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Introduction

The current financial crisis highlights the crucial need of a

change of mindset in economics and financial engineering, that

should move away from dogmatic axioms and focus more on

data, orders of magnitudes, and plausible, albeit non rigorous,

arguments.

Economics needs a scientific revolution

J.P. Bouchaud

In the past decades statistical mechanics made significant steps in the development of

the notions of self-similarity and scaling [1], [2], which are key concepts in the description

of critical phenomena and complex systems. The advantages of an approach based on

scaling lie in the fact that it makes possible to treat and analyze in a simple way data

taken at different time or space scales. In this thesis we want to adopt this approach

to obtain a model capable to describe financial data. In fact, the correct performance

of such a modelization is fundamental to understand and try to forecast the dynamics

of global markets. Among all the possible applications of this knowledge, one of the

most relevant is the opportunity it can give to identify the upcoming of financial crises.

Indeed, as an example, if we consider the volatility of a given financial asset, which by

definition is a measure of the absolute value of the maximum (logarithmic) variation of its

price within a defined time window, it can be easily understood how a correct theoretical

description of its correlations can be useful to forecast the potential occurrence of market

instability.

Actually, the first contributions given by physicists to the financial field date back

to the beginning of the past century. Indeed, the first one to perform stochastic studies

applied to stock market was L. Bachelier [3], a Poincaré’s student who in 1900 proposed

a model based on the random walk of independent identically distributed (i.i.d.) vari-

ables as the process which generates the price fluctuations of the assets. Although this

model was later invalited for its inaccuracies, it gave birth to a modelization of financial
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dynamics as a process with totally random logarithmic increments, normally distributed.

This kind of modelization was not able to describe many empirical features of financial

data, such as the distribution of rare, extreme events, which is fundamental in the de-

termination of financial risks [4], but it took more than half a century to abandon it.

After Mandelbrot’s work of 1963 on cotton prices [5], which for the first time proposed

for the financial stochastic process a PDF different from the Gaussian distribution, the

validity of the previous approach was questioned, and various attempts to formulate a

more accurate modelization of market dynamics soon followed. More recently, the huge

amount of data collected among market indexes since 19931 and the computer analysis

performed on them have opened the door to new proposals of modeling market’s be-

haviour. This modern approach moves from the consideration of a number of robust

statistical properties that one can recognize analyzing financial time series for different

markets and different periods of time. These are called stylized facts and we refer to a

recent review by Rama Cont [6], for a rather clear and complete account. Nowadays,

the challenge is to find a model capable to reproduce as closely as possible the empirical

features shown by these data sets. However, when analyzing financial data in order to

look for a way to correctly model them, it is a good point to question about the way

they must be treated. Indeed, treating them as an empirical realization of an underlying

stochastic process is not an immediate step. When we record financial data for a cer-

tain period, we obtain a realization of a process whose dynamics cannot be replicated.

Indeed, only a single, possibly long time series is available. This is a frequent issue in

statistical mechanics, as similar time series occur when studying many processes, e.g.

solar flares [7], heartbeats [8], or earthquakes [9]. We thus must face an epistemological

problem, since we have to find the way to treat data which cannot be reproduced. The

most common way to overcome this problem is to look at the increments on variable

intervals of the time series: if they are stationary, and ergodicity can be assumed, we can

take time averages as proxies to the expectation values. Indeed, stationarity implies that

the distribution function of increments does not depend on time: time average is then a

reliable tool to identify the expectation value of a certain quantity. However, stationar-

ity and ergodicity are not granted features for such processes: the existence of a single

realization of the process makes problematic either to prove or disprove these properties,

while in some cases data can show evident non-stationary behaviour [10], [11]. In the

financial field, a different approach was thus proposed for intraday analysis by Bassler

et al. in 2007 [10]. Indeed, looking at some ensemble averages, such as the empirical

1Since this year, financial and market data have been recorded transaction by transaction, with a
frequency up to few seconds.
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second moment of returns or the volatility autocorrelations, a rather evident periodic

behaviour emerges in well defined time windows. This feature suggests the idea that,

within each window, we are dealing with a single realization of the same process. We are

thus induced to rearrange the data in an ensemble, i.e. to divide the time series in equal

parts (called histories) whose duration is determined by the frequency of the periodic

behaviour (in our case, it is a day of trading activity). In this way we obtain a collec-

tion of hystories, each of which shows similar dynamics and time evolution. The most

immediate difference in this change of approach is that now we use ensemble averages

to approximate the expectation values.

We will make use of this ensemble approach to define a suitable intraday model for

the returns of a financial asset. Then we will exploit it to implement a trading strategy,

which should be seen as a test to study the effects of linear correlations on the structure

of the model itself. We will work at various frequencies with the S&P 500 index and

other assets to explore and study different frameworks for our model. Moreover, we

will look for a way to include in the model the treatment of night and interday returns,

which do not belong to intraday context, to improve its predictive power and connect

the intraday and the interday frameworks within the same formalism.

The mathematical features of the model have been suggested by the symmetries and

the statistical properties of the ensemble itself. Among these symmetries the main one

is scaling, which gives powerful tools for analyzing a given system at different space or

time scales. After the first studies on scaling, the birth of the theory of renormalization

group (RG) [2], [12], allowed a more accurate analysis of its properties and its origins

in statistical mechanics. The leading principle in RG approach is to postulate scaling

relations between the variables which we choose to describe the system at different

scales. In this way empirical data collected under different conditions can be unified and

analyzed through general tools. This allows to find the same statistical properties at

different scales, when analyzing the behaviour of fluctuations. The word renormalization

in fact means the procedure of redefining the parameters which describe the system after

changing its space or time scale. In the context of financial modeling, to postulate scaling

invariance with time for the system is equivalent to impose, for the PDF of returns r

aggregated over an interval τ , the validity of the scaling law

p(r, τ) =
1

τD
g
( r

τD

)
, (1)

where g is the scaling function, and D the Hurst exponent of the process [13]. Eq. (1)

means that if the probability density function of the sum of the returns (the aggregated
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ones) is multiplied for a power D of the number of addends which occur in r, it converges

asymptotically to the scaling function g. The particular features of the system condition

the value of D and the shape of g. For example, when D = 1/2 and g is Gaussian, normal

scaling occurs, which means that the system can be described by a stochatic process with

i.i.d increments, such as in the Bachelier’s model. Anomalous scaling, which occurs when

at least one of the conditions for D and g is not verified, usually indicates non-Markovian

features for the underlying stochastic process, i.e. a memory longer than one step in the

past. Our work of modelization will pass through the determination of the correct Hurst

exponent and the most suitable scaling function to best describe our data.

This thesis is structured as follows. The first chapter introduces the concept of

stylized facts, the data sets which have been analyzed and their robust statistical features.

In the second chapter a definition of a model suitable to describe data’s features is

provided, then its calibration protocol and the implementation of the trading strategy

are described. The third and the fourth chapters present the result of the application of

such a model to the S&P 500 index and to different market equities. Finally, in chapter

five, we draw our conclusions.
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1. Stylized facts and S&P 500 overview

1.1. Definition of stylized facts

Since the birth of mathematical finance, the statistical properties of many different

financial data sets have been investigated to provide an empirical hint to formulate

new models. The outcoming possibility of storing huge amounts of data at really high

frequencies, up to few seconds, and the computer based methods for analyzing their

features have accelerated this process, leading to the discovery of many empirical prop-

erties which are shared by a large variety of prices, indexes and exchange rates among

different markets and periods. From one side, this plenty of discoveries has led to the

birth of new models which tried to include as many of these properties as possible. On

the other, their variety, together with their occasional inconsistencies, made impossible

to conceive an unique model capable to contain them all. For this reason, when present-

ing them it can be useful to formulate them just as empirical evidence, without forcing

any parameterization or modelization. Guided by this approach, in the first part of this

thesis we refer to Rama Cont’s work [6], who in 2001 presented an useful review in which

all the so far discovered empirical features, called stylized facts, were enumerated and

described. Their discovery represents an alternative to the classic event-based approach,

which attempts to explain market fluctuations by considering them as the results of some

political or social event. The empirical robustness of these properties, shared by very

different kinds of assets, such as e.g. US/Yen exchange rate and corn futures, gives ac-

curate tools to build more versatile models. However, we underline that their generality

makes them qualitative properties which lacks of an exact and definite parameterization,

since they are obtained by taking the common denominator among properties observed

for different data sets. Before introducing them, we start by fixing some notation. With

S(t) we indicate the price of a given asset, while the logarithmic return is defined as

rτ (t) = lnS(t+ τ)− lnS(t) , (1.1)

1



1. STYLIZED FACTS AND S&P 500 OVERVIEW

where τ is the time lag and t is a given instant of the time series.

1.2. Stylized statistical properties of asset returns

The most common and significant stylized facts are presented as follows:

• Absence of autocorrelations: the empirical linear autocorrelation function cal-

culated on a discrete time series of returns, rτ (0), rτ (τ), . . . , rτ (nτ), and defined

as

〈rτ (t)rτ (t+ T )〉e ≡
1

n− k + 1

n−k∑
i=0

rτ (iτ)rτ ((i+ k)τ) , (1.2)

with T = kτ , vanishes fot T longer than approximately 10 ÷ 20 minutes. For

smaller intraday scales microstructure effects can be observed.

• Presence of correlations on absolute values of returns and high order

correlations: the autocorrelation function calculated on absolute values

〈|rτ (t)||rτ (t+ T )|〉e ≡
1

n− k + 1

n−k∑
i=0

|rτ (iτ)||rτ ((i+ k)τ)| (1.3)

shows instead a positive value and a slow decay, as A
T η , with A constant and

η∈[0.2, 0.4]. Moreover, various measures of squared returns show similar significant

correlation over several days. This effect, known as volatility clustering, quantifies

the tendency of high-volatility events to cluster in time.

• Heavy tails: for long time series the probability density function (PDF) of the

returns pRτ (r) can be estimated. This function shows fat tails ruled by an exponent

in the range of 2÷ 5, i.e. heavier than the light tail of the Gaussian distribution.

Therefore Normal distribution is not proper to indentify the right PDF and rare

events, with respect to it, show much lower probabilities. The first one to introduce

in the financial context a version of these tails, the so called Pareto ones, was

Mandelbrot [5], who took the idea from Levy’s work about stable distributions [14].

• Leverage effect: usually volatility of an asset is negatively correlated with the

returns of the same asset, i.e. the leverage correlation function, defined as Lτ (T ) =
1
K 〈|rτ (t+ T )|2rτ (t)〉, where K is a suitable renormalization factor, shows negative

values, asymptotically increasing toward 0, for T > 0. This implies that the

persistence of a negative trend for an asset can lead to a rise in volatility.
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1.3 Some issues about statistical estimation

• Volume/volatility correlation: measures of volatility are correlated with the

volume of trading activities.

1.3. Some issues about statistical estimation

1.3.1. Stationarity and ergodicity

In order to ensure validity to any statistical analysis of a long time series, data taken

from various assets must satisfy the stationary hypothesis. Its rigorous formulation

claims that the joint PDF for the returns rτ (1), rτ (2), . . . , rτ (k) must be the same as

the one calculated on the time-translated returns rτ (1 + T ), rτ (2 + T ), . . . , rτ (k + T ),

with T = nτ , n ∈ N. This means that there are some statistical properties which

remain stable over time, and that data collected in different periods can be analyzed

together. Stationarity is not obvious, and it can be invalidated by seasonality effects

such as intraday variability, week end effects... For intraday analysis at high frequency,

stationary hypothesis is not valid, [11], as it will be shown soon in this thesis, and a

different way of treating the data sets has to be chosen.

If stationarity is required to ensure independence from time, ergodicity makes the

empirical averages converge to the quantities they are supposed to represent: in other

word, if some ergodic property is present, the sample moment defined by

〈f(rτ )〉 =
1

N

N∑
t=1

f(rτ (t)) (1.4)

can be identified with the expectation value E[f(rτ )] [6]. It can be noticed that in eq.

(1.4) any dependence on time is cancelled by the mean evaluation. Like stationarity,

ergodicity is in general difficult either to prove or to disprove. In particular, failure of

ergodicity is quite common when considering physical systems with long-range depen-

dence.

1.3.2. Intraday seasonalities

The stationarity hypothesis is often not valid when dealing with financial assets, as

previously discussed for exchange rate [10], stock markets and market indexes [11]. In

particular, if concerned with intraday analysis at high frequency, non-stationarity is often

an evident issue, because intraday effects become predominant and alter time homogene-

ity during the day. This feature makes the time averages of eq. (1.4) inappropriate to

identificate the desired expectation values, since data taken at high frequency show clear

3



1. STYLIZED FACTS AND S&P 500 OVERVIEW

time inhomogeneities. Moreover, we are going to show that in our case each single day of

trading activity show a similar pattern of nonlinear moments and correlations, and this

allows us to consider it as an iterate realization of an underlying stochastic process. In

this context, a possible way to overcome the homogeneity problem is to consider instead

ensemble means. Following an ensemble approach means to arrange data in a collection,

called ensemble, of separate histories, each of the same duration. If the number of histo-

ries is large enough, we can treat our data through the ensemble statistical tools. Then,

if M is the total number of histories, the ensemble mean is defined as

〈f(rτ (t))〉 =
1

M

M∑
l=1

f(r(l)τ (t)) , (1.5)

where t runs in the time window of the single history. It can be noticed that eq. (1.5)

indicates the evaluation of a mean among all the histories, which allows us to calculate

different values of the same average quantity at different moments of their time window,

while the long series mean of eq. (1.4) does not make any practical distinction between

data taken at different instants of the day. We remark that the ensemble approach

is justified by the presence of some periodic behaviour for the data set. In the next

sections we will show that our data set, such as many other financial ones, shows a clear

periodicity in the volatility pattern, which is U-shaped if we take a trading day as the

time window of a single history. Moreover, this periodicity in volatility behaviour is a

confirmation of the stylized fact which states a correlation between volatility and the

number of transactions: along the morning trading activities usually decrease until lunch

time, and then they start growing again. These remarks thus suggest to arrange our data

as an ensemble of all the trading days, such as has already been made in [10], [11]. In this

way all the time averages considered in long time series analysis, evaluated according to

eq. (1.4), are substituted the ensemble means defined in eq. (1.5), and each day becomes

an indipendent realization of the same process.

1.4. S&P 500 index

The data set used in the first part of this work is made up of the prices of S&P 500, a stock

market index based on the market capitalizations of the 500 largest USA companies.

For each trading day, returns were collected from 09:40 to 16:00 (New York time) from

September 30th 1985 to June 28th 2013, with a total number of M = 6852 trading days.

As already mentioned, the chosen approach is a high frequency, intraday analysis. The
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1.4 S&P 500 index

first step to perform is demonstrating non-stationarity condition for returns collected

along a single day. Figure 1.1(a) shows the behaviour of the empirical second moment

me
2(t, τ), defined as

me
2(t, τ) ≡ 1

M

M∑
l=1

rlτ (t)
2
, (1.6)

where t runs inside a single stock market day and τ is chosen equal to 1 minute.

If the underlying stochatics dynamics had stationary increments, me
2(t, τ) would be con-

stant. It shows instead a clear U-shaped pattern, with a decay approximately in the first

three hours of the day, and an increase in the second part of the day. The assumption

of a well defined stochastic dynamics which evolves during the trading day is confirmed

by performing a corresponding analysis of me
2(t, τ) throughout a whole week, which is

shown in figure 1.1(b). Roughly considering just the first three hours of the day it is

evident that the empirical second moment decreases according to a generalized power

law of time, me
2(t, τ) ∼ t2D − (t − 1)2D: we then fixed tm = 20 as the point in which

me
2(t, τ) changes its trend and starts to grow again. Figure 1.2(a) shows a plot of this

relation, with D = 0.360 and me
2(1, τ) = 5.2 · 10−7, with t up to tm. An important

fact verified by our data set in the ensemble approach is that, although considering high

frequency intraday dynamics, linear correlations of returns defined as

celin(1, t) ≡
1
M

∑M
l=1 r

l
1r
l
t√

m2(1, 1)m2(t, 1)
, (1.7)

are negligible with respect to correlations calculated on the absulate values of the same

returns, as evident in the comparison made in figure 1.3. The periodicity which emerges

from the plot of me
2(t, τ) is a confirmation of the non-stationarity of the underlying

process and a justification of our ensemble approach. Moreover, a more accurate analysis

of high order moments suggests the presence of some scaling properties to be investigated.

Indeed, if the definition of empirical moments is extended to aggregated returns, defined

as rt(t) = lnS(t)− lnS(0) =
∑t

i=1 rt(i), and to a generic index q by defining

me
q(t, t) ≡

1

M

M∑
i=1

|rt(t)|q , (1.8)

the presence of a scaling simmetry becomes evident. Indeed, in this range of t and for

q ∈ [0, 2] one finds a regime of simple scaling, i.e. me
q(t, t) ∼ tqD, with D not depending

on q. The Hurst exponent D can be obtained by computing qD for every me
q(t, t) at

5



1. STYLIZED FACTS AND S&P 500 OVERVIEW

different values of q and then making a linear fit of the couples (q, qD), as shown in

figure 1.2(b), where D = 0.356.

This last result suggests the existence of a scaling collapse for the PDF of aggregated

returns rt(t) in the form of

tDpRt(t)(t
Dr) = g(r) , (1.9)

where we use the Rt(t) subscript to indicate the process which generates the aggregated

return rt(t). From now on we will adopt this notation, except where explicitly specified.

The collapse of eq. (1.9) gets confirmed by empirical estimation, as shown in figure 1.2(c).

Even if we have not given yet any definition for our model it is already evident that g(r)

cannot be a Gaussian: it clearly shows tails which are heavier than the expected ones

for the Normal distribution. It can also be assumed to be even to a good approximation.

This is an interesting evidence, since it implies that the occurence of a positive increment

of the price of the index has the same probability of the opposite one. This is not an

obvious feature: many financial assets show instead a clear gain/loss asymmetry [6].

In the next chapter we will provide an exact formulation for the model used in this

thesis on the basis of the empirical results just presented.

t
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(a)
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Figure 1.1: (a): The ensemble second moment me
2(t, τ) of the daily S&P 500 index as a

function of the time of day, from 09:00 to 16:00. (b): The weekly behaviour of me
2(t, τ)

for the same data.
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1.4 S&P 500 index
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Figure 1.2: (a): Fit of me
2(t, τ) ∼ t2D − (t− 1)2D as a function of time. (b): Evidence of

simple scaling behaviour for me
q(t, t). The red circles are the couples (q, qD) evaluated

from the logarithmic fits of 〈|R1 + . . .+Rt|〉 ∼ tqD, with q ∈ [0, 2], t ∈ [1, 20]. The black
line is their linear fit, D = 0.356. (c): Scaling collapse for pRt(t) according to eq. (1.9)
of morning returns aggregated at τ = 10, 50, 100, 200 minutes.
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Figure 1.3: (a) shows the behaviour of the linear correlations celin(1, t) during the day.
(b) plots linear correlations computed from absolute values of the same data.
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1. STYLIZED FACTS AND S&P 500 OVERVIEW

1.5. Night and interday returns

When looking for a model capable to describe the dynamics of a financial asset, to focus

only on the intraday stock market fluctuations is not enough for a full description of the

process that generates them: looking at interday features should enrich the formalism by

considering the effects of exhogenous dynamics and/or long-range dependence. The most

immediate implementation can be made by including night returns in our modelization:

although New York stock exchange is not open all day long, indexes have not the same

price at closure and opening. They show instead fluctuations which are the results of

trading activity all over the world, and of political or social events happened during the

night. In order to analyze the results of these influences two time series made up of all

night and full day returns were isolated from our data, i.e. rln = lnSl(0) − lnSl−1(T ),

rld = lnSl(0) − lnSl−1(0), where 0, T stand for opening and closure time respectively,

l for the considered day and n, d are the subscript indexes which indicate that we are

evaluating returns aggregated respectively over a night and a full day interval. In this

way we obtained two series of N = 6851 returns, i.e. one for each history of the ensemble,

except the first one. Although we are now dealing with time lags longer than intraday

ones, our aim is to look is their PDF, with a suitable rescaling parameter, can be collapsed

to the same g(r) of the intraday returns. This result would be very significant, since

it would allow us to treat with the same model also interday returns, and to extend

the process of aggregation beyond intraday framework. Then, among all the possible

applications, we will exploit this feature to calculate conditioned PDFs which take into

account what happened during the night. Here we report our first attempt to obtain

the described result: figure 1.4 shows that, through the scaling parameters λn = 8.0,

λd = 13.8, both fixed by hand, we obtain a good collapse of night and full day returns

on intraday ones.

8



1.5 Night and interday returns
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Figure 1.4: Scaling collapse of night (red squares) and full day (blue triangles) returns
on intraday ones aggregated at τ = 50, 100 minutes.
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2. The model

In this chapter we will give the formulation for a model based on the empirical evidencies

shown in the previous chapter, following the ideas developed in the works [11], [15]. The

very first sections will be devoted to a brief introduction to stochastic processes, limit

theorems and the historical evolution of financial modeling, in order to make this chapter

as self contained as possible. In the central part we will introduce the mathematical

structure of the model and we will describe its calibration protocol. Then we will present

our result for the scaling of returns aggregated over night and full day intervals. Finally

we will discuss the philosophy at the basis of the trading strategy, as a way to test the

effect of the linear correlations on our model.

2.1. Stochastic processes

A stochastic process is a phenomenon whose dynamics is too complex to be analyzed

in a deterministic way. Its complexity is usually due to the huge number of degrees of

freedom involved in the process, so that an analytical approach would imply a terrific

number of equations of motion to be solved. The simplest example that can be made

is the toss of a coin: it is theoretically possible to study this process in a deterministic

way and solve its equations of motion considering as degree of freedom the shape and

the mass of the coin, the possible presence of wind, the magnitude and the direction of

the force used to toss it, etcetera, but this approach practically involves an huge number

of parameters and equations to be considered. Moreover, the evolution of the price of

a financial asset is certainly a more complex process than the coin one: its variations

(and hence its measures) depend on the combined effect of the actions of a large number

of participants and the influences of external factors and, differently from the toss of a

coin, we can expect the distribution of possible results to change in time. It is then clear

that, for this kind of problems, it is much more convenient to treat the processes with

a different approach. Therefore stochastic processes are studied through probabilistic

10



2.2 Limit theorems

instruments, and they appear as random variables depending on time. Then, in order

to describe a random process X(t) whose outcomes are real numbers, we can use a

probability density function (PDF) which, by definition, fixes the probability that X(t)

is within the small interval [x, x + dx] at a certain time t as P (x, t)dx. Here we are

considering the general case, in which stationarity is not assured and the PDF depends

also on time. If we denote with P(·) the probability measure of a certain event, we have

that

Pt(a < X(t) < b) =

∫ b

a
P (x, t)dx (2.1)

is the probability that our process X(t) is between a and b. In order to be well defined,

a probability density function must satisfy the following conditions:

• It must be non negative, P (x, t) ≥ 0 ∀ x ∈ R, t ∈ R+.

• It must be normalized, i.e. ∫ xM

xm

P (x, t)dx = 1 , (2.2)

where xm, XM are respectively the smallest and the largest values which X(t) can

take. It is always possible to replace eq. (2.2) with
∫ +∞
−∞ P (x, t)dx = 1 just by

setting to zero P (x, t) in the intervals ]−∞, xm[, ]xM ,+∞[.

2.2. Limit theorems

The Central Limit Theorem (CLT) [1] provides a fundamental background in statisti-

cal physics. It states that, given a set of independent, identically distributed (i.i.d.)

random variables {Xi}, their sum X =
∑N

i=1Xi follows a Gaussian or Lévy distribu-

tion, with the two possibilities occurring respectively whether their variance is finite or

not. Its demonstration is based on the stability of the limit distributions1 and on the

simple factorization which holds for the characteristic functions (CF)2 of the sum of

i.i.d. variables. One of the reasons of its importance lies in the fact that it allows to

introduce for the variable X the scaling equation (1) in its simpler form (D = 1/2 and

g Gaussian). When treating financial aggregated returns, which are by definition sums

of elementary returns, rτ (τ) =
∑τ

i=1 rτ (i), we would expect for them scaling behaviour

according to τDpRτ (τDr)→ g(r) up to any intraday value of τ , since, as already shown

1A PDF f is called stable if, given two variables A and B f -distributed, their sum is still f -distributed.
2The characteristic function of a given PDF is defined as p̃(k) =

∫ +∞
−∞ eikxp(x)dx.

11



2. THE MODEL

in figure 1.2(c), self-similarity is a property of the process itself. The problem here is

that financial returns usually have not negligible nonlinear correlations, and cannot be

considered as independent variables, as it is the case in many natural phenomena which

show self-similarity features. Thus we need a PDF for dependent random variables ca-

pable to satisfy a scaling equation for every value of the number of summands τ . This

implies the generalization of CLT with the reformulation of the necessary conditions to

be fullfilled by the joint PDF, as developed in [16]. The most significant steps of this

procedure will be reproduced when introducing the model.

2.3. Evolution of financial modeling

Physicists’ contribution to mathematical finance has had a considerable modification

along years, which matches with the evolution of the way in which stock market’s dy-

namics has been considered and analyzed. The aim of this section is to give a brief

introduction of past models and approaches in order to better understand the basis of

financial modeling.

The most significant points on the basis of which a classification of the various models

can be made are the shape of the PDF of returns, the presence of long memory effects

and the behaviour of higher order moments. We will focus on the most common and

historically significant models and show their approach to this matters.

2.3.1. Random walk in Finance

Mathematical finance has been dominated for decades by the random walk approach.

The first step in this direction was made by Bachelier in 1900 [3]. His model associated

the stock market’s dynamics with a stochastic process based on the formulation of a

random walk of infinite steps which advanced of five years Einstein’s famous work on

Brownian motion. Considered the price of a given asset S(t), it focused on its increments

rτ (t) = S(t+ τ)−S(t) (without taking the logarithms), stating the following properties:

• The increments in different intervals of time are independent random variables.

• Their PDF pτ (r, t) does not depend on time (stationarity).

• Each return calculated with a time lag τ follows a Gaussian distribution with zero

mean and variance σ2τ .

The last two statement imply that the PDF for a single return with a time lag τ is

12



2.3 Evolution of financial modeling

pRτ (r) =
1√

2πσ2τ
exp
(
− r2

2σ2τ

)
, (2.3)

and, exploiting the first property, we can write the joint PDF for n successive returns as

pRτ (1),...,Rτ (n)(r1, r2, . . . , rn) =
n∏
i=1

1√
2πσ2τ

exp
(
− r2i

2σ2τ

)
. (2.4)

This model showed significant discrepancies with real market behaviour: in particular

it allowed negative values for the prices and did not associate the behaviour of the

returns with the value of the price itself, a feature contradicted by empirical evidence.

In order to overcome these inaccuracies a new model, called Geometric Brownian motion,

was defined by Black and Scholes [17]. In this model returns turn to be logarithmic,

i.e. rτ (t) = lnS(t + τ) − lnS(t), but they still maintain the properties of Bachelier’s

model. This allows to overcome some of its problems without changing the structure of

the PDF (which now has to be considered for logarithmic returns): the occurrence of

negative prices is avoided and the size of fluctuations depends on the value of the price.

The main point here, which is not touched by the reformulation of the model, is the

randomness of the process. If we try to apply eq. (1) to this PDF it is straightforward

to find D = 1/2 and g shaped as a Gaussian bell (as we would espect for the Central

Limit theorem), due to the properties introduced to assure independent increments which

follow a Normal distribution. This implies no memory for our process. The implications

of this model became evident with the formulation of the concept of market efficiency,

which was introduced by Fama in 1969 [18]. A market is called efficient in a semi-strong

way if all the assets immediately adjust their price according to the information publicly

known about them. This means that past prices are useless to forecast future behaviour

for the asset, since all the relevant information is included in the current price. In

order to make clearer the role played by an efficient market, we introduce the concept

of arbitrage. In economy, an arbitrage is a set of financial operations which leads to a

riskless profit, i.e, a profit without any initial investment. From a mathematical point

of view it can be defined as a portfolio whose value V (t) obeys the following conditions:

• V (0) = 0

• V (t) ≥ 0 ∀ t > 0

• V (T ) > 0 with a nonzero probability for some T > 0.

The first condition ensures the absence of any initial investment. The second and the

third ones assert that the arbitrage cannot lead to a loss and that there is a certain prob-
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ability to have a profit after a certain time T . It can be proved, within a mathematical

framework, that the efficiency of a market implies no arbitrages and that, when adopting

the random walk hypothesis, stock market trading becomes a fair game [19]. However,

the storage of increasing amounts of data showed that the model of Geometric Brownian

motion, although accounting for many stylized fact, provides just a first approximation

for the underlying process: the real PDF of returns often shows leptokurtic shape and

heavy tails which don’t match with Gaussian distribution. Indeed, market efficiency is

fully accomplished only for large time lags (τ of the order of months or years) and must

be abandoned when dealing with the intraday dynamics of market stock.

2.3.2. Leptokurtosis and long range dependence

Mandelbrot, in 1963 [5], was the first one to introduce a different shape for the PDF

for financial returns. Analyzing cotton prices along over a century, he proposed a model

based on independent increments for the returns which followed a different series of

distribution functions, the Lévy ones. Lévy distributions have fatter heavy tails, which

are more useful to describe multiscale phenomena. Although there is no simple analytical

expression for Lévy distributions, their asymptotic behaviour is

Lµ(r) ∼ µAµ

|x|1+µ
for x→ ±∞ , (2.5)

which shows the so called Pareto tails [14]. Thus Mandelbrot defined a stochastic process,

known as Lévy flights, which is based on the following assumptions:

• The returns are independent random variables.

• Their PDF pτ (r, t) does not depend on time (stationarity).

• Each return calculated with a time lag τ follows a Lévy distribution whose CF is

p̃1(k) = exp(−a|k|µ), with a > 0 and 0 ≤ µ ≤ 2.

If we recall the stylized fact introduced in section 1.2 about the statistical properties

of rare events, it is now clearer what we meant when speaking of heavy tails: a Lévy

distribution, which asymptotically follows a power law with exponent −(1 +µ), decades

faster than a Gaussian one, which is ruled by an exponential law. This feature makes

extreme events become rarer when described by a Lévy distribution, and this matches

better the empirical evidence of many different financial assets [6]. Lèvy distributions

appear in the contest of Central Limit theorem since, because of their stability property

under addition, a large class of distributions converge towards them under repeated
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convolution. Indeed it can be proved that Mandelbrot’s model describes a self-similar

process with D = 1/µ, and that, for µ ≤ 2, Levy variance diverge. This model still fails

to represent multiscaling behaviour, higher order long range dependence and finiteness

of the variance. The latter question can be corrected by introducing truncated Levy

flights (TLF), stochastic processes whose returns follow a truncated version of Lèvy

distributions, defined by

p(r) =


0 for r < −α

bLµ(r) for − α ≤ r ≤ α

0 for r > α .

(2.6)

Although this PDF is not stable, due to its finite variance TLF asymptotically converge

to a Gaussian process. In spite of this improvement, with TLF the problem of long range

dependence for higher order moments still remains unaddressed.

A possible way to overcome this inaccuracy was proposed by Mandelbrot himself, who

in 1968, together with Van Ness [20], introduced Fractional Brownian motion. This

stochastic process was the first one which does not impose indepence for its increments,

while leaving untouched stationarity and self-similarity properties. This allows the model

to well explain such phenomena as volatility clustering and long range correlations, but

showed also ergodicity problems, since linear correlations do not vanish.

As stated in section 1.1, volatility shows autocorrelations which make it increase after

large returns and decrease in flatter periods. This behaviour is called heteroskedasticity

and needs a model capable of considering long range dependence in order to be correctly

described. The AutoRegressive Conditional Heteroskedasticity (ARCH) protocol has

been introduced by Engle to take into account this phenomenon [21]. It includes a class

of models which fix the returns as

rk = εkσk , (2.7)

where εk are i.i.d. random variables with zero mean and unit variance and σk random

processes linked to the size of fluctuations which determine the variance of rk as σ2k. To

properly describe heteroskedasticity {σi} should show dependence on previous values:

if σi is large we would expect that the probability of being followed by a large σi+1

(although with an arbitrary sign) is high. Inside ARCH class there is a large variety

of PDFs and different numbers of conditioning terms (called memory). The general

definition of an ARCH model of memory q is
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2. THE MODEL

σ2k = α0 + α1r
2
k−1 + · · ·+ αqr

2
k−q , (2.8)

where {αi} is a set of parameters which shape the resulting PDF. The basic condition

αi ≥ 0 with α0 > 0 ensures the positiveness of the variance of returns, while more

restrictive constraints can be found when imposing the finiteness of higher order moments

of the process. From this formulation it is clear that past values of rk, weighted by

the parameters αi’s, influence the size of σ2k, as required by heteroskedasticity. ARCH

models have been generalized to GARCH [22], in which a second set of parameters {βi}
is introduced according to

σ2k = α0 + α1r
2
k−1 + · · ·+ αqr

2
k−q + β1σ

2
k−1 + · · ·+ βpσ

2
k−p . (2.9)

After this generalization also the past values of σk influence the process, through their

squares σ2k. This quadratic structure, evident both in eq. (2.8) and (2.9), makes rk react

in the same way to either positive or negative returns, and this feature makes impossible a

corrept description of the leverage effect, as presented in section 1.2. Moreover, although

ARCH/GARCH model are still very common in finance, they are uncapable to show a

well defined scaling behaviour.

2.4. An approach based on scaling

The model presented in this section has been implemented by Baldovin and Stella since

2007 to describe interday dynamics as a self-similar stochastic process within the frame-

work of long time series [23]. However, its generality and independence on the value of

time lag τ allow to make it suitable for intraday analysyis with the ensemble approach,

as shown by the author themselves in [24]. Here we will present a formulation directly

shaped for the latter approach.

As already stated, the basic statement in the development of the model is the validity

of scaling behaviour according to eq. (1) in order to well describe the self-similarity of

the process. As a starting point, we consider our series of returns {r(l)τ (t)}, where t runs

in the intraday interval and l refers to the day, i.e. the fixed history of the ensemble. We

do not make any significant hypothesis on our set besides imposing self-similarity and

absence of linear correlations, 〈rirj〉 = 0 ∀i, j. Moreover, since we want our model to

show time inhomogeneity during the day to well describe the volatility pattern of figure

1.1, we can fix this general property for its PDF:
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2.4 An approach based on scaling

pRτ (1+(i−1)τ)(r) = pRaiτ (1)(r) , (2.10)

where Rτ (1+(i−1)τ) indicates a return of time lag τ generated at the time t = 1+(i−1)τ .

This property grants non-stationarity for our process by making the PDF’s for different

returns equal up to a rescaling factor of the time lag, ai, which depends on the time

interval (i−1)τ 3. If now we take two successive returns rτ (1), rτ (2) = rτ (1+τ) and write

their joint PDF as pRτ (1),Rτ (2)
(2)(r1, r2), we want it to satisfy the following conditions:

∫
pRτ (1),Rτ (2)

(2)(r1, r2)δ(r − r1 − r2)dr1dr2 = pR2τ (1)(r) , (2.11)∫
pRτ (1),Rτ (2)

(2)(r1, r2)dr2 = pRτ (1)(r1) , (2.12)∫
pRτ (1),Rτ (2)

(2)(r1, r2)dr1 = pRτ (2)(r2) , (2.13)

where the first equation produces the PDF for the aggregated return r2τ (1), while the

following two are required for causality. It is remarkable that, because of the inhomo-

geneity introduced with eq. (2.10), the right members of equations (2.12) and (2.13)

are not equal, but differ by a scale factor. We are thus interested in a PDF capable

to reproduce all the empirical features of our data: time inhomogeneity during the day

through eq. (2.10), scaling behaviour according to eq. (1), absence of linear correlations

(without cancelling higher order moments) and basic causality’s condition (eq. (2.11)-

(2.13)). A common solution, both in physics and in finance [24], to define a model

capable to describe scaling features is to fix its g(r) as a convex combination of Gaussian

distributions, as proposed in [11]. This is a quite advantageous choice, since, starting

from these convex combinations, it is possible to obtain a very large class of scaling

functions. Moreover, another advantage of this choice is the fact that it generates a joint

PDF which is a convolution of Gaussians with different widths, capable to reproduce

the occurrence of not negligible and not stationary values of volatility for intervals of

variable duration (volatility clustering), [4]. At this point Schoemberg’s theorem [25]

comes to help stating that the most general class of functions which satisfy the model

3It should be noticed that in eq. (2.10) we consider real values for the time lag. This is not theoretically
wrong since, whatever finite set we define for the ai’s, time is still a discrete variable. Although, in this
thesis we work only with data taken at τ minutes, with τ ∈ N, thus eq. (2.10) is just to be intended as
an intermediate step to define a formalism practically consistent with our data.
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conditions is of the form

g(r) =

∫ ∞
0

ρ(σ)
e−

r2

2σ2

√
2πσ2

dσ , (2.14)

(2.15)

where ρ is a positive, normalized measure in ]0,+∞[. We now can make our first attempt

to build from this g(r) a joint PDF for n successive returns:

pRτ (1),...,Rτ (n)(r1, . . . , rn) =

∫ ∞
0

ρ(σ)
n∏
t=1

exp
(
− r2t

2σ2a2t

)
√

2πσ2a2t
dσ . (2.16)

Here again we have the coefficient at’s of eq. (2.10), which must be fixed in order to fit

the me
2(t, τ) behaviour of figure 1.1(a). Moreover, from eq. (2.11), (2.14) and (2.16), it

is straightforward to get, for the PDF of the aggregated return rt(t)

pRt(t)(r) =
g
(
r/
√
a21 + . . .+ a2t

)
√
a21 + . . .+ a2t

, (2.17)

while for a marginal return rτ (t) the PDF pRτ (t)(r) is

pRτ (t)(r) =
1

at
g
( r
at

)
. (2.18)

Now, if use eq. (2.18) to evaluate me
2(t, τ) we obtain

〈r2〉pRτ (t) =

∫
R
r2pRτ (t)dr

=

∫
R
r2

1

at
g

(
r

at

)
dr

= a2t

∫
R
r′2 g(r′)dr′

= a2t 〈r2〉g , (2.19)

where 〈 · 〉pRτ (t) and 〈 · 〉g stand respectively for the averages evaluated with respect to

pRτ (t)(r) and g(r). If we compare eq. (2.17) with eq. (1) we obtain the condition

a21 + a22 + · · ·+ a2t = t2D ∀ t ∈ [0, tm] , (2.20)
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which leads to a definition of the at’s as

at ≡
√
t2D − (t− τ)2D . (2.21)

This is a good confirmation of the validity of our model, since, if we put eq. (2.21) in

the second moment me
2(t, τ) evaluated in eq. (2.19), we reobtain what we alredy found

empirically looking at figure 1.3(a), i.e. that me
2(t, 1) ∼ (t2D − (t− 1)2D). Summarizing,

we have so far developed a formalism to deal with general sets of non independent

variables, allowing them to show strong nonlinear correlations while linear ones are put

equal to zero. After introducing the scaling function g(r) we have written the joint PDF

for successive returns, using a set of scaling factors ai’s to grant time inhomogeneity.

The function of the ai’s is to take into account the modifications in the distribution of

returns during the system’s evolution, after the starting point t = 1. A natural question

here is whether the system has some restarting points tr, in which atr = 1, and how

to detect them. In the long time series approach [23] the sequence of ai’s is stopped as

an effect of exhogenous dynamics which make the system restart at random times with

a certain probability. In this work we do not have to introduce such a mechanism or

make particular hypotheses on the restarting procedure: since, guided by the evident

periodicity of volatility, we are considering a collection of daily histories (each of which is

a single realization of the general underlying process), the most natural choice is to make

the system restart at the beginning of every single realization of the process, a
(l)
1 = 1 ∀ l.

The last step before defining the calibration procedure is identifying a proper parametriza-

tion for the scaling function through the choice of ρ(σ). Here the choice is determined

by the fitting of empirical data with the resulting g. It can also be noticed that the

normalization of ρ(σ) influences the correct normalization of g:

∫ +∞

−∞
g(r)dr =

∫ +∞

0
dσρ(σ)

∫ +∞

−∞
dr

e−
r2

2σ2

√
2πσ2

=

∫ +∞

0
dσρ(σ) . (2.22)

A convenient choice for ρ(σ) that is capable at the same time to reproduce fat-tail

behaviour in agreement with empirical data and to grant explicitly integration over σ is

to use an inverse-gamma density function for σ2. Thus ρ(σ) becomes

ρ(σ) =
21−

α
2

Γ
(
α
2

) βα

σα+1
exp
(
− β2

2σ2

)
, (2.23)

where α, β > 0 are, respectively, a form and a scale parameter, whereas Γ is the Euler’s

gamma function. The resulting g after this choice of ρ(σ), once performed integration
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over σ, is then a Student’s t-distribution:

g(r) =
Γ
(
α+1
2

)
√
πΓ
(
α
2

) 1

β

(
1 +

r2

β2

)−α+1
2

, (2.24)

where α+ 1 shapes the decay of g(r) at large |r|, while β sets the scale of its width.

This first formulation is valid in the morning time window, since when evaluating

the Hurst exponent D we worked only with morning returns, rτ (t) with t ∈ [0, tm]. In

the next sections we will define a proper extension of the model able to describe the data

also in the afternoon session.

2.5. Calibration

Once the definition of the model is complete, its parameters can be calibrated in order

to make a good fit of empirical data. From eq. (1) and (2.24) it is clear that the model

is fully determined by its three parameters (D,α, β). As we already remarked, the daily

plot in figure 1.1(a) shows that, at a certain moment tm, volatility inverts its decreasing

trend and starts growing. This implies that the set of parameters changes along the

day, since, as shown in (2.19), the behaviour of volatility strictly depends at least on D.

For this reason the calibration procedure is splitted in two stages, one for the morning

and the other for the afternoon. In what follows we consider returns with τ = 1 minute

from 09:40 to 16:00 (New York time) and, since there is no reason left for ambiguity,

we simplify our notation to rt = r1(t) for the single returns and to rat =
∑t

i=1 ri for the

aggregated ones.

2.5.1. Morning calibration

The occurence of a defined scaling simmetry with a fixed D as in eq. (1) for our model

implies a power-law behaviour also for the existing moments of the aggregated returns,

according to

〈|R1 + · · ·+Rt|q〉 = 〈|R1|q〉 tqD . (2.25)

The choice made for the scaling function g and the positive measure ρ(σ) makes eq.

(2.25) become

〈|R1 + · · ·+Rt|q〉 =
Γ
(
q+1
2

)
Γ
(
α−q
2

)
βq

√
πΓ
(
α
2

) tqD . (2.26)
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We are now ready to start a multi-step calibration procedure structured as follows: we

first determine the value of D for the first part of the day, Dm, then we use it to fit a

collapse of all morning data according to eq. (1) and (2.18) and find α and β.

A straightforward way to find Dm is to use eq. (2.25): after calculating the empirical

quantities corresponding to 〈|R1 + · · ·+Rt|q〉 and 〈|R1|q〉, defined as

〈|R1 + · · ·+Rt|q〉e ≡
1

M

M∑
l=1

|R(l)
1 + · · ·+R

(l)
t |q , (2.27)

we take their logarithms and fit them, expecting to find a linear behaviour with slope

qDm. Then we fit all the couples (q, qDm) to determine Dm. We take q inside the

interval [0, 2] due to occurrence of multiscaling behaviour (i.e. D(q) becomes a non-

constant function of q for greater value of q). For our set of data taken from the S&P

500 with τ = 1 minute, this procedure gives Dm = 0.376, which empirically confirms the

occurrence of the anomalous scaling proposed for the morning window. The plot of the

couples (q, qDm) is shown in figure 2.2.

The next step is linking αm and βm. This can be made by evaluating 〈|R1|〉 through a

least squares fitting of eq. (2.25) with q = 1 and D = Dm, which gives 〈|R1|〉 = 1.6·10−3.

Now, taking in consideration eq. (2.26) with t, q = 1, βm can be written as a function of

αm. The last step is performing a full data-collapse of marginal and aggregated returns

(according to eq. (2.18) and (1) respectively) and fitting it with the g proposed in (2.24),

in order to find αm, and thus βm. The result of the data-collapse is shown in figure 2.1.

Summarizing, for τ = 1 minute the morning calibration gives the following parameter

values: Dm = 0.376, αm = 2.96 and βm = 1 · 10−3.

2.5.2. Calibration for the afternoon trading session

In order to deal with afternoon returns we have to extend the model by generalizing

its structure with the introduction of different sets of parameters along the day. Before

performing this action we rewrite the joint PDF for successive returns and the chosen

form of ρ(σ) after the transformation σ → σ/β, which leads to

pR1,...,Rn(r1, . . . , rn) =

∫ ∞
0

ρ′(σ)

n∏
t=1

exp
(
− r2t

2σ2a2tβ
2

)
√

2πσ2a2tβ
2

dσ , (2.28)

ρ′(σ) =
21−

α
2

Γ
(
α
2

) 1

σα+1
exp
(
− 1

2σ2

)
, (2.29)
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Figure 2.1: The scaling function for S&P 500 after collapse of marginal and aggregated
returns (red dots) in the morning time window. The black dashed line is a fit of the
points with the g(r) of eq. (2.24).

and puts in evidence the role of β, together with at, as a rescaling parameter. Indeed,

recalling eq. (2.19) it is evident that the increasing trend shown by volatility from tm

implies some D > 1/2 to be calibrated for this time window. The forms of eq. (2.28)

makes clearer how to perform the extension of the model along the different phases of

the day: the joint PDF for successive returns and the set of at’s have to be generalized

according to

at ≡
√
t2Dt − (t− 1)2Dt , (2.30)

pR1,...,Rn(r1, . . . , rn) =

∫ ∞
0

ρ′(σ)
n∏
t=1

exp
(
− r2t

2σ2a2tβ
2
t

)
√

2πσ2a2tβ
2
t

dσ , (2.31)

with

Dt ≡

{
Dm if 1 ≤ τ ≤ tm
Da if tm < τ ≤ tf ,

(2.32)

and

βt ≡

{
βm if 1 ≤ t ≤ tm
βa if tm < t ≤ tf ,

(2.33)
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2.5 Calibration

where Da > 1/2. After explicit integration over σ we obtain

pR1,...,Rn(r1, . . . , rn) =

(
n∏
t=1

1

atβt

)
Γ
(
α+n
2

)
π
n
2 Γ
(
α
2

)[1 +

(
r1
a1β1

)2

+ · · ·+
(

rn
anβn

)2
]−α+n

2

.

(2.34)

The just performed generalization of the model is conceived not to inhibit the oc-

currence of scaling simmetry, and it just modifies its parameters: the starting eq. (1)

becomes now

p(r, τ) =
1

λ(τ, tm)
g′
( r

λ(τ, tm)

)
, (2.35)

where

λ(τ, tm) ≡
( τ∑
t=1

a2tβ
2
t

)1/2
=

{
βmτ

Dm if 1 ≤ t ≤ tm
[β2m(tm)2Dm + β2a[τ2Da − (tm)2Da ]]1/2 if tm < t ≤ tf ,

(2.36)

and

g′(r) =
Γ(α+1

2 )
√
πΓ(α2 )

(1 + r2)−
α+1
2 . (2.37)

This procedure is consistent with the basic formulation of the model: eq. (2.35) reduces

to eq. (1) taking τ ≤ tm in eq. (2.36), considering that g(r) = 1
βm

g′
(
r
βm

)
. Indeed also

the form the PDF for the marginal returns modifies to

pRt(r) =
1

atβt
g′
( r

atβt

)
. (2.38)

Finally, eq. (2.26) for the moments of the aggregated returns becomes

〈|R1 + · · ·+Rt|q〉 =
Γ
(
q+1
2

)
Γ
(
α−q
2

)
√
πΓ
(
α
2

) [λ(τ, tm)]q . (2.39)

We can now complete the calibration protocol by identifying βa and Da. From eq. (2.28)

it is clear that the product atβt determines the width of the marginal PDF pRt(r). Thus,

we can fix βa as a function of βm, Dm and Da by imposing the continuity constraint

βmatm(Dm) = βaatm(Da), which can be explicitly written as

βa = βm
[(tm)2Dm − (tm − 1)2Dm ]1/2

[(tm)2Da − (tm − 1)2Da ]1/2
. (2.40)

The last parameter to find is Da. To this aim we use the same approach applied to
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2. THE MODEL

the determination of Dm, although referring to eq. (2.39) with t ≥ tm, and we make

a least square fit of 〈|R1 + · · · + Rt|q〉e with q = 1. The result is Da = 1.23 and thus

βa = 6 · 10−6.

The complete calibration procedure thus gives the complete set of parameters

(α,Dm, βm, Da, βa) =(2.96, 0.38, 1 · 10−3, 1.23, 6 · 10−6). Figure 2.3 shows how the model

well reproduces the first empirical moments of the aggregated returns along the whole

day.

q

0.5 1 1.5 2

q
D

0.2

0.4

0.6

0.8

Figure 2.2: Scaling behaviour of the non-linear moments according to the model. The red
circles are the couples (q, qD) evaluated from the logarithmic fits of 〈|R1+. . .+Rt|〉 ∼ tqD,
with q ∈ [0, 2], t ∈ [1, tm]. The black line is their linear fit, D = 0.376.

2.6. Scaling of night and day returns

The so far implemented model works only in the intraday framework, and studies the

scaling properties of returns taken in this framework. An interesting direction which

can be explored is the study of a data collapse made up of night and full day returns, in

order to bridge intraday and interday data treatment. In fact, if interday returns turn

out to be described by the same scaling function of our model, we will obtain a way to

describe a really large class of financial quantities exploiting the same formalism.

The most immediate way to explore this possibility is to study the collapse of interday
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2.6 Scaling of night and day returns
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Figure 2.3: Data fit of the first empirical moments of the absolute value of aggregated
returns of the S&P 500 index, 〈|R1 + . . .+Rt|〉, for the whole day, t ∈ [1, tf ].

returns on the extended g′(r) of the model, from eq. (2.37), trying to fix by hand a

suitable scaling parameter, according to

pRn(r) =
1

λn
g′
( r

λn

)
, (2.41)

which recalls the structure of eq. (2.38). This attempt gave good results: figure 2.4

shows the collapse of returns aggregated over nights (rn) and full days intervals (taken

as rd = ln(ti2) − ln(ti1), where ti1 , ti2 are the opening times of two successive trading

days) on the intraday returns with τ = 1 minute. It is rather clear that these new

collapsed returns still follow the g′(r). The found scaling parameters for night (λn)

and day (λd) collapse are λn = 8.0 · 10−3 and λd = 1.40 · 10−2. This is an interesting

result, because it allows to bridge in a totally new way intraday and interday tractation

through the same formalism. Indeed, although previous works have already studied how

to use intraday returns to obtain better prediction of volatility on an interday scale [26],

this is the first successful attempt to describe with the same scaling function, calibrated

through intraday data, also returns aggregated over time scales of different orders of

magnitude. In the next chapter we will look for a way to exploit this result, extending

the aggregation of returns beyond intraday limits, in order to condition our trading

strategy.
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2.7. Density forecasts

In this section we show that our model holds implicit forecasting capabilities: once

specified the frequency through which we are looking at the system and its calibration

parameters, it provides a PDF for the evolution of marginal returns which allow us to

calculate the expected volatility along the whole day. Moreover, according to eq. (1),

this procedure can be extended to any aggregation of returns within the day. Combining

these tools with the possibility of conditioning the PDF to the returns which have come

out gives us the opportunity to implement a trading strategy in which PDF’s forecasts

are used as signals to open or close market positions. To this aim two different approaches

are available. The first one uses the properly calibrated PDF and the first index value

available for the day to calculate the density forecasts for the whole trading session, and

we will refer to it as unconditioned trading since it does not take into account any daily

return (i.e. tp = 0). The other one instead modifies the density forecasts by conditioning

the PDF to more recent returns (up to tp > 0).

However, both approaches are based on the same idea: given a certain value 0 <

Q < 1/2, the quantile function Q(1 − Q) of the expected returns, extracted from their

unconditioned PDF at a certain time of the trading session, is taken as a lower(upper)

threshold for the real index value. When this threshold is passed, we have a sell(buy)

signal. The same procedure applies in the case of conditioned PDFs, in which the first
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2.7 Density forecasts

returns to the day contribute to shape the quantile barriers. In other words, we look at

this signal as the potential occurrence of a trend which overcomes random fluctuations

and we try to exploit this trend. It is remarkable that this procedure is expected to

give defined positive values of trading gain only if the returns are somehow linearly

correlated: actually, our empirical data show small, non-vanishing linear correlations, as

already shown in figure 1.3. Indeed, when this trading strategy is applied to histories

numerically generated on the basis of the model (which is conceived with 〈rirj〉 = 0 ∀i, j)
profit values vanish. Thus, this strategy can also be seen as a test of the effect, on our

data, of the presence of non zero linear correlations, whithout forcing our formalism to

include them applying complex modifications to the model. Indeed, the profit obtained

through our trading strategy is a quantifier of the effect of linear correlations, which

in our model are set equal to zero, on the behaviour of the data: we will see that the

occurrence of positive, negative or negligible values of profit is directly related to the

pattern of these correlations.

2.7.1. Unconditioned trading

In this approach, for each day l, we calculate the quantile function from the model PDF

at time t, considering the opening value S
(l)
0 . It can be noticed that, when computing

density forecasts, we do not take into account any information on the previous asset’s

behaviour: all these pieces of information are assumed to be included in the param-

eters (α,Dm, βm, Da, βa) after the the calibration procedure. Actually, two different

approaches can be followed when implementing a trading strategy. We can work in

sample, which means that we calibrate the model on all the M =6852 available trading

days, and then we apply the strategy on the whole data set. In this way, the returns

of each day in which we apply the strategy have actively been considered in the cali-

bration procedure. Another solution is to operate out of sample, which means that we

calibrate the model on a fixed subset of the data set and then we apply the strategy on

the following days. In this case, in the model there is no information about the days in

which the strategy is applied. Since we are more interested in testing the effects of linear

correlations rather than looking at the predictive power of the model, in this thesis we

worked only in sample.

After the extension of the model performed in last section, the PDF for aggregated
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returns at a time t is

pR1+···+Rt(r, t) =
Γ(α+1

2 )
√
πΓ(α2 )

1

λ(t, tm)

[
1 +

(
r

λ(t, tm)

)2
]−α+1

2

. (2.42)

From this PDF we can find the lower threshold for the expected aggregated returns for a

given value of Q by numerically solving the following equation with respect to rmin,t(Q):

Q =

∫ rmin,t(Q)

−∞
pR1+···+Rt(r, t)dr . (2.43)

Due to the parity of the PDF of the model the corresponding upper threshold values

rmax,t(Q) can be obtained just through a sign flip rmax,t(Q) = −rmin,t(Q). Once the

lower and upper thresholds for returns are obtained, the corresponding price values are

easily computed: the asset price at the time t of the day l, S
(l)
t , is a monotonic function

of the aggregated returns, and it can be calculated through

S(l)(t) = S
(l)
0 exp

( t∑
i=1

ri

)
. (2.44)

It can be noticed that the distribution of the expected returns calculated at the quantile

level Q throug eq. (2.43) is totally independent of the particular day we are taking into

account, since only when evaluating the price S
(l)
t we need to refer to S

(l)
0 .

We have so obtained, for every value of 0 < Q < 1/2, two barriers Smin,t(Q), Smax,t(Q),

within which the asset price S(l)(t) has a probability 1−2Q of being confined at any time

t of the daily range. The trading strategy which will be explicitly implemented in the

next sections is based on the comparison between these barriers and the real price, which

leads to the definition of a buy/sell signal. In figure 2.5 is shown, as an example, the

upper and lower thresholds at different quantile levels, together with the daily evolution

of the price of the index, for the day October 11th, 1985.

2.7.2. Conditioned trading

We can implement the procedure presented in the last section by using a conditioned

PDF when evaluating the price barriers. In this way we fully exploit all the features of the

model, taking advantage of its non-Markovian behaviour due to its general formulation.

Thus, in what follows, beside of the opening value S
(l)
0 we use also the first tp returns

to condition the subsequent expected evolution of the index. According to probability
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Figure 2.5: Upper and lower expected index values (dashed lines) for October 11th 1985,
confronted with real prices (black dots).
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theory, the conditioned distribution function of the sum of returns rtp+1 + · · · + rtp+t

given the previous ones r1, . . . , rtp is given by

p(r, t|r1, . . . , rtp) =
pRt(t),R1,...,Rtp

pR1,...,Rtp

. (2.45)

Rewriting eq. (2.45) through eq. (2.34) gives

p(r, t|r1, . . . , rtp) =
Γ
(
α+tp+1

2

)
√
πΓ
(
α+tp
2

)( tp+t∑
i=tp+1

a2iβ
2
i

)−1/2
·

·

[
1 + r2∑tp+t

i=tp+1 a
2
i β

2
i

+
(

r1
a1β1

)2
+ · · ·+

(
rn
anβn

)2]−α+tp+1

2

[
1+
(

r1
a1β1

)2
+ · · ·+

(
rtp

atpβtp

)2]−α+tp2

. (2.46)

Thus we can write the equation defining the conditional quantile function, after a simple

change of variable, as

Q =

∫ rmin,t(Q)

−∞
p(r, t|r1, . . . , rtp)dr

=
Γ
(
α+tp+1

2

)
√
πΓ
(
α+tp
2

) ∫ zmin,t(Q)

−∞
[1 + z2]−

α+tp+1

2 , (2.47)

where

zmin,t(Q) ≡ rmin,t(Q)(∑tp+t
i=tp+1 a

2
iβ

2
i

)1/2[
1+
(

r1
a1β1

)2
+ · · ·+

(
rn
anβn

)2]1/2 . (2.48)

Once eq. (2.47) is numerically solved, rmin,t(Q) and rmax,t(Q), can be used as in the

past section to obtain S
(l)
min,t(Q) and S

(l)
max,t(Q) from S

(l)
0 , and the first tp returns. An

example is shown in figure 2.6, in which the price barriers at different tp’s are plotted

for the day November 6th, 1989. It can be noticed that the horizontal bells of price

barriers show different widths at different tp’s: this means that conditioned trading is

characterized by bounds which may vary due to the influence of the first returns of

the day. In particular, if during the conditioning interval tp the volatility is high the

quantile barriers are larger, since the PDF has been conditioned with a set of returns

whose absolute values are big. On the opposite, when the volatility is small in the first
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2.7 Density forecasts

part of the day, the resulting quantile barriers become closer. We recall that in this

approach all the conditioning information are taken within the same day in which the

trading strategy is implemented, and that the effects of global dynamics are supposed

to be contained in the model itself.
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Figure 2.6: Upper and lower expected asset value [Q=10%] (dashed lines), for November
6th 1989, at different numbers of conditioning returns. The black dots plot the real
prices.

2.7.3. Defining a trading strategy

Once the S
(l)
min,t(Q) and S

(l)
max,t(Q) barriers are calculated for every t of the intraday

range [tp + 1, tf ], they can be used to create trading signals based on the real evolution

of the market. To this purpose we are interested in the periods in which the index value

breaks through the expected upper or lower quantile. The considered time interval for

each day goes from 09:40 a.m to 16:00 p.m. New York time, and the trading session is

active from 09:40 a.m.+(tp + 1)× τ . If at market closing the trade is still open we close

it anyway, in order to avoid the external influences which may act in the close-to-open

time frame. In what follows, we will distinguish between long and short positions, which
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are two different classes of financial operation. An opened position is called long if its

holder invests on a certain security, i.e. he buys it expecting a positive trend. It is closed

when the security is sold, and there is a profit if its value has been increasing in time.

Differently, a short position is opened when the holder sells securities which he doesn’t

own, and subsequently repurchases them. In this case there is a profit if their price has

decreased.

Thus, given a value of Q, within a certain day l the trading signals and the trading

activity are as follows:

1. If there are no open positions:

(a) Buy if S
(l)
t > S

(l)
max,t(Q) & S

(l)
t−1 < S

(l)
max,t−1(Q) (open a long position)

(b) Sell if S
(l)
t < S

(l)
min,t(Q) & S

(l)
t−1 > S

(l)
min,t−1(Q) (open a short position)

2. If there are open positions:

(a) Sell if S
(l)
t < S

(l)
max,t(Q) & S

(l)
t−1 > S

(l)
max,t−1(Q) (close a long position)

(b) Buy if S
(l)
t > S

(l)
min,t(Q) & S

(l)
t−1 < S

(l)
min,t−1(Q) (close a short position)

(c) Close any long/short position still open at the end of the day.

The just defined trading strategy exploits the potential occurrence of positive(negative)

trends signaled by the breaking through of the price barriers according to the scheme

of long(short) positions. The trading session during a single day can show different

patterns: many operations can be opened and closed during high volatility days, single

operations take place during trending days, while no operations are opened in stable

days.
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In this chapter we exploit the tools of the model so far developed to study more deeply the

data set we introduced in section 1.4. We chose to analyze the S&P 500 returns rτ (t) at

different time lags, τ = 1, 2, 5, 10 minutes. This means that we took from the same data

set four different ensembles with the same number of daily realizations. Obviously the

number of returns in each day depends on the chosen frequency. These are 380, 190, 76

and 38 respectively with a time lag of 1, 2, 5 and 10 minutes. We followed the calibration

procedure for the various ensembles obtaining different sets of parameters, and then we

checked the fitting capability of the model for the different values of frequency. Finally

we evaluated the quantile barriers at different quantile levels and we applied the trading

strategy previously defined. We will present our results in three different sections, the

first one of which is devoted to the different behaviour of correlations of the various

ensembles, the second one shows the products of the calibration protocol and the scaling

properties of nights and full days and the last one analyzes the outcomes of our trading

strategy.

3.1. Linear correlations and volatility

The most immediate difference among the S&P 500 returns at different frequencies can

be found by looking at theirs linear correlations. As one could expect when thinking at

the behaviour of the logarithmic returns defined in eq. (1.1), the larger the time lag is

taken, the more the linear correlations between successive returns will be small. Indeed,

as already stated when introducing the stylized facts in section 1.2, linear correlations

of the form 〈rτ (t + T )rτ (t)〉 show a decaying behaviour when T increases and became

irrelevant when T breaks through the value of about 10 minutes. Then, since T must be

a multiple integer of τ in order to make 〈rτ (t+ T )rτ (t)〉 well defined, when we evaluate

linear correlations between successive returns at different time lags, 〈rτ (t + τ)rτ (t)〉,
T = 1× τ , we would expect to find decreasing values when τ grows. In figure 3.1 it can
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3. TRADING ON S&P 500

be observed that the empirical linear correlations evaluated from our data set according

to eq. (1.7) well follow this theoretical behaviour. We have already mentioned that the

size of linear correlations plays an important role when applying the trading strategy:

the larger they are, the higher the probability of indentifying a real trend becomes.

We will see in the next sections how this process interferes when applying our trading

strategy.
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Figure 3.1: Empirical linear correlations between successive returns, evaluated according

to celin,τ (t, t + 1) ≡
1
M

∑M
l=1 rτ (t)t

lrτ (t+1)l√
m2(t,τ)m2(t+1,τ)

, at τ =1, 2, 5, 10 of the S&P 500 index are

respectively shown in the panels (a), (b), (c), (d).

We already stated in section 1.4 that along intraday evolution volatility shows a

clear U-shaped pattern linked to the volume of trading activities during the day. This

empirical evidence, together with the determination of the power law of eq. (2.19) which

describes the behaviour of volatility, led us to distinguish between morning and afternoon

trading and to develope a different calibration protocol for each time window. Thus, a

graphical plot of volatility along the day, such as the one showed in figure 1.1(a), is useful

to determine the tm which separates mornings from afternoons. Here we introduce the
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precise expression of volatility autocorrelation, defined as

cvol,τ (t) ≡
1
M

∑M
l=1 |rτ (1)(l)||rτ (t)(l)|−

(
1
M

∑M
l=1 |rτ (1)(l)|

)(
1
M

∑M
l=1 |rτ (t)(l)|

)
1
M

∑M
l=1 |rτ (1)(l)|2−

(
1
M

∑M
l=1 |rτ (1)(l)|

)2 . (3.1)

In figure 3.2 we plot the four different sets of cvol,τ (t) evaluated at different time lags.

It can be noticed that we obtained totally overlapping patterns, where tτm = 220
τ is the

point in which volatility autocorrelations start to grow again.
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Figure 3.2: Volatility autocorrelation at τ =1, 2, 5, 10 of the S&P 500 index are respec-
tively shown in the panels (a), (b), (c), (d).

3.2. Calibration and scaling results

Once the four different collections of daily realizations were obtained from our main

data set, they were separately calibrated by performing on each of them the procedure

described in section 2.5. In table 3.1 we report the resulting calibration parameters. The

errors on α,Dm, Da have been obtained through their fitting procedure, while for βm, βa
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we propagated the errors of the others parameters through eq. (2.26),(2.40).

τ = 1 τ = 2 τ = 5 τ = 10

α 3.68± 0.05 3.68± 0.06 3.67± 0.04 3.58± 0.06

Dm 0.376± 0.006 0.369± 0.006 0.358± 0.007 0.359± 0.006

βm 1.07± 0.01 · 10−3 1.44± 0.01 · 10−3 2.10± 0.01 · 10−3 2.84± 0.02 · 10−3

Da 1.23± 0.2 1.18± 0.03 1.28± 0.04 1.20± 0.03

βa 5.9± 0.6 · 10−6 1.8± 0.3 · 10−5 3.4± 0.4 · 10−5 1.09± 0.08 · 10−4

Table 3.1: Sets of calibration parameters at different time lags.

We can observe that the parameters which show the most consistent variations of

value are βm and βa. In fact, through eq. (2.25),(2.39), they are arithmetically propor-

tional to 〈|Rτ (1)|〉, whose size shows an increasing behaviour as a function of τ . The

parameters α, Dm and Da maintain themselves almost constant when the considered

time lag changes. To verify the goodness of the calibration parameters just presented,

we used them to perform a fitting of the empirical first moments of the S&P 500 re-

turns. The resulting fits are showed in figure 3.3. An additional check to verify the

goodness of the four different sets of parameters can be performed by calculating the

scaling parameter λ(tf , tm) of eq. (2.36), where tf is the closure time of stock market.

In fact the generic λ(τ, tm) quantity is the scaling parameter of the aggregated returns

of time τ , rτ (τ), according to eq. (2.35). Therefore, if we take τ = tf we obtain a return

aggregated over a whole daily trading session, rtf (tf ) = lnS(tf ) − lnS(0), which does

not depend on the particular τ . The corresponding scale parameter, λ(tf , tm), should

then be the same for every value of τ , independent of the set of parameters which we

are using to evaluate it. The calculation of its value at different frequencies confirms our

expectations: table 3.2 shows the four values found, whose relative variations are below

1%. In this case the errors have been evaluated by propagating the parameters’ ones

through eq. (2.36).

1 minute 2 minutes 5 minutes 10 minutes

λ(tf , tm) 0.0111± 0.0008 0.0111± 0.0009 0.0112± 0.0010 0.0111± 0.0010

Table 3.2

In the previous chapter we introduced the possibility of collapsing interday returns

on the same g(r) of intraday ones. Here we analyze and comment the results found

at all frequencies. Figure 3.4 shows the four corresponding night collapses: the scaling

parameter is the same for all figures, λn = 8.0 ± 0.2 · 10−3. It can also be noticed that

the various collapses do not show any difference when the frequency changes. From
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3.2 Calibration and scaling results
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Figure 3.3: Data fit of the first empirical moments of the absolute value of aggregated
returns, 〈|R1 + . . . + Rt|〉, for the whole day, t ∈ [1, tf ], at τ = 1, 2, 5, 10 minutes are
respectively shown in panels (a),(b),(c),(d).
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3. TRADING ON S&P 500

eq. (2.35),(2.38) we know that the collapse of intraday returns is lead by the model’s

parameters: so, although the structure of the scaling function does not depends on

τ , in general we could expect some variations of the shape and the scale of the four

different g(r)’s, since their parameters change at the various frequencies. Thus, the fact

that night returns, whose values and temporal length obviously do not depend on the

frequency chosen for the intraday collapse, have a constant scaling parameter for all

frequencies is another confirmation of the goodness of the calibration results. At this

point, we can confront night and daily dynamics on the basis of the acquired results:

if we take the mean value upon frequency of λ(tf , tm), λ̂(tf , tm) = 1.11 ± 0.04 · 10−2,

we can calculate the ratio λn
λ̂(tf ,tm)

= 0.73 ± 0.03, which tells us that during the whole

night, although stock market is closed, the S&P 500 index evolves with a rate which

is approximatively 3/4 of the daily one. The whole procedure can be iterated for the

full day returns, as shown in figure 3.5. Once again, we have that interday returns well

collapse on intraday ones with a scaling parameter equal for all frequencies, fixed by

hand at the value λd = 1.40± 0.02 · 10−2. Moreover, since a full day is clearly the sum

of a diurnal trading session and of the remaining time when the market is close (i.e. the

night), we are interested in a relation which links the scaling parameter of its return,

λd, with the ones of its summands, λn and λ(tf , tm). To this purpose, it can be noticed

that our empirical scaling parameter, from now on denoted as λed, is very near to the

one obtained through

λd =
√
λ2(tf , tm) + λ2n , (3.2)

i.e λd = 1.37 ± 0.03 · 10−2. This is a significant result, because, besides extending

the procedure of aggregation of returns beyond intraday limits, eq. (3.2) generalizes

the structure of eq. (2.36): the scaling parameter of an aggregated return is obtained

through the square root of the sum of the squared λi’s of the summands. Following

this idea, we built larger, interday returns made up of multiple days in order to check if

they still collapse to the same PDF, with the scaling parameter given by λkd =
√
kλd,

according to the idea suggested by eq. (3.2), where k ∈ N is the number of aggregated

days. The results are shown in figure 3.6, where we plot the collapse of aggregated

returns of 5, 10, 20 and 50 days on the intraday ones, with τ = 10 minutes. It can be

noticed that, when k grows, the collapse ceases to follow the model’s g′(r) and its peak

shows an evident skewness. A possible way to enlarge the domain of validity for the

model is to look for a more general class of PDF’s which reduces to the one of eq. (2.37)

for aggregated returns rτ (τ) with τ up to few days.

Summarizing, eq. (3.2) is a result which makes a bridge between the existing intraday
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3.2 Calibration and scaling results

[24], and interday [23], formalisms based on scaling properties. Indeed, while the first

one exploits the ensemble approach that we used in this thesis, the other one works with

time series made up of interday returns, rl = lnSl(0) − Sl−1(0). Then, although the

two models have a similar structure and mathematical tools, until this result it was not

possible to treat interday data with the intraday formalism, and viceversa. Eq. (3.2)

is the first step in this direction, and its usefulness lies in the fact that it creates new

possibilities of data analysis and further enhances the application possibilities. As an

example, a possible application of this result, which we will exploit in the next section,

is to verify the effect of the linear correlations between intraday and interday returns on

the occurrence of volatility clustering or trends by conditioning the intraday PDF with

interday returns.
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Figure 3.4: Data collapse of night returns (blue spots) on intraday ones (red spots) at
τ = 1, 2, 5, 10 minutes are respectively shown in panels (a),(b),(c),(d). The black dashed
line is a fit to the points with the g′(r) of eq. (2.37).
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Figure 3.5: Data collapse of full day returns (green spots) on intraday ones (red spots)
at the various frequencies. The black dashed line is a fit to the points with the g′(r) of
eq. (2.37).
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Figure 3.6: Data collapse of returns aggregated at 5,10,20,50 days on the intraday ones
at τ = 10 minutes (red spots) are respectively shown in panels (a),(b),(c),(d).
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3. TRADING ON S&P 500

3.3. Trading strategy

Once the calibration procedure was completed, we applied on the four different ensem-

bles the trading strategy defined in section 2.7, both in the unconditioned and in the

conditioned case. To directly confront the results at different frequencies we chose the

numbers of conditiong returns, tτp ’s, in a such way that they all refer to the same time of

the day, by taking tτp =
t1p[minutes]

τ [minutes] for τ > 1 minute. We chose as conditioning time 10:10,

10:40 and 11:10 (New York time), which correspond to t1p = 30, 60 and 90. We chose

to not consider higher values of t1p’s for two reasons: their introduction leads to lower

results and, since a single trading session lasts six hours and twenty minutes, we didn’t

want to restrict too much the time window for trading activity. Since we are interested

in the determination of the most convenient framework for our trading strategy, we chose

six different quantile levels, Q=2.5%, 5%, 10%, 15%, 20% and 25%, in order to identify

as accurately as possible the behaviour of trading profit as a function both of τ and Q.

In table 3.3 we show the average profit for trade at every τ , Q and tτp combination. In

paranthesis the total number of trades is reported.

It can be noticed that the number of trades is maximum at the highest frequency and

quantile level, and decreases when τ increases and/or Q gets lower. We could expect this

result: when Q is high, since the quantile thresholds are nearer to the real price values,

they are more likely to be trespassed and thus to generate a buy/sell signal. On the

other hand, when τ decreases the number of recorded prices in a day increases, so that

we have more possibilities to get all the actual trading signals. It is maybe more useful

to present the same results in a graphical way: in figure 3.7 we show the density plot for

every couple (τ , Q) at different tp’s. From this graphical approach it is easier to analyze

the behaviour of profit, following the color pattern. Thus figure 3.7 tells us that, once tτp

is fixed, profit tends to grow with Q for higher values of τ , while it shows the opposite

trend when τ decreases. We can try to explain this behaviour in the following way:

we already remarked how, for lower values of τ , we have a greater number of recorded

prices inside a single day, and we can follow their dynamics at a finer scale. We are then

more likely to identify, as soon as they appear, all the signals for new potential trends.

Moreover, the higher values of linear autocorrelation shown in figure 3.1 tells us that

this potential signals are more likely to actually become real trends, at least on short

time windows. Thus, when the quantile level Q decreases, we get less trading signals

(as the lower number of trades confirms), which are all likely to indentify actual trends:

the average profit grows. When instead we consider higher values of Q, the probability

of taking as trading signals simple fluctuations of the recorded prices increases, and this
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3.3 Trading strategy

25% 20% 15% 10% 5% 2.5%

1 minute

0 4.13(39216) 4.24(34314) 4.22(28934) 4.37(22033) 4.28(13843) 4.47(7906)
30 3.94(42124) 4.02(37944) 4.13(32929) 4.39(26501) 5.04(18322) 5.45(13368)
60 3.76(41271) 3.86(36503) 3.97(31328) 4.35(24642) 4.85(16936) 5.43(12135)
90 3.59(40577) 3.61(35710) 3.81(29676) 4.36(22685) 5.02(15290) 5.82(10786)

2 minutes

0 3.99(30725) 4.07(26809) 3.94(22618) 4.01(17278) 3.70(10801) 3.78(6071)
15 4.09(31666) 4.15(28045) 4.24(23781) 4.30(18848) 4.96(12422) 5.13(8526)
30 3.99(30624) 4.02(26790) 4.10(22669) 4.59(17100) 4.99(11298) 5.56(7699)
45 3.81(29857) 3.86(25807) 4.02(21253) 4.58(15841) 5.26(10118) 5.86(7001)

5 minutes

0 3.64(21867) 3.74(19137) 3.60(15982) 3.49(12171) 2.95(7484) 2.64(4255)
6 4.26(21701) 4.11(19096) 4.17(16033) 3.75(12566) 3.59(7977) 3.03(4983)
9 4.20(20788) 4.20(17949) 4.24(14773) 4.18(11235) 4.01(7111) 4.10(4609)
12 3.98(20170) 4.10(17038) 4.12(13861) 4.21(10274) 4.50(6394) 4.25(4214)

10 minutes

0 3.17(16314) 3.22(14177) 3.04(11539) 2.92(8684) 2.38(5137) 1.76(2745)
3 4.09(16319) 4.07(14132) 3.71(11736) 3.20(9114) 2.96(5535) 1.55(3345)
6 4.15(15436) 4.27(13137) 4.09(10744) 3.59(8140) 3.45(4790) 2.31(2987)
9 4.12(14734) 4.13(12411) 4.09(9886) 3.95(7167) 3.52(4342) 2.78(2724)

Table 3.3: Average profit per trade in basis point in the interval (1985-2013). In paren-
thesis the total number of trades is reported.
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3. TRADING ON S&P 500

process makes the trades become more, but less convenient: the average profit decreases.

On the other side, figure 3.7 tells us also that when the time lag increases, the average

profit shows the opposite behaviour: it grows together with the quantile level. We can

try to explain this feature in the following way: at lower frequencies we have a loss of

profit due to the delay with which new potential trends are detected. In fact, the later

the trading position is opened, the lower will be its profit. In this context, the difference

of profit between signals detected at lower or higher quantile levels can become negligible,

and a greater number of trades is more likely to increase the average profit.

It is not possible to detect a clear, well determined trend for the average profit as

a function of the number of conditioning returns, tp. However, the most convenient

framework for our trading strategy is determined by a low quantile level (Q=2.5%), an

high frequency (τ = 1 minute) and the highest number of conditioning returns, (t1p = 90).
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Figure 3.7: Density plot of the average profit at different t1p. On the x axis we report
the time lag τ , on the y one the quantile level Q.

44



3.3 Trading strategy

3.3.1. Night conditioning

In section 2.7.2 we introduced the possibility of conditioning our PDF to evaluate quan-

tile barriers which take into account past returns. This procedure, described by eq.

(2.47),(2.48), implies only that the returns which are used for the conditioning collapse

on the g′(r) with a suitable scaling parameter, without imposing any other condition.

Thus, once we verified that night returns well collapse on our model’s PDF, we can

use them to evaluate conditioned quantile barriers, just by adding the corrispondent

night return with the corresponding λn, and to apply our trading strategy. Table 3.4

reports our results: it can be noticed that the average profit does not have any significant

modification for the higher numbers of conditioning returns, while it shows an evident

decrease for t1p = 0, 30. To explain this behaviour we looked at the linear correlations

between the aggregated returns and the night ones. In fact, as we explained in the past

sections, linear correlations play a crucial role in determining the average profit, since

they influence the probability of identifying a real trend from the trading signals of our

strategy.

As it is shown in figure 3.8, we can see that the correlations have negative values

in the first part of the day, and keep growing until the end of the trading session. The

plot is made at τ = 1 minute, but it is clearly the same at all frequencies, beside of

the number of points. Thus the effect of night conditioning on our average profit can

be fully explained: the presence of negative linear correlations between night returns

and intraday, aggregated ones tells us that during the first part of the day returns will

contrast the night trend. In this scenario, our trading strategy becomes ineffective. A

possible way to overcome this problem is the development of strategies capable to exploit

these negative linear correlations.
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3. TRADING ON S&P 500

Night conditioning

25% 20% 15% 10% 5% 2.5%

1 minute

0 3.83(40449) 3.98(35272) 4.10(29518) 4.18(22771) 3.88(14366) 3.79(8656)
30 3.92(42010) 3.96(38083) 4.12(32879) 4.38(26459) 5.01(18172) 5.36(13278)
60 3.77(40975) 3.85(36515) 3.96(31329) 4.32(24583) 4.84(16717) 5.40(11990)
90 3.60(40157) 3.61(35670) 3.82(29595) 4.37(22632) 5.03(15072) 5.83(10632)

2 minutes

0 3.66(31743) 3.76(27743) 3.83(23026) 3.93(17700) 3.23(11274) 3.12(6603)
15 4.06(31783) 4.12(28199) 4.19(24038) 4.29(18827) 4.82(12478) 4.98(8507)
30 3.99(30640) 4.02(26785) 4.09(22655) 4.55(17049) 4.82(11431) 5.51(7697)
45 3.81(29861) 3.86(25838) 4.02(21249) 4.61(15735) 5.17(10120) 5.88(6917)

5 minutes

0 3.35(22539) 3.29(19621) 3.14(16499) 3.11(12588) 2.36(7885) 1.69(4639)
6 4.10(21941) 4.04(19247) 4.10(16247) 3.72(12718) 3.50(8099) 2.94(5135)
9 4.15(20882) 4.19(18000) 4.15(14927) 4.05(11372) 3.82(7240) 4.22(4606)
12 3.97(20210) 4.05(17185) 4.11(13873) 4.23(10269) 4.40(6465) 4.07(4251)

10 minutes

0 2.84(16808) 2.60(14679) 2.60(12015) 2.39(9057) 1.44(5469) 0.76(3112)
3 3.83(16554) 3.90(14381) 3.55(11922) 3.00(9251) 2.54(5721) 1.34(3501)
6 4.17(15513) 4.25(13279) 3.95(10873) 3.54(8279) 3.15(4919) 2.29(3095)
9 4.13(14827) 4.15(12481) 4.09(9970) 3.97(7233) 3.28(4451) 2.71(2808)

Table 3.4: Average profit per trade in basis point in the interval (1985-2013). All the
quantile barriers have been evaluated conditioning the PDF (also) on night returns.

46



3.3 Trading strategy

t
0 50 100 150 200 250 300 350 400

〉 
a
g

t
 r

n
 r〈

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

Graph

Figure 3.8: Linear autocorrelation between night returns and intraday, aggregated ones,
with τ = 1 minute.
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4. Working on different assets

In the previous chapters we worked exclusively on the S&P 500 index, since the model

itself has been shaped on the empirical properties of its data set. However, our math-

ematical framework can be formally applied to any financial data set with a similar

structure. We thus applied the model to various different assets, to analyze its fitting

properties and the possibility of implementing a profitable trading strategy. The assets

we used for our analysis are fifteen: BA, BAC, C, FDX, HON, HPQ, IBM, JPM, MDLZ,

PEP, PG, T, TXN, TWX and WFC. All the data sets taken from the history of these

assets cover the same time interval, from January 1st 2003 to June 28th 2013, for a total

of M=2640 days. As for the S&P 500 index, each days goes from 09:40 to 16:00 (New

York time). We proceeded in the usual way: we first looked at the linear correlations

and the volatility pattern to identify a suitable tm, then we went on with the calibration

procedure and the fitting of the first empirical moment, after verifying the presence of

scaling features. We worked with a time lag of τ = 10 minutes. We then looked at the

linear correlations of the same assets at τ = 1 minute and eventually applied the trading

strategy of section 2.7 to the assets with the more significant correlation patterns.

4.1. Linear correlations, volatility and scaling

If we look at the linear correlation pattern of each asset, evaluated according to eq. (1.7),

we find that they are below a low barrier of about 0.1, such as in the S&P 500 case at

the same frequency. In figure 4.1(a) we plot, for τ = 10 minutes, the linear correlations

of the IBM asset, as an example. The next step was to look at the pattern of the second

empirical moment me
2(t, 10), to verify the presence of a periodic behaviour to justify

the ensemble approach. In figure 4.2 we confront the plot of me
2(t, 10) in a day (a) and

in a week (b) window. As we got for the S&P 500 index an evidence of periodicity is

found. We then looked to the plot of the volatility, evaluated according to eq. (3.1),

to identify the proper tm for the calibration procedure. As shown in figure 4.1(b), the
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4.2 Calibration and fitting properties

choice of t10m = 22 made for the S&P 500 index is still valid for the IBM (and all the

other) asset. This means that the U-shaped pattern for volatility, linked to the different

volumes of trading during each day, is a feature shared by many of the single assets in the

stock market. The last step to verify the full compatibility of the assets’ data sets with

our model was to look for its scaling properties. We then looked for the proper Hurst

exponent through the linear fit of the couple (q, qD) obtained by linearizing eq. (2.25)

at various q. In figure 4.3 we show the result for the FDX asset, with DFDX = 0.29.

Thus we built a data collapse as suggested by eq. (1), putting the just found value of

D, as we did in chapter 1 for the S&P 500 index. Figure 4.4 shows the data collapse for

the MDLZ asset.

t
0 10 20 30 40

e lin
c

0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

t

0 10 20 30 40

v
o

l
c

0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 4.1: Empirical linear autocorrelation clin(1, t) for the IBM asset, τ = 10 minutes.

4.2. Calibration and fitting properties

Once the requested empirical features were verified in our set of assets, we proceeded

with the calibration protocol, as described in section 2.5. In table 4.1 we present the

fifteen sets of parameters that we found performing this operation. If we look at the

mean value and at the standard deviation σ for each parameter, it can be noticed that

βm, βa and Da show the largest relative variations. We already remarked that the β’s

are strictly connected to the value of the first empirical moment of the absolute value of

the first return of the day, 〈|R1|〉, while Da is evaluated through eq. (2.39), whose right

member depends on βm, βa through the scaling parameter λ(τ, tm). Finally we verified

the goodness of the calibration procedure by performing the fit of the absolute values of

the first empirical moment of the aggregated returns along the day, as shown in figure
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Figure 4.2: (a): The ensemble second moment me
2(t, 10) of the daily IBM asset as a

function of the time of day, from 09:40 to 16:00. (b): The weekly behaviour of me
2(t, 10)

for the same data.

4.5 for the HON asset.

4.3. Structure of correlations and trading strategy

Since the various assets’ data sets are well parameterized by our model, we tried to

apply to them the trading strategy conceived for the S&P 500 index. However, before

performing this operation, guided by what we learned in the previous chapter, we looked

at the structure of the linear correlations between successive returns clin,τ (t, t + 1). In

figure 4.6 we confront the values of clin,10(t, t + 1) for the PEP asset, (a), and for the

S&P 500 index, (b). It can be noticed that the asset’s successive returns are more

likely to be anticorrelated, and that the positive entries of clin,10(t, t + 1) show smaller

values than the S&P 500’s ones. Since we already underlined the importance of the linear

correlations clin,τ (t, t+1) for the profit values of the trading strategy, we can expect lower

results. We looked then, among all the different assets, at the clin,τ (t, t + 1) at various

frequencies to find the framework in which this difference is more evident. In figure 4.7

we show what we found: as it can be seen, the linear correlations between successive

returns of the asset BAC, evaluated at τ = 1 minute, (a), are almost symmetrical to

the S&P 500’s ones, (b). We then completed the calibration procedure for the returns

of the BAC asset at τ = 1 minute and we applied the trading strategy of section 2.7,

expecting to find negative values. Table 4.2 shows that the results we found confirmed

our expectations. It is remarkable, however, that if we completely invert our strategy

actions, the profit values become positive. This procedure of inversion means that we
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Figure 4.3: Scaling behaviour of the non-linear moments of returns of the FDX asset. The
red circles are the couples (q, qD) evaluated from the logarithmic fits of 〈|R1+. . .+Rt|〉 ∼
tqD, with q ∈ [0, 2], t ∈ [1, tm]. The black line is their linear fit, D = 0.29.
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Figure 4.4: Scaling collapse of the returns aggregated at τ = 5, 10, 15, 20 minutes of the
MDLZ asset according to eq. (1).
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Figure 4.5: Data fit of the first empirical moments of the absolute value of aggregated
returns of the HON asset, 〈|R1 + . . .+Rt|〉, for the whole day, t ∈ [1, tf ].
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α Dm βm Da βa
BA 3.70 0.30 5.97 · 10−3 0.51 2.40 · 10−3

BAC 2.27 0.32 7.04 · 10−3 1.15 0.29 · 10−3

C 2.75 0.35 6.90 · 10−3 0.91 0.79 · 10−3

FDX 3.48 0.29 6.20 · 10−3 0.55 2.03 · 10−3

HON 3.65 0.27 6.43 · 10−3 0.54 2.12 · 10−3

HPQ 3.96 0.30 6.00 · 10−3 1.30 0.13 · 10−3

IBM 3.36 0.31 4.00 · 10−3 0.83 0.50 · 10−3

JPM 2.98 0.29 6.90 · 10−3 1.13 0.27 · 10−3

MDLZ 3.90 0.25 4.96 · 10−3 0.82 0.47 · 10−3

PEP 3.81 0.29 3.89 · 10−3 0.50 1.97 · 10−3

PG 3.73 0.29 3.60 · 10−3 0.78 0.48 · 10−3

T 3.23 0.30 4.90 · 10−3 0.50 2.05 · 10−3

TWX 3.37 0.31 5.67 · 10−3 1.04 0.33 · 10−3

TXN 3.85 0.26 7.90 · 10−3 0.65 1.51 · 10−3

WFC 2.95 0.27 7.00 · 10−3 1.34 0.11 · 10−3

Mean 3.40 0.29 5.82 · 10−3 0.84 1.03 · 10−3

σ 0.47 0.02 1.26 · 10−3 0.29 0.84 · 10−3

Table 4.1: Sets of calibration parameters of the various assets, τ = 10 minutes.

have to give to the trading signals the opposite meaning to the one we gave to them in

the previous definition:

1. If there are no open positions:

(a) Sell if S
(l)
t > S

(l)
max,t(Q) & S

(l)
t−1 < S

(l)
max,t−1(Q) (open a short position)

(b) Buy if S
(l)
t < S

(l)
min,t(Q) & S

(l)
t−1 > S

(l)
min,t−1(Q) (open a long position)

2. If there are open positions:

(a) Buy if S
(l)
t < S

(l)
max,t(Q) & S

(l)
t−1 > S

(l)
max,t−1(Q) (close a short position)

(b) Sell if S
(l)
t > S

(l)
min,t(Q) & S

(l)
t−1 < S

(l)
min,t−1(Q) (close a long position)

(c) Close any long/short position still open at the end of the day.

This suggest different ways to make trades on the various assets or indexes, on the

basis of the linear correlations clin,τ (t, t + 1) of the data set of returns used for the

calibration. It can be noticed that for the BAC asset with τ = 1 minute a well defined

behaviour for the profit values as a function of the quantile level Q does not emerge:

looking again at figure 4.7 this can be explained by observing that the clin,1(t, t + 1)

shows some little fluctuations among positive and negative which were not present in

the S&P 500’s framework.
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4.3 Structure of correlations and trading strategy

BAC asset

25% 20% 15% 10% 5% 2.5%

1 minute

0 -1.43(16672) -1.47(13312) -1.56(10485) -1.33(7290) -0.49(4224) -0.95(2372)
30 -2.11(21285) -2.06(17266) -2.00(13307) -2.50(9316) -3.62(5221) -2.99(2790)
60 -2.10(20156) -1.96(16299) -2.02(12485) -1.92(8231) -2.85(4487) -3.36(2603)
90 -2.39(19530) -2.83(15895) -3.01(11715) -3.02(7647) -3.41(3795) -4.17(2118)

Table 4.2
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Figure 4.6: Empirical linear correlations between successive returns of the PEP asset,
(a), and the S&P 500 index (b), τ = 10 minutes.
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Figure 4.7: Empirical linear correlations between successive returns of the BAC asset,
(a), and the S&P 500 index (b), τ = 1 minute.
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5. Conclusions

In this thesis we provided a complete modelization of intraday financial returns, built

by focusing on the empirical features of the S&P 500 index but capable to describe also

different assets. We firstly looked at the pattern of high order moments and correlations

within different time windows, and we found the evidence of a cyclical behaviour of

these quantities, whose period has the duration of a day of trading session. We further

found that the second moment of the returns and the volatility autocorrelations show

an U-shaped pattern, which is due to the changing volume of trading activity during the

day, and makes a clear separation between the morning and the afternoon time windows.

We thus decided to adopt an ensemble approach in order to give a better description of

the intraday dynamics, which shows these strong non stationary features during daily

evolution [10], [11]. Once we fixed the correct approach, the major guiding principle that

we followed in the model construction was scaling simmetry. Indeed, our data showed

evident self-similarity features, which confirmed the idea that the statistical averages

of different aggregated returns can be compared and analyzed together by exploiting

proper rescaling parameters, in our case a power of the interval of aggregation to the

Hurst exponent D. Starting from the empirical evidence of this scaling simmetry and

from the presence of strong, non linear correlations we built the model, defining its

PDF and the general structure of the scaling function g(r) as a convex combination of

Gaussian distributions. We fixed the precise form of the g(r) by imposing the fitting of

some empirical features of our data distribution, such as the absence of skewness and

the occurrence of heavy tails [24]. We thus obtained a Student’s t-distribution, fully

determined by fixing its form and scale parameters, respectively α and β, which well

describes the statistics of morning returns. In order to obtain a correct modelization

of the market dynamics of the whole trading session, we performed an extension of

the model to the afternoon time window by introducing a time dependence in some

of its parameters. In the end, we found a model capable to well fit the moments at

various orders of the absolute values of returns after calibrating its five parameters:
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Dm, Da, α, βm, βa, where the m, a pedixes indicate whether they occurr in the morning

or in the afternoon time window. However, the model fails when it has to reproduce linear

correlations: although its martingale structure fixes them equal to zero, 〈rirj〉 = 0 ∀ i, j,
empirical evaluation contradicts this prescription to a moderate extent. Thus, in order

to measure the effects of this discrepancy from the model, we implemented a trading

strategy. In fact, by evaluating the (un)conditioned expected returns distributions at

different quantile levels and checking how many times recorded prices break through

their values, we monitored the occurrence of long lasting trends, which would be absent

if linear correlations were equal to zero. More precisely, we expected to find positive

values of profit when successive returns are positively correlated, and viceversa. Indeed,

the occurrence of positive linear correlations is a signal that trends are more likely to

last, and the strategy is conceived in order to obtain larger values of profit when the

trends maintains themselves stable during the whole trading session. We performed this

operation, for various assets, at different values of frequency and quantile level, and

we found a clear confirmation of our expectations. More precisely, we found that the

strong correlations between successive returns found for the S&P 500 index at various

values of frequency, conditioning returns and quantile level, lead to positive values of

profit included between 1.55 and 5.86 basis points of the initial cash investment, while,

for example, a similar trading strategy performed on the same data set exploiting a

strategy based on quantile barriers evaluated through a GARCH process [22] lead to

results of about an order of magnitude smaller [24]. As far as the other assets are

concerned, we found a general persistence of negative linear correlations, which in the

case of the BAC asset produced negative results ranging between -4.17 and -0.49 basis

points.

Furthermore, we extended for the first time the domain of validity of the model

to interday returns. We isolated from our data two time series, made up of returns

aggregated respectively over a night and a full day. We then successfully collapsed them,

through suitable scaling parameters, together with intraday returns, demonstrating that

they follow the same scaling function g(r). We also found that the scaling parameters

of these interday returns can be evaluated from the ones of their summands, through an

additive formula which is an extension of the one already implemented in the intraday

context. This result is the first evidence of the possibility of unifying the treatment of

returns aggregated over interday and intraday intervals. In fact, previous works have

developed different models to treat data in the two different contexts [24], [23], while

others have studied how to model intraday data in order to obtain a better measure of

volatility on a daily scale [26], but we have introduced for the first time the possibility
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5. CONCLUSIONS

of using the same PDF, with the introduction of just an additional scaling parameter, to

describe both interday and intraday aggregated returns. This allows us to add interday

dynamics to our treatment, conditioning the PDF of the model also on these returns. As

an application, we then looked at the effects of the conditioning on night returns in the

daily trading strategy. We found poorer profits, and we explained the results looking at

the structure of the linear correlations between night returns and intraday, aggregated

ones, which show negative values in the first part of the day. An open question left

by this thesis is to look at a more general class of scaling functions capable to describe

returns aggregated at larger interday intervals, since we observed that, when looking

at aggregation times of the order of about 20 days, their distributions show an evident

skewness which cannot be reproduced by our g(r).
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