
corso di laurea magistrale in Physics of Data

Sarvenaz Babakhani

Human action detection in temporal data

elaborato finale

Relatori:
Prof. Marco Zanetti (internal Supervisor)
Prof. Alina Roitberg(external Supervisor)

anno accademico 2023-2024

2

Indice

1 Introduction 7
1.1 Review of related research . 8

1.1.1 Human Action Detection . 8
1.1.2 Caloric Expenditure Estimation 9
1.1.3 Use of Neural Networks in Video Analysis 10
1.1.4 Foundation models . 11

1.2 The purpose of thesis . 12

2 Methodology 15
2.1 Data . 15

2.1.1 Datasets Overview . 15
2.1.2 Data Collection and Annotation 15
2.1.3 Data Statistics . 17
2.1.4 Visualizations . 17
2.1.5 Data Preprocessing . 20
2.1.6 Augmentation . 21
2.1.7 t-SNE and K-means Clustering Analysis 23
2.1.8 Estimating Hourly Energy Cost from Video Input 26

2.2 Model Architectures . 27
2.2.1 Foundation Models for Feature Extraction 27
2.2.2 Calorie Estimation Network 30

2.3 Loss Functions . 31
2.3.1 Kullback-Leibler loss function 31
2.3.2 Jensen-Shannon loss function 32

3

4 INDICE

2.3.3 Cross-Entropy Loss . 33
2.4 Experimental Setup . 34

3 Results 37
3.1 Evaluation Metrics . 37
3.2 Implementation Details . 38
3.3 Results . 40

3.3.1 feature extraction dimensions 40
3.3.2 CLIP . 41
3.3.3 CLIP + Aggregation . 50
3.3.4 DINOv2 . 52
3.3.5 DINOv2 + Aggregation . 56
3.3.6 Optimizer Comparison for Best Configuration 65

4 Discussion and Conclusion 79
4.1 Discussion . 79

4.1.1 Challenges with CLIP Features 79
4.1.2 Exploring DINOv2 . 80
4.1.3 Optimization Strategies . 80

4.2 Conclusion . 82

Acknowledgements 89

Abstract

This thesis addresses the challenge of estimating caloric expenditure from videos
capturing individuals engaging in a variety of activities, ranging from mild to
intense exercises. The estimation of calories burned is based not only on the
category of physical activity (e.g., running, walking) but also on assessing the
intensity of muscle and bodily movements depicted in the videos.

To approach this goal, tests were conducted on two distinct sets of data: "kno-
wn test", which includes activities represented in the training dataset, and "un-
known test", consisting of activities not featured during training. This metho-
dology allowed the exploration of not only the model’s performance on familiar
activities but also its generalization capabilities to new, unseen actions, to check
the effect of categories on the training.

In this study, neural networks are leveraged, specifically utilizing foundation
models due to computational constraints. A pre-trained Dino model is used to
extract features from video data. These features are then fed into an evaluator
model to estimate caloric burn.

A significant portion of this research involved experimenting with different
loss functions and tuning various parameters to optimize the model’s predictive
accuracy. Through these experiments, the aim was to enhance the model’s ability
to accurately estimate calorie expenditure, thereby contributing valuable insights
into the domain of human action detection in temporal data.

5

6 INDICE

Capitolo 1
Introduction

Human action detection and caloric expenditure estimation are important areas
of research within computer vision and health monitoring. Traditional methods
for caloric estimation often rely on physiological measurements and wearable
sensors, which can be impractical for everyday use. With the advancement of
deep learning, especially in video analysis, there is an opportunity to use video
data to estimate energy expenditure more accurately.

This research wants to bridge the gap between action recognition and calo-
ric estimation by utilizing advanced neural network architectures, specifically
foundation models like Dino and CLIP. These models are pre-trained on ex-
tensive datasets, allowing them to learn generalizable features. By integrating
these foundation models with task-specific neural networks and exploring diffe-
rent loss functions, the study seeks to develop an end-to-end pipeline that can
accurately detect human actions and estimate caloric burn from video data.

The introduction of large-scale dataset which includes diverse activities with
detailed annotations, provides a good foundation for training and evaluating the-
se models. This dataset, combined with the advanced capabilities of foundation
models, aims to overcome the limitations of existing methods, such as rigid cate-
gorization and poor generalization, thereby enhancing the practical applicability
of caloric estimation systems in real-world scenarios.

Overall, this research not only addresses the technical challenges in video-
based caloric estimation but also opens a new window for applications in mobile
health, fitness tracking, and beyond. By advancing the understanding and imple-
mentation of deep learning models in this domain, the study contributes valuable

7

8 CAPITOLO 1. INTRODUCTION

insights and tools for more effective health monitoring and activity analysis.

1.1 Review of related research

1.1.1 Human Action Detection

Human action detection has been a significant area of research within computer
vision, primarily focusing on recognizing and classifying activities in videos. The
capability to recognize, interpret, and predict complex human actions helps to
develop critical applications, including intelligent surveillance systems, human-
computer interfaces, and health care.[1] [2] [3]

Early approaches relied heavily on handcrafted features and traditional machine-
learning algorithms. But, in recent years, deep learning, particularly convolutio-
nal neural networks (CNNs) [4] [5] [6] and recurrent neural networks (RNNs)[7],
has revolutionized human action detection. CNNs, such as the 3D ConvNet,
extend the 2D convolutions to the temporal dimension, capturing both spatial
and temporal features simultaneously. RNNs, especially Long Short-Term Me-
mory (LSTM) networks [8], have been utilized to model temporal dependencies
in sequential data, enhancing the performance of action detection systems.

Notable advancements include the development of two-stream networks that
process spatial and temporal information separately and then combine them
to improve accuracy. The introduction of attention mechanisms [9] and tran-
sformers [10] has further pushed the boundaries, allowing models to focus on
relevant parts of the video frames and capture long-range dependencies more
effectively.

The research in this field has been accelerated by the availability of large-
scale activity recognition datasets from sources such as YouTube, movies, and
controlled home environments. These datasets have fueled advancements in ap-
plications ranging from cooking and sports to robotics and automated driving.
Datasets such as Kinetics [11] and ActivityNet[12] provide a diverse range of
activities captured in varied environments, contributing to more robust and ge-
neralizable models and for better results, researches have also explored the un-
certainty of video classification models, addressing the challenges of ambiguous
or overlapping action classes[13].
Despite these strides, applying these sophisticated techniques to estimate com-
plex physiological processes, such as caloric expenditure, remains an emerging

1.1. REVIEW OF RELATED RESEARCH 9

and relatively unexplored area[14]. Future research needs to focus on bridging
this gap, leveraging the strengths of current methodologies to develop models ca-
pable of accurately estimating energy expenditure from human actions captured
in video data.

These advancements highlight the ongoing evolution in human action detec-
tion, where integrating cutting-edge neural network architectures with extensive
datasets paves the way for more accurate and efficient applications across va-
rious domains. The continued exploration of these techniques will likely yield
significant contributions to fields such as health monitoring, sports analytics, and
intelligent surveillance systems.

1.1.2 Caloric Expenditure Estimation

Estimating caloric expenditure from physical activities has traditionally relied on
physiological measurements such as heart rate, oxygen consumption, and meta-
bolic equivalents (METs). Wearable devices equipped with accelerometers and
gyroscopes are commonly used to monitor these metrics and estimate energy
expenditure [15][16][17][18]. Another method is the Optical flow method which
tracks the movement of objects within video frames, providing a dense motion
field that can be used to estimate the intensity of physical activities. By analy-
zing the motion vectors, models can infer the speed and direction of movements,
which are critical indicators of energy expenditure [19][20]. With the improve-
ment of computer vision, researchers have found video-based caloric expenditure
estimation, to infer energy expenditure directly from visual data. This approach
uses pose estimation [21] and action recognition to identify and quantify physi-
cal activities in videos. Models such as OpenPose [22] and AlphaPose[23] have
tried to enable machines to extract detailed human pose information, which ser-
ves as a foundation for estimating the intensity and type of physical activities.
Beyond traditional pose estimation, skeleton-based action recognition leverages
the spatial and temporal dynamics of human skeleton joints to classify actions
and estimate energy expenditure. Methods like ST-GCN (Spatial Temporal Graph
Convolutional Networks) have shown promise in capturing the nuanced move-
ments of different activities by modeling the joint connections and their move-
ments over time [24].

10 CAPITOLO 1. INTRODUCTION

Recent studies have integrated deep learning techniques to improve the ac-
curacy of caloric expenditure estimation. These models often combine pose esti-
mation with activity classification, using features extracted from video frames to
predict the calories burned during different activities. However, challenges re-
main in accurately modeling the relationship between visual features and energy
expenditure, particularly for activities involving complex or subtle movements.

1.1.3 Use of Neural Networks in Video Analysis

Neural networks have become a cornerstone of video analysis, driven by their
ability to automatically learn and extract relevant features from raw data. In the
context of human action detection and caloric expenditure estimation, several
neural network architectures have been employed to address various challen-
ges.[25][26]

Pretrained models, such as self-supervised deep learning, a form of self-
distillation with no labels (Dino), and Contrastive Language-Image Pre-training
(CLIP), have demonstrated remarkable capabilities in feature extraction from vi-
deo data. These models are trained on large-scale datasets and can transfer lear-
ned representations to new tasks with limited additional training, making them
suitable for applications with computational constraints.
Dino’s self-supervised learning approach makes it particularly useful for tasks
like human action recognition. By capturing detailed spatial and temporal fea-
tures from video frames, Dino can effectively model the complexities of human
movements. Its ability to generate high-quality feature representations without
requiring labeled data makes it a powerful tool for video analysis tasks [27].
CLIP, aligns visual and textual representations through contrastive learning. CLIP
learns to understand images contextually, making it highly adaptable for various
visual tasks, including action recognition and caloric estimation. This model can
distinguish subtle differences in activities by using its understanding of visual
semantics. By training on a diverse range of images and their associated textual
descriptions, CLIP can effectively generalize to various visual tasks, including
action recognition and caloric expenditure estimation[28].

The integration of these foundation models with task-specific neural networks
allows for end-to-end learning pipelines that can accurately detect human actions
and estimate caloric expenditure from video data. This approach not only leve-
rages the strengths of pre-trained models but also adapts them to the unique

1.1. REVIEW OF RELATED RESEARCH 11

requirements of the target application, enhancing performance and efficiency. By
integrating foundation models with neural networks designed for specific tasks,
such as CNNs for spatial feature extraction and RNNs or LSTMs for temporal
sequence modeling, the pipeline can process video data holistically. This integra-
tion enables the system to recognize complex patterns in human movements and
accurately estimate the corresponding caloric expenditure.

Task-specific neural networks can be optimized using specialized loss func-
tions that are more suitable for caloric estimation and action recognition. For
instance, combining classification loss with regression loss helps in precisely
estimating the energy expenditure associated with different actions.

1.1.4 Foundation models

Foundation models are large-scale pre-trained neural networks that serve as a
starting point for various downstream tasks. These models are trained on exten-
sive datasets and can be fine-tuned for specific applications, significantly redu-
cing the need for task-specific data and computational resources[29]. Foundation
models exhibit exceptional capabilities in understanding, generating, and adap-
ting content across a wide range of domains, including creative generation[30].

- Dino (Self-Supervised Learning with Vision Transformers):
Dino (self-distillation with no labels) employs vision transformers to learn

rich visual representations from unlabeled data. Its self-supervised learning fra-
mework captures detailed spatial and temporal features, making it highly effec-
tive for tasks like human action recognition and caloric expenditure estimation.
Dino’s ability to model both spatial configurations and temporal dynamics en-
hances the accuracy of detecting complex human actions and estimating caloric
expenditure from videos. DINOv2 builds upon the foundations laid by DINO,
introducing improvements in training methods, model architecture, and data
efficiency.

In this model, two key points are Vision Transformers which Capture fine-
grained visual details and relationships, and Self-Supervised Learning which
Utilizes large-scale, unlabeled data for robust feature learning[27][31].

- CLIP (Contrastive Language-Image Pre-training):

12 CAPITOLO 1. INTRODUCTION

CLIP, developed by OpenAI, aligns visual and textual representations throu-
gh contrastive learning. It is a neural network that learns visual concepts from
natural language supervision, allowing it to be applied to any visual classifica-
tion benchmark using only the names of the visual categories. Unlike traditional
models, CLIP leverages a variety of images and natural language available onli-
ne, enabling it to perform diverse classification tasks without direct benchmark
optimization. This approach significantly improves robustness and adaptability,
achieving strong performance on benchmarks like ImageNet zero-shot, without
relying on extensive labeled datasets, thus addressing key limitations in current
computer vision methods. Scaling a simple pre-training task can achieve compe-
titive zero-shot performance on various image classification datasets. CLIP uses
text paired with images from the internet to predict which text snippet matches
a given image. This method requires CLIP to learn to recognize and associate a
wide range of visual concepts with their names. Consequently, CLIP can be ap-
plied to diverse classification tasks by predicting the most likely text description
paired with each image, such as distinguishing between photos of dogs and cats.

By training on diverse datasets of images and text, CLIP is good at text un-
derstanding, making it adaptable to visual tasks, including action recognition.
CLIP’s robust understanding of visual semantics allows it to differentiate subtle
actions in videos, crucial for accurate energy expenditure predictions[28].

1.2 The purpose of thesis

When estimating caloric expenditure from human observations, traditional me-
thods face two significant challenges. First, these methods often rely on rigid
categorization into predefined actions, which are typically coarse and context-
dependent, such as distinguishing between “running” and “boxing.” This cate-
gorization provides an easy shortcut for the network but fails to capture the de-
tailed movements that obtain energy expenditure, as medical research highlights
the importance of muscle activity and intensity.

Second, deep neural networks tend to learn shortcuts, such as memorizing
average values for specific activity categories seen during training, instead of
understanding the underlying factors of energy expenditure. Although anno-
tations might be continuous calorie values, the training set can only cover a fi-
nite number of activity types. Ideally, a model should understand the nature

1.2. THE PURPOSE OF THESIS 13

of activity-induced energy expenditure by analyzing the type and intensity of
bodily movements rather than relying on category-specific biases.

Furthermore, the lack of diverse and comprehensive datasets for training the-
se models exacerbates the problem. Many existing datasets are limited in scope,
focusing on specific activities or environments, which hinders the models’ abili-
ty to generalize across different contexts. To address this challenge, the dataset
we use is designed for estimating caloric expenditure from videos. This dataset
includes video examples with annotations based on medical models, conside-
ring current activity categories, skeleton movement intensity, and heart rate mea-
surements. The dataset includes diverse activities from YouTube, movies, and
household contexts. It also contains a cross-category part, evaluating models on
activity types not seen during training to ensure generalization [14].

To achieve accurate energy expenditure estimation, the study utilizes founda-
tion models and explores various loss functions. This approach aims to develop
models that understand the intensity and type of body movements, rather than
relying on category-specific biases.

This thesis emphasizes the need for further research to develop models ca-
pable of fine-grained movement analysis and robust generalization to new ac-
tivities. This work highlights the potential for practical applications in mobile
health and the necessity of addressing the key technical challenges in video-based
caloric expenditure estimation.

The primary objective of this study is to develop an advanced, accurate, and
generalizable model for estimating caloric expenditure from video data. The
specific objectives include:

• Leverage Foundation Models: Utilize pre-trained foundation models like
Dino and CLIP to extract robust and generalizable features from video data,
thereby enhancing the initial stages of the analysis.

• Integrate Task-Specific Neural Networks: Combine foundation models with
task-specific neural networks to create an end-to-end pipeline capable of
accurately detecting human actions and estimating caloric expenditure.

• Explore Various Loss Functions: Experiment with different loss functions
to optimize the model’s performance, ensuring it can accurately capture the
nuances of human movements and their associated energy expenditure.

In this thesis, We want to study if the Foundation models can improve the fea-
ture extraction process, leading to higher accuracy in both action recognition

14 CAPITOLO 1. INTRODUCTION

and caloric expenditure estimation. We also want to compare the effect of some
loss functions on optimizing model performance and finally see the result of the
evaluation of the network on unseen activities during training.

Capitolo 2
Methodology

2.1 Data

2.1.1 Datasets Overview

This study utilizes a subset of the Vid2Burn-Diverse dataset, which includes
around 3,000 video examples. Vid2Burn (Diverse and ADL) is designed by Peng
et al. [14] to capture a wide range of activities with detailed annotations and
the main resources used in the paper are UCF-101 [32], HMDB51 [33], and the
test set of Kinetics [11]. The dataset is divided into "known test" and "unknown
test" sets. The "known test" set comprises activities that are present in the trai-
ning data, ensuring that the model has previously encountered these activities.
In contrast, the "unknown test" set includes activities not seen during training,
providing a robust evaluation of the model’s ability to generalize to new, unseen
actions.

2.1.2 Data Collection and Annotation

Data Collection
The videos in the Vid2Burn-Diverse subset were sourced from a variety of acti-
vity recognition datasets, including those originally compiled from YouTube and
movies. This diverse collection approach ensures a wide coverage of different
human activities, contributing to the robustness and comprehensiveness of the
dataset.

15

16 CAPITOLO 2. METHODOLOGY

The collection process involved selecting videos that represent a broad spec-
trum of physical activities, from low-intensity movements to high-intensity exer-
cises. This diversity is crucial for developing models that can accurately estimate
caloric expenditure across different types of activities.

Annotation Process
Based on the paper [14] the annotation of the Vid2Burn-Diverse subset focused
on two primary aspects:

Current Activity Category:
Each video is labeled with the specific activity being performed. Categories in-
clude common activities such as walking, running, cooking, cleaning, and other
household tasks. This categorization helps in identifying the type of activity,
which is a critical factor in estimating energy expenditure. Then they [14] use
activity-specific metabolic rate values from published compendium by [34]. The
annotations were derived based on established medical models, which consi-
der the type and intensity of activities as the main drivers of energy expenditure.
This approach ensures that the dataset is both accurate and relevant to the study’s
objectives.

Intensity of Skeleton Movement:
The same type of activity can be done in different ways since the amount of calo-
ries burned is directly related to the amount of active muscles and their intensity.
The intensity of movements is quantified by analyzing skeletal data extracted
from the videos. As the paper [14] explains, this involves using pose estimation
techniques to track key points on the body, such as joints and limbs, to measu-
re the power and extent of movements. These measurements are essential for
determining the energy expenditure associated with different activities, as they
provide insights into how hard the muscles are working. They estimate the ske-
leton movement using AlphaPose [35],[36],[37] for Vid2Burn-Diverse. Then they
use the model of Tsou et al [38] to approximate the caloric cost induced by the
movement.

The category-level values are primarily sourced from well-studied and easily
accessible published averages for specific categories. These values provide a re-
liable basis for initial estimates. They then correct the estimations for individual
videos using a detailed body-movement model, which results in more accurate
and precise sample-level annotations.

The dataset also incorporates a cross-category benchmark, where the caloric

2.1. DATA 17

cost estimation models are evaluated against activities not seen during training.
This benchmark is critical for assessing the models’ generalization capabilities
and ensuring that they can accurately estimate caloric expenditure in real-world
scenarios, where activities may vary widely.

By utilizing the Vid2Burn-Diverse dataset with detailed annotations, this stu-
dy aims to develop and validate models that can accurately detect human ac-
tions and estimate the corresponding caloric expenditure, addressing signifi-
cant gaps in the current literature and advancing the field of video-based health
monitoring.

2.1.3 Data Statistics

To promote the task of visually estimating the hourly amount of kilocalories
burned during various activities, this study uses a subset of 3,400 videos from
the Vid2Burn-Diverse dataset. The dataset includes videos covering a range of
activities, with continuous calorie values between 0 to 1000 kcal per hour.

Dataset Splits: The dataset is divided into three subsets:
Training Set: 2,476 videos across 27 activity categories, with an average of 91

videos per category.
The most frequent activity is running, with 169 videos, and the least frequent

is skydiving, with 65 videos. The highest average caloric expenditure is for the
punching category (around 886 kcal/hour), and the lowest is for sitting (around
89 kcal/hour).

Known Test Set: 640 videos from the same 27 categories used in the training
set.

Cross Test (unknown) Set: 284 videos from six unique categories not seen
during training.

The splits are designed to evaluate the model’s performance on both fami-
liar activities and new, unseen activities, ensuring robustness and generalization
capabilities.

2.1.4 Visualizations

Three plots are provided to illustrate the dataset’s characteristics:

18 CAPITOLO 2. METHODOLOGY

Figura 2.1: Calories per Class with Error Bars: A bar chart with error bars sho-
wing the average caloric expenditure per activity class, differentiating between
training, test, and cross-test sets.

2.1. DATA 19

Figura 2.2: Calorie Distribution for Videos: A pie chart showing the distribution
of videos across different caloric expenditure ranges.

Figura 2.3: Histogram of Action Classes: A histogram showing the frequency of
each action class across the training, test, and cross-test sets.

20 CAPITOLO 2. METHODOLOGY

2.1.5 Data Preprocessing

This study’s preprocessing steps are essential to prepare the video data for fea-
ture extraction and subsequent analysis. The following preprocessing pipeline is
employed to ensure consistency and suitability for input into the models:

Loading Video Frames:
Videos are read frame by frame using OpenCV’s cv2.VideoCapture. We choo-

se 90 frames of each video to ensure consistent input sizes for the model. If the
total number of frames in the video is greater than the required number of fra-
mes (90 in this case), we choose 90 frames of the total number of frames, by a
random start point. If the video has fewer frames than required, all frames are
selected, and then the existing frames are duplicated until the length reaches 90.

Resizing and Cropping:
A transformation pipeline is defined using torchvision.transforms to resize

and crop the video frames.
T.Resize(256, interpolation=3, antialias=True): Resizes the shorter side of the ima-
ge to 256 pixels while maintaining the aspect ratio. The interpolation method
used is bicubic (3).
T.CenterCrop(224): Crops the center of the image to a size of 224x224 pixels.

Normalization:
T.ToTensor(): Converts the image to a PyTorch tensor and scales the pixel values
to the range [0, 1].
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) for DINOv2 and
T.Normalize((0.481, 0.457, 0.408),([0.268, 0.261, 0.275)) for CLIP: Normalizes the
tensor using the mean and standard deviation values required by models.

The preprocessing steps ensure that the input size is consistent with the re-
quirements of the DINOv2 and CLIP model and the normalization is crucial
as it standardizes the input data, facilitating better performance of the neural
network.

In this stage, data are ready to be fed to foundation models to get the features
of the videos. For DINOv2, we feed each 16-frame segment with overlap. Ho-
wever, for the CLIP model, the entire video is fed directly into the model, as it
handles frame extraction internally. This ensures that the preprocessing pipeline

2.1. DATA 21

is tailored to the specific requirements of each model, facilitating efficient and
effective feature extraction.

After extracting the features, they should be normalized, and the annotations
will be assigned to them to be ready for the calorie evaluator’s next training step.
This ensures that the data is prepared appropriately for subsequent stages.

2.1.6 Augmentation

Feature augmentation can be a useful technique to improve the robustness and
generalization of your model, especially when dealing with limited data or facing
overfit. Feature augmentation involves applying transformations directly to the
features rather than the raw data. This can be particularly useful in scenarios
where the raw data (e.g., video frames) is expensive to process or when working
with precomputed features from a pre-trained model [39][40]. There are some
techniques for augmenting features, we used in this study:

1. Add Gaussian Noise:
Gaussian noise is produced by generating a random normal distribution
with a mean of 0 and a standard deviation of 0.1 for each feature tensor
of the same size, which is then summed with the original feature tensor.
This augmentation technique ensures that the model learns to handle slight
variations in the data, improving its generalization capabilities.

2. Feature Dropout:
Randomly zeroing out some elements of the feature vector, similar to dro-
pout applied in neural networks, can also help prevent overfitting and make
the model more robust. We generate a mask with the same shape as the
feature tensor, where each element has a probability of being zeroed out ba-
sed on the specified dropout rate. The feature tensor is then element-wise
multiplied by this mask. Applying these feature augmentation techniques
allows the model to better generalize to unseen data, improving its robust-
ness and overall performance in estimating caloric expenditure from video
data.

3. Feature Scaling:
Randomly scaling the features can also act as a form of augmentation.It
is done by generating a random scale factor within a range of (0.9,1.1) for
each feature tensor and multiplying the tensor by this scale factor. This

22 CAPITOLO 2. METHODOLOGY

augmentation technique introduces variability in the feature magnitudes,
helping the model to generalize better.

4. Random Shifts:
Randomly shifting the features along the temporal dimension for sequence
data can provide temporal robustness. we generate a random integer shift
value between -2 and 2. This determines how many steps the features will
be shifted. If the shift value is positive, the function pads the features at the
beginning (pre-pending zeros) and removes the same number of elements
from the end. This effectively shifts the sequence forward. If the shift value
is negative, the function pads the features at the end (appending zeros) and
removes the same number of elements from the beginning. This shifts the
sequence backward. If the shift value is zero, the features remain unchan-
ged. This technique helps the model to be robust to slight misalignments
in the temporal sequence of the data.

Applying these augmentation techniques makes the video dataset more diver-
se, helping the model learn to handle various real-world scenarios and reducing
the risk of overfitting. This approach ensures that the trained model performs
well on unseen data, making it robust and reliable.

Video augmentation techniques are applied to video frames to create a diverse
dataset:

1. Random Horizontal Flip:
First, we randomly choose if the video should be flipped or not, if yes, all
frames are flipped horizontally. This augmentation introduces variability
in the orientation of the objects within the frame, making the model robust
to mirror images.

2. Random Rotation:
All frames are rotated by a random angle within a specified range (-30, 30)
degrees. This augmentation helps the model handle different orientations
of the objects.

3. Color Jitter:
The brightness, contrast, saturation, and hue of all frames of one video are
randomly adjusted. This technique simulates different lighting conditions

2.1. DATA 23

and color variations in the input data. Random factors for brightness, con-
trast, saturation, and hue are generated and applied consistently across all
frames in a video.

By applying these augmentation techniques, the video dataset becomes mo-
re diverse, helping the model learn to handle various real-world scenarios and
reducing the risk of overfitting. This approach ensures that the trained model
performs well on unseen data, making it robust and reliable.

Figura 2.4: Augmentation- rotate of a frame for 20 degrees

2.1.7 t-SNE and K-means Clustering Analysis

To better understand the feature space obtained from the DINOv2 model, we
performed a t-SNE (t-Distributed Stochastic Neighbor Embedding) and k-means
clustering analysis. This analysis helps visualize the high-dimensional feature
space in a two-dimensional plane and identify potential clusters within the data.

We applied t-SNE to reduce the dimensionality of the DINOv2 features from
1536 dimensions to 2 dimensions, allowing for easier visualization and inter-
pretation of the feature distributions. The t-SNE visualization revealed distinct
groupings of features, indicating that the DINOv2 model effectively captures
meaningful patterns in the video data.

24 CAPITOLO 2. METHODOLOGY

Figura 2.5: t-SNE visualization of the feature space extracted by the DINOv2
model. Each point represents a feature vector, colored by action class. The plot
highlights the model’s ability to capture distinct patterns corresponding to dif-
ferent actions, with visible clusters indicating high intra-class similarity and re-
gions of overlap suggesting areas where actions share similar features.

2.1. DATA 25

The t-SNE plot provided above offers a visual representation of the high-
dimensional feature space obtained from the DINOv2 model, reduced to two
dimensions. Each point in the plot represents a feature vector from the dataset,
with different colors indicating distinct action classes.

Key Observations in the figure 2.5
Distinct Clusters: The plot reveals several distinct clusters, indicating that the
DINOv2 model effectively captures meaningful patterns in the video data. These
clusters suggest that the model can differentiate between various action classes.
Class Separation: Some classes are more tightly clustered, indicating higher intra-
class similarity, while others are more spread out, suggesting greater variability
within those classes. For example, a dense cluster of points with the color repre-
senting "running" (number 4 on the figure) likely indicates many similar samples
of running and activities that form clear, distinct clusters, such as "sky diving"
(number 20) or "rock climbing" (number 17), which are likely to have unique,
distinguishable features.
Overlap: There are regions where points of different colors overlap, indicating
that certain actions share similar feature representations. This could be due to
the similarity in the physical movements involved in those actions or limitations
in the feature extraction process. Activities that are spread out or overlap with
other activities might share similar features. For instance, if "walking" (number
1) and "jogging" (number 10) are not well-separated, they might share common
attributes that t-SNE finds challenging to differentiate.
Density: The density of points within clusters varies, which might reflect the
number of samples available for each class or the complexity of the action being
represented.

Additionally, we used k-means clustering to classify the features into k-distinct
clusters. This unsupervised learning technique allowed us to explore the natural
groupings of the features without prior knowledge of the class labels. The cluste-
ring results provided further insights into the similarity and dissimilarity among
the features extracted from different video frames.

These feature vectors were then subjected to K-Means clustering with the fol-
lowing parameters:

Number of Clusters: 1000, chosen to capture a wide range of caloric values.
Random State: 123, to ensure reproducibility of the results.

26 CAPITOLO 2. METHODOLOGY

Number of Initializations: 30, to ensure robust clustering by running the algori-
thm with different initial centroids and selecting the best output.
Maximum Iterations: 2000, to ensure convergence of the algorithm.

Each feature vector was assigned to one of the 1000 clusters, each cluster
representing a specific caloric value. The caloric value for each cluster was de-
termined by the centroid of the cluster. The estimated caloric value for each
feature vector (video) was compared to the ground truth caloric value. The mean
absolute error (MAE) was calculated. The resulting MAE for the K-Means clu-
stering approach was found to be 303.42, indicating the average deviation of the
estimated caloric values from the actual caloric values.

2.1.8 Estimating Hourly Energy Cost from Video Input

Given a video input, the objective of this study is to estimate the hourly energy
expenditure associated with the activity performed by the individual depicted in
the video. Importantly, the focus is on the intensity of the bodily activity rather
than its duration, aiming to infer the number of kilocalories burnt per hour.

Due to the continuous nature of the caloric values, regression-based losses,
such as the Euclidean L2 loss, would typically be appropriate for this task. Howe-
ver, it was observed that regression optimization tends to converge to a constant
value in this context, a phenomenon also noted in other multimodal problems.
To address this issue, the problem is reformulated as a multinomial classification
task with additional label softening.

To achieve this, each caloric value annotation, l, is binarized with a resolution
of 1 kcal within a specified range n ∈ [0, N], where N is set to 1000 kcal. To
retain certain regression properties, such as penalizing predictions that fall closer
to the ground-truth bin less severely, the labels are softened using a Gaussian
distribution with a given standard deviation σ (in this project, it is set to 5). For
each ground truth annotation l, the softened label is represented as a distribution
over N bins:

ls[n] =
1

σ
√

2π
exp(− (n − l)2

2σ2)

where ls denotes the soft label used for supervision. This method is directly
taken from [14]. Losses like Kullback-Leibler (KL) divergence, which measures

2.2. MODEL ARCHITECTURES 27

the distance between two distributions, are used between the ground truth and
predicted distributions, to guide the training process.

By converting the problem into a classification task with softened labels, this
approach leverages the strengths of both regression and classification methods,
enhancing the model’s ability to accurately estimate hourly energy expenditure
from video data.

2.2 Model Architectures

The task of estimating hourly energy expenditure from video inputs involves a
multi-step process utilizing advanced model architectures. In this study, founda-
tion models DINOv2 and CLIP are employed for feature extraction, followed by
specialized networks for calorie estimation.

2.2.1 Foundation Models for Feature Extraction

DINOv2 Model

As it is explained in [31], the DINOv2 architecture builds on the success of self-
supervised learning methods, combining elements from DINO, iBOT, and SwAV
to effectively learn visual representations without requiring labeled data. The
model utilizes a Vision Transformer (ViT) framework, which processes video fra-
mes by dividing each frame into patches and embedding these patches as input
tokens. Key components of the DINOv2 architecture include image-level and
patch-level objectives, where cross-entropy losses are computed between the fea-
tures extracted from a student and a teacher network. In the patch-level objec-
tives, the student network uses random masked tokens. At the same time, the
teacher processes visible tokens, and the loss functions are designed to ensure
the student learns robust features. Additionally, the architecture incorporates
the Sinkhorn-Knopp centering for better normalization, and the KoLeo regulari-
zer to ensure a uniform distribution of features within a batch. To handle high-
resolution training efficiently, DINOv2 employs techniques like sequence packing
and efficient stochastic depth, which optimize memory usage and computation
speed. These advancements make DINOv2 a powerful tool for capturing the spa-
tiotemporal dynamics in videos, crucial for tasks like estimating hourly energy
expenditure from video data.

28 CAPITOLO 2. METHODOLOGY

Figura 2.6: The structural diagram of DINOv2 model. Image reference: [41]

2.2. MODEL ARCHITECTURES 29

In this study, we use DINOv pre-trained model to extract features of videos.
we use the torch.hub.load function from the PyTorch library to load a pre-trained
model from this repository: facebookresearch/dinov2

CLIP model

Based on [28], CLIP (Contrastive Language-Image Pre-training) is an advanced
model architecture designed to learn visual concepts from natural language su-
pervision. It employs a dual-encoder structure comprising an image encoder and
a text encoder. The image encoder, either a CNN (ResNet-50) or a Vision Tran-
sformer (ViT), processes images to generate visual feature embeddings. Based
on a transformer model, the text encoder converts textual descriptions into cor-
responding embeddings. The core of CLIP’s training objective is to align these
image and text embeddings using a contrastive learning approach, where the
model learns to associate correct image-text pairs and distinguish mismatched
pairs through symmetric cross-entropy loss over cosine similarities. This enables
CLIP to perform zero-shot learning, where it can generalize to new visual classi-
fication tasks without additional task-specific training data. By leveraging a large
and diverse dataset of 400 million image-text pairs from the internet, CLIP learns
robust, transferable visual representations, significantly enhancing its generaliza-
tion capabilities across various tasks. To extract features from videos, we utilized

Figura 2.7: Diagram of the CLIP architecture showing the process of contrastive
pre-training (1), creating dataset classifiers from label text (2), and using the
model for zero-shot prediction (3). Image reference: [28]

the CLIP model by leveraging an open-source implementation available on Gi-

30 CAPITOLO 2. METHODOLOGY

tHub. The repository [42] provides the necessary tools and scripts to process
video data and extract meaningful features using the CLIP architecture. This
implementation facilitates the integration of natural language supervision into
the feature extraction process, enabling robust and generalized representations
of visual data.

2.2.2 Calorie Estimation Network

After extracting features using DINOv2 and CLIP, a neural network is used to
estimate the calorie expenditure. The network architecture is designed to handle
the extracted features and predict kilocalories burnt per hour.

In this architecture, we use MLP blocks. A Multi-Layer Perceptron (MLP) is
a class of feedforward artificial neural networks (ANN) that consists of at least
three layers of nodes: an input layer, one or more hidden layers, and an output
layer. Each node, or neuron, in one layer connects to every node in the next
layer, making MLPs fully connected networks. The primary advantage of MLPs
lies in their ability to model complex non-linear relationships through their use
of activation functions, such as ReLU (Rectified Linear Unit). This capability al-
lows MLPs to learn and approximate complex functions, making them highly
effective for a variety of tasks, including classification, regression, and feature ex-
traction. MLPs have been widely used due to their flexibility and effectiveness in
handling diverse types of data and problems. They are especially useful in sce-
narios where the relationship between input and output is not straightforward,
enabling the network to learn hierarchical representations of data. The effecti-
veness of MLPs is well-documented in various studies, highlighting their role in
advancing machine learning applications across different domains[43].

The architecture for calorie estimation consists of a Multi-Layer Perceptron
(MLP) is the main part of an Evaluator framework to estimate specific outcomes
such as calorie expenditure and activity classification. The MLP features a se-
ries of fully connected layers: the input layer processes the initial feature vectors,
followed by three hidden layers with sizes 1536 (feature size) to 256, 256 to 128,
and 128 to the output dimension, respectively. Each hidden layer is activated
using the ReLU function to introduce non-linearity, while the final layer’s output
is passed through a softmax function to generate probabilistic predictions. In the
Evaluator framework, each MLP block processes the feature vectors independen-
tly to produce the final output. This architecture enables robust and flexible mo-

2.3. LOSS FUNCTIONS 31

deling, capturing complex relationships within the data and facilitating accurate
predictions in diverse applications.

2.3 Loss Functions

Our study addresses two key tasks: action classification and calorie estimation,
each with distinct loss functions to optimize performance. For the action clas-
sification task, which involves 27 classes, we use cross-entropy loss to train the
model to accurately classify the actions depicted in the videos. This classification
task also serves an auxiliary role in supporting the calorie estimation task. Whi-
le we do not aim to estimate caloric expenditure based solely on action classes,
knowing the action class can significantly aid in more accurately determining the
calories burned, as different actions typically have varying caloric costs.

For the calorie estimation task, we convert continuous caloric values into di-
screte bins ranging from 0 to 1000 as explained in 2.1.8, resulting in 1000 output
classes from our network. We experiment with different loss functions to train
this part of the model: Kullback-Leibler (KL) divergence, Jensen-Shannon diver-
gence, and cross-entropy loss. These losses help the model learn a probability
distribution over the caloric bins, to estimate the caloric expenditure from the
video data accurately.

The primary training strategy involves using the sum of the losses from
both the action classification and calorie estimation tasks. This combined loss
approach ensures that the model learns to perform both tasks effectively.

2.3.1 Kullback-Leibler loss function

Kullback-Leibler (KL) divergence is a measure from information theory that
quantifies the difference between two probability distributions P and Q. Specifi-
cally, it measures how much information is lost when Q is used to approximate
P. Mathematically, it is defined as:

Dkl(P||Q) = − ∑
x∈X

P(x).log
Q(x)
P(x)

In our context, P represents the ground truth calorie distribution, and Q re-
presents the predicted calorie distribution.

32 CAPITOLO 2. METHODOLOGY

below are some of the advantages of this loss function:
Sensitivity to Differences: KL divergence is very sensitive to differences between
the predicted and actual distributions, which helps the model learn to make pre-
cise adjustments to predictions. This is particularly useful in applications like
speech source separation, as highlighted by [44].
Information Theoretic Basis: It provides a solid theoretical foundation for mea-
suring how one distribution diverges from another, making it a preferred choice
in many machine-learning applications.
Handling Probabilistic Outputs: KL divergence is particularly effective for ta-
sks involving probabilistic outputs, as it directly compares the full distributions
rather than just point estimates.

Some disadvantages could be effective in the training process:
Sensitivity to Zeroes: KL divergence can be problematic when the predicted di-
stribution contains zero probabilities, leading to undefined values. This requires
careful handling and smoothing of the distributions to avoid mathematical is-
sues.
Asymmetry: KL divergence is asymmetric, meaning Dkl(P||Q) ̸= Dkl(Q||P).
This can lead to biased learning if not properly managed, as discussed in [45].
Gradient Instability: The high sensitivity to differences can also lead to unstable
gradients during training, requiring careful tuning of the learning rate and other
hyperparameters.

2.3.2 Jensen-Shannon loss function

Jensen-Shannon (JS) divergence is a symmetrized and smoothed version of Kullback-
Leibler (KL) divergence. It measures the similarity between two probability di-
stributions by calculating the average KL divergence of each distribution to the
average distribution. Mathematically, JS divergence is defined as:

Djs(P, Q) =
1
2

Dkl(P||M) +
1
2

Dkl(Q, M)

where M = 1
2(P + Q) is the average distribution of P and Q. This divergence

provides a measure that is always finite and bounded, making it a practical choice
for many applications.

Some of the advantages are mentioned here:
Symmetry: Unlike KL divergence, JS divergence treats both distributions equally,

2.3. LOSS FUNCTIONS 33

which helps in avoiding the bias introduced by the asymmetry of KL divergence.
This ensures a balanced measure of divergence.
Stability: JS divergence is more stable than KL divergence, particularly when
dealing with distributions that have zero probabilities. The smoothing effect
of averaging the distributions mitigates issues related to undefined values and
instability.
Handling Noisy Labels: The JS divergence is effective in scenarios with noisy
labels, as it can provide a more robust measure compared to KL divergence,
making it useful in applications like learning with noisy labels as it is mentioned
in [46].

Some disadvantages are listed below:
Complexity: JS divergence is computationally more complex than KL divergen-
ce due to the additional step of calculating the average distribution. This can
increase the computational cost and complexity of the implementation.
Less Sensitivity: While stability is an advantage, it can also be a disadvantage
because JS divergence might be less sensitive to small differences between di-
stributions compared to KL divergence. This reduced sensitivity can sometimes
result in less precise adjustments during training.

2.3.3 Cross-Entropy Loss

Cross-entropy loss, also known as log loss, measures the performance of a clas-
sification model whose output is a probability value between 0 and 1. It quan-
tifies the difference between two probability distributions: the true distribution
(ground truth) and the predicted distribution. For a single instance, cross-entropy
is defined as:

Dcrossent(P||Q) = − ∑
x∈X

P(x).logQ(x)

where P is the true distribution, Q is the Predicted distribution, and x represents
the possible outcomes [47].

some of the advantages of this loss function are mentioned here:
Direct Interpretation: Cross-entropy loss directly measures how well the predic-
ted probabilities match the true labels, making it straightforward to interpret and
optimize. This is particularly useful for classification tasks where the goal is to
maximize the likelihood of the correct class.
Effective for Classification: It is highly effective for tasks involving multiple

34 CAPITOLO 2. METHODOLOGY

classes, as it penalizes incorrect predictions by considering the entire probability
distribution over all classes.
Gradient-Friendly: Cross-entropy loss provides smooth and well-behaved gra-
dients, which are essential for the efficient training of deep neural networks. This
makes it a popular choice for training models using gradient-based optimization
techniques.

It is needed to point out some of the disadvantages:
Non-Continuous Targets: Cross-entropy loss assumes discrete classes, which can
be limiting when dealing with continuous outputs, such as regression tasks. In
such cases, other loss functions like mean squared error (MSE) might be more
appropriate.
Gradient Vanishing/Exploding: Although generally gradient-friendly, cross-entropy
loss can still suffer from vanishing or exploding gradients in very deep networks,
particularly when the predictions are extremely confident but incorrect. This re-
quires careful tuning of learning rates and network initialization.
Sensetive to Noise: Cross-entropy loss can be sensitive to noisy labels, as in-
correct labels can disproportionately affect the loss, leading to poor generaliza-
tion. This necessitates techniques like label smoothing or robust loss functions to
mitigate the impact of noise.

2.4 Experimental Setup

In our experimental setup, we aim to evaluate the performance of our model
architecture in both classifying video actions and estimating caloric expenditure.
We utilize two foundation models, DINOv2 and CLIP, for feature extraction from
video frames. The dataset is divided into training, test, and cross-test sets. The
training set is used to optimize model parameters, the test set for evaluating
the performance, and the cross-test is used to study the ability of the model to
generalize to unseen categories.

The feature extraction process begins with preprocessing the video data, whe-
re each video is divided into frames and resized to 224x224 pixels. For DINOv2,
we apply a sequence of transformations including center cropping, and norma-
lization before feeding the frames into the model. CLIP, on the other hand, pro-
cesses the entire video directly to extract features.
These extracted features are then input into our Multi-Layer Perceptron (MLP)

2.4. EXPERIMENTAL SETUP 35

network, which consists of multiple fully connected layers activated by ReLU
functions and a final softmax layer for classification.

Our evaluation metrics include the accuracy of action classification and the
precision of calorie expenditure predictions. The action classification task invol-
ves categorizing each video into one of 27 predefined classes using cross-entropy
loss. The caloric estimation task treats the caloric values as continuous but bi-
narizes them into 1000 discrete bins, applying various losses to enhance training
effectiveness.

Additionally, data augmentation techniques such as Gaussian noise addition,
feature dropout, and rotating the video frames are employed to mitigate the
overfitting problem when it occurs. Regularization techniques such as L2 weight
decay are also applied to prevent overfitting and enhance the model’s robustness.

By carefully selecting and tuning these parameters and loss functions, we aim
to build a robust and accurate model capable of both classifying video actions
and estimating caloric expenditure. The integration of action classification as
a supporting task ensures that the model leverages the contextual information
from the action classes to enhance the precision of calorie estimation.

36 CAPITOLO 2. METHODOLOGY

Capitolo 3
Results

3.1 Evaluation Metrics

To evaluate the performance of our model, we adopt several metrics that pro-
vide a comprehensive assessment of both the accuracy and the quality of the
predictions. The metrics are similar to metrics used in [14].

1. Mean Absolute Error (MAE): This is our primary evaluation metric. MAE
measures the average magnitude of errors between the predicted values
and the ground truth, without considering their direction. It is defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi|

where yi represents the actual kilocalorie values for a video and ŷi represen-
ts the predicted kilocalorie values. To calculate it, we consider the argmax of
the output of the network. MAE is an intuitive and straightforward metric
that reports the mean discrepancy between the predictions and the ground
truth in the target units, which in this case are kilocalories. A lower MAE
indicates better predictive accuracy.

2. Spearman Rank Correlation (SPC): SPC evaluates the strength and direc-
tion of the monotonic relationship between the predicted and actual values.
It is defined as:

ρ = 1 −
6 ∑ d2

i
n(n2 − 1)

37

38 CAPITOLO 3. RESULTS

where di is the difference between the ranks of the actual and predicted
values, and n is the number of observations. SPC ranges from -1 to +1,
where +1 indicates a perfect positive monotonic relationship, -1 indicates
a perfect negative monotonic relationship, and 0 indicates no monotonic
relationship. While SPC is useful for understanding the association between
the predictions and the ground truth, it should be interpreted with caution
as it does not account for the scaling and shifting of the data. For example, if
the predictions consistently overestimate or underestimate the actual values
by the same amount, SPC will still show a high correlation. We use the
scipy.stats.spearmanr function from the SciPy library to calculate SPC.

3. Negative Log-Likelihood (NLL): NLL measures the quality of probabilistic
predictions by quantifying the likelihood of the ground truth labels given
the predicted probabilities. NLL is computed as:

NLL = −(ytruelog(ypred) + (1 − ytrue)log(1 − ytrue))

where ytrue is the Gaussian distribution made by the true calorie assigned to
the sample and the ypred is the predicted probability. Lower NLL values in-
dicate that the model assigns higher probabilities to the observed outcomes,
thus reflecting better model performance. NLL is particularly important in
contexts where the uncertainty of predictions needs to be quantified and
minimized.

By employing these metrics, we ensure a robust evaluation of our model’s
performance. MAE provides a direct measure of predictive accuracy, SPC of-
fers insights into the strength of the relationship between predictions and actual
values, and NLL evaluates the probabilistic quality of the predictions. Toge-
ther, these metrics allow us to comprehensively assess the effectiveness of our
approach in estimating caloric expenditure from video data.

3.2 Implementation Details

In this section, we detail the setup of our experiments, including the hardware
and software environments, the configuration of the models, and other relevant
aspects that were critical to the execution of our study.
Hardware and Software Our experiments were conducted using Google Colab
Pro with NVIDIA T4 GPUs. The primary software environment consisted of:

3.2. IMPLEMENTATION DETAILS 39

• Operating System: Ubuntu 20.04 LTS (within Google Colab environment)

• Programming Language: Python 3.8

• Deep Learning Framework: PyTorch 1.10

• Additional Libraries: NumPy, SciPy, OpenCV, torchvision, and others

The use of NVIDIA T4 GPUs enabled us to handle the computationally inten-
sive tasks of training deep neural networks, particularly with large-scale video
data.
Model Configuration We utilized two foundation models, DINOv2 and CLIP,
for feature extraction from video frames. The specific configurations for these
models were as follows:

• DINOv2: We used the dinov2_vits14 variant, which was loaded using
the torch.hub module from the facebookresearch/dinov2 repository. The
model was configured to output intermediate layers for feature extraction.

• CLIP: The CLIP model used was ViT-B/32, which was loaded using the
openai/clip repository. The model was configured to handle entire videos
without the need for pre-extraction of frames.

Training Configuration Our models were trained using the ADAM optimizer
with the following hyperparameters:

• Weight Decay: 1e-5

• Batch Size: 4

• Learning Rate: 1e-4

• Number of Epochs: 200 (and an additional run for 700 epochs)

These hyperparameters were chosen based on preliminary experiments and li-
terature recommendations to ensure effective convergence and generalization of
the models.

40 CAPITOLO 3. RESULTS

3.3 Results

In this section, we present the outcomes of our experiments, including detailed
analyses of the performance metrics, graphical representations of the results, and
comparisons of different training configurations and loss functions.

We conducted a series of experiments using various configurations and loss
functions, including Kullback-Leibler Divergence (KLD), Jensen-Shannon Diver-
gence (JSD), and Cross-Entropy (CE). Each model was trained for different epo-
chs and the performance was evaluated using key metrics: Mean Absolute Error
(MAE), Spearman Rank Correlation (SPC), and Negative Log-Likelihood (NLL).

3.3.1 feature extraction dimensions

Average over temporal features

The extracted features serve as inputs for our calorie estimation model. The
features extracted using the DINOv2 model have a dimension of 160 × 1536.
Here, 160 represents the temporal dimension corresponding to the video frames,
and 1536 is the feature dimension for each frame. The CLIP model provides
features with a dimension of number of frames × 512. For standardization, we
select 90 frames randomly, resulting in a feature dimension of 90 × 512.

To make the features compatible with the input requirements of the evaluator
for calorie estimation, which expects a feature vector of dimensions 1 × 1536 and
1 × 512, we computed the mean over the temporal dimension for both DINOv2
and CLIP features. This averaging operation reduces the feature dimensions to 1
× 1536 and 1 × 512, respectively.

Aggregation

Another way to reduce the frame number dimension to 1, is to design an aggre-
gation process using a series of convolutional and pooling layers. This process
ensures that the features are optimally prepared for input into the evaluator net-
work. The detailed steps of the aggregation process are as follows:
Convolutional Layers: The features are passed through a series of convolutional
layers. Each layer applies a convolution operation followed by a ReLU activation
function, which introduces non-linearity and helps in learning complex patterns
in the data.

3.3. RESULTS 41

Pooling Layers: After each convolutional layer, a pooling layer is applied to re-
duce the spatial dimensions of the feature maps. Pooling helps in reducing the
computational load and controlling overfitting by summarizing the presence of
features in patches of the feature map.
Fully Connected Layer: The final pooled feature maps are then passed through
a fully connected (fc) layer, which consolidates the features into a compact repre-
sentation suitable for the evaluator.

This aggregation process effectively reduces the dimensionality of the feature
vectors while preserving the essential information needed for accurate calorie
estimation. The resultant feature vectors are then fed into the evaluator network,
which predicts the caloric expenditure based on the processed features.

In summary, the combination of feature extraction using DINOv2 and CLIP,
followed by the designed aggregation process, ensures that the features are ap-
propriately scaled and transformed, making them suitable for accurate calorie
estimation. This structured approach not only enhances the efficiency of the mo-
del but also improves its performance in estimating the calories burned during
different activities.

3.3.2 CLIP

1. Kullback-Leibler Divergence (KLD) Loss Here there are some results for
training the network with KLD loss function for 200 epochs.

As we observe overfit in figure 3.1, we decide to tune the learning rate and
weigh decay to see the changes.

42 CAPITOLO 3. RESULTS

Figura 3.1: Training and validation loss trends for KLD over 200 epochs without
learning rate adjustment. The right plot shows the Mean Absolute Error (MAE)
trend during training.

change in learning rate and weight decay

- The learning rate is initially set to 1e-4 and here is reduced by a factor of
0.5 every 20 steps.

Figura 3.2: Training and validation loss trends for KLD over 200 epochs with
learning rate and weight decay adjustment. The right plot shows the MAE trend
during training.

3.3. RESULTS 43

- weight decay was set to 1e-4 and The learning rate was initially set to 1e-4
and was reduced by a factor of 0.5 every 20 steps.

Figura 3.3: Training and validation loss trends for KLD over 200 epochs with
learning rate and weight decay adjustment. The right plot shows the MAE trend
during training. The right plot shows the MAE trend during training.

Most of the tried configurations for weight decay and learning rate could
solve the overfit in the training process but it stops models from learning
enough.

2. Jensen-Shannon Divergence (JSD) Loss The next loss function we tried
was JSD; the result is below. The plot 3.4 shows the overfit after 40 epochs.

Figura 3.4: Training and validation loss trends for JSD over 200 epochs. The right
plot shows the Mean Absolute Error (MAE) trend during training.

44 CAPITOLO 3. RESULTS

3. Cross-Entropy (CE) Loss The Cross-Entropy is the third loss function, which
is shown below and the overfit is still observable.

Figura 3.5: Training and validation loss trends for CE over 200 epochs. The right
plot shows the Mean Absolute Error (MAE) trend during training.

In our experiments with features extracted from CLIP, we encountered si-
gnificant overfitting when applying Kullback-Leibler Divergence (KLD), Jensen-
Shannon Divergence (JSD), and Cross-Entropy (CE) loss functions. This overfit-
ting persisted despite various adjustments to the learning rate (LR) and weight
decay (WD). Initial attempts to tune these hyperparameters were met with limi-
ted success; reducing LR or increasing WD to mitigate overfitting resulted in the
model’s inability to learn effectively, suggesting that the adjustments either fai-
led to address the complexity of the features or overly constrained the learning
process. This outcome highlights the challenge of balancing regularization and
model capacity in scenarios where high-dimensional and complex features are
involved. These findings underline the necessity for more sophisticated regula-
rization techniques or alternative loss functions tailored to handle the intricacies
of features derived from advanced models like CLIP.

3.3. RESULTS 45

Augmentation

Feature Augmentation: To enhance our models’ robustness and generalization
capability, we applied a series of augmentation techniques at the feature level.
Given the initial training dataset comprising 2476 video samples, we implemen-
ted the following feature augmentation methods to increase the dataset size and
variability effectively, methods are explained in 2.1.6.

• Adding Gaussian Noise

• Feature Dropout

• Feature Scaling

• Random Shifts

By incorporating these augmentation methods, we aimed to address the over-
fitting issue and improve the model’s ability to generalize across different data
distributions and scenarios. We effectively quintupled the size of our training
dataset, increasing it from 2476 to 12380 samples. This substantial increase in
the dataset size is expected to improve the model’s performance by providing a
more diverse and comprehensive set of training examples, thereby enhancing its
ability to generalize to new, unseen data.

• Kullback-Leibler Divergence (KLD) Loss Here are some results for trai-
ning the network with KLD loss function for 200 epochs, after feature aug-
mentation with tuning the learning rate and weight decay. in both figures
3.6 and 3.7 we observe that the model could not learn enough.

- The learning rate is initially set to 1e-4 and is reduced by a factor of 0.5
with patience of 5 steps based on evaluation loss.

46 CAPITOLO 3. RESULTS

Figura 3.6: The changes of KLD loss function after Feature Augmentation over
200 epochs with learning rate and weight decay adjustment are shown in the left
plot, and the right plot shows the trend of MAE during training.

- weight decay is set to 1e-4 and the learning rate is initially set to 1e-4 and
is reduced by a factor of 0.5 with patience of 5 steps based on evaluation
loss.

Figura 3.7: The changes of KLD loss function after Feature Augmentation over
200 epochs with learning rate and weight decay adjustment are shown in the left
plot, and the right plot shows the trend of MAE during training.

3.3. RESULTS 47

Video Augmentation: We applied a series of augmentation techniques to
videos. following video augmentation methods are explained in 2.1.6.

• Random Horizontal Flip

• Random Rotation

• Color Jitter

By applying these augmentation techniques, we quadrupled the size of our
training dataset, increasing it from 2476 to 9904 samples.

• Kullback-Leibler Divergence (KLD) Loss Here there are some results for
the training of the network with KLD loss function for 200 and 700 epochs,
after video augmentation.

- The learning rate was initially set to 1e-4 and was reduced by a factor of
0.5 with patience of 5 steps based on evaluation loss.

Figura 3.8: The changes of KLD loss function after Video Augmentation over
200 epochs with learning rate and weight decay adjustment are shown in the left
plot, and the right plot shows the trend of MAE during training.

48 CAPITOLO 3. RESULTS

- The weight decay was set to 1e-4 and the learning rate was initially set to
1e-4 and was reduced by a factor of 0.5 with patience of 5 steps based on
evaluation loss.

Figura 3.9: The changes of KLD loss function after Video Augmentation over
200 epochs with learning rate and weight decay adjustment are shown in the left
plot, and the right plot shows the trend of MAE during training.

- The weight decay was set to 1e-3 and the learning rate was initially set to
1e-4 and was reduced by a factor of 0.5 with patience of 5 steps based on
evaluation loss.

Figura 3.10: The changes of KLD loss function after Video Augmentation over
200 epochs with learning rate and weight decay adjustment are shown in the left
plot, and the right plot shows the trend of MAE during training.

- The weight decay was set to 1e-3 and the learning rate was initially set to
1e-4 without decreasing factor.

3.3. RESULTS 49

Figura 3.11: The changes of KLD loss function after Video Augmentation over
200 epochs with learning rate and weight decay adjustment are shown in the left
plot, and the right plot shows the trend of MAE during training.

To address the persistent overfitting encountered with Kullback-Leibler Diver-
gence (KLD), we applied a combination of feature augmentation, video augmen-
tation, and careful adjustments to the learning rate (LR) and weight decay (WD).
Despite these strategies, the results did not improve significantly. The overfitting
remained evident or the model’s learning capacity was inhibited by the para-
meter adjustments. Feature augmentation techniques, including the addition of
Gaussian noise and feature dropout, were employed to enhance the robustness
of the features, while video augmentation aimed to increase the variability of the
training data. However, these measures failed to resolve the overfitting issue ef-
fectively. Adjustments to LR and WD were similarly unproductive; lowering the
LR or increasing WD to combat overfitting either failed to sufficiently regularize
the model or excessively constrained it, preventing effective learning.

50 CAPITOLO 3. RESULTS

3.3.3 CLIP + Aggregation

Below are the results of three loss functions, KLD, JSD, and CE with aggregation
on the features extracted by clip. In all three training processes, we observe huge
overfit.

1. Kullback-Leibler Divergence (KLD) Loss

Figura 3.12: Training and validation loss trends for KLD over 200 epochs with
aggregation layers applied. The right plot shows the MAE trend during training.

2. Jensen-Shannon Divergence (JSD) Loss

Figura 3.13: Training and validation loss trends for JSD over 200 epochs with
aggregation layers applied. The right plot shows the MAE trend during training.

3.3. RESULTS 51

3. Cross-Entropy (CE) Loss

Figura 3.14: Training and validation loss trends for CE over 200 epochs with
aggregation layers applied. The right plot shows the MAE trend during training.

In our efforts to enhance the training process, we experimented with repla-
cing getting mean over the temporal dimension with a more complex aggregation
technique, hoping it would improve learning across three different loss functions.
Despite this adjustment, the issue of overfitting persisted, leading me to reconsi-
der the suitability of CLIP for feature extraction in this context. I hypothesized
that CLIP’s powerful feature extraction capabilities might be too robust, poten-
tially overshadowing the nuances needed for accurate caloric estimation from
video data. This prompted me to explore an alternative approach by experi-
menting with DINOv2, a different foundation model, to see if it could provide a
better balance between feature richness and model generalizability.

52 CAPITOLO 3. RESULTS

3.3.4 DINOv2

Here are some results for training the network with different loss functions, KLD,
JSD, and CE for 200 and 700 epochs. For all, after 200 epochs they still can learn
therefore we continue to epoch 1000 but after epoch 700, the training process
became stable and there were no improvements.

1. Kullback-Leibler Divergence (KLD) Loss

Figura 3.15: Training and validation loss trends for KLD over 200 epochs for
DINOv2. The right plot shows the MAE trend during training.

Figura 3.16: Training and validation loss trends for KLD over 700 epochs for
DINOv2. The right plot shows the MAE trend during training.

3.3. RESULTS 53

2. Jensen-Shannon Divergence (JSD) Loss

Figura 3.17: Training and validation loss trends for JSD over 200 epochs for DI-
NOv2. The right plot shows the MAE trend during training.

Figura 3.18: Training and validation loss trends for JSD over 700 epochs for DI-
NOv2. The right plot shows the MAE trend during training.

54 CAPITOLO 3. RESULTS

3. Cross-Entropy (CE) Loss

Figura 3.19: Training and validation loss trends for CE over 200 epochs for DI-
NOv2. The right plot shows the MAE trend during training.

Figura 3.20: Training and validation loss trends for CE over 700 epochs for DI-
NOv2. The right plot shows the MAE trend during training.

3.3. RESULTS 55

Tabella 3.1: comparison between different configurations and loss functions
known Unknown

loss func epoch accuracy MAE correlation NLL MAE correlation NLL

KLD
200 22% 181 0.234 6.68 206 0.04 10.46
700 33% 154 0.239 6.52 256 0.04 11.23

JSD
200 21% 194 0.211 8.47 206 0.08 12.20
700 30% 169 0.151 10.31 263 0.12 13.21

CrossEnt
200 23% 179 0.234 6.68 211 0.03 10.45
700 34% 148 0.242 6.53 256 0.04 11.21

In the table 3.1, we compare all the evaluation metrics for known and unkno-
wn test sets.

In our experiments utilizing DINOv2 for feature extraction, we evaluated the
model’s performance across three different losses KLD, JSD, and CE. Each model
was initially trained for 200 epochs, during which they all demonstrated com-
mendable performance. To explore the potential for further improvement, we
extended the training up to 1,000 epochs. However, it became apparent that
after 700 epochs, there were diminishing returns in terms of performance en-
hancement, leading us to cap the training at 700 epochs. Interestingly, while
the Cross-Entropy loss function at 700 epochs yielded the lowest Mean Absolu-
te Error (MAE) of 148 for the known test set, it did not perform as well on the
unknown test set, which is critical for assessing the model’s ability to generalize.
Conversely, the KLD and JSD models trained for only 200 epochs outperformed
other configurations on the unknown test set. Notably, the KLD at 200 epochs
exhibited superior results in both the known and unknown MAE compared to
the JSD, making it the most effective in balancing performance across different
test scenarios. This suggests that while longer training durations might refine
certain metrics on familiar data, shorter training periods with strategically cho-
sen loss functions like KLD could better enhance overall model robustness and
generalization. Same as CLIP, we decided to observe the performance using
aggregation.

56 CAPITOLO 3. RESULTS

3.3.5 DINOv2 + Aggregation

We assumed that with aggregation we could have better training results in com-
parison with average over temporal features. we can see the result of training for
all loss functions for 200 and 700 epochs. In epoch 700 for all loss functions we
observed overfit, therefore tried to change the learning rate and weight decay to
solve it.

1. Kullback-Leibler Divergence (KLD) Loss

Figura 3.21: The left plot is training and validation loss trends for KLD over 200
epochs with aggregation layers for DINOv2. The right plot shows the MAE trend
during training.

Figura 3.22: The left plot is training and validation loss trends for KLD over 700
epochs with aggregation layers for DINOv2. The right plot shows the MAE trend
during training.

3.3. RESULTS 57

change in learning rate and weight decay

- weight decay is set to 1e-4. We still observe the overfit for this configura-
tion.

Figura 3.23: The left plot is training and validation loss trends for KLD over
700 epochs with aggregation layers and with learning rate and weight decay
adjustment for DINOv2. The right plot shows the MAE trend during training.

- weight decay is set to 1e-5 and the learning rate is initially set to 1e-4 and
is reduced by a factor of 0.5 with the patience of 5 steps based on evaluation
loss. We also set the stopper to stop the training before the evaluation loss
stops decreasing. For figure 3.24 the stopped epoch is 88.

58 CAPITOLO 3. RESULTS

Figura 3.24: The left plot is training and validation loss trends for KLD over
700 epochs with aggregation layers and with learning rate and weight decay
adjustment for DINOv2. The right plot shows the MAE trend during training.

- weight decay is set to 1e-5 and the learning rate is initially set to 1e-4
and is reduced by a factor of 0.5 with the patience of 10 steps based on
evaluation loss. For figure 3.25 the stopped epoch is 167.

Figura 3.25: The left plot is training and validation loss trends for KLD over
700 epochs with aggregation layers and with learning rate and weight decay
adjustment for DINOv2. The right plot shows the MAE trend during training.

- weight decay is set to 1e-5 and the learning rate was initially set to 1e-4
and was reduced by a factor of 0.5 with the patience of 15 steps based on
evaluation loss. For figure 3.26 the stopped epoch is 173.

3.3. RESULTS 59

Figura 3.26: The left plot is training and validation loss trends for KLD over
700 epochs with aggregation layers and with learning rate and weight decay
adjustment for DINOv2. The right plot shows the MAE trend during training.

2. Jensen-Shannon Divergence (JSD) Loss

Figura 3.27: The left plot is training and validation loss trends for JSD over 200
epochs with aggregation layers for DINOv2. The right plot shows the MAE trend
during training.

60 CAPITOLO 3. RESULTS

Figura 3.28: The left plot is training and validation loss trends for JSD over 700
epochs with aggregation layers for DINOv2. The right plot shows the MAE trend
during training.

- The training can continue to epoch 300 without overfit.

Figura 3.29: The left plot is training and validation loss trends for JSD over 300
epochs with aggregation layers for DINOv2. The right plot shows the MAE trend
during training.

3.3. RESULTS 61

change in learning rate and weight decay

- weight decay is set to 1e-5 and the learning rate is initially set to 1e-4
and is reduced by a factor of 0.5 with the patience of 15 steps based on
evaluation loss. For figure 3.30 the stopped epoch is 159.

Figura 3.30: The left plot shows training and validation loss trends for JSD over
700 epochs with aggregation layers and with learning rate and weight decay
adjustments. The right plot shows the MAE trend during training.

- weight decay is set to 1e-5 and the learning rate is initially set to 1e-4
and is reduced by a factor of 0.5 with the patience of 50 steps based on
evaluation loss. For figure 3.31 the stopped epoch is 223.

Figura 3.31: The left plot shows training and validation loss trends for JSD over
700 epochs with aggregation layers and with learning rate and weight decay
adjustments. The right plot shows the MAE trend during training.

62 CAPITOLO 3. RESULTS

3. Cross-Entropy (CE) Loss

Figura 3.32: The left plot is training and validation loss trends for CE over 200
epochs with aggregation layers for DINOv2. The right plot shows the MAE trend
during training.

Figura 3.33: The left plot is training and validation loss trends for CE over 700
epochs with aggregation layers and with learning rate and weight decay adjust-
ments. The right plot shows the MAE trend during training.

3.3. RESULTS 63

change in learning rate and weight decay

- weight decay is set to 1e-5 and the learning rate was initially set to 1e-4
and was reduced by a factor of 0.75 with the patience of 15 steps based on
evaluation loss. For figure 3.34 the stopped epoch is 187.

Figura 3.34: The left plot shows training and validation loss trends for CE over
700 epochs with aggregation layers and with learning rate and weight decay
adjustments. The right plot shows the MAE trend during training.

- weight decay is set to 1e-6 and the learning rate is initially set to 2e-4
and is reduced by a factor of 0.75 with the patience of 15 steps based on
evaluation loss. For figure 3.35 the stopped epoch is 98.

Figura 3.35: The left plot shows training and validation loss trends for CE over
700 epochs with aggregation layers and with learning rate and weight decay
adjustments. The right plot shows the MAE trend during training.

64 CAPITOLO 3. RESULTS

Tabella 3.2: comparison between different configurations and loss functions, after
implementing the aggregation.

Aggregation known Unknown
loss func epoch accuracy MAE correlation NLL MAE correlation NLL

KLD 200 28% 160 0.234 6.66 194 0.09 12.27

KLD
(WD+LR)

88 14% 203 0.230 6.76 204 0.03 10.094
167 25% 162 0.233 6.67 215 0.08 11.87
173 29% 155 0.233 6.73 228 0.09 12.63

JSD
200 21% 183 0.153 9.89 220 0.127 15.08
300 26% 178 0.113 11.44 218 0.117 16.38

JSD
(WD+LR)

159 20% 172 0.183 9.19 218 0.123 14.43
223 27% 160 0.171 10.40 211 0.102 13.19

CrossEnt 200 26% 164 0.233 6.63 241 0.08 11.89
CrossEnt
(WD+LR)

187 28% 162 0.228 6.41 218 0.09 11.71
98 27% 166 0.233 6.72 211 0.08 11.95

In table 3.2, we compare all the evaluation metrics for known and unknown
test sets for DINOv2+Aggregation.

Using aggregation for DINOv2, we tested all loss functions, finding that they
performed well at 200 epochs but exhibited overfitting by 700 epochs. Despite va-
rious attempts to mitigate overfitting by adjusting learning rates (LR) and weight
decay (WD), the DINOv2 model with KLD loss continued to overfit, with only
slight improvements. Therefore, we employed early stopping, and the results are
summarized in the table3.2. While the last configuration of KLD with WD and
LR adjustments yielded the best result in terms of known MAE, the KLD with
aggregation at 200 epochs showed the best MAE for the unknown test set. This
indicates that although some configurations performed better for known data,
early stopping at 200 epochs provided the best generalization for unknown data.

3.3. RESULTS 65

3.3.6 Optimizer Comparison for Best Configuration

To identify the most effective optimization strategy for the best training confi-
guration among DONOv2 3.3.4 and DINOv2+aggregation 3.3.5, we conducted
experiments using different optimizers. We focused on two configurations and
tested several optimizers. We chose the best configuration based on the MAE
for the unknown test which is the main objective of this thesis. For the DINOv2
part, Training with KLD loss function for 200 epochs and JSD loss function for
200 epochs have better result, and between these two the one with less MAE in
known class was chosen. For DINOv2+Aggregation we chose the one with KLD
loss function with the least Unknown MAE. Among all optimizers, RAdam and
RMSprop emerged as the most promising. Here, we provide a brief overview of
each optimizer and discuss their impact on the training process.

Rectified Adam (RAdam)

RAdam is an adaptive learning rate optimizer designed to address the slow con-
vergence and instability issues associated with the Adam optimizer, especially
in the early stages of training. RAdam combines the benefits of the adaptive
learning rate and the rectified (adaptive) steps, which help accelerate the conver-
gence and stabilize the training. Here we used the same learning rate (1e-4) and
weight decay (1e-5). Betas is set to (0.9, 0.999) and eps is equal to 1e-8.

DINOv2

Figura 3.36: The left plot shows training and validation loss trends for KLD over
200 epochs for RAdam optimizer. The right plot shows the MAE trend during
training.

66 CAPITOLO 3. RESULTS

DINOv2+Aggregation

Figura 3.37: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for RAdam optimizer. The right plot shows
the MAE trend during training.

Root Mean Square Propagation (RMSprop)

The second optimizer we tried is RMSprop. It is another adaptive learning rate
method designed to maintain a moving average of the square of gradients and
normalize the gradient step by this average. This helps in reducing the oscil-
lations and speeding up the convergence, especially useful for neural networks
and problems with noisy gradients. Here again, we used the same learning rate
(1e-4) and weight decay (1e-5). Alpha is set to 0.99, momentum is 0.9 and eps is
equal to 1e-08.

3.3. RESULTS 67

DINOv2

Figura 3.38: The left plot shows training and validation loss trends for KLD over
200 epochs for the RMSprop optimizer. The right plot shows the MAE trend
during training.

DINOv2+Aggregation

Figura 3.39: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RMSprop optimizer. The right plot
shows the MAE trend during training.

68 CAPITOLO 3. RESULTS

Tabella 3.3: comparison between different optimizers before and after implemen-
ting the aggregation.

known Unknown
optimizer accuracy MAE correlation NLL MAE correlation NLL

Adam
Adam+Agg

22% 181 0.234 6.68 206 0.04 10.46
28% 160 0.234 6.66 194 0.09 12.27

RAdam
RAdam+Agg

23% 187 0.233 6.67 211 0.04 10.51
29% 155 0.234 6.34 191 0.08 12.15

RMSprop
RMSprop+Agg

22% 198 0.236 6.65 201 0.03 10.44
26% 179 0.242 10.58 227 0.03 12.76

In table 3.3, we compare all the evaluation metrics for known and unknown test
sets for different optimizers. The configuration RAdam+Aggregation yielded the
lowest MAE of 191 for the unknown test set, demonstrating the importance of
fine-tuning optimizer parameters for enhanced model performance.

Fine tuning the parameters of RAdam
In our effort to optimize the RAdam parameters for enhancing model perfor-

mance, we adopted a systematic approach, where we sequentially adjusted in-
dividual hyperparameters while keeping others constant. This stepwise tuning
allowed us to identify the optimal configuration without exhaustively testing all
possible combinations, which would be computationally prohibitive. The initial
settings were as follows:

• learning rate: 1e-4

• weight decay: 1e-5

• betas: (0.9,0.999)

• epsilon: 1e-8

3.3. RESULTS 69

To determine the optimal learning rate, we tested three values: 1e-3, 1e-4, and
1e-5. Each learning rate was applied individually, and the model’s performance
was evaluated based on the improvement in Mean Absolute Error (MAE) and
the overall convergence of the training and validation loss curves. The learning
rate that yielded the best result in terms of minimizing MAE and ensuring stable
convergence was then selected as the baseline for the subsequent tuning of other
parameters. This stepwise approach allowed us to systematically optimize the
model’s hyperparameters, ensuring that each adjustment was based on the most
effective configuration identified in the previous step.

After establishing the optimal learning rate, we proceeded to adjust the weight
decay parameter to further fine-tune the model’s performance. We tested the
following values: 1e-4, 1e-5, and 1e-6. Each weight decay value was evaluated
for its impact on reducing overfitting and enhancing the model’s generalization
capabilities. The weight decay parameter that demonstrated superior results in
terms of lowering MAE and improving the stability of the validation loss was
selected for the next phase of tuning.

With the optimal learning rate and weight decay determined, we focused on
adjusting the beta parameters, which influence the momentum and variance in
the optimization process. We tested three configurations: betas=(0.85,0.995), be-
tas=(0.9,0.999), and betas=(0.98,0.9995). Each configuration was assessed based
on the model’s performance improvements and its ability to converge effectively.
The betas values that led to the best overall performance, characterized by the
lowest MAE and stable training dynamics, were chosen for the final parameter
adjustment.

Finally, the epsilon value, which controls numerical stability, was adjusted. We
tested the following values: 1e-7, 1e-8, 1e-9. The epsilon value that provided the
best results was identified and used in the final optimizer configuration.

The results from these experiments are shown below:

70 CAPITOLO 3. RESULTS

learning rate:1e-3 learning rate:1e-5

Figura 3.40: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
learning rate. The right plot shows the MAE trend during training.

Figura 3.41: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
learning rate. The right plot shows the MAE trend during training.

Since the training with learning rate = 1e-3 was observed as overfit, we just
compare the result of learning rate equal to 1e-4 and 1e-5. The MAE of unknown
test for the first one is 191 and for the second one is 238. Therefore we chose 1e-4
for the learning rate.

3.3. RESULTS 71

weight decay:1e-4

Figura 3.42: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
weight decay. The right plot shows the MAE trend during training.

weight decay:1e-6

Figura 3.43: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
weight decay. The right plot shows the MAE trend during training.

The MAE of the unknown test for weight decay of 1e-4, 1e-5, and 1e-6 are respec-
tively, 213,191,190. Therefore we chose 1e-6 for the weight decay.

72 CAPITOLO 3. RESULTS

Betas:(0.85,0.995)

Figura 3.44: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
betas. The right plot shows the MAE trend during training.

Betas:(0.98,0.9995)

Figura 3.45: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
betas. The right plot shows the MAE trend during training.

The MAE of the unknown test for betas (0.85,0.995),(0.9,0.999), and (0.98,0.9995)
are respectively, 199,190,242. Therefore we chose (0.9,0.999) for the weight decay.

3.3. RESULTS 73

epsilon:1e-7

Figura 3.46: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
epsilon. The right plot shows the MAE trend during training.

espsilon:1e-9

Figura 3.47: The left plot shows training and validation loss trends for KLD over
200 epochs with aggregation layers for the RAdam optimizer with changing the
epsilon. The right plot shows the MAE trend during training.

The MAE of the unknown test for betas 1e-7,1e-8, and 1e-9 are respectively,
206,190,200. Therefore we chose 1e-8 for the weight decay.

74 CAPITOLO 3. RESULTS

Tabella 3.4: Fine tuning the hyperparameters of RAdam

LR WD betas eps MAE known MAE unknown
1e-3
1e-4
1e-5

overfit overfit
1e-5 (0.9,0.999) 1e-8 155 191

220 238

1e-4
1e-4 172 213
1e-5 (0.9,0.999) 1e-8 155 191
1e-6 153 190

1e-4
(0.85,0.995) 172 199

1e-6 (0.9,0.999) 1e-8 153 190
(0.98,0.9995) 160 242

1e-7 154 206
1e-4 1e-6 (0.9,0.999) 1e-8 153 190

1e-9 149 200

3.3. RESULTS 75

Augmentation

Feature Augmentation: For the best configuration we have had in the last step,
we decided to apply the same feature augmentation here as well, but there is an
overfit in the result.

Figura 3.48: The left plot shows training and validation loss trends for KLD
over 200 epochs with aggregation layers for the RAdam optimizer with data
Augmentation. The right plot shows the MAE trend during training.

We also tried to use less variant in noise and drop out (gaussian noise with
mean = 0 and std = 0.02 and drop out rate = 0.05). We again observe the overfit.

Figura 3.49: The left plot shows training and validation loss trends for KLD
over 200 epochs with aggregation layers for the RAdam optimizer with data
Augmentation. The right plot shows the MAE trend during training.

In our study, overfitting was observed following feature-level data augmenta-
tion, despite the absence of overfitting in the original dataset. This phenomenon

76 CAPITOLO 3. RESULTS

can be attributed to several factors. First, the augmentation techniques may have
introduced unrealistic variations or noise into the feature space, which the model
overfitted rather than learning robust, generalizable patterns. Additionally, over-
augmentation or the use of techniques that do not align well with the inherent
characteristics of the features might have shifted the data distribution, making
the augmented features less representative of the original dataset. This can lead
the model to learn features specific to the augmented data, reducing its genera-
lization ability to unseen data. Finally, the regularization parameters optimized
for the original data might have been insufficient for the augmented dataset, exa-
cerbating overfitting. Consequently, while augmentation aims to enhance gene-
ralization, the inappropriate implementation or choice of augmentation methods
can instead introduce overfitting.

Distribution of Predicted vs. Ground Truth Caloric Values

To assess the performance of our model in predicting caloric values, we com-
pared the predicted distributions with the ground truth distributions for both
known and unknown test sets. The figures below show these comparisons under
different configurations and optimizers.

Figure 3.50 (a) and (b) represent the distribution plots for the known and un-
known test results respectively, using the Adam optimizer without any learning
rate and weight decay adjustments. The blue line represents the predicted di-
stribution, while the orange line represents the ground truth distribution. These
initial attempts indicate that there is a discrepancy between the predicted and
actual caloric values, especially evident in the divergence of the blue and orange
lines.

Figure 3.50 (c) and (d) illustrate the results of using the RAdam optimizer
with the best configuration for hyperparameters, including a KLD loss function
over 200 epochs with aggregation. In these plots, we observe a significant im-
provement in the alignment between the predicted (blue line) and ground truth
(orange line) distributions. This indicates that the RAdam optimizer with the
selected hyperparameters provides a more accurate prediction of caloric values
compared to the Adam optimizer without adjustments.

3.3. RESULTS 77

Figura 3.50: (a) distribution plots for the known test, (b) distribution plots for
the unknown test, both using the Adam optimizer without any learning rate and
weight decay adjustments, (c) distribution plots for the known test, (d) distri-
bution plots for the unknown test, using the RAdam optimizer with the best
configuration for hyperparameters.

78 CAPITOLO 3. RESULTS

Capitolo 4
Discussion and Conclusion

4.1 Discussion

The primary objective of this thesis was to develop an advanced, accurate, and
generalizable model for estimating caloric expenditure from video data, leve-
raging pre-trained foundation models, and exploring various loss functions to
enhance model performance. Our experiments provided valuable insights into
the complexities and challenges associated with this task.

4.1.1 Challenges with CLIP Features

In our initial experiments using features extracted from the CLIP model, we en-
countered significant overfitting across all loss functions (KLD, JSD, and CE).
Even with careful changes to the learning rate and weight decay, overfitting con-
tinued. This suggests that CLIP’s strong feature extraction might be too power-
ful, hiding the subtle details needed for accurate caloric estimation from video
data. These findings highlighted the necessity for more sophisticated regulariza-
tion techniques or alternative loss functions tailored to handle the intricacies of
features derived from advanced models like CLIP.

Efforts to Mitigate Overfitting

To address the persistent overfitting, we implemented a combination of featu-
re augmentation, video augmentation, and further tuning of learning rate and

79

80 CAPITOLO 4. DISCUSSION AND CONCLUSION

weight decay. Feature augmentation techniques, including the addition of Gaus-
sian noise and feature dropout, aimed to enhance feature robustness, while vi-
deo augmentation increased training data variability. However, these strategies
failed to resolve the overfitting effectively. Adjustments to learning rate and
weight decay were similarly unproductive; either failing to regularize the model
sufficiently or overly constraining it, preventing effective learning.

4.1.2 Exploring DINOv2

We then explored using DINOv2 for feature extraction, evaluating the model’s
performance across KLD, JSD, and CE loss functions. Initial training for 200 and
700 epochs demonstrated commendable performance across all models. While
the Cross-Entropy loss function yielded the lowest MAE for the known test set at
700 epochs, it did not generalize well to the unknown test set. Conversely, KLD
and JSD losses at 200 epochs outperformed others on the unknown test set, with
KLD showing superior results in both known and unknown MAE.

Aggregation and Overfitting

Using aggregation for DINOv2, we observed that models performed well at 200
epochs but overfitting persisted for 700 epochs. Despite various learning rate
and weight decay adjustments, overfitting continued, though with slight impro-
vements. We employed early stopping, which provided better generalization for
unknown data, as summarized in Table 3.2. While KLD with aggregation at
200 epochs yielded the best MAE for the unknown test set, configurations with
higher epochs often overfitted.

4.1.3 Optimization Strategies

We identified RAdam and RMSprop as the most promising optimizers for the
best training configuration among DINOv2 and DINOv2+aggregation. The con-
figuration using RAdam with aggregation yielded the lowest MAE of 191 for the
unknown test set, highlighting the importance of fine-tuning optimizer parame-
ters for enhanced model performance.

4.1. DISCUSSION 81

Parameter Tuning for RAdam

To optimize RAdam parameters, we systematically adjusted individual hyper-
parameters. This approach, focusing on learning rate, weight decay, betas, and
epsilon values, enabled us to identify an optimal configuration without exhau-
stively testing all combinations. Despite the refined parameter settings, overfit-
ting persisted when feature augmentation was applied, indicating the need for
further research into more effective augmentation strategies and regularization
techniques.

Performance Assessment

To assess model performance, we compared the predicted distributions with
ground truth distributions for both known and unknown test sets. Figures 3.50(a)
and 3.50(b) illustrate the discrepancies between predicted and actual values using
Adam optimizer without adjustments. In contrast, Figures 3.50(c) and 3.50(d)
demonstrate significant improvement using RAdam with the best configuration,
indicating a more accurate prediction of caloric values.

82 CAPITOLO 4. DISCUSSION AND CONCLUSION

4.2 Conclusion

This thesis underscores the challenges of estimating caloric expenditure from
video data, highlighting the limitations of traditional methods and the poten-
tial of foundation models. Despite the robust feature extraction capabilities of
models like CLIP and DINOv2, overfitting remains a critical issue, necessitating
sophisticated regularization techniques and tailored loss functions.

Our experiments demonstrated that while foundation models provide a solid
starting point, achieving optimal performance requires careful tuning of hyper-
parameters, effective augmentation strategies, and the use of advanced optimi-
zers. The promising results with RAdam optimizer and early stopping suggest a
path forward for future research.

In conclusion, this work advances the understanding of video-based caloric
expenditure estimation, offering valuable insights and practical methodologies
for developing more accurate and generalizable models. Future research should
continue exploring novel regularization techniques, diverse datasets, and inno-
vative model architectures to further enhance the accuracy and applicability of
these models in real-world scenarios.

Bibliography

[1] Di Wu, Nabin Sharma, and Michael Blumenstein. “Recent advances in
video-based human action recognition using deep learning: A review”. In:
2017 International Joint Conference on Neural Networks (IJCNN) (2017).

[2] Hieu H. Pham et al. “Video-based Human Action Recognition using Deep
Learning: A Review”. In: arXiv:2208.03775 (2022).

[3] Zehua Sun et al. “Human Action Recognition From Various Data Mo-
dalities: A Review”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 45.3 (2023), pp. 3200–3225. doi: 10.1109/TPAMI.2022.3183112.

[4] H. Lee, R Grosse R.and Ranganath, and A. Y. Ng. “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations”. In: ICML, pp. 609–616 (2009).

[5] Thippa Reddy Gadekallu et al. “Hand gesture recognition based on a Har-
ris Hawks optimized Convolution Neural Network”. In: Computers and
Electrical Engineering (2022).

[6] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset. 2018. arXiv: 1705.07750 [cs.CV].

[7] Arman J. Paydarfar, Antonio Prado, and Sunil K. Agrawal. “Human Activi-
ty Recognition Using Recurrent Neural Network Classifiers on Raw Signals
from Insole Piezoresistors”. In: 2020 8th IEEE RAS/EMBS International Con-
ference for Biomedical Robotics and Biomechatronics (BioRob). 2020, pp. 916–921.
doi: 10.1109/BioRob49111.2020.9224311.

83

https://doi.org/10.1109/TPAMI.2022.3183112
https://arxiv.org/abs/1705.07750
https://doi.org/10.1109/BioRob49111.2020.9224311

84 BIBLIOGRAPHY

[8] Schalk Wilhelm Pienaar and Reza Malekian. “Human Activity Recognition
using LSTM-RNN Deep Neural Network Architecture”. In: 2019 IEEE 2nd
Wireless Africa Conference (WAC). 2019, pp. 1–5. doi: 10.1109/AFRICA.2019.
8843403.

[9] Siqi Liu, Nan Wu, and Haifeng Jin. “Human Action Recognition Based
on Attention Mechanism and HRNet”. In: Proceeding of 2021 International
Conference on Wireless Communications, Networking and Applications. Ed. by
Zhihong Qian, M.A. Jabbar, and Xiaolong Li. Singapore: Springer Nature
Singapore, 2022, pp. 279–291. isbn: 978-981-19-2456-9.

[10] Sannara Ek, François Portet, and Philippe Lalanda. “Transformer-based
models to deal with heterogeneous environments in Human Activity Reco-
gnition”. In: Personal and Ubiquitous Computing 27.6 (Nov. 2023), pp. 2267–
2280. issn: 1617-4917. doi: 10.1007/s00779- 023- 01776- 3. url: http:
//dx.doi.org/10.1007/s00779-023-01776-3.

[11] Will Kay et al. The Kinetics Human Action Video Dataset. 2017. arXiv: 1705.
06950 [cs.CV].

[12] Fabian Caba Heilbron et al. “ActivityNet: A large-scale video benchmark
for human activity understanding”. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015, pp. 961–970. doi: 10.1109/
CVPR.2015.7298698.

[13] Alina Roitberg et al. Uncertainty-sensitive Activity Recognition: a Reliability
Benchmark and the CARING Models. 2021. arXiv: 2101.00468 [cs.CV].

[14] Kunyu Peng et al. Should I take a walk? Estimating Energy Expenditure from
Video Data. 2022. arXiv: 2202.00712 [cs.CV].

[15] Fahd Albinali et al. “Using wearable activity type detection to improve
physical activity energy expenditure estimation”. In: UbiComp (2010).

[16] Onur Barut, Li Zhou, and Yan Luo. “Multitask LSTM model for human
activity recognition and intensity estimation using wearable sensor data”.
In: EEE Internet of Things Journal (2020).

[17] Mathias Hedegaard et al. “Prediction of energy expenditure during activi-
ties of daily living by a wearable set of inertial sensors”.

[18] Bradley Kendall, Bryanne Bellovary, and Neha P. Gothe. “Validity of weara-
ble activity monitors for tracking steps and estimating energy expenditure
during a graded maximal treadmill test”. In: Journal of Sports Sciences (2019).

https://doi.org/10.1109/AFRICA.2019.8843403
https://doi.org/10.1109/AFRICA.2019.8843403
https://doi.org/10.1007/s00779-023-01776-3
http://dx.doi.org/10.1007/s00779-023-01776-3
http://dx.doi.org/10.1007/s00779-023-01776-3
https://arxiv.org/abs/1705.06950
https://arxiv.org/abs/1705.06950
https://doi.org/10.1109/CVPR.2015.7298698
https://doi.org/10.1109/CVPR.2015.7298698
https://arxiv.org/abs/2101.00468
https://arxiv.org/abs/2202.00712

BIBLIOGRAPHY 85

[19] Gunnar Farnebäck. “Two-Frame Motion Estimation Based on Polynomial
Expansion”. In: vol. 2749. June 2003, pp. 363–370. isbn: 978-3-540-40601-3.
doi: 10.1007/3-540-45103-X_50.

[20] John Barron, David Fleet, and S. Beauchemin. “Performance Of Optical
Flow Techniques”. In: International Journal of Computer Vision 12 (Feb. 1994),
pp. 43–77. doi: 10.1007/BF01420984.

[21] Lijuan Zhou et al. Human Pose-based Estimation, Tracking and Action Reco-
gnition with Deep Learning: A Survey. 2023. arXiv: 2310.13039 [id=’cs.CV’
fullname =′ ComputerVisionandPatternRecognition′isactive = Truealtname =
Noneinarchive =′ cs′isgeneral = Falsedescription =′ Coversimageprocessing, computervision, patternrecognition, andsceneunderstanding.RoughlyincludesmaterialinACMSubjectClassesI.2.10, I.4, andI.5.′].

[22] Zhe Cao et al. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields. 2019. arXiv: 1812.08008 [cs.CV].

[23] Hao-Shu Fang et al. AlphaPose: Whole-Body Regional Multi-Person Pose Esti-
mation and Tracking in Real-Time. 2022. arXiv: 2211.03375 [cs.CV].

[24] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 32 (Jan. 2018). doi: 10.1609/
aaai.v32i1.12328.

[25] Zihan Wang et al. Deep Neural Networks in Video Human Action Recognition:
A Review. 2023. arXiv: 2305.15692 [cs.CV].

[26] Georgia Gkioxari et al. R-CNNs for Pose Estimation and Action Detection.
2014. arXiv: 1406.5212 [cs.CV].

[27] Mathilde Caron et al. Emerging Properties in Self-Supervised Vision Transfor-
mers. 2021. arXiv: 2104.14294 [cs.CV].

[28] Alec Radford et al. Learning Transferable Visual Models From Natural Language
Supervision. 2021. arXiv: 2103.00020 [cs.CV].

[29] Johannes Schneider, Christian Meske, and Pauline Kuss. “Foundation Mo-
dels”. In: Business Information Systems Engineering 66 (Jan. 2024), pp. 1–11.
doi: 10.1007/s12599-024-00851-0.

https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/BF01420984
https://arxiv.org/abs/2310.13039
https://arxiv.org/abs/2310.13039
https://arxiv.org/abs/2310.13039
https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/2211.03375
https://doi.org/10.1609/aaai.v32i1.12328
https://doi.org/10.1609/aaai.v32i1.12328
https://arxiv.org/abs/2305.15692
https://arxiv.org/abs/1406.5212
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2103.00020
https://doi.org/10.1007/s12599-024-00851-0

86 BIBLIOGRAPHY

[30] Liuqing Chen, Lingyun Sun, and Ji Han. “A Comparison Study of Human
and Machine-Generated Creativity”. In: Journal of Computing and Informa-
tion Science in Engineering 23.5 (Apr. 2023), p. 051012. issn: 1530-9827. doi:
10.1115/1.4062232. eprint: https://asmedigitalcollection.asme.org/
computingengineering/article-pdf/23/5/051012/7001808/jcise_23\
_5_051012.pdf. url: https://doi.org/10.1115/1.4062232.

[31] Maxime Oquab et al. DINOv2: Learning Robust Visual Features without Su-
pervision. 2024. arXiv: 2304.07193 [cs.CV].

[32] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A
Dataset of 101 Human Actions Classes From Videos in The Wild. 2012. arXiv:
1212.0402 [cs.CV].

[33] Hilde Kuehne et al. “HMDB51: A Large Video Database for Human Motion
Recognition”. In: Nov. 2011, pp. 2556–2563. isbn: 978-3-642-33373-6. doi:
10.1109/ICCV.2011.6126543.

[34] Barbara E. Ainsworth et al. “2011 Compendium of Physical Activities: A
Second Update of Codes and MET Values”. In: Medicine and Science in Sports
and Exercise (2011).

[35] Hao-Shu Fang et al. RMPE: Regional Multi-person Pose Estimation. 2018.
arXiv: 1612.00137 [cs.CV].

[36] Jiefeng Li et al. CrowdPose: Efficient Crowded Scenes Pose Estimation and A
New Benchmark. 2019. arXiv: 1812.00324 [cs.CV].

[37] Yuliang Xiu et al. Pose Flow: Efficient Online Pose Tracking. 2018. arXiv: 1802.
00977 [cs.CV].

[38] Pei-Fu Tsou and Chao-Cheng Wu. “Estimation of Calories Consumption
for Aerobics Using Kinect Based Skeleton Tracking”. In: 2015 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (2015), pp. 1221–1226.
url: https://api.semanticscholar.org/CorpusID:27479384.

[39] Terrance DeVries and Graham W. Taylor. Improved Regularization of Convo-
lutional Neural Networks with Cutout. 2017. arXiv: 1708.04552 [cs.CV].

[40] Deepak Pathak et al. Context Encoders: Feature Learning by Inpainting. 2016.
arXiv: 1604.07379 [cs.CV].

[41] Gaoshuang Huang et al. DINO-Mix: Enhancing Visual Place Recognition with
Foundational Vision Model and Feature Mixing. 2023. arXiv: 2311.00230 [cs.CV].

https://doi.org/10.1115/1.4062232
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/23/5/051012/7001808/jcise_23_5_051012.pdf
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/23/5/051012/7001808/jcise_23_5_051012.pdf
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/23/5/051012/7001808/jcise_23_5_051012.pdf
https://doi.org/10.1115/1.4062232
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/1212.0402
https://doi.org/10.1109/ICCV.2011.6126543
https://arxiv.org/abs/1612.00137
https://arxiv.org/abs/1812.00324
https://arxiv.org/abs/1802.00977
https://arxiv.org/abs/1802.00977
https://api.semanticscholar.org/CorpusID:27479384
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1604.07379
https://arxiv.org/abs/2311.00230

BIBLIOGRAPHY 87

[42] Igor Iashin. Video Features. https://github.com/v-iashin/video_features.
Accessed: 2024-06-10. 2021.

[43] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer fee-
dforward networks are universal approximators”. In: Neural Networks 2.5
(1989), pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.1016/
0893-6080(89)90020-8. url: https://www.sciencedirect.com/science/
article/pii/0893608089900208.

[44] Masahito Togami et al. “Unsupervised Training for Deep Speech Sour-
ce Separation with Kullback-Leibler Divergence Based Probabilistic Loss
Function”. In: ICASSP 2020 - 2020 IEEE International Conference on Acou-
stics, Speech and Signal Processing (ICASSP). 2020, pp. 56–60. doi: 10.1109/
ICASSP40776.2020.9054171.

[45] Taehyeon Kim et al. Comparing Kullback-Leibler Divergence and Mean Squared
Error Loss in Knowledge Distillation. 2021. arXiv: 2105.08919 [cs.LG].

[46] Erik Englesson and Hossein Azizpour. “Generalized Jensen-Shannon Di-
vergence Loss for Learning with Noisy Labels”. In: Advances in Neural In-
formation Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran As-
sociates, Inc., 2021, pp. 30284–30297. url: https://proceedings.neurips.
cc/paper_files/paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-
Paper.pdf.

[47] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Net-
works. 2017. arXiv: 1706.05098 [cs.LG].

https://github.com/v-iashin/video_features
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1109/ICASSP40776.2020.9054171
https://doi.org/10.1109/ICASSP40776.2020.9054171
https://arxiv.org/abs/2105.08919
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-Paper.pdf
https://arxiv.org/abs/1706.05098

88 BIBLIOGRAPHY

Acknowledgements

I would like to express my deepest gratitude to everyone who supported me th-
roughout this thesis journey.
First and foremost, I am profoundly grateful to Professor Roitberg at the Uni-
versity of Stuttgart for her invaluable guidance, support, and mentorship during
my internship and the completion of this thesis. Her expertise and insights have
been instrumental in shaping this work.
I would also like to thank the faculty at the University of Padova for providing
me with a solid academic foundation throughout my master’s program. Special
thanks go to my academic advisor at the University of Padova, Professor Zanetti,
whose encouragement and feedback have been greatly appreciated.
A heartfelt thank you to my colleagues at the University of Padova, who have
provided me with not only academic support but also friendship and encoura-
gement during this journey.

89

	Introduction
	Review of related research
	Human Action Detection
	Caloric Expenditure Estimation
	Use of Neural Networks in Video Analysis
	Foundation models

	The purpose of thesis

	Methodology
	Data
	Datasets Overview
	Data Collection and Annotation
	Data Statistics
	Visualizations
	Data Preprocessing
	Augmentation
	t-SNE and K-means Clustering Analysis
	Estimating Hourly Energy Cost from Video Input

	Model Architectures
	Foundation Models for Feature Extraction
	Calorie Estimation Network

	Loss Functions
	Kullback-Leibler loss function
	Jensen-Shannon loss function
	Cross-Entropy Loss

	Experimental Setup

	Results
	Evaluation Metrics
	Implementation Details
	Results
	feature extraction dimensions
	CLIP
	CLIP + Aggregation
	DINOv2
	DINOv2 + Aggregation
	Optimizer Comparison for Best Configuration

	Discussion and Conclusion
	Discussion
	Challenges with CLIP Features
	Exploring DINOv2
	Optimization Strategies

	Conclusion

	Acknowledgements

