang-Baxter equation and some other

structures related to its solutions.
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Chapter 1

Skew Braces

A left skew brace is an algebraic structure introducted by L. Guarnieri and

Vendramin [22] in 2017. In this chapter we describe the main properties

of left skew braces. Guarnieri and Vendramin de�ned a left skew brace to

generalise the notion of left brace given by W. Rump [32].

1.1 Basic De�nitions

De�nition 1.1. A left brace is an additive abelian group (A;+) with a

further multiplication such that

(B1) a(b+ c) = ab+ bc for every a; b; c 2 A

(B2) (A; �) is a group

where a � b := ab+ a+ b.

This is not the original de�nition of left brace given by W. Rump [32]

in 2007. For Rump a left brace is an abelian group (A;+) with a further

multiplication (a; b) 7! ab, such that for all a; b; c 2 A

(R1) a(b+ c) = ab+ ac

(R2) (ab+ a+ b)c = a(bc) + ac+ bc

(R3) the map x 7! ax+ x is a bijection.

Of course the two de�nitions are equivalent as the following proposition

shows.
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1.1. Basic De�nitions

Proposition 1.2. Let (A;+) be an abelian group with a further multiplica-

tion (a; b) 7! ab. Then (B1)− (B2) hold if and only if (R1)− (R3) hold.

Proof. First observe that the associativity of � is equivalent to (R2):

a � (b � c) = (a � b) � c

m

a(b+ c+ bc) + a+ (b+ c+ bc) = (a+ b+ ab)c+ (a+ b+ ab) + c

m

a(bc) + ac+ bc = (a+ b+ ab)c:

Now assume that (B1) − (B2) hold. Notice that the map x 7! ax + x can

be rewritten as x 7! −a + a � x. Fix an element a 2 A, call a0 the inverse

of a with respect to the operation �. Consider y another element of A and

de�ne x := (y + a) � a0. Then

a � (a0 � (y + a))− a = y;

that is the map is surjective and clearly it is also injective, since

a � x− a = a � y − a () a � x = a � y () x = y:

Conversely, assume that (A;+) is an abelian group satisfying the properties

(R1)− (R3). We want to prove that (A; �) is a group, with a�b = ab+a+b:

We noticed at the beginning of th proof that � is associative if (R2) holds.

Observe that by (R1) we have

ab = a(b+ 0) = ab+ a0;

hence a0 = 0. Moreover, with a = b = 0 in (R2), we obtain

0c = 0(0c) + 0c+ 0c) 0 = 0(0c) + 0c;

and by (R3) we have 0c = 0: Thus

a � 0 = a0 + a+ 0 = a

0 � a = 0a+ 0 + a = a;

namely 0 is also the neutral element of (A; �). Moreover let a0 be the inverse

image of −a via the map x 7! ax+ x, hence

a � a0 = aa0 + a+ a0 = −a+ a = 0;
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1.1. Basic De�nitions

i.e. a0 is a right inverse of a. Hence

a � a0 � a = 0 � a = a � 0;

which gives a0 � a = 0. This completes the proof.

Notice that a(−b) = −ab, indeed

a(−b) + ab = a(−b+ b) = a0 = 0:

In 2017 L. Vendramin and L. Guarnieri [22] generalised the notion of

braces to that of skew braces.

De�nition 1.3. A left skew brace is a triple (A; �; �), where (A; �) and (A; �)
are groups (not necessarily abelian) such that

a � (b � c) = (a � b) � a−1 � (a � c); (1.1)

for every a; b; c 2 A. A right skew brace is de�ned similarly, replacing (1.1)

by

(b � c) � a = (b � a) � a−1 � (c � a):

A skew left brace also satisfying the condition of a right brace is called a

two-sided skew brace.

We indicate with a−1; a0 the inverses of a respectively to the � operation

and the � operation.

Observe that a brace is an example of skew brace. Indeed, if A is a brace,

by de�nition (A;+) and (A; �) are groups. Moreover

a � (b+ c) = a(b+ c) + a+ (b+ c) = ab+ ac+ a+ b+ c

and

a � b− a+ a � c = (ab+ a+ b)− a+ (ac+ a+ c) = ab+ ac+ a+ b+ c:

Hence (1.1) holds.

We are going to present some general results about skew braces. Most

of them appears in the original article of L. Vendramin and L. Guarnieri

([22]).
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1.1. Basic De�nitions

Lemma 1.4 ([22]). Let A be a left skew brace. Then the following hold:

1. 1(A;�) = 1(A;�):

2. a � (b−1 � c) = a � (a � b)−1 � (a � c):

3. a � (b � c−1) = (a � b) � (a � c)−1 � a:

Proof. The �rst claim comes from (1.1) with c = 1�;

a � b = a � (b � 1(A;�)) = (a � b) � a−1 � (a � 1(A;�));

hence a = a � 1(A;�). By unicity of the identity element, the �rst claim

follows. To prove the second claim, let d = b � c. Then (1.1) becomes

a � d = (a � b) � a−1 � (a � (b−1 � d));

hence a�(b−1�d) = a�(a�b)−1�(a�d). The last claim is proved similarly.

From now on, we indicate with 1 the neutral element of both the groups

(A; �) and (A; �).

Examples 1.5. 1. For any group (G; �), (G; �; �) and (G; �; �op) are two-

sided skew braces. If (G; �) is abelian, they coincide.

2. For any associative ring (R;+; �), the Jacobson radical (J(R); �;+) is

a brace, with x � y = xy + x+ y for every x; y 2 J(R).

3. Consider Z=nZ = hgi the cyclic group of n elements. De�ne the sec-

ond operation as follows: ga � gb := g(−1)ba+b, for any a; b 2 N. Then

(Z=nZ; �; �) is a skew two-sided brace, where � is the natural multipli-

cation of Z=nZ.

Proposition 1.6 ([22]). Let A be a skew brace. Then � : (A; �)! Aut(A; �),
given by � : a 7! �a, where �a(b) = a−1 � (a � b), is a well de�ned group

homomorphism.

Proof. 1. �a is an automorphism of (A; �) for every a 2 A.

Let b; c 2 A. By (1.1) we have:

�a(b� c) = a−1 � (a� (b� c)) = a−1 � (a� b)�a−1 � (a� c) = �a(b)��a(c);

4



1.1. Basic De�nitions

so �a is a group homomorphism. Moreover

�a(b) = �a(c) () a � b = a � c () b = c;

then �a is injective and if b is any element of A, then

b = �a(a
0 � (a � b));

so �a 2 Aut(A; �).

2. � is an homomorphism of groups.

We have to prove that

�a�b(x) = �a(�b(x));

for all a; b; x 2 A. By de�nition of �a, for the left hand side we have

�a�b = (a � b)−1 � ((a � b) � x);

on the other hand the right hand side equals

�a(b
−1 � (b � c)) = a−1 � (a � (b−1 � (b � x)))

= a−1 � (a � b−1) � a−1 � (a � b � x):

Now, by (1.1), a � (b � b−1) = (a � b) � a−1 � (a � b−1); hence

�a(b
−1 � (b � c)) = (a � b)−1 � (a � (b � b−1)) � a−1 � (a � b � x)

= (a � b)−1 � (a � b � x):

By the associativity of �, we conclude.

Remark 1.7. Notice that, �a = idA if and only if for every x 2 A, a−1 � (a �
x) = x if and only if a � x = a � x for every x 2 A.. Hence the kernel of � is

the normal subgroup of (A; �)

fa 2 A j a � x = a � x for all x 2 Ag:

Lemma 1.8. Let A be a left skew brace. Then the map � : (A; �)! Aut(A; �)
given by � : a 7! �a, where �a(b) = a0 � (a � b) is a well-de�ned group anti-

homomorphism. Moreover �a and �a are mutually inverse automorphism of

(A; �).
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1.1. Basic De�nitions

Proof. Notice that �a(b) = a0�(a�b) = (a0�a)�(a0)−1�(a0�b) = �a0(b), hence

�a is an automorphism of (A; �) for every a 2 A and �a1�a2 = �(a1�a2)0 =

�a02�a01 = �a2�a1 , for every a1; a2 2 A, i.e. � is group anti-homomorphism.

Moreover � and � are clearly mutually inverse.

Remark 1.9. It follows that

a � b = a � �a(b); a � b = a � �−1
a (b)

Lemma 1.10 ([26]). Let (A; �) be a group and � : (A; �)! Aut(A; �); a 7!
�a be a map such that

�a��a(b) = �a�b; (1.2)

for every a; b 2 A: Then A with a � b = a � �a(b) is a left skew brace.

Proof. First of all notice that, with a = b = 1 in (1.2), we get �1 = id. This

implies that a�1 = a��a(1) = a�1 = a and 1�a = 1��1(a) = 1�a = a. Hence

1 is the neutral element also for (A; �). Moreover, consider b = �−1
a (a−1) in

(1.2) becomes �a��−1
a (a−1) = id. Then the inverse with respect to (A; �) of

an element a is a0 := �−1
a (a−1), indeed

a � �−1
a (a−1) = a � �a(�−1

a (a−1)) = a � a−1 = 1

and

�−1
a (a−1) � a = �−1

a (a−1) � ��−1
a (a−1)(a) = (�−1

a (a))−1 � �−1
a (a) = 1:

We check now the associativity of " � ". For every a; b; c 2 A we have

a � (b � c) = a � �a(b � �b(c)) = a � �a(b) � �a�b(c);

and on the other hand

(a � b) � c = a � �a(b) � �a��a(b)(c) = a � �a(b) � �a�b(c):

Finally we check the skew brace condition:

a � (b � c) = a � �a(b � c) = a � �a(b)�a(c) = (a � b) � a−1 � (a � c);

where the last equality was obtained multiplying by a � a−1.

6



1.2. Subbraces and Ideals

1.2 Subbraces and Ideals

De�nition 1.11. Let (A; �; �) be a left skew brace. Consider X a subset of

A. We say that

1. X is a subbrace of A if it is a subgroup of (A; �) and (A; �): We will

write X � A;

2. X is an ideal of A if it is a normal subgroup of both (A; �) and (A; �)
such that a � I = a � I for every a 2 A. We will write I �A.

Remark 1.12. Notice that a normal subgroup I of (A; �) and (A; �) is an

ideal of a left skew brace (A; �; �) if and only if �a(I) � I. Indeed if I is

an ideal then �a(i) = a−1 � (a � i) = a−1 � (a � i0) = a−1 � i1 � a for some

i0; i1 2 I. But since I is normal in (A; �), we have that �a(i) 2 I for every

a 2 A.

Conversely, let a 2 A and i 2 I. Then there exists i0 2 I such that

�a(i) = a−1 � (a � i) = i0, hence a � i = a � i0.

Proposition 1.13. There is a one-to-one correspondence between the set of

all ideals of a left skew brace A and congruences on A, that is the equivalence

relations � on Asuch that a � b; c � d implies a � c � b � d and a � c � c � d,

for every a; b; c; d 2 A.

Proof. Let � be a congruences of A. De�ne I = [1]�. By the re
exivity

of �, 1 2 I. Moreover let a; b 2 I, then a � 1; and b � 1, thus 1 � b; so

a � b and, since b0 � b0 we have, a � b0 � b � b0 = 1. Moreover if x � 1

and a is any element of A, then a � a and a0 � a0 then by compatibility

a0 � x � a � a0 � 1 � a = 1. Similarly, a−1 � x � a � a−1 � 1 � a = 1 for

every a 2 A; x 2 I. So it remains to check that �a(x) 2 I for every

a 2 A; x 2 I. We have that a−1 � a−1; a � a; x � 1, then a � x � a � 1 = a

and a−1 � (a � x) � a−1 � a = 1. Therefore, I is an ideal of A.

Conversely, let I be any ideal and de�ne a relation on A as follows,

x �I y () x � y0 2 I;

for all x; y 2 A. It is an equivalence relation:

Re
exivity. x � x0 = 1 2 I;

7



1.2. Subbraces and Ideals

Symmetry. x � y0 2 I =) (x � y0)0 = y � x0 2 I;

Transitivity. x � y0 2 I; y � z0 2 I =) (x � y0) � (y � z0) = x � z0 2 I:

Let us check the compatibility with the operations. If a �I b and c �I d,

then a � b0 2 I; c � d0 2 I. But then b � (c � d0) � b0 2 I because I is a normal

subgroup of (A; �), hence a�c�(b�d)0 = a�c�d0�b0 = (a�b0)�(b�c�d0�b0) 2 I;
that is a � c �I b � d. Moreover, since a � I = a � I, for every a 2 A and

since I is a normal subgroup of (A; �), we have that x �I y if and only if

x � y−1 2 I: Therefore a �I b and c �I d imply a � b−1 2 I and c � d−1 2 I,

hence we can conclude that a � c � (b � d)−1 2 I with similar argument used

for the compatibility with �.
Finally, for every ideal I, we have that I = [1]�I , since

[1]�I = fa 2 A j a �I 1g = fa 2 A j a 2 Ig = I;

and for every equivalence relation � compatible with the operation, the

equivalence relation �[1]� coincide with �, since, for every x; y 2 A,

x �[1]� y , x � y0 2 [1]� , x � y0 � 1, x � y:

By de�nition of ideal, the quotient groups A=I for both operations are

the same, then A=I is a skew brace, with the natural operations.

Let A be a left skew brace, B a subbrace and I an ideal. Denote with

B � I the set fb � i j b 2 B i 2 Ig and with B � I the set fb � i j b 2 B i 2 Ig:

Lemma 1.14. Given a left skew brace A, consider B a subbrace and I an

ideal. We have:

(1) the sets B � I and B � I coincide;

(2) B � I = B � I is a subbrace of A;

(3) if B = J is an ideal of A, then J � I = J � I is an ideal of A.

Proof. Let B be a subbrace of A and I an ideal of A.

1. Observe that B � I =
S
b2B b � I and B � I =

S
b2B b � I. Since I is an

ideal, b � I = b � I, hence

B � I =
[
b2B

b � I =
[
b2B

b � I = B � I:

8



1.2. Subbraces and Ideals

2. Trivial, since (B � I; �) is a subgroup of (A; �) and (B � I; �) is a

subgroup of (A; �).

3. Suppose B = J is an ideal of A. Clearly, (J �I; �) is a normal subgroup

of (A; �) and (J � I; �) is a normal subgroup of (A; �). Moreover, let

a 2 A. We have

a � (J � I) = a � (J � I) =
[
j2J

(a � j) � I =
[
j2J

(a � �a(j)) � I

=
[
j2J

(a � �a(j) � I) = a � (I � J):

Hence J � I = I � J = I � J = J � I is an ideal of A.

From now on, we indicate with BI the subbrace B � I = B � I: Observe

that B � BI and I � BI.

Proposition 1.15. (1) Let fB�g�2S be a family of subbraces of a skew brace

A. Then
T
�2S B� is again a subbrace.

(2) Let fI�g�2S be a family of ideals of a skew brace A. Then
T
�2S I�

is again an ideal.

Proof. (1) B� is a subgroup of (A; �) and of (A; �), hence
T
�2S B� is a

subgroup of both (A; �) and (A; �).
(2) I� is a normal subgroup of (A; �) and of (A; �), hence

T
�2S I� is

a normal subgroup of both (A; �) and (A; �). Moreover, let x 2
T
�2S I�,

then x 2 I� implies that �a(x) 2 I�, for all a 2 A and for all � 2 S, hence

�a(x) 2
T
�2S I�.

De�nition 1.16. (1) The subbrace hXisb generated by X is the interesection

of all the subbraces that contain X, i.e.

hXisb :=
\
B�A
B�X

B:

(2) The ideal hXiid generated by X is the interesection of all the ideals that

contain X, i.e.

hXiid :=
\
I�A
I�X

I:

9



1.2. Subbraces and Ideals

Proposition 1.17. Let A be a left skew brace, B a subbrace of A and I an

ideal of A. Then BI = hB; Iisb.

Proof. hB; Iisb is a subbrace that contains B and I hence contains all the

products b � i with b 2 B and i 2 I. Therefore, BI � hB; Iisb. Conversely,

by Lemma 1.14, BI is subbrace of A that contains B and I, hence hB; Iisb �
BI, hence the thesis.

De�nition 1.18. An ideal I of a skew brace A is said to be a principal ideal

if I = hfxgiid, with x 2 A. We indicate it as hxi.

Proposition 1.19. Let A be a left skew brace and fI�g�2A a chain of ideals

of A. Then
S
�2S I� is an ideal of A.

Proof. Let us prove that (
S
�2S I�; �) is a normal subgroup of (A; �). First

notice that 1 2
S
�2S I� since it belongs to every I�. Now let x; y 2

S
�2S I�,

then there exist �; � 2 S such that x 2 I� and y 2 I�. Since fI�g�2A is

linearly ordered, without loss of generality suppose I� � I�. Hence x�y−1 2
I�, but then x�y−1 2

S
�2S I�. Moreover, let x 2

S
�2S I� and a 2 A. Then

there exists � 2 S such that x 2 I�, but then a � x � a−1 2 I� �
S
�2S I�.

This proves that (
S
�2S I�; �) is a normal subgroup of (A; �).Similarly it can

be proven that (
S
�2S I�; �) is a normal subgroup of (A; �).

Finally, let x 2
S
�2S I� and a 2 A. We have that x 2 I� for some

� 2 S. Since I� is an ideal, �a(x) 2 I� and hence belongs to
S
�2S I�. This

concludes the proof.

The Center of a Left Skew Brace

De�ne the center Z(A) of a left skew brace A as follow

Z(A) := fa 2 A j a � x = x � a; a � x = x � a; a � x = a � x; for allx 2 Ag:

In literature the center is often called the socle.

Proposition 1.20. Let A be a left skew brace. Z(A) is an ideal of A.

Moreover Z(A) = Z(A; �) \ Z(A; �) \Ker �.

10
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Proof. Notice that the condition a � x = a � x for every x 2 A is equivalent

to saying that �a = id(A;�) for every a 2 Z(A). Moreover a0 = a−1 for every

a 2 Z(A).

Let us prove that Z(A) is a subgroup of (A; �). Clearly 1 2 Z(A). Let

a; b 2 Z(A), then a � b0 2 Z(A). Indeed

�a�b0 = �a�b0 = �a�
−1
b = id:

Moreover for every x 2 A we have that:

(a � b) � x = a � (b � x) = (b � x) � a = (x � b) � a = x � (b � a) = x � (a � b);

(a � b) � x = (a � b) � x = a � (b � x) = a � (x � b) = (x � b) � a = x � (a � b);

a0 � x = (x0 � a)0 = (a � x0)0 = x � a;

a0 � x = a−1 � x = (x−1 � a)−1 = (a � x−1)−1 = x � a−1 = x � a0:

Z(A) is a subgroup also of (A; �), because in Z(A) the two operations co-

incide. Clearly Z(A) is a normal subgroup of (A; �) and (A; �), because

x0 � a � x = a = x−1 � a � x for every a 2 Z(A) and x 2 A.

We conclude observing that �x(Z(A)) = Z(A) for every x 2 A, therefore

Z(A) is an ideal of A.

Remark 1.21. If A is a left brace in the classic sense as in De�nition 1.1,

then the center of A is

Z(A) = fa 2 A j ab = ba = 0 for all b 2 Ag:

1.3 Skew Braces and G-groups

Let us recall the de�nition and some properties of G-groups.

De�nition 1.22. For any two groups G and H we say that H is a left

G-group if there is a group homomorphism � : G! Aut(H).

Equivalently, a G-group is a group H endowed with a mapping G�H !
H, (g; h) 7! gh, called left scalar multiplication, such that

(i) g(hh0) = (gh)(gh0);

11
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(ii) (gg0)h = g(g0h);

(iii) 1Gh = h;

for every g; g0 2 G and every h; h0 2 H.

Hence for any skew brace (A; �; �), we have that (A; �) is an (A; �)-group

with respect to the group homomorphism � descriped in Proposition 1.6.

Conversely, suppose that a set A has two group structures (A; �) and (A; �)
and that (A; �) is an (A; �)-group with respect to the group homomorphism

� : (A; �) ! Aut(A; �), de�ned by � : a 7! �a, where �a(b) = a−1 � (a � b):
Then, since �a is an automorphism, �a(b � c) = �a(b) � �a(c); i.e. a−1 � (a �
(b�c)) = a−1�(a�b)�a−1�(a�c); from which a�(b�c) = (a�b)�a−1�(a�c).
Hence skew braces are exactly those particular G-groups (H;�) for which

G = H as sets, and � is de�ned by �a(b) = a−1 � (a � b).
The semidirect product corresponding to such (A; �)- group (A; �) is the

group P := (A; �) n (A; �), i.e. the cartesian product P := A � A with the

group operation de�ned as

(a1; a2)(b1; b2) = (a1 � a−1
2 � (a2 � b1); a2 � b2): (1.3)

Conversely, given two groups (A; �) and (A; �) on the same set A such that

P := A�A with the operation as in (1.3) is a group, then (A; �; �) is a left

skew brace.

Proposition 1.23. Let A be a left skew brace. Then Z(A)�Z(A) � Z(P ).

Proof. The center of the group P = (A; �) n (A; �) is the set

f(a; b) 2 P j (a; b)(x; y) = (x; y)(a; b) for all (x; y) 2 Pg;

namely

f(a; b) j (a � �b(x); b � y) = (x � �y(a); y � b)g:

Let (a; b) 2 Z(A) � Z(A), then a � (�b(x)) = a � x = x � a = x � �y(a) and

b � y = y � b; that is (a; b) 2 Z(P ) as we wanted to prove.

Proposition 1.24. A subset X of a brace A is a subbrace of A if and only

if X �X is a subgroup of P .
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Proof. Let X be a subbrace. Consider (x1; x2); (y1; y2) 2 X �X, then

(x1; x2)(y1; y2) = (x1 � x−1
2 � (x2 � y1); x2 � y2) 2 X �X

since X is a subgroup of (A; �) and (A; �).
Conversely, let us suppose that X�X is a subgroup of P , then for every

x; y 2 X, (1; x)(1; y) = (1; x � y) 2 X � X implies that x � y 2 X and, on

the other hand, (x; 1)(y; 1) = (x � y; 1) 2 X �X implies that x � y 2 X.

1.4 Morphisms

De�nition 1.25. Let A;B be two left skew braces and f : A ! B a map-

ping. We say that f is a skew brace morphism if:

1. f(x � y) = f(x) � f(y)

2. f(x � y) = f(x) � f(y),

for every x; y 2 A.

We denote by Ker f the subset fa 2 A j f(a) = 1g and by Im f the

subset fb 2 B j 9 a 2 A s.t. b = f(a)g:

Proposition 1.26. Let f : A! B be a skew brace morphism, then

1. Im f is a subbrace of B;

2. Ker f is an ideal of A;

3. every ideal is the kernel of a skew brace morphism.

Proof. 1. Let b1; b2 be two element of Im f . Then there exist a1; a2 2 A
such that b1 = f(a1); b2 = f(a2): Hence

b2 � b−1
1 = f(a2) � f(a1)−1 = f(a2 � a−1

1 );

and

b2 � b01 = f(a2) � f(a1)0 = f(a2 � a01);

so b2 � b−1
1 ; b2 � b01 2 Im f:
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2. Let x; y 2 Ker f and a 2 A. Then

f(x � y0) = f(x) � f(y)0 = 1;

and

f(a0 � x � a) = f(a0) � f(x) � f(a) = f(a0) � f(a) = f(1) = 1;

hence Ker f is a normal subgroup of (A; �). Similarly Ker f is a normal

subgroup of (A; �). Moreover, if a 2 A and x 2 Ker f , f(�a(x)) =

f(a)−1 � f(a � x) = f(a)−1 � f(a) = 1, i.e. �a(x) 2 Ker f for every

a 2 A and every x 2 Ker f .

3. It su�cies to consider the projection A! A=I, that maps a into a� I.

Then, by construction, the kernel is I.

Proposition 1.27. A skew braces morphism f : A ! B is injective if and

only if Ker f = 1.

Proof. Assume f injective. If x 2 Ker f , then f(a) = 1 = f(1), hence a = 1.

Conversely, let x; y 2 A such that f(x) = f(y). Then f(x � y−1) = 1, that

is x � y−1 2 Ker f = 1, so x � y−1 = 1.

1.5 Isomorphism Theorems

As we can expect, the classical isomorphism theorems also hold for braces.

Theorem 1.28. Let f : A! B be a skew brace morphism. Then

A=Ker f �= Im f: (1.4)

Proof. Call K the kernel of f . Our aim is to construct an isomorphism

� : A=K ! Im f:

Let �x 2 A=K be a coset, and de�ne �(�x) = f(x).

We claim that � is a well de�ned map. Indeed, let y 2 A be another
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representative of �x, namely x � y−1 2 K, which means that f(x � y−1) = 1.

But then

�(�x) � �(�y)−1 = f(x) � f(y)−1 = f(x � y−1) = 1:

Moreover � is a skew brace morphism, since, for every x; y 2 A we have

• �(�x) � �(�y) = f(x) � f(y) = f(x � y) = �(x � y) = �(�x � �y);

• �(�x) � �(�y) = f(x) � f(y) = f(x � y) = �(x � y) = �(�x � �y):

It remains to prove that � is bijective.

• Injectivity.

Suppose �(�a) = 1. Then, by de�nition, f(a) = 1: This means that

a 2 K, thus �a = a �K = K:

• Surjectivity

Let b 2 Im f . Then, since there exist a 2 A s.t. b = f(a), b = �(�a):

Theorem 1.29. Let A be a left skew brace. For every subbrace B of A and

every ideal I of A, we have that

BI=I �= B=B \ I: (1.5)

Proof. De�ne a skew brace morphism � : B ! BI=I, by �(b) = b � I. For

every elements b 2 B i 2 I, we have (b � i) � I = b � I = �(b), therefore � is

surjective. Moreover, Ker � = fb 2 B j b�I = Ig = fb 2 B j b 2 Ig = B\I.

Hence, by Theorem 1.28, B=B \ I �= BI=I.

Theorem 1.30. Let I; J be ideals of a skew brace A such that I � J . Then

(A=I)=(J=I) �= A=J: (1.6)

Proof. De�ne a function

� : A=I ! A=J;

by �(a � I) = a � J .

Let us check that it is well de�ned. If a � I = bI 2 A=I, then a � b−1 2 I
and as I � J; we have that a � b−1 2 J , so a � I = b � I.
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Clearly, � is a surjective skew brace morphism. Now an element a� I 2 A=I
belongs to the kernel of � if and only if a � J = J if and only if a 2 J . Then

Ker � = J=I.

Hence, by the First Isomorphism Theorem, we have

(A=I)=(J=I) �= A=J:
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Chapter 2

Category of Left Skew Braces

We will denoted by SKB the category of all left skew braces.

We will show some basic properties of SKB, for example that is equiva-

lent to the categor of bijective 1-cocycles. Moreover we will study the Huq

Commutator and Smith Commutator in SKB.

2.1 Digroups

In Section 1.3 we proved that left skew braces are particular groups, in the

sense that there is a faithful functor SKB ! Grp, A 7! P = (A; �) n (A; �),
f 7! f � f , because every skew brace morphism f : A ! A0 induces a

corresponding group morphism f � f : P = A n A ! P 0 = A0 n A0, (f �
f)(a; b) = (f(a); f(b)).

Recall that in a skew brace the units of the two groups coincide. So, SKB

appears as a fully faithful subcategory SKB ,! Digp of the category Digp

of digroups, where a digroup is a triple (G; �; �) of a set G endowed with

two group structures with same unit. This notion was introduced in [10] by

D. Bourn. There are two forgetful functors Ui : DiGp ! Grp; i 2 f0; 1g;
associating respectively the �rst and the second group structures. They

both re
ect isomorphisms. Since U0 is left exact and re
ects isomorphisms,

it naturally allows the lifting of the semiabelian aspects of the category

Grp of groups to the category DiGp. In turn, the left exact fully faithful

embedding SKB ,! DiGp makes SKB a semiabelian category. The notion of
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semiabelian category was introducted in [24] and it is beyond our discussion,

but in a semi-abelian category the notions of Huq Commutator and Smith

Commutator simplify. The notion of semiabelian category arised to capture

typical algebraic properties valid for groups, rings and algebras, say, just

as abelian categories allow for a generalized treatment of abelian-group and

module theory.

2.2 Abelian Objects

Recall [20] that an object C of a semi-abelian category C is abelian when the

identity of C commutes with itself, or, equivalently, when C can be provided

with the structure of an abelian group, that is, there exists a morphism

m : C � C ! C in C such that m � (idC ; 0) = m � (0; idC) = idC .

Lemma 2.1. A left skew brace (A; �; �) is an abelian object in the semi-

abelian category SKB if and only if the two multiplications � and � coincide

and are commutative.

Proof. If � and � coincide and are commutative, then clearly the morphism

m : A�A! A in SKB de�ned by m(a; b) = a � b is such that m � (idA; 0) =

m � (0; idA) = idA.

Conversely suppose that (A; �; �) is a left skew brace and that there is a

morphism m : A�A! A is such that m� (idA; 0) = m� (0; idA) = idA. Ap-

plying the faithful functor SKB! Grp, A 7! P = (A; �)n (A; �), f 7! f � f ,

we get a morphism m0 : P � P ! P in Grp such that m0 � (idP ; 0) =

m0 � (0; idP ) = idP . The unique group morphism with this property is

the multiplication m0 : P �P ! P . But if the multiplication is a group mor-

phism, the group is necessarily abelian. Hence P is an abelian group. Since

the two groups (A; �) and (A; �) are canonically isomorphic to subgroups

of P , it follows that both (A; �) and (A; �) are abelian groups. Moreover,

if a; b 2 A, the equality (a; a) � (b; 1) = (b; 1) � (a; a) in P and (1.3) give

a � a−1 � (a � b) = b � 1−1 � (1 � a), so a � b = b � a = a � b. Thus � and �
coincide.
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2.3 Kernel, Cokernel and Product

SKB has a zero object that is the trivial brace with only the identity.

In Chapter 1, we have de�ned the kernel of a morphism as the set of

elements that are mapped in the identity. Consider a morphism of left skew

brace f : A ! B, K := Ker f the kernel of f , and i : K ,! A the natural

inclusion.

Proposition 2.2. (K; i) is the kernel of f in the category SKB.

Proof. Clearly, fi = 0. So let � 2 HomSKB(H;A) be such that f� = 0. We

need to de�ne � : H ! K such that the diagram

K A B

H

i f

�
�

commutes. Set �(h) := �(h) for every h 2 H. Then � is well de�ned and

�i = �. Moreover, by construction, � is unique.

Proposition 2.3. Let f : A ! B be a skew brace morphism, Then f is a

monomorphism if and only if it is injective.

Proof. Suppose that f is a monomorphism. Consider the following diagram

Ker f A B
i

0

f

Then fi = f0 = 0 implies i = 0. But this implies that Ker f = 1, so f is

injective. Conversely, if f is injective, then f is clearly a monomorphism.

Let f : A ! B be a left skew brace morphism. Denote by C the ideal

hf(A)i of B generated by f(A) and let p : B ! B=C be the projection.

Proposition 2.4. (B=C; p) is the cokernel of f .

Proof. Claerly pf(a) = f(a) � C = C: Moreover let (D; q), q : Y ! D be

such that qf = 0. We want to de�ne �q : Y=C ! D such that the following

diagram commutes:

A B Y=C

D

f p

q
q̄
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2.4. n-cocycles and Skew Braces

So set �q(b � C) := q(b). It is a well de�ned morphism because, if by contra-

diction there exist b1; b2 2 B such that b1 � C = b2 � C and q(b1) 6= q(b2),

then b1 � b02 2 C nKer q. Recall that Ker q is an ideal of B, moreover, since

qf = 0, Ker q � Im f and so that C � Ker q and this is a contradiction.

Let A;B be two left skew braces. The product of A and B is the carte-

sian product with operations de�ned componentwise, i.e. it is the carte-

sian product (A � B; �; �) with (a1; b1) � (a2; b2) = (a1 � b1; a2 � b2) and

(a1; b1) � (a2; b2) = (a1 � b1; a2 � b2). Clealy, A�B is a skew brace.

Proposition 2.5. Let A and B be two skew braces. Then A�B satisfy the

universal product, namely for every two skew brace morphism f : C ! A,

g : C ! B, there exist a unique ' : C ! A � B such that the following

diagram commutes

A�B

A B

C

�A

�B

f

g

'

Proof. The claim follows setting '(c) := (f(c); g(c)).

2.4 n-cocycles and Skew Braces

Let us recall some basic de�nitions on group cohomology. Let G be a group.

It is well known that the category of G-groups H with H abelian is isomor-

phic to the category Z[G]−Mod of left Z[G]−modules.

If (G; �) is a group and (H;+) is an abelian G-group, denote with g:h the

action of g on h, namely g:h = �(g)(h), where � : G! Aut(H) is the group

homomorphism that makes H a G-group. For every n � 0, let Cn(G;H)

the abelian group of all functions from Gn to H. Its element are called

n-cochains. Since G0 = f1g, we have that C0(G;H) �= H. Consider the

co-boundary homeomorphisms

dn+1 : Cn(G;H)! Cn+1(G;H)
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2.4. n-cocycles and Skew Braces

de�ned as follows

(dn+1')(g1 � � � gn+1) = g1:'(g2 � � � gn+1)− '(g1g2; � � � gn+1)+

+ '(g1; g2g3; � � � ; gn+1)− � � �+ (−1)n+1'(g1; � � � gn):

We have that dn+1 � dn = 0, so this de�nes a cochain complex whose co-

homology can be computed. It can be shown that the above-mentioned

de�nition of group-cohomology in terms of derived functors is isomorphic to

Hn(G;H) = Zn(G;H)=Bn(G;H);

where Zn(G;H) is the kernel Ker (dn+1) of dn+1 and Bn(G;H) is 0 if n = 0

and is the image Im(dn) of dn if n � 1. The elements of Zn(G;H) are

called n-cocycles and the elements of Bn(G;H) are called n-coboundaries.

In particular, a n-cocycle is a map ' : Gn ! H such that

g1:'(g2 � � � gn+1)+
nX
i=1

(−1)i'(g1 � � � gi−1gi+1 � � � gn+1)+(−1)n+1'(g1 � � � gn) = 0

If H is not abelian and n > 1, the sum above is not well-de�ned, hence

this description does not work for the cohomology of the non-abelian case.

However, it is possible to compute the zero and �rst comohology for a

non-abelian group. Let H be a not-necessarily abelian G-group with � : G!
Aut(H). Now for H we use the multiplicative notation. We can de�ned both

H0(G;H) and H1(G;H). Indeed, we have H0(G;H) �= fa 2 A j �g(a) =

a for all g 2 Gg and H1(G;H) is the de�ned as the set of 1-cocycles modulo

an equivalence relation. So let us de�ne what a 1-cocycle is.

De�nition 2.6. A 1-cocycle is a map � : G! H such that, for every x; y 2
G

�(xy) = �(x)�x(�(y)): (2.1)

Let us introduce an equivalence relation between two 1-cocycles �; � : G!
H. We say that � � � if there is an element h 2 H such that for every x 2 G
we have �(x) = h−1�(x)�x(h). Clearly, � is an equivalence relation. There-

fore, H1(G;H) = Ker d2= �, where d2 : C1(G;H) ! C2(G;H) is de�ned

for every � 2 C1(G;H) as follows: d2(�)(xy) = �(xy)−1�(x)�x(�(y)), with

x; y 2 G.

21



2.4. n-cocycles and Skew Braces

A morphism between two 1-cocycles � : G ! H and �0 : G0 ! H 0 is a

pair (f; g) where f : G! G0 and g : H ! H 0 are two group morphisms such

that the following diagram

G H

G0 H 0

�

f g

�0

commutes and f(�x(h)) = �0f(x)(g(h)), for every x 2 G; h 2 H:
Moreover, we say that � : G! H is a bijective 1-cocycle, if � is a bijection

of sets and we denote with C the full subcategory of bijective 1-cocycles with

objects � : G! H.

Lemma 2.7 ([3]). Let H be a G-group, with � : G ! Aut(H) the corre-

sponding homomorphism. Let � : G! H be a 1-cocycle. Then

1. �(1) = 1.

2. �(g−1) = �−1
g (�(g))−1 for all g 2 G:

3. If g 2 G can be written as g = g�11 � � � g
�k
k where each �i 2 f+1;−1g,

then

�(g) = �x1(�(g1))�1 � �x2(�(g2))�2 � � ��xk(�(gk))
�k :

where xi = g�11 � � � g
�i−1

i−1 if �i = 1 or xi = g�11 � � � g
�i
i if �i = −1:

Proof. 1. We have that �(x) = �(1x) = �(1)�1(�(x)) = �(1)�(x), hence

�(1) = 1.

2. It follows directly from 1 = �(g−1g) = �(g−1) � �−1
g (�(g)).

3. This is just a recursive application of the 1-cocycle condition where we

apply part 2: if �i = −1.

Proposition 2.8 ([3]). There is a one-to-one correspondence between left

skew braces and bijective 1-cocycles.

Proof. Assume that we have a (G; �)-group (H; �) with the action of G on

H given by � : G! Aut(H) and a bijective 1-cocycle � : G! H. De�ne an
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operation on G as follow: x � y := �−1(�(x)�(y)), where �−1 is the inverse

of �. It is clear that (G; �) is a group and that 1(G;�) = 1(G;�). Let us check

the skew brace condition. Notice that

g � �−1(h) = �−1(�(g)�g(h)); (2.2)

for every g 2 G and every h 2 H, indeed, by the 1-cocycle condition, we

have:

�−1(�(g)�g(h)) = �−1(�(g � �−1(h))) = g � �−1(h):

Moreover, by Lemma 2.7, 1 = �(1) = �(g � g−1) = �(g)�(g−1), hence

�(g−1) = �(g)−1, where g−1 is the inverse of g by �. Then, for every

a; b; c 2 G, we obtain

a � (b � c) = a � �−1(�(b)�(c))
(2.2)
= �−1

(
�(a)�a(�(b)�(c))

�
= �−1

(
�(a)�a(�(b))�(a)−1�(a)�a(�(c))

�
= �−1

(
�(a � b)�(a)−1�(a � c)

�
= (a � b) � �−1(�(a−1)�(a � c))

= (a � b) � �−1
(
�(a−1�(a � c))

�
= (a � b) � a−1 � (a � c):

Hence the skew brace condition holds.

Conversely, if (A; �; �) is a left skew brace, consider the action � : (A; �)!
Aut(A; �) as in Lemma 1.6. Then the map id : (B; �)! (B; �) is a bijective

1-cocycle since a � b = a � �a(b). This concludes the proof.

Indeed, this correspondence is an equivalence of categories. We want to

construct two functors

SKB C:
Φ

Ψ

De�ne �(A; �; �) :=
(
idA : (A; �) ! (A; �)

�
, where (A; �) acts on (A; �)

trough �, then idA is a bijective 1-cocycle by the previous Proposition.

Given f 2 HomSKB(A;B), we set �(f) := (f; f). The following diagram

(A; �) (A; �)

(B; �) (A; �)

idA

f f

idB
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is commutative and f(�a1(a2)) = f(a−1
1 � (a1 � a2)) = f(a1)−1 � (f(a1) �

f(a2)) = �f(a1)(f(a2)), for every a1; a2 2 A. Clearly � preserves the identi-

ties and is compatible with compositions, hence it is a functor.

Conversely, let � : (G; �)! (H; �) be a bijective 1-cocycle, with � the action

of G on H. We saw in the previous Proposition that G is a skew brace with

the "�" operation given by x�y = �−1(�(x)�(y)): Then set 	(�) := (G; �; �)
and if (f; g) 2 HomC(�1; �2), with �i : Gi ! Hi, set 	(f; g) := f . Clearly

for every x; y 2 G1, f(x � y) = f(x) � f(y) since f is a group morphism and

we have that �2(f(x�y)) = g(�1(x�y)) = g(�1(x)�1(y)) = g(�1(x))g(�1(y))

and �2(f(x) � f(y)) = �2(f(x))�2(f(y)) = g(�1(x))g(�1(y)), then by the

injectivity of �2, f is a morphism of skew braces. Therefore also 	 is a

functor.

Proposition 2.9. SKB and C are two equivalent categories.

Proof. We have just constructed the functors �;	. It remains to construct

two natural isomorphisms � : �	! idC and � : 	�! idSKB.

For every � 2 C, de�ne �� as (idG; �). It turns out to be an isomorphism

in C and moreover � is a natural trasformation, because, given (f; g) 2
HomC(�1; �2), with �i : Gi ! Hi, by de�nition we have that �	(�1) = idG1

and �	(f; g) = (f; f) and the commutativity of the following diagram

idG1 �1

idG2 �2

(idG1
;�1)

(f;f) f

(idG2
;�2)

follows from (f; g)(idG1 ; �1) = (f; g�1) = (f; �2f) = (idG2 ; �2)(f; f).

Finally, for �, it is enough to consider, for every A 2 SKB, the identity on

A to get a natural isomorphism from �	 to idSKB.
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Chapter 3

Commutators

Commutators are a prominant object of study in Categorical Algebra and

Universal Algebra. In this chapter, we study the Huq commutator and the

Smith commutor. We will show that they coincide for skew braces.

Let us recall some notions from Universal Algebra.

De�nition 3.1. For A a nonempty set and n a nonnegative integer we de�ne

A0 = f;g, and, for n > 0, An is the set of n-tuples of elements from A. An

n-ary operation on A is any function f from An to A; n is the arity of f . A

�nitary operation is an n-ary operation, for some n. The image of (a1; :::; an)

under an n-ary operation f is denoted by f(a1; :::; an). An operation f on A

is called a nullary operation if its arity is zero; it is completely determined by

the image f(;) in A of the only element ; in A0, and as such it is convenient

to identify it with the element f(;). Thus a nullary operation is thought of

as an element of A. An operation f on A is unary, binary, or ternary if its

arity is 1,2, or 3, respectively.

De�nition 3.2. A language of algebras is a set F of function symbols such

that a nonnegative integer n is assigned to each member f of F . This integer

is called the arity of f , and f is said to be an n-ary function symbol.

De�nition 3.3. If F is a language of algebras then an algebra A of type F
is an ordered pair hA;F i where A is a nonempty set and F is a family of

�nitary operations on A indexed by the language F such that corresponding

to each n-ary function symbol f in F there is an n-ary operation fA on A.
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Given a class of algebraic structures of the same signature, we can de�ne

the notions of homomorphism, subalgebra, and product. G. Birkho� proved

that a class of algebraic structures of the same signature is a variety if and

only if it is closed under the taking of homomorphic images, subalgebras

and arbitrary products.

A left skew brace is an algebra hA; �; �;−1 ;0 ; 1i, where � and � are binary,

−1;0 are unary and 1 is nullary, satys�ng the following conditions:

(SB1): hA; �;−1 i is a group;

(SB2): hA; �;0 i is a group;

(SB3): a � (b � c) � (a � b) � a−1 � (a � c).
Clearly, the class of all left skew braces is a variety.

Let A be an algebra. A binary relation on A is a subset r of A2. If

(a; b) 2 r, we write arb.

De�nition 3.4. Given an algebra A, a binary relation r on A is an equiv-

alence relation if, for any a; b; c from A, it satis�es:

1. ara;

2. arb implies bra;

3. arb and brc imply arc.

De�nition 3.5. Let A be an algebra of type F and let � an equivalence

relation on A. Then � is a congruence on A if � satis�es the following

compatibility property:

For each n-ary function symbol f 2 F and elements ai; bi 2 A, if ai�bi holds

for 1 � i � n then fA(a1; :::; an)�fA(b1; :::; bn) holds.

Given an algebra A, and a pair of conguences �; � of A, the composition

of � and � is the subset of A�A de�ned as follows

� � � := f(a; b) 2 A�A j 9 c 2 A : (a; c) 2 �; (c; b) 2 �g:

We say that � and � permute if � � � = � � �. An algebra A is called

congruence permutable when each pair congruences of A permute. A variety

of algebras V is referred to as congruence permutable when every algebra in

V is congruence permutable.
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In [28] it is proven that the following conditions are equivalent for a

variety of algebras V:

(a) V is congruence-permutable.

(b) There is a Mal'tsev term p,

where a Mal'tsev term is a function p : X�X�X ! X such that p(x; x; z) �
z and p(x; z; z) � x, for every x; z 2 X.

Congruence-permutable varieties are called Mal'tsev varieties. Any va-

riety that contains a group operation is congruence-permutable, and the

Mal'tsev term is xy−1z. Hence the variety of left skew braces is a Mal'tsev

variety.

3.1 Huq Commutator and Smith Commutator

What we call the Huq commutator is a category-theoretic concept intro-

duced by Huq [23]. In the case of a semi-abelian variety V of universal

algebras it can be de�ned as follows. Given X in V and normal subalgebras

A and B of X, the Huq commutator [A;B]H is the smallest normal subal-

gebra C of X such that the canonical homomorphism AqB ! X=C factors

through the canonical homomorphism AqB ! A�B, where AqB is the

coproduct of A and B. Hence the existence of such factorization means that

the canonical homomorphism A�B ! X=C is well de�ned.

The Smith commutator is a concept originally introduced by Smith [34]

for congruences in a Mal'tsev variety. Together with its various generaliza-

tions, this notion is well known not only in universal algebra but also in

category theory. For an algebra X in a Mal'tsev variety with Mal'tsev term

p(x; y; z) and two congruences � and � on X, the commutator [�; �]S is the

smallest congruence � on X for which the function

p : f(x; y; z) j (x; y) 2 �; (y; z) 2 �g ! X=�

sending (x; y; z) to the �-class of p(x; y; z) is an homomorphism. When X

belongs to a semi-abelian variety V, it is well known that there is a one-to-

one correspondence between the normal subalgebras and the congruences

on X. From a super�cial glance, this may suggest that the congruence

approach should give the same results everywhere as the ideal (normal sub-
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algebra) approach, that is, for normal subalgebras A and B of X and their

corresponding congruences � and � on X, the congruence corresponding to

[A;B]H coincides with the Smith commutator [�; �]S . Well-known examples

are the varieties of groups, Lie algebras, associative algebras and non-unital

rings. However, this is not the case in general, indeed there are some exam-

ples of varieties such that the two commutators do not coincide, for example

digroups, near-ring ([25]) and loops ([29]).

De�nition 3.6. Let A be a left skew brace and I and J be two ideals of A.

The Huq Commutator [I; J ]H of I and J is the smallest ideal K of A such

that the canonical homomorphism � : I � J ! A=K, �(i; j) = i � j � K is

well-de�ned.

Proposition 3.7. ([7]) If I and J are two ideals of a left skew brace (A; �; �),
their Huq commutator [I; J ]H is the ideal of A generated by the union of the

following three sets:

1. the set f i0 � j0 � i � j j i 2 I; j 2 J g;

2. the set f i−1 � j−1 � i � j j i 2 I; j 2 J g;

3. the set f i−1 � j−1 � (j � i) j i 2 I; j 2 J g.

Proof. Assume that the mapping � : I � J ! A=K, �(i; j) = i � j �K is a

skew brace morphism for some ideal K of A. Then

(i � j) �K = (i �K) � (j �K) = (i �K) � (j �K) =

= �(i; 1) � �(1; j) = �((i; 1) � (1; j)) = �(i; j) = �((1; j) � (i; 1)) =

= �((1; j) � �(i; 1)) = (j �K) � (i �K) = (j �K) � (i �K) = (j � i) �K:

This proves that the set (1) is contained in K.

Similarly,

(i � j) �K = (i �K) � (j �K) = �(i; 1) � �(1; j) = �((i; 1) � (1; j)) = �(i; j) =

= �((1; j) � (i; 1)) = �((1; j) � �(i; 1)) = (j �K) � (i �K) = (j � i) �K:

This proves that the set (2) is contained in K.
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Also,

(i � j) �K = (i � j) �K = (i �K) � (j �K) = (i �K) � (j �K) =

= �(i; 1) � �(1; j) = �((i; 1) � (1; j)) = �(i; j) = �((i; 1) � (1; j)) =

= �(i; 1) � �(1; j) = (i �K) � (j �K) = (i � j) �K:

This proves that the set (3) is also contained in K.

Conversely, let K be the ideal of A generated by the union of the three

sets. It is then very easy to check that the mapping � : I � J ! A=K,

�(i; j) = i � j �K is a skew brace morphism.

De�nition 3.8. The Smith Commutator [I; J ]S of I and J is the smallest

ideal C of A for which the function

p : f(x; y; z) j x � y−1 2 I and y � z−1 2 Jg ! A=C

de�ned by p(x; y; z) = x � y−1z � C is a well-de�ned homomorphism.

Proposition 3.9. If I and J are two ideals of a left skew brace (A; �; �),
their Smith commutator [I; J ]S is the ideal of A generated by the union of

the following four sets:

1. the set f i−1 � j−1 � i � j j i 2 I; j 2 J g;

2. the set f((i � x) � j) � (i � (x � j))−1 j i 2 I; j 2 J; x 2 Ag;

3. the set f ((j � x) � i) � x−1 � j−1 � x � (x � i)−1 j i 2 I; j 2 J; x 2 A g;

4. the set f ((i � j � x) � y) � ((j � x) � y)−1 � (x � y) � ((i � x) � y)−1 j i 2
I; j 2 J; x; y 2 A g.

Proof. We must determine when p is a left skew brace morphism, that is,

preserves � and �. It preserves � if and only if [I; J ](A;�) � [I; J ]S , that is, if

and only if all elements of the form i � j � i−1 � j−1 with i 2 I and j 2 J are

in [I; J ]S . Moreover, p preserves � if and only if [I; J ]S contains all elements

of the form

(x � a) � (y � b)−1 � (z � c) � ((x � y−1 � z) � (a � b−1 � c))−1; (3.1)
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with x � y−1 and a � b−1 in I, and y � z−1 and b � c−1 in J . Let i; i0; j; j0

denote x � y−1; a � b−1; y � z−1 and b � c−1, respectively. Then (3.1) can be

rewritten as

((i�j �z)� (i0 �j0 �c))� ((j �z)� (j0 �c))−1 � (z �c)� ((i�z)� (i0 �c))−1: (3.2)

Applying (1.1), we get

((i � j � z) � i0) � (i � j � z)−1 � ((i � j � z) � j0) � (i � j � z)−1�
�((i � j � z) � c) � (((j � z) � j0) � (j � z)−1 � ((j � z) � c))−1�
�(z � c) � (((i � z) � i0) � (i � z)−1 � ((i � z) � c))−1 =

= ((i � j � z) � i0) � z−1 � j−1 � i−1 � ((i � j � z) � j0) � z−1 � j−1 � i−1�
�((i � j � z) � c) � ((j � z) � c)−1 � (j � z) � ((j � z) � j0)−1�
�(z � c) � ((i � z) � c))−1 � (i � z) � ((i � z) � i0)−1:

(3.3)

Now it su�ces to show that given a congruence � on A with i � j � j � i
for all i 2 I and j 2 J , all elements in the three sets (2), (3) and (4) in the

statement of the Proposition are congruent to 1 if and only if all elements

of the form in (3.3) are congruent to 1.

\If": Notice that if

- i0 = j = c = 1, (3.3) becomes ((i � z) � j0) � (z � j0)−1 � i, hence (2);

- i = j0 = c = 1; (3.3) becomes ((j � z) � i0) � z−1 � j−1 � z � (z � i0), hence

(3);

- i0 = j0 = 1, (3.3) becomes ((i�j�z)�c)�((j�z)�c)−1�(z�c)�((i�z)�c)−1,

hence (4).

\Only if": Suppose that all elements in the three sets (2), (3) and (4) in

the statement of the Proposition are congruent to 1, and suppose we have

an element

((i � j � z) � i0) � z−1 � j−1 � i−1 � ((i � j � z) � j0) � z−1 � j−1 � i−1�
�((i � j � z) � c) � ((j � z) � c)−1 � (j � z) � ((j � z) � j0)−1�
�(z � c) � ((i � z) � c)−1 � (i � z) � ((i � z) � i0)−1

(3.4)

of the form (3.3)).

Let us prove that (z � c) � ((i � z) � c)−1 belongs to I. This is equivalent

to proving that z � c � ((i � z) � c)0 belongs to I. But z � c � ((i � z) � c)0 =
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z�c�c0�(i�z)0 = z�(i�z)0, and this belongs to I if and only if z�(i�z)−1 = i−1

belong to I, which is trivially true.

Let us prove that (j � z) � ((j � z) � j0)−1 belongs to J . This is equivalent

to proving that (j �z)� ((j �z)� j0)0 belongs to I. But (j �z)� ((j �z)� j0)0 =

(j � z) � j00 � (j � z)0, which belongs to J because j0 2 J and J is a normal

subgroup of (A; �).
Now elements of I and elements of J commute modulo �, so that the

element (3.4) is

� ((i � j � z) � i0) � z−1 � j−1 � i−1 � ((i � j � z) � j0) � z−1 � j−1 � i−1�
�((i � j � z) � c) � ((j � z) � c)−1 � (z � c) � ((i � z) � c))−1�
�(j � z) � ((j � z) � j0)−1 � (i � z) � ((i � z) � i0)−1:

In this formula, the second line is an element in the set (4) of the state-

ment of the proposition, so that the element (3.4) is

� ((i � j � z) � i0) � z−1 � j−1 � i−1 � ((i � j � z) � j0) � z−1 � j−1 � i−1�
�(j � z) � ((j � z) � j0)−1 � (i � z) � ((i � z) � i0)−1:

Let us prove that (i � z) � ((i � z) � i0)−1 belongs to I. This is equivalent

to proving that (i � z) � ((i � z) � i0)0 belongs to I. But (i � z) � ((i � z) � i0)0 =

(i � z) � i00 � (i � z)0, which belongs to I because i0 2 I and I is a normal

subgroup of (A; �).
Let us prove that ((i � j � z) � j0) � z−1 � j−1 � i−1 belongs to J . Its

inverse is i � j � z � ((i � j � z) � j0)−1, and this belongs to J if and only if

i � j � z � ((i � j � z) � j0)0 = (i � j � z) � j00 � (i � j � z)0, and this belongs to J

because J is a normal subgroup of (A; �).
Similarly ((j � z) � j0) � z−1 � j−1 belongs to J . (Simply take i = 1 in the

previous paragraph.)

Thus the element (i � z) � ((i � z) � i0)−1 of I and the element ((i � j � z) �
j0) � z−1 � j−1 � i−1 � ((j � z) � j0) � z−1 � j−1 of J commute modulo �, and

we get that the element (3.4) is

� ((i � j � z) � i0) � z−1 � j−1 � i−1 � (i � z) � ((i � z) � i0)−1�
�(i � j � z) � j0) � z−1 � j−1 � i−1 � (j � z) � ((j � z) � j0)−1

� ((j � (i � z)) � i0) � z−1 � i−1 � j−1 � (i � z) � ((i � z) � i0)−1�
�(i � (j � z)) � j0) � (j � z)−1 � i−1 � (j � z) � ((j � z) � j0)−1:
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In this formula, the third line is an element in the set (3) of the statement

of the proposition. Looking at the elements in the set (2) of the statement,

we get that the element (3.4) is � i � ((j � z)) � j0) � (j � z)−1 � i−1 � (j � z) �
((j � z) � j0)−1. Set t := j � z, getting i � (t � j0) � t−1 � i−1 � t � (t � j0)−1. Now

t � (t � j0)−1 is in J , because t � J = J � t, so t � j0 = j1 � t for some j1 2 J ,

so (t � j0) � t−1 = j1, hence t � (t � j0)−1 = j−1
1 2 J . Therefore t � (t � j0)−1

and i−1 commute modulo �, so that the element (3.4) is � 1, as we wanted

to prove.

3.2 Huq=Smith

Theorem 3.10. Let A be a left skew braces, I; J two ideals of A. Then

[I; J ]H = [I; J ]S

Proof. It su�ces to prove that if [I; J ]H = 0, then [I; J ]S = 0. Hence,

suppose we have a left skew brace (A; �; �) for which i�j = j�i, i�j = j�i and

i� j = i� j for all i 2 I and all j 2 J . Consider the \corestriction" �jJ of the

group morphism � : (A; �) ! Aut(A; �) de�ned by �jJ : (A; �) ! Aut(J; �),
�jJa (j) = a−1 � (a � j) for a 2 A and j 2 J . Then the condition i � j = i � j
for all i 2 I and all j 2 J can be re-written as I � ker�jJ .

In order to prove the theorem, it su�ces to prove that the mapping

p : f (a; b; c) j a; b; c 2 A; a � b (mod I); b � c (mod J) g ! A de�ned by

p(a; b; c) = a � b−1 � c is a left skew brace morphism. This is equivalent to

proving that a � b−1 � c = a � b0 � c for every a; b; c 2 A with a � b (mod I)

and b � c (mod J). equivalently, write a in the form a = i � b and c in the

form b � j. Then [I; J ]S is zero if and only if i � (b � j) = (i � b) � j for all

b 2 A, i 2 I, j 2 J . Multiplying by (i � b)−1 on the left, one �nds that

i � (b � j) = (i � b) � j can be rewritten as �b(j) = �i�b(j), that is, �jJ maps

the elements b and i � b to the same element of Aut(J). In other words, �

is constant on the cosets I � b = I � b of any b 2 A. That is, I is contained

in the kernel of �jJ : (A; �)! Aut(J; �), which we know to hold as we have

seen in the previous paragraph.
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3.3 The Lattice of Ideals of a Left Skew Brace

Now that we have a good notion of commutator, we can consider the lattice

I(A) of ideals of a left skew brace A. Clearly, I ^ J = I \ J and I _ J =

IJ . It is a complete multiplicative lattice in the sense of [18], indeed the

"commutator operation" [−;−] : I(A) � I(A) ! I(A) is such that [I; J ] �
I\J . Moreover, the following proposition shows that I(A) is a commutative

lattice.

Proposition 3.11. For every pair of ideals I and J of a left skew brace A,

[I; J ] = [J; I].

Proof. It su�cies to prove the statement for a set of generators of [I; J ]. It

is well known that [I; J ](A;�) = [J; I](A;�) and that [I; J ](A;�) = [J; I](A;�). By

Proposition 3.7, it remains to prove that if i�j = i�j; i�j = j � i; i�j = j � i
for every i 2 I; j 2 J , then j � i = j � i for every i 2 I; j 2 J . But

this is true since for every i 2 I; j 2 J we have this chain of equalities

j � i = i � j = i � j = j � i.

Remark 3.12. The lattice I(A) satis�es the monotonicity condition, i.e. I1 �
I2 and J1 � J2 imply [I1; J1] � [I2; J2]. Indeed I1 � I2 and J1 � J2 imply

[I1; J1](A;�) � [I2; J2](A;�) and [I1; J1](A;�) � [I2; J2](A;�). Moreover the set

fi−1 � j−1 � (j � i) j i 2 I1; j 2 J1g is contained in the set fi−1 � j−1 � (j � i) j
i 2 I2; j 2 J2g:

De�nition 3.13. An ideal P of A is a prime ideal if P 6= A and

[I; J ] � P =) (I � P or J � P )

for every I; J 2 I(A).

The set Spec(I(A)) of all prime ideals of A is the Zariski spectrum of

I(A).

Let I be an element of I(A). The lower descending series of I is the

descending series

I =: I1 � I2 � I3 � � � �

where In+1 := [In; I] for every n � 0. If In = 1 for some n � 1, then I is

nilpotent. The element I is idempotent if I2 = [I; I] = 1.
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The derived series of I is the descending series

I =: I(0) � I(1) � I(2) � � � �

where I(n+1) := [I(n); I(n)] for every n � 0. The term I 0 := I2 = [I; I] = I(1)

is called the derived ideal of I. The ideal I is solvable if I(n) = 1 for some

n � 0.

De�nition 3.14. An ideal I of a left skew brace A is meet-irreducible if

I = J \ Z implies I = J or I = Z for every J; Z 2 I(A).

De�nition 3.15. An ideal S 2 I(A) is semiprime if I2 � S implies I � S

for every I 2 I(A).

Proposition 3.16. If I; J;K are ideals of a left skew brace A, then

[I; J �K] = [I; J ] � [I;K]:

Proof. From J �K � J;K, it follows that [I; J �K] � [I; J ]; [I;K]. It follows

that [I; J � K] � [I; J ] � [I;K] = [I; J ] � [I;K]. Now it is known that the

equality [I; JK] = [I; J ][I;K] holds for normal subgroups I; J;K of a group

G. Hence, to conclude the proof, it su�ces to prove that if (A; �; �) is a left

skew brace such that i � j = j � i = j � i = i � j, i � k = k � i = k � i = i � k
for every i 2 I, j 2 J and k 2 K, then i � (j � k) = i � (j � k) for every i; j; k.

Now i � j = i � j for every i and j can be restated saying that J is contained

in the kernel of the group morphism �jI : (A; �) ! Aut(I; �). Similarly,

K is contained in the kernel of that group morphism. Therefore J � K is

contained in that kernel, that is i � x = i � x for every x 2 J �K = J �K,

as desired.

In the languange of multiplicative lattice, the previuos proposition showed

that I(A) is m-distributive.

Proposition 3.17. Any ideal P is prime if and only if is meet-irreducible

and semiprime.

Proof. Clearly, prime ideals are semiprime. Suppose P = I \ J for some

I; J 2 I. Then [I; J ] � I \ J = P implies I � P or J � P . But P = I \ J
implies P � I and P � J . Therefore either P = I or P = J .
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Conversely, assume that P is a meet-irreducible and semiprime ideal.

Let I; J 2 I(A) be two ideals such that I * P and J * P . We need to show

that [I; J ] * P . Now IP � P and JP � P . Since P is meet-irreducible,

IP \ JP � P . As P is semiprime, it follows that (IP \ JP )2 * P: But

(IP \ JP )2 = [(IP \ JP ); (IP \ JP )] � [IP; JP ] = [I; J ][I; P ][P; J ][P; P ].

It follows that [I; J ] * P .

Theorem 3.18. Let A be a left skew brace. Spec(I(A)) = I(A) n fAg if

and only if I(A) is linearly ordered and every ideal in I(A) is idempotent.

Proof. Suppose Spec(I(A)) = I(A) n fAg. If I(A) is not linearly ordered,

there exist I; J ideals of A such that I * J and J * I. Then I and J are

two ideals of A such that I � I \ J and J � I \ J . This shows that I \ J
is not meet-irreducible, hence is not prime by Proposition 3.17. So we get a

contradiction.

Now let I a not idempotent ideal of A. Then I2 � I, so I2 is not

semiprime. In particular I2 is not prime, another contraction.

Conversely, assume I(A) linearly ordered and that every ideal is idem-

potent. Let P be any ideal of A, P 6= A. In order to show that P is prime,

suppose I; J 2 I(A), I * P and J * P . Then I � P and J � P . As I(A)

is linearly ordered, it follows that I \ J � P . By Remark 3.12, it follows

that [I; J ] � [I \ J; I \ J ] = I \ J � P . This proves that P is prime.

De�nition 3.19. An ideal M of a left skew brace A is said to be maximal

if M 6= A and M � I implies I = A.

Clearly, maximal ideals are prime.

Proposition 3.20. Every left skew brace has a maximal ideal.

Proof. By Proposition 1.19, the Zorn's Lemma applied to the set of all

proper ideals of A implies the thesis.

Following again [18], we can de�ne what the centralizer of an ideal is. In-

deed, let I be an ideal of a left skew brace A. The left annihilator l:annA(I) of

I is
Q

[J;I]=1 J and similarly the right annihilator r:annA(I) of I is
Q

[I;J ]=1 J .
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By Lemma 3.11, l:annA(I) = r:annA(I) =: CA(I) and we call it the central-

izer of I. Moreover, the center of A is exactly the centralizer CA(A) of

A.
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Chapter 4

The free skew brace

The aim of this chapter is to build the free skew brace over a set X. This

chapter is based on the work of J. Orza [30]. Let us recall the de�nition of

a free object for a concrete category.

Let C be a concrete category with a faithfull functor U : C ! Set.

De�nition 4.1. Let X be a set. A free object over X is a pair (F; i) where

F 2 Ob(C) and i : X ! U(F ) is an injection such that they sati�es the

following universal property: for any pair (A; f) with A an object in C and

f : X ! U(A), there exists a unique morphism ~f : F ! A in C such that

the following diagram commutes

X U(A)

U(F )

f

i f̃

Whenever C is a variety, the free object exists for every set X.

First of all we need another characterization of skew braces.

4.1 Initial Construction

Proposition 4.2. A group (A; �), endowed with a pair (�; �) of

anti-homomorphisms of groups, with �; � : (A; �)! Sym(A); is a skew brace

if and only if

a � �a(b) = b � �b(a); (4.1)
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for every a; b 2 A.

Proof. We prove that having such �; � as in the statement, is equivalent to

having a homomorphism of groups � : A! Sym(A) and an anti homorphism

of groups � : A ! Sym(A) such that a � b = �a(b) � �b(a) as in Theorem

5.10, hence we get a bijective 1-cocycle anche hence by Proposition 2.8 a

left skew brace. We have that a � b = �a(b) � �b(a) holds if and only if

a0 � �a(b) = b � (�b(a))0, if and only if a � �a0(b) = b � (�b(a
0))0. And we

can conclude noticing that if G is any group and F : G! Sym(G), g 7! Fg,

is a homomorphism (resp. anti-homomorphism) of groups, then the map

F 0 : g 7! Fg−1 is an anti homomorphism (resp. homomorphism) of groups,

and the map F 00 : g 7! F 00g with F 00g (x) = Fg(x
−1)−1 is still a homomorphism

of groups.

Notice that the name � is not accidental, indeed for a skew brace (A; �; �),
we always have a � b = a � �a(b) = b � (b0 � (a � b)) =: b � �b(a); where � is the

inverse of � (see Proposition 1.6).

Let us recall some facts about the free group over a set. Let X be a set

and let X−1 = fx−1 j x 2 Xg a copy of X. Let Z = X t X−1. Consider

M the monoid generated by S and identify every word that contains pairs

of the type xx−1. We obtain then a group F (X) that is the free group over

X. So a generic element of F (X) is of the form z1 � � � zn with zi 2 Z.

So let X be a set. We start de�ning recursively a set Z in the following

way. First we set:

Y1 = X tX−1

where X−1 = fx−1 j x 2 Xg is a disjoint copy of elements of X. Next we

de�ne the following sets:

Xn := f�a(b) j a; b 2 Yn−1; b 6= �a−1(c) for any c 2 Yn−1; g

Yn := f�a(b) j a; b 2 Yn−1; b 6= �a−1(c) for any c 2 Yn−1; g

Zn := Zn−1 t (Xn t Yn) t (Xn t Yn)−1;

where �a(b) and �a(b) are formal elements. Then we set Z :=
S
n�1 Zn and

we denote with (G; �) the free group F (Z) over Z.
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Our aim is to de�ne two anti-homomorphisms from (G; �) to Sym(G). In

order to do that, �rst we de�ne two maps �; � : Z ! Sym(Z) as follows: let

a; b 2 Z, set

�a(b) =

8<:�a(b) if b 6= �a−1(c);

c if b = �a−1(c);
�a(b) =

8<:�a(b) if b 6= �a−1(c);

c if b = �a−1(c):

Now we extend these maps from Z to Sym(G). Recall that a generic element

of G is of the form z1 � � � zn for zi 2 Z. So de�ne recursively:

�z(z1 � � � zn) := �z(z1)��z1 (z)(z2 � � � zn);

�z(z1 � � � zn) := �z(z1)��z1 (z)(z2 � � � zn);

with z; z1; � � � zn 2 Z and hence we extend them from G to Sym(G) in such

a way to have an anti homomorphism of groups, namely

�z1���zn(g) := �zn�zn−1 � � � �z1(g);

�z1���zn(g) := �zn�zn−1 � � � �z1(g);

for every g 2 G; z1 � � � zn 2 Z.

Lemma 4.3. For every a; b; c 2 G, we have

�a(bc) = �a(b)��b(a)(c);

�a(bc) = �a(b)��b(a)(c):

Proof. We divide the proof into three steps.

1. �z(ab) = �z(a)��a(z)(b); �z(ab) = �z(a)��a(z)(b), for every a; b 2 G; z 2
Z.

We proceed by induction on the length of a. If a 2 Z we have nothing

to prove. So suppose a = z1 � � � zn; with zi 2 Z. We have:

�z(ab) = �z
(
(z1 � � � zn)b

�
= �z(z1)��z1 (z)(z2 � � � znb)

ind.
= �z(z1)��z1 (z)(z2 � � � zn)��z2���zn�z1 (z)(b)

= �z(z1 � � � zn)��z1���zn (z)(b)

= �z(a)��a(z)(b):

And similarly for �.
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2. �a(zc) = �a(z)��z(a)(c); �a(zc) = �a(c)��z(a)(c), for every a; c 2 G and

z 2 Z.

We proceed by induction on the lenght of a. If a 2 Z, it is nothing

but how we extended � and �. Suppose then that a = z1 � � � zn, with

zi 2 Z. We have:

�a(zc) = �z1���zn(zc) = �zn�z1���zn−1(zc)
ind.
= �zn

(
�z1���zn−1(z)��z(z1���zn−1)(c)

�
1:
= �zn�z1���zn−1(z)��ρz1���zn−1 (z)(zn)��z(z1���zn−1)(c)

1:
= �z1���zn��z(z1���zn−1)�ρz1���zn−1 (z)(zn)(c)

= �a(z)��z(a)(c):

And similarly for �.

3. �a(bc) = �a(b)��b(a)(c); �a(bc) = �a(b)��b(a)(c), for every a; b; c 2 G.

We proceed by induction on the length of b. If b 2 Z, it is precisely

2:, so suppose as usual b = z1 � � � zn; with zi 2 Z. We have:

�a
(
(z1 � � � zn)c

� 2:
= �a(z1)��z1 (a)(z2 � � � znc)
ind.
= �a(z1)��z1 (a)(z2 � � � zn)��z2���zn�z1 (a)(c)

= �a(b)��b(a)(c):

And similarly for �.

Lemma 4.4. Let A be a group and let �; � : A ! Sym(A) be two anti-

homomorphisms of groups such that for every a; b; c 2 A

�a(bc) = �a(b)��b(a)(c); �a(bc) = �a(b)��b(a)(c):

Let X be a set of generators of A as a monoid. If x�x(y) = y�y(x) for very

x; y 2 X, then a�a(b) = b�b(a) for every a; b 2 A.

Proof. As before, we divides the proof into two steps.

1. x�x(a) = a�a(x); a�a(x) = x�x(a) , for every x 2 X; a 2 A.
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We proceed by induction on the length of a. If a 2 Z, it is precisely

the hyphotesis. Suppose that a = z1 � � � zn, with zi 2 Z. Then:

x�x(z1 � � � zn) = x�x(z1)��z1 (x)(z2 � � � zn)

= z1�z1(x)��z1 (x)(z2 � � � zn)

= a�z2���zn�z1(x) = a�a(x):

The other equality can be deduced using the same calculation, ex-

changing the role of � and �.

2. a�a(b) = b�b(a), for every a; b 2 A.

We proceed by induction on the length of b. If b 2 Z, we have proved

it in the previous step. Suppose that b = z1 � � � zn, with zi 2 Z. Then:

a�a(z1 � � � zn) = a�a(z1)��z(a)(z2 � � � zn)

= z1�z1(a)��z1 (a)(z2 � � � zn)

= b�z2���zn�z1(a) = b�b(a):

It is not necessarly true that with our de�nition of � and � on G, we

have that a�a(b) = b�b(a). So let � be the minimal equivalence relation

on A such that x�x(y) � y�y(x) and such that if a � b and c � d, then

ac � bd; �a(c) � �b(d) and �a(c) � �b(d).

Proposition 4.5. The quotient group (G=∼; �; �; �) is a left skew brace.

Proof. We want to apply Proposition 4.2. By construction, �; � are well-

de�ned anti-homomorphisms of groups from G=∼ to Sym(G=∼). By Lemma

4.3, �; � satisfy the hypothesis of Lemma 4.4, so we have that for every

a; b 2 A, a�a(b) = b�b(a). So the claim follows by Proposition 4.2.

4.2 The Free Skew Brace

Before concluding, we need a result about skew brace morphism. Recall

that have a skew brace (A; �; �) is equivalent to have a group (A; �) with

two anti-homomorphism of groups from A to Sym(A).
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Lemma 4.6. Let (A1; �; �1; �1); (A2; �; �2; �2) be two left skew braces and

let f : (A1; �);! (A2; �) be a group morphism. Then f is a skew brace

morphism if and only if f(�1
a(b)) = �2

f(a)(f(b)), for every a; b 2 A1 if and

only if f(�1
a(b)) = �2

f(a)(f(b)), for every a; b 2 A1.

Proof. Suppose that f : A1 ! A2 is a skew brace morphism. Then, for every

a; b 2 A1 we have f(�1
a(b)) = f(a0�(a�b)) = f(a)0�(f(a)�f(b)) = �2

f(a)(f(b)).

Conversely, if f(�1
a(b)) = �2

f(a)(b), for every a; b 2 A1, then, by de�nition of

�, f(a � b) = f(a � �1
a(b)) = f(a) � f(�1

a(b)) = f(a) � �2
f(a)(b) = f(a) � f(b):

And similarly for the other implication.

Theorem 4.7. Let X be a set. With the constructions of G; �; �;� de�ned

above, we have that (G=∼; �; �; �) is the free skew brace over X.

Proof. Let f : X ! A be a map, with (A; �; �; 
) a skew brace. By Lemma

4.6, it su�cies to extend f to a group morphism ~f : (G; �)! (A; �) such that

it satis�es ~f(�h(g)) = �f̃(h)(
~f(g)), for every g; h 2 G.

First we extend f to Z as follows:

- We extend f to Z1: ~f(x−1) := f(x)0, for every x−1 2 X−1;

- Assuming that we have de�ned ~f on Zn−1. A generic element in Zn−1

is of the form �x(y) or �x(y) with x; y 2 Zn−1, so we de�ne ~f(�x(y)) :=

�f̃(x)(
~f(y)) and ~f(�x(y)) := 
f̃(x)(

~f(y)) .

Then we extend f to G by de�ning ~f(z1 � � � zn) := ~f(z1) � � � ~f(zn); for

every z1; � � � ; zn 2 Z.

By construction, ~f is group morphism. We have to prove that ~f(�h(g)) =

�f̃(h)(
~f(g)). Let us proceed by steps:

- First we prove that ~f(�z1���zn(z)) = �f̃(z1���zn)(
~f(z)) for every

z1; � � � ; zn; z 2 Z. By induction on n we have that:

~f(�z1���zn(z)) = ~f
(
�zn(�z1���zn−1(z))

�
= �f̃(zn)

(
~f(�z1���zn−1(z))

�
= �f̃(zn)�f̃(z1���zn−1)(

~f(z)) = �f̃(z1���zn)(
~f(z))

And similarly ~f(�h(z)) = 
f̃(h)(
~f(z)), for every h 2 G; z 2 Z.

- Now we prove that ~f(�h(g)) = �f̃(h)(
~f(g)) and ~f(�h(g)) = 
f̃(h)(

~f(g))
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for every g; h 2 G. Suppose g = z1 � � � zn, by induction on n, we have

~f(�h(z1 � � � zn)) = ~f(�h(g0)��z1���zn−1 (h)(zn))

= ~f(�h(z1 � � � zn−1)) ~f(��z1���zn−1 (h)(zn))

= �f̃(h)(
~f(z1 � � � zn−1))�f̃(�z1���zn−1 (h))(f(zn))

= �f̃(h)(
~f(z1 � � � zn−1))�
f̃(h)(f̃(z1���zn−1))(f(zn))

= �f̃(h)(
~f(g)):

Finally we extend ~f to G=∼ in the natural way and ~f : G=∼ ! A is a

well-de�ned map since A; being a skew brace, satis�es (4.1). Moreover, by

construction, ~f : G=∼ ! A is a skew brace morphism and it is the unique

one such that f = ~fi, with i : X ! G=∼ the canonical inclusion.
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Chapter 5

The Yang-Baxter Equation

In this chapter we study the main properties of the Yang-Baxter equation,

in order to show their connection with skew braces.

5.1 Set-theoretical Solutions of the Yang-Baxter

Equation

De�nition 5.1. A set-theoretic solution of the Yang-Baxter equation is a

pair (X; r), where X is a set and

r : X �X ! X �X; r(x; y) = (fx(y); gy(x))

is a map such that

r12r23r12 = r23r12r23; (5.1)

where r12 = r � id and r23 = id� r.

The behaviour of the Yang-Baxter equation can be described by the

following picture:

Figure 5.1: The Yang{Baxter equation.
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The conditions (5.1) can be written more explicitely as follows:

r12r23r12(x; y; z) = r12r23(fx(y); gy(x); z)

= r12(fx(y); fgy(x)(z); gzgy(x))

= (ffx(y)fgy(x)(z); gfgy(x)(z)fx(y); gzgy(x));

r23r12r23(x; y; z) = r23r12(x; fy(z); gz(y))

= r23(fxfy(z); gfy(z)(x); gz(y))

= (fxfy(z); fgfy(z)(x)gz(y); ggz(y)gfy(z)(x)):

Then (X; r) is a solution if and only if f and g are such that

ffx(y)fgy(x)(z) = fxfy(z) (5.2)

gfgy(x)(z)fx(y) = fgfy(z)(x)gz(y) (5.3)

gzgy(x) = ggz(y)gfy(z)(x); (5.4)

for any x; y; z 2 X.

Examples 5.2. Let X be a set and r : X � X ! X � X be de�ned by

r(x; y) = (f(y); g(x)). By (5.3), r is a solution if and only if g � f = f � g.

In such a case, r is called the permutation solution.

De�nition 5.3. A set-theoretical solution of the YBE (X; r) is called:

• left non-degenerate if the maps fx are bijective for every x 2 X;

• right non-degenerate if the maps gx are bijective for every x 2 X;

• non-degenerate if it is both left and right non-degenerate;

• involutive if r2 = id;

• bijective if r is bijective.

Examples 5.4. LetX be a set. r(x; y) = (y; x) is an involutive non-degenerate

solution.

Examples 5.5. Let G be a group.

1. (G; r1) with r1(x; y) = (y; y−1xy) is a bijective non-degenerate solution

of the YBE;
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2. (G; r2) with r2(x; y) = (x2y; y−1x−1y) is a non-degenerate solution of

the YBE.

Examples 5.6. Let r(x; y) = (f(y); g(x)) be the permutation solution. Then

r is bijective if and only if f; g 2 Sym(X); and in this case r is also non-

degenerate. Indeed, an inverse of r is s(x; y) = (g−1(y); f−1(x)).

Moreover r is involutive if and only if fg = idX .

Proposition 5.7. Let X be a set and 4 : X �X ! X a binary operation

on X. The map r : X � X ! X � X, de�ned by r(x; y) = (y; y4x) is a

set-theoretical solution of the Yang-Baxter equation if and only if 4 is self

distributive, i.e. for every x; y; z 2 X, x4(y4z) = (x4y)4(x4z).

Proof. Call fx(y) = f(y) = y and gx(y) = x4y. Conditions (5.2) and

(5.3) are trivial. Condition (5.4) is equivalent to saying that z4(y4x) =

(z4y)4(z4x):

5.2 Braiding Operators

We want to consider now the case when X is a group and try to compare

some known notions to the set of solutions of the Yang-Baxter equations.

Theorem 5.8. ([27]) Let G be a group and �; � : G! Sym(G) respectivetely

a homomorphism and an antihomomorphism of groups such that they satisfy

the compatibility condition

uv = �u(v)�v(u); (5.5)

for every u; v 2 G. Then

r(u; v) = (�u(v); �v(u))

is invertible and is a solution of the Yang-Baxter equation on the set G.

Proof. We verify the relation (5.1). By previous computations we have that

r12r23r12(u; v) =
(
��u(v)(��v(u)(w)); ��βv(u)(w)(�u(v)); �w(�v(u))

�
;
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and

r23r12r23(u; v; w) =
(
�u(�v(w)); ��αv(w)(u)(�w(v)); ��w(v)(��v(w)(u))

�
:

Denote

r12r23r12(u; v) =: (u1; v1; w1); r23r12r23(u; v) =: (u2; v2; w2):

The compatibilty condition (5.5) implies that u1v1w1 = u2v2w2 = uvw,

indeed

u1v1w1 = �u(v)��v(u)(w)�w(�v(u)) = �u(v)�v(u)w = uvw;

u2v2w2 = �u(�v(w))��v(w)(u)�w(v) = u�v(w)�w(v) = uvw:

Hence it su�cies to prove that u1 = v1 and w1 = w2, but this is true by the

properties of � and �.

Moreover, we can construct an inverse of r.

Let r(u; v) = (x; y), with x = �u(v) and y = �v(u). Then we have that

u = �v−1(y), v = �u−1(x) and, by compatibility, uv = xy. Observe that

�y(v
−1)u = �y(v

−1)�v−1(y) = yv−1 = x−1u;

hence �y(v
−1) = x−1, so v−1 = �y−1(x−1): Similarly

v�x(u−1) = �u−1(x)�x(u−1) = u−1x = vy−1

hence u−1 = �x−1(y−1).

Therefore we conclude saying that, since r(y−1; x−1) = (�y−1(x−1); �x−1(y−1)) =

(v−1; u−1); if we consider �(x; y) := (y−1; x−1), we have that �r� is the inverse

of r.

Next we give two alternative descriptions of our construction.

De�nition 5.9. Let G be a group with multiplication m : G � G ! G. A

braiding operator on G is a bijective map � : G�G! G�G satisfying

1. for any u; v; w 2 G,

�(uv;w) = (id�m)�12�23(u; v; w); (5.6)

�(u; vw) = (m� id)�23�12(u; v; w); (5.7)
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2. for any u 2 G,

�(1; u) = (u; 1); �(u; 1) = (1; u); (5.8)

3. for any u; v 2 G,

m�(u; v) = uv: (5.9)

Theorem 5.10. ([27]) Over any group G, the following data are equivalent:

1. (�; �): an homomorhism and anti-homomorphism of groups G !
Sym(G) such that uv = �u(v)�v(u), for every u; v 2 G;

2. �: a braiding operator on G

3. � : G! A: a bijective 1-cocycle.

Proof. Case 1: (�; �) () �: The equivalence between (�; �) and � is

given by �(u; v) = (�u(v); �v(u)):

First we assume that �; � are a homomorphism and an anti homomorphism

of groups that satisfy (5.5) and we verify that � is a braiding operator.

Let us check the properties of a braiding operator.

1. For every u; v; w 2 G, we have that

�(uv;w) = (�uv(w); �w(uv)) = (u1; v1);

on the other hand we have

(id�m)�12�23(u; v; w) = (id�m)�12(u; �v(w); �w(v))

= (id�m)(�u(�v(w)); ��v(w)(u); �w(v))

= (�uv(w); ��v(w)(u)�w(v))

= (u2; v2):

By compatibility condition (5.5), we have that u1v1 = uvw = u�v(w)�w(v) =

u2v2, hence v1 = v2, since u1 = u2.

Analogously, �(u; vw) = (�u(vw); �vw(u) = u3v3 and

(m� id)�23�12(u; v; w) = (�u(v)��v(u)(w); �w(�v(u)) = u4v4;

with v4 = v3 because u3 = v3 and u3v3 = uvw = u4v4, again by the

compatibility condition.
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2. For every u 2 G, we have that �(1; u) = (�1(u); �u(1)) = (u; �u(1)):

Moreover if we consider (5.5) with u = 1 we obtain v = v�v(1), that

implies �(1; u) = (u; 1) and similarly �(u; 1) = (1; u).

3. The third property is precisely the compatibility condition.

This completes the proof that � is a braiding operator.

Conversely, assume that � is a braiding operator. Then, comparing the �rst

coordinates of (5.6), we see that �uv(w) = �(u; �v(w)) for every u; v; w 2 G.

Moreover the �rst equality in (5.8) implies �(u; 1) = u, for every u 2 G. This

proves that � is a homomorphism. Similarly � is an anti-homomorphism.

Moreover, as said above, the compatibility condition is equivalent to (5.8).

Case 2: (�; �) () (A; �): Given �; � : G ! Sym(G), a homomor-

phism and an antihomomorphism of groups, take A = G with the following

operation

u � v = u�u−1(v): (5.10)

Replaicing v with �u(v) in (5.10), we obtain

u � �u(v) = u�u−1(�u(v)) = u�1(v) = uv;

which means exactly that � = id : G! A is a bijective 1-cocycle. It remains

to show that (A; �) is a G-group.

Clearly, 1 � u = �1(u) = u, that is 1 is a left unit and u � �u(u−1) =

u�u−1(�u(u−1)) = uu−1 = 1; that is �u(u−1) is a right inverse of u with re-

spect to �. Notice that, by compatibility condition, we have that v�v(u)−1 =

u−1�u(v), that implies u � v = v�v(u
−1)−1: Hence u � 1 = �1(u−1)−1 = u,

that is 1 is a right unit and

�u−1(u)−1 � u = u�u(�u−1(u))−1 = u�1(u)−1 = uu−1 = 1;

that is �u−1(u)−1 is a left inverse of u. Remember that by the compatibility

condition 1 = uu−1 = �u(u−1)�u−1(u), hence �u−1(u)−1 = �u(u−1), so we

have found an inverse for each u 2 G.

To prove the associativity of � and that �u 2 Aut(A) for every u 2 G, we

�rst use the compatibility condition (5.5) to get

�u(vx)�vx(u) = uvx = �u(v)�v(u)x = �u(v)��v(u)(x)�x(�v(u)); (5.11)
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thus, since � is an anti-homomorphism,

�u(vx) = �u(v)��v(u)(x): (5.12)

Now �x v; w 2 G, we have that �u(v � w) = �u(v�u−1(v)). Taking x =

�v−1(w), we obtain that

�u(v � w) = �u(vx)
(5.12)

= �u(v)��v(u)(x)

= �u(v)��v(u)(�v−1(w)) = �u(v)��v(u)v−1(w)

(5.5)
= �u(v)��u(v)−1u(w) = �u(v) � �u(w);

(5.13)

that is �u is an endomorphism, and indeed an isomorphism, of A. Finally,

the associativity of � follows from

u � (v � w) = u�u−1(v � w)
(5.13)

= u(�u−1(v) � �u−1(w))

= u�u−1(v)��u−1 (v)−1u−1(w) = (u � v)�(u�v)−1(w)

= (u � v) � w:

Conversely, let A be a G-group and � : G ! A a bijective 1-cocycle, with

(u; a) 7! u � a the action of G on A. De�ne � : G ! Sym(G), u 7! �u with

�u(v) := �−1(u � �(v)), for every u; v 2 G. The map � is group morphism

since

�u(�v(w)) = �−1(u � �(�v(w))) = �−1(u � (v � �(w)))

= �−1(uv � �(w)) = �uv(w)

for every u; v; w 2 G. Moreover, we de�ne � according to the compatibility

condition, that is �v(u) := �u(v)−1uv. It remains to show that � is an

anti-homomorphism of groups. In order to prove that, observe

�−1(�(u)(u � a)) = �−1(�(u�−1(a))) = u�−1(a); (5.14)

for every u; v 2 G; a 2 A. Denote by u � v the element �−1(�(u)�(v)) 2 G.

Taking a = u−1 � �(v) in (5.14), we obtain

u�u−1(v) = u�−1(u−1 � �(v)) = �−1(�(u)�(v)) = u � v: (5.15)

Since A is a G- group, we have, for every u; v; w 2 G, that

�u(v � w) = �−1(u � �(u � w)) = �−1(u � �(v)�(w))

= �−1((u � �(v))(u � �(w))) = �−1(u � �(v)) � �−1(u � �(w))

= �u(v) � �u(w) = �u(v)��u(v)−1(�u(w)):
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As in (5.11) the following equalities hold for every u; v; x 2 G. �u(vx)�vx(u) =

uvx = �u(v)�v(u)x = �u(v)��v(u)(x)�x(�v(u)): Hence it su�cies to show

that �u(vx) = �u(v)��v(u)(x). By compatibility condition, �u(v)−1u =

�v(u)v−1. So �x u; v; x 2 G and consider w := �v(x), in such a way to have

v � w = vx. Then

�u(vx) = �u(v � w)
(5.15)

= �u(v)��u(v)−1(�u(w))

= �u(v)��u(v)−1u(w) = �u(v)��v(u)v−1(w)

= �u(v)��v(u)(�v−1(w)) = �u(v)��v(u)(x)

And this completes the proof.

Corollary 5.11. Any braiding operator is invertibile and satis�es the Yang-

Baxter condition (5.1).

5.3 Skew Braces and Solutions of the Yang-Baxter

Equation

Theorem 5.12 ([22]). Let A be a left skew brace. Then

rA : A�A! A�A; rA(a; b) = (�a(b); �a(b)
0 � a � b); (5.16)

is a bijective non-degenerate solution of the Yang-Baxter equation.

Proof. By Corollary 5.11, every braiding operator is a bijective non-degenerate

solution of the Yang-Baxter equation. Thus it is enough to prove that rA

is a braiding operator on (A; �). For simplicity, for the entire proof we will

use r instead of rA.

We have that mr(a; b) = �a(b) � �a(b)0 � a � b = a � b, for all a; b 2 A:
Moreover, since � is an homomorphism from (A; �) to Aut(A; �), for every

a 2 A we obtain r(a; 1) = (1; �a(1)0�a) = (1; a) and r(1; a) = (a; �1(a)0�a) =

(a; 1): If a; b; c 2 A, then

(id�m)r12r23(a; b; c) = (id�m)r12

(
a; �b(c); �b(c)

0 � b � c
�

= (id�m)
(
�a�b(c); (�a�b(c))

0 � a � �b(c); �b(c)0 � b � c
�

=
(
�a�b(c); (�a�b(c))

0a � b � c
�

=
(
�a�b(c); (�a�b(c))

0 � (a � b) � c
�

= r(a � b; c):
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From Remark 1.9 we obtain for every a; b; c 2 A

�a(b � c) = �a(b � �b(c)) = �a(b) � �a�b(c):

From this formula we deduce that

�a(b) � ��a(b)0�a�b(c) = �a(b) � �−1
�a(b)(�a�b(c)) = �a(b) � ��a(b)(�

−1
�a(b)(�a�b(c)))

= �a(b) � �a�b(c) = �a(b � c):

Then

(m� id)r23r12(a; b; c) = (m� id)r23

(
�a(b); �a(b)

0 � a � b; c
�

= (m� id)
(
�a(b); ��a(b)0�a�b(c); ��a(b)0�a�b(c)

0 � �a(b)0 � a � b � c
�

=
(
�a(b � c); (�a(b � c))0 � �a(b) � �a(b)0 � a � b � c

�
=
(
�a(b � c); (�a(b � c))0 � a � (b � c)

�
= r(a; b � c):

Indeed, this map works also functorially. Let SYBE be the category of

non-degenerate solutions of the Yang-Baxter equation, where a morphism

between two solutions (X; r) and (Y; s) is a map f : X ! Y such that this

diagram

X �X Y � Y

X �X Y � Y

f�f

r s

f�f

commutes.

De�ne F : SKB! SYBE by

F (A; �; �) := (A; rA)

and

F (A
f! B) := f:

F (f) is a morphism in SYBE. Indeed, consider the following diagram:

A�A B �B

A�A B �B

f�f

rA rB

f�f
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For every a1; a2 2 A,we have that

(f � f)rA(a1; a2) = (f � f)
(
�Aa1(a2); �Aa1(a2)0 � a1 � a2

�
=
(
f(�Aa1(a2)); f(�Aa1(a2)0 � a1 � a2)

�
=
(
�Bf(a1)(f(a2)); �Bf(a1)(f(a2))0 � f(a1) � f(a2)

�
and, on the other hand,

rB((f � f)(a1; a2)) = rB(f(a1); f(a2))

=
(
�Bf(a1)(f(a2)); �Bf(a1)(f(a2))0 � f(a1) � f(a2)

�
:

It is easy to see that F respects compositions and identies, therefore it is a

functor.

Proposition 5.13. Let (A; �; �) be a left skew brace. Then rA is involutive

if and only if (A; �) is abelian.

Proof. Let a; b 2 A. Recall that rA(a; b) = (�a(b); �a(b)
0 � a � b). Let us

compute r2
A.

r2
A(a; b) = rA(�a(b); �a(b)

0 � a � b)

=
�
��a(b)

(
�a(b)

0 � a � b
�
; ��a(b)

(
�a(b)

0 � a � b
�0 � �a(b) � �a(b)0 � a � b�

=
�
��a(b)

(
�a(b)

0 � a � b
�
; ��a(b)

(
�a(b)

0 � a � b
�0 � a � b�

On the other hand, ��a(b)(�a(b)
0�a�b) = (�a(b))

−1�(a�b) = (a�b)−1�a�(a�b),
hence

r2
A(a; b) =

�
(a � b)−1 � a � (a � b);

(
(a � b)−1 � a � (a � b)

�0 � a � b�:
Hence rA is involutive if and only if (a�b)−1�a�(a�b) = a and

(
(a�b)−1�a�

(a�b)
�0�a�b = b if and only if a�(a�b) = (a�b)�a, for every a; b 2 A. So for

every element c of A, we have that a�c = a�(a�(a0�c)) = (a�(a0�c))�a = c�a.

Therefore the thesis.

Our next goal is to build a skew brace from a solution of the Yang-Baxter

equation. Let X be a set and denote with F (X) the free group over X. We

denote by i : X ,! F (X) the natural embedding. Let S be a set of words in

X, so S naturally gives a subset of F (X). We de�ne the group presentation
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hX; Si of generators in X and relations in S, the quotient group F (X)=NS ,

where NS is the normal closure of S in F (X), i.e. the smallest normal

subgroup of F (X) that contains S. Recall that the normal closure of a set

S in an arbitrary group G is precisely the subgroup generated by all the

elements of the form g−1sg, with g 2 G and s 2 S, so

NS = fg−1
1 s�11 g1 � � � g−1

k s�kk gk j k � 0; gi 2 G; si 2 S; �i = �1g:

Consider (X; r) a non-degenerate solution of the Yang-Baxter equation,

with r(x; y) = (fx(y); gy(x)).

We de�ne the groups

(G(X; r); �) := hX j x � y = fx(y) � gy(x); forx; y 2 Xi;

called the structure group and

(A(X; r); �) := hX j x � fx(y) = fx(y) � ffx(y)gy(x) forx; y 2 Xi;

called the derived group.

We denote by iG : X ! G(X; r) and iA : X ! A(X; r) the two natural

maps.

Lemma 5.14 ([3]). Let (X; r) be a non-degenerate solution of the Yang-

Baxter equation, with r(x; y) = (fx(y); gy(x)). The map f : X ! Sym(X),

x 7! fx can be extended with a unique homomorphism of groups f : G(X; r)!
Sym(X), namely fiG(x)(y) = fx(y); for every x; y 2 X.

It also induces a unique homomorphism of groups f : G(X; r)! Aut(A(X; r))

such that f iG(x)(iA(y)) = iA(fx(y)); for any x; y 2 X.

Moreover, the map g : X ! Sym(X), x 7! gx can be extended with a

unique anti-homomorphism of groups g : G(X; r)! Sym(X).

Proof. It is well known that the map f can be uniquely extended to a mor-

phism of groups f : F (X)! Sym(X).

This map f induces a unique morphism f : G(X; r) ! Sym(X) if it

preserves the de�ning relations of G(X; r), i.e. if fxy = ffx(y)gy(x), for every

x; y 2 X, but this is true by (5.2). The situation is described by the following
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commutative diagram:

G(X; r) Sym(X)

X

F (X)

iG f

f

i

f

Similarly, g is extended to a unique anti-homomorphism g : G(X; r) !
Sym(X) since by (5.4) gxgy = ggx(y)gfy(x).

Now we have to prove that f : X ! Sym(X) induces a morphism f : G(X; r)!
Aut(A(X; r)). First we check that fx : X ! X induces a unique morphism

fx : A(X; r)! A(X; r) such that fxjA(X;r) = iA(fx).

The map iAfx : X ! A(X; r) can be uniquely extended to a morphism

fx : F (X)! A(X; r). The morphism fx induces a unique morphism fx : A(X; r)!
A(X; r) if and only if

fx(y) � fx(fy(z)) = fx(fy(z)) � fx
(
ffy(z)gz(x)

�
for any y; z 2 X. But this is true since:

fx(y) � fxfy(z) = fx(y) � ffx(y)fgy(x)(z) (by (5.2))

= ffx(y)fgy(x)(z) � fffx(y)fgy(x)(z)gfgy(x)(z)fx(y)

= fxfy(z) � ffxfy(z)fgfy(z)(x)gz(y) (by (5.2) and by (5.3))

= fxfy(z) � fxffy(z)gz(y) (by (5.2)):

Therefore we proved that iAfx induces a unique morphism fx such that the

following diagram

X X

A(X; r) A(X; r)

fx

iA iA

fx

commutes.

Similarly we are going to prove that f−1
x : X ! X induces a unique
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morphism f−1
x : A(X; r)! A(X; r) such that the diagram

X X

A(X; r) A(X; r)

f−1
x

iA iA

f−1
x

(5.17)

commutes. As before it is enough to check that

f−1
x (y) � f−1

x (fy(z)) = f−1
x (fy(z)) � f−1

x

(
ffy(z)gz(x)

�
(5.18)

for every y; zX:

In order to prove it, we need two more properties on f and g. Condition

(5.2) implies that fxff−1
x (y) = fyfg

f−1
x (y)

(x), then

f−1
x fy = ff−1

x (y)f
−1
g
f−1
x (y)

(x): (5.19)

Moreover, (5.2) and (5.3) imply that fg
f−1
x ffx(y)

(z)
(x)gf−1

gy(x)
(z)(x) = gzfx(y);

then

f−1
g
f−1
x fy(z)

(x)gz(y) = gf−1
g
f−1
x (y)

(x)
(z)(x): (5.20)

Through these identities we get

f−1
x (y) � f−1

x fy(z)
(5.19)

= f−1
x (y) � ff−1

x (y)f
−1
g
f−1
x (y)

(x)(z)

= ff−1
x (y)f

−1
g
f−1
x (y)

(x)(z) � ff
f−1
x (y)

f−1
g
f−1
x (y)

(x)
(z)gf−1

g
f−1
x (y)

(x)
(z)f

−1
x (y)

(5.19)
= f−1

x fy(z) � ff−1
x fy(z)gf−1

g
f−1
x (y)

(x)
(z)f

−1
x (y)

(5.20)
= f−1

x fy(z) � ff−1
x fy(z)f

−1
g
f−1
x fy(z)

(x)gz(y)

(5.19)
= f−1

x fy(z) � f−1
x ffy(z)gz(x):

Hence we proved (5.18). Moreover, since the morphism idA(X;r) : A(X; r)!
A(X; r) is the unique morphism such that the diagram

X X

A(X; r) A(X; r)

idX

iA iA

idA(X,r)
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commutes, it is clear that fxf
−1
x = f−1

x fx = idA(X;r), so fx is an auto-

morphism of A(X; r). So we have obtained a well de�ned map f : X !
Aut(A(X; r)).

Finally observe that if a map h 2 Sym(X) induces a morphism h : A(X; r)!
A(X; r) such that

X X

A(X; r) A(X; r)

h

iA iA

h

commutes, then h is the unique morphism that satis�es this condition.

Therefore, by (5.2), we can say that

fxfy = ffx(y)fgy(x);

for any x; y 2 X, therefore there exists a unique morphism f : G(X; r) !
Aut(A(X; r)) such that f iG(x)(iA(y)) = iA(fx(y)), for every x; y 2 X, and

this concludes the proof.

We need a previous result about 1-cocycles.

Theorem 5.15. ([3]) Let G be a group de�ned by a group presentation

G = hX j Si and let H be a G-group with � : G! Aut(H) the corresponding

action.

Then a map � : X ! H induces a 1-cocycle �: G ! H if and only

if �(s) = 1 for every s 2 S, where �(x) = �(x) for every x 2 X and

�(xe11 � � �xenn ) = �g1(�(x1))e1 � � ��gn(xn)en with ei 2 f�1g and gi = xe11 � � �x
ei−1

i−1

if ei = 1 and gi = xe11 � � �x
ei
i if ei = −1.

Proof. Suppose to have a 1-cocycle �: G ! H such that �jX = �, then,

since G = F (X)=NS , �(NS) = 1 and hence �(s) = 1 for every s 2 S.

Conversely, given a map � : X ! H, we extended � to a map � : F (X)!
H as in the statement of the Theorem and we assume that �(s) = 1 for any

s 2 S. A direct calculation shows that with this extension of �, � is a

1-cocycle with respect to the action

F (X) ,! F (X)=NS
�! Aut(H):
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De�ne �: G ! H by �(gNS) := �(g). To show that it is a well de�ned

map, we have to prove that �(n) = 1 for every n 2 NS . First, if s 2 S,

then �(s−1) = �−1
s (�(s))−1 = �−1

s (1)−1 = 1: Moreover, if s 2 S [ S−1 and

u 2 F (X), then

�(u−1su) = �(u−1)�u−1(�(s))�u−1s(�(u))

= �(u−1)�u−1(1)�u−1�1(�(u))

= �(u−1)�u−1(�(u))

= �(u−1u) = 1;

where �n = idH for every n 2 NS since � is a group homomorphism. Hence,

by induction, for every n = u−1
1 s1u1 � � �u−1

k skuk 2 NS , �(n) = 1. So let

uN = vN two di�erent representatives of an element in G. Then v = un

for some n 2 NS and hence

�(vNS) = �(v) = �(u)�u(�(n)) = �(u) = �(uNS):

So � is a well-de�ned map. We conclude showing that � is a 1-cocycle,

indeed, let uNS ; vNS 2 G, then

�(uNSvNS) = �(uvNS) = �(uv) = �(u)�u(�(v)) = �(uN)�uNS (�(vNS)):

Lemma 5.16. ([3]) Let (X; r) be a non-degenerate solution of the Yang-

Baxter equation. Then, the map T : iG(X) ! iG(X) given by T (iG(x)) =

iG(f−1
x (x)); for all x 2 X, is bijective with inverse T−1(iG(x)) = iG(g−1

x (x))

for all x 2 X.

Proof. Let us check that T is well-de�ned. So let x; y 2 X be such that

iG(x) = iG(y). We have to prove that iG(f−1
x (x)) = iG(f−1

y (y)).

By Lemma 5.14, f : X ! Sym(X) extends to a morphism f : G(X; r)!
Sym(X) such that fx = fiG(x). Hence, if iG(x) = iG(y), then fx = fy

implies that f−1
x = f−1

y and hence iG(f−1
x (x)) = iG(f−1

y (x)). Similarly,

since g : X ! Sym(X) extends to an anti-homomorphism g : G(X; r) !
Sym(X), we also have gx = giG(x) and, if iG(x) = iG(y), then gx = gy

implies that iG(gx(u)) = iG(gy(u)) for every u 2 X. Now, let r(u; x) =
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(fu(x); gx(u)) and r(u; y) = (fu(y); gy(u)) with u 2 X, then iG(u)iG(x) =

iG(fu(x))iG(gx(u)) and iG(u)iG(y) = iG(fu(y))iG(gy(u)), so, since iG(x) =

iG(y) and iG(gx(u)) = iG(gy(u)); we obtain that iG(fu(x)) = iG(fu(y)) for

any u 2 X, therefore we get

iG(f−1
x (x)) = iG(f−1

y (x)) = iG(f−1
y (y)):

In an analogous way, one can check that T 0 : iG(X) ! iG(X), iG(x) 7!
iG(g−1

x (x)), is well de�ned.

So it remains to prove that T and T 0 are one the inverse of the other.

Notice that r(x; f−1
x (x)) = (x; gf−1

x (x)(x)) for any x 2 X, hence iG(f−1
x (x)) =

iG(gf−1
x (x)(x)) for every x 2 X. Therefore

T 0T (iG(x)) = T 0(iG(f−1
x (x))) = iG(g−1

f−1
x (x)

(f−1
x (x)))

= iG(g−1

f−1
x (x)

gf−1
x (x)(x)) = iG(x);

for any x 2 X.

Similarly, since r(g−1
x (x); x) = (fg−1

x (x)(x); x), for any x 2 X, iG(g−1
x (x)) =

iG(fg−1
x (x)(x)). Therefore

TT 0(iG(x)) = T (iG(g−1
x (x))) = iG(f−1

g−1
x (x)

(g−1
x (x)))

= iG(f−1

g−1
x (x)

fg−1
x (x)(x)) = iG(x);

for any x 2 X, and this concludes the proof.

Theorem 5.17 ([3]). Let (X; r) be a non-degenerate solution of the Yang-

Baxter equation. Then we can de�ne a product � over G(X; r) such that

(G(X; r); �; �) is a left skew brace and (G(X; r); �) �= A(X; r).

Proof. As in Chapter 1, we indicate with g0 the inverse of g in G(X; r).

By Proposition 2.8, to have a skew brace it is enough to show that there

is a bijective 1-cocycle from G(X; r) to A(X; r).

Consider f : G(X; r) ! Aut(A(X; r)) as in Lemma 5.14 and its restric-

tion to X, f : X ! Aut(A(X; r). De�ne � : X ! A(X; r) by �(x) = iA(x).

By Theorem 5.15, � induces a 1-cocycle �: G(X; r)! A(X; r) if

�((xy)−1fx(y)gy(x)) = 1
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for every x; y 2 X, where � : F (X) ! A(X; r) is de�ned in Theorem 5.15.

By de�nition,

�(xy) = �(x) � fx(�(y)) = iA(x) � fx(iA(y))

= iA(x) � iA(fx(y)) = iA(fx(y)) � iA(ffx(y)gy(x))

= iA(fx(y)) � ffx(y)

(
iA(gy(x))

�
= �(fx(y)) � ffx(y)

(
�(gy(x))

�
= �(fx(y)gy(x))

for any x; y 2 X. Hence

�((xy)−1fx(y)gy(x)) = �((xy)−1) � f−1
xy (�(fx(y)gy(x)))

= �((xy)−1) � f−1
xy (�(xy))

= �((xy)−1(xy)) = �(1) = 1:

Therefore, there exists a well de�ned 1-cocycle �: G(X; r) ! A(X; r) such

that �(iG(x)) = iA(x); for every x 2 X.

Observe that, from 1 = �(iG(x)0 � iG(x)) = �(iG(x)0)� f iG(x)0(�(iG(x))),

we have

�(iG(x)0) = (f
−1
iG(x)(iA(x)))−1 (5.17)

= (iA(f−1
x (x)))−1; (5.21)

for every x 2 X. Moreover, if iG(x) = iG(y), then iA(x) = iA(y).

Now we have to construt an inverse for �.

We de�ne � : (F (X); �)! (G(X; r); �) by

�(1) = 1; �(x) = iG(x); �(x−1) = iG(g−1
x (x))0 (5.22)

for every x 2 X, with x−1 the inverse of x and recursively de�ne

�(xe11 � � �x
en+1

n+1 ) = �(xe11 � � �x
en
n ) � �(f−1

�(x
e1
1 ���x

en
n )

(xn+1)en+1); (5.23)

with f : G(X; r)! Sym(X) de�ned in Lemma 5.14. First observation: con-

sider now a generic element u 2 F (X), and x1; x2 2 X; e1; e2 2 f�1g. First

notice that, by de�nition, �(uxe11 ) = �(u) � �(f−1
�(u)(x1)e1), then we have that

�(uxe11 x
e2
2 ) = �(uxe11 ) � �(f−1

�(ux
e1
1 )

(x2)e2)

= �(u) � �(f−1
�(u)(x1)e1) � �(f−1

�(u)��(f−1
θ(u)

(x1)e1 )
(x2)e2)

= �(u) � �(f−1
�(u)(x1)e1f−1

�(u)(x2)e2)

= �(u) � �(f−1
�(u)(x

e1
1 x

e2
2 )):

(5.24)
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Second observation: let x; y 2 X, we get

�(ufx(y)) = �(x) � �
(
f−1
�(x)(fx(y))

�
= iG(x) � �

(
f−1
iG(x)(fx(y))

�
= iG(x) � �

(
f−1
x (fx(y))

�
= iG(x) � iG(y)

= iG(fx(y)) � iG(gy(x)) = �(fx(y)) � �(gy(x))

= �(fx(y)ffx(y)(gy(x)));

(5.25)

and this implies that

�
�
xfx(y)

(
fx(y)ffx(y)gy(x)

�−1
�

(5.24)
= �

(
xfx(y)

�
� �
�
f−1
�(xfx(y))

(
(fx(y)ffx(y)gy(x))−1

��
(5.25)

= �
(
fx(y)ffx(y)(gy(x))

�
� �
�
f−1
�(fx(y)ffx(y)gy(x))

(
(fx(y)ffx(y)gy(x))−1

��
(5.24)

= �
�
fx(y)ffx(y)gy(x)

(
(fx(y)ffx(y)gy(x))−1

��
= �(1) = 1:

We proved that � is trivial over the relations of A(X; r). So, as in Theo-

rem 5.15, � extends to a well-de�ned map �: A(X; r)! G(X; r) such that

�(iA(x)) = iG(x) and �(a � b) = �(a) ��(f
−1
Θ(a)(b)) for any a; b 2 A(X; r).

It remains to show that � and � are inverse of each other. First we

check it on the generators. Let x 2 X, by de�nition of � and �, we have

that

�(�(iA(x))) = �(iG(x)) = iA(x);

and

�(�(iG(x))) = �(iA(x)) = iG(x):

Now we check it on the inverse of the generators. Let x 2 X,

�(�(iG(x)0))
(5.21)

= �(iA(f−1
x (x))−1)

(5.22)
= iG(g−1

f−1
x (x)

f−1
x (x))0

= T−1(T (iG(x)0)) = iG(x)0;

where T; T−1 are the maps de�ned in Lemma 5.16. Moreover

�(�(iA(x)−1))
(5.22)

= �(iG(g−1
x (x))0)

(5.21)
= iA(f−1

g−1
x (x)

g−1
x (x))−1;

on the other hand, iG(f−1

g−1
x (x)

g−1
x (x)) = T−1T (iG(x)) = iG(x) by Lemma

5.16 and, as we have just noticed, this implies that iA(f−1

g−1
x (x)

g−1
x (x)) =

iA(x), therefore, �(�(iA(x)−1)) = iA(x)−1:
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Finally, let iG(x1)e1�� � ��iG(xn)en a generic element of G(X; r), with xi 2
X, ei 2 f1;0 g. We prove by induction that �(�(iG(x1)e1 � � � � � iG(xn)en)) =

iG(x1)e1 � � � � � iG(xn)en . We have already check the case n = 1. Assume

that the case n is true, and we shall prove the case n+ 1.

��(iG(x1)e1 � � � � � iG(xn+1)en+1)

= �
�

�(iG(x1)e1 � � � � � iG(xn)en) � f iG(x1)e1�����iG(xn)en (�(x
en+1

n+1 ))
�

(5.23)
= ��(iG(x1)e1 � � � � � iG(xn)en)�

��
(
f
−1
ΘΠ(iG(x1)e1�����iG(xn)en )f iG(x1)e1�����iG(xn)en (�(x

en+1

n+1 ))
�

= iG(x1)e1 � � � � � iG(xn) ��(f
−1
iG(x1)e1�����iG(xn)en f iG(x1)e1�����iG(xn)en (�(x

en+1

n+1 )))

= iG(x1)e1 � � � � � iG(xn) ���(iG(x
en+1

n+1 ))

= iG(x1)e1 � � � � � iG(xn)en � iG(xn+1)en+1 ;

where, in the �rst equalities, we use the fact that � is a 1-cocycle and in

the third and �fth equalities we use the inductive hypothesis.

It remains to do the same thing to prove that �� = idA(X;r). So let

iA(x1)e1 � � � � iA(xn)en a generic element of A(X; r), with xi 2 X and ei 2
f1;−1g. We proceed by induction assuming that the case n is true.

��(iA(x1)e1 � � � � iA(xn+1)en+1)

(5.23)
= �

�
�(iA(x1)e1 � � � � iA(xn)en) ��(f

−1
Θ(iA(x1)e1����iA(xn)en )(iA(xn+1)en+1))

�
= ��(iA(x1)e1 � � � � iA(xn)en)�

� fΘ(iA(x1)e1����iA(xn)en )

�
��(f

−1
Θ(iA(x1)e1����iA(xn)en )(iA(xn+1)en+1))

�
(5.17)

= iA(x1)e1 � � � � iA(xn)en�

� fΘ(iA(x1)e1����iA(xn)en )

�
��
(
iA(f−1

Θ(iA(x1)e1����iA(xn)en )(xn+1)en+1
��

= iA(x1)e1 � � � � iA(xn)en�

� fΘ(iA(x1)e1����iA(xn)en )

�
iA(f−1

Θ(iA(x1)e1����iA(xn)en )(xn+1)en+1

�
(5.17)

= iA(x1)e1 � � � � iA(xn)en�

� fΘ(iA(x1)e1����iA(xn)en )

�
f
−1
Θ(iA(x1)e1����iA(xn)en )(iA(xn+1)en+1)

�
= iA(x1)e1 � � � � iA(xn)en � iA(xn+1)en+1 ;

where in the third and fourth equalities we used the inductive hypothesis

and on the second one we use the de�nition of �.
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This concludes the proof.

Theorem 5.18. ([35]) Let (X; r) be a non-degenerate solution of the Yang-

Baxter equation. Then there exists a unique left skew brace structure over

G(X; r) such that

rG(X;r)(iG � iG) = (iG � iG)r;

with iG : X ! G(X; r). Moreover, if A is a left skew brace and f : X ! A is

a map such that (f � f)r = rA(f � f), then there exists a unique skew brace

morphism ' : G(X; r)! A such that f = 'i and ('�')rG(X;r) = rA('�'):

We constructed the skew brace structure of G(X; r) through a bijective

1-cocycle, but doing computations we can forget about � and use directly

the � operation over G(X; r). By de�nition of 1-cocycle, g � h = g � fg(h)

for every g; h 2 G, so in other words g � h = g � (fg)
−1(h).

Remark 5.19. Let (X; r) be a non-degenerate solution. In general, iG : X !
G(X; r) is not injective. For instance, consider X = f1; 2; 3; 4g; � = (12); � =

(34). Then (X; r), r(x; y) = (�(y); �(x)) is a non-degenerate solutions.

But the canonical map iG : X ! G(X; r), x 7! iG(x) is not injective since

r(1; 2) = (1; 1) and hence iG(1) = iG(2) even if 1 is not 2.

Hence looking at the structure group we may loose information. So

recently instead of study the structure group, it can be helpful study the

structure monoid, that is the monoid M(X; r) generated by X and such that

xy = fx(y)gy(x). Then for any solution iM : X !M(X; r) is injective. For

further information see for example [14, 12].
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