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Introduction 

 

The following thesis deals with the prediction of the failure of a company through the analysis 

of the income statements and the balance sheets in the years before the bankruptcy. In particular, 

the models used in this thesis are based on the data taken from the firms’ annual report. 

The so named accounting-based models will predict whether a certain company, taken from a 

sample of small and medium firms from Padova and Vicenza, will fail in the following years. 

In the first chapter it is provided a definition of bankruptcy and the consequences of laggard 

firms in the market; in the second chapter before are presented all the most used kinds of 

bankruptcy prediction models (the Altman Z’, Z’’ and ZETA models, Ohlson model and the 

Beaver, as well as the ratios proposed by the italian order of Chartered Accountants and 

Accounting Expert. Going forward, in the third chapter all the above mentioned literature 

models are tested. In the fourth chapter a new accounting-based model will be created and will 

be tested as well and then compared with the literature models, to understand which one is more 

accurate in the bankruptcy prediction of this thesis sample. Finally, in the fifth chapter, also the 

model proposed by the by the italian order of Chartered Accountants and Accounting Expert 

will be tested. 
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1. CHAPTER ONE 

 

Why should we predict firm’s bankruptcy? 

 

1.1 Definition of bankruptcy 

 

According to Business dictionary, bankruptcy is the “Legal procedure for liquidating a business 

(or property owned by an individual) which cannot fully pay its debts out of its current assets. 

Bankruptcy can be brought upon itself by an insolvent debtor (called 'voluntary bankruptcy') or 

it can be forced on court orders issued on creditors' petition (called 'involuntary bankruptcy'). 

Two major objectives of a bankruptcy are (1) fair settlement of the legal claims of the creditors 

through an equitable distribution of debtor's assets, and (2) to provide the debtor an opportunity 

for fresh start.” 

As it is mentioned above, understanding whether a firm will fail, is important from the point of 

view of: 

• The current creditors because they have to take into account that they can lose a part of 

the money borrowed to the lender; 

• The potential lenders because they have to consider if they should lend money to the 

borrowers, which collaterals they should require, if they should increase the interest 

rate, etc. 

• The shareholders, because they are the ones that are going to lose money first in the case 

of company failure and they are those that can appoint new managers if the actual ones 

are not working correctly; 

• The managers/entrepreneurs, because they can create a recovery plan to go out from a 

negative situation. Indeed, according with Jensen (1989) and Whitaker (1999), a 

financial distress situation forces management to implement a series of actions aimed at 

improving the firm’s overall performance. This is true when the poor management 

performance is the cause of the difficult firm situation and, in the sample of Whitaker, 

this is the only factor that leads to the crisis in the 39.3% of the times and it is 

accompanied by the economic distress in the 37.5 of the times. On the other side, when 

the economic distress or other reasons are the only reason of the financial distress, the 

considerations written above are not valid. 
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As intuitively the reader can get, when the firm faces bankruptcy, it is too late. The managers 

should detect the signals of a potential bankruptcy before, just when the company starts being 

in a financial distress situation. This last three words represent “[…] a condition in which a 

company or individual cannot generate revenue or income because it is unable to meet or cannot 

pay its financial obligations. This is generally due to high fixed costs, illiquid assets, or revenues 

sensitive to economic downturns.” (Kenton, 2019). From an accounting point of view, it is the 

inability of the company to repay the creditors (supplier or lenders, for example) with its 

operating performance. If this happens just one year, the company will face just a small crisis 

moment, if it persists, it can lead to the bankruptcy. 

 

 

1.2 Zombie firms 

 

Not only the above-mentioned categories but also the regulators have advantages in predicting 

the failure of a company. Lagging companies can damage the market and the regulators must 

detect them in order to improve the efficiency of the competitive environment. 

Lagging and close to bankruptcy firms will be also called henceforth “zombie firms”. They 

can be classified as zombies “whether they are receiving subsidized credit. […] If instead we 

were to define zombies based on their operating characteristics, then almost by definition 

industries dominated by zombie firms would have low profitability, and likely also have low 

growth.” (Caballero, et al., 2008) Similar definition were provided in other researches in this 

same fields, like “In economic terms, a zombie is a firm that is not viable and therefore, when 

competitive forces are at play, should be compelled to exit the market or, where feasible, 

restructure.” (Fontoura Gouveia & Osterhold, 2018). The state of Korea classifies a firm as 

zombie if the operating income is lower than the interest expenses. According to Storz, et al. 

(2017), a firm is classified as a zombie if, for two years in a row, the firm performs a negative 

ROA, a negative net investment and EBITDA to total financial debt lower than 5%. 

An interesting finding in Portugal was that “Zombie firms are on average larger companies 

and significantly less productive than their healthy counterparts, pushing labor productivity 

down.” (Fontoura Gouveia & Osterhold, 2018) Moreover, in that country 1 worker out of 5 is 

employed in a zombie firm. 

“The zombies’ distortions came in many ways, including depressing market prices for their 

products, raising market wages by hanging on to the workers whose productivity at the current 

firms declined, and, more generally, congesting the markets where they participated. 

Effectively, the growing government liability that came from guaranteeing the deposits of banks 
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that supported the zombies served as a very inefficient program to sustain employment. Thus, 

the normal competitive outcome whereby the zombies would shed workers and lose market 

share was thwarted. More importantly, the low prices and high wages reduce the profits and 

collateral that new and more productive firms could generate, thereby discouraging their entry 

and investment. Therefore, even solvent banks saw no particularly good lending opportunities 

in Japan.” (Caballero, et al., 2008) Moreover, the average zombie firm, according with Adalet 

McGowan, et al. (2017) “inflates wages relative to productivity and depresses market prices 

and (non-zombie) market shares”. 

Their negative influence damages the market especially in the difficult moments, when a 

recovery is needed but it is depressed by the zombie firms. Indeed, when a shock hits the 

economy or a part of it, the sectors that have zombie firms are the ones fall more and from the 

point of view of the granting of credit, the collateral values are likely to be lower (also for the 

firms considered “healthy”). 

Moreover, “increases in percentages of zombie firms operating in an industry significantly 

reduce both investment and employment growth for the healthy firms in the industry. Second, 

[…], the productivity gap between zombies and non-zombies rises significantly as the 

percentage of zombies in an industry rises.” (Caballero, et al., 2008) This thesis is supported by 

the figure 1, provided by Andrews, et al. (2016), that shows huge increase in the gap between 

the best and worst performing firms. 

 

Figure 1 - Widening productivity gap between frontier and laggard firms; based on 24 OECD countries 

The presence of zombie firms in an industry decreases the average productivity of a sector, both 

because of the low performance of the zombie firms but also because of the entrance barriers 

imposed on those efficient firms that would like to join the market but whose entrance is 

blocked by the unhealthy firms. At the same time, “a reduction in exit and restructuring barriers 

promotes a more effective exit channel” (Fontoura Gouveia & Osterhold, 2018). 

Furthermore, in those industries where the capital allocated in the zombie firms sinks, a decline 

in the ability of attracting capital by the productive firms is observed. 
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Adalet McGowan, et al. (2017) sustained that in some countries, firms that should exit a market, 

do not and this is due to the fact that “In some countries, these problems are likely symptomatic 

of structural policy weaknesses, particularly with respect to insolvency regimes. But there are 

reasons to suspect that nonviable firms may also be increasingly kept alive by the legacy of the 

financial crisis, with bank forbearance, prolonged monetary stimulus and the persistence of 

crisis-induced SME support policy initiatives emerging as possible culprits”.  Furthermore, 

according to Andrews, et al. (2016) the slowdown in the technology innovation is worsened by 

weak reforms that don’t induce the laggard firms to abandon the market. This creates an 

innovation gap with the frontier firms and, so, the average performance worsens. 

A worrying finding of Adalet McGowan, et al. (2017) is that the number of zombie firms has 

increased since the mid 2000-s and this is a datum that also the Italy should take into 

consideration, because in the same paper, they sustained that, if a causal relationship is assumed, 

the business investment of the average non-zombie firm would have been 2% greater in 2013, 

whenever the number of zombie firms remained at the same level of 2007, with great benefits 

for Italy, Finland and Spain for example. At the same time, if the number of zombie firms 

remained at the pre-crisis level, “the contribution of capital reallocation to aggregate MFP in 

2013 would have been around 0.7% to 1% higher in Italy and Spain, respectively. In other 

countries, reducing zombie congestion to the lowest level observed within each industry could 

yield gains to MFP of up to 0.5%.” (Adalet McGowan, et al., 2017) 

The low productivity of the zombie firms should represent an incentive for the well performing 

firms to increase their share and kick them off the market. Instead in Italy and Spain the 

difference in capital growth between a healthy and a non-healthy firm declined by around 2% 

in the period since 2004 to 2013, as the figure 2, taken from Adalet McGowan & Andrews 

(2017), shows. 

 

Figure 2 - Micro-level dimensions to the productivity slowdown: capital allocation 
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Another interesting datum in the comprehension of the consequences of the presence of non-

performing firms is that “NPLs in Italy have reached high levels, hindering the recovery. 

Cleaning up banks’ balance sheets is crucial to encourage credit growth, especially to SMEs 

that are more reliant on bank financing. Resolving impaired loans would also help facilitate 

restructuring or resolution of distressed SMEs.” (Garrido, et al., 2016). The researchers also 

highlighted the need of an improvement of the weak banking Italian system. 

The regulators could focus in the presence of zombie firms, whose presence in the market in 

positively correlated with the number of NPLs, as the figure 3, got through OECD calculations 

based on IMF, Financial Soundness Indicators and ORBIS, shows: 

 

 

Figure 3 - Zombie firms and NPLs: the case of Italy (Source: OECD calculations) 

This kind of policy should be accompanied by other political maneuvers that facilitate the job 

turnover and the labor mobility. They should be implemented together with other policies to 

manage the costs related to the move and reallocation of the workers. This is fundamental 

because there is proof that many high skilled workers is employed in the zombie laggard firms. 

Zombie firms are expected to meet more difficulties in borrowing money from financial entities 

and banks; instead the following perverse mechanism was documented: “Firms are more likely 

to receive additional bank credit if they are in poor financial condition, because troubled 

Japanese banks have an incentive to allocate credit to severely impaired borrowers in order to 

avoid the realization of losses on their own balance sheets”.  (Peek & Rosengren, 2005). 

Moreover, the governments, with the aim of avoiding the bankruptcy of the weakest firms, 

make pressure on the banks to lend money to them. This way of work allows banks to increase 

their income through money lending to unworthy firms. From the point of view of troubled 

banks, this mechanism allows them to not fail and to achieve this aim without much effort and 

without reform the entity. Furthermore, the Outright Monetary Transactions (OTM), i.e. a  ECB 
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program under which the Euro system buys or sells eligible assets outright on the market, helps 

this practice. Many banks benefit of the inflow of liquidity brought by these operations. Some 

undercapitalized banks, since 2012, started lending to zombie firms with that amount of money. 

An improvement in the capital allocation, favoring complementary benefits of bank health and 

insolvency regimes, can reduce the practices of bank forbearance and survival of environment 

damaging firms. Fontoura Gouveia & Osterhold (2018) published that “The evidence shows 

that there are additional policy complementarities, beyond the ones related to bank health, that 

need to be promptly addressed. For instance, ensuring a fit for purpose regulatory environment 

is an important challenge for policy makers, as product market distortions and administrative 

barriers to entry are also positively associated with higher zombie congestion and lower exit”. 

Also they found out that in Portugal, even if two third of the zombie firms remained as such for 

two following years, the market managed in doing partially a positive selection, with the most 

productive zombie firms restructuring. 

All these researches prove that an analysis and a detection of these zombie firms can lead to a 

better market environment if the regulators will be able to create an effective policy, able to 

improve the performance or force the exit of those firms from the market. 
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2. CHAPTER TWO 

 

Bankruptcy prediction models 

 

2.1 A comparison of the existent forecast bankruptcy models 

 

The economists tried in the past to provide some models in order to forecast whether a firm will 

fail in the future according with the present information. 

The main methods that are going to be analysed in this chapter are: 

• The market-based bankruptcy prediction model, that it is based on the application of the 

Black and Scholes and the Merton models on the future trend of the company; 

• The accounting-based bankruptcy model, which uses a big number of accounting ratios 

to forecast the future of the company. Clearly, since the balance sheets and the income 

statements change over time, the analysis must be done on several years in order to 

identify a trend; 

• The macroeconomic-based bankruptcy model, which rely on the use interest rate of 

short-term bills (for example the one-year treasury bills) and the inflation, related to a 

weak macroeconomic environment and hence connected positively to a financial 

distress condition. 

The last model is the less effective one, according with Pham, et al. (2018) and Hernandez T. 

& Wilson (2013) but its variables can be combined with the other 2 models to improve their 

efficiency. 

In the doctrine, many researchers have discussed about which model could be deemed the best 

among the market-based and the accounting-based models but the authors that tried to provide 

an answer to this question came out with different answers. Up to now, a final judgement hasn’t 

been found. This is because these 2 models analysed in this paper have warts and all. 

Agarwal & Taffler (2008) tried to go into deep of  “the very nature of the accounting statements 

on which these models are based casts doubt on their validity: (i) accounting statements present 

past performance of a firm and may or may not be informative in predicting the future, (ii) 

conservatism and historical cost accounting mean that the true asset values may be very 

different from the recorded book values, (iii) accounting numbers are subject to manipulation 

by management, and in addition, (iv) Hillegeist, et al. (2004) argue that since the accounting 
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statements are prepared on a going-concern basis, they are, by design, of limited utility in 

predicting bankruptcy.” 

“The market-based model is appealing on several grounds. First, the timeliness of corporate 

bankruptcy predictions may be increased exponentially by combining market-based variables. 

Second, the volatility of market-based variables is calculated directly using a market index to 

enhance the power of indicators of default risk. The fluctuation plays a key role in default 

prediction. Third, information from financial and other statements are not part of accounting 

statements, which generally reflect the market price.  Fourth, the market price is likely to be 

more suitable for default prediction because it reflects forward-looking information or future 

expectations of cash flow, whereas the accounting-based model reveals only backward-looking 

or past performance.” (Pham, et al., 2018). Hillegeist, et al. (2004) resumes all of that writing 

that on average information coming from the stock markets has a better quality. 

On the other side, the market-based model relies on a series of assumption about the forecast 

that not always are realized in the reality, like the normal distribution of the stock returns or the 

ownership of only zero-coupon bonds by the examined companies. Furthermore, it requires 

some measures of the volatility and asset value that are hardly achievable. 

According with Pham, et al. (2018), the accounting-based model has a better forecast accuracy 

than the market-based approach, even when powered by the variables of the macroeconomic 

approach. Hernandez T. & Wilson (2013) Instead, following the trend of Hillegeist, et al. 

(2004), found out that in their sample that the market variables have a greater explanatory power 

than the accounting ones (even if we combine these ones with the macroeconomic variables), 

because the first model add information not contained in the financial reporting.  

Instead, Agarwal & Taffler (2008) reported that the accounting-based and the market-based 

models have the same predictive power. Reisz & Perlich (2004) found that the ratios-based 

model is slightly better in the years before the bankruptcy while the model based on the models 

of Merton (1974) and Black & Scholes (1973) in the years previous the bankruptcy, while, if 

the 5-10 years before the bankruptcy are considered, the second model provides better results. 

Even if a part of the doctrine criticizes the first model, the results don’t show that a model is 

more reliable than the other. Depending on the sample, the results differ and there is not a 

univocal answer. Indeed, the ratios-based approach has, according to (Agarwal & Taffler, 

2008), 3 main foundations on which to build: 

• The failure is not something that happens suddenly, but it is that can be noted in the 

annual reports of the previous years and so the model should report it; 

• The update in the accounting policy never changed dramatically the values of the ratios 

and this guarantees a continuity in the time; 
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• Loan covenants, elements very interesting from the point of view of the creditors (that 

are among the main beneficiaries of these models) are generally present in the annual 

report and, so, they influence the accounting-based ratios. 

Provided that the past literature was not able to provide a model with a better performance 

compared with the others and that neither those models that mixed variables coming from both 

the accounting-based and the market-based approaches over performed the previous 2 models, 

we can feel free to choose the one we prefer in order to forecast the failure or not of the firms 

in the sample. Since the motivation is still not strong enough, it must be anticipated that the 

sample considered includes only firms that are not listed. The consequence is that the approach 

based on the works of Merton and Black and Scholes cannot work, since a fair stock price of 

our test cases cannot be provided. 

 

 

2.2 Accounting based-model  

 

2.2.1 Introduction to the accounting based-model  

 

In order to forecast a firm bankruptcy using the accounting-based approach, the scholar should 

collect a number of ratios and items coming from the income statement and the balance sheet 

of the companies in the sample. The user is interested in detecting whether the firm will fail. 

The year before bankruptcy is the one where there is the strongest deterioration of the ratios 

and so it is easier to detect unhealthy firms but limiting the observations at just one year it is 

not useful because in that case the firm often is already irretrievably destined to go bankruptcy. 

The firm is supposed to be already in a dramatic situation both from the point of view of the 

managers, that can’t improve the performance of the firm, and of the banks, that will see their 

loan impaired soon. Because of this, it is more interesting to perform the same analysis in a 

certain amount of years before the bankruptcy event. Usually, the chosen number of years 

applied by the doctrine is 5. When also further years have been considered, the models didn’t 

forecast with a satisfying accuracy if the firm would have failed in the following years. 

 

 

2.2.2 Altman Z score 

 

The pioneer and the most known researcher in the construction of an accounting-based model 

aimed at predicting the failure of a company is Edward J. Altman, who, at the end of the ‘60s, 
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with its study that was published under the name of “Financial Ratios, Discriminant Analysis 

and the Prediction of Corporate Bankruptcy”, started a line of research that led to many further 

models and reviews. 

He considered a sample of 66 firms. Half of them failed, the other half didn’t. In order to 

forecast the future condition of that company, he applied a model that was based on a MDA 

(multiple discriminant analysis). This is a method, used mainly to classify or make prediction 

when the output is a qualitative variable (i.e. male or female) that classified a sample is groups 

according to the data points individual characteristics. The scholar should create groups and 

divide all the data points according to them. MDA derives the best linear combination of the 

qualities of each group in order to get some discriminant criteria. If a certain entity (like a 

company) analysed has a series of characteristics (a series of ratios) present in all the objects of 

the group, MDA creates a series of coefficients according with the characteristics influence the 

output and, on the base of the values attributed to each data point, it will end in a certain group. 

A peculiarity of this analysis is that it considers also the interactions of the data points qualities 

in the allocation to a certain category. This kind of analysis has as response, in the case of 

Altman, a dummy where the alternatives were “Bankrupt” and “Non-Bankrupt”. A firm is 

considered destined to the bankruptcy if the likelihood of being sound doesn’t exceed a certain 

threshold, otherwise not. 

To reach the final result, he started using a huge number of ratios, related to the measurement 

of the liquidity, profitability, leverage, solvency and activity situation of the subjects of the 

sample. The final model, in order to catch all the aspects of the firm, was supposed to include 

those ratios which could catch every aspect of the company.  

The criteria used by Altman to reach his final model have been: 

• Weighting of the significance of many created functions, as well as the contribution of 

each single variable; 

• Analysis of possible correlations between the independent variables; 

• Evaluation of the success matrix of each model; 

• Personal judgement of the author. 

The best function found by Altman was:   

𝑍 = 0.012𝑋1 + 0.014𝑋2 + 0.033𝑋3 + 0.006𝑋4 + 0.999𝑋5 

where the variables were the following: 

• Working capital/Total assets (X1) is a popular measure of liquidity because it compares 

the net liquid assets with the capitalization. If the firm expects operating losses, the net 

working capital probably will decrease. 
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• Retained Earnings/Total assets (X2) is a measure of cumulative profitability since it 

reflects what was gained in the previous years. Clearly, the age of the firm is implicitly 

included in this ratio. The consequence is that a discrimination is performed between 

the young and the older firms. Despite this, also in the real world there is a 

discrimination among firms that have a different age and the younger ones are more 

likely to fail; 

• Earnings before interest and taxes/Total assets (X3) is a measure of the operating 

profitability of the firm (caught by the nominator) since the interests and the taxes are 

excluded and, thanks to the denominator, the productivity is associated to the company 

amount of assets.  

• Market value equity/Book value of total debt (X4) compares the equity and the total debt 

and it helps in recognizing which value the equity can reach before the firm becomes 

insolvent. 

• Sales/Total assets (X5) is a financial ratio that show the sales generating ability of the 

company depending on the assets. Its importance is due to the relationship with the other 

variables. This ratio strongly depends on the industry where the firms operates. 

X3, that measures the profitability of the companies, is the most important one since the earnings 

are the most important source of financing in a firm. Notwithstanding this, even if a firm is 

having negative results, it can repay its debt with the liquidity left from the previous years. 

Surprisingly, as it was mentioned before, also X5, due to the relation with the other variables, 

and especially with X3, had a great impact (table 1). 

Table 1 - Relative contribution of the variables in the Altman model (Altman, 1968) 

 

In the first year before the bankruptcy, the prediction accuracy of the model corresponds to 

95%, while it decreases to 72% 2 years before the failure. In the third, fourth and fifth years the 

ratios are not significant since their accuracy is under 50% (respectively 48%, 29% and 36% - 

table 2). An explanation to these results is that many firms were not already in a dramatic 

situation some years before the bankruptcy and, at the same time, some companies hide 

voluntarily the negative items in order to show outside a sound image of the firm until they fail. 

Moreover, it must be noted that Altman didn’t focus in the recognition of non-bankruptcy firms. 
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Table 2 - Five years predictive accuracy of the Altman's model (Altman, 1968) 

 

Since one of the main aims of the Altman’s study was to provide a model that could have been 

used by the rating agencies or by the banks in order to judge the credit worthiness of an 

institution, a seed was planted but, given that the most interesting years in the decision of 

granting a debt are the 3rd, the 4th and the 5th years, the model still needed some improvements. 

This model still can be useful to those investors that don’t keep the ownership of a certain share 

for a long period, but they try to gain in the short run. They can invest in the firms that are not 

supposed to go bankruptcy or they can short sell the ones that the stocks relative to those 

companies that are likely to fail. 

 

 

2.2.3 Beaver model 

 

Even if the works of Altman are probably the most well known in the prediction of failure 

through the study of the ratios, another scholar, Beaver, must be cited. In the 1966 he published 

a research that can be considered, together with the Altman’s Z score, at the basis of the further 

studies that will be developed in this field. 

Beaver wanted to extend the use of the accounting-based model, declaring that “The emphasis 

upon financial ratios does not imply that ratios are the only predictors of failure. The primary 

concern is not with predictors of failure per se but rather with financial ratios as predictors of 

important events - one of which is failure of the firm.” (Beaver, 1966) 

Moreover, he emphasized that a certain value of a ratio leads to different conclusions according 

with the sector (ex. a liquidity ratio of 2 can be positive in certain fields, while it is not in others). 

It follows that the firms in the sample must come from a heterogeneous number of sectors and 

the failed and non-failed firms belong to comparable businesses. Another factor that influences 

the way the results are read is the size of the firm. “If firms are viewed as aggregates of assets 

and if asset returns are less than perfectly correlated with one another, statistical formulae 

suggest that the variability of total return to the firm will increase less than proportionately to 

the size of the firm. The rate of return to the firm will become more stable as asset size increases. 

Empirical evidence indicates that the variability of rate of return does behave in this manner. 
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The implication is that larger firms are more solvent, even if the value of their ratios is the same 

as that of smaller firms.” (Beaver, 1966) 

The solution that was applied by Beaver and by many following scholars, was to create a sample 

with matching couples: for each failed company, a non-failed company with similar 

characteristics and coming from a similar sector were found. The results, contrarily to the 

expectations, showed that the residuals deriving from the use of test subjects coming from 

different industries or sectors were not great. The reduction in the accuracy of the predictive 

model was not overwhelming, even if a small reduction was noted. It follows that, it is 

suggested to use subjects from the same industry, even if this is not compulsory. Instead, 

choosing firms with similar assets dimensions is important because Beaver found out that the 

asset size of healthy firms was higher than the failed firms. The analysis indicated that the mean 

asset size of the non-failed firms was greater than that of the failed firms. Whether the ratios 

depend on the assets and if those assets already help in explain the output, the risk is that the 

predictive power of ratios would be overestimated. 

Like Altman, from a big group of ratios (30), he selected a small number on the basis of the 

popularity in the literature and of their effectiveness in the previous studies. Moreover, the ratios 

were analysed considering the ability that they intrinsically have to generate cash flow, i.e. the 

best measure to create liquidity to pay back the debt and avoid the bankruptcy condition. As 

well as with Altman, the ratios were computed from the 1st to the 5th year before bankruptcy. 

“Four concepts are important in drawing the relationship between the liquid-asset-flow model 

and the ratios. The first is the size of the reservoir itself. The second is the net liquid-asset flow 

from operations, which measures the net amount of liquid assets supplied to (or drained from) 

the reservoir by current operations. The third is the debt held by the firm and is one measure of 

the potential drain upon the reservoir. The fourth is the fund expenditures for operations and is 

the amount of liquid assets drained from the reservoir by operating expenditures.” (Beaver, 

1966). The consequence is that: 

• The reservoir is negatively correlated with the bankruptcy likelihood; 

• A relatively high number of liquid-assets from operations, i.e. cash flow is negatively 

correlated with the probability of being a laggard firm; 

• A high debt is positively correlated with the bankruptcy likelihood; 

• A high usage of liquidity for operative purposes is positively associated with failure 

probability. 

Failed firms showed lower cash flows and liquid assets compared with the non-failed firms. 

This led to more difficulties in paying the debt, even if, on the other side, the amount of 

debt due by the bankruptcy firms is greater. The chosen ratios were: 
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1. Cash flow/total debt; 

2. Net income/total assets; 

3. Total debt/total assets; 

4. Working capital/total assets; 

5. Current ratio (current assets/current liabilities) 

6. No-credit interval (defensive assets minus current liabilities to fund expenditures for 

operations, where “Defensive assets mean assets for which the effects of inflation and 

currency devaluation are minimized. This term refers, in particular, to real assets such 

as real estate and precious metals such as gold.” (Martins, s.d.)) 

The 4th ratio is the same used by Altman, while the 2nd one is very close to X3 (earnings before 

interest and taxes/Total assets), even if, in theory the one used by Altman, given that it focuses 

more on the operating activities, should be more faithful to the real situation of the company. 

Also, the 3rd ratio shows the relation between the total debt and the total assets and it is quite 

similar to the ratio the ratio used by Altman, named as X4 (Market value equity/Book value of 

total debt). Beaver, instead, focused particularly on the ratios that derive from the cash flows. 

Indeed, the 1st ratio directly includes them, while the 4th one includes the working capital, 

which, on the basis of the change between one year and the previous one, influences the cash 

flow and the short-term liquidity. Also, the 5th ratio, which compares the current assets with the 

current liabilities it is a commonly used measure of the ability of the firm to repay the current 

debt using the liquid assets. Finally, the 6th ratio deals with the credit worthiness of paying of 

the firm and the safety of the creditors. Altman focuses more on the operative performance and 

this should be a good way, provided that this is the basis to measure the ability of a company 

of repaying the debt. Beaver, instead, taking 4 out of 6 ratios from only from the balance sheet, 

focuses much more on the reliability of the borrower at a certain moment in time, without 

looking at its history and focusing less on its future performance. 

Beaver observed that the most useful ratio was the cash flow to total debt ratio, followed by the 

net income to total asset, total debt to total assets ratio, while the size of the reservoir is the less 

important one. His model predicted correctly the 87% of the sample in the first year, 79% in 

the second year, 77% in the third year, 76% in the fourth year and 78% in the fifth year before 

the failure. Its power is stronger than the model developed by Altman in the 3rd, 4th and 5th years 

before the failure. After the 5th year, the author admits that the error increases and that the model 

is not reliable anymore. 

An alternative analysis of the bankruptcy probability is provided by the use of the odds. “Odds 

of an event happening is defined as the likelihood that an event will occur, expressed as a 
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proportion of the likelihood that the event will not occur. Therefore, if A is the probability of 

subjects affected and B is probability of subjects not affected, then odds = A /B.” (Anon., s.d.) 

This method is used, for example, in the calculation of the probability in the horse races bets. 

If the odds are lower than one, it is more likely that the firm won’t fail. If the odds are higher 

than one, the company is not likely to fail. 

 

 

2.2.4 Ohlson model 

 

After the studies published by Beaver and Altman, a huge number of scholars started focusing 

on the prediction bankruptcy models. Among these papers, surely the one that can be considered 

the main competitor of the Altman’s Z score, is the O-Score developed by Ohlson (1980). His 

model was composed by the following ratios: 

1. “SIZE = log(total assets/GNP price-level index). The index assumes a base value of 

100 for 1968 (i.e. the beginning year of the research). Total assets are as reported in 

dollars. The index year is as of the year prior to the year of the balance sheet date. The 

procedure assures a real-time implementation of the model. The log transform has an 

important implication. Suppose two firms, A and B, have a balance sheet date in the 

same year, then the sign of PA – PB is independent of the price-level index. (This will 

not follow unless the log transform is applied.) The latter is, of course, a desirable 

property.  

2. TLTA = Total liabilities divided by total assets.  

3. WCTA = Working capital divided by total assets.  

4. CLCA = Current liabilities divided by current assets.  

5. OENEG = One if total liabilities exceed total assets, zero otherwise.  

6. NITA= Net income divided by total assets.  

7. FUTL = Funds provided by operations divided by total liabilities.  

8. INTWO = One if net income was negative for the last two years, zero otherwise.  

9. CHIN = (NIt – Nit-1)/(|NIt| + |NIt-1|), where NIt is net income for the most recent period. 

The denominator acts as a level indicator. The variable is thus intended to measure 

change in net income.” (Ohlson, 1980) 
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Ohlson used a logit model in order to create its prediction function. He created three different 

models using the above-mentioned ratios. “Model 1 predicts bankruptcy within one year; Model 

2 predicts bankruptcy within two years, given that the company did not fail within the 

subsequent year; Model 3 predicts bankruptcy within one or two years”. (Ohlson, 1980) 

The logit model uses a cut-off point equal to 0.038 in order to decide whether a firm will fail. 

With this model with the above-mentioned variables, the percent correctly predicted in the 1st 

year before was 96.12%, 95.55% and 92.84% for the Models 1, 2 and 3 respectively, as can be 

seen in table 3. 

 

The non-significant variables are INTWO, CLCA and WCTA. Instead, it is surprising is that 

the variable SIZE is significant in all the models. This is consistent with the work of (Horrigan, 

1966), that found that in his research that both accounting data and financial ratios are important 

in the determination of ratings to be assigned to corporates. The amount of assets alone is 

enough to predict more than half of the bond ratings of the sample considered. 

“[…] the four factors derived from financial statements which are statistically significant for 

purposes of assessing the probability of bankruptcy are: (i) size (SIZE); (ii) the financial 

structure as reflected by a measure of leverage (TLTA); (iii) some performance measure or 

combination of performance measures (NITA and/or FUTL); (iv) some measure(s) of current 

liquidity (WCTA or WCTA and CLCA jointly).” (Ohlson, 1980) 

The different performance of the model applied by Ohlson, according with the author himself, 

is due to the fact that its sample is one of the few examples in literature coming from the ’70 

and this particular historic period is also associate to a scenario not similar to the one of the 

’50s or of the ’60s (and, even less, to the present time). Moreover, he deemed that the kind of 

ratios chosen didn’t influence too much the final result. Notwithstanding this, the presence of 

Table 3 - Ohlson models prediction results 
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further variables, like the size of the test subjects, can increase the accuracy of the model. 

Finally, the use of the logit model against the MDA can lead to different results. In particular, 

“Strictly speaking a linear approach is only appropriate when the dispersion matrices of the 

groups are identical. When this is not the case, quadratic discriminant analysis may be more 

appropriate” (Moyer, 1977) 

Comparing the ratios of the models of Altman and Ohlson other than the size, the ratios used 

by them are quite close. The factor OENEG, is quite interesting. It is obvious that it influences 

the bankruptcy probability, but it was never used in the previous models. The past earnings are 

considered in both the models, but in the case of Altman, they are considered simply as a 

cumulative measure, Ohlson, instead looks at the deterioration of the net income compared with 

the previous years. Since the distress condition can show up just in the last years, the second 

ratio is more interesting. Another interesting ratio is FUTL. This last ratio looks at the liquidity 

brought by the operating management of the company, excluding the investment and the 

financial part, and it is an important frame for the constant collection of new funds. The two 

model are much closer than how much they are with the model developed by Beaver. 

 

 

2.2.5 Begley criticism 

 

Further reviews and improvements will be mentioned in this thesis. Begley, et al. (1996) 

applied both the Altman and the Ohlson models to a group of firms operating in the ‘80s, 

finding out that the results achieved changed, led mostly by the leverage ratios. Indeed, in the 

‘80s the economic conditions changed and an increase in the quantity of debt compared with 

equity was performed by many firms. Since this was common at the time, a certain leverage, 

that could have seen as a negative signal in the ’60-’70, it was deemed normal in the ’80 and 

it wasn’t seen as a worrying signal. Begley, et al. (1996) reported that in his research a high 

level of debt didn’t necessarily have effect on the default probability while the liquidity 

variables increased their importance in the re-estimated models, consistently with the higher 

focus of the firms in their cash flow level. These reasons confirm the fact that the original 

models had a great prediction accuracy in the period they were created but their performance 

worsened a lot in the recent periods, even when the coefficients are re-calculated. 

In all the previous works, the misclassification errors can be conducted mainly to 2 groups. 

Since the names assigned to these mistakes of the model were very wide, henceforth called in 

the statistic way, namely: 

• Type I error: misclassifying a bankrupt firm as non-bankrupt; 
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• Type II error: misclassifying a non-bankrupt firm as bankrupt. 

The first kind of error is the most important from the point of view of the creditors/banks 

because it means that these entities, due to the error of the model, grant a loan to a borrower 

that is not likely to pay back the money received. 

The second kind of error, instead, it is the one that mostly affects the community. Due to this 

error, borrowers worth of receiving a credit are not going to benefit of a loan. From the point 

of view of the creditors, instead, the damage is not significant as the one undergone by the type 

I errors because they only lose the interests that they could have collected if a loan was granted. 

“Where the prior probability of membership in group i is qi, the cost of misclassifying an entity 

as belonging to group j when it actually belongs to group i is cij. And where the objective is to 

minimize the expected total cost of misclassification, a critical value of z, 

𝑧𝑐 = 𝑙𝑜𝑔
𝑞2𝑐21

𝑞1𝑐12
 

should be employed.” (Joy & Tollefson, 1975) 

While the probabilities can be proxied but models like the logit, the cost of error I and, notably, 

the cost of error II are very difficult to estimate. Because of this, it is important to define if a 

research is made to reduce the losses incurred by the creditors or by the community. 

An empirical study was performed to assess the costs of these lending errors with the following 

specification for the equivalent type I (C1) and type II (C11) error costs.  

C1 = 1 −
LLR

GLL
,     C11 = r − i 

where: LLR = amount of loan losses recovered,  

GLL = gross loan losses (charged-off),  

r = effective interest rate on the loan,  

i = effective opportunity cost for the bank. 

This formula is interesting but at the same time there is the need to have data, that only banks 

have. In this thesis the error costs could be calculated in a different way but a bank, that has a 

greater data availability and is willing to do some assumption on the opportunity cost, can 

calculate C1 and C11 in order to have a more precise and consistent model.  

After this small parenthesis on the Type I and II errors, let’s come back to the Begley’s analysis, 

where a worsening of the Ohlson model can be seen in the figure 4, where the original cut-off 

point was 3.8%. 
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Table 4 - Comparison of the errors I and II – Ohlson’s model 1 (Begley, et al., 1996) 

 

The change of conditions led the type I error decrease slightly (1.6%), while type 2 error 

increased by 9.2%. The total percentage error amounts to 14.9%. 

Altman’s model, instead changed from a 95.5% correct and 4.5% wrong predictions, to 78.2% 

correct and 21.8% wrong predictions (table 5). 
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Table 5 - Comparison of the errors I and II - Altman's model (Begley, et al., 1996) 

 

In order to try to fix the predictive ability of both the models, (Begley, et al., 1996) re-estimated 

them. 

The re-estimated Altman’s model, became: 

𝑍 = 0.012𝑋1 + 0.014𝑋2 + 0.033𝑋3 + 0.006𝑋4 + 0.999𝑋5 

Despite the change, the forecast accuracy didn’t variate. The type I error increased slightly, 

while the type II error decreased slightly, compensating each other (table 6). 

Table 6 - predictive ability of the re-estimated Altman model (Begley, et al., 1996) 

 

Ohlson’s model was re-calculated and the model can be appreciated in table 7. 

WCTA (even if with a lower coefficient), CLCA and INTWO became significant with the new 

sample, while OENEG and CHIN lost their predictive power. It must be reminded that in the 

model CLCA and OENEG reflect the assets between the assets and the liabilities, while CHIN 

and INTWO reflect the relationship between the insolvency and the previous net incomes. 

Probably the increase of importance of one ratio of these couple, was compensated by the lower 

importance of the second one. 
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Table 7 - comparison between Ohlson old original and re-estimated models (Begley, et al., 1996) 

 

The new model 1 (that measures the failure probability one year before bankruptcy) led to the 

error percentage reported in the table 8. The cut-off is chosen according with the point that 

registers the lower Type I and II errors, is 0.061 now. The combined error is 22.1%, still not 

satisfying. 

Table 8 - errors I and II – re-estimated Ohlson’s model (Begley, et al., 1996) 

 

Begley, et al., (1996) Concluded that a review of the models didn’t lead to any improvements 

and that the most reliable model is still the original model 1 developed by Ohlson. The reason 
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we have gone so much into deep in the work of this last researcher is due to the fact that the 

first part of the empirical analysis of this paper is very close to the one of Begley, et al. (1996). 

 

 

2.2.6 Altman reviews 

 

Altman himself reviewed his model many times. For the purpose of this thesis, the most 

interesting model is the one published in 2000. He published other works where he tried to 

adjust his original model to face the change in the composition of the firms, in particular the 

size and the leverage. 

The original model that was described above, was 

𝑍 = 0.012𝑋1 + 0.014𝑋2 + 0.033𝑋3 + 0.006𝑋4 + 0.999𝑋5 

Where: 

X1 = working capital/total assets 

X2 = retained earnings/total assets 

X3 = earnings before interest and taxes/total assets 

X4 = MV of equity/BV of total liabilities 

X5 = sales/total assets, and 

Z = overall index. 

 

The representation of the original formula was changed in the following years and it became: 

Z=1.2X1+1.4X2+3.3X3+0.6X4+1.0X5. Simply the author did a stylistic choice, preferring the 

use of percentages in the writing of the formula and rounding the 0.999 to 1.  

The new model was: 

𝑍´ = 0.717𝑋1 + 0.847𝑋2 + 3.107𝑋3 + 0.420𝑋4 + 0.998𝑋5 

Where he kept the same variables of the original Z score (even if the coefficients changed), 

expect for X4, whose market value of equity was substituted by the book value of equity. The 

coefficient for X1 decreased from 1.2 to 0.7, but still the model looks quite similar to the original 

Z score. The actual variable that was modified, X4, showed a coefficient change to 0.42 from 

0.6001 and now it now has less of an impact on the Z-Score. X3 and X5 are virtually unchanged.” 

(Altman, 2000) 

The model was tested on a sample offered by a model published by Moody’s in 2000, which 

used middle market firms, mainly private and the original sample amounted to 1600 test units, 
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while the sample used by Altman amounted to only 66 firms. The results are reported in the 

table 9. 

Table 9 - Revised Z score model: classification results (Altman, 2000) 

 

The sensitivity (the percentage of true defaulters that are identified) is 91%, while the specificity 

(the percentage of non-defaulters that are correctly identified) is 97%. The results are satisfying 

from an absolute point of view but are discouraging if compared with the performance of the 

original Altman’s model, where the sensitivity was 94% (table 10). 

Table 10 - Classification and prediction accuracy of the Z score (1968) failure model (Altman, 2000) 

  

In this model, Altman tried to solve the critical points underlined by Ohlson (1980), Moyer 

(1977), Joy & Tollefson (1975). They criticized his model because it lacked an important 

assumption, which in this last model is considered. We remind that the critics dealt with the 

fact that a linear model is appropriate only when the dispersion matrices of the groups formed 

by the MDA division should be identical. Instead, if the variance-covariance matrices differ, a 

quadratic structure will perform better, given the advantage that the qualities of each group and 

the relationships with the other groups can be appreciated independently. 
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Because of this problem connected to the MDA, this assumption must be proved before 

applying the model. Actually, it is difficult to distinguish the group of failed to the non-failed 

firms. This is why the linear model can be appropriate. 

In order to increase the efficiency of the new model, Altman created also an adaptation of the 

model designed to the non-manufacturers, where X5 was eliminated. The resulting model was  

𝑍ʺ = 6.56𝑋1 + 3.26𝑋2 + 6.72𝑋3 + 1.05𝑋4 

All the coefficients changed, because of the different kind of firms considered and the omission 

of a variable. “All of the coefficients for variables X1 to X4 are changed as are the group means 

and cut off scores. This particular model is also useful within an industry where the type of 

financing of assets differs greatly among firms and important adjustments, like lease 

capitalization, are not made.” (Altman, 2000) 

An alternative model, named the 7-variable model, that was proved to be the most reliable in 

many conditions. The variables are described below: 

“X1: Return on assets, measured by the earnings before interest and taxes/total assets. […] 

X2: Stability of earnings, measured by a normalized measure of the standard error of estimate 

around a five to ten-year trend in X1. Business risk is often expressed in terms of earnings 

fluctuations and this measure proved to be particularly effective. […] 

X3: Debt service, measured by the familiar interest coverage ratio, i.e., earnings before interest 

and taxes/total interest payments (including that amount imputed from the capitalized lease 

liability). We have transposed this measure by taking the log 10 in order to improve the 

normality and homoscedasticity of this measure.  

X4: Cumulative profitability, measured by the firm's retained earnings (balance sheet)/total 

assets. This ratio, which imputes such factors as the age of the firm, debt and dividend policy 

as well as its profitability record over time, […]. 

X5: Liquidity, measured by the familiar current ratio. […] we now find it slightly more 

informative than others, such as the working capital/total assets ratio. 

X6: Capitalization, measured by common equity/total capital. […] the common equity is 

measured by a five-year average of the total market value, rather than book value. The 

denominator also includes preferred stock at liquidating value, long-term debt and capitalized 

leases. We have utilized a 5-year average to smooth out possible severe, temporary market 

fluctuations and to add a trend component (along with X2 above) to the study. 

X7: Size, measured by the firms' total assets. This variable, as is the case with the others, was 

adjusted for financial reporting changes.” (Altman, 2000) 

This model focuses a lot in the continuity and in the ability to generate liquidity, through the 

indices X1, X2 and X4, while the linkage between its ability to repay and its net income is 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

37 
 

provided by X3. The solvability of the firm is resumed by the index X5, while the leverage is 

indirectly represented by X6. Finally, following the model of (Ohlson, 1980), Altman added the 

size of the firm (X7). The most significant ratio is X4, followed by X2. This is a confirmation 

that the ability of the firm to generate constantly liquidity is the main feature that determines 

the ability of the company to avoid the bankruptcy condition. 

Table 11 - comparison of the prediction accuracy between the Z and the ZETA Altman's models (Altman, 2000) 

 

The 7-variable model, in the table named “ZETA model”, is represented in the columns (2) and 

(3), while the original model is represented in the columns (4) and (5). The following columns 

apply a certain model on the sample of the other model – namely applies the original model to 

the ZETA sample and vice versa. If in the first year the original model performs better, in the 

models applied to the preceding years, the new formula worsens its performance but just 

slightly, while the old one after the second year, it is not reliable anymore. At the 5th year, the 

accuracy rate of the new model is 69.8%, against the 36% of the other one. 

 

 

2.2.7 Further insights 

 

The works of Altman, Ohlson and Beaver are at the basis of the bankruptcy prediction model 

discipline. Some of the criticises/improvements/observations to the model are already presented 

above, others are going to be showed below. A paper that could provide the biggest help to the 

development of future models is the one provided by Deakin (1972). He observed that “the 

failed firms tended to expand rapidly in the third and fourth years prior to failure. If we look at 

the capital structure, it seems that the expansion was financed by increased debt and preferred 

stock rather than common stock or retained earnings. Therefore, funds raised were invested in 

plant and equipment rather than in liquid assets. […] These firms were unable later to generate 

the sales and net income to support their heavier debt, and so they lost their assets rather rapidly 
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after the third year prior to failure. At that point, their asset ratios and debt ratios tended to fall 

back in line with the ratios shown in the earlier study.” 

The consequence is that the leverage, used in all the models above mentioned, usually increased 

(when the expansion was not financed by preferred stocks) and, so, the ratio measuring the 

relative indebtedness, could become even more important. This effect is counterbalanced by 

the higher amount of debt held by firms in last decades. 

Moyer (1977) also argued that the Altman’s model parameters depend on the firms size of the 

sample and the time span considered. In his study, indeed, the results are worse compared to 

the ones collected by Altman (1968) and, in particular, the attribution to “Sales/total assets” as 

the 2nd most important variable is questioned the use of linear variables as well, while the use 

of quadratic variables could be more appropriate. Despite this, in practice, it doesn’t provide 

better results. 

Blum (1974), examining the accounting based ratios issued previously, found out that cash 

flow/total debt (used by Beaver) was one of the most important ratios, as well as net quick 

assets/inventory and trend inversion of the income amount. A further finding was using non-

ratio variables, as Ohlson did, to improve the models. Moreover, he used in his analysis many 

ratios related to the inventory and what he found out was that inventories used to decrease when 

bankruptcy was close. Firms didn’t fail because of the excessive accumulation of inventory. 

Pongsatat, et al. (2004) tested both the Z-score and the O-score to small and large Thailand 

firms. From an overall point of view, the first model showed to be less powerful but none of 

the 2 models was deemed good enough to predict the bankruptcy of large firms. 

El-Ansary & Bassam (2019), applying similar models to the ones of the literature to predict the 

bankruptcy failure of listed firms in Middle East and North Africa, concluded that distress firms 

showed low or negative earnings, actual and cumulated, and cash flow, as well as a WC deficit. 

Also, a smaller size is associated to fall in a distress situation and this fact is probably also due 

to the greater instability of the area considered. 

A work very similar to the one done in this thesis is the one of Altman, et al. (2013), that tested 

the model proposed by Altman to Italian firms with at least 200 million income. The best model 

found out by the authors for their sample, made of different size firms (whose the majority was 

manufacturer) was the Z’’, deemed better because Italian firms were manufacturer, quite 

connected to the local banking system, with a low capitalization and budget policies not 

transparent. Moreover, they based their work knowing that for non-US companies the Z’’ score 

model was better.  
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2.2.8 Italian law situation 

 

Before starting analysing the literature model, it should be underlined that in Italy a regulation 

in interception of financial distress situations has been developed in these years. 

In Italy also from a legislative point of view, the use of indices to predict the bankruptcy of a 

company is being recognized as a valid method of health self-assessment of the firms. 

In the recent meeting focused on the firm crisis that took place in Florence on the 25th and 26th 

October, organized by the Order of Chartered Accountants and Auditors (in Italy named 

“CNDCEC”), it was provided a new law enactment on the bankruptcy recognition and 

prevention. 

In particular, for the purpose of this thesis, the most important part is the use of ratios as a way 

to understand better the firm difficulties. The art. 13 c. 2 of the crisis and insolvency code 

assigned to the CNDCEC the role of elaborate the necessary indices to complete the alarm 

system, which was introduced in the law system with the law n. 155/2017. This law, named the 

“reform of the firm crisis and insolvency regulation”, it is located in a national framework aimed 

at restructuring firms in the early stage of their financial distress and it was implemented to 

align Italy to the recommendation of the European Commission dated 12 march 2014. The 

biggest change provided recently by the CNDCEC is that the distress situation can be caught in 

advance thanks in particular to the 3rd point of the following list. 

The method below is aimed at recognizing a financial distress situation, not the bankruptcy 

probability of a firm, even if they are connected. 

The firm health assessment is divided in the following steps: 

1. Equity monitoring, defined as the item A) in the passive side of the balance sheet, net 

of the deduction of credits from shareholders), own shares and dividends approved but 

not accounted for; 

2. Even if the equity is greater than 0, also the DSCR (Debt Service Coverage Ratio), that 

measures the ability of a firm to create, in the following months, enough income to cover 

the debt that must be paid during that period, must be calculated. The value of this index 

must be greater than 1. In this case, it means that the firm is able to sustain the debt at 

least for the following 6 months, otherwise not. There are 2 approaches to calculate it, 

according with the CDNCEC: 

a. At the denominator the next 6 months contractually agreed payments for the 

financial debt reimbursement and at the numerator the initial liquidity, from 

which must be summed up the liquidity input and subtracted the liquidity output; 
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b. At the numerator the sum of next six months FCFO, of the initial liquidity and 

of the credit, while at the denominator the sum of the next 6 months debt 

interests, the social security and tax debt and the non-current debt against 

suppliers and other creditors. 

3. Whenever the DSCR can’t be calculated and if the calculation of equity and the presence 

of continuous failure in debt payments are not registered, five indices are used: 

a. Ratio between financial expenses and income (sustainability of financial 

expenses index); 

b. Ratio between equity and total debt (balance sheet adequacy index); 

c. Ratio between cash flow and total assets (conversion of assets into liquidity 

index); 

d. Ratio between the short-term assets and the short-term liabilities (liquidity 

index); 

e. Ratio between the social security and tax debt and total assets (social security 

and tax indebtedness ratio).  

If all the 5 ratios show negative results, the firm is passing a period of financial distress. If less 

than 5 ratios are below the threshold, the situation is more or less worrying and it must be 

analyzed case by case. The threshold are showed in the table 12: 

Table 12 - cut-offs by sector 

 

Financial 

expenses/revenues 

Equity/total 

debt 

ST 

liabilities/ST 

assets 

Cash flow/total 

assets 

Social security and 

tax debt/total 

assets 

Agricolture, forestry and fishing 2,8% 9,4% 92,1% 0,3% 5,6% 

Extraction; manifacture; energy 

and water production 
3,0% 7,6% 93,7% 0,5% 4,9% 

Energy and water trasmission; 

water supply; sewerage and 

waste management 

2,6% 6,7% 84,2% 1,9% 6,5% 

Buildings construction 3,8% 4,9% 108,0% 0,4% 3,8% 

Civil engineering; specialized 

construction 
2,8% 5,3% 101,1% 1,4% 5,3% 

Aumotive trade; wholesale trade; 

energy/gas distribution 
2,1% 6,3% 101,4% 0,6% 2,9% 

Retail trade; bars and 

restaurants 
1,5% 4,2% 89,8% 1,0% 7,8% 

Transportation and storage; 

hotel 
1,5% 4,1% 86,0% 1,4% 10,2% 

Firms sevices 1,8% 5,2% 95,4% 1,7% 11,9% 

People services 2,7% 2,3% 69,8% 0,5% 14,6% 

 

Firms whose performance cannot be calculated through the use of indices can write the 

reasons in the notes to the financial statement. Special indices are addressed to innovative 

start-ups. 
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The choice method of these indices has been very similar to the one used for the model 

created by the thesis author, where the ratios were chosen as the best between many indices. 
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3. CHAPTER THREE 

 

Literature models analysis 

 

3.1 Introduction 

 

The empirical part is aimed at recognizing which bankruptcy prediction literature model is the 

best to be applied to a sample of firms from Padova and Vicenza and finally, comparing the 

results from these models with a new model. 

 

 

3.2 Data 

 

A sample of 1101 non-listed firms were taken from the provinces of Padova and Vicenza, cities 

in the region of Veneto, in Italy. 

In this sample, the ratio between failed and non-failed firms is 1 to 5. For each firm, 5 years of 

activity were considered. The years considered change firm by firm but the range of years 

considered is 2010-2017. For the non-failed firms the years are simply 5 years of activity, for 

the failed firms the 5 years considered are the ones before the bankruptcy declaration year. The 

firms have different sizes and come from different sector, in order to create a heterogeneous 

sample.  

A con of the choice of a sample like this is that there are not matching couples (namely pairs of 

firms, 1 failed and 1 not, of similar size and belonging to the same sector), like in the samples 

used by Altman (1968 and 2000) or Ohlson (1980). The advantage of having matching couples 

is that it is easier to isolate the differences between healthy and laggard firms. 

 

 

3.3 Ratios analysis 

 

In this paragraph, we explain the ratios used. Only the ones that involved a certain discretion in 

the choice of the elements that constitute them will be mentioned. The ratios that involve simple 

elements from the balance sheet won’t be deepened. 
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The first group of indices will be the one used in the Z, Z’ and Z’’ models in (Altman, 1968) 

and (Altman, 2000): 

• Net working capital/Total assets (X1). Altman named this ratio Working capital/Total 

assets but this definition can be misleading according with the definition provided by 

most of the books and websites. The author in this thesis will apply what the majority 

of the doctrine believes, i.e. “Working capital is sometimes used to refer only to current 

assets, while net working capital is defined to be the difference between current assets 

and current liabilities.” (Anon., s.d.) 

• Retained earnings/Total assets (X2). The item that is closer to the retained earnings is 

“utile/perdita a nuovo (section AVIII of the passive section of the balance sheet)”. The 

item retained earnings is present in the annual reports drawn up according with the 

international accounting principle. With that representation method is easier to analyze 

the cumulative profitability of the firm because the items of the equity are designed to 

be relevant, while the Italian accounting principles follow the criterion of reliability. 

Some reserves, especially the statutory and the legal ones, often contain a part of the 

cumulated earnings. Notwithstanding this, a part of the amount included in those 

reserves can come from other sources, like the shareholders. Because of the above 

mentioned reasons and because the small/medium firms are not used to keep a great 

amount of earnings with them, the importance of this ratio could decrease. 

• Earnings before interests and taxes/Total assets (X3). The first is a flow measure and the 

second is a stock measure. Because of this, since the flow measured depends on the 

assets of the firm, an average of the stock measure of t-1 and t is used. This method will 

be applied with all the following ratios created by the use of a flow and a stock measure. 

• Book value of equity/Book value of total Debt (X4). This ratio is not the original one 

used by (Altman, 1968), but the one used in the Z’ model by (Altman, 2000). The fact 

that the firms considered are not listed, leads to the impossibility of achieving a market 

value of equity. For this reason, book value will be used in this thesis. 

• Sales/Total assets (X5). The sales considers only the item A1 of the income statement, 

namely the revenues from the sales of good and services. 

The following group of indices is constituted by the one used by (Altman, 2000) to create the 

ZETA model. 

• Debt service measured by the interest coverage ratio (EBIT/total interest payments, X3). 

In the total interest payments also the financial income was included, because it 

compensates the need for liquid money to pay the financial expenses. 
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• The size (X7) is only measured by the firms’ total assets. 

• The capitalization (X6) and the stability of earnings (X2) won’t be used because Altman 

applied a 5 years average of the past values of the items considered. It means that, for 

example, for the 1st  year considered, namely the one that is located 5 years before the 

bankruptcy, would need also the data coming from the 6th, 7th, 8th and 9th years before 

the bankruptcy. 

• X1 and X4 have already been described, while X5 is a normal current ratio (current 

assets/current liabilities). 

My calculation of (Ohlson, 1980) indices are as follows: 

• Log(total assets/GNP price-level index), named by the author “SIZE”. It was used the 

natural logarithm in the calculation of the ratio, while the inflation considered for the 

denominator was taken from (Anon., s.d.). The starting point, whose value of the assets 

was not influenced by the inflation was 2009, while for the following years, up to 2017, 

the value of the assets was divided by the inflation of their year, multiplied by the 

inflation of the previous years. The inflation values are the following: 

1. Average inflation in 2010: 1.5%; 

2. Average inflation in 2011: 2.8%; 

3. Average inflation in 2012: 3.0%; 

4. Average inflation in 2013: 1.2%; 

5. Average inflation in 2014: 0.2%; 

6. Average inflation in 2015: 0.1%; 

7. Average inflation in 2016: -0.1%; 

8. Average inflation in 2017: 1.2%; 

9. Average inflation in 2018:1.1%. 

• Fund provided by operations/total liabilities (FUTL). The nominator, also named FFO 

(funds from operations), “is the cash flows generated by the operations of a business. 

The term is most commonly used in relation to the cash flows from real estate 

investment trusts (REITs).” (Bragg, 2018) 

FFO, following the formula of (Bragg, 2018), is got starting from the net income, adding 

the amortization, the depreciation, the capital losses and the interest expense and 

subtracting the capital gains and the interest income. The formulas that can be found in 

the web are not equal. Some websites didn’t include the interest income/expense, but 

the author preferred this one since in his opinion it isolates better the operating income 

of the firms. 

https://www.accountingtools.com/articles/what-is-cash-flow.html
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• TLTA, CLCA, OENEG and NITA have already been explained and their formulation 

didn’t need a high grade of discretion in their construction, while WCTA has been 

already seen in the Z model. 

The further model is the one developed by (Beaver, 1966). 

The ratios that need a little bit of more attention are the following: 

• No credit interval: (defensive assets-current liabilities)/funds expenditure for 

operations. The defensive assets are defined as quick assets, namely the sum between 

the receivables and cash. The denominator is approximated by the COGS. 

• Cash flow/total assets. Cash flow is defined by Beaver as cash flus marketable 

securities. The ratio will be calculated like the original one. 

The data are taken from 2009 to 2017. As anticipated, since the firms were analysed only for 5 

years, some firms where analysed since 2010 to 2014, others since 2012 to 2016 for example.  

The following table shows a preliminary observation on the net income of the firms analysed: 

Table 13 – data points net income 

Net income in last year considered Number of firms 

Loss 400 

n.a. 43 

€0 9 

Profit – less than €8k 165 

Profit – more thank €8k 484 

 

The number of bankrupt firms is 189. The cut-off of €8k has been chosen arbitrarily because it 

is the minimum amount for an entrepreneur to live in cities like Padova or Vicenza. 

In the analysis, we will start using a logistic model. Basically, the model is made by a regression 

of the independent variable “treated” on a series of dependant variables. The Z’, Z’’, Zeta 

models of Altman, as well as the ones of Ohlson and Beaver will be analysed. “Treated” is a 

dummy variable, equal to 0 didn’t fail, 1 otherwise. All the firms with a variable “Treated” 

equal to 1 will fail one year after the 5 years considered in our sample. For example, if the years 

taken into consideration are 2013, 2014, 2015, 2016 and 2017, the firm will fail in 2018. A 

great number of researchers from the economic and statistical fields supports the logistic 

regression against the discriminant analysis (used by Altman). The main critics come from 

(Ohlson, 1980), (Moyer, 1977), (Joy & Tollefson, 1975). 

The model has already been explained in the previous chapter. Basically, a cut-off point is 

selected to decide under which score a firm is considered by the model as non-failed. If the 
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likelihood of failure is greater than the cut-off point, the model predicts that the firm will fail, 

otherwise not. 

The first model considered is the Z’ Altman score. The Z Altman score, as above mentioned, 

won’t be analysed because it is a model designed for the big companies, whose market value 

of equity can be easily calculated. The firms of the following sample, being not-listed, have 

only the book value. 

Each year will be analysed separately. The first one investigated will be the first year before 

bankruptcy, which is supposed to be the one with the most meaningful results. 

 

 

3.4 Altman Z’ score 

 

3.4.1 Variables analysis 

 

An initial analysis of the data points is provided to understand a little bit the sample. Among 

the variables, the one named “lag”, that measures the year before bankruptcy considered, it is 

not included when the single variables will be considered but will be included when the full 

model is observed. The purpose is to understand the correlation with the other variables but 

then, not complicate too much the graphs. 

 

Figure 4 - Altman Z' score correlation matrix 
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As shown in the figure 4, the correlation between the variable “Treated” and the variables of 

the Z score of Altman is not really high, except for the variables “EBIT/total assets” and “Book 

value of equity/book value of debt”. The other interesting relation is the one between lag and 

the variables of the model.  

Table 14 - multicollinearity Z' score of Altman 

 We can see that there is a small but not 

insignificant relation between all lag 

and all of the variables. The correlation 

between the ratios is very low. Also the 

table 14, that shows the 

multicollinearity between the variables, 

reports a value lower than 5 for each 

variable and this means that the 

multicollinearity is low. 

The figures 5, 6 and 7 have been created in order to check if there are differences between the 

subgroups of the healthy and the non-healthy firms. 

 

 

 

Figure 5 - Z' model variables: X3 and X4 

Variable VIF 

Lag 1.000 

NWC/total assets. 1.01 

Retained earnings/ total assets 1.01 

EBIT/total assets 1.05 

BV of equity/ BV of total debt 1.00 

Sales/total assets 1.03 
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Figure 6 - Z' model variables: X1 and X2 

 

Figure 7 - Z' model variables: X3 and X5 

The graphs above show that on average, non-bankrupt firms have a higher equity/debt ratio, 

sales/total assets ratio, higher retained earnings/total assets, a slightly higher EBIT/total assets 

ratio and NWC/total assets. Only for the 3 previous graphs 105 outliers were removed to 

improve their readability.        
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3.4.2 Missing values 

 

With the purpose of understanding how to treat the missing values, their distribution and their 

weight are going to be estimated in table 15. 

Table 15 - Z' model. Number of missing values 

Ratio Number of firms with n.a. values 

NWC/total assets 78 

Ret. earnings/total assets 78 

EBIT/total assets 23 

BV of equity/BV of total debt 88 

Sales/total assets 23 

 

The relative amount of missing data is quite small but not enough to be ignored. To better 

understand the dispersion of the errors, 105 outliers, responsible of decrease the readability of 

the error’s dispersion, have been eliminated from figure 8. 

 

Figure 8 - Z' model. Location of missing values 

These graphs allow us know where data points, whose variables are missing, could be located 

in the plots according with the other variable whose value doesn’t miss. Where one of the 2 

variables is missing, some red points can be observed at the margins of the plot at the 

height/length where the other variable is present. In particular, the most meaningful graphs are 

the 2 on the right. They show that almost all those firms with missing data are almost not active. 

We get it from the fact that “EBIT/total assets” and “Sales/total assets”, but the 2nd variable of 

the graph doesn’t, they are close to 0. Despite this, we can’t consider them empty boxes since 

the NWC/total assets is quite distributed. 
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Figure 9 - Z' model. Estimated value of missing ratios 

The figure 9 shows were the missing data point are likely to be according with the estimation 

of R based on the results achieved from the other variables. The hunch that the missing values 

are related to non-active firms is correct but not enough to assume that they are 0. The empty 

values represent just a small percentage of the sample. Assigning median or mean values to 

these empty spaces could create a bias, since, on average, the firms with empty spaces are 

expected to perform worse than the average firm. At the same time, assigning a value equal to 

0 could fit for “Retained earnings/total assets” and for “EBIT/total assets” but for the others 

could be misleading because the range of values is wider. Instead of changing artificially the 

results and the variance, the empty values could be eliminated. Even if the risk is to achieve 

results that are slightly higher than the real ones, they don’t influence the considerations at the 

end of the thesis.  

 

3.4.3 Model test 

 

The first step in the determination of the reliability of the Altman models is the check of the 

success rate to understand if it is still proper. That model is based on the following equation: 

𝑍´ = 0.717𝑋1 + 0.847𝑋2 + 3.107𝑋3 + 0.420𝑋4 + 0.998𝑋5, 
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where the variables X1, X2, X3, X4 and X5 have been explained above. The variable Z’ will be 

named Z’ in the following graphs. 

The analysis will start with the prediction ability of this model in the first year. 

The Initial sample is equal to 1101. After having eliminated all the rows with empty space, a 

sample of 1058 firms remained.  

The author tried to follow the original formula with the multivariate discriminant analysis 

method, but the results are not positive. 

Following the setting of the Altman’s formula, this model has a difference compared with the 

following models: if a firm is going to be bankrupt, the variable Treated will be equal to one, 

otherwise. In table 16, the application of the original Z score is shown. 

Table 16 - confusion mattrix - 1 year before bankruptcy dataset 

 

 

 

 

It was also tried to apply this model with the sample of firms 5 years before the bankruptcy in 

table 17. The results are the same. 

Table 17 - confusion matrix - 5 years before bankruptcy dataset 

 

 

 

 

Since the analysis of the sample with the pre-defined coefficients of Z’ was a failure, the author 

will try to analyse them, still through the discriminant analysis method, but letting R calculating 

the most fitting coefficient values of the variables. 

The following analysis splits up the sample in 2 groups, the train and the test groups. The first 

is composed by the first 4 years, while the second one by the 5th year. The coefficients are 

shown in the table 18. 

Table 18 - Z' model. Coefficients with the 4 years before bankruptcy train dataset 

Coefficients of linear discriminants LD1 

NWC/total assets -0.27 

Retained earnings/total assets -0.007 

EBIT/total assets -5.205 

BV of equity/BV of total debt -0.002 

Sales/total assets -0.56 

 0 real 1 real 

0 predicted 0 0 

1 predicted 155 903 

 0 real 1 real 

0 predicted 0 0 

1 predicted 189 902 
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The equation that comes from the overall analysis is: 

𝑍′ = −0.27 ∗ 𝑋1 − 0.007 ∗ 𝑋2 − 5.205 ∗ 𝑋3 − 0.002 ∗ 𝑋4 − 0.56 ∗ 𝑋5 

The success matrix of the train dataset is represented in table 19, while the success matrix of 

the test dataset in table 20. 

Table 19 - Z' model confusion matrix, 4 years before bankruptcy train dataset. Train. 

 

 

 

 

Table 20 - Z' model confusion matrix, 4 years before bankruptcy train dataset. Test. 

 

 

 

 

And the percentage of correct predictions is 87.7% in the train sample and 83.5% in the test 

sample. The results are not satisfying since the model fails in classifying the laggard firms. 

Table 21 represents the percentage success with that equation. The % of correctly classified 

data points is quite high but only because the proportion between non-bankrupt firms and 

bankrupt firms is very high. The most worrying column is the one related to the sensitivity, too 

low to make the model acceptable.  

Table 21 - Z' score, 4 years before bankruptcy train dataset. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
87.8% 18.7% 99.7% 81.3% 0.3% 

2 years before 

bankruptcy 
85.5% 13.3% 99.9% 86.7% 0.1% 

3 years before 

bankruptcy 
83.2% 3.3% 99.3% 96.7% 0.7% 

4 years before 

bankruptcy 
82.8% 1.1% 99.4% 98.9% 0.6% 

5 years before 

bankruptcy 
82.6% 0% 99.2% 100% 0.8% 

 

 0 real 1 real 

0 predicted 3609 700 

1 predicted 19 32 

 0 real 1 real 

0 predicted 900 126 

1 predicted 3 29 
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An alternative to the previous equation is to get a formula from the sample with data coming 

from 1 year before bankruptcy and then apply that equation to the other years. The intuition is 

that it is more evident in that year if the firm is going to fail or not and so, the Z scores can be 

more meaningful. 

The coefficients are represented in the table 22. 

Table 22 - Z' model. Coefficients with the 1st years before bankruptcy train dataset 

Coefficients of linear discriminants LD1 Group 1 mean Group 0 mean 

NWC/total assets -0.262 -0.013 -0.262 

Retained earnings/total assets -0.005 -2.173 -0.005 

EBIT/total assets -6.862 -0.245 -6.862 

BV of equity/BV of total debt -0.0004 -0.134 -0.0004 

Sales/total assets -0.178 -0.544 -0.178 

 

The equation of the new Z’ score is: 

𝑍′ = −0.262 ∗ 𝑋1 − 0.005 ∗ 𝑋2 − 6.862 ∗ 𝑋3 − 0.0004 ∗ 𝑋4 − 0.178 ∗ 𝑋5 

The success rate is represented in table 23. 

Table 23 - Z' score, 1 year before bankruptcy train dataset. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
91.5% 47.7% 99.0% 52.3% 1.0% 

2 years before 

bankruptcy 
85.9% 21.1% 98.8% 78.9% 1.2% 

3 years before 

bankruptcy 
82.6% 5.4% 98.2% 94.6% 1.8% 

4 years before 

bankruptcy 
82.7% 2.7% 99.0% 97.3% 1.0% 

5 years before 

bankruptcy 
82.0% 2.2% 98.1% 97.8% 1.9% 

 

Still, the sensitivity is too low. From the point of view of a bank, these analysis are useless. As 

last test, the previous sample was changed in the following way: 

• If one or more ratios of a certain firm is/are not present, the raw relative to that year or 

years is/are deleted, as well as all the other raws with the name of that firm; 
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• The number of firms that face the bankruptcy and the ones that do not is the same. 

A 146 failed firms and 146 non failed firms is made. This analysis is made to check if the 

sample matters and if the missing data and the the proportion between bankruptcy and non-

bankruptcy firms determines a difference in the final result. The doubt comes from the fact that 

(Altman, 1968) used a sample where the number of the bankruptcy and the non-bankruptcy 

firms was the same. Coefficients are represented in Table 24. 

Table 24 - Z' score model. 1 year before bankruptcy test dataset. Equal sample. 

Coefficients of linear discriminants LD1 Group 1 mean Group 0 mean 

NWC/total assets -0.56 -0.023 0.328 

Retained earnings/total assets -0.001 2.283 -0.008 

EBIT/total assets -4.199 -0.253 -0.034 

BV of equity/BV of total debt -0.0005 -0.135 33.465 

Sales/total assets -0.61 0.536 -0.928 

 

The % of correctly predited output (82.5%) is lower than in the previous analysises but in this 

case the % of the type I error smaller. 

𝑍′ = −0.5605 ∗ 𝑋1 − 0.0009 ∗ 𝑋2 − 4.1991 ∗ 𝑋3 − 0.0005 ∗ 𝑋4 − 0.6097 ∗ 𝑋5 

The table 25, applying this equation, shows the success rate: 

Table 25 - Z' score, 1 year before bankruptcy train dataset. Equal sample. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
82.5% 77.4% 87.7% 22.6% 12.3% 

2 years before 

bankruptcy 
66.4% 43.2% 89.7% 56.8% 10.3% 

3 years before 

bankruptcy 
55.1% 17.8% 92.5% 82.2% 7.5% 

4 years before 

bankruptcy 
54.8% 15.8% 93.8% 84.2% 6.2% 

5 years before 

bankruptcy 
56.2% 17.1% 95.2% 82.9% 4.8% 
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With this model the confusion matrix gave results a little bit more interesting. As it was written 

above, the proportion of the dataset of (Altman, 1968) was reproduced and, indeed, the was an 

improve in the sensitivity. 

Still, the problem hasn’t been resolved yet because this dataset doesn’t represent the reality, 

where the number of non-defaulted firms is much bigger than the defaulted ones. If we apply 

this model to a group of random firms, where the proportion of non-bankruptcy and bankrutpcy 

firms is high, we could get biased results and a very low success rate. 

A last analysis will be done. Since the sample is unbalanced, the model tends to care more about 

reducing the II type errors, but the author is more interested in reducing the I type error. Because 

of that, still keeping the variables of the Altman model, a logit model will be applied, adding a 

further column that measures the burdersome of the errors. A weight equal to 1 is given to the 

type II errors, while a weight equal to 1/(number of defaulted firms/number of non-defaulted 

firms)) is given to the type I errors. Coefficients in table 26 are got. 

Table 26 - Z' score model. 1 year before bankruptcy test dataset. Application of weights. Coefficients 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) 0.0155 0.1208 0.128 0.898 

NWC/Total assets -0.1339 0.2100 -0.638 0.523 

Retained earnings/Total assets -0.9070 0.2006 -4.522 6-13e-06 

EBIT/total assets -15.2044 0.9210 -16.509 <2e-16 

BV of equity/BV of total debt -0.2597 0.5012 -5.185 2.16e-07 

Sales/total assets -1.2121 0.1298 -9.335 <2e-16 

 

The equation is: 

𝑍′ = 0.155 − 0.13398 ∗ 𝑋1 − 0.90704 ∗ 𝑋2 − 15.2044 ∗ 𝑋3 − 0.25986 ∗ 𝑋4 − 1.2121 ∗ 𝑋5 

And the success rate is shown in table 27. 

Table 27 - Z' score, 1 year before bankruptcy train dataset. Weights applied. Success table. 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
91.4% 85.2% 92.5% 14.8% 7.5% 

2 years before 

bankruptcy 
84.2% 49.4% 91.2% 50.6% 8.8% 

3 years before 

bankruptcy 
72.8% 19.1% 84.3% 80.9% 15.7% 
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4 years before 

bankruptcy 
73.3% 17.3% 84.8% 82.7% 15.2% 

5 years before 

bankruptcy 
78.9% 15.3% 91.7% 84.7% 8.3% 

 

The results are not satysfing yet because the sensitivity is still quite low in the 3rd, 4th and 5th 

years. Despite this, like in the analysis of the equal sample, the results improved.  The model 

can be applied by somebody that is worried in the II type errors but not by an entity interested 

in I type error. 

Using weights as explained before is a way to have a more successful model. In this case the 

weight of the first type errors was more or less 5, namely the proportion between non-bankrupt 

firms and bankrupt firms. If somebody else wants to use this model, an idea could be use the 

ratio in his/her territory of non-bankrupt firms to bankrupt firms in the time interval considered. 

For banks that rank the firms they lend money to in categories, it should be relatively easy to 

assign a weight based on the probability of failure of these firms. The con of this method is that 

if the weights are assigned in presence of a shock, the proportions could change and so the 

reliability of this method could decrease. 

Partially satysfied by the previous model, in order to decrease the I type error, a new regression 

will be made starting from the 3rd year and not anymore from the 1st. The logic behind is that 

in the 3rd year the characteristics of a bankruptcy firm are fuzzier and, because of this, when a 

model that has like data train the 1st year before bankruptcy is used, it is difficult recognize a 

failed firm some years before because its situation was not that bad. Table 28 shows the new 

coefficients got and table 29 shows the success rate. 

Table 28 - Z' score model. 3rd year before bankruptcy test dataset. Application of weights 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) 1.2793 0.1119 11.440 <2e-16 

NWC/Total assets -0.6648 0.1848 -3.598 0.0003 

Retained earnings/Total assets 0.0540 0.0208 2.596 0.009 

EBIT/total assets -4.7470 0.6454 -7.356 1.90e-13 

BV of equity/BV of total debt -1.1047 0.1039 -10.635 <2e-16 

Sales/total assets -0.6083 0.0772 -7.873 3.45e-15 

 

𝑍′ = 1.2799 − 0.6649 ∗ 𝑋1 + 0.05405 ∗ 𝑋2 − 4.74704 ∗ 𝑋3 − 1.1047 ∗ 𝑋4 − 0.60826 ∗ 𝑋5 
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Table 29 - Z' score, 3rd year before bankruptcy train dataset. Weights applied. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
68.3% 95.5% 63.7% 4.5% 36.3% 

2 years before 

bankruptcy 
67.7% 83.9% 64.5% 16.1% 35.5% 

3 years before 

bankruptcy 
66.5% 75.0% 64.8% 25.0% 35.2% 

4 years before 

bankruptcy 
54.2% 54.2% 55.4% 51.9% 44.6% 

5 years before 

bankruptcy 
53.1% 53.1% 54.7% 55.2% 45.3% 

 

This model has a higher sensitivity but still it is not enough to be used by an entity that wants 

to decide if to grant a credit with a reimbursement period of 4 years or more for example. On 

the other side, also the specificity is quite low and this makes the previous model not really 

interesting. 

A limitation of this model is the presence of the weight: the assumption relative to that column 

is that the ratio between non-failed and failed firms is equal to 5. We know that this is true just 

in the artificial example that was created  for this thesis. If somebody else wants to use the 

weights in his/her model, the proportion must be completely changed. Let’s pretend that in a 

certain period this ratio is true: wheter there is a negative or a positive shock in the economy, 

the weights could change. If for example, the region considered is suffering a severe crisis and 

the ratio between non-failed and failed firms decreases to 2.5, the sensitivity decreases, up to 

reach almost 0 in the 5th year. It can be considered an approximation of the average of the results 

between the model with a weight equal to 5 and one with out the weight. 

 If, instead, the economy was living a period of strong expansion and, because of that, the ratio 

between non-failed and failed firms would increase to 10, the specificity would reach very low 

levels and would create another useless model. This test is going to be done. It can also be seen 

from another point of view as a “stress test” made by the banks to be more sure of the ability to 

pay of some potential borrowers.  

Two tries were made by the author to check which model was better in order to increase the 

sensitivity, namely the ones that use respectively 1 and 3 years before bankruptcy as train set 
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using a weight equal to 10. The 2nd model, whose coefficients are in table 30 and the success 

rate in table 31, showed to be the best. 

Table 30 - Z' score model. 3rd year before bankruptcy test dataset. Application of a weight equal to 10. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) 2.0395 0.1020 19.987 <2e-16 

NWC/Total assets -0.7538 0.1684 -4.478 7.55e-06 

Retained earnings/Total assets 0.0601 0.0200 3.000 0.0027 

EBIT/total assets -5.2372 0.6328 -8.277 <2e-16 

BV of equity/BV of total debt -1.1171 0.0860 -12.997 <2e-16 

Sales/total assets -0.6315 0.0665 -9.498 <2e-16 

 

The equation used is: 

𝑍′ = 2.03925 − 0.7538 ∗ 𝑋1 − 0.06013 ∗ 𝑋2 − 5.2372 ∗ 𝑋3 − 1.11711 ∗ 𝑋4 − 0.6315 ∗ 𝑋5 

The statistics are as follows: 

Table 31 - Z' score, 3rd year before bankruptcy train dataset. Application of weights equal to 10. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
50.9% 98.7% 42.6% 1.3% 57.4% 

2 years before 

bankruptcy 
49.1% 97.8% 39.4% 2.2% 60.6% 

3 years before 

bankruptcy 
49.6% 95.1% 40.4% 4.9% 59.6% 

4 years before 

bankruptcy 
48.4% 93.5% 39.2% 6.5% 60.8% 

5 years before 

bankruptcy 
44.5% 91.8% 35.0% 8.2% 65.0% 

 

The model is still not good. If a coin were tossed, the probability to guess the right exit was the 

same. On the other side, this model can be used by those banks that don’t want to grant money 

to insolvent firms. The sensitivity is always more than 90%. A possible idea that comes from 

this model is that different models could be used by different entities with different needs. A 

model that can satisfy everybody doesn’t exit, according with this thesis. 
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The model of Altman can work only if the average bankruptcy firms percentage in a certain 

area is known and will consequently be considered. Moreover, the author believes that also the 

influence of the variables is not the same worldwide.  Because of that, if some entities want to 

use the Altman model to predict the future of a firm, it should use some reviews of the model 

considering their characteristics. For example, italian firms are on average small, managed by 

the entrepreneur and with a limitied use of external capital. 

Finally, a test on the difference of each ratio between a certain year and the previous one could 

be an interesting base to determine a model. Basically, the variables used won’t be the ratios 

themselves but the difference between the ratio of the year t and t-1. The deterioration of the 

ratios could be a clue of the failure of a firm. 

The variables “Delta book value of equity/book value of total debt” and “Delta sales/total 

assets” are not significant, so they have been removed. Coefficients are shown in table 32, while 

the success rate in table 33. 

Table 32 – Delta Z' score, 1st year before bankruptcy train dataset. Weights applied. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -1.0493 0.0706 -14.860 <2e-16 

Delta NWC/Total assets -0.7871 0.3063 -2.569 0.0102 

Delta Retained earnings/Total assets -11.405 0.8317 -13.713 <2e-16 

Delta EBIT/total assets -8.5878 0.5865 -14.642 <2e-16 

 

Where, 

𝑌 = −1.04929 − 0.78709 ∗ 𝑋1 − 11.40550 ∗ 𝑋2 − 8.58784 ∗ 𝑋3 

The result got is: 

Table 33 – Delta Z' score, 1st year before bankruptcy train dataset. Weights applied. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
91.8% 72.4% 95.1% 27.6% 4.9% 

2 years before 

bankruptcy 
84% 35.4% 93.6% 64.6% 6.4% 

3 years before 

bankruptcy 
80.6% 13.7% 94.1% 86.3% 5.9% 

4 years before 

bankruptcy 
81.1% 10.6% 95.2% 89.4% 4.8% 
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Only the first year predicts correctly the output of the sample. 

The author tried to do a further model, got with the difference between the values of the 

variables in the years t and t-1 and other 5 variables got with the interaction between the time 

and the delta (variable) but the try was unsuccessful. 

The fact that these models are not reliable can be because 3 or 4 year before the bankruptcy the 

difficulties of the firms can be partially hidden by the accountants and only in the last year, 

when a recovery is difficult, the accounting numbers plummet.  

Finally, some final observation will be written about the role of the ratios in the application of 

the Altman models. 

It has been observed that the less important ratio is “Retained earnings/total assets”. This ratio 

is not significative and its coefficient is very low. It can be connected to the fact that the majority 

of small and medium firms in Veneto is represented by firms where the manager is also the 

entrepreneur and that has as a unique income the earnings of the company. It follows that they 

withdraw constantly money, letting a small amount of retained earnings in the firm. 

The other ratio that shows a small coefficient is “Book value of equity/book value of total debt”. 

This can be due to the fact that the way of financing in a country like the USA, where the model 

was originally applied, compared with Italy is different. The USA are known to be more market 

dependant, while Italy is a hybrid. Moreover, the small firms in Veneto avoid as more as 

possible increase in the equity value, while they prefer using debt. At the same time, the book 

value of equity is less informative than the market value of debt. 

 

 

3.5 Altman Z’’ score 

 

3.5.1 Model test 

 

After having analyzed the Z’ Atman score, the Z’’ model will be taken into consideration. The 

hope that this model can bring more information comes from the positive results collected by 

(Altman, et al., 2013). The model is like the original Z score, but the last ratio (X5 - Sales/total 

assets) is eliminated, in order to remove the differences among firms of different industries, 

with different assets turnover.  

Since Z’ was already analyzed, it is pointless to make again all the models. The analysis will 

be limited to a model that uses the first year before bankruptcy as data train and the previous 4 

years as data test and one that has uses the 3rd year before bankruptcy as data train and the other 
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years as data test. Since the use of the weights showed in Z’ an improvements of the accuracy, 

the weights directly applied also in this model. The author deems useless applying the original 

models or also the models without the weights. The model that uses the change in the values of 

the variables, i.e. the last model used in the Z’ score analysis, to predict the failure of the model 

won’t be used because also in Z’ the variable “delta Sales/total assets” was not significant and, 

because of this, was neither applied in the other try. The consequence is that identical model to 

the previous model would be got. 

The weighted model shows a big improvement compared with the previous one even if the 

success rate is not much higher than 50%. 

It has characteristics very similar to the ones of the Z’ score and the variable “NWC/total assets” 

is not statistically significant, as the following figure shows, even if it influences the model a 

little bit more than before. Weights will be applied to ponder the weight of the different kinds 

of error. 

Table 34 – Z’’ score, 1st year before bankruptcy train dataset. Weights applied. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -0.7334 0.0956 -7.671 1.70e-14 

NWC/Total assets -0.1455 0.2069 -0.703 0.482 

Retained earnings/Total assets -1.1574 0.2246 -5.154 2.55e-07 

EBIT/total assets -15.4400 0.9377 -16.465 <2e-16 

BV of equity/BV of total debt -0.2302 0.0494 -4.656 3.22e-06 

 

The equation applied will be: 

𝑍′′ = −0.73338 − 0.14547 ∗ 𝑋1 − 1.15739 ∗ 𝑋2 − 15.43991 ∗ 𝑋3 − 0.23018 ∗ 𝑋4 

Table 35 contains the success rate: 

Table 35 - Delta Z'’ score, 3rd year before bankruptcy train dataset. Weights applied. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
92.3% 80.6% 94.4% 19.4% 5.6% 

2 years before 

bankruptcy 
83.6% 42.8% 92.1% 57.2% 7.9% 

3 years before 

bankruptcy 
80.7% 20.1% 93.1% 79.9% 6.9% 
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4 years before 

bankruptcy 
80.4% 15.1% 93.8% 84.9% 6.2% 

5 years before 

bankruptcy 
79.4% 13.1% 92.9% 86.9% 7.1% 

 

The model has a lower predicted power compared with the Z’ score so, the results of this thesis 

contradict the ones of (Altman, et al., 2013), that found out that the Z’’ score was the best for 

their sample. 

The 2nd model, as was already anticipated, will be equal to the previous one but it will be made 

using as train dataset the 3rd year before bankruptcy. 

Table 36 - Z’’ score, 3rd year before bankruptcy train dataset. Weights applied. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) 0.6999 0.0844 8.288 <2e-16 

NWC/Total assets -0.6070 0.1797 -3.377 0.0007 

Retained earnings/Total assets 0.0583 0.0185 3.156 0.0016 

EBIT/total assets -5.9458 0.7102 -8.372 <2e-16 

BV of equity/BV of total debt -1.0637 0.1087 -9.791 <2e-16 

 

All the variables, contrarily to the model with the 1st year before bankruptcy as train data, are 

significant. The equation is the following: 

𝑍′′ = 0.69984 − 0.60704 ∗ 𝑋1 + 0.05829 ∗ 𝑋2 − 5.94577 ∗ 𝑋3 − 1.06368 ∗ 𝑋4 

Table 37 - Delta Z'’ score, 3rd year before bankruptcy train dataset. Weights applied. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
64.4% 91.6% 59.7% 8.4% 40.8% 

2 years before 

bankruptcy 
64.0% 82.8% 60.2% 17.2% 39.8% 

3 years before 

bankruptcy 
63.5% 76.1% 60.9% 23.9% 39.1% 

4 years before 

bankruptcy 
63.2% 81.0% 52.9% 19.0% 47.1% 

5 years before 

bankruptcy 
66.1% 88.0% 54.8% 12.0% 45.2% 
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The results of this model are, surprisingly, much better than the version of this model got using 

the Z’. Probably the influence of the ratios NWC/total assets and Retained earnings/total assets, 

both non-significant in the previous model but significant here, influenced the output more than 

the variables Sales/total assets in the Z’ model. The sensitivity is very satisfying, but the 

specificity is close to 50%. The risk is that the costs of not granting debts to worthy people 

could be higher than the costs of non-paying of the debt, especially considering the fact that the 

non-failed firms are 5 times the failed firms.  

 

 

3.6 ZETA model 

 

3.6.1 Variables analysis 

 

(Altman, 2000) showed a new model, with 7 new variables, explained before. As was 

previously mentioned, the capitalization and the stability of earnings variables will be removed, 

due to the impossibility of the author to calculate them. 

The analysis of the model will start checking the correlations of the variables, with the output 

and the other input in Figure 10. 

 

Figure 10 - Altman ZETA model correlation matrix 

The variables with a greater correlation with the output is the Return on Assets. This result is 

very similar to the Altman Z’ score, where the indicator measuring the performance of the firm 

in a certain year is the most explicative. 
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 Table 38 - multicollinearity Altman ZETA model 

 

 The VIF function is close to 1. It means 

that there is no multicollinearity. 

The next graphs, instead, are made to 

check if a difference between the there 

is a difference in the sample between 

those rows that have “Treated=0” and 

“Treated=1”. 57 outliers were removed to make the following graphs. 

 

Figure 11 - ZETA model variables: Return on assets and debt service 

 

Figure 12 – ZETA model variables: Liquidity and debt service 

Variable VIF 

Lag 1.02 

Debt service 1.00 

Liquidity 1.00 

Return on assets 1.03 

Cumulative profitability 1.00 

Size 1.00 
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The variables whose value is clearly different between failed and non-failed firms are the size, 

the return on assets and the liquidity. The debt service doesn’t look to influence too much the 

output, while the cumulative profitability has more variance in the non-failed than in the failed 

firms. This is not expected because some non-failed firms with a cumulated profitability that is 

much lower than the failed firms, won’t fail, while the failed firms show an accumulated 

profitability close to 0. 

 

 

3.6.2 Missing values 

 

The 2nd analysis performed is the one of the missing values, to understand if a solution like 

Altman can be developed or other alternatives should be preferred. First of all, the number of 

missing values is checked through table 39. 

Table 39 - ZETA model. Number of missing values 

Ratio Number of firms with n.a. ratio 

Return on assets 23 

Debt service 293 

Cumulative profitability 130 

Liquidity 869 

Size 0 

 

The empty values are many more than in the case of the Z’ model. Indeed, the missing liquidity 

ratios are 869, but also the missing debt service empty values are not negligible. 

Figure 13- ZETA model variables: Size and Return on assets 
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A series a graphs are made to better understand where the missing points are located. In order 

to improve the comprehension of the graphs, 57 outliers have been removed. 

 

 

Figure 14 - Altman ZETA model. Location of missing values 

The red points appear only when a variable out of 2 is present and they show the place where 

that data point would have stayed if the other variables hadn’t been empty. As with the Altman 

model, the red points are distributed around the graph. It means that these firms are active and 

not empty boxes. Also the graph below predicts that, even if the ratios are quite low, they are 

not 0 and, because of this, the author will delete le rows with empty cells. 

 

Figure 15 - ZETA model. Estimated value of missing ratios 
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3.6.3 Model test 

 

No coefficients were showed by Altman, since the model is subject to copyright. The 

consequence is that the part where the original model is analysed will be skipped. 

A quick analysis of the model without the application of the weights was tried but the results 

are similar to the ones achieved with the application of the Z score model without the weights.  

The original sample used by Altman was composed of 53 failed firms and 58 non-failed firms. 

To reproduce artificially the proportion of Altman, the weight applied to the I type error is equal 

to (53/58)/(number of failed firms in my sample/number of non-failed firms in my sample). The 

method used will be the logit model to try to have better results than the criticized MDA but 

the weights (instead of changing the cut-off) will be kept in order to hold a connection with the 

MDA model. The statistic methodology behind is preferred by the author since the MDA is, in 

his opinion not a good method to get good results. 

The coefficients got from a weighted model is the following: 

Table 40 - ZETA model, 1st year before bankruptcy train dataset. Weights applied. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -7.699e-01 1.124e-01 -6.848 7.49e-12 

Return on assets -1.883e+01 1.195e+00 -15.761 <2e-16 

Debt service 1.611e-06 7.393e-07 2.179 0.0294 

Liquidity -7.764e-02 2.445e-02 -3.175 0.0015 

Size 5.019e-06 2.202e-06 -2.280 0.0226 

 

The cumulative profitability is not significant, and it was removed. The equation below is 

reached: 

𝑍𝐸𝑇𝐴 = −7.669 ∗ 𝑒−1 − 1.883 ∗ 𝑒1 ∗ 𝑋1 + 1.611 ∗ 𝑒−6 ∗ 𝑋3 − 7.764 ∗ 𝑒−2 ∗ 𝑋5 + 5.019

∗ 𝑒−6 ∗ 𝑋7 

Table 41 - Altman ZETA model, 1st year before bankruptcy train dataset. Weights applied. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
92.1% 80.8% 94.1% 19.2% 5.9% 

2 years before 

bankruptcy 
84.5% 41.7% 92.9% 58.3% 7.1% 
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3 years before 

bankruptcy 
80.8% 19.1% 92.9% 80.9% 7.1% 

4 years before 

bankruptcy 
79.8% 14.5% 92.9% 85.5% 7.1% 

5 years before 

bankruptcy 
77.5% 15.2% 90.1% 84.8% 9.9% 

 

More interesting is the model that uses the 3rd year as data train, which excludes the cumulative 

profitability and the size. It is interesting notice that this last variable, that was deemed 

important by (Altman, 2000), but also by (Ohlson, 1980), here is not useful. Using the 

coefficients of the table 42, the equation below is got: 

Table 42 - ZETA model, 3rd year before bankruptcy train dataset. Weights applied. Coefficients 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) 1.514e-01 6.292e-02 2.407 0.0161 

Return on assets -8.826e+00 9.470e-01 -9.319 <2e-16 

Debt service 1.274e-05 7.470e-06 1.705 0.0882 

Liquidity -2.561e-02 6.556e-03 -3.906 9.39e-05 

 

The equation got is the following: 

𝑍𝐸𝑇𝐴 = 1.514 − 8.826 ∗ 𝑋1 + 1.274 ∗ 𝑒−5 ∗ 𝑋3 − 2.561 ∗ 𝑒−2 ∗ 𝑋5 

The table representing the results achieved is the following: 

Table 43 - Altman ZETA model, 3rd year before bankruptcy train dataset. Weights applied. Success table 

 % correctly 

classified 

Sensitivity Specificity I type error 

% 

II type 

error % 

1 year before 

bankruptcy 

77.5% 90.8% 75.1% 9.2% 24.9% 

2 years before 

bankruptcy 

74.0% 71.5% 74.5% 28.5% 25.5% 

3 years before 

bankruptcy 

70.2% 47.4% 74.7% 52.6% 25.3% 

4 years before 

bankruptcy 

70.6% 46.7% 75.3% 53.3% 24.7% 

5 years before 

bankruptcy 

69.8% 47.7% 74.4% 52.3% 25.6% 
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A prediction accuracy of 70% is quite high, especially considering that the sensitivity is around 

50%. A further test, using a weight equal to 10, is tested in order to check if this solution can 

fit for conservative lenders who are willing to renounce to grant some debts but, in exchange, 

they don’t want to take the risk to lose their money due to insolvent borrower. 

2 tests have been made: the first one was based on the data coming from one year before the 

bankruptcy and another one that used a data train coming from 3 years before the bankruptcy. 

In the first case, the sensitivity was very low, especially in the 4th and in the 5th year, making 

the results not usable. In the second case, the sensitivity was very high but at the same time the 

specificity was very low. The result was that, if from one side almost all the bankrupt firms 

were identified, on the other side too many non-bankrupt firms were identified as failed. The 

consequence is that this model can lead to a huge cost in terms of missed chance, due to the 

non-grant of debt to worthy firms. 

As with Z’ score, a model using the deltas was developed. Also here, 2 tests were made, using 

the dataset coming from respectively 1 and 3 years before bankruptcy. 

Both the models didn’t show the awaited results. In the 2nd try, only “Delta return on assets” 

and “Delta debt service” (this last one only with a confidence interval equal to 90%) were 

significant and both the sensitivity and the specificity were close to 50%. In the first test, the 

results are better but still the problem of almost all the previous tests made using as data train 

the 1st years before bankruptcy remains, i.e. the sensitivity is very low.  

The coefficients are represented in table 44: 

Table 44 - ZETA model, 3rd year before bankruptcy train dataset. Weights applied. Coefficients 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -1.675e-01 6.181e-02 -2.710 0.0067 

Delta Return on assets 1.862e+00 2.714e-01 -6.862 6.79e-12 

Delta Liquidity 7.984e-03 4.337e-03 1.841 0.0656 

Delta Size -8.536e-05 1.900e-05 -4.492 7.04e-06 

 

And the equation got is  

𝑌 = −1.675 ∗ 𝑒−1 − 1.862 ∗ 𝑋1 + 7.984 ∗ 𝑒−3 ∗ 𝑋5 − 8.536 ∗ 𝑒−5 ∗ 𝑋7 

And the results are presented in table 45. 

 
Table 45 - Delta Altman ZETA model, 3rd year before bankruptcy train dataset. Weights applied. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 
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1 year before 

bankruptcy 
83.6% 60.2% 87.7% 39.8% 12.3% 

2 years before 

bankruptcy 
78.0% 35.3% 86.2% 64.7% 13.8% 

3 years before 

bankruptcy 
74.9% 14.0% 86.5% 86.0% 13.5% 

4 years before 

bankruptcy 
62.9% 23.4% 70.6% 76.6% 29.4% 

 

The first conclusion that comes from the view of the results is that the ZETA model doesn’t 

predict successfully the value of the output. This is true in our case, but the author reminds the 

reader that the model applied here is not the full model, because the variables X2 and X6 have 

been omitted due to the fact that with the dataset used it has been impossible include them, 

since also some previous years were required. Maybe, if the full ZETA model were used, the 

accuracy would have increased but this test should be made in a further research. 

What is common in all the models is that the cumulative profitability, as was observed also in 

the analysis of the Z’ and Z’’ scores, is not significant in the failure prediction. 

Another observation that comes from the analysis of the results of this ZETA, the Z’ and the 

Z’’ models come from the choice of the use of the train dataset. The selection of the most fitting 

train dataset was quite difficult. The observation that I can do is the following: 

• If the train dataset comes from the 1st or the 2nd year, the specificity is always greater 

than 50%, but the sensitivity is quite low and in the 3rd, 4th and 5th years is very low. 

• If the train dataset is represented by the 3rd year, the sensitivity can increase. The 

problem of this choice is that usually nor the sensitivity nor the specificity are much 

higher than 50% and sometimes they are even a little bit lower. This is due to the fact 

that 3 years before bankruptcy the values of the firm are still quite fuzzy and it is not so 

difficult to recognize the healthy and the unhealthy firms. The consequence is that the 

model has a better equilibrium in terms of sensitivity and specificity and its predictive 

ability is greater than 50% but such a percentage is enough to be considered a good 

model from the point of view of a banker? Having, let’s say 60% of the outputs correctly 

predicted, according with the author, it could not be enough or many lenders. 

• If the train dataset is represented by the 4th and the 5th years, the results are very bad 

both from the point of view of the sensitivity and of the specificity. 
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• If the train dataset is made of all the years, the sensitivity is very low, especially in the 

first years (the ones farther from the bankruptcy event) and the specificity is not too 

high. 

What the author concluded is that it doesn’t exist a data train that is better than the others. Each 

one has some pros and some cons. The best 2 are the ones that use as data train 1 and 3 years 

before bankruptcy. Still no of them provided satisfying results. 

 

 

3.7 Ohlson O-score 

 

3.7.1 Introduction 

 

The following model analysed is the one proposed by (Ohlson, 1980). Undoubtedly, after the 

Altman models, it is the most famous accounting-based model to predict bankruptcy. 

The author reminds the reader that Ohlson created 3 models: 

• Model 1 predicts bankruptcy within one year; 

• Model 2 predicts bankruptcy within 2 years. The underlying assumption is that the firm 

won’t fail in the subsequent year; 

• Model 3 predicts bankruptcy within 2 years. 

To increase the comparability of the Ohlson O-score with the previous models, the author will 

predict the failure of a firm up to 5 years before bankruptcy. The advantage of this method is 

that all the 3 models will be included in a bigger model. In this way, the effectiveness of the 

Ohlson model will be checked and, furthermore, also the 3rd, the 4th and the 5th years before 

bankruptcy. 

In this model the analysis of the data missing won’t be done. The results would be the same of 

the previous 2 cases. Both the analysis showed that the firms whose data miss are firms with a 

bad performance but that still have an activity that prevents us from substituting the empty 

values with “0”. At the same time, using an average or a median of the other values, would 

create a reduction of the variability and a bias that could create misleading results. 

Instead, the study of the model will be performed again also in this case. 

 

 

3.7.2 Variables analysis 
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Only the 4 years before bankruptcy have been included in our model aimed to the analysis of 

the overall performance. The reason behind is that in the 5th year the variables INTWO and 

CHIN can’t be calculated because they need, for their calculation, both the current and the 

previous year but the 6th year before bankruptcy is not present. 

The analysis will start with the correlation between the variables in the model: 

 

Figure 16 - Ohlson model correlation matrix 

The correlation between the single variables is more worrying compared with the Altman’s 

models. 

The highest correlation between the variables come from the relationship between: 

• WCTA and NITA. These 2 elements are the less expected even if they have some 

elements in common, for example the presence of the inventories in both the working 

capital and the net income. 

• INTWO and OENEG. They are not directly correlated but it is very likely that a firm 

that has a net income<0, it has also total assets<total liabilities. 

• TLTA and NITA. The reason of this correlation is the same of the one of the previous 

2 variables. 

• INTWO and NITA. The 2nd variable measures the ability of the firm to create income, 

while the 1st one checks whether a firm had a negative income in the previous 2 days. 

To make a further test, also the presence of multicollinearity is tested: 

Table 46 - multicollnearity Ohlson model 

Var. lag SIZE TLTA WCTA CLCA OENEG NITA FUTL INTWO CHIN 

VIF 1.07 1.01 1.05 1.02 1.03 1.4 1.74 1.02 1.26 1.16 

 

There is no multicollinearity, provided that all the VIF values are lower than 5.  
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Finally, a series of graph, to test the differences among those firms that are going to fail and 

those that are not. In order to increase the readability of the following graphs, 66 outliers were 

removed.                                

 
Figure 17 - Ohlson model variables: CHIN and INTWO

 

Figure 18 - Ohlson model variables: FUTL and NITA 
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Figure 19 - Ohlson model variables: SIZE and TLTA 

 
Figure 20 - Ohlson model variables: WCTA and CLCA 

From these graphs we can se that on average the firms that go bankrupt are more likely to have 

a INTWO equal to 1, i.e. they have total liabilities greater than total assets compared with the 

non-failed ones. This last kind of firms also have a lower value associated to the value of CHIN, 

where, 

𝐶𝐻𝐼𝑁 =
𝑁𝐼𝑡 − 𝑁𝐼𝑡−1

(|𝑁𝐼𝑡| + |𝑁𝐼𝑡−1|)
 

This ratio shows a deterioration of the net income, when it is present. Also, on average, the 

income is higher for non-failed firms. The FUTL, ratio aimed at measuring the ability of firm 

to repay the debts only with the liquidity coming from the operating performance, is slightly 

higher for non-failed firms. On average, also the liabilities of the failed firms are greater than 

the assets, as it is demonstrated by the higher value of TLTA and of CLCA. At the same time, 

a difference in SIZE and WCTA are not observed in the graphs. In particular, the WCTA could 

be non-significant, as it happened in the study of the Z’ score. 
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3.7.3 Testing the model 

 

The first test was made on the model 1, namely the model that predicts the failure of the firms 

one year before bankruptcy. The regression is based on the logit model. In order to test the 

original O-score, a cut-off equal to 3.8% and no-weights will be performed. 

For the 2 versions of the first model, the variables WCTA, CLCA, FUTL and CHIN have been 

removed. In the 5th year before bankruptcy the variable OENEG can’t be calculated so the 

model will be made by the other 4 variables. 

The significant coefficients for the 1st are represented in table 47. 

Table 47 - Ohlson model. Model 1. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -7.5607 0.9200 -8.218 <2e-16 

SIZE 0.3465 0.0937 3.700 0.0002 

TLTA 1.7520 0.4520 3.876 0.0001 

OENEG 1.5455 0.4499 3.435 0.0006 

NITA -8.7486 1.3219 -6.618 3.64e-11 

INTWO 0.6521 0.3156 2.066 0.0388 

 

What is surprising is the coefficient of the size. According with the literature, firms with a 

greater size are less likely to fail, while in the sample of this thesis, the coefficient associated 

with the size shows that a bigger company is more likely to fail. 

The equation got is the following: 

𝑂 − 𝑠𝑐𝑜𝑟𝑒 = −7.56075 + 0.34652 ∗ 𝑆𝐼𝑍𝐸 + 1.75197 ∗ 𝑇𝐿𝑇𝐴 + 1.54555 ∗ 𝑂𝐸𝑁𝐸𝐺

− 8.74858 ∗ 𝑁𝐼𝑇𝐴 + 0.65209 ∗ 𝐼𝑁𝑇𝑊𝑂 

The table 48 represents the success probability of the model. 

Table 48 - Ohlson model 1. Cut-off 0.038. Success table. 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
72.3% 95.4% 68.3% 4.6% 31.7% 

2 years before 

bankruptcy 
66.8% 79.8% 64.2% 20.2% 35.8% 
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3 years before 

bankruptcy 
66.0% 65.4% 66.1% 34.6% 33.9% 

4 years before 

bankruptcy 
64.5% 63.6% 64.7% 36.3% 35.3% 

5 years before 

bankruptcy 
58.9% 59.7% 58.8% 40.3% 41.3% 

 

Undoubtedly, this is the best model so far because both the sensitivity and the specificity are 

higher than 50%. The cut-off will be kept as 0.038. The presence of such a low cut-off makes 

the presence of a weight unnecessary. Anyway, a test with a logit model, with a weight applied 

on the data points with “Treated=1” equal to 1/(number of bankrupt firms/number of non-

bankrupt firms) has been made and the result was worse compared with the one with the model 

with cut-off equal to 0.038. The use of a logit model together with a low cut-off in our case 

works much better than a multivariate analysis or than a logit model with the weights. 

The use of model 2 will be tried as well. This model uses as data train 2 years before the 

bankruptcy and it has the strict condition that the firms can’t flop in the year after the one used 

as train dataset. The non-significant variables are WCTA, CLCA and FUTL and, consequently, 

they have been removed. 

Table 49 - Ohlson model 2. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -3.4469 0.5084 -6.780 1.20e-11 

SIZE 0.1583 0.0598 2.647 0.0081 

TLTA 0.94202 0.3551 2.653 0.0080 

OENEG -8.0338 1.3774 -5.833 5.45e-09 

NITA 0.3964 0.2289 1.732 0.0834 

INTWO -0.3189 0.1690 -1.887 0.05910 

 

The equation got is: 

𝑂 − 𝑠𝑐𝑜𝑟𝑒 = −3.44688 + 0.15826 ∗ 𝑆𝐼𝑍𝐸 + 0.94202 ∗ 𝑂𝐸𝑁𝐸𝐺 − 8.03380 ∗ 𝑁𝐼𝑇𝐴

+ 0.39640 ∗ 𝐼𝑁𝑇𝑊𝑂 − 0.31890 ∗ 𝐶𝐻𝐼𝑁 

The table obtained with the success percentage of model 2 with the original cut-off is the 

following: 
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Table 50 - Ohlson model 2. Cut-off 0.038. Success table. 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
22.5% 98.0% 9.4% 2.0% 90.6% 

2 years before 

bankruptcy 
22.8% 100.0% 7.4% 7.4% 92.6% 

3 years before 

bankruptcy 
23.9% 98.4% 8.7% 8.7% 91.3% 

4 years before 

bankruptcy 
23.2% 98.4% 7.8% 7.8% 92.2% 

5 years before 

bankruptcy 
22.3% 98.9% 7.0% 7.0% 93.0% 

 

The cut-off, for the model 2, is too low. The consequence is that the sensitivity is very high, but 

the specificity is too low. Even if somebody were more interested in the sensitivity side, such a 

high percentage of misclassified non-bankrupt firms could create such a high amount of costs 

to make a reader prefer a lower sensitivity if compensated by a greater specificity. 

After some tries, the best cut-off tested is 0.12. The results got with that are represented in table 

51. 

Table 51 - Ohlson model 2. Cut-off 0.12. Success table. 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
72.4% 92.1% 69.0% 7.9% 31.0% 

2 years before 

bankruptcy 
68.5% 80.3% 66.2% 19.7% 33.8% 

3 years before 

bankruptcy 
66.6% 57.7% 68.5% 42.3% 31.5% 

4 years before 

bankruptcy 
64.5% 54.9% 66.5% 45.1% 33.5% 

5 years before 

bankruptcy 
61.3% 52.8% 63.0% 47.2% 37.0% 
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The results aren’t bad but they are not as good as in the case of the first model. The last model 

to be analysed is model 3. Its dataset is made of firms that are going to fail within one or 2 

years. The solution applied here is to create a dataset merging 516 firms from the dataset 

containing the ratios calculated on the firms one year before bankruptcy and 516 firms from the 

dataset containing the ratios calculated on the firms 2 years before bankruptcy. All the ratios, 

except OENEG and NITA, being non-significant, have being removed. The coefficients got are 

showed in table 52. 

Table 52 - Ohlson model 3. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -2.6116 0.1356 -19.263 <2e-16 

OENEG 2.1221 0.3217 6.596 4.22e-11 

NITA -9.7289 1.2377 -7.860 3.83e-15 

 

When the datasets are mixed, the number of significant variables decreases a lot and the 

equation is: 

𝑂 − 𝑠𝑐𝑜𝑟𝑒 = −2.6116 + 2.1221 ∗ 𝑂𝐸𝑁𝐸𝐺 − 9.7289 ∗ 𝑁𝐼𝑇𝐴 

Table 53 contains the success rate. 

Table 53 - Ohlson model 3. Cut-off 0.17. Success table. 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
27.6% 98.0% 15.5% 2.0% 84.5% 

2 years before 

bankruptcy 
28.2% 100.0% 13.9% 0.0% 86.1% 

3 years before 

bankruptcy 
29.0% 97.8% 15.0% 2.2% 85.0% 

4 years before 

bankruptcy 
28.3% 97.8% 14.0% 2.2% 86.0% 

5 years before 

bankruptcy 
27.0% 98.9% 12.6% 1.1% 87.4% 

 

Also, in this case the specificity is too low.  Some other cut-offs were tested on the 4th and 5th 

years before bankruptcy, that are the years where the sensitivity is lower among all the years 
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and with all the cut-offs it was impossible to reach a balance between the specificity and the 

sensitivity. 

The next step is to create a model, as was done also with the analysis of the Z’ and ZETA scores, 

that uses as variables the difference in the values between one year and the previous one, to 

better appreciate the worsening of the ratios for those firms that are going through the 

bankruptcy condition. 

Some tries were made using each year as data train and also, following the approach of (Ohlson, 

1980), many cut-offs. The best result collected is definitely the one reached using the cut-off 

equal to 0.15 and as data train the 2nd year before bankruptcy. Instead, with the other years it 

was more difficult to find an equilibrium between specificity and sensitivity. Also, the cut-off 

equal to 0.038 produced a specificity too low. 

The significant ratios can be appreciated in table 54. 

Table 54 - Delta Ohlson model 2. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -1.8617 0.0977 -19.061 <2e-16 

Delta SIZE 0.1209 0.0421 2.869 0.0041 

Delta OENEG -0.7656 0.2837 2.698 0.0070 

Delta NITA -4.2263 0.6396 -6.608 3.9e-11 

 

The only significant coefficients are the ones above, while a change in the working capital or a 

deterioration in the ratio both between current liabilities to current assets as well as between 

total liabilities to total assets doesn’t influence the output. Contrarily with what was expected, 

also the delta FULT doesn’t influence the failure of a firm. A change in the variables INTWO 

and CHIN was more expected to not influence the model: the first one because it is less likely 

to change compared with the other ratios from one year to another and, if a firm has a net income 

around zero, a trend change can be considered a positive/negative signal when in reality it 

doesn’t mean much, while the second one, CHIN, is a relative measure that, due to the signs of 

the of the net incomes, can be misinterpreted. 

So, the equation that will be used is the following: 

𝑌 = −1.86177 + 0.12089 ∗ 𝑑𝑒𝑙𝑡𝑎 𝑆𝐼𝑍𝐸 − 0.76557 ∗ 𝑑𝑒𝑙𝑡𝑎 𝑂𝐸𝑁𝐸𝐺 − 4.22630

∗ 𝑑𝑒𝑙𝑡𝑎 𝑁𝐼𝑇𝐴 

The table 55 shows the success rate. 
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Table 55 - Delta model 2. Cut-off  0.15. Success table. 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
67.1% 67.1% 67.2% 32.9% 32.8% 

2 years before 

bankruptcy 
70.2% 85.9% 67.5% 14.1% 32.5% 

3 years before 

bankruptcy 
63.5% 57.4% 64.7% 42.6% 35.3% 

4 years before 

bankruptcy 
62.7% 53.1% 64.7% 46.9% 35.3% 

 

Both sensitivity and specificity are above 50% and this makes it, according with the author’s 

opinion, a good model, even if the overall success rate, compared with other models, is not that 

high but at least it is more balanced. 

To conclude the analysis of the Ohlson’s model, it can be noted that some models both an 

interesting sensitivity and specificity, higher, on average, compared with the ones provided by 

Altman. 

Then, as was mentioned before, the variables CLCA, WCTA and FUTL don’t influence the 

final model. The first variable was expected to be more significant. Indeed, it influence the 

ZETA score. Probably its influence is decreased by the presence of the variable TLTA but also 

this last variable was significant only in one model. The variable WCTA, represented by X1 in 

the Altman’s Z score, is again useless. Finally, also FUTL has never been significant. This last 

result is quite surprising because at the base of the ability to pay the debts, there is the generate 

cash through the operating performance. Both the WCTA and the FUTL show that the cash 

generated by the firm, which can be used to pay the debt, is not significant, while NITA, that 

measures the firm overall performance, is again the most important ratio to determine the 

probability to be bankrupt. 

 

 

3.8 Beaver model 

 

3.8.1 Introduction 

 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

82 
 

The last model that comes from the literature that is going to be analysed in this thesis is the 

one proposed by (Beaver, 1966). Also that scholar used the logit model like Ohlson and looked 

for, with an ex-post comparison, the best cut-off to check which one produces the best results. 

Because of that, the approach followed in this thesis, will be apply many cut-offs to the ratios 

of Beaver in order to find the most fitting model. Instead, contrary to the solution applied in the 

Altman’s models, the so-called weights are not going to be used. The first step, like in the 

previous case, will be a general overview of the model, to better understand the relations 

between the variables and the influence that they exercise on the output. Like in the case of 

(Ohlson, 1980), the analysis of the missing values will be skipped, since the results of it is 

obvious (i.e. the missing data will simply be removed). 

 

 

3.8.2 Variables analysis 

 

A map of the correlations between the variables shows that some of them have a high correlation 

with the others. 

 

Figure 21 - Beaver model correlation matrix 

It must be underlined that a high correlation is seen among: 

• NWC/total assets and total debt/total assets (0.908). Clearly, the fact that the 

denominator is the same increases the correlation but the fact that the numerators are 

very similar is a clue to believe that the debt has a great influence on the NWC.  

• Net income/total assets and total debt/total assets (-0.337). This is due to the fact that 

probably the interest rates, originated by a high amount of that, influence negatively the 
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net income. At the same time, high costs, that hit negatively the NI, are accompanied 

by an increase of the trade accounts payables. 

• Net income/total assets and NWC/total assets (0.269). The correlation, probably, is still 

because the NWC is influenced by trade payables and this debt, through the above-

mentioned relation between costs and trade payables, hits the net income. The 

correlation is positive because both the NWC and the NI are decreased by the presence 

of the trade payables. 

A further check is made, in order to investigate the presence of multicollinearity in table 56. 

Table 56 - multicollnearity Beaver model 

 

 

 

 

 

 

 

 

 

As the table 56 shows, there is no multicollinearity. 

The influence of the single variables on the output will be examined with the following graphs. 

For a better comprehension of the graphs, 54 outliers have been removed. 

 

 

Figure 22 - Beaver model variables: Net income/total debt and Cash flow/total debt 

Variable VIF 

Lag 1.037 

Cash flow/total debt 1.18 

Net income/total debt 1.32 

Total debt/total assets 1.141 

NWC/total assets 1.163 

Current ratio 1.091 

No credit interval 1.012 
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Figure 23 - Beaver model variables: NWC/total assets and Total debt/total assets 

 

 

Figure 24 - Beaver model variables: No credit interval and Current ratio 

In these graphs, an observer can see that on average the non-bankrupt firms have a higher ratio 

“cash flow/total assets” and a greater current ratio (current assets/current liabilities). Both these 

ratios measure the ability of a firm to pay back the debt. The 1st one does it from the point of 

view of the cash, while the 2nd one from the proportion of current assets to current liabilities, 

where this is a proxy of the solvability of a firm in the short term. 

The net income/total assets is, as expected, on average, higher for the healthy firms while the 

no credit interval, that measures the ability of a firm to pay the operating expenditures with its 

quick and safe assets, it is just slightly higher for the firms marked by the output “Treated=1”. 

Finally, the ratio “NWC/total assets” doesn’t look like to be higher in a certain category. 
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3.8.3 Model test 

 

Beaver in his model used a sample where half of the firms failed and half didn’t. He did many 

tries in order to choose the cut-off the minimized the I and the II type errors, also according to 

the importance that he assigned to those errors. In his paper, he didn’t specify the position of 

cut-offs as well as the coefficients so some tests will be done. 

The first model used is one that choose the first year before bankruptcy as data train. The 

coefficients are represented in table 57. 

Table 57 - Beaver model, 1st year before bankruptcy train dataset. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -3.4466 0.2989 -11.531 <2e-16 

Net income/total debt -13.9688 1.4101 -9.906 <2e-16 

Total debt/total assets 0.7878 0.3200 2.462 0.0138 

 

The significant variables are just 2. Cash flow/total debt and NWC/total assets are not 

significant. Again, the variables related the cash flows don’t influence the model. Also, the 

current ratio and the no credit interval, both related to the current assets (even if the first 

denominator underlines the relation with the current assets, while the second with the operating 

expenses) do not influence the model. As usual, the most important variable is the one related 

to the net income and, as happened sometimes in the past, another important variable is the one 

related to the total debt to total assets. As expected, greater this last ratio, more a firm is likely 

to fail. 

And the equation is the following: 

𝑌 = −3.4466 − 13.9688 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
+ 0.7878 ∗

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 

Table 58 shows the results obtained using the equation above. 

Table 58 - Beaver model, 1st year before bankruptcy train dataset. Cut-off 0.055. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
73.5% 92.9% 70.1% 29.9% 29.9% 
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2 years before 

bankruptcy 
72.7% 83.8% 70.6% 29.4% 29.4% 

3 years before 

bankruptcy 
67.4% 67.1% 67.5% 32.5% 32.5% 

4 years before 

bankruptcy 
64.6% 57.7% 66.0% 42.5% 34.0% 

5 years before 

bankruptcy 
64.0% 60.3% 64.7% 39.7% 35.3% 

 

With the cut-off equal to 0.05, instead, table 59 is got. 
Table 59 - Beaver model, 1st year before bankruptcy train dataset. Cut-off 0.05. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
69.6% 94.4% 65.3% 5.6% 34.7% 

2 years before 

bankruptcy 
68.6% 86.5% 65.3% 13.5% 34.7% 

3 years before 

bankruptcy 
64.3% 75.9% 62.1% 24.1% 37.9% 

4 years before 

bankruptcy 
62.5% 71.1% 60.8% 28.9% 39.2% 

5 years before 

bankruptcy 
59.7% 71.2% 57.4% 28.8% 42.6% 

 

The percentage of correctly classified data points is lower in the 2nd case but the sensitivity is 

greater, so it can be more interesting for those people who focus in the prediction of firms’ 

failure, renouncing also partially to the prediction of the non-failure. 

Then, as it was made in the analysis of the Ohlson model, also the 2nd year before bankruptcy 

as used as data train. In this case, only the No credit interval and the cash flow to total debt 

ratios were not significant. 

Table 60 - Beaver model, 2nd year before bankruptcy train dataset. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -2.9395 0.3069 -9.579 <2e-16 

Net income/total debt -11.4451 1.4049 -8.147 3.74e-16 

Total debt/total assets 0.9837 0.2592 3.795 0.0001 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

87 
 

NWC/total assets 1.0867 0.3576 3.039 0.0024 

Current ratio -0.0362 0.0166 -2.182 0.0291 

 

The equation created is equal to 

𝑌 = −2.93950 − 11.44515 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
+ 0.98367 ∗

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 1.08672

∗
𝑁𝑊𝐶

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
− 0.03621 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 

The result achieved, using a cut-off equal to 0.115 is as follows: 

Table 61 - Beaver model, 2nd year before bankruptcy train dataset. Cut-off 0.115. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
68.9% 95.2% 64.9% 4.8% 35.7% 

2 years before 

bankruptcy 
68.3% 87.2% 64.7% 12.8% 35.3% 

3 years before 

bankruptcy 
63.9% 76.6% 61.5% 23.4% 38.5% 

4 years before 

bankruptcy 
62.6% 69.8% 61.2% 30.2% 38.8% 

5 years before 

bankruptcy 
59.9% 71.2% 59.9% 28.8% 42.3% 

 

The results are a little bit worse but still, they are above 50%. 

Also, a model using the 3rd, the 4th and the 5th years before bankruptcy was tested but the only 

positive result was obtained using the 3rd year before bankruptcy as data train and 0.17 as cut-

off and the significant variables are represented in table 62. 

Table 62 - Beaver model, 3rd year before bankruptcy train dataset. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -2.7155 0.2886 -9.409 <2e-16 

Net income/total debt -4.1182 1.0789 -3.817 0.0001 

Total debt/total assets 1.5831 0.3707 4.270 1.95e-05 

Current ratio -0.0170 0.0094 -1.806 0.0709 

 

The equation, using the coefficients coming from the table above is the following: 
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𝑌 = −2.715536 − 4.118237 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
+ 1.583061 ∗

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
− 0.016962

∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 

The table achieved is the following: 

Table 63 - Beaver model, 3rd year before bankruptcy train dataset. Cut-off 0.17. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
69.2% 94.4% 64.9% 5.6% 35.1% 

2 years before 

bankruptcy 
68.7% 93.8% 65.9% 16.2% 34.1% 

3 years before 

bankruptcy 
64.8% 74.1% 63.1% 25.9% 36.9% 

4 years before 

bankruptcy 
62.8% 68.6% 61.7% 31.4% 38.3% 

5 years before 

bankruptcy 
62.1% 64.1% 61.7% 35.9% 38.3% 

 

Also this model is quite balanced and it achieved nice success percentage both from the point 

of view of the sensitivity and the specificity. 

A problem that comes to the mind of the author, comparing the big number of cut-offs used in 

this thesis, is that a small variation of the cut-off leads to very different results.  For example: a 

unique cut-off, good for all the models was impossible to find. Moreover, as it happened with 

the Ohlson model, further is the year of the data train from the bankruptcy year, higher is the 

cut-off chosen. In the case of the analysis of the model proposed by (Ohlson, 1980), for 

example, when the data train was set one year before bankruptcy, the cut-off was 0.038, while, 

when the data train was set 2 years before bankruptcy, the cut-off was 0.15. The results collected 

with Beaver are the same: if the data train is one year before bankruptcy, the cut-off is 0.05, if 

it is 2 years before bankruptcy, the cut-off is 0.12. The difference in the cut-off selection is that 

farther the firm is from bankruptcy moment, fuzzier is the determination of the output “Treated” 

and, therefore, the cut-off must be increased from values that are below 0.1 to values that are 

much higher. As usual, also a model using the variations of the variables will be used to predict 

the bankruptcy of a certain firm. 
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The first model uses 1 year before bankruptcy as train data and the cut-off is equal to 0.08. The 

model got is the following, where just two variables are significant. Coefficients are represented 

in table 64. 

Table 64 - Delta Beaver model, 1st year before bankruptcy train dataset. Coefficients 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -2.4562 0.1681 -14.608 <2e-16 

Delta Net income/total debt -5.1708 0.7810 -6.621 3.58e-11 

Delta Total debt/total assets 1.6209 0.2994 5.414 6.15e-08 

 

The equation is as follows: 

𝑌 = −2.4562 − 5.1708 ∗
𝑑𝑒𝑙𝑡𝑎 𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑑𝑒𝑙𝑡𝑎 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
+ 1.6209 ∗

𝑑𝑒𝑙𝑡𝑎 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑑𝑒𝑙𝑡𝑎 𝑡𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 

And the success table is here below (table 65): 

Table 65 - Delta Beaver model, 1st year before bankruptcy train dataset. Cut-off 0.08. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
69.2% 94.4% 64.9% 5.6% 35.1% 

2 years before 

bankruptcy 
68.7% 93.8% 65.9% 16.2% 34.1% 

3 years before 

bankruptcy 
64.8% 74.1% 63.1% 25.9% 36.9% 

4 years before 

bankruptcy 
62.8% 68.6% 61.7% 31.4% 38.3% 

 

The last model built is used 2 years before bankruptcy, 0.15 cut-off and, again, the difference 

of the values of the variables. The model is as follows and it has only one significant variable: 

Table 66 - Delta Beaver model, 2nd year before bankruptcy train dataset. Cut-off 0.15. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -1.7932 0.1091 -16.430 <2e-16 

Net income/total debt -5.4530 0.7381 -7.388 1.49e-13 

 

The equation is: 

𝑌 = −1.7932 − 5.4530 ∗
𝑑𝑒𝑙𝑡𝑎 𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑑𝑒𝑙𝑡𝑎 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

90 
 

And, finally, the table containing the success rate is the following: 

Table 67 - Delta Beaver model, 2nd year before bankruptcy train dataset. Cut-off 0.15. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
72.6% 88.2% 69.8% 11.8% 30.2% 

2 years before 

bankruptcy 
67.8% 67.9% 67.8% 32.1% 32.2% 

3 years before 

bankruptcy 
65.0% 50.3% 68.0% 49.7% 32.0% 

4 years before 

bankruptcy 
64.0% 49.0% 67.0% 50.4% 33.0% 

The 3rd year and the following ones didn’t show good results so no models were developed 

using them. 

What is surprising of this last model is that the success percentage is high even if just one 

variable is used. 

The no-credit interval, that is supposed to measure the ability of a firm to pay its operating 

expenses with the difference between current assets and liabilities, was never significant. Also, 

the ratio connected to the cash flow was never useful, while the current ratios and NWC ratios 

were a little bit more useful but still, again, as in the cases of Altman and Ohlson, the ratio 

connected to the net income is the most important, followed by the ratio between debt and the 

assets. The important of the ratio connected to the performance of the firm is confirmed by the 

fact that also using only that ratio, the predictive ability of the model is more or less the same 

that the models with other variables. 

 

 

3.9 Comparison of the literature models 

 

Finally, a comparison of the model will be performed. Many equations were created during this 

thesis, but not all of them performed at the same manner. An initial filter will be used to 

understand which model is better with the consequent exclusion of all those models that didn’t 

perform both a specificity and a sensitivity at least equal to 40%. 

The only models that pass this selection are the following ones: 

• Z2 weights - 3 years before bankruptcy 
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• ZETA weighted - data train year 1 

• Ohlson model 1 

• Ohlson model 2 – cut-off 0.12 

• Beaver - 1 year before bankruptcy - cut-off 0.055 

• Beaver - 2 years before bankruptcy – cut-off 0.115 

• Beaver – 3 years before bankruptcy 

• Ohlson delta - cut-off 0.15 - 2 year before bankruptcy 

• Beaver delta - 1 year before bankruptcy - 0.08 cut-off 

• Beaver delta - 2 years before bankruptcy, 0.15 cut-off 

What the selection approach adopted implies? It implies that the excluded models focus on a 

high prediction of the failure 1 or 2 years before bankruptcy, not caring about the deterioration 

of the results in the 3rd, 4th and 5th years before bankruptcy. A lower percentage of correctly 

classified data points can be accepted in the 1st and 2nd years before bankruptcy if this is 

compensated by a better forecast ability in the previous years. The reason behind is that a lender 

as well as a regulator can be more interesting in the bankruptcy forecast some years before the 

moment itself and not just 2 or, even worse, 1 year when it is too late for a corrective action. 

This modus operandi doesn’t lead to a high percentage of correctly classified outputs each year, 

but to a more homogeneous correctly classified number of firms and at the same time.  

What it was expected is that the models applied by Altman were not going to be successful. 

This is not due to the fact that the variables applied by Altman were wrong, but it is because of 

the analysis methodology chosen by the scholar, namely the discriminant analysis. Also if we 

collected the results achieved by Altman himself in 1968, they wouldn’t have passed the initial 

selection because they were quite low in the 3rd year before bankruptcy and in the previous 

ones. 

Less models based on the O-score, instead, compared with the one based on Beaver (1966), 

passed the selection. 

Coming back to the choice of the best model, it is very difficult to determine which one forecast 

better the output. A compromise decision is to determine which one has the highest average % 

of correctly predicted output, which one has the greatest average sensitivity, and which one has 

the greatest average sensitivity. The imposition of a value of both sensitivity and specificity 

higher than 40%, anyway, lead to quite balanced models. Because of this, even if we take the 

model with the highest specificity, we are ensured that also the sensitivity has an acceptable 

level and vice versa. 
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The model with the highest sum between specificity and sensitivity is: Beaver - 1 year before 

bankruptcy - cut-off 0.05. This model has also a very high sensitivity, overtaken only by slightly 

by Z’’ weights – 3 years before bankruptcy.  

The model with the highest specificity is: ZETA weighted - data train year 1 

The best model among the ones got using the difference in the variables value between one year 

and another is: Beaver delta - 1 year before bankruptcy - 0.08 cut-off. Notwithstanding this, the 

ability prediction of the models that use the delta is much lower compared with the traditional 

models. 

The 2 best models (“ZETA weighted - data train year 1” and “Beaver - 1 year before bankruptcy 

- cut-off 0.05”) will be analysed better in order to provide more information about their use. 

The “Beaver model - 1 year before bankruptcy - cut-off 0.05” was applied to our sample, in 

order to associate a certain value of our Y, coming from the equation got previously, i.e. 

𝑌 = −3.4466 − 13.9688 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡
+ 0.7878 ∗

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 

to the likelihood of correctly predict the output of a data point. In table 68 the sample has been 

divided in groups, in order to catch the likelihood associated to a single group to face the 

bankruptcy. Before take some conclusions from the table, the reader should be aware that in the 

Beaver sample, the failed firms represent the 16% of the total number of firms. Y is the output 

of the model, got using the formula, not the variable “Treated”. The sample used a mix of data 

points coming from the all 5 years. 

Table 68 - Beaver – 1 year before bankruptcy. Cut-off 0.05. Success table by Y value. 

Y value Bankruptcy probability 

Y>0 69.2% 

-2.5<Y<0 28.75% 

-3<Y<-2.5 20.0% 

-3.3<Y<-3 8.0% 

Y<-3.3 3.5% 

 

This can be helpful for a person that is trying to apply the model. He/she knows that if Y>0, the 

probability that the firm is going to fail is pretty high (4,3 times the average failure probability), 

while if Y<-3.3, the probability of bankruptcy is almost null (0.22 times the average default 

probability). 
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The following graphs 

help the reader in 

better understanding 

the prediction ability 

of the Beaver’s model. 

Figure 25 allows us to 

better understand the 

decrease of the model 

performance.  

The deltas show the 

decrease in the accuracy 

of each year. As could be observed also in the previous models, in the 3rd, 4th and 5th years 

before bankruptcy the prediction accuracy decreases a lot compared with the first 2 years. The 

final accuracy is not much higher than 50% but it must be pointed that the sensitivity is quite 

high in this model and the bankruptcy firms represent less than 20% of the total number of 

firms. 

 

The advantage of 

figure 26 is that it 

helps us in 

observing the 

percentage of 

correctly predicted 

data points and in 

particular if the 

decrease in the 

prediction accuracy 

is due to the 

specificity or the 

sensitivity. In this case, the decrease of the precision of the model is due both to the sensitivity 

and the specificity. 

The other model, “ZETA weighted - data train year 1”, has a lower ability prediction. Even if 

its values are associated to a lower prediction ability. The high specificity is damaged by a low 

sensitivity. The model is a little bit unbalanced in favour of detecting the non-failed firms, as 

50,0%

55,0%

60,0%

65,0%

70,0%

75,0%

80,0%

85,0%

90,0%

95,0%

100,0%

1 2 3 4 5

Beaver's model ability prediction

% correctly classified Sensitity Specificity

Figure 25 - Beaver – 1 year before bankruptcy. Cut-off 0.05. Prediction accuracy bridge 

Figure 26 - Beaver model – 1 year before bankruptcy. Cut-off 0.05. Ability prediction by year. 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

94 
 

the following table, that shows which ZETA values are associated with a certain default 

probability. 

Table 69 - ZETA weighted – 1 year before bankruptcy. Success table by ZETA  value 

ZETA value Bankruptcy probability 

ZETA>0 39.2% 

-1<ZETA<0 23.0% 

-0.5<ZETA<0 16.0% 

-1.5<ZETA<-0.5 10.8% 

ZETA<-1.5 5.0% 

 

As it can be observed in this table, the ZETA score surely provides some signals about the 

likelihood of a firm if it is laggard or not, even if it is not accurate like in the case of the Beaver’s 

model. 

The right graph, 

instead, shows the 

decrease of the 

prediction ability of 

the model. In 

particular, a decrease 

in the 2nd and 3rd years 

is registered. While in 

the 4th and in the 5th 

years remain more or 

less constant. 

 

Figure 27 - ZETA weighted – 1 year before bankruptcy. Prediction accuracy bridge 
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The decrease in the prediction accuracy is mainly due to a drop in the 2nd and 3rd years before 

bankruptcy of 

the sensitivity. 

 

Even if these 

are the 2 

models chose, 

it should be 

noted that also 

the “Z2 

weights - 3 

years before 

bankruptcy” 

had a very high 

sensitivity, supported by an acceptable specificity. Since the  Beaver model – 1 year before 

bankruptcy had quite similar results but an overall prediction accuracy higher, it was preferred. 

Even if the author didn’t analyse it carefully, an entity particularly interested in sensitivity, 

willing to lose something in terms of specificity, could use the above mentioned Z’’ model. 
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Figure 28 - ZETA weighted – 1 year before bankruptcy. Ability prediction by year. 
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4. CHAPTER FOUR 

 

Analysis of a new model 

 

4.1 Additional tests 

 

4.1.1 Variables selection 

 

Last model presented will be based on the author analysis of the best ratios that can be applied 

to the sample of this thesis. A group of 23 ratios where chosen as potential variables of the 

model. These indices have been chosen according with their popularity in the literature,  their 

relevance in the prediction accuracy and the lack of multicollinearity between the variables. 

They were tested on the full sample of firms, composed by all the 5 years each firm was 

analyzed. 

The initial ratios were the following ones: 

1. Current ratio; 

2. Acid ratio; 

3. Cash ratio; 

4. Current assets/total assets; 

5. Current liabilities/total liabilities; 

6. Total debt/total assets; 

7. Total debt/total equity; 

8. Days payables outstanding; 

9. Days receivables outstanding; 

10. Days inventories outstanding; 

11. CFO/total debt; 

12. CFO/EBIT; 

13. FCF/total assets; 

14. NWC/operating assets; 

15. Sales/Net operating assets; 

16. EBIT/net operating assets; 

17. EBIT/total assets; 

18. Net income/EBIT; 
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19. Net income/total assets; 

20. Retained earnings/total assets; 

21. Dummy EBIT-(financial income and expenses)>0; 

22. Firm size; 

23. Profitability deviation. 

According with the criteria explained below, only the following variables were selected: 

Table 70 - X model, coefficients chosen 

Variable Z value Pr(>│z│) 

(Intercept) -22.157 <2e-16 

Current ratio -1.4 0.1510 

Net income/total assets -3.458 0.0005 

Total debt/total assets 9.012 <2e-16 

Dummy EBIT-(financial income and expenses) 5.736 9.68e-09 

Profitability deviation 6.846 7.62e-12 

NWC/Operating assets 0.406 0.6845 

 

These variables are going to form the model henceforth named “Model X”. The first 1st and the 

3rd ratios focus on the balance sheet composition of the firm and they look for a difference in 

the composition of the assets and liabilities a certain proportion that can differentiate the healthy 

and the sick firms. The 2nd ratio measures the profitability ability of the firm, while the 4th 

dummy investigates the ability of paying the financial debt through the operating activity. 

Finally, the 5th variable measures the difference between the net income of a certain company 

and the average net income of the sample. The author chose a compromise in the creation of 

this model. A variable, namely “CFO/EBIT”, was eliminated from this model because it was 

too correlated with the variables “NWC/Operating assets”. After the elimination of the first 

variable, also the second was shown to be inconsistent, but since in the past literature all the 

investigated models used this variables and since in many cases in the past regressions it showed 

to be significant, the author decided to keep it. By the way, since a selection of the variables, as 

it was done in the past, will be done in each model, if NWC/operating assets won’t show to be 

useful in the bankruptcy prediction, it will be removed. This 6th variable represents the ability 

of the firm to repay its current financial obligations using its current assets. For what concerns 

the Current ratio, even if the variable is not really significant per sé is not significant, its removal 

would lower lead to an increase in AIC, so it was kept. 
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Looking at the coefficients, having a profitability above the average, surprisingly, increases the 

probability to be bankrupt, as well as having an EBIT higher than the interest expenses. 

 

 

4.1.2 Variables analysis 

 

Before apply the model, we make some checks, to be sure that we won’t get biased results, 

starting from the multicollinearity.  

Table 71 - Multicollinearity, X model 

 

 

 

 

 

 

 

 

 

No multicollinearity is highlighted. The correlations between the single variables are as follows: 

 

Figure 29 - Beaver model correlation matrix 

Variable VIF 

Current ratio 1.00 

Total debt/total assets 1.13 

Profitability deviation 1.33 

Net income/total assets 1.62 

Dummy EBIT-(financial income and expenses) 1.33 

NWC/Operating assets 1.00 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

100 
 

The variable that shows a greater correlation with the others is net income/total assets. This 

variable is strongly correlated with the dummy independent variable and the profitability 

deviation variable. This can be expected because all the 3 variables measure the profitability 

performance, while the negative correlation between the net income/total assets and total 

debt/total assets shows the often firms with a higher debt perform worse than the own with a 

relatively low debt. 

For the following graphs, 92 outliers were eliminated.  

 

Figure 30 - X model variables: Current ratio and Total debt/total assets 

 

Figure 31 - X model variables: Profitability deviation and Dummy EBIT-(financial income and expenses) 
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Laggard firms show graphically on average a higher total debt/total assets ratio, while they have 

a lower current ratio and the ratio between net income/total assets. As it happened in the analysis 

of the literature models, the NWC/Operating assets ratio, instead, didn’t show a different trend 

in the comparison between Treated=1 and Treated=0. This is coherent with the non-significance 

of this ratio. Finally, unexpectedly, the profit deviation reports a relatively higher number of 

non-bankrupt firms with a profitability below the average. Instead, on the other side, from the 

same graph it looks like that the non-bankrupt firms have usually the difference between EBIT 

and financial costs higher than 0.  

 

 

4.1.3 Model test 

 

The model will be tested to observe its prediction ability. The first test will be done using as 

train dataset the first year before bankruptcy and 0.02 as cut-off of the logit model. 

The model got is the following: 

Table 72 - X model, 1st year before bankruptcy train dataset. Coefficients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -5.9192 0.5226 -11.326 <2e-16 

Current ratio -0.0298 0.0161 -1.850 0.0643 

Net income/total assets -5.1882 1.6138 -3.215 0.0013 

Total debt/total assets 2.5095 0.3955 6.345 <2.22e-10 

Figure 32 -. X model variables: NWC/Operating assets and Net income/total assets 
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Dummy EBIT- (financial income 

and expense) 
1.7654 0.4487 3.935 8.33e-0.5 

Profitability deviation 0.0035 0.0009 3.733 0.0001 

NWC/Operating assets 0.2486 0.0407 6.110 9.97e-10 

 

It is represented by the equation below: 

𝐵 = −5.9192 − 0.0299 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 − 5.1882 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 2.5095

∗
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 1.7654

∗ [𝐷𝑢𝑚𝑚𝑦 𝐸𝐵𝐼𝑇 − (𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)] + 0.0035

∗ 𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 0.2486 ∗
𝑁𝑊𝐶

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑠𝑠𝑒𝑡𝑠
 

And the table containing the prediction accuracy is as follows: 

Table 73 - X model, 1st year before bankruptcy train dataset. Cut-off 0.02. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
70.2% 96.0% 65.7% 4.0% 34.3% 

2 years before 

bankruptcy 
65.9% 84.5% 62.4% 15.5% 37.6% 

3 years before 

bankruptcy 
64.5% 74.5% 62.5% 25.5% 37.5% 

4 years before 

bankruptcy 
61.1% 67.9% 59.8% 32.1% 40.2% 

5 years before 

bankruptcy 
58.3% 67.3% 56.3% 32.7% 43.5% 

 

The first equation already showed satisfying results. 

The second model, instead, will be created using as a base the train dataset on the 2nd year before 

bankruptcy and as cut-off of the logit model 0.11. 

Table 74 - X model, 2nd year before bankruptcy train dataset. Coeffcients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -3.4333 0.2815 -12.195 <2e-16 

Current ratio -0.0480 0.0172 -2.787 0.0053 

Net income/total assets -3.6392 1.4726 -2.471 0.0134 
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Total debt/total assets 1.6145 0.3241 4.981 6.31e-07 

Dummy EBIT- (financial income 

and expense) 
0.7538 0.2651 2.843 0.0045 

Profitability deviation 0.0038 0.0009 4.183 2.87e-05 

NWC/Operating assets 0.1385 0.0303 4.572 4.83e-06 

 

The equation got is the following: 

𝐵 = −3.4333 − 0.0488 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 − 3.6392 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 1.6145

∗
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 0.7538

∗ [𝐷𝑢𝑚𝑚𝑦 𝐸𝐵𝐼𝑇 − (𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)] + 0.0038

∗ 𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 0.1385 ∗
𝑁𝑊𝐶

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
𝑎𝑠𝑠𝑒𝑡𝑠 

And the success percentage table is the following: 

Table 75 – X model, 2nd year before bankruptcy train dataset. Cut-off 0.11. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
71.6% 94.4% 67.6% 5.6% 32.4% 

2 years before 

bankruptcy 
69.5% 85.1% 66.5% 14.9% 33.5% 

3 years before 

bankruptcy 
67.0% 71.4% 66.2% 28.6% 33.8% 

4 years before 

bankruptcy 
65.4% 68.6% 64.8% 31.4% 35.2% 

5 years before 

bankruptcy 
62.0% 68.6% 60.6% 31.4% 39.4% 

 

Also a try to develop a further will be done using as train dataset the 3rd year before bankruptcy 

and as cut-off 0.18. 

The coefficients for the equation are the following: 

Table 76 - X model, 3rd year before bankruptcy train dataset. Coeffcients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -3.2165 0.3312 -9.712 <2e-16 

Current ratio -0.0211 0.0122 -1.735 0.0827 
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Net income/total assets -1.7811 1.1941 -1.492 0.1358 

Total debt/total assets 2.2956 0.4206 5.457 4.83e-08 

Profitability deviation 0.0018 0.0006 3.023 0.0025 

 

The the equation got is here below: 

𝐵 = −3.2165 − 0.0211 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 − 1.7811 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 2.2956

∗
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 0.0018 ∗ 𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

And the success table as below: 

Table 77 – X model, 3rd year before bankruptcy train dataset. Cut-off 0.18. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
71.7% 92.9% 68.0% 7.1% 32.0% 

2 years before 

bankruptcy 
70.1% 81.1% 68.0% 18.9% 32.0% 

3 years before 

bankruptcy 
66.8% 69.6% 66.3% 30.4% 33.7% 

4 years before 

bankruptcy 
64.3% 65.6% 64.1% 34.4% 35.9% 

5 years before 

bankruptcy 
63.9% 61.5% 64.4% 38.5% 35.6% 

 

All the 3 models applied had a specificity and a sensitivity slightly above the models coming 

from the literature. 

Also, a couple of models using as variables the change of the model X variable values, as it was 

done in the case of the Altman, Ohlson and Beaver models. 

The first equation is got using as train dataset the change of the values between 1 and 2 years 

before bankruptcy. The cut-off used is 0.08. 

Table 78 – Delta X model, 1st year before bankruptcy train dataset. Coeffcients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -2.5103 0.1445 -17.372 <2e-16 

Delta dummy EBIT- (financial 

income and expense) 
-0.7389 0.2808 2.632 0.0085 
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Delta total debt/total assets 7.6457 0.8139 9.393 <2e-16 

 

𝐵 = −2.5103 + 0.7389 ∗ [𝐷𝑒𝑙𝑡𝑎 𝑑𝑢𝑚𝑚𝑦 𝐸𝐵𝐼𝑇 − (𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒  𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)] + 7.6457

∗ 𝐷𝑒𝑙𝑡𝑎
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑒𝑡𝑠
 

The success probability table is the following one: 

Table 79 – Delta X model, 1st year before bankruptcy train dataset. Cut-off 0.08. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
69% 86.1% 66.2% 13.9% 33.8% 

2 years before 

bankruptcy 
67.2% 70.7% 66.5% 29.3% 33.5% 

3 years before 

bankruptcy 
63.8% 52.1% 66.1% 47.9% 33.9% 

4 years before 

bankruptcy 
60.7% 48.3% 63.1% 51.7% 36.8% 

 

The success percentage is worse compared with the ones got in the original model. Last model, that uses 

as train dataset, with a cut-off equal to 0.12. The coefficients are as follows: 

Table 80 - Delta X model, 2nd year before bankruptcy train dataset. Coeffcients. 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -1.9814 0.1100 -18.018 <2e-16 

Delta NWC/Operating assets -0.3973 0.0685 5.798 6.7e-09 

Delta Profitability deviation 0.0006 0.0003 1.897 0.0578 

Delta dummy EBIT- (financial 

income and expense) 
0.6131 0.2108 2.908 0.0036 

Delta total debt/total assets 5.7942 0.9444 6.135 <8.5e-10 

 

The equation is here below: 

𝐵 = −1.9814 − 0.3973 ∗ 𝐷𝑒𝑙𝑡𝑎
𝑁𝑊𝐶

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑠𝑠𝑒𝑡𝑠
+ 0.0006 ∗ 𝐷𝑒𝑙𝑡𝑎 𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

+ 0.6131 ∗ [𝐷𝑒𝑙𝑡𝑎 𝑑𝑢𝑚𝑚𝑦 𝐸𝐵𝐼𝑇 − (𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠) + 5.7942

∗ 𝐷𝑒𝑙𝑡𝑎
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
 

And the success table is the following: 
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Table 81 - Delta X model, 2nd year before bankruptcy train dataset. Cut-off 0.12. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
58.7% 80.0% 55.2% 20.0% 44.8% 

2 years before 

bankruptcy 
59.1% 72.1% 56.6% 27.9% 43.4% 

3 years before 

bankruptcy 
57.9% 62.5% 57.0% 37.5% 43.0% 

4 years before 

bankruptcy 
55.3% 59.4% 54.5% 40.6% 45.5% 

 

This model is from an overall point of view a little bit worse compared with the previous model but the 

sensitivity is higher. Also a model that uses as data train the 3rd year before bankruptcy was tested but 

the results were quite unsatisfactory so its representation will be omitted. 

 

 

4.2 Best model choice 

 

At the end, analyzing and comparing all the models seen so far together with the models based 

on the variables chosen by the author, the best model is the model X – data train 2 years before 

bankruptcy, which showed to be slightly better than the model proposed by Beaver – data train 

2 years before bankruptcy.  

It must be reminded to the reader that the equation is as follows, where B is the equation output: 

𝐵 = −3.4333 − 0.0488 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 − 3.6392 ∗
𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 1.6145

∗
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡

𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠
+ 0.7538

∗ [𝐷𝑢𝑚𝑚𝑦 𝐸𝐵𝐼𝑇 − (𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)] + 0.0038

∗ 𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 0.1385 ∗
𝑁𝑊𝐶

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑠𝑠𝑒𝑡𝑠
 

The reader should remember that a bankrupt firm has a dependant variable equal to 1, while if 

it is a non-bankrupt firm is 0. Using this equation, in table 82 on the left side the value B (the 

dependant variable), was calculated and on the right side the bankruptcy. 
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Before read the results, it must be underlined that the probability of being bankrupt in our 

overall sample is 17.2%, while to create the table below, the empty rows were eliminated and 

the average probability became 16.1%. 

Table 82 – X model. 2nd year before bankruptcy. Cut-off 0.11.  Success table by output value. 

B value Bankruptcy probability Category prob./average prob. 

B>5 91.7% 5.69 

1.5<B<5 71.7% 4.45 

-1.5<B<1.5 31.6% 1.96 

-3<B<-1.5 12.8% 0.8 

-5<B<-3 3.2% 0.2 

B<-5 2.0% 0.12 

 

While B>1.5, the probability of being bankruptcy is very high, while if B<-3 is very low. If -

3<B<1.5, assigning an output to the firm gets more difficult, even if, when -1.5<B<1.5 the 

probability of 

going bankruptcy 

is twice the 

average. The 

following graph 

shows the 

worsening of the 

model 

performance 

across the years, 

even if probably a 

reader is more interested in the trend of both sensitivity and specificity. By the way, it can 

already observe that there is a constant decrease of the % of correctly classified data points, 

with a bigger drop between the prediction ability of the 4th and the 5th year. 

The sensitivity and specificity performance can be more appreciated in the following graph: 

Figure 33 – X model – 2nd year  before bankruptcy. Cut-off 0.11. Prediction accuracy bridge 
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Figure 34 – X model, 2 years before bankruptcy. Cut-off 0.05. Ability prediction by year 

The sensitivity has a big fall in since the 1st to the 3rd year (decreasing from 94.4% to 71.4%) 

but its magnitude is so small compared to the specificity that it doesn’t influence too much the 

% of correctly classified line (that moves only from 71.6% to 67.0%). Instead, during last year 

the decrease of specificity from 64.8% to 60.6% made the precision of the overall model drop 

from 64.8% to 60.6%. 

The X model is better due to some reasons: 

• Models coming from the literature were developed using the annual reports of firms 

coming from the 60’s and the 70’s, while the firms analyzed in this thesis come from 

the 2010s. The consequence is that actual firms have a different balance sheet and 

income statement composition. The biggest change derives from the relatively higher 

use of debt compared to equity than in the past. 

• The other models were applied on middle-size American firms while this analysis is 

made on Italian medium and small firms, not listed in a stock exchange, with a limited 

access to capital and with a different management and organizational culture. 

• Since the variables are tested on the sample before being used to predict the bankruptcy, 

the variables chosen will be obviously better than the ones in thevmodels created from 

different datasets. 

• Also, a higher focus in this thesis was from the point of view of the sensitivity. 

Notwithstanding the fact that the number of the failed firms was relatively low, we cared 

more about having a high sensitivity more than the specificity and at the same time 

caring about not have them decrease under certain thresholds. 
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5. CHAPTER FIVE 

 

Analysis of the CNDCEC ratios 

 

5.1 Introduction 

 

A quick analysis also of the ratios proposed by the CNDCEC in October 2019 will be done. In 

this analysis there are 2 limitations: 

• 6 months DSCR cannot be calculated since six months values are not available; 

• A model similar to the previous ones must be calculated. We know the thresholds that 

cannot be exceeded by the ratios but, since the limit is different by sector, all the sectors 

of the firms considered should be known and this is not the case. 

 Table 83 – accuntants model: number of firms with negative equity by year 

 As a first step, even if the DSCR cannot be 

calculated, only the negative equity value will be 

investigated in table 83. Approaching the year of 

bankruptcy, the number of firms with a negative 

equity skyrockets. These firms have already a high 

risk to be in a financial distress situation but legally 

this cannot be declared as such without the analysis of the DSCR. 

 

 

5.2 Model test 

 

The best model among all the ones possible was the one with train dataset the 2nd year before 

bankruptcy and as cut-off 0.18, slightly best than the ones that use the dataset coming 

respectively from the 1st and the 3rd years before bankruptcy. The coefficients are represented 

in the table below. 

Table 84 - accountants model,, 2nd year before bankruptcy train dataset. Coefficients 

Variable Estimate Std. Error Z value Pr(>│z│) 

(Intercept) -0.7895 0.1272 -6.204 5.51e-10 

Financial interests substainability 

ratio 
0.0689 0.0456 1.510 0.131 

Years 

before 

bankruptcy 

Number of firms with 

negative equity 

5 49 

4 50 

3 59 

2 98 

1 186 
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Capital adequacy ratio -2.8439 0.3553 -8.004 1.21e-15 

Assets liquid turnover ratio -0.0285 0.0208 -1.368 0.171 

Liquidity ratio -0.0272 0.0221 -1.227 0.220 

Social security and tax debt ratio -0.0216 0.0182 -1.188 0.235 

 

Only the capital adequacy ratio is really significant. Despite this, removing more ratios would 

worsen the quality of the model. It is unexpected the fact that a higher social security and tax 

ratio leads to a lower probability to fail. 

The equation got is the following one: 

𝑌 = −0.7895 + 0.0689 ∗ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠 𝑠𝑢𝑏𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 − 2.8439

∗ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑎𝑑𝑒𝑞𝑢𝑎𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 − 0.0285 ∗ 𝐴𝑠𝑠𝑒𝑡 𝑙𝑖𝑞𝑢𝑖𝑑 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑖𝑜

− 0.0272 ∗ 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 − 0.0216

∗ 𝑆𝑜𝑐𝑖𝑎𝑙 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑎𝑛𝑑 𝑡𝑎𝑥 𝑑𝑒𝑏𝑡 𝑟𝑎𝑡𝑖𝑜 

The table below contains the accuracy percentage: 

Table 85 – accountants model,, 2nd year before bankruptcy train dataset. Cut-off 0.18. Success table 

 
% correctly 

classified 
Sensitivity Specificity 

I type error 

% 

II type 

error % 

1 year before 

bankruptcy 
68.0% 88.7% 64.5% 11.3% 35.5% 

2 years before 

bankruptcy 
66.4% 75.7% 64.7% 24.3% 35.3% 

3 years before 

bankruptcy 
63.2% 62.4% 63.4% 37.6% 36.6% 

4 years before 

bankruptcy 
61.1% 59.6% 61.4% 40.4% 38.6% 

5 years before 

bankruptcy 
61.1% 56.3% 62.0% 43.8% 38.0% 

 

Still, sensitivity and specificity are much lower compared with the best models. This is probably 

due to the fact that the indicators don’t contain any ratio that deals with the operating 

performance and this kind of ratios showed to be the most helpful ones in bankruptcy prediction. 

Despite this, the ratios proposed are not aimed at being put together to create a model but each 

of them underlines a particular aspect that provides a hint about the financial situation of the 

firm. All together they can help a stakeholder if the firm is passing a difficult moment. 
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Conclusions 

 

Finally, making a generalized brief thought about the use of accounting based model in the 

prediction of firms’ bankruptcy, basing the observations on this work, it can be observed that 

the accounting based models are still an effective way to predict the future of a company. 

What was found is that the logit model is more effective compared to the multivariate 

discriminant analysis. The ineffectiveness of the second method was partially solved by using 

a weight on the bankrupt firms in order to increase the severity associated to the wrong 

classification of a bankrupt firms but still was not efficient like the logit model. Moreover, the 

original ZETA, Z’ and Z’’ Altman models without any adjustments didn’t work. An example 

about the effectiveness of the logit model comes from the fact that the cut-off to be applied for 

the Ohlson model was provided and it showed to be effective. 

Finally, the model proposed by the CNDCEC didn’t have a great prediction accuracy but 

anyway they are useful in the comprehension of the financial situation of a firm and, in 

particular, it can help the management understand the criticalities that hit the firm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

112 
 

  



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

113 
 

 

Bibliography 

Adalet McGowan, A. & Andrews, D., 2017. "Declining resource allocation in Spain: Implications for 

productivity. OECD economic department working papers.  

Adalet McGowan, M., Andrews, D. & Millot, V., 2017. "The walking dead? Zombie firms and 

productivity performance in OECD countries". Economics department working papers, Issue 1372. 

Agarwal, V. & Taffler, R. J., 2008. "Comparing the performance of market-based and accounting-

based bankruptcy prediction models". Journal of Banking & Finance, Issue 32, pp. 1541-1551. 

Altman, E., 1968. "Financial ratios, Discriminant Analysis and the Prediction of Corporate 

Bankruptcy". Journal of Finance, September, Volume 23, pp. 589-609. 

Altman, E., 2000. Predicting financial distress of companies: revisiting the z-score and zeta model, 

s.l.: s.n. 

Altman, E., Danovi, A. & Fallini, A., 2013. "Z-score models' application to italian companies subject 

to extraordinary administration". Journal of applied finance, Issue 1. 

Andrews, D., Criscuolo, C. & Gal, P., 2016. "The global productivity slowdown, technology 

divergence and public policy: a firm level perspective". OECD Productivity working papers, Issue 5. 

Beaver, W., 1966. Financial ratios as predictors of failure. Journal of accounting financce, Volume 4, 

pp. 71-111. 

Begley, J., Ming, J. & Watts, S., 1996. Bankruptcy classification errors in the 1980s: an empirical 

analysis of Altman's and Ohlson's Models. Review of accounting studies, Issue 1, pp. 267-284. 

Black, F. & Scholes, M., 1973. "The pricing of options and corporate liabilities". Journal of Political 

economy, Issue 7, pp. 637-654. 

Blum, M., 1974. "Failing discriminant analysis". Journal of accounting research, Volume 12, pp. 1-

25. 

Caballero, R. J., Hoshi, T. & Kashyap, A. K., 2008. "Zombie lending and depressend restructuring in 

Japan". The amerrican economic review, Volume 84 (5), pp. 1350-1368. 

Deakin, E., 1972. "A discriminant analysis of predictors of business failure". Journal of accounting 

research, 10(1), pp. 167-179. 

El-Ansary, O. & Bassam, L., 2019. "Predicting financial distress for listed MENA firms". 

International journal of accounting and financial reporting, 9(2). 

Fontoura Gouveia, A. & Osterhold, C., 2018. "Fear the walking dead: zombie firms, spillovers and 

exit barriers". OECD productivity working papers, June, Issue 13. 

Garrido, . J., Kopp, E. & Weber, A., 2016. "Cleaning-up bank balance sheets: economic, legal and 

supervisory measures for Italy". IMF working paper, Issue 135. 

Hernandez T., M. & Wilson, N., 2013. "Financial distress and bankruptcy prediction among listed 

companies using acconting, market and macroeconomic variables". International review of Financial 

Analysis, Issue 30, pp. 394-419. 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

114 
 

Hillegeist, S. A., Keating, E. K., Cram, D. P. & Lundstedt, K. G., 2004. "Assessing the probability of 

bankruptcy". Review of accouting studies, March, pp. 5-34. 

Horrigan, J., 1966. The determination of long-term credit standing with financial ratios. Journal of 

accounting research, Volume 4, pp. 44-62. 

James, G., Witten, D., Hastie, T. & Tibshirani, R., 2013. "An introduction to statistical learning". New 

York: Springer. 

Jensen, M. C., 1989. "The Eclipse of the Public Corporation.". Harvard Business Review, September-

October, pp. 61-74. 

Joy, M. & Tollefson, J., 1975. "On the financial applications of discriminant analysis". The journal of 

fnancial and quantitative analysis, December, 10(5), pp. 723-739. 

Kaludjerovic, N., Stanojevic, S. & Ljubic, M., 2016. "Hidden losses in financial reporting and the 

manner of hiding case serbia - part two. International review, Issue 1-2. 

Kassambara, A., 2018. "Machine learning essentials - practical guide in R". 1 ed. s.l.:s.n. 

Korea, B. o., 2013. "Financial stability report", s.l.: s.n. 

Merton, R. C., 1974. "On the pricing of corporate debt: the risk structure of interest rates". Journal of 

Financce, Issue 29, pp. 449-470. 

Moyer, C., 1977. Forecasting financial failure: a re-examination, s.l.: s.n. 

Ohlson, J., 1980. Financial ratios and probabilistic prediction of bankruptcy. Journal of Accounting 

Research, 18(1), pp. 109-131. 

Peek, J. & Rosengren, E. S., 2005. "Unnatural selection: perverse incentives and the misallocation". 

The American Economic Review, 95(4), pp. 1144-1166. 

Pham, B., Do, T. & Vo, D., 2018. "Financial distress and bankruptcy prediction: An appropriate model 

for listed firms in Vietnam". Economic System, Issue 42, pp. 616-642. 

Pongsatat, S., Ramage, J. & Lawrence, H., 2004. "Bankruptcy prediction for large and small firms in 

Asia: a comparison of Ohlson and Altman". Journal of accounting and corporate governance, Volume 

1, pp. 1-13. 

Reisz, A. S. & Perlich, C., 2004. "A market based framework for bankruptcy prediction". New York: 

Baruch College, City university of New York. 

Storz, M., Koetter, M. & Westphal, A., 2017. "Do we want these two to tango? On zombie firms and 

stressed banks in Europe". ECB working papers series.  

Whitaker, R. B., 1999. "The early stage of financial distress". Journal of Economics and Finance, 

Issue 23, pp. 123-133. 

 

 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

115 
 

 

Sitography 

 

Anon., 2013. Stackoverflow. [Online]  

Available at: https://stackoverflow.com/questions/17200114/how-to-split-data-into-training-testing-

sets-using-sample-function 

[Accessed 2019 August 2019]. 

Anon., 2019. "Crisi d'impresa - Indici di allerta dei commercialisti", s.l.: Il sole 24 ore documenti. 

Anon., n.d. Business dictionary. [Online]  

Available at: http://www.businessdictionary.com/definition/bankruptcy.html 

[Accessed 16 July 2019]. 

Anon., n.d. Discussion issues and derivations. [Online]  

Available at: http://people.stern.nyu.edu/adamodar/New_Home_Page/AppldCF/derivn/ch5deriv.html 

[Accessed 19 August 2019]. 

Anon., n.d. Investopedia. [Online]  

Available at: https://www.investopedia.com/terms/f/fundsfromoperation.asp 

[Accessed 16 August 2019]. 

Anon., n.d. Piacentini & associati. [Online]  

Available at: http://www.piacentinieassociati.it/crisi-dimpresa/ 

[Accessed 2019 novembre 9]. 

Anon., n.d. Psyche Scene Hub. [Online]  

Available at: https://psychscenehub.com/psychpedia/odds-ratio-2/ 

[Accessed 23 July 2019]. 

Anon., n.d. RIVALUTA.it. [Online]  

Available at: https://www.rivaluta.it/serie-inflazione-media.asp 

[Accessed 19 August 2019]. 

CNDCEC, 2019. IPSOA. [Online]  

Available at: https://www.ipsoa.it/documents/impresa/fallimento-e-procedure-

concorsuali/quotidiano/2019/10/28/crisi-impresa-pubblicato-documento-indici-allerta 

[Accessed 28 October 2019]. 

Anon., n.d. Rpubs. [Online]  

Available at: https://rpubs.com/Nolan/298913 

[Accessed 2019 August 24]. 

Bragg, S., 2018. Accounting tools. [Online]  

Available at: https://www.accountingtools.com/articles/what-is-funds-from-operations.html 

[Accessed 16 August 2019]. 



 Do the accounting-based model for bankruptcy prediction still work? A test on the firms from Padova and Vicenza 

116 
 

Kenton, W., 2019. Investopedia. [Online]  

Available at: https://www.investopedia.com/terms/f/financial_distress.asp 

[Accessed 16 July 2019]. 

Lozzi, F., 2019. IPSOA. [Online]  

Available at: https://www.ipsoa.it/documents/impresa/fallimento-e-procedure-

concorsuali/quotidiano/2019/01/02/crisi-impresa-indicatori-presunta-capacita-predittiva 

[Accessed 3 November 2019]. 

Martins, C., n.d. knoow. [Online]  

Available at: http://knoow.net/en/economics-business/finance/defensive-assets/ 

[Accessed 22 July 2019]. 

Petruzzellis, G., 2019. IPSOA. [Online]  

Available at: https://www.ipsoa.it/documents/impresa/fallimento-e-procedure-

concorsuali/quotidiano/2019/10/26/crisi-impresa-indici-allerta-approccio-gerarchico 

[Accessed 02 November 2019]. 

 
 
 

 


