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Abstract

Cosmological effects of parity violation allow us to investigate some processes
that took place in the early Universe, and to shed light on new physics beyond
the Standard Model. We will analyze one of the effects responsible of this
violation: the Cosmic Birefringence (CB). This phenomenon is related to the
in-vacuo rotation of the polarization angle (denoted as χ) of photons coming
from very distant sources, and it could be explained by the presence of Dark
Matter and Dark Energy fields in the early universe, and by their interaction
with CMB photons (through a Chern-Simons coupling). Since it is reasonable
to think that these fields are affected by some fluctuations, they can generate
anisotropies in the CB angle, making it space-dependent. In this work, after
an overview about the CB models proposed up to now, we will extend the
anisotropic birefringence effect to the case of a Chern-Simons coupling with a
function of the Ricci scalar f(R), including the contribution of the δR fluctu-
ations and computing the perturbed rotation angle δχ. We will find that δR,
and so δχ, are directly sourced by the scalar metric perturbations Φ and Ψ
(which are the Bardeen’s gravitational potential in the Poisson gauge), such
that the birefringence angle power spectrum, given by Cχχ

l , is strictly related
to one of the two gravitational potentials.
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Introduction

One of the most intriguing topics studied nowadays by both cosmologists and
particle physicists is the searching for Dark Matter (DM) and Dark Energy
(DE), required to recover the overall matter-energy content in the Universe.
Up to now many evidences of their existence have been probed and studied,
from the galactic velocity curves to the accelerated expansion of the Universe.
This means that it is necessary to go beyond the Standard Model of particle
physics, introducing new types of exotic particles; indeed the current cosmo-
logical model, called ΛCDM, contains this new physics in terms of both DM
and DE components.
In this thesis we will investigate another interesting phenomenon that could
be explained by the presence of a dark matter (or dark energy) field, and by
its interactions with photons coming from very distant sources: it is the effect
of Cosmic Birefringence (CB). As we will see it is generated by the presence
of a Chern-Simons coupling term added to the standard electromagnetic La-
grangian density, modifying in this way the equations of motion (the Maxwell
equations) in a parity-violating way. Then, from this modification it is possible
to show that, in the end, the effect is a rotation of the linear polarization plane
as the photons propagate in spacetime. This is the same effect that takes place
in liquid crystals, as shown in the scheme in figure 1.
Thus, Cosmic birefringence represents a further way to investigate the primor-
dial Universe and its components, in order to discover the mechanisms behind
its dynamics and evolution at very early epochs. Indeed, besides the impor-
tance of CB as a probe of primordial DM and DE fields, it could be exploited
also to shed light on other processes such as the primordial baryogenesis, or
to study some modified GR models, for instance the so-called f(R)-theories of
gravity.
Let’s take a quick summary about the contents of this work. First of all, we will
go through a deep overview on the proposed models and computations of the
birefringence angle carried out up to now in the present literature, considering
both the isotropic and anisotropic cases, relying also on the observability of
the effect with current and future instruments. For both cases we will analyze
the results obtained by considering the coupling of the photon with a scalar
field ϕ, which in general is a pseudo-Nambu-Goldstone boson, and in practice
it is thought to be an axion-like field or a generic quintessence field (in par-
ticular in the context of baryogenesis models). Moreover we will see that the
birefringence phenomenon arises also replacing the scalar field with a generic
function of the Ricci curvature scalar f(R); in this context we will extend
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Introduction 6

Figure 1: The effect of birefringence for a linearly polarized light that passes
through a liquid crystal.

the treatment to the anisotropic case (which is not present in the literature),
taking into account for the fluctuations of R, related to the perturbations of
the metric. To be more precise, the thesis is organized in this way: after a
short overview concerning some basic aspects about classical electrodynamics,
the CMB radiation and the cosmological perturbation theory (Chapter 1 ), in
Chapter 2 we will focus on a general treatment about isotropic birefringence,
deriving theoretically the rotation of the polarization angle in the case of a cou-
pling with an axion-like scalar field (Section 2.1 ). Then in Section 2.2 we will
move to an overview on some observational constraints on the birefringence
angle, analyzing the auto-correlation and cross-correlation power spectra, and
reporting the main results obtained up to now. In Chapter 3 we will expand
the treatment to the anisotropic case, where the birefringence angle depends
also on the direction in the sky, and not only on time; in this frame we will find
out an extended expression for the polarization angle, adding the contribution
of the fluctuations of the scalar field, treated by imposing both the synchronous
gauge (Section 3.1 ) and the Poisson gauge (Section 3.2 ). At the end of the
third chapter we will move to the analysis of the cross-spectra associated to
the anisotropic birefringence angle, in order to compare the theoretical predic-
tions with the observational data (Section 3.3 ). In Chapter 4 we will focus
on the CB effect brought by the coupling of CMB radiation with a function
of the Ricci scalar f(R), which replaces the scalar field ϕ in the Chern-Simons
term (Section 4.1 ); then, we will see the implications of this new model in the
context of baryo/leptogenesys mechanism, constraining the nB/s ratio in de-
pendence of the derivative of the Ricci Scalar (Section 4.2 ). Finally, in Section
3.3, we will extend the f(R) birefringence to the anisotropic case, taking into
account for the perturbations of the Ricci scalar δR, directly related to the
scalar perturbations of the metric. In the end, as a conclusion, we will analyze
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some models for the f(R) function, showing its possible physical meaning and
implications.
Birefringence can be observed mainly through the analysis of CMB polariza-
tion data: indeed CMB polarization is sensitive to physics violating parity
symmetry. Moreover, the rotation angle increases with the distance travelled
by the photons, so it is convenient to take CMB radiation since it represents
the farthest source of radiation that can be taken into account; the represen-
tation in figure 2 shows the effect of cosmic birefringence in a very clear way.

Figure 2: This picture shows the rotation of the polarization angle by cosmic
birefringence. The left circle represents the surface of last scattering, while the right
one is referred to the present epoch. The black lines are placed in order to display
the E and B polarization modes, which are tilted by an angle β as the photons travel
to reach us today. [Credit: Y.Minami]



Chapter 1

Some useful reminders

Before starting with the discussion on the Cosmic Birefringence effect, we
take a quick review about classical electrodynamics (focusing mainly on the
Maxwell equations) and about the polarization of the CMB radiation, paying
attention in particular to the Stokes parameters formalism; in the end we will
recall some relevant aspects about the theory of cosmological perturbations.

1.1 Review of classical electrodynamics

In this section we want to recall some relevant concepts and relations which
will be used in the following chapters (we will adopt [9] and [10] as references).
Let’s start by reviewing the Maxwell equations in the context of the Lagrangian
formalism; for this purpose it is convenient to define the electromagnetic field
tensor (Maxwell tensor). The electric and magnetic fields written in terms of
the four-potential Aµ = (ϕ,A) read:

E = −1

c
∂0A−∇ϕ (1.1)

B = ∇∧A (1.2)

where ϕ ≡ A0. Notice that E is parity-odd (it transforms into - E under in-
version of spatial coordinates r −→ −r), while B is parity-even. This fact is
relevant for what follow since Cosmic Birefringence effect violates parity sym-
metry, mixing the E and B modes of the CMB polarization.
Starting from the expressions for the electric and the magnetic fields we can
define a tensor, called electromagnetic field tensor, which encloses the infor-
mation of both fields:

Fµν = ∂µAν − ∂νAµ (1.3)

which components are: F i0 = Ei and F ij = −ϵijkBk. Explicitly the covariant
form of the Maxwell tensor can be written as:
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Fµν =









0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0









(1.4)

In order to write down the Maxwell equations in terms of this tensor, we
need to start from the electromagnetic Lagrangian density, which describes
the dynamics of free photons:

Lem = −1

4
FµνF

µν (1.5)

from which we can derive the equation of motion, exploiting the Euler-Lagrange
equations:

∂L

∂Aν
− ∂µ

∂L

∂(∂µAν)
= 0 −→ ∂(FµνF

µν)

∂(∂µAν)
= 4F µν (1.6)

and ∂L /∂Aν = 0, so that the free EOM (Maxwell equation in vacuum) is
given by:

∂µF
µν = 0 (1.7)

If we want to introduce a source, in terms of a four-current Jµ = (cρ,J), we
need to add an interactive part to the Lagrangian density, which becomes:

Lem = −1

4
FµνF

µν − 1

c
AµJ

µ (1.8)

obtaining the following coupled EOM:

∂µF
µν =

4π

c
Jµ (1.9)

This is the first set of Maxwell equations written in a covariant way; in terms
of E and B vector fields they read:

∇ · E = 4πρ (1.10)

−1

c
∂0E+∇∧B =

4π

c
J (1.11)

where ρ is the charge density (ρ = J0).
The other pair of equations can be expressed using the dual of the field tensor,
defined as:

F̃ µν =
1

2
ϵµνρσFρσ = ϵµνρσ∂ρAσ (1.12)
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where ϵµνρσ is the Levi-Civita tensor. The components of this dual tensor are:
F̃ i0 = Bi and F̃ ij = ϵijkEk. The EOM for the dual tensor is:

∂µF̃
µν = 0 (1.13)

which can be recast in term of the electric and magnetic fields as:

∇ ·B = 0 (1.14)

1

c
∂0B+∇∧ E = 0 (1.15)

These are the last two Maxwell equations. To conclude this review, it is
interesting to consider one particular contraction between the Maxwell tensor
and its dual, i.e. :

FµνF̃
µν = −4E ·B (1.16)

which, evidently, changes sign under inversion of spatial coordinates; indeed,
as mentioned previously, E is parity-odd and B is parity-even, so their scalar
product is parity-odd, which means that it breaks parity symmetry. The term
in eq.(1.16) is the one present in the Chern-Simons interaction and it is the
responsible of the parity violation induced by the coupling between the photon
and the axion-like field.

1.2 Basics about CMB polarization

This section is dedicated to a review about the polarization pattern in the
CMB radiation, since it’s the main observable exploited for constraining the
birefringence angle; in particular we will focus on the analysis of the polariza-
tion in terms of the Stokes parameters. For this part we will refer mainly to
[15] and [16].
Before entering in the description of the CMB polarization, it can be useful to
recall some basic aspects about the Cosmic Microwave Background radiation
itself. This kind of radiation was originated in the early universe during the so-
called recombination (or decoupling) epoch, about 380.000 years after the Big
Bang, when the temperature was low enough (∼ 3000 K) that free electrons in
the primordial cosmic fluid started to combine with atomic nuclei to give origin
to the first atoms. This process allowed the radiation, previously trapped due
to a very high scattering rate with electrons, to escape and propagate almost
freely up to the present epoch; for this reason we can imagine an ideal surface
from which the CMB photons have started their trip, called surface of last
scattering : it is not possible to get direct observations and information about
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what happened before that epoch. The CMB radiation spectrum observed to-
day is a quasi-perfect black-body spectrum (described by the Planck function)
emitting at a temperature of about 3 K; this surprising fact is brought about
very frequent collisions between photons and free electrons, which were able
to maintain a stable thermodynamic equilibrium condition.
Although the CMB radiation shows a very high degree of isotropy, i.e. it
has the same intensity in whatever direction we measure it, there are some
non-negligible fluctuations and departures from a perfect isotropic distribu-
tion. Indeed, one of the most relevant feature of the CMB radiation is the
presence of anisotropies in its angular distribution, which are attributed to
these fluctuations (of the order of ∆T/T ∼ 10−5) in the temperature values
point by point. The analysis of temperature anisotropies is fundamental, for
example, in the study of the evolution of cosmological perturbations during
the inflationary epoch, since they can be associated to the density fluctua-
tions, related themselves to quantum fluctuations of the inflaton field, which
are the seeds of the structures (galaxies and clusters) observed in the present
Universe. Besides temperature anisotropies, another fundamental observable
in the context of CMB radiation, is given by the polarization state of its pho-
tons, which we want to analyze in deeper way, since it is exploited to study the
birefringence phenomenon. All these observables have been richly analyzed by
different space missions, which allow us to acquire relevant information about
the power spectra and about the CMB anisotropies. The first mission launched
by NASA in 1989 was the COBE satellite, which was able to measure with a
good precision the black-body CMB spectrum; then in 2001 this first mission
was replaced by the WMAP satellite, which had confirmed the results obtained
by COBE, but with a high precision. In the end, the last satellite launched
in 2009 was the Planck satellite, which is still the most sensitive one in the
context of CMB observations, with a very high angular resolution of about 5
arcmin. We can see an example of the CMB map from the Planck observatory
in figure 1.1 and the Planck power-spectra in figure 1.5.

Figure 1.1: Map of the CMB as observed by the Planck satellite; the different
colors are used to highlight the anisotropies in temperature (blue regions are colder,
while the orange ones are hotter than the average value). Temperature fluctuations
correspond to regions of slightly different density: these are the seeds of the large
scale stucture of the present Universe. [Credit: ESA and the Planck Collaboration]
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Figure 1.2: CMB polarization map:
the E and B-modes are shown through
a pattern of small black segments.
[Credit: ESA/Planck 2018]

Figure 1.3: A visualization of the
polarization of the Cosmic Microwave
Background, or CMB, as detected by
ESA’s Planck satellite; the pattern seen
in the texture is typical of the E-
mode polarization, which is the domi-
nant one in the CMB radiation.[Credit:
ESA/Planck 2018]

CMB photons acquire a certain degree of linear polarization due to Thomson
scattering of the anisotropic radiation with electrons (the anisotropy must have
a non-null quadrupole moment to generate a linear polarization); moreover
polarization is generated thanks to the fact that recombination has not taken
place instantaneously, so the finite-thickness effect is important. It is useful to
decompose the polarization pattern in E- and B-modes, which are tilted of 45°
one respect to the other; they are two different eigenstates of parity symmetry,
i.e. they transform differently (in an opposite way) under inversion of spatial
coordinates ; through this decomposition it is possible to probe violation of
parity symmetry. In figure 1.2 and figure 1.3 the CMB polarization pattern
is shown.
In order to characterize the polarization pattern we can visualize it better
through an ellipse. Let’s start from a monochromatic plane wave propagating
in the z direction, for which the electric field components can be written as:

Ex(t,x) = Axcos(z − ct+ ϕx) (1.17)

Ey(t,x) = Aycos(z − ct+ ϕy) (1.18)

where Ax and Ay are the amplitude of the electromagnetic wave and ϕx and
ϕy are the phases: the polarization state depends on these four parameters.
We can always redefine the starting point, such that the previous relations
become:

Ex(t,x) = Axcos(z − ct) (1.19)

Ey(t,x) = Aycos(z − ct+ β) (1.20)

where β = ϕx − ϕy is the relative phase between the two components. Notice
that, when β = 0 there is a pure linear polarization, while for β = π/2 it is
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completely circular. In general, for whatever value of β, we can identify an
ellipse in the x-y plane, whose equation is:

E2
x

A2
x

+
E2
y

A2
y

− 2ExEy
AxAy

cosβ = sin2 β (1.21)

This is called polarization ellipse.
At this point the polarization pattern can be described with the help of the
Stokes parameters, defined in terms of the parameters of the ellipse, in this
way:

I = A2 (1.22)

Q = A2cos2θ (1.23)

U = A2 sin 2θcosβ (1.24)

V = (A2 sin 2θ sin β)h (1.25)

where θ is the angle used to define the components of the amplitude Ax =
A cos θ and Ay = A sin θ, and h establishes the direction of rotation for the
circular polarization (anti-clockwise for h = 1, clockwise for h = −1). From
these definitions we can understand that I is simply the intensity of the wave.
Then, if U and V are null, we have a pure linear polarization, since β = 0;
the same happens if Q and V are zero. So the Q and U parameters describe
a linear polarization with planes tilted of 45° one respect to the other. In the
end, V is related to the circular polarization.
Another way to define the Stokes parameters, that will be used later, is the
following:

I = ⟨E2
x⟩+ ⟨E2

y⟩ (1.26)

Q = ⟨E2
x⟩ − ⟨E2

y⟩ (1.27)

U = 2⟨ExEy⟩ cos β (1.28)

V = 2⟨ExEy⟩ sin β (1.29)

where the
〈

...
〉

denote an ensemble average, equivalent to averaging over many
periods of the wave. It is interesting to notice that, if we perform a rotation of
an angle θ along the z direction, the linear combination of Q and U transforms
as:

Q± iU −→ e±2iθ(Q± iU) (1.30)

This is exactly a rotation of the linear polarization plane.
A very useful tool which can be exploited in the analysis of CMB anisotropies
(both in temperature and in polarization) is the formalism of the spherical
harmonics, which allow us to expading any quantity or function defined on a
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sphere as a linear combination of them. For instance, the temperature fluc-
tuations can be expressed as a function of the angles θ and ϕ, defined on a
sphere, as:

∆T

T
(θ, ϕ) =

inf
∑

l=0

l
∑

m=−l
almYlm(θ, ϕ) (1.31)

where alm are the complex coefficients of the linear combination, while Ylm(θ, ϕ)
are the spherical harmonics functions; the indices l and m are referred respec-
tively to the degree and the moment of each component, and they correspond
to the two angular coordinates. The linear combination in eq.(1.31) is also
known as the angular multipole expansion, being l the multipole moment. In
order to better visualize the spherical harmonic decomposition, we can refer
to figure 1.4. The expansion in eq.(1.31) can be inverted in order to get the
coefficients alm:

alm =

∫

d2n̂Y ∗m
l (n̂)

∆T

T
(n̂) (1.32)

Figure 1.4: Spherical harmonic decomposition for different values of the multipole
moment l. It is evident that higher multipole moments correspond to smaller angular
scales, according to the relation: θ = π/l. [Credit: NASA/WMAP/Chiang Lung-
Yih]

where n̂ is referred to the direction in which we are observing (which is identi-
fied by θ and ϕ angles), in particular: n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). Then,
in order to derive the CMB power spectrum we need to take into account for
the variance of these coefficients, so that:

⟨alma∗l′m′⟩ = δll′δmm′CTT,l (1.33)

where CTT,l = ⟨|alm|2⟩ is the CMB power spectrum (or the auto-correlation
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function) of the temperature fluctuations; this definition is valid until we con-
sider Gaussian perturbations. In the same way we can build up all the other
correlations, such as EE and BB ones. In order to do this we can recall the
combination defined in eq.(1.30), which can be seen as a spin-2 field and so it
can be expanded as:

(Q+ iU)S(n̂) =
∑

lm

aSP,lm2Y
m
l (n̂) (1.34)

where aSP,lm are the coefficients of the linear combination and 2Y
m
l (n̂) are the

2-spin spherical harmonics. The coefficients can be found by taking advantage
of the orthonormality relation between the sperical harmonics.
It is convenient to redefine the expansion for Q+ iU in terms of the coefficients
aE,lm and aB,lm instead of aP,lm, since there is no reality condition for the
last ones; moreover they are more useful since they are related to E and B
polarization modes. The new coefficients can be defined as linear combination
of the previous ones:

aE,lm ≡ −(aP,lm + a∗P,l,−m)/2 (1.35)

aB,lm ≡ i(aP,lm − a∗P,l,−m)/2 (1.36)

so that the first has parity (−1)l, while the second (−1)l+1: they behaves
in an opposite way under inversion of spatial coordinates. Thus, finally, the
expansion for Q+ iU reads:

(Q+ iU)(n̂) =
∑

lm

(−aE,lm ∓ iaB,lm)2Y m
l (n̂) (1.37)

Computing the aS∗P,lm coefficients and exploiting the parity of spherical har-
monics, it is possible to conclude that: aSP,lm = aS∗P,l.−m, and therefore:

aSE,lm = −aSP,lm aSB,lm = 0 (1.38)

which means that scalar perturbations only affect the E-mode; on the other
hand the detection of the B-mode would be an indication of the existence of
primordial gravitational waves (tensor perturbations).
Using the aE,lm and aB,lm coefficients we can define the following power spectra,
in the same way as done in eq.(1.33) for temperature fluctuations:

⟨a∗T,lmaE,l′m′⟩ = δll′δmm′CTE,l (1.39)

⟨aE,lma∗E,l′m′⟩ = δll′δmm′CEE,l (1.40)

⟨a∗B,lmaB,l′m′⟩ = δll′δmm′CBB,l (1.41)

In particular the EE and TE correlations read (under the assumption of adi-
abatic gaussian perturbations):
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For this treatment we will follow [32], [33] and [34]. The main purpose of a
cosmological perturbation theory is to study the properties, the origin and the
evolution of primordial density fluctuations, which are the seeds of the Large
Scale Structure (of galaxies and clusters) observed today in the Universe. The
basic idea is to perturb an isotropic and homogeneous spacetime, described
by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, which compo-
nents read:

ḡ00(t) = −1 ḡij(t) = a2(t)δij (1.44)

or, in terms of the conformal time τ :

ḡµν(τ) = a2(τ)ηµν (1.45)

where a(τ) is the scale factor and ηµν is the flat Minkowski metric given by
diag(−1, 1, 1, 1); the relation between the cosmic time t and the conformal time
τ is given by: dτ = dt/a(t). Then a generic perturbed metric can be defined
as the sum of this background contribution, which depends only on time (since
it is homogeneous and isotropic), and some fluctuations δgµν , which encloses
the dependence on spatial coordinates:

gµν(τ,x) = ḡµν(τ) + δgµν(τ,x) (1.46)

where, in general, the perturbed part of the metric is made up of three kind
of contributions: scalar, vector and tensor perturbations. We will focus on
the first ones, since we are interested in the fluctuations of the Ricci scalar;
however, for completeness, we mention also the vector and tensor counterparts.
As we will see in Chapter 3, scalar field fluctuations (δϕ) are directly related
to metric perturbations; indeed any fluctuation of a scalar field, especially
if it dominates the matter-energy content of the Universe (for example in
the case of the inflaton field during inflation), induces a perturbation of the
energy-momentum tensor Tµν , which then implies a perturbation in the metric,
through the Einstein field equations: Gµν = 8πGTµν . Moreover the scalar field
fluctuations and the metric perturbations are directly related by the perturbed
Klein-Gordon equation (see eq.(3.15)). For these reasons it is important to
consider metric perturbations in the context of cosmological perturbations.
The different components of the perturbed metric gµν in eq.(1.46), up to first
order, read:

g00 = −a2(τ)
(

1 + 2Ψ(τ,x)
)

(1.47)

g0i = a2(τ)ωi(τ,x) (1.48)

gij = a2(τ)
[(

1− 2Φ(τ,x)
)

δij + χij(τ,x)
]

(1.49)

where the scalar perturbations are given by Φ and Ψ, which are respectively
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the gravitational potential and the lapse perturbations; then, ωi is the vector
perturbation, and χij is the tensor one. To be more precise, also ωi and χij
contain some scalar contributions; it is common, indeed, to split the pertur-
bations in their scalar, vector and tensor counterparts, on the basis of their
different ways of transforming under a change of coordinates. We can do this
thanks to the Helmholtz decomposition, such that they can be written as:

ωi = ∂iω
∥ + ω⊥

i (1.50)

χij = Dijχ∥ + χ⊥
i,j + χ⊥

j,i + χTij (1.51)

where Dij = ∂i∂j − (1/3)δij∇2 is a traceless differential operator, χ∥ and ω∥

are the two scalar contributions, ωi and χi are transverse vectors, and χTij is
the traceless tensor part. These three different perturbation modes, at least
at linear order, are completely decoupled, so that it is possible to study the
related perturbed evolution equations as independent one to each other.
Since we are dealing with cosmological perturbations within General Relativity
theory, we must take into account for the so-called gauge issue, i.e. pertur-
bations are gauge dependent, which means that they are not invariant under
a gauge transformation. This can lead to the generation of unphysical gauge
modes which must be erased in order to get the correct physical solution. There
are two main possible approaches in order to eliminate these spurious gauge
contributions: on the one hand we can work, and do all the computations, in
a specific gauge (we can choose the more convenient one on the basis of what
we are searching for), while on the other hand we can rewrite the perturbed
equations through some gauge-invariant quantities. In Chapter 2 and 3 we will
adopt two particular gauge choices: the synchronous gauge and the Poisson
gauge, which is a GR extension of the newtonian conformal gauge (see [38] for
a complete explanation about these two gauge choices). The first one is based
on the condition ψ = 0; from eq.(1.47) we have: g00dτ

2 = −a2(τ)dτ 2(1 + 2Ψ),
where g00dτ

2 is the proper time, while a2dτ 2 = dt2 is the cosmic time. Since
Ψ = 0 these two times are equivalent: for this reason it is called synchronous
gauge. This choice presents a residual gauge freedom, which can be erased by
imposing some suitable initial conditions. The Poisson gauge, on the other
hand, is defined by the conditions: ω∥ = 0, χ∥ = 0 and χ⊥

i = 0. It is also called
zero-shear gauge since the shear σ = −ω∥ + (1/2)(χ∥)′ is null. This two gauge
choices are the most convenient to make evident the connection between the
scalar field fluctuations and the scalar metric perturbations, as we will see in
Chapter 3.
The other possible approach in order to avoid the gauge problem consists in
the definition of gauge-invariant quantities: as an example, it is interesting to
mention the ones proposed by Bardeen in 1980 in [35]. Focusing on the scalar
perturbations, the perturbed metric depends on four components: Φ, Ψ, ω∥

and χ∥, from which it is possible to build two invariant scalar quantities:

2ΨA = 2Ψ + 2(ω∥)′ + 2
a′

a
ω∥ −

(

χ∥ +
a′

a
(χ∥)′

)

(1.52)
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2ΦH = −2Φ− 1

3
∇2χ∥ + 2

a′

a
ω∥ − a′

a
(χ∥)′ (1.53)

these are the so-called Bardeen’s gauge invariant gravitational potentials. It is
interesting to notice that in the Poisson gauge these two quantities reduce to:
ΨA = Ψ and ΦH = −Φ, such that we can understand their physical meaning.
In the end, in order to find out the evolution equations for the cosmological
perturbations, we need to perturb the Einstein field equations:

Rµν −
1

2
Rgµν = 8πGTµν (1.54)

At first, we need to perturb the Christoffel symbols (or connection coeffi-
cients) Γαµν which enter in the definition of the Riemann tensor Rµνρσ and,
consequently, of the Ricci tensor Rµν and the Ricci scalar R. Let’s recall the
definition for the connection coefficients:

Γµνρ =
1

2
gµσ

(

gνσ,ρ + gσρ,ν − gνρ,σ
)

(1.55)

where the comma denotes the partial derivative. Then, we can define the
Riemann tensor as:

Rα
σµν = ∂µΓ

α
νσ − ∂νΓαµσ + ΓαµλΓ

λ
νσ − ΓανλΓ

λ
µσ (1.56)

and finally the expressions for the Ricci tensor, which is derived by contracting
two indices in eq.(1.56), and the Ricci scalar are:

Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓαµα + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα (1.57)

R = gµνRµν (1.58)

Since the background spacetime is defined by the FLRW metric in (1.45), the
non-null unperturbed Christoffel symbols are only:

Γ0
00 =

a′

a
Γi0j =

a′

a
δij Γ0

ij =
a′

a
δij (1.59)

Thus, the components of the perturbed coefficients can be found by substitut-
ing eqs.(1.47)-(1.49) into eq.(1.55), taking into account only for scalar pertur-
bations; in this way we get:

δΓ0
00 = Ψ′ (1.60)

δΓ0
0i = ∂iΨ+

a′

a
∂iω

∥ (1.61)
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δΓi00 =
a′

a
∂iω∥ + ∂i(ω∥)′ + ∂iΨ (1.62)

δΓ0
ij = −2

a′

a
Ψδij − δiδjω∥ − 2

a′

a
Φδij − Φ′δij +

a′

a
Dijχ

∥ +
1

2
Dij(χ

∥)′ (1.63)

These relations are valid in general, whatever gauge we choose. From them
it is possible to compute the perturbed Ricci tensor and Ricci scalar in order
to write down the perturbed Einstein field equations. On the other hand,
focusing on the right hand side of equation (1.54), we need to consider also
the perturbations of the stress-energy tensor Tµν , in the case of a perfect fluid.
The effect of this perturbations is the origin of an anisotropic stress tensor,
which encodes the departure from an ideal fluid regime; this new contribution,
decomposed in its scalar, vector and tensor contributions, can be defined as:

Πij = DijΠ∥ +Π⊥
i,j +Π⊥

j,i +ΠT
ij (1.64)

similarly to eq.(1.51). Then we can write down the perturbed components of
Tµν as:

T 0
0 = ρ(0)(τ) + δρ(x̄, τ) (1.65)

T 0
i = (ρ0 + p0)(vi + ωi) (1.66)

T i0 = −(ρ0 + p0)v
i (1.67)

T ij = p0
[

(1 + ΠL)δ
i
j +Π

i(T )
j

]

(1.68)

We do not want to enter too much in the details of these computations (see
[36] for a complete treatment); in Chapter 4 we will compute the perturbed
quantities in eqs.(1.55)-(1.58) imposing a particular gauge. We just report
here the final form of the perturbed Einstein equations and some interesting
implications useful for our treatment; the 00-components of the perturbed
equations (taking into account only for scalar perturbations of the metric)
read:

3
a′

a

(

Φ′ +
a′

a
Ψ

)

−∇2

(

Φ +
a′

a
σ

)

= −4πGa2δρ (1.69)

Φ′ +
a′

a
Ψ = −4πGa2(ρ0 + p0)V (1.70)

where σ is the scalar part of the shear tensor, defined previously, δρ is the
energy density perturbation and V = v∥ + ω∥ is the scalar contribution to the
four-velocity of the fluid. These two equations do not tell us anything about the
evolution of Φ and Ψ potentials, since there are only first derivatives in time;
instead, they are useful to put some constraints on the energy and momentum
of the fluid, indeed δρ and (ρ0 + p0)V are related, respectively, to these two
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quantities.
Then, the ij-components of the field equations are given by:

Φ′′ +2
a′

a
Φ′ +

a′

a
Ψ′ +

[

2

(

a′

a

)′

+

(

a′

a

)2

Ψ

]

= 4πGa2p0

(

ΠL+
2

3
∇2ΠT

)

(1.71)

σ′ + 2
a′

a
σ + Φ−Ψ = 8πGa2p0ΠT (1.72)

where ΠL = δP/p0 is the longitudinal part of the Tij component, while ΠT =
π∥/p0 is the traceless part. In general Πij is an anisotropic stress-energy tensor
which arises from the perturbation of Tij.
We can show some relevant aspects of these equations by imposing the Poisson
gauge, which implies: Φ = −ΦH and Ψ = ΨA. Under this choice, eq.(1.72)
becomes:

−ΦH −ΨA = 8πGa2P0ΠT (1.73)

which tells us that, when a null anisotropic stress in considered (since we are
in the case of a perfect fluid), the two Bardeen’s potential assume the same
value; this allow us to simplify eq.(1.71) and to write it in terms of just one of
the two potentials, in this way:

Φ′′
H + 3

(

1 + c2s
)a′

a
Φ′
H +

[

2

(

a′

a

)′
+
(

1 + 3c2s
)

(

a′

a

)2

− c2s∇2

]

ΦH = 0 (1.74)

which has the form of an evolution equation for the perturbation ΦH with a
speed equal to the speed of sound cs; we could have found a similar equation
for ΨA. Moreover, substituting eq.(1.70) in eq.(1.69), we can show that the
Bardeen’s potentials satisfy the general relativistic Poisson equations, which
read:

∇2ϕH = −∇2ψA = 4πGa2ϵm (1.75)

where ϵm = δρ + ρ′0(v
∥ + ω∥) is the gauge-invariant quantity related to the

energy density of the fluid.



Chapter 2

Searching for new physics: the
isotropic Cosmic Birefringence
effect

Cosmic Birefringence (CB) has been studied and analyzed, both theoretically
and experimentally, quite deeply in the last years. It is a fundamental observ-
able which is generated by a parity violation in electromagnetic interaction,
brought about the presence of new physics beyond the Standard Model. CB
effect, indeed, can be used to get information about Dark Matter and Dark
Energy components in the early universe, but it can be exploited also in the
context of baryo/leptogenesys models [1], as we will discuss troughout this
work. Moreover this effect is associated also with the detection of B-mode
polarization in the CMB radiation; this mode arises in the presence of Pri-
mordial Gravitational Waves (PGWs) [2], but the CB effect is able to produce
an additional contribution to it (in particular it is able to mix E and B-modes).
For this reason CMB polarization can be exploited in order to investigate the
birefringence angle.
At first, we will analyze the sources of the Cosmic Birefringence effect, deriving
the polarization rotation angle directly from the modified Maxwell equations;
we will focus on models in which the phenomenon is attributed to the cou-
pling of a scalar field (more precisely, an axion-like field) with electromagnetic
radiation, and then also on approaches which, instead, are based on the cou-
pling with a scalar function f(R), in the context of modified Einstein gravity
theories. In both cases we will analyze the CB angle power-spectra in order to
constrain the rotation angle from CMB observations.

2.1 Cosmic Birefringence from Chern-Simons

coupling with a scalar field ϕ

The Standard Model (SM) of particle physics has been studied and con-
firmed by many experimental tests, in particular concerning the fundamen-
tal CPT symmetry. Nevertheless cosmological and astrophysical observations

22
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have shown the need of exploring physics beyond the Standard Model, for
instance by adding new components such as Dark Matter and Dark Energy.
In this sense, a very interesting effect which can be experimentally measured
and analyzed, is an unusual rotation of the photon polarization plane: this
phenomenon is known under the name of Cosmic Birefringence, and it is the
central topic treated in this work.
As we will see, since this rotation effect depends on the distance travelled
by the photons, and in particular it grows evidently if the radiation covers a
very long path towards us, it is reasonable to focus on photons emitted in the
earliest epoch possible, i.e. at the recombination; for this reason we can get
constraints on the birefringence angle mainly from the CMB polarization data.
It is still a faint effect, difficult to observe and measure even with the most
recent missions such as the Planck telescope, but it is very relevant in order
to probe new physics beyond the SM. Indeed the CB effect is the result of
the interaction of CMB photons with Dark Matter or Dark Energy fields [1],
present at early epochs, which acts as a birefringent material (like a crystal)
on the incoming radiation.
This coupling between photons from the CMB and a scalar field ϕ (let’s keep it
generic for the moment) modifies the Maxwell theory of electromagnetism, and
the related equations of motion, and it is indeed the responsible of the parity
violation: in this sense we are exploring new physics beyond the SM. Moreover,
as suggested in [5] the addition of this new term violates also Lorentz invari-
ance. In practice this modification is based on the addition of a Chern-Simons
coupling term to the standard Maxwell Lagrangian density, in this way:

L = LEM + LCS = −1

4
FµνF

µν − 1

2
pµAνF̃

µν (2.1)

where pµ is a generic four vector coupled with the EM field, F̃ µν = 1
2
ϵµνρσFρσ is

the dual of the strength tensor F µν (eq. (3)). Lorentz invariance is not fulfilled
due to the fact that the vector pµ chooses a preferred direction in spacetime,
and in particular it has a non-vanishing time component p0. As we will see
in the following discussion this unidentified four-vector can be associated to a
pseudoscalar field, such that pµ = ∂ϕ/∂xµ: in some models this ϕ is identified
as an axion-like field (see for example [2] and [3]), while in other theories is
treated as a generic quintessence field (see for example [1] and [4]).
Before writing down the modified Maxwell’s equations of motion, it is interest-
ing to give an idea of how much the Lorentz and parity symmetries are violated
in this modified theory; this estimations are done in [5] by Carroll and Field,
who have found an upper limit on the Chern-Simons coupling in terms of the
mass m (which is given by (pµp

µ)1/2):

m ≤ 6× 10−26 GeV (2.2)

and a more stringent bound:

m ≤ 1.7× 10−42h0 GeV (2.3)
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This allow us to understand the smallness of this kind of effect.
At this point it’s finally the time to derive the explicit expression of the bire-
fringence angle; in order to get that relation we need to start from the EOMs
of electromagnetism modified by the Chern-Simons term. We will mainly fol-
low the treatment and computations proposed by Li and Zhang in [4] and in
[1]. Let’s start by analyzing the interaction term which modifies the standard
electromagnetic Lagrangian density; it is defined as:

Lint =
c

M
∇µϕJ

µ (2.4)

It describes a derivative coupling (∇µ is the covariant derivative) of a scalar
boson ϕ to a generic fermion current Jµ; M is the typical cut-off scale of the
theory which can be associated with Grand Unification Theory or with the
Planck scale. Even though this term is CPT conserving, during the expansion
of the Universe the scalar field evolves and the symmetry is spontaneously
broken by a non-vanishing ϕ̇. Indeed this is the case of theories in which ϕ is
identified with a dynamical Dark Energy field.
In order to clarify a little better the physical meaning of the coupling term,
it is useful to make the Jµ current explicit: in [1] and [4] they have proposed
that it is the left-handed part of the B − L current, i.e. Jµ(B−L)L . Indeed
this kind of current has two very interesting implications: on one hand it
helps to reproduce the baryon number asymmetry in thermal equilibrium (a
fundamental aspect in models of quintessential baryo/leptogenesis), while on
the other hand it shows an anomalous behaviour under the electromagnetic
interaction. We can see this by considering that:

∇µJ
µ
(B−L)L ∼ −

αem
3π

FµνF̃
µν (2.5)

where αem = e2/4π is the fine structure constant. In terms of the electric and
magnetic fields FµνF̃

µν can be rewritten as −4B ·E, which shows more clearly
the violation of parity symmetry, since it changes sign under inversion of spatial
coordinates. By replacing the electromagnetic tensor with Fµν = ∂µAν − ∂νAµ
and its dual with F̃ µν = 1

2
ϵµνρσFρσ, and by doing simple algebraic calculations,

we recover the form of the interacting Lagrangian in eq.(2.1), finding that
Jµ = 2AνF̃

µν . In the end we can rewrite the coupling term in eq.(2.4) as:

Lint = −
2cαem
3πM

∇µϕAνF̃
µν = pµAνF̃

µν (2.6)

where the four vector is defined as pµ = (2cαem/3πM)∇ϕ. In this way we
have found out an explicit expression for the generic four-vector pµ introduced
previously (see [5]).
In some models the field ϕ is recognized as the axion field; to understand the
reason of this choice we need to refer to the so-called strong CP problem. This
problem is related to the fact that the QCD Lagrangian presents an extra
term, due to the QCD vacuum structure, which violates P and T symmetries,
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and so it also breaks CP simmetry; however there is no evidence of CP viola-
tion in strong interactions at all. Moreover the problem is associated with the
smallness of the (measured) electric dipole moment of the neutron, which re-
quires the parameter θ to be smaller than 10−10−10−9. To explain this strange
aspect, and solve the CP problem, Peccei and Quinn have proposed the intro-
duction af a new U(1) chiral symmetry (called U(1)PQ) which is spontaneously
broken, bringing θ to zero, and generating a Nambu-Goldstone axion field (for
a deeper discussion on the CP problem refer to [6] [7]). In particular in [7]
the solution to the CP problem is related to the presence of a chiral anomaly
for the axial current Jµ5 which has a non-zero divergence given by:

∂µJ
µ
5 =

g2N

32π2
F µν
a F̃aµν (2.7)

Notice that this current has a similar structure as the fermionic current de-
fined in (1.5); so, in the end, it is reasonable to take an axion-like field as the
scalar d.o.f. coupled with photons, which gives rise to the birefringence effect.
In this sense, probing cosmological birefringence means searching for new DM
particles, different from the ones described in the Standard Model.

In order to derive the expression for the birefringence angle we can exploit
the Euler-Lagrange equations starting from the Lagrangian defined in (2.1):
in this way we can find out the equations of motion for the photon field which
interacts with a scalar field (namely the axion field). The Euler-Lagrange
equation reads:

∂L

∂Aν
− ∂µ

∂L

∂(∂µAν)
= 0 (2.8)

and then, since the Lagrangian depends also on the scalar field, we need to
consider also the other equation obtained by deriving it with respect to ϕ:

∂L

∂ϕ
− ∂µ

∂L

∂(∂µϕ)
= 0 (2.9)

In the first equation we can notice that the free Lagrangian LEM depends only
on the derivative of Aµ, while the interacting part LCS only on Aµ itself. The
former can be computed as:

∂L

∂(∂µAν)
= −1

4

∂(FµνF
µν)

∂(∂µAν)
= −1

2
(∂µAν − ∂νAµ) = −1

2
F µν (2.10)

while the latter is given by:

∂L

∂Aν
=
∂LCS

∂Aν
= pµF̃

µν (2.11)
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Then, deriving the equation (2.10) with respect to ∂µ and combining it with
(2.11), we reach this form of the modified Maxwell EOM:

∇µF
µν = −2pµF̃ µν (2.12)

On the other hand, from equation (2.9) we get the other EOM, which is not
affected by the Chern-Simons term, and so it is the same as for the free photon:

∂µ
∂L

∂(∂µϕ)
= ∂µ(AνF̃

µν) = 0

∇µF̃
µν = 0 (2.13)

The last equation can be rewritten in a more useful way:

∇λFµν +∇µFνλ +∇νFλµ = 0 (2.14)

which is a sort of Bianchi identity for electromagnetism. This can be shown
more explicitly by combining together the Gauss law for the magnetic field
(see [10] and [11]):

∂iB
i = 0 −→ ∂1F23 + ∂2F31 + ∂3F12 = 0 (2.15)

and the Faraday law ϵijk∂jE
k + ∂0B

i = 0 which becomes:











∂2F03 + ∂3F20 + ∂0F32 = 0

∂3F01 + ∂1F30 + ∂0F13 = 0

∂1F02 + ∂2F10 + ∂0F21 = 0

(2.16)

Merging relations (2.15) and (2.16) we get in fact the EOM in (2.14).

For the moment, let’s focus in particular on the first equation (2.10), rewriting
it in terms of the four-vector Aµ instead of Fµν , in order to simplify the com-
putations (for this treatment we will follow the work done by Li and Zhang in
[1]):

∇µ(∇µAν −∇νAµ) = −pµϵµνρσ(∇ρAσ −∇σAρ) (2.17)

□Aν −∇µ∇νAµ = −pµϵµνρσ(∇ρAσ −∇σAρ) (2.18)

where we have applied the Lorenz gauge, for which ∇µA
µ = 0, to recover

the equation (2.18). The term with the double derivative (∇µ∇νAµ) can be
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rewritten accounting for the commutation of covariant derivatives1 acting on
a vector field, which gives rise to a term that contains the Ricci tensor:

□Aν +Rν
µA

µ = −pµϵµνρσ(∇ρAσ −∇σAρ) (2.22)

In order to write down solutions of this equation we can adopt the so-called
geometric optics approximation (or short wavelength approximation); indeed
the scale of variation of the electromagnetic field is much smaller than the
cosmological scale of interest; in other words this means that the wavelength of
the photons is well below the typical length scale associated with the curvature
of the spacetime (see [17]). From another point of view it means that the
frequency of the photons is much larger than the mass of the axion field (this
is reasonable for ultralight particles). Under this assumption, the waves can be
considered as plane waves propagating in a spacetime with negligible curvature,
so that the solution can be expressed (in terms of Aµ) as:

Aµ = Re[(aµ + ϵbµ + ϵ2cµ + ...)eiS/ϵ] (2.23)

or, in terms of the strength tensor:

F µν = (aµν + ϵbµν + ϵ2cµν + ...)eiS/ϵ (2.24)

where S is a real function and S/ϵ is a phase; this means that the phase varies
much faster than the amplitude of the electromagnetic wave. Furthermore we
can define the wave-vector as: kµ = ∇µS.
Substituting the solution (2.23) in the equation of motion (2.18), and neglect-
ing the terms with the Ricci tensor (since, under the chosen approximation,
the curvature can be neglected), we obtain:

∇µ∇µ(aν + ϵbν + ...) + 2
i

ϵ
kµ∇µ(a

ν + ϵbν + ...) +
i

ϵ
(∇µk

µ)(aν + ϵbν + ...)−

− 1

ϵ2
kµk

µ(aν + ϵbν + ...) = −pµϵµνρσ[∇ρ(a
σ + ϵbσ + ...)−∇σ(a

ρ + ϵbρ + ...)+

1Here we have exploited the property of the commutators applied to a four-vector:

[∇µ,∇ν ]A
µ = ∇µ∇νA

µ −∇ν∇µA
µ (2.19)

applying the Lorentz gauge and the definition of covariant derivative we get:

∇µ∇νA
µ +∇µ(Γ

µ
νρA

ρ)− Γλ
µν(∇λA

µ)− Γλ
µνΓ

µ
λρA

ρ − (µ←→ ν) (2.20)

and finally, recalling the definition of the Ricci tensor ([∇µ,∇ν ]A
µ = RµνA

µ):

Rµν = Rλ
µλν = ∇µΓ

µ
νρ −∇λΓ

λ
µν + Γλ

µνΓ
µ
λρ − Γλ

νµΓ
ν
λρ (2.21)
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+
i

ϵ
(kρ(a

σ + ϵbσ + ...)− kσ(aρ + ϵbρ + ...)] (2.25)

If we focus on terms of order 1
ϵ2

we get the usual relation: kµk
µ = 0, which

simply means that photons propagate along null geodesics; this relation it is
not affected by the Chern-Simons modification, so it is not so interesting for
us; still it is a confirmation of the consistency of the theory and the procedure
that we are adopting. Differentiating the norm of kµ, and using the previous
definition in terms of S, we get:

0 = ∇ν(kµk
µ) = ∇ν(∇νS∇νS) = 2∇µS∇ν∇µS = 2kµ∇νkµ (2.26)

where the last factor can be rewritten as a geodesic equation:

dxµ

dλ
∇νkµ = 0 (2.27)

which means that the vector kµ is parallely transported along the light curve
xµ(λ); this remarks the fact that at this order (1/ϵ2) the Chern-Simons term
doesn’t have any role.
On the other hand, if we focus on the (1/ϵ)-order terms in equation (2.25), we
can see that they are affected by the coupling; indeed we have:

kµ∇νa
ν +

1

2
∇µk

µaν = −pµϵµνρσ(kρaσ − kσaρ) (2.28)

where we can define D ≡ kµ∇µ and θ ≡ ∇µk
µ, so that in the end we can write

down the final propagation equation for aν as:

Daν + 1

2
θaν = −pµϵµνρσ(kρaσ − kσaρ) (2.29)

We can also recast this relation in terms of the polarization vector, instead
of aν , taking into account for the fact that aν = Aϵν , where A is the scalar
amplitude of the photon field:

Dϵν + 1

2
θϵν = −pµϵµνρσ(kρϵσ − kσϵρ) (2.30)

Without the modification due to the Chern-Simons coupling the right-hand
side of the above equation would vanish (as in (2.27)), obtaining the previ-
ous situation of the parallel transport. Instead in this case the kµ vector is
not parallely tansported (equation 2.28) and also the polarization vector ϵν ,
which means that the polarization plane rotates as the photon propagates in
spacetime. Since the photons that we are considering come from the CMB
radiation, they are linearly polarized due to the effect of Thomson scattering
at the recombination epoch; the coupling with the scalar field doesn’t change
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the type of polarization but only the angle of the linear polarization plane.

We can show the effect of the Chern-Simons term with a different approach,
used by E. Komatsu in [2]. Differently from the method carried out by Li
and Zhang he makes the computations taking the vector A instead of the
four-vector Aµ, obtaining the equation of motion:

A
′′

± +

(

k2 ∓ kαχ
′

f

)

A± = 0 (2.31)

where the ′ denotes the time derivative. The ± indicates the two helicity states
for the photon, α is a dimensionless coupling constant and χ is the scalar field
in this case, while f is a decay constant with the dimension of an energy. In
this case the constant factor is different from the one in equation (2.6) but
they have the same physical meaning of a coupling factor. From this EOM we
can observe two interesting aspects: at first the effect of the CS term vanishes
when the field doesn’t depend on time, so that it must have a background
evolution in order to see some effects; then, the second consideration is that
this equation leads to two different dispersion relations for the + and - helicity
states, which causes a difference in the phase velocity, bringing to a rotation
of the polarization plane. Indeed the birefringence angle, which quantifies this
rotation, depends on the difference between the two phase velocities ω+ and
ω−, given by:

ω±
k
≃ 1∓ αχ

′

2kf
(2.32)

and in the end the polarization angle (here it is denoted as β) can be computed
as follows:

β = −1

2

∫

dτ(ω+ − ω−) (2.33)

where τ is the conformal time.

Coming back to the previous treatment, still following Li and Zhang, we can
proceed by introducing the formalism of the Stokes parameters, since they are
very useful to analyze the polarization of radiation. Since we are dealing with
a curved spacetime, we need to generalize them in the context of general rel-
ativity. In order to do this, let’s start from defining the Stokes parameters in
Minkowsky spacetime, for a monochromatic wave propagating along the z axis
with Ex = ax(t) exp[i(ω0t− θx(t))] and Ey = ay(t) exp[i(ω0t− θy(t))]:

I ≡
〈

ExE
∗
x

〉

+
〈

EyE
∗
y

〉

Q ≡
〈

ExE
∗
x

〉

−
〈

EyE
∗
y

〉

U ≡
〈

ExE
∗
y

〉

+
〈

E∗
xEy

〉

V ≡ i(
〈

ExE
∗
y

〉

+
〈

E∗
xEy

〉

) (2.34)
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where the
〈

...
〉

parenthesis stand for an ensemble average, equivalent to aver-
aging over many periods of the wave, and the ∗ indicates the complex conjugate
field. These relations can be generalized in GR exploiting the so-called tetrad
formalism. A tetrad is a set of four basis vectors eµ(a) which allow us to move

from the coordinate frame to the local inertial frame (L.I.F) in each point x of
the spacetime. Indeed, in general, a vector Bµ can be rewritten in a L.I.F. in
this way:

B̄a = eµ(a)Bµ (2.35)

where the latin index a is the label used to indicate the component of the tetrad
basis, while the greek letter µ denotes, as always, the spacetime index (from 0
to 3). In order to practically set the tetrad frame at each point it is convenient
to consider the rest frame of the free fall observer, where the four-velocity
acquires a very simple form: ūa = δa0 ; moreover we assume that the observer
sees the light travelling along the z direction, so that: k̄a = ω(δa0 + δa3). With
these definitions we can rewrite the four-velocity and the four-momentum in
the coordinate frame as:

uµ = eµ(a)δ
a
0 = eµ(0) (2.36)

kµ = eµ(a)k̄
a = ω(δa0 + eµ(3)) (2.37)

then, from these two relations, we can recover the expressions for the tetrad
basis vectors: eµ(0) = uµ and eµ(3) =

1
ω
(kµ − ωuµ) , while the other two compo-

nents eµ(1) and e
µ
(2) are unit spacelike vectors and they are orthogonal to kµ.

Since in relations (2.34) the components of the electric field are present , it
is very useful to redefine them in the local inertial frame. In order to do so,
we need to start from the definition of the electric field vector in a generic
spacetime, as seen by an observer with four-velocity uµ:

Eµ = F µνuν (2.38)

Exploiting the G.O.A. solution in (1.19) it can be rewritten as:

Eµ = aµνuνe
iS/ϵ = (kµaν − kνaµ)uνeiS/ϵ (2.39)

From this generic relation we can find out the components of the electric vector
in the L.I.F.:

Ē1 = Ex = Eµe
µ
(1) Ē2 = Ey = Eµe

µ
(2) (2.40)

Since we are in the local inertial frame, the previous definitions of the Stokes
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parameters in a flat spacetime are applicable (eqs.(2.34)), and we can apply the
above relations for the electric field in order to rewrite them in a generic curved
spacetime. For this purpose we will follow the notation and the procedure
proposed by A.M. Anile and R.A. Breuer in [8], and also in S. Kopeikin and
P. Korobkov in [9], where they start from the polarization tensor defined in
this way:

Jµνρσ =
1

2

〈

FµνF
∗
ρσ

〉

(2.41)

In the rest frame of the free-fall observer we can rewrite this tensor as Jµν =
Jµνρσu

ρuσ, and, applying the relation (2.31) it becomes:

Jµν =
〈

EµE
∗
ν

〉

(2.42)

Notice that this polarization tensor is orthogonal both to the four-velocity and
to the four-momentum. It is useful to redefine Jµν in a most suitable form:

Jµν =
1

2
ω2Lµν (2.43)

where ω = uµk
µ and Lµν ≡

〈

aµa
∗
ν

〉

(the same definition used in [4]). With the
help of these relations we can write down the four Stokes parameters in the
tetrad frame:

I = S0 = Jµν(e
µ
(1)e

ν
(1) + eµ(2)e

ν
(2))

Q = S1 = Jµν(e
µ
(1)e

ν
(1) − eµ(2)eν(2))

U = S2 = Jµν(e
µ
(1)e

ν
(2) + eµ(2)e

ν
(1))

V = S3 = iJµν(e
µ
(1)e

ν
(2) − eµ(2)eν(1)) (2.44)

which indeed are consistent because if we use the relation (2.42) we recover the
Stokes parameters in a flat spacetime. Then, if we insert the relation (2.43)
inside these last equations for the Stokes parameters we get:

SA =
1

2
ω2FA (2.45)

where A = 0,1,2,3; so in the end we can rewrite the generalized Stokes pa-
rameters as:

I = ω2Lµν(e
µ
(1)e

ν
(1) + eµ(2)e

ν
(2))

Q = ω2Lµν(e
µ
(1)e

ν
(1) − eµ(2)eν(2))

U = ω2Lµν(e
µ
(1)e

ν
(2) + eµ(2)e

ν
(1))

V = iω2Lµν(e
µ
(1)e

ν
(2) − eµ(2)eν(1)) (2.46)
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Since the tensor Lµν is defined trough the amplitude of the electromagnetic
field as

〈

aµa
∗
ν

〉

, we can rewrite the propagation equation (2.24) in terms of it,
which is very useful for showing explicitly the effect of the Chern-Simons term
on the polarization plane. The equation reads:

Lµν + θLµν = −pαkβ
(

ϵαβγµ Lγν + ϵαβγν Lµγ
)

(2.47)

Notice that the Stokes parameters are not Lorentz scalars, and so we must
require the tetrad frame to be not rotating, i.e. Deµa = 0: this can be done by
imposing the parallel transport for the basis vector eµ(1) and e

µ
(2). From (2.47)

it is easy to get the propagation equation for the four Stokes parameters:

DF0 + θF0 = 0 (2.48)

DF1 + θF1 = 2pµk
µF2 (2.49)

DF2 + θF2 = −2pµkµF1 (2.50)

DF3 + θF3 = 0 (2.51)

where FA is defined in relation (2.45). The first equation is simply the con-
servation of the light flux, while the last one (related to V ) tells us that the
circular polarization remains null if it is zero at the beginning: since CMB pho-
tons are not circularly polarized they don’t acquire this kind of polarization
along their journey towards us. It is interesting to highlight that the Chern-
Simons coupling enters only in the equations for Q and U , which indeed are
the ones related to the linear polarization: this means that the presence of the
axion field rotates the polarization plane, maintaining a linear polarization.
Notice also that the two equations are mixed in F1 and F2, so they are not
independent. In general the polarization angle is defined as 2χ = arctan U

Q
, so

that:

χ =
1

2
arctan

F2

F1

(2.52)

This angle still satisfies a propagation equation, obtained by dividing both
sides of equation (2.50) by F1, and assuming that χ is a small angle:

Dχ+ pµk
µ = 0 (2.53)

In the end, this equation can be easily integrate along the light path of the
photon, by recalling the definition kµ = dxµ

dλ
:

dχ

dλ
= −pµkµ −→

∫ f

i

dχ = −
∫ f

i

pµk
µdλ (2.54)
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and so the birefringence angle can be found with:

χf − χi = −
∫ f

i

pµdx
µ(λ) (2.55)

where the integral is computed from the recombination epoch to today. If we
want to write the explicit expression for the rotation angle, we can insert the
definition of pµ, obtaining:

∆χ =
2cαem
3πM

∫ f

i

∂µϕdx
µ(λ) =

2cαem
3πM

(ϕf − ϕi) (2.56)

This relation confirms the fact that the birefringence angle depends on
the difference between the value of the scalar field at the recombination and
at the present epoch, and so on the distance travelled by the photons: for
this reason using the CMB radiation as a probe is the best choice possible in
order to ensure an obserable angle today. Moreover. from (2.56) it is evident
that ϕ must evolve (at least) in time in order to have a non-zero effect on the
polarization angle. In general the scalar field could also be space-dependent,
not homogeneous, as we will discuss in Chapter 3.

2.2 Observational constraints on the isotropic

birefringence angle

Up to now we have keep the discussion on the birefringence effect on a theoret-
ical point of view, deriving the expressions for the rotation angle; now we want
to find a connection between theory and observations, exploiting in particular
the different power spectra related to the birefringence angle. There are a lot
of articles which analyze deeply the power spectra in order to obtain a measure
of the polarization angle: in this section we will refer mainly to [22], [23] and
[24].
As suggested in the Section 1.2, we can visualize better the rotation of the
polarization plane due to the birefringence effect by exploiting a linear com-
bination of the Stokes parameters Q and U, i.e. (Q ± iU)(n̂), which is used
to describe the linear polarization plane. This combination can be written
through a decomposition of spin-2 spherical harmonics, since it behaves as a
spin-2 field, in this way:

(Q± iU)(n̂) = −
lmax
∑

l=2

l
∑

m=−l
(Elm ± Blm)±2Y

m
l (n̂) (2.57)

where Elm and Blm are the spherical harmonics coefficients of the E and B
polarization modes. In particular, under inversion of spatial coordinates (n̂ −→
−n̂), the first ones are parity-even, i.e. they transform with (−1)lElm, while
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the second ones are parity-odd, since they transform through (−1)l+1Blm.
Then, since Elm and Blm are stochastic variables, it is very useful to analyze
their angular power spectra, defined from the variance of the two coefficients:

⟨ElmE∗
l′m′⟩ = δll′δmm′CEE

l (2.58)

⟨BlmB
∗
l′m′⟩ = δll′δmm′CBB

l (2.59)

so that the power spectrum can be defined through the squared amplitude of
the spherical harmonic coefficients:

CEE
l = ⟨|Elm|2⟩ (2.60)

CBB
l = ⟨|Blm|2⟩ (2.61)

In the end, averaging over m, and assuming that the Universe is statistically
isotropic (see [2]), we obtain:

CEE
l =

1

2l + 1

l
∑

m=−l
|Elm|2 (2.62)

CBB
l =

1

2l + 1

l
∑

m=−l
|Blm|2 (2.63)

Both of these auto-correlation functions are parity-even, together with the
cross-correlation CTE

l ; this means that they are invariant (i.e. they don’t
change sign) under parity transformation. On the other hand, the two parity-
odd CMB power spectra are:

CTB
l =

1

2l + 1

l
∑

m=−l
Re(TlmB

∗
lm) (2.64)

CEB
l =

1

2l + 1

l
∑

m=−l
Re(ElmB

∗
lm) (2.65)

Both of these have been used to probe the birefringence effect, but the EB
spectrum is the most sensitive one; we can directly compute the birefringence
angle χ from this last cross-correlation.
In order to make the rotation of the polarization plane more evident, we can
still consider the combination defined in eq.(2.57) and see how it transforms
under a rotation of the n̂ vector, i.e.:

(Q± iU)o = (Q± iU)e±2iχ (2.66)

where the o on the left hand side indicates the value observed today, while on
the right hand side we find the value at the last scattering surface (which can
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be unaffected by the birefringence phenomenon); the exponential term is given
by the rotation induced by the interaction of CMB photons with the axion-like
field. It is more convenient to recast the previous relation in terms of E and
B modes coefficients:

Eo
lm ± iBo

lm = (Elm ± Blm)e
±2iχ (2.67)

Replacing the exponential with cos 2χ± i sinχ we get:

Eo
lm = Elm cos 2χ− Blm sin 2χ (2.68)

Bo
lm = Elm sin 2χ+Blm cos 2χ (2.69)

In this way the rotated coefficients are written through the usual rotation
matrix (rotation of an angle 2χ):

R =

(

cos 2χ − sin 2χ
sin 2χ cos 2χ

)

(2.70)

Adopting the rotated coefficients in eqs.(2.68) and (2.69), it’s possible to re-
define the rotated power spectra in (2.62), (2.63) and (2.65), in the following
way:

CEE,o
l = cos2(2χ)CEE

l + sin2(2χ)CBB
l (2.71)

where we have considered the squared amplitude |Eo
lm|2 as the product between

Eo
lm and its complex conjugate Eo,∗

lm , and then we have used the relations (2.60)
and (2.61). In the same way we get the expression for the BB correlation
function:

CBB,o
l = sin2(2χ)CEE

l + cos2(2χ)CBB
l (2.72)

At this point we can insert (2.71) and (2.72) in equation (2.65) in order to
obtain the observed EB spectrum:

CEB,o
l =

1

2
sin 4χ(CEE

l − CBB
l ) + CEB

l cos 4χ (2.73)

Looking to this fundamental relation we can notice two relevant aspects: on one
hand the intensity of the EB spectrum depends on the asymmetry between
E and B modes, on the other hand this correlation is non-null even if the
intrinsic contribution CEB

l at LSS vanishes (on the right hand side of equation
(1̀ı2.73)). In the end, we can also rewrite the EB spectrum in terms of the
observed EE and BB spectra, starting from the rotated relations (2.71) and
(2.72) and recasting them in order to get the intrinsic quantities as a function
of the observed ones:



The isotropic Cosmic Birefringence effect 36

CBB
l =

cos2(2χ)

cos4(2χ)− sin4(2χ)
CBB,o
l − sin2(2χ)

cos4(2χ)− sin4(2χ)
CEE,o
l (2.74)

CEE
l =

cos2(2χ)

cos4(2χ)− sin4(2χ)
CEE,o
l − sin2(2χ)

cos4(2χ)− sin4(2χ)
CBB,o
l (2.75)

Inserting these relations in (2.73), we obtain:

CEB,o
l =

1

2
tan 4χ(CEE,o

l − CBB,o
l ) +

CEB
l

cos 4χ
(2.76)

Another time we can observe that, even in absence of an intrinsic EB corre-
lation at the last scattering surface, the observed EB spectrum is not null,
due to the coupling of photons with DM particles along their trip towards us.
One possibility to explain the presence of an intrinsic contribution to the EB
spectrum is related to parity-violating primordial gravitational waves.
The main aspect that we can highlight from the last equation (2.76) is the
dependence of the EB correlation amplitude from the difference between EE
and BB correlations: this is connected to the fact that χ mixes E and B
polarization modes, such that part of the first one is transferred in the second
one. From the observations about the CMB power spectra we can see that
there is a large asymmetry between CEE,o

l and CBB,o
l , which makes the EB

spectrum a very sensitive probe of cosmic birefringence (see figure 2.1 ).

One important issue, which cannot be neglected, in measuring the birefrin-
gence angle χ, is the miscalibration of the polarization angle in the detectors.
Indeed this miscalibration angle (called α) leads to the same effect as isotropic
birefringence, so we need a tool to separate and differentiate the two contri-
butions. The main problem is that from the observations we can only get
estimations of the combination α+χ, and not two independent measurements
of them; this means that α and χ are degenerate. One interesting solution to
this issue has been proposed by Minami and Komatsu in [22], where they have
exploited another source of polarized light, the Galactic foreground emission,
for which the cosmic birefringence effect can be neglected since the path length
of the photons is much smaller than in the case of CMB radiation, which in-
stead is affected by both α and χ. Thus, polarization from the foreground
emission is tilted only by α, while the one from CMB by α + χ. In this case
the extended observed E and B-mode coefficients read:

Eo
lm = EFG

lm cos(2α)− BFG
lm sin(2α) + ECMB

lm cos(2α + 2χ)

−BCMB
lm sin(2α + 2χ) (2.77)

Bo
lm = EFG

lm sin(2α) + BFG
lm cos(2α) + ECMB

lm sin(2α + 2χ)

+BCMB
lm cos(2α + 2χ) (2.78)
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Figure 2.1: In this plot the observed CMB polarization power spectra are shown,
in particular the ones related to E and B modes: CEE

l and CBB
l , in units of µK2.

The data are taken from the current generation of CMB experiments: Planck, Po-
larbear, South Pole Telescope (SPTpol), Atacama Cosmology telescope (ACTpol)
and BICEP/Keck Array. The filled dots are the data points, averaged over multi-
poles in bins centered at l, while the error bars are related to the 68% confidence
level. The lines represents the best-fitting ΛCDM model for the E-mode and the
lensed B-mode, and the B-mode power-spectrum of the primordial GWs for the
tensor-to-scalar parameter of 0.03. (Credits: Komatsu (2022)[2])

Then, by adopting a similar approach as the one used to get equation (2.76),
from these last two relations we obtain:

CEB,o
l =

tan(4α)

2

(

CEE,o
i − CBB,o

l

)

+
sin(4χ)

2 cos(4α)

(

CEE,CMB
l − CBB,CMB

l

)

+

+
1

cos(4α)
CEB,FG
l +

cos(4χ)

cos(4α)
CEB,CMB
l (2.79)

This allow us to determine simultaneously α and χ, as CEE,CMB
l and CBB,CMB

l

are known precisely. Notice that the knowledge of CEE,FG
l and CBB,FG

l is
not required, but we need only CEB,FG

l . For the sensitivity of the current
experiments, we can ignore CEB,CMB

l , which is the intrinsic EB correlation at
the last scattering surface.
The measurements about the two angles from Planck polarization data are
shown in [22], [23] and [24]. In particular in [22] the results for χ and α from
the 2018 Planck polarization data are reported. At first they have considered









Chapter 3

The anisotropic birefringence
effect

In the second chapter we have focused our analysis on the computation of the
isotropic birefringence angle in different kind of models, and we have shown
that there is a non null rotation of the polarization plane only if the scalar
field ϕ evolves in time, i.e. it is characterized by a background evolution.
However, in general, an axion-like field, which is a dynamical field, can also
depend on spatial coordinates, which means that it is a function of n̂, the
direction in the sky. This spatial dependence is introduced by taking into
account for fluctuations of the scalar field ϕ; indeed we can rewrite it by
adopting a perturbative approach, in this way:

ϕ(x, τ) = ϕ0(t) + δϕ(x, τ) (3.1)

where δϕ are small fluctuations with a null vacuum expectation value ⟨δϕ⟩. The
relevant aspect brought about these perturbations is an additional anisotropic
contribution to the birefringence angle, so that we can write also the rotation
angle as the sum of its background isotropic value and a space-dependent small
perturbation which depends on n̂. We can recover the extended perturbed
expression for the birefringence angle by inserting eq.(3.1) in (2.55) and (2.56):

χf − χi =
λ

2f

∫ f

i

d(ϕ0 + δϕ) =
λ

2f
[ϕ0(τ0)− ϕ0(τ)] +

λ

2f
[δϕ(τ0,x)− δϕ(τ,x)] =

=
λ

2f
[ϕ0(τ0)− ϕ0(τ)− δϕ(τ,∆τ n̂)] (3.2)

where we have used x = (τ0− τ)n̂, and we have replaced the coupling constant
in (2.55) with λ/2f . This means that we can consider the birefringence angle
as split into its isotropic background part and the anisotropic contribution, as
done in perturbation theories:

χ(τ, n̂) = χ0(τ) + δχ(τ, n̂) (3.3)

41
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where the fluctuations δχ are directly related to the fluctuations of the scalar
field δϕ, i.e. :

δχ(τ, n̂) =
λ

2f
δϕ(τ,∆τ n̂) (3.4)

This is the anisotropic birefringence angle. Another way to write it is the
following (see [25]):

δχ(τ, n̂) = − β

M
δϕ(xdec, τdec) (3.5)

where β is the dimensionless coupling constant and M is the mass scale for
the effective field theory; notice that the scalar field fluctuations are referred
to the decoupling epoch only, since they only give ride to a dipole contribution
due to our motion with respect to the CMB frame.
Following the same reasoning adopted in Section 2.2 for the isotropic CB
angle, we can treat the rotation angle fluctuations δχ as a spin-2 field (two-
dimensional fluctuation field), which can be expanded via a spherical harmonic
decomposition as follows:

δχ(n̂) =
∑

lm

χlmYlm(n̂) (3.6)

where χlm are the coefficients of the decomposition. In order to find out
a relation to define these coefficients, it is useful to expand δϕ(xdec, τdec) in
Fourier space, in this way:

δϕ(xdec, τdec) =

∫

d3k

(2π)3/2
δϕk(τdec)e

ik·n̂∆τ (3.7)

where δϕk̄ is the Fourier transform of the δϕ field. Comparing this relation
with eqs.(3.5) and (3.6) we obtain (see [4] and [39]):

χlm = − 1

2π2
(−i)l β

M

∫

d3kδϕ(̄k)(τdec)jl(k∆τ)Y
∗
lm(k̂) (3.8)

Then, if the perturbation field δχ satisfies a Gaussian distribution, its sta-
tistical properties are fully determined by the two-point correlation function,
which is defined as:

⟨χ∗
lmχl′m′⟩ = Cχχ

l δll′δmm′ (3.9)

where Cχχ
l is the auto-correlation power-spectrum of the CB rotation angle.

In the end the angular power spectrum is given by (see [4] and [25]):
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Cχχ
l = 4π

(

β

M

)2 ∫
k2dk

2π2
Pδϕ(k)[jl(k∆τ)Tk(τdec)]

2 (3.10)

where jl(x) is the spherical Bessel function, ∆τ = τ0 − τdec, and Tk(τdec) is
the transfer function for the evolution of the perturbations up to τdec. Thus,
the CB angle power spectrum is directly related to the power spectrum of δϕ
fluctuations at the decoupling time, which is defined as:

⟨δϕ∗
k′(τdec)δϕk(τdec)⟩ ≡

2π2

k3
Pδϕ(k, τdec)δ

3(k− k′) (3.11)

This means that, at first, we need to compute the fluctuation field δϕ and its
power spectrum, in order to get Cχχ

l .
It is reasonable to ask why we are interested in the analysis of these tiny fluctu-
ations in the rotation angle; the main reason is that anisotropic birefringence
allows us to extract additional information about the scalar field, responsible
of this effect, in a complementary way with respect to the isotropic case; in
particular it encodes some relevant aspects on the model related to the axion
field ϕ. Moreover, as suggested in [26], it opens the possibility to probe a
wider range of masses for ϕ: indeed, larger is the mass, larger is the amplitude
of the power spectra related to the anisotropic birefringence.

3.1 Evolution of scalar field fluctuations in the

synchronous gauge

Since the fluctuations in the χ angle are sourced by the perturbations δϕ of
the axion-like field, we need to consider their evolution by solving the related
equations of motion. As suggested in [25] it is more convenient to work out all
the computations in the synchronous gauge, i.e. with δϕ ≡ (δϕ)sync; however
we will also move to the newtonian conformal gauge (Poisson gauge) later
on. Let’s quickly recall the main features of these two gauge choices. The
synchronous gauge is based on the condition Ψ = 0, where Ψ is the so-called
lapse perturbation, which is associated to the metric perturbation δg00 in the
cosmological perturbation theory. Since the perturbed metric component can
be defined as g00 = −a2(τ)[1+2Ψ(x, τ)], and recalling the relation between the
cosmic and the conformal time dt2 = a2(τ)dτ , then, imposing the condition
Ψ = 0, we get the equality between the proper time (t2prop = g00dτ

2) and the
cosmic time t; for this reason it is called synchronous gauge. On the other
hand, the newtonian conformal gauge is very useful to express the evolution of
scalar field perturbations in terms of the potentials ψ and Φ, which in this case
are equal to the gauge-invariant Bardeen potentials ΨA and ΦH (see Section
1.3 ).
We can start from recalling the general equation of motion for the background
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field evolution (for ϕ0):

ϕ′′
0 + 2Hϕ′

0 + a2
∂V (ϕ0)

∂ϕ0

= 0 (3.12)

where the prime (′) indicates the derivative with respect to the conformal time;
in this equation we have only the background field, whose evolution allow us
to derive the isotropic birefringence angle in eq.(2.56). In this chapter we focus
on the equation for the fluctuation field δϕ. As always we can exploit the least
action principle in order to derive the EOM, starting from the following action:

S =

∫

d4x
√−g

[

−1

2
gµν∂µϕ∂νϕ− V (x)− 1

4
FµνF

µν − λ

4f
ϕFµνF̃

µν

]

(3.13)

where the last term in the integral is the Chern-Simons coupling between the
axion-like field and the photon. By varying this action with respect to ϕ (i.e.
computing δS/δϕ) we get the following equation of motion:

∂µ∂µϕ−
∂V

∂ϕ
+

λ

4f
FµνF̃

µν = 0 (3.14)

where, as usual, we can rewrite ∂µ∂µ through the d’Alambertian operator in
order to get a Klein-Gordon equation for ϕ, in this way:

□ϕ =
1√−g

(

gµν
√−g∂µϕ

)

,ν
(3.15)

In this case we need to take into account for the metric gµν defined in the
synchronous gauge:

gµν = a2(τ)

(

−1 0
0 δij + hij(x, τ)

)

(3.16)

from which we have:
√−g = a4(δij + hij)

3/2, where hij is the perturbation of
the metric in this particular gauge; usually this formalism is exploited in order
to study primordial gravitational waves. Inserting the expression for

√−g
inside equation (3.15) and limiting ourselves only up to linear perturbations
(up to the linear order in h), we get this equation:

1

a2

[

Hϕ′− 3

2
h′ij

ϕ′

δij + hij
−ϕ′′− 3

2(δij + hij)
∇hij ·∇ϕ−∇2ϕ

]

− ∂V
∂ϕ

= 0 (3.17)

in which, for the moment, we have not included the Chern-Simons term.
At this point we can expand ϕ as in equation (3.1) and we can use the definition
hij =

h
3
δij+h

′′
ij, where h

′′
ij = ∂i∂j− (1/3)δij∇2, in order to reach this final form

of the EOM for δϕ:
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δϕ′′ + 2Hδϕ′ + a2
∂2V

∂ϕ2
0

δϕ−∇2δϕ = −1

2
h′ϕ′

0 (3.18)

where h is the synchronous scalar metric perturbation; we can notice that,
in the case of a vanishing background evolution of the scalar field (ϕ′

0 = 0),
the right-hand side of equation (3.18) is null, so that the evolution of the
fluctuations is uncorrelated with the perturbations of the metric.
What about the Chern-Simons term present in the action (3.13)? Since the
strength tensor Fµν contains the four vector Aµ, we need to take into account
also for fluctuations in the photon field, such that we can decompose it in this
way:

Aµ(τ,x) = A0,µ(τ) + δAµ(τ,x) (3.19)

Then, using this relation inside the definition Fµν = ∂µAν − ∂νAµ, we can
rewrite the Chern-Simons term as:

λ

4f
FµνF̃

µν =
iλ

f
ϵijk∂0A0,i∂jδAk (3.20)

which should be added to the equation (3.18). However this coupling factor
is negligible since, in order to preserve statistical isotropy of the Universe, the
vacuum expectation value A0 of the electromagnetic field must vanish; so the
vector contribution to the EOM can be neglected (see [26]).
We can analyze two main possibilities which have been proposed in different
works: we have models based on a massless scalar field (null scalar potential
V (ϕ) = 0) , while in other models ϕ is identified with the quitessence dark
energy field. In the first case the background isotropic rotation angle is absent
and the anisotropic counterpart could be quite large, so that it could be de-
tected, for instance, by the Planck satellite or the CMBPol missions. On the
contrary, in the second scenario, the background angle can be large, while the
fluctuations are too much small to be detectable by the present experiments.
Furthermore, another interesting difference between the two models, consists
in the fact that in the massless case the cross-spectra CχT

l and CχE
l are null,

while they are non-vanishing for the quintessence field.
Let’s start from the first case, in which ϕ is a massless scalar field; the evo-
lution equation in (3.12) is simplified in this way, since the scalar potential is
null:

ϕ′′
0k

+ 2Hϕ′
0k

= 0 (3.21)

On the other hand, the equation (3.18) for the evolution of fluctuations be-
comes:

δϕ′′
k + 2Hδϕ′

k + k2δϕk = −
1

2
h′kϕ

′
0k

(3.22)
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These equations are written in Fourier space; ϕk is the Fourier transform of
ϕ and k2 = −∇2, so that each component ϕk evolves independently from the
others. It is very easy to find out the solution of equation (3.21): since it
is a second order differential equation it can be rewritten as λ2 + 2Hλ = 0
whose solutions are λ = 0 and λ = −2H. This means that there are only
constant solutions, i.e. ϕ′

0k
= 0, which brings to a null isotropic birefringence

angle. Thus, inserting the null derivative inside equation (3.22) we get a further
simplified relation:

δϕ′′
k + 2Hδϕ′

k + k2δϕk = 0 (3.23)

so that the evolution of the fluctuation field δϕ doesn’t depend any more on
the metric perturbation h: for this reason δϕ just corresponds to entropy
perturbations. It is possible to write down the solution of the last equation as:

δϕk(τ) = δϕk(τin)Tk(τ) (3.24)

where Tk(τ) is the transfer function which traces the evolution of the perturba-
tions. The initial conditions can be set at the beginning of radiation dominated
epoch (or at the end of inflation), where δϕ′

k(τin) = 0 and the power spectrum
of fluctuations is given by: Pδϕ(k, τin) = H2

I /(4π
2), where HI is the Hubble

parameter during inflation. We can distinguish two relevant cases in which Tk
assumes two different behaviours: the super-horizon regime (kτdec << 1) where
Tk(τdec) = 1, and the sub-horizon one, where the transfer function starts to
oscillate with a damped amplitude during the expansion of the Universe ([25]
and [28]). Figure 3.1 shows the two different trends of the transfer function
in the two different regimes. We can find out an explicit relation for δϕk(τin),
at the end of inflation, in equation (3.24), assuming a de-Sitter phase, during
which H is constant. Under this assumption, and taking into account for the
initial conditions, the background evolution equation for the inflaton field can
be written as:

u′′k(τ) + (k2 − 2a2H2)uk(τ) = 0 (3.25)

where uk = δ̂ϕ · a, with δ̂ϕ defined as the quantization of the fluctuation field
(δ̂ϕ = aδϕ). On sub-horizon scales, i.e. k >> aH, the last equation can
simplified as: u′′k(τ) + k2uk(τ) = 0, which is an harmonic oscillator equation;
so we can consider this kind of solution:

δϕk(τin) =
1

a

e−ikτ√
2k

(3.26)

Thus, the field is affected by a damped oscillation. On the other hand, on
super-horizon scales (k << aH) δϕk is constant; in particular: δϕk(τin) =
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the right hand side (as, instead, in (3.22)), the axion field fluctuations are un-
correlated with perturbations of the metric or of the matter/energy density. As
a consequence all the cross-correlations are null, in particular CχT

l = CχE
l = 0:

the only contribution is the auto-correlation of the rotation angle reported in
eq.(3.27).

Now we can move to the case in which the scalar field ϕ is identified as a
quintessence field (in the form of Dark Energy or Dark Matter). The main
difference with respect to the massless field is a larger value of the birefrin-
gence angle. In this case we need to study the full evolution equation for δϕ
in eq.(3.18)), whose complete solution is given by a combination of the ho-
mogeneous solution (with a null right hand side) plus a particular solution
of the inhomogeneous equation. The former is associated with the entropy
mode, the latter is related to the adiabatic mode; the general solution is a su-
perposition of these two modes. Moreover the homogeneous part belong to a
two-parameter family specified by the initial condition on δϕ and δϕ′ and it is
not affected by the perturbations of the metric (as in the massless case). The
inhomogeneous part, instead, arises as the response of the quintessence field
to the fluctuations of the metric [29]. This kind of behaviour is similar to the
one of the forced oscillator, in which the oscillations are driven by an external
force, so that there are two possible modes in which the it can move, at two
different frequencies. In our case the external force acting on the system is at-
tributed to the coupling between the quintessence field and the perturbations
of the metric , as shown in the right-hand side of equation (3.22), where the
fluctuation h is matched with the background field ϕ0.
Now we want to discuss deeply about this general solution, focusing on both
adiabatic and entropy modes (we will follow the work done by Zhao and Li in
[25]). For the moment we can rely on the homogeneous equation of motion,
which reads:

δϕ′′
k + 2Hδϕ′

k +

(

k2 + a2
∂2V

∂ϕ2
0

)

δϕk = 0 (3.31)

We can notice that, whenever k2 ≫ a2Vϕ0ϕ0 , this equation coincides with the
one for the massless scalar field. A typical example of this situation is the
slow-rolling quintessence field, for which the equation of state reaches a value
very close to -1 (w ∼ −1). Indeed in the case we can rewrite the potential
term as:

a2
∂2V

∂ϕ2
0

≃ 3a2ηΩϕH
2
0 ≪ H2

0 (3.32)

where η = (1/8πG)(Vϕ0ϕ0/V ) is the slow-rolling parameter, and Ωϕ is the
current energy density parameter of the quintessence field. Since the condition
k2 > H2

0 must hold in order to guarantee an observable cosmic birefringence
effect, then we can conclude that the scalar field follows the condition k2 ≫
a2(∂2V/∂ϕ2

0), so that we come back to the massless case. Since we have already
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discuss about the solution for δϕ for a massless field, let’s consider a more
general model for quintessence, without restricting on the case w ∼ −1. Thus,
keeping w completely general, we can express the second derivative of the
potential in (3.31) as:

a2
∂2V

∂ϕ2
0

= −3

2
(1−w)

[

a′′

a
−H

(

7

2
+
3

2
w

)]

+
1

1 + w

[

w′2

4(1 + w)
−w

′′

2
+w′H(3w+2)

]

(3.33)

Assuming a small time evolution of ω, i.e. neglecting w′ and w′′ ([25]), and
taking 1 + w = O(1), this expression can be simplified as:

a2
∂2V

∂ϕ2
0

≃ 3H2

4
(1− w)(7 + 3w) (3.34)

Since this is proportional to τ−2, the a2(∂2V/∂ϕ2
0) > k2 is fulfilled. Thus, the

homogeneous equation (2.31) can be rewritten as:

δϕ′′
k + 2Hδϕ′

k + a2
∂2V

∂ϕ2
0

δϕk = 0 (3.35)

for which it is possible to find explicit solutions. In the radiation dominated
epoch the solution is given by:

δϕk ∝ τ
1

2
(−1±

√
1−4d) (3.36)

where d ≡ 3
2
(1− w)(7 + 3w); while in the matter dominated epoch we have:

δϕk ∝ τ
1

2
(−3±

√
9−4d) (3.37)

It is evident that in both cases the perturbation field decay in time for −1 <
w < 1; in conclusion, for these kind of quintessence models, the homogeneous
solutions decay to zero: this means that the homogeneous part is subdominant
with respect to the inhomogeneous part.
Now we can move to the full inhomogeneous equation; to analyze the solutions
in this case we just mention the approach adopted in [29] by Dave et al.. This
method is based on a parametrization of the quintessence models in terms of
the equation of state as a function of the scale factor, i.e. w(a); this allow us
to study the evolution of the quintessence fluctuations in models with different
equations of state and different types of scalar potential. In this way, as done
in eq.(3.33), it is useful to rewrite the first and second derivatives of V (ϕ) in
terms of w and a, so that the evolution equation for δϕ can be recast in this
way:

δϕ′′ +

(

2
a′

a
+

w′

1 + w

)

δϕ′ +

(

k2 − 3

2
(1− w)

[

a′′

a
−

(

a′

a

)2(
7 + 3w

2

)]

+
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+3w′a
′

a

)

δϕ = −1

2
h′ϕ′

0 (3.38)

We don’t want to enter in details about this treatment, since it is possible
to find out a general solution in the synchronous gauge in a simpler way,i.e.
moving to the Poisson gauge. For those who are interested, see [29] for a
complete treatment on solutions to eq.(3.38).

3.2 Evolution of scalar field fluctuations in the

Poisson gauge

In [25] and [26] we can find a different method in order to derive the solution
for δϕ in the synchronous gauge, starting from the Poisson gauge (or longitu-
dinal gauge). Following this idea, let’s now move from the synchronous gauge,
adopted up to now, to the Poisson gauge; in this case the EOM for the fluctu-
ations of the scalar field is a little bit more complicated; we report the main
steps in order to reach the final form of this equation. We can proceed in a
similar way as for the synchronous gauge, starting from the same action in
(3.13) and the related EOM in (3.14), but now the form of the metric gµν is
different:

gµν = a2(τ)

(

−[1 + 2Ψ(τ,x)] 0
0 [1− 2Φ(τ,x)]δij

)

(3.39)

where Ψ and Φ are respectively the shear perturbation and the gravitational
potential perturbation; in this gauge both of them are related to the two
gauge-invariant Bardeen potentials, in particular: ΨA = Ψ and ΦH = −Φ.
Using the metric in (3.39) it is possible to derive the expression for

√−g =
a4(1 + 2Ψ)1/2(1− 2Φ)3/2, which must be inserted in the EOM, in this way:

□ϕ =
1

a4(1 + 2Ψ)1/2(1− 2Φ)3/2
· ∂0

(

g00a4(1 + 2Ψ)1/2(1− 2Φ)3/2∂0ϕ

)

+

+
1

a4(1 + 2Ψ)1/2(1− 2Φ)3/2
· ∂i

(

giia4(1 + 2Ψ)1/2(1− 2Φ)3/2∂iϕ

)

(3.40)

where we have accounted only for diagonal components, since the metric itself
is diagonal. As previously done, we need to expand the scalar field as ϕ =
ϕ0(τ) + δϕ(τ,x) and to keep terms up to the linear order. In the end we get
this equation:

−2Hϕ′
0 − 2Hδϕ′ − 2H(2Ψ− 4Φ)ϕ′

0 + (Ψ′ + 3ϕ′)ϕ′
0 − ϕ′′

0 − (2Ψ− 4Φ)ϕ′′
0−

−δϕ′′ +∇2δϕ− a2 ∂V
∂ϕ0

− a2(4Ψ− 4Φ)
∂V

∂ϕ0

− a2∂
2V

∂ϕ2
0

δϕ = 0 (3.41)
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Taking into account for the background evolution equation in (3.12), the terms
that survive are:

δϕ′′ + 2Hδϕ′ −∇2δϕ+ a2
∂2V

∂ϕ2
0

δϕ = ϕ′
0(Ψ

′ + 3Φ′)− 2a2
∂V

∂ϕ0

Ψ (3.42)

Finally, this is the evolution equation for the fluctuation field δϕ in the Poisson
gauge. It is evident that this equation is similar to the one in the synchronous
gauge except for the right hand side, where there are different kind of scalar
metric perturbations. Moreover, still looking to the right hand side of eq.(3.42),
we can notice that, even if there is a null background evolution for the scalar
field (ϕ′

0 = 0), the term sourced by Ψ survives, unless ϕ is massless. This means
that the fluctuation field δϕ is correlated with metric perturbations even in the
case of a zero time-derivative of the background field ϕ0 (which implies a null
isotropic birefringence effect).
Let’s now find out solutions to equation (3.42), considering some useful ap-
proximations. Since we are dealing with the computation of the ACB angle δχ
at the recombination epoch, we are allowed to take the perturbations Ψ and
Φ as constant, so that their time derivatives Ψ′ and Φ′ vanish and the EOM
in (3.42) can be simplified in this way:

δϕ′′ + 2Hδϕ′ +

(

k2 + a2
∂2V

∂ϕ2
0

)

δϕ = −2a2 ∂V
∂ϕ0

Ψ (3.43)

where −∇2 has been replaced with k2. Moreover, since it is reasonable to take
into account for a very small mass for the axion-like field (mϕ ≲ 10−31eV ), we
can adopt a slow-roll approximation, i.e. the second derivative of the potential
can be neglected; then, since we are interested in perturbations on superhorizon
scales, also the k2 term can be cancelled out. In the end we remain with this
equation:

δϕ′′ + 2H δϕ′ = −2a2 ∂V
∂ϕ0

Ψ (3.44)

for which we can find out a solution of this kind ([26] and [27]):

δϕ ∝ a2τ 2
∂V

∂ϕ0

Ψ(τ, k) (3.45)

We can notice that the fluctuation field depends on the first derivative of the
scalar potential, which is related to the mass of the field ϕ: this means that
an higher mass corresponds to a larger amplitude of the anisotropic birefrin-
gence power spectra. Moreover, from (3.45), it is evident that, in the case
of a quintessence non-massless field, the fluctuations are directly sourced by
the scalar perturbation of the metric Ψ: an interesting implication of this
is that scalar perturbations are able to produce a cross-correlation between
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anisotropic cosmic birefringence and the other CMB observables, such as the
temperature and the polarization. In this way the power spectra CχT

l and
CχE
l are generated, besides the auto-correlation one Cχχ

l ; a joint investigation
of these cross-spectra allows us to extract some interesting additional informa-
tions about the axion field, such as its mass mϕ and the scalar potential V (ϕ).
We can consider different shapes for the scalar potential; in the case in which
ϕ is the axion field it takes this form (see [27]):

V (ϕ) = m4
ϕ

(

1− cos
ϕ

f

)

(3.46)

where f is the constant that appears in the Chern-Simons coupling term. On
the other hand, in [26], the scalar field plays the role of the quintessence dark
energy field and is characterized by this potential:

V (ϕ0) = m2
ϕM

2
P l

[

1− cos
(

ϕ0

MP l

)]2

(3.47)

Analyzing the power-spectra of anisotropic birefringence we can also under-
stand which is the best model that fits the observational data, and have a more
clear idea on the nature of the field ϕ.
Moreover for different massesmϕ there are different kind of birefringence mech-
anisms; we can recognize different mass intervals, as done in [26]:

• mϕ ≫ 10−27eV : here there is no isotropic birefringence (anisotropic
birefringence only), since ϕ0 = 0.

• 10−29eV ≪ mϕ < 10−27eV : onlu recombination, and not reionization
epoch, contributed to the isotropic birefringence.

• 10−32eV ≪ mϕ < 10−29eV : both recombination and reionization con-
tribute to isotropic birfringence, with different angles.

• mϕ < 10−32eV : also in this case both recombination and reionization
contributes, but giving the same birefringence angle.

• mϕ ≪ 10−32eV : there is no isotropic birefringence, because the value
of the background field at the recombination and at the reionization is
equal to the value today (so ϕ0(τrec)− ϕ0(τ0) = 0).

We can notice that the isotropic birefringence effect is visible only in a precise
range of masses, between 10−32 eV and 10−27 eV, while the anisotropic birefrin-
gence is dominant for higher masses: in this way the anisotropic contribution
allow us to probe a wider range of values for the axion field mass with respect
to the isotropic case. Moreover, as suggested previously, as the mass increases
the amplitude of the anisotropic birefringence power spectra increases, so that
it should be easier to detect it with future experiments.
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Starting from the solution for δϕ in the newtonian conformal gauge (equa-
tion 3.45), it is possible to derive the solution in the synchronous gauge by
applying this transformation:

δϕsyn = δϕcon − αϕ̇0 (3.48)

where α ≃ (2/3)ψ/H during matter domination epoch. Then we can express
the derivative of the scalar potential exploiting the attractor solution of a
slow-rolling scalar field, such that:

a2V ′ ≃ −3Hϕ̇0 −→ V ′ ≃ −3H
a2
ϕ̇0 (3.49)

with V ′ = ∂V/∂ϕ0 and ϕ̇ denotes the time derivative. In order to rewrite the
time derivative of the scalar field we can exploit this relation:

ϕ̇2
0 = a2ρϕ(1 + wϕ) (3.50)

where wϕ is the equation of state parameter for the scalar field; this relation
can be rewritten by considering ρϕ = Ωϕρc, with the critical density ρc =
3H2M2

pl/8π; so in the end the derivative of the potential becomes:

V ′ = −3H
a2

[

a2Ωϕ

3H2M2
pl

8π
(1 + wϕ)

]1/2

(3.51)

where Ωϕ is the density parameter of the axion field. After some trivial math-
ematical passages we reach this expression for V ′:

V ′ = −3H
2

a2
Mpl

(

3

8π
Ωϕ(1 + wϕ)

)1/2

(3.52)

Then, inserting (3.52) into (3.45), we get another way to write the solution for
the fluctuation field in the conformal gauge:

δϕcon ≃ −
1

27
a2τ 2V ′Ψ =

1

27
a2τ 2

[

3
H2

a2
Mpl

(

3

8π
Ωϕ(1 + wϕ)

)1/2]

Ψ =

=
4

9

(

3

8π
Ωϕ(1 + wϕ)

)1/2

MplΨ (3.53)

where we have used the relation between the Hubble constant and the confor-
mal time: H ∼ 2/τ .
Finally we can insert this solution in eq.(3.48) in order to directly move to the
synchronous gauge, in this way:
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δϕsyn =
4

9

(

3

8π
Ωϕ(1 +wϕ)

)1/2

MplΨ−
2

3
aH

(

3

8π
Ωϕ(1 +wϕ)

)1/2

Mpl
Ψ

H (3.54)

and recalling the relation H = H/a, we get [27]:

δϕsyn = −2

9

(

3

8π
Ωϕ(1 + wϕ)

)1/2

MplΨ (3.55)

After this theoretical derivation of the fluctuations of the scalar field, we are
ready to compute the power-spectrum for the anisotropic CB angle, exploiting
the relations in eqs.(3.6)-(3.11). Differently with respect to the massless case,
now the power spectrum of the quintessence field fluctuations Pδϕ is directly
related to the one of the perturbations of the gravitational potential PΨ, so
that, substituting eq.(3.54) into eq.(3.11), we get:

⟨δϕ∗
k′(τdec)δϕk(τdec)⟩ =

4

81

(

3Ωϕ(1 + wϕ)

8π

)

M2
pl⟨Ψ∗

k′(τdec)Ψk(τdec)⟩ (3.56)

and inserting it into eq.(3.10) we get the angular power spectrum:

Cχχ
l =

2

27
Ωϕ(1 + wϕ)

(

βMpl

M

)2 ∫
k2dk

2π2
PΨ(k)

[

jl(k∆τ)Tk(τdec)
]

(3.57)

which makes evident the link between the CB-angle power spectrum and the
metric perturbations given by the gravitational potential Ψ. It is possible to
use also the power spectrum PΦ instead of PΨ, considering an ideal fluid in the
perturbed Einstein equations; indeed in this case there is a null anisotropic
contribution to the stress-energy tensor, which leads to the equality of the two
Bardeen’s potentials, i.e. −Ψ = Φ, as in eq.(1.73); this means that we can
consider one of the two perturbations without distinction.
Assuming adiabatic initial conditions for the perturbations (this is reasonable
in the context of single-field inflationary models, which predicts the production
of an adiabatic power spectrum after inflation) it is possible to redefine the two-
point correlation function for the field fluctuations in terms of PR(k), which is
the adimensional power spectrum of the comoving curvature perturbation R;
so that, eq. (3.11) can be rewritten as:

⟨δϕ∗
k′(τdec)δϕk(τdec)⟩ =

16π5

k3
PR(k)δϕ

2(τdec)δ
(3)(k − k′) (3.58)

The comoving curvature perturbation R is a gauge-invariant quantity. In
addition, it is relevant in cosmology because, under adiabatic initial conditions,
it is conserved when the perturbations move outside the horizon, i.e. remains
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constant on super-horizon scales (for k ≪ aH); for this reason the initial
conditions for the evolution of perturbations (δϕ, ψ and ϕ) are totally enclosed
in R. Thus, it can be useful to express PΨ in terms of PR: taking into account
for large scales, i.e. small k and small l (l ≲ 100), the primordial power
spectrum for Ψ can be defined as:

Pψ(k) =
9

25

2π2

k3
PR (3.59)

It is more convenient to express Cχχ
l in terms of PR since this amplitude has

been estimated from observations; in particular PR ≃ 2.1×10−9. For simplicity
it is possible to rewrite the power spectrum in eq.(3.57) defining a parameter
ϵ as in [39], which contains all the constants:

ϵ =
1

100rad
× 1

9π

βMpl

M

(

3Ωϕ(τdec)(1 + wϕ(τdec))

8π

)1/2

(3.60)

so that Cχχ
l becomes:

Cχχ
l = 8× 104πϵ2

∫

k2dkPΨ(k)
[

jl(k∆τ)Tk(τdec)
]

(3.61)

For l ≲ 100 the transfer function is almost constant, i.e. Tk(τdec) ≃ 1 and,
exploiting eq.(3.59) the CB angle power spectrum can be recast as:

Cχχ
l =

7.2× 105π3ϵ2PR
25l(l + 1)

(3.62)

for which, taking the value for PR previously mentioned, we get an estimation
Dχχ
l = l(l + 1)Cχχ

l /2π ∼ 3.0 × 10−4ϵ2 rad2; this can be compared with the
current observational results from ACTPol: Dχχ

l < 1.0 × 10−5 rad2 at 95%
C.L., allowing us to put a constraint on the parameter ϵ < 0.18, so that it is
possible to estimate the cosmological parameters in eq.(3.60).
Besides the auto-correlation power spectrum in (3.57), when the scalar field
is a quintessence field (not massless), two additional cross-correlations of the
CB angle to the CMB temperature and the E-mode polarization arise. This
is due to the fact that also the temperature and polarization power spectra
are sourced by the primordial power spectrum of the gravitational potential
Ψ. Indeed the harmonic coefficients used to decompose the CMB temperature
field and the polarization pattern can be defined in a similar way as in eq.(2.8):

Tlm = − 1

2π2
(−i)l

∫

d3kϕ(̄k)(τdec)∆T,l(k, τ)Y
∗
lm((̂k)) (3.63)

Elm = − 1

2π2
(−i)l

∫

d3kϕ(̄k)(τdec)∆E,l(k, τ)Y
∗
lm((̂k)) (3.64)
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from which we can write the following auto-correlation power spectra:

CTT
l =

2

π

∫

k2dk[∆T,L(k)]
2Pψ(k) (3.65)

CEE
l =

2

π

∫

k2dk[∆E,L(k)]
2Pψ(k) (3.66)

where ∆T,L(k) and ∆E,L(k) represent the transfer functions that quantify the
contribution of a mode of wavenumber k to the related spectrum. Then, the
two-point cross-correlation function is given by:

⟨χ∗
lm(τ)Tl′m′(τ)⟩ = CχT

l δll′δmm′ (3.67)

Finally, exploiting this last relation and eqs.(2.61) and (2.65)-(2.66), we get
the cross-correlation power spectra, which read [39]:

CχT
l = 4× 102ϵ

∫

k2dkPψ(k)∆T,l(k, τ)jl(k∆τ)Tk(τdec) (3.68)

CχE
l = 4× 102ϵ

∫

k2dkPψ(k)∆E,l(k, τ)jl(k∆τ)Tk(τdec) (3.69)

We can see the different behaviours of the Cχχ
l , CχT

l and CχE
l in figure 3.3

[39]. It is evident that the auto-correlation power spectrum is very similar to
the one related to the massless field (see figure 3.2 ), especially at large scales,
i.e. for l ≲ 100, where the transfer function can be taken as a constant in
both scenarios. On the other hand, the two cross-correlations show a similar
oscillatory behaviour at higher multipole moments. For a complete overview
on the results from Planck 2018 data, see [41] and [42]. It is interesting to
see how the cross-correlation power spectra are affected by a rotation of the
polarization plane, relating the observed spectra with the unrotated ones, in
this way [40] :

CχT
l,obs = CχT

l (3.70)

CχE
l,obs = CχE

l cos 2χ0 − CχB
l,obs sin 2χ0 (3.71)

CχB
l,obs = CχE

l sin 2χ0 −+CχB
l,obs cos 2χ0 (3.72)

where we can see that the observed power spectra are the result of the pri-
mordial ones (at decoupling epoch) after a rotation of an angle χ0, which
is the isotropic birefringence angle. Furthermore we can notice that the ob-
served cross-correlation are non-zero if, and only if, they were non-null at early
epochs; this means that they are sourced just by phenomena at the recombi-
nation epoch, not along the travel of photons towards us.
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where, in the last equality we have used the same coupling factor defined in
eq.(2.56). In the case of quintessence field, in the context of baryo/leptogenesis
models, the variance is given by: ⟨∆δχ2⟩ ∼ (10−5/M2)⟨δϕ2⟩. Then, taking
into account for the solution for δϕ in eq.(3.53) or (3.55), and considering a
tracking behaviour for the field ϕ (required in order to generate enough baryon
asymmetry), we get this estimation:

⟨∆δχ2⟩ ∼ 10−7
M2

pl

M2
⟨Φ2⟩ ∼ 10−17

M2
pl

M2
(3.79)

where these values have been considered: wϕ = wm = 0 for the tracking
behaviour, Ωϕ ≲ 0, 04 [43] and ⟨Φ2⟩ ∼ 10−10 for adiabatic perturbations.



Chapter 4

Cosmic Birefringence from the
coupling with an f (R) scalar
function

It is known that nowadays the Universe is dominated by matter particles in-
stead of antimatter ones; so there must have been a process in a very early
epoch, for which baryons were preferred over anti-baryons: this process is
the so-called baryogenesis. Many proposed models for the this mechanism are
based on the Sakharov conditions : the first one requires the violation of the
baryon number B, the second imposes the violation of charge conjugation and
of CP symmetry, and the third states that particles must be out of thermo-
dynamical equilibrium. This last requirement is applied only in models where
CPT symmetry is conserved; this means that if it is violated, then baryogenesis
and leptogenesis can take place in a condition of thermal equilibrium. Thus,
CPT violation could allow us to investigate this fundamental process, occurred
at very early epochs. In this way the baryo/leptogenesis phenomenon can be
associated with the presence of a quintessence field, or a generic scalar function
f(R), coupled with CMB photons, which gives rise to a parity violation in the
electromagnetic Lagrangian density (in this case the entire CPT is violated),
leading to the same birefringence effect studied up to now.
Following this idea, two interesting kinds of models are the ones of sponta-
neous baryogenesis and of gravitational baryogenesis. In the first ones CPT
is violated by an additional scalar field which is a quintessence field ϕ (Dark
Matter or Dark Energy), the same considered in the previous chapters, while
in the second ones a scalar function f(R) replaces the field ϕ. We will deeply
analyze this second case in the following section.

4.1 Isotropic birefringence angle from a mod-

ified Chern-Simons coupling

In this section we will study the effect of the Chern-Simons coupling, seen in
the first chapter, substituting the scalar field ϕ with a generic function of the

60
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Ricci scalar f(R). The relevant aspect is that, since the addition of an f(R)
function breaks the CPT symmetry, it leads to the same effect observed in the
previous sections: the rotation of the polarization plane of CMB photons . In
this way the cosmic birefringence effect can be exploited also to constrain and
study the baryo/leptogenesis mechanism in the early universe, in the context
of gravitational baryogenesis models.
In practice, we start from an interacting Lagrangian density as the one in
eq.(2.4), but now the scalar field is replaced by a scalar function f(R), which
depends on the Ricci curvature scalar R (see [12]):

Lint = c∂µf(R)J
µ (4.1)

where c is the coupling constant related to the strength of the interaction,
and Jµ is a fermion current, which, as previously, must satisfy two require-
ments: it can’t be orthogonal to the B-L current and it needs to be anomalous
with respect to the electromagnetic interaction. So, also in this situation, it
is consistent to take the Jµ(B−L)L current, which contains the parity-breaking

term FµνF̃
µν as shown in eqs.(2.5) and (2.6); in the end we get an interacting

Lagrangian density written in a similar way to the one for the Chern-Simons
coupling:

Lint = −
1

2
σ∂µf(R)K

µ (4.2)

where the current Kµ is given by AνF̃
µν (i.e. the Chern-Simons current) and σ

is a coupling constant with a shape depending on the underlying fundamental
theory; in [1] it is defined in this way:

σ ≡ −4αem
3π

c (4.3)

Notice, indeed, that inserting this definition in (4.2), we recover the constant
coefficient present in (2.6). At this point we can start with the computations
to derive the birefringence angle.
Following the same procedure as in the case of a scalar field, we can start
by deriving the modified Maxwell’s EOMs, exploiting another time the Euler-
Lagrange equations. The only term that changes with respect to the previous
case is the one containing the interacting lagrangian:

∂Lint

∂Aν
= −1

2
σ∂µf(R)F̃

µν (4.4)

such that the EOM in terms of the stregth tensor Fµν is:

∇µF
µν = σ∂µf(R)F̃

µν (4.5)

The other equation of motion is still given by:
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∇µF̃
µν = 0 (4.6)

which, however, doesn’t contain any interesting effect produced by the Chern-
Simons coupling. For this reason we will just focus on equation (4.5), recasting
it in terms of the four-vector Aµ, for convenience:

∇µ(∇µAν −∇νAµ) =
σ

2
∂µf(R)ϵ

µνρσFρσ (4.7)

We can easily notice that this equation contains a gauge freedom, which can
be erased by imposing, for example, the Lorenz gauge: ∇µA

µ = 0. Under this
choice the EOM can be rewritten as:

∇µ∇µAν +Rµ
νA

ν =
σ

2
∂µf(R)ϵ

µνρσ(∇ρAσ −∇σAρ) (4.8)

in which Rµ
ν comes from the commutation of covariant derivatives reported in

the footnote 1 in the first chapter.
We can still exploit the geometrical optics approximation, under which the
solutions to the Maxwell equations can be written in the same form used in
(2.23). Substituting these solutions in the EOM, and considering only the
terms that scale as 1/ϵ we derive the propagation equation:

kµ∇µa
ν +

1

2
∇µk

µaν =
σ

4
∂µf(R)ϵ

µνρσ(kρaσ − kσaρ) (4.9)

where kµ ≡ ∇µS. On the other hand, taking into account for terms that
scale as 1/ϵ2 we simply get the relation: kµk

µ = 0, which means that photons
propagates along null geodesics, unaffected by the f(R) function. Focusing
instead on equation (4.9), we can multiply all the terms by aν and use the
definition aµ = Aεµ and the normalization εµε

µ = 1 in order to rewrite it as:

kµ∇µε
ν =

σ

4
∂µf(R)ϵ

µνρσ(kρεσ − kσερ) (4.10)

It is evident that in this case we have not a parallel transport of the polarization
vector εµ, since the term kµ∇µε

ν is non-vanishing: this means that the plane
of polarization rotates as the photon propagates; it’s the same birefringence
effect obtained for the scalar field ϕ.
In order to find out explicitly the polarization angle (birefringence angle) we
can start by considering a flat FLRW spacetime, whose metric is:

ds2 = a2(τ)(dτ 2 − δijdxidxj) (4.11)

where τ is the conformal time. For the moment we take R as time-dependent
only, so that f(R) depends only on time and not on spatial coordinates (more
generally, R could also have fluctuations, so that it becomes dependent on
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space; we will discuss about that case later in the next sections). Moreover,
photons are assumed to propagate along the x axis, i.e. the four-momentum is
kµ = (k0, k1, 0, 0), with the null condition kµk

µ = 0. Under all these assump-
tions the polarization vector satisfies the following equation:

kµ∇µε
i =

σ

4
∂µf(R)ϵ

0ijk(kjεk − kkεj) (4.12)

Then, using the relation ϵµνρσ = eµνρσ/
√

−det|g| (in FLRW
√

−det|g| = a4)
and the permutation property of the Levi-Civita tensor, this equation can be
recast as:

kµ∇µε
i =

σ

2
∂µf(R)

eijk

a4
gijglkk

jεk =
σ

2
∂µf(R)e

ijkkjεk = −σ
2
∂µf(R)e

1ikk1εk

(4.13)

where we have exploited the metric gµν to raise the indexes of k and ε, and
we have taken the j index equal to 1, due to the assumption of propagation
along x direction only; the minus sign in the last equality comes from the
permutation properties of the eijk tensor.
In order to going on with the computations it is more convenient to rewrite
equation (4.13) in another way, recalling that kµ = dxµ/dλ and exploiting
the definition of the covariant derivative: ∇µε

i = ∂µϵ
iΓiµjε

j. The Christoffel
symbols can be found quickly in a FLRW metric; the only two that survives
are:

Γi0j = Γij0 =
1

2
giλ(∂gλ0,j + ∂gλj,0 − ∂g0j,λ) =

1

2
gii(∂gij,0) =

a′

a
δij = Hδij (4.14)

whereH is the Hubble constant in the conformal time (indeed the ′ denotes the
derivative with respect to the conformal time τ). Inserting all these information
in equation (4.13), we derive the two geodesic equations for the polarization
vector components ε2 and ε3, both orthogonal to the propagation direction
determined by k1:

dε2

dλ
+Hk0ε2 = −σ

2
∂µf(R)k

1ε3 (4.15)

dε3

dλ
+Hk0ε3 = σ

2
∂µf(R)k

1ε2 (4.16)

The different sign between the two equations is due to e1ik: in the first case
i = j = 2 and k = 3 are taken, while in the second one there are i = j = 3 and
k = 2. Furthermore, it is interesting that these two equations are mixed in ε2

and ε3, reminding the situation seen in equations (2.47) and (2.48): this means
that this rotation effect is able to inter-change the polarization components
during the propagation of the photons.
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Exploiting the fact that k0 = k1 = dτ/dλ and substituting it in the previous
relations, we obtain:

dε2

dλ
a+

da

dλ
ε2 = −σ

2
∂µf(R)

dτ

dλ
ε3a (4.17)

where we have also multiplied both sides by the scale factor a. Using the
Leibniz rule for derivatives on the left hand side of the equation, and the
assumption that f(R) depends only on time, in the end we reach this equation
for ε2:

d

df(R)
(aε2) = −σ

2
aε3 (4.18)

and, following the same reasoning, the equation for ε3 reads:

d

df(R)
(aε3) =

σ

2
aε2 (4.19)

Finally at this point we can derive the expression for the birefringence angle
for a photon coupled with a generic f(R) scalar function by integrating the
last equation:

∫

d

df(R)
(aε3) =

∫

σ

2
aε2 −→ ε3 =

σ

2
ε2f(R) + constant (4.20)

and so:

α = arctan

(

ε3

ε2

)

=
σ

2
f(R) + constant (4.21)

For a source at redshift z (for the CMB radiation we take zrec) the rotation of
the polarization angle is given by:

∆α =
σ

2
[f(R(0))− f(R(zrec))] (4.22)

making evident that the birefringence angle depends on the difference between
the value of the scalar function computed at the recombination epoch and the
one computed today (at z = 0), along the photon trajectory. This means that
there is a non-zero effect only if f(R) evolves (at least) in time, as suggested
previously. In most cases, the adopted convention for the sign of the rotation
angle in (4.22) is the following:

∆χ = −∆α =
2
[f(R(zrec))− f(R(0))] (4.23)

so that if ∆χ > 0 there is a clockwise rotation. This choice of the sign comes
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from the fact that a vector rotated by an angle ∆α in a fixed coordinate frame
is equivalent to a fixed vector measured in a coordinate frame which is rotated
by the same angle (in practice in eq.(4.22) we are considering ourselves in a
rotating system).

4.2 Primordial baryo/leptogenesys mechanism

originated by an f (R) scalar function

Up to now we have kept f(R) completely generic, but there are different pro-
posed models based on different shapes of the scalar function f(R); for in-
stance in [1] and in [14] they have adopted a logarithmic dependence on R,
i.e. f(R) = lnR, while in other cases, such as in [13], a simple linear behaviour
is used, with f(R) = R/M2. We want to discuss a little bit further about these
two kind of models, with a particular focus on the baryo/leptogenesys mecha-
nism.
In this context it is interesting to spend a few words on the estimation of the
coupling factor σ in equation (4.23), which in practice is a measure of the
detectability of the birefringence effect. This estimation is related to the com-
putation of the baryon number asymmetry, which in this kind of models (see
reference [12]) is given by:

nB
s
∼ c

ḟ(R)

T
(4.24)

where s is the entropy density and T is the temperature. It is evident, an-
other time, that the time-derivative of the scalar function f(R) must be non-
vanishing. In order to ensure this, one possibility is to take a model in which
f(R) ∼ lnR, as done in reference [1] and [18], so that the interacting La-
grangian in equation (4.2) can be rewritten as:

Lint = c
∂µR

R
Jµ (4.25)

Indeed in this case the term ∂µf(R) doesn’t vanish during the radiation dom-
inated epoch, and it brings to the violation of the CPT symmetry. Following
the computations in [18], it is possible to rewrite the last equation in a more
useful way, in order to give an estimation of the baryon asymmetry. At first
the vector current in (4.25) can be replaced with JµB (but the same calculation
is valid also for a JµB−L current), so that it gives rise to an effective chemical
potential for baryons :

−cṘ
R
nB −→ µb = −c

Ṙ

R
= −µb̄ (4.26)

From this, inserting the expression for nB, the ratio of the baryon number to
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the entropy density can be derived:

nB
s

= − 15gb
4π2g∗s

cṘ

RT
(4.27)

where the entropy density is given by: s = 2π
45
g∗sT

3 and g∗s is the number
of degrees of freedom of the particles that contribute to the entropy of the
universe. Then, the term Ṙ/R can be recovered from the Friedmann equation,
and it reads:

Ṙ

R
= −3H(1− 3ω) = −4H = −6.64g1/2∗

T 2

mpl

(4.28)

where we have inserted the value 1/3 for ω, since we are in the radiation dom-

inated epoch, and the expression for the Hubble parameter: H = 1.66g
1/2
∗

T 2

mpl
.

Substituting this relation into (4.27) we get the final expression for the baryon
number over the entropy density:

nB
s
≃ 2.52cgbg

−1/2
∗

TD
mpl

≃ 0.1c
TD
mpl

(4.29)

where gb ∼ O(1) and g∗ ∼ O(100); since the value of the baryon number asym-
metry is of the order of 10−10 (and taking c ∼ O(1)) a decoupling temperature
TD of order 10−9mpl ∼ 1010 GeV is required. We can get a similar result even
if we take the vector current JµB−L instead of JµB in (4.25), so that we finally
have the B-L number asymmetry:

nB−L
s
≃ 0.1c

TD
mpl

(4.30)

where TD is the decoupling temperature related to the B-L violating interac-
tions, i.e. the temperature below which the B-L interactions freeze-out. In
the Standard Model the B-L symmetry is conserved, but there are many other
models in which it is violated, for example in the presence of an interacting
lagrangian of this kind:

L̸L =
2

f
lLlLϕϕ+H.c. (4.31)

where f is the scale related to new physics beyond the SM, lL is the left-handed
lepton (taken as a neutrino) and ϕ are the Higgs doublets. The coupling in
(4.31) induces an interaction rate of B-L violating processes given by: γ ̸L ∼
0.04T 3/f 2, so that the interactions are more efficient at higher temperatures.
From the requirement of an interaction rate larger than the universe expansion
rate, given by H, in order to maintain a thermal equilibrium condition, we can
derive a lower limit on the neutrino mass:

∑

i

m2
i =

(

0.2eV

(

1012GeV

TD

)1/2)2

(4.32)



Cosmic Birefringence from an F(R) coupling 67

where the neutrino masses are related to the decoupling temperature. The
estimations of the masses come from experiments on neutrino oscillations and
from cosmological tests (in particular from the analysis carried out by WMAP
and SDSS, which have given

∑

imi < 0.69 eV and < 1.7 eV, respectively.
Depending on the adopted neutrino mass hierarchy, the required freeze-out
temperature has values in the range: 1010GeV ≤ TD ≤ 1013GeV . Putting
these values in equation (4.30) we have a constrain on the coupling constant
c ≥ 10−3, and, from equation (4.3), we can conclude that a |σ| ≥ 10−6 is
needed to ensure a successful baryogenesis; this value for σ is effectively inside
the detectable window of the future CMB experiments.

Besides the model with a logaritmic scalar function investigated up to now,
there are also some models with f(R) ∼ R, where unfortunately the time
derivative Ṙ would vanish due to the fact that R = 8πG(1− 3ω)ρ is null for ω
= 1/3 (i.e. during the radiation dominated epoch). However there are some
methods which allow us to reach a non-vanishing Ṙ also in the case of a linear
scalar function, such as the one proposed by Davoudiasl et al. in [13], where
they adopt a CP-violating interaction between the derivative of the Ricci scalar
and the baryon current Jµ, whose action can be expressed as:

S =
1

M2
∗

∫

d4x
√−g(∂µR)Jµ (4.33)

where M∗ is the cut-off energy scale of the effective background theory; it is
reasonable to take it of the same order of the Planck mass MP ∼ 2.4 × 1018

GeV. The vector current Jµ could be any current that lead to an asymmetry
in the baryon or lepton number (as seen previously). We can notice that the
action in (4.33) is very similar to the one related to the coupling between the
scalar field and a vector current analyzed in the previous section; indeed this
model is closely connected to the one of the spontaneous baryogenesis, in which
the scalar field ϕ replaces the Ricci scalar R.
In this kind of approach the baryon asymmetry is ensured by taking into ac-
count for a non-null (1−3ω) term, which is possible due to interactions among
massless particles which lead to running coupling constants; in particular in
[13] they have adopted a value for 1 − 3ω of the order of 10−2-10−1, and a
relation for the baryon number density of this kind:

nB
s
≈ (1− 3ω)

T 5
D

M2
∗M

3
P

(4.34)

where TD is still the decoupling temperature, at which the baryon number
violating interactions are efficient.

In order to conclude this section, we quickly analyze another model that adopts
a linear f(R) function, referring in particular to the work done by Shiromizu
and Koyama in [19], where the Randall-Sundrum model (in the brane world
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scenario) is investigated. Here the starting point to ensure the baryon number
asymmetry is the same as in the previous approach, with the interacting ac-
tion in eq.(4.33) and the same relation for the baryon number to entropy ratio,
which can be rewritten also as:

nB
s
∼ Ṙ

M2
∗T

(4.35)

estimated at the decoupling temperature TD. The novelty of this model is in
the fact that the non-zero time derivative Ṙ during radiation dominated epoch
is realised due to the higher order curvature corrections in the effective theory.
These corrections leads to an expression for the Ricci scalar which reads:

R = (1− 3ω)
ρ

M2
4

− 1

6
(1 + 3ω)

ρ2

M6
5

(4.36)

where the term on the right hand side comes from higher order corrections to
conventional cosmology. Here the two masses M4 and M5 are the four and
five dimensional Planck scales related by the relation M2

4 = lM3
5 and M∗ is

proportional to the ratioM3
5/M

2
4 . From the relation (4.36) the time-derivative

of the Ricci scalar can be derived:

Ṙ =
8

3

Hρ2

M6
5

∼ T 10

M6
5M4

(4.37)

By inserting this relation for Ṙ into equation (4.35), it can be seen that the
baryon number to entropy ratio depends on the ratio between the Planck scales
in four dimensional and five dimensional spacetimes, in this way:

nB
s
∼ T 9

D

M2
∗M

6
5M4

∼ M3
4T

9
D

f 2M1
52
∼ 1

f 2

(

M5

M4

)3/2

(4.38)

where f is a parameter related to the CP violation processes considered in the
model, and is the coefficient that defines the proportionality among M∗ and
the Planck scales, i.e. M∗ = fM3

5/M
2
4 . Then, finally, taking into account for

the estimations of the different quantities appearing in the previous equation
(in particular setting M5 > 108 GeV from experiments), the baryon number is
espected to be:

nB
s
∼ 10−10

(

0.001

f

)2(
108GeV

M5

)2(
TD

102.5GeV

)9

(4.39)

For this scenario we should require TD < TR < MI (as suggested in [13]),
where TR is the reheating temperature, i.e. the temperature at which the
universe becomes radiation dominated, and MI is the inflationary scale. This
last quantity depends on the type of scalar potential chosen for the inflationary
model: for example, in the chaotic inflation scenario, where the potential is
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V = 1
2
m2ϕ2, the scale MI (which is ∼ v1/4) is constrained to be of the order

of 10−0.5M5, which satisfies the previous condition.
Besides the case of ω = 1

3
, there are other two possibilities to generate a baryon

asymmetry with ω = 0 (matter dominated universe) and with ω > 1
3
; both

of them are analyzed in [13], but we don’t want to enter too much in details
about this, since it goes outside the purpose of this work.

We conclude this section with the analysis of another model based on the
addition of an f(R) function in the Einstein-Hilbert action: it is the so-called
Starobinsky model. This is one of the most relevant and consistent models pro-
posed to explain the inflationary scenario, so that we can explore an interesting
connection between the inflationary epoch and the dark matter production in
the early universe. The model takes into account for an action modified by the
addition of an extra term proportional to R2, brought by a quantum correction
related to the presence of an additional scalar degree of freedom, which should
play the role of the inflaton field. There are some interesting extensions and
modifications of the ”classical” Starobinsky inflationary model, as the ones
presented in [20] and [21]. In the first one the scalar d.o.f. is the Higgs boson,
and the R2 additional term is brought by its coupling with curvature (i.e. the
graviton), while in the second one they consider an extension of the Starobin-
sky model by introducing a dark-sector which contains DM particles.
The modified Einstein-Hilbert action exploited in both these models is given
by:

S =

∫

d4x
√−g

[

−1

2
M2

PR−
M2

P

12M2
R2

]

(4.40)

Very briefly, without entering in the computations, in [20] the DM candidate
comes from an auxiliary field ξ, called scalaron, introduced in this action; it is
shown that these additional scalar field plays the role of a dark matter particle
as a thermal relic abundance from inflation. In [21] a similar approach is used,
but they discuss the possibility that the Dark Glueball in the dark sector
becomes DM as a consequence of the inflaton decay.

4.3 Anisotropic rotation angle induced by per-

turbations of the Ricci scalar

At this point we want to extend the treatment about f(R) birefringence, seen
in the previous sections, adding the fluctuations of the Ricci scalar inside f(R).
The birefringence angle in equation (4.23) can be rewritten as the sum of its
isotropic counterpart (dependent on R) and its fluctuations, in this way:

χ = χ0(τ) + δχ(τ, x̄) (4.41)

where the isotropic part depends only on time (since it is proportional to the
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Ricci scalar R), while the perturbed one depends also on the spatial coordi-
nates, as in eq.(3.3); this last dependence is brought by the fluctuations in R,
which are injected by the metric perturbations. For this reason, in order to
compute the anisotropic contribution δχ we need, at first, to derive the ex-
pression for δR; we will proceed in the context of the first order cosmological
perturbation theory, exploiting the perturbed metric defined in the newtonian
conformal gauge (Poisson gauge), which components are [32]:

g00 = −1− 2Ψ(t,x) (4.42)

gij = a2(t)[1− 2Φ(t,x)]δij (4.43)

where Φ and Ψ are the scalar perturbations of the metric already introduced
in eqs.(1.46) and (1.49). Raising the indices of the two metric components we
get:

g00 = − 1

1 + 2Ψ
≃ −1 + 2Ψ(t,x) (4.44)

gij =
1

a2(1 + 2Φ)
δij ≃

1

a2
[1− 2Φ(t,x)]δij (4.45)

where we have used a Taylor expansion to obtain the relations on the right
hand side. Now, since the Ricci scalar is defined through the Crhristoffel
symbols, making use of equations (1.55), (4.44) and (4.45) , we can perturb
(at first order) their components in this way:

Γ0
00 =

1

2
g00(∂0g00) = ∂0Ψ (4.46)

Γi00 =
1

2
gij(−∂ig00) =

1

a2
∂iΨ (4.47)

Γij0 = Γi0j =
1

2
gij(∂0gij) =

(

ȧ

a
+ Φ̇

)

δij (4.48)

Γ0
ij =

1

2
g00(−∂0gij) = a2

(

ȧ

a
+ 2

ȧ

a
(Φ−Ψ) + Φ̇

)

δij (4.49)

Γ0
0i =

1

2
g00(∂ig00) = ∂iΨ (4.50)

Exploiting these components and taking µ = ν = 0 in eq.(1.57) we can compute
the 00 component of the Ricci tensor, whose expression is given by:

R00 = Γα00,α − Γα0α,0 + ΓαβαΓ
β
00 − Γαβ0Γ

β
0α (4.51)

Notice that for α = 0 we get R00 = 0, so α must be a spatial index, i.e. α = i;
thus, the different terms in eq.(4.51) are:
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Γi00,i =
1

a2
∇2Ψ (4.52)

Γi0i,0 = ∂0

(

ȧ

a
+ Φ̇

)

δij = 3

(

ä

a
−H2 + Φ̈

)

(4.53)

where we have used the relation for the Hubble parameter: H = ȧ/a (the dot
indicates the derivative with respect to the cosmic time). Then, the products
of the connection coefficients in (4.51) can be computed as:

ΓαβαΓ
β
00 =

ȧ

a
Ψ̇δij = 3HΨ̇ (4.54)

Γαβ0Γ
β
0α =

(

ȧ

a
+ Φ̇

)2

δij = 3

(

H2 + 2HΦ̇

)

(4.55)

where, in the first equation, we have taken β = 0, while in the second one
β = j, in order to keep all the terms at the linear order in the perturbations.
Summing all the contributions in eqs.(4.52)-(4.55) we obtain the 00 component
of the Ricci tensor:

R00 =
1

a2
∇2Ψ− 3

ä

a
− 3Φ̈ + 3H(Ψ̇− 2Φ̇) (4.56)

At this point we need to find out the expression for the spatial component of
the Ricci tensor, Rij, which reads:

Rij = Γαij,α − Γαiα,j + ΓαβαΓ
β
ij − ΓαβjΓ

β
iα (4.57)

for which it is necessary to calculate an additional connection coefficient, i.e.:

Γijk =
1

2
giσ

(

∂kgσj + ∂jgσk − ∂σgjk
)

(4.58)

Since the metric gµν is diagonal, we can take σ = i only, such that:

Γijk =
1

2

(

1− 2Φ

a2

)[

2a2
(

∂kΦδij + ∂jΦδik − ∂iΦδjk
)]

=

= ∂kΦδij + ∂jΦδik − ∂iΦδjk (4.59)

The non-zero terms in equation (4.57) are:

Rij = R
(1)
ij +R

(2)
ij +R

(3)
ij = (4.60)

=

(

Γ0
ij,0 − Γ0

i0,j + Γ0
00Γ

0
ij − Γ0

0jΓ
0
i0

)

+

(

−Γ0
kjΓ

k
i0

)

+

(

Γkij,k − Γkik,j

)

(4.61)

where we have considered α = 0 and β = 0 for the terms in the first parenthesis,
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α = 0 and β = k in the second one, and α = k in the last one. Focusing on
the first part we obtain:

R
(1)
ij =

[

2a2H2 + 4a2H2(Φ−Ψ) + 2aȧΦ̇ + äa− a2H2+

+2a2
(

ä

a
−H2

)

(Φ−Ψ) + a2Φ̈ + a2HΨ̇

]

δij − ∂i∂jΨ (4.62)

For the second term, instead, we get:

R
(2)
ij = a2

[

H2 + 2Φ̇H + 2H2(Φ−Ψ)
]

δij (4.63)

while the third part reads:

R
(3)
ij = −∇2Φ− ∂i∂jΦ (4.64)

Summing all the contributions in eqs.(4.62)-(4.64) we can finally write down
the expression for the spatial component of the Ricci tensor:

Rij = δij

[

(

2a2H2+äa
)(

1+2Φ−2Ψ
)

+a2H
(

6Φ̇−Ψ̇
)

+a2Φ̈−∇2Φ

]

−∂i∂j(Φ+Ψ)

(4.65)

In the end, exploiting equation (1.58), it is possible to compute the Ricci scalar
in this way:

R = gµνRµν = g00R00 + gijRij (4.66)

which, inserting all the relations derived previously, becomes:

R = (−1 + 2Ψ)

[

1

a2
∇2Ψ− 3

ä

a
− 3Φ̈ + 3H(Ψ̇− 2Φ̇)

]

+
1 + 2Φ

a2

[

3
(

2a2H2 + äa
)

·

·
(

1 + 2Φ− 2ψ
)

+ 3a2H
(

6Φ̇− 3Ψ̇
)

+ 3a2Φ̈− 3∇2Φ− ∂i∂j(Φ + Ψ)

]

(4.67)

Taking into account only for the unperturbed terms, we can write the zero-
order Ricci scalar as:

R(0) = 3
ä

a
+

3

a2
(2a2H2 + äa) = 6

(

ä

a
+H2

)

(4.68)

This is completely consistent with the relation that we would obtain by using
the unperturbed FLRW metric; indeed, in this case the Christoffel symbols
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are given by: Γ0
ij = aȧδij and Γi0j = Γij0 = (ȧ/a)δij, so that the components of

the Ricci tensor are:

R
(0)
00 = −3 ä

a
(4.69)

R
(0)
ij = 3

(

2ȧ2 + äa
)

(4.70)

from which the Ricci scalar is given by (considering g00 = −1 and gij = 1/a2

in eq.(4.66)):

R(0) = (−1)
(

−3 ä
a

)

+
1

a2
(

6ȧ2 + 3äa
)

= 6

(

ä

a
+H2

)

(4.71)

which is exactly the same result obtained in equation (4.68). On the other
hand, focusing on the perturbed terms in equation (4.67) we can write the
expression for the fluctuations of the Ricci scalar as:

δR = −12Ψ
(

H2 +
ä

a

)

− 2
∇2Ψ

a2
+ 6Φ̈− 6H(Ψ̇ + 4Φ̇)− 4

∇2Φ

a2
(4.72)

We can notice that, as expected, the unperturbed part of the Ricci scalar
depends only on time, through the scale factor a(t) and its derivatives, while
the fluctuations depend also on spatial coordinates: this additional dependence
is brought by the scalar perturbations of the metric Ψ and Φ, and by their
evolution in time. This situation is similar to the one seen for the scalar
field ϕ and its fluctuations (Chapter 2 ), even though in that case δϕ was just
proportional to Ψ, as can be seen in eq.(3.55).
Exploiting eq.(4.72) we can write down the explicit expression for the CB
angle fluctuations, taking into account for two assumptions: Ψ and Φ can be
taken as constant during matter-domination epoch, and the ∇2 terms can be
neglected since we are interested in perturbations on superhorizon scales; so
the anisotropic angle can be defined as:

δχ(x, t) =
σ

2
δR(xdec, τdec) ≃

σ

2

[

−12Ψ
(

H2 +
ä

a

)]

(4.73)

Since the birefringence angle can be written as the sum of an homogeneous
background part plus some fluctuations, as in equation (4.41), and consider-
ing the perturbed Ricci scalar R = R(0) + δR, we can recast equation (4.23)
exploiting a Taylor expansion around R(0), keeping a generic f(R) function:

∆χ(t,x) ≃ σ

2

[

f
(

R(0)(tdec)
)

− f
(

R(0)(t0)
)

+ f
′

(R(0))δR(tdec,xdec)
)

]

(4.74)

where f ′(R(0)) is the derivative of f , computed in R(0), with respect to R.
Considering the two models for f(R) previously analyzed, becomes:
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∆χ(t,x) =
σ

2

[

R(0)(tdec)−R(0)(t0) + δR(tdec,xdec)

]

(4.75)

for f(R) = R, and in the case of f(R) = lnR:

∆χ(t,x) =
σ

2

[

ln

(

R(0)(tdec)

R(0)(t0)

)

+
1

R(0)
δR(tdec,xdec)

]

(4.76)

where the factor 1/R(0) is given by the derivative of the logarithm. From
this relations it is evident that the presence of δR fluctuations makes the
birefringence angle increases, i.e. it enhances the rotation of the polarization
plane with respect to the pure isotropic case.
Similarly to what we have done in the case of the scalar field, we can compute
the power spectrum for the anisotropic CB angle, starting from the two-point
correlation of δR fluctuations:

⟨δR(x, t)δR(x′, t)⟩ = 144

(

H2 +
ä

a

)2

⟨Ψ(x, t)Ψ(x′, t)⟩ (4.77)

Where t = Tdec. This means that the power spectrum of δR is related to
the one of the metric perturbation Ψ. Thus, also in this case, Cχχ

l depends
on the power spectrum PΨ; we can show this exploiting the fact that δχ can
be decomposed trough spherical harmonics, as in eq.(3.6), and we can use
the same expansion in the Fourier space in eq.(3.7) for δR; in this way the
harmonic coefficients are given by:

χlm =
1

2π2
(−i)lσ

2

∫

d3kδR(k, tdec)jl(k∆t)Y
∗
lm(k) (4.78)

where ∆t = t0− tdec. Then, given the definition of the anisotropic angle power
spectrum in eqs.(3.9) and (3.10), and using the correlation in eq.(4.77), we get:

Cχχ
l = 4π

[

144

(

H2 +
ä

a

)2](
σ

2

)2 ∫
dkk2

2π2
PΨ(k)

[

jl(k∆t)Tk(tdec)] (4.79)

This result is similar to the one obtained in the case of a scalar field, but now
there is a different factor outside the integral, and a different coupling constant
σ, which encloses the information about the strength of the coupling between
the f(R) function and the CMB photons. As seen in Chapter 2, it is possible
to relate PΨ to PR in order to give an estimation for Cχχ

l and a bound to the
constant σ (as previously done for the coupling factor β). This estimation
can be done by considering the values of H and a(t) at the decoupling epoch
(during matter domination epoch, where a ∼ t−3/2).

In order to conclude this chapter we can make some final comments about
this new scenario of cosmic birefringence sourced by an f(R) function and
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fluctuations of R. At first, we can notice that in this case, in order to compute
δR in eq.(4.72) we have not imposed some strong approximations, as, instead,
for the solution of δϕ fluctuations. This is related to the fact that, on one
hand, δR is linked to the metric perturbations (in particular Ψ and Φ in the
Poisson gauge) in a natural way, while, on the other hand, δϕ is related to Ψ
(or Φ) through the adiabatic initial conditions. Moreover in this last scenario,
there isn’t any dependence of f(R) or δR on the scalar potential, such that the
dependence on an underline scalar field model is not present; this also imply,
obviously, no dependence on the field mass.
One last aspect to be clarified is the following: for the scalar field ϕ we have
found some specific physical meanings, identifying it as an axion-like field or as
a general DM or DE quintessential field; what about f(R)? Could it be associ-
ated to a scalar field or it hides a new physical interpretation? We will address
this question in the next section, making an overview on different proposed
models for the f(R) function’s shape.



Conclusions

In this thesis we have investigated some models which are able to explain the
Cosmic Birefringence effect, an observable phenomenon related to the rotation
of the polarization plane of CMB photons. In general, this effect is generated
by the presence of a Chern-Simons coupling term between a presudo-scalar
field ϕ, or a scalar function f(R), and a photon. We can conclude this work
with a summary on different models based on both the presence of a scalar
field and of an f(R) function, in order to analyze their different implications,
focusing on their observability too.
Let’s start from the case of a scalar field ϕ coupled to the electromagnetic inter-
action. As we have seen in the second chapter this needs to be a pseudo-scalar
field in order to ensure the parity invariance of the electromagnetic Lagrangian
density. To be more precise, this mysterious field can be taken as a pseudo-
Nambu-Goldstone boson generated by the spontaneous breaking of the U(1)
global Peccei-Quinn symmetry: in this case ϕ is accounted as the QCD axion,
since it has been introduced to solve the QCD problem. The interesting aspect
about axion-like fields is that they are able to produce a scale-invariant power
spectrum of the CB angle (at least at lower multipoles): this is consistent
with the theoretical predictions seen in Chapter 3 ; this allow us to make some
constraints on the strength of the coupling (on the constant β or gϕγ) between
the axion field and the CMB photons, as done in [43].
More in general ϕ could be a Dark Matter or (early) Dark Energy field: in
this second case, the presence of ϕ can be exploited to solve the Hubble ten-
sion problem [45] (a disagreement between the local value of H and the one
estimated from the CMB), and to explain the dynamics of the accelerated ex-
pansion of universe. Even in this scenario it is possible to find a bound for the
coupling constant gϕγ which is directly related to the cross-correlation power

spectrum between the CB angle and the CMB temperature, i.e. CχT
l . For

this reason, precise measurements of the cosmic birefringence power-spectra
are relevant in discriminating between different models based on an early DE
field, since they produce different Cχχ

l and CχT
l spectral shapes. These kind of

models are analyzed in [45] and [46], where, one the one hand, an oscillating
DE field with the potential shown in eq.(3.46) is considered, while on the other
hand, they take a slow-rolling scalar field, as seen in Chapter 3.

In the case of birefringence models based on the coupling with an f(R) func-
tion, which replaces the scalar field ϕ, there are different scenarios based on
different shapes of the scalar function itself, especially in the context of mod-
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ified GR theories. As we have seen in Chapter 4 the two models exploited in
order to explain the baryo/leptogenesys process are the ones with f(R) = R
and f(R) = lnR; indeed, in both cases, a non-null time derivative of the Ricci
scalar can be considered, allowing the generation of the required baryon num-
ber asymmetry in the early universe.
Moreover, as suggested previously, the f(R) function can be found also in the
context of modified theories of gravity (which are modifications of General
Relativity) where an f(R) ∝ Rn is added to the Einstein-Hilbert action. Fol-
lowing this line, one interesting hypothesis is proposed by Carroll et al. in [47],
who consider an f(R) = R − (µ4/R). These kind of models would be able to
explain the accelerated expansion in the early universe without requiring a
cosmological constant Λ in Einstein field equations: this is a sort of gravita-
tional alternative to Dark Energy. The same idea is exploited by Starobinsky
in [48], where a different type of f(R) function is considered.

The main result of this work is illustrated in Chapter 4, where in the end
we have extended the treatment about the isotropic birefringence angle χ0

generated by an f(R)-coupling to the anisotropic case, including the pertur-
bations δχ (up to now this was done only in the scalar field case). These
fluctuations depend on the perturbed Ricci scalar δR, whose complete ex-
pression in eq.(4.72) has been derived exploiting the Poisson gauge, and it is
proportional to the two scalar perturbations of the metric Ψ and Φ, which in
this case are equal to the gauge-invariant Bardeen’s gravitational potentials.
Thus, the anisotropic CB angle is directly sourced by the metric perturbations:
this result is similar to the one obtained for the δϕ fluctuations in Chapter 3.
However, it is interesting to stress two relevant differences: on one hand, δR
depends also on time and spatial derivatives of Ψ and Φ, whose evolution can
be determined by solving eq.(1.74) and eq.(1.75); on the other hand, the re-
lation for the Ricci scalar fluctuations has been computed without imposing
some stringent approximations, as for obtaining the solution in eq.(3.55) for
δϕ. Moreover, the scalar field fluctuations are related to the metric perturba-
tions only thanks to the initial adiabatic conditions on ϕ, while δR is naturally
sourced by Ψ and Φ.
Finally, through this extension to the anisotropic CB angle, it is possible to
compute the auto-correlation Cχχ

l and the cross-correlation power spectra CχT
l

and CχE
l even in f(R)-birefringence models: this allow us to make some con-

straints on the coupling constant σ, in order to be able to differentiate between
different shapes of the scalar function, and to get much more information on
the underlying physics and on the nature of f(R) itself.

Future perspectives. Up to now, mainly thanks to the Planck observa-
tory, consistent measurements of the isotropic CMB angle have been reached,
analyzing the CMB power spectra (in particular EE, BB, TB and EB correla-
tions). The most precise results obtained are shown in Section 2.2 and they
reach a statistical significance of 3.6σ, excluding a zero value at 99.987% C.L..
These data are mainly affected by a miscalibration of the detectors, which
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generates some spurious birefringence effects in the measurements. With the
help of on-going and future experiments, we can expect to reach a significance
> 5σ, which could lead to a convincing discovery of the birefringence effect.
Among the new generation ground-based observatories we can mention the
BICEP/Keck array (on-going) [49] and the CMB-S4 (future) [50], while, con-
sidering the future space-borne experiments, we can refer to the LiteBIRD
satellite [51]. The last one, in particular, is of great interest since it can im-
prove the current data on the CB angle power-spectra, in order to get better
constraints on the coupling constant gϕγ, improving the current bounds of
about one order of magnitude.
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