
Master Thesis in Computer Engineering

An Empirical Study of Object Detection Methods
with Deep Ensemble and Stochastic Selection of

Activation Functions

Master Candidate Supervisor

M Aqib Ismail Prof. Loris Nanni
Student ID 2043892 University of Padova

Academic Year
2023/2024

To my parents
and friends

Abstract

The task of object detection is one of the challenging problems in computer
vision. Over the recent years, as deep learning has rapidly evolved, researchers
have dedicated considerable efforts to experimenting and contributing to im-
proving object detection performance and its associated tasks, including ob-
ject classification, localization, and image segmentation. Generally, the per-
formance of any object detector is evaluated through detection accuracy and
inference time. The introduction of YOLO (You Only Look Once) and its archi-
tectural successors have notably improved detection accuracy. The presented
approach suggested changing the backbone of Yolov4 and Yolov3 by replacing
them with a custom ResNet50 convolutional neural network. The architecture
of the ResNet50 is changed to design a new model by replacing each activation
layer of a ResNet50 which is usually a ReLU layer with a different varients of
ReLU AF stochastically drawn from a set of activation functions. The goal of this
project is to evaluate the performance of modified CNN with Yolo’s base CNN
network and to evaluate the performance of ensemble methods.

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

2 Related Work 9
2.1 Shark Detector Pipeline . 9
2.2 Performance of different activation functions across image classi-

fication and image segmentation problem 12

3 Methods 15
3.1 Topologies . 15

3.1.1 ResNet50 . 15
3.1.2 YOLO . 17
3.1.3 YOLOv3 . 24
3.1.4 YOLOv4 . 27

3.2 Activation functions . 32
3.2.1 ReLU . 33
3.2.2 Leaky ReLU . 34
3.2.3 Scaled Exponential Linear Unit (SELU) 35
3.2.4 Parametric ReLU (PReLU) 35
3.2.5 S-Shaped ReLU (SReLU) . 36
3.2.6 Adaptive Piece-wise Linear Unit (APLU) 37
3.2.7 Gaussian ReLU (GALU) . 37
3.2.8 Soft-Root-Sign (SRS) . 37
3.2.9 SWISH and MISH Activation 38

3.3 Transfer Learning . 38

vii

CONTENTS

4 Experiments and Results 41
4.1 Data Augmentation . 41
4.2 Work Flow of our Proposed Method 43

4.2.1 Shark Identifier/classifier 43
4.2.2 Shark Locator/Detector . 43

4.3 Ensemble Learning Algorithm . 44
4.4 Metrics . 45

5 Conclusion 49

References 51

Acknowledgments 61

viii

List of Figures

1.1 Illustrates the two-stage object detectors and an incremental im-
provement in the architecture. 2

1.2 R-CNN architecture . 3
1.3 Fast-RCNN & Faster-RCNN architecture 5
1.4 The generic schematic architecture of single-stage object detectors. 6

3.1 The left part of this figure is a classic block of two convolutional
layers and an activation layer. On the right, a residual connection:
the block input is added to the block output if the block output is
zero then we have zero plus x, so f(x) is equal to x. 16

3.2 The ResNet-18 architecture. 16
3.3 Description of bounding box. 17
3.4 The graphical representation of YOLO’s workflow. 19
3.5 The architecture of the detection network has 24 convolutional

layers followed by 2 fully connected layers. 20
3.6 YOLOv3 runs significantly faster than other detection methods

with comparable performance. 24
3.7 Bounding boxes dimensions and location prediction. 25
3.8 Structure of DarkNet-53 . 26
3.9 Comparison of the YOLOv4 and other state-of-the-art object de-

tectors. 28
3.10 Different components of object detector. 28
3.11 The diagram demonstrates how SPP block is integrated into YOLOv4 30
3.12 Modified PAM . 31
3.13 Illustrations of different activation functions: ReLU, LReLU, PReLU,

and ELU . 34
3.14 Structure of Fine Tuning [6] . 39

xi

LIST OF FIGURES

3.15 Example of deep features transfer learning [60] 40

4.1 Application of random horizontal flipping, random X/Y scaling,
random rotation, random translation, motion blur, and Gaussian
noise. 42

4.2 (a) True Positive: TP, (b) False Positive (FP). (c): False Negative (FP) 46

xii

List of Tables

4.1 The results of individual Shark Identifier/classifier 46
4.2 The results of individual and ensemble tests for YOLOv3 and

YOLOv4 . 47

xv

1
Introduction

Object detection is an important problem involving the identification of object
instances within an image and their classification into specific classes, such as
humans, animals, or cars. It addresses the question "What objects are present
here?" Typically, object detection can be categorized into two groups: general
object detection and detection applications. In the former, the objective is to
explore methods to identify various object types using a unified framework to
emulate human vision and cognition. In the latter, the focus is on recognizing
objects of a particular class within specific application scenarios for example
pedestrian detection, face detection, or text detection. Object detection models
can be classified into two macro-categories: two-stage and one-stage detectors.
[56][11].

In the initial phase, Regions of Interest (RoI) are generated by using a Re-
gion Proposal Network (RPN). This stage primarily focuses on selecting viable
region proposals, employing techniques like negative proposal sampling. How-
ever, the second stage predicts the objects and bounding boxes corresponding
to the proposed regions. The popular models falling into this category include
Region-based Convolutional Neural Networks (RCNN) [28][70], Fast RCNN
[27], and Faster RCNN [68]. Single-stage object detectors are explicitly tailored
for conducting object detection in a single stage, considering all region propos-
als. These detectors yield output comprising bounding boxes and class-specific
probabilities for the underlying objects, capturing the spatial dimensions of an
image in one shot.

1

Figure 1.1: Illustrates the two-stage object detectors and an incremental improvement
in the architecture.

During the initial phase of the region proposal, several key algorithms, includ-
ing Deformable Parts Models (DPM) [22], OverFeat [71], and Edge Boxes [95],
adopted the sliding window technique. In this approach, a fixed-sized window
traverses the entire image, generating region proposals after passing through a
classifier. This procedure is iterated with progressively larger window sizes. In
contrast, R-CNN and its successors leverage a selective search algorithm to de-
rive region proposals. R-CNN, standing for region-based convolutional neural
network, represents an object detection algorithm introduced by Ross Girshick
[27].

In the R-CNN, many region proposals for example around 2000 are initially
extracted from the input image, and labeled with their corresponding classes
and bounding boxes. Subsequently, a Convolutional Neural Network (CNN)
is employed to execute forward propagation on each region proposal, extract-
ing its distinctive features. The features extracted from each region proposal
are utilized to predict both its class and bounding box. Notably, a significant
bottleneck in R-CNN’s performance stems from the independent CNN forward
propagation for each region proposal, lacking shared computation. This often
results in redundant computations due to the overlapping nature of these re-

2

CHAPTER 1. INTRODUCTION

gions. A key enhancement introduced in Fast R-CNN, compared to R-CNN, is
the optimization achieved by conducting CNN forward propagation solely on
the entire image. The R-CNN comprises of the following four steps:

Figure 1.2: R-CNN architecture

1. Perform a selective search [85] to extract multiple high-quality region pro-
posals on the input image. Each region proposal are selected at multiple
scales with different shapes, sizes and will be labeled with a class and a
ground-truth bounding box.

2. Choose a pre-trained CNN and truncate it before the output layer. Re-
size each region proposal to the input size required by the network, and
output the extracted features for the region proposal through forward
propagation.

3. Take the extracted features and labeled class of each region proposal.
Train multiple SVMs to classify objects, where each SVM individually
determines whether the example contains a specific class.

4. Take the extracted features and label the bounding box of each region
proposal. Train a linear regression model to predict the ground-truth
bounding box.

Despite the effectiveness of using pre-trained Convolutional Neural Networks
(CNNs) to extract image features in the R-CNN model, its speed remains a
significant drawback. The necessity to evaluate thousands of region proposals

3

from a single input image results in a substantial computational load, rendering
widespread adoption of R-CNNs impractical in real-world applications.

Fast R-CNN [27] marks a significant advancement in both model training
and inference times, accompanied by an enhancement in object detection per-
formance, as measured by metrics like mAP. In single-stage object detection,
a multi-task loss function is instrumental, allowing for the update of all net-
work layers during model training without the need for specific disk storage
to cache features. Instead of extracting CNN feature vectors independently for
each region proposal, this model consolidates them in a single CNN forward
pass over the entire image, and the region proposals share this feature matrix.
A crucial modification involves substituting the pre-trained CNN’s maximum
pooling layer with a Region of Interest (RoI) pooling layer. This RoI pooling
layer produces fixed-length feature vectors for each region proposal, applied to
the output of a selected internal layer of the CNN. Each feature vector is then fed
into a fully connected layer equipped with a SoftMax activation function, facili-
tating the output of class probabilities and bounding box offsets. This innovative
approach contributes to the efficiency and effectiveness of Fast R-CNN.

Faster R-CNN [68], introduced in early 2016 as a successor to Fast R-CNN,
represents a notable evolution in object detection methodologies. The Fast R-
CNN model typically relies on generating numerous region proposals through
selective search. To address the challenge of maintaining accuracy while reduc-
ing the number of region proposals, Faster R-CNN introduces a pivotal change.
Instead of utilizing selective search, It suggests the integration of a Region Pro-
posal Network (RPN) this modification aims to enhance the efficiency of object
detection without compromising accuracy. It has two modules;

1. The first is a CNN known as the Region Proposal Network (RPN) Its
primary role is to generate region proposals by taking a single image as
input and producing bounding boxes along with object confidence scores
as outputs.

2. In the training phase, the RPN undergoes training on the ImageNet dataset.
The generated RP are then utilized for both detection and separate training
processes. Finally, Fast R-CNN is fine-tuned, incorporating unique dense
layers to refine its performance.

4

CHAPTER 1. INTRODUCTION

Figure 1.3: Fast-RCNN & Faster-RCNN architecture

The comparison between two-stage and single-stage object detectors reveals
that two-stage detectors generally outperform their single-stage counterparts in
terms of accuracy. Although they excel in achieving high accuracy by focusing
on highly probable regions for object detection, they tend to be slower. In our
thesis, we center our study around first-stage detectors, specifically focusing on
You Only Look Once (YOLO) [39]. J. Redmon et al. [39] introduce an innovative
solution to object detection by consolidating various components into a single
network. This approach compels the network to analyze the entire image simul-
taneously, as opposed to specific regions enables a more comprehensive under-
standing of the environment, facilitating the localization of different classes of
objects.

Additionally, YOLO establishes an implicit connection between closely related
classes of objects, a feature that distinguishes it from existing object detection
models. Notably, YOLO stands out for its remarkable speed compared to its
predecessors. This efficiency is primarily attributed to YOLO’s unique approach
of not dividing the recognition process into multiple stages. Instead, it predicts
bounding boxes, probabilities, and classes of objects in a single phase for the
input image. While YOLO may incur more localization errors compared to some
other object detection systems, it exhibits a distinct advantage in its reduced
likelihood of recognizing false positives in the background of the image and
considerably faster.

YOLO is not the first algorithm to employ a Single Shot Detector (SSD) for ob-
ject detection. Several other algorithms introduced in recent times also adopt this
approach, including Single Shot Detector (SSD) [55], Deconvolution Single Shot

5

Figure 1.4: The generic schematic architecture of single-stage object detectors.

Detector (DSSD) [25], RetinaNet [51], M2Det [15][93], RefineDet++ [92]. These
algorithms are all based on single-stage object detection. In contrast, two-stage
detectors are known for their complexity and robustness, often outperforming
single-stage detectors. Despite the inherent advantages of two-stage detectors,
YOLO stands out by presenting a formidable challenge not only to two-stage
detectors but also to previous single-stage detectors in terms of both accuracy
and inference time.

Deep neural networks have gained immense popularity owing to their abil-
ity to achieve state-of-the-art performance across various critical applications,
including image classification, image segmentation, language processing, and
computer vision. These networks typically consist of linear components whose
parameters are learned to fit the data, alongside nonlinearities specified in the
form of activation functions such as sigmoid, tanh, rectified linear units (ReLU)
[29], or max-pooling functions. The inclusion of nonlinear activation func-
tions at each neuron is crucial, providing the network with the capability to
approximate arbitrarily complex functions [89]. The choice of activation func-
tion significantly impacts both the training speed and the overall accuracy of
the network. Ongoing research is actively focused on designing new activation
functions that can enhance training speed and network accuracy [23][16]. In re-
cent times, the widely used sigmoid and hyperbolic tangent activation functions
have been replaced by Rectified Linear Units (ReLU) in training deep networks.
This shift reflects the continuous effort in the field to optimize neural network
architectures and improve their efficiency in various applications.

6

CHAPTER 1. INTRODUCTION

ReLU, a piece-wise linear function equivalent to the identity for positive inputs
and zero for negative ones, has gained popularity due to its good performance,
speed, effectiveness, and simplicity. In this thesis, an extensive study is carried
out on several alternatives to the standard ReLu function. One well-known
alternative is Leaky ReLU [62], an activation function that mirrors ReLU for
positive inputs but introduces a small slope ! > 0 for negative inputs. Another
option is ELU [16], which exponentially decreases to a limit point in the negative
space. SELU [44], a scaled version of ELU by a constant ", is also considered.
In addition to these "fixed" activation functions, several "learnable" activation
functions are explored. Parametric ReLU (PReLU) [33] is a variation of Leaky
ReLU where the amount of is learned during training. Adaptive Piece-wise Lin-
ear Unit (APLU) [23] is a piece-wise linear activation with learnable parameters.
Swish, a high-performing function, is a combination of a sigmoid function and
a trainable parameter. These alternatives represent a diverse set of activation
functions that are investigated for their impact on training and performance in
this research and are represented in a separate chapter of this thesis.

In this thesis, several pre-trained ResNet50 [61] CNN models were modified
by combining different varients of ReLU activation functions at distinct levels
of the network graph. To achieve this, a method for stochastic selection of
activation functions is implemented to replace each ReLU layer. These ResNet50
were then fine-tuned and trained on object classification tasks in our case it was
the classification of shark objects with non-shark objects. After completing the
training process, the newly trained models were substituted within the backbone
architecture of object detection models, YOLOV4 [3] and YOLOv3 [66]. These
object detection models are designed to locate shark subjects in images by using
a transfer learning technique, predict bounding boxes around them, and assign
object confidence scores to each bounding box. Following the development of
the proposed solution, a comprehensive empirical evaluation was conducted,
and the approach was subsequently compared to YOLO’s base network which
is darknet53.

The remainder of this thesis is organized as follows: Section 2, includes an
in-depth overview of the prior studies and research carried out in the field of
computer vision, with a specific focus on object detection and what will be the
impact of changing CNN model architecture. In Section 3, we elaborate on

7

the techniques used in this research, such as the topologies, activation func-
tions, and data augmentation methods. The results are in Section 4, which that
demonstrates our best ensemble approach outperforms other methods. Lastly,
in Section 5, we present our conclusions and suggestions for future work.

8

2
Related Work

2.1 Shark Detector Pipeline
Sharks play a crucial role as indicators of the ocean environment’s health.

However, they confront persistent challenges arising from escalating fishing
pressures and inadequate management and conservation practices. These issues
are largely attributed to limited data, insufficient taxonomic knowledge, and
underdeveloped monitoring methods [38]. The collection of observation data on
sharks through surveys and fisheries monitoring is often expensive or logistically
challenging, particularly when dealing with species that have larger home ranges
[7]. Sharks continue to be a highly data-deficient group of marine animals, and
these information gaps contribute to the absence of abundance and distribution
indices, as well as taxonomic precision, necessary for a proper assessment of
population statistics [7][38].

Image-based biomonitoring presents a transformative and cost-effective al-
ternative method in ecological surveys conducted in marine and terrestrial
environments [74][86][87]. Significant advancements in technologies such as
baited underwater remote videos (BRUVs), motion-activated camera traps, and
crowd-sourced citizen science media have led to the production of ecological
information at an unprecedented rate [30][86][87]. Notably, remote monitoring
methods, including these advanced technologies, play a crucial role in generat-
ing visual media to address information gaps related to sharks. These methods
are non-invasive and prove useful in minimizing sampling effort. However, they

9

2.1. SHARK DETECTOR PIPELINE

generate large volumes of media that require post-processing for species iden-
tification and analyses, including the removal of irrelevant images [81]. Studies
such as [82] and [63] emphasize the importance of utilizing deep learning meth-
ods to filter out unrelated content and facilitate rapid sampling in the context of
image-based biomonitoring.

Deep learning algorithms prove to be highly flexible and well-suited for
addressing a variety of tasks in the context of marine and ecological studies
[48][63][74]. They have demonstrated effectiveness in tasks such as estimating
fish sizes from images [4][26], identifying discarded and processed fish [24], and
classifying acoustic and movement data [9][21][40]. However, the application of
machine-learned detection and image classification specifically for shark species
is infrequently studied, primarily due to a shortage of sufficient training data.
Video and photographic documentation of sharks are seldom obtained from
commercial fisheries.

In a previous study by Jenrette and his team [36] on shark detection and
classification, a hierarchical approach using locators and classifiers achieved
approximately 70% species classification accuracy. The methodology involved
a shark detection and classification pipeline with multiple steps, consisting of
three main components:

• An object-detection model called the Shark Locator (SL), which locates
one or several shark subjects in images and draws bounding boxes around
them;

• A binary sorting model called Shark Identifier (SI) sorts images of sharks
from a pool of heterogeneous images;

• Multi-class models called Shark Classifiers (SCs) which classify shark im-
ages to the genus and species levels.

By integrating these three modeling components, they developed a compre-
hensive shark identification and classification pipeline known as Shark Detector
(SD). This pipeline is designed to process various media containing shark sub-
jects, effectively locate and organize these subjects based on relevance, and
ultimately classify the sharks down to the species level. For the development
of these models, shark training images were primarily sourced from sharkPulse
[36]. The detailed description of all these three components are:

10

CHAPTER 2. RELATED WORK

The first component is the Shark Locator (SL), focusing on object detection. To
construct the SL, they utilized TensorFlow’s Model Garden and implemented a
Faster Region-based Convolutional Neural Network (Faster-RCNN) algorithm.
The model was trained using the Common Objects in Context (COCO) datasets,
which included 236 shark images, enabling the detection and draw bounding
boxes around shark subjects [52][69]. The SL significantly augmented the clas-
sification dataset, increasing it from 24,546 images to 53,345 images.

The second component, the Shark Identifier (SI), is a binary model developed
for sorting purposes. The SI is designed to distinguish between shark and non-
shark subjects in images, serving as a filter to exclude non-shark images before
the remaining images undergo taxonomic classification. A total of 53,345 shark
images were sourced from Instagram and sharkPulse, while an additional 50,260
non-shark images were obtained from Instagram.

The SI was constructed to learn key shark features from training images, opti-
mizing the binary cross-entropy loss function [47]. Transfer learning was imple-
mented by incorporating a pre-trained model to reduce the number of training
steps. Specifically, the SI was pre-trained with the VGG16 network, which has
been trained on 1.28 million images across 1000 categories and achieves a 92.7%
test accuracy on the ImageNet dataset [78]. Convolutional-pooling layers were
constructed to serve as checkpoints for summarizing features learned by the
model [47]. When shark features are learned from trained images, the Convo-
lutional Neural Network (CNN) generates parameters called weights, initially
initialized from pre-trained networks on the ImageNet dataset. The bottom
pre-trained layers were frozen to prevent weight modifications while training
the top layers specifically for shark features. VGG16, containing 16 pre-trained
layers, had four additional layers added for training shark features.

The final segment of their pipeline involves the development of a Shark Clas-
sifier (SC) designed for genus and species classification (GSC). This component
operates as a hierarchical classification framework for taxonomically classifying
the identified shark images. The researchers trained one genus-specific model
and a set of local species-specific models, each tailored for a particular genus.
The SC takes in the filtered shark images and conducts classification at the
genus level using the genus-specific classifier (GSC). Subsequently, based on

11

2.2. PERFORMANCE OF DIFFERENT ACTIVATION FUNCTIONS ACROSS IMAGE
CLASSIFICATION AND IMAGE SEGMENTATION PROBLEM

the identified genus, a species-specific classifier (SSCg) predicts the most likely
species.

The SC was trained using the sharkPulse database which incorporates infor-
mation from 74 genera and 219 species of sharks, with an average of 167 images
per species. The Genus-Specific Classifier (GSC) was trained with 36,722 images,
while the Species-Specific Classifiers (SSCg) were trained with 19,243 images.
To assess the performance of the SC, the researchers evaluated the recall of a
genus class concerning its training data quantity. The results indicated an av-
erage of 433 ± 47 images were needed to achieve >50% recall. Recall measures
the proportion of shark images that were correctly classified. However, for most
genera (>64%), the available images did not meet this threshold for adequate
training quality. Following the classification of a genus, a similar evaluation
was conducted for species classes, revealing an average of 161 ± 41 images were
needed to achieve >50% recall. These averages were subsequently employed as
training data quantity thresholds for the SC.

2.2 Performance of different activation functions
across image classification and image segmenta-
tion problem

In the referenced paper [47], the authors conduct a comprehensive empirical
comparison of various activation functions across a range of image classification
tasks and an image segmentation problem. They initiate this comparison using
two of the best-performing models: ResNet50 [34] for the classification task
and DeepLab-v3 [12] for the segmentation task. The focus of their investigation
includes assessing different approaches for replacing ReLU layers and exploring
various methods for constructing ensembles of Convolutional Neural Networks
(CNNs) by varying the activation function layers.

The proposed ensemble framework is assessed in two distinct applications:
image classification and image segmentation. In the realm of image classifica-
tion, the framework is applied to various medical problems, encompassing 13
image classification datasets in the benchmark. CNNs have demonstrated high

12

CHAPTER 2. RELATED WORK

performance in medical datasets, addressing issues such as keratinocyte carci-
nomas and malignant melanomas detection [19], thyroid nodules classification
from ultrasound images [13], and breast cancer recognition [61]. The testing
protocol involves fine-tuning each model on every dataset, followed by a thor-
ough evaluation and comparison. The experiments reveal that the proposed
method performs effectively across all tested problems, achieving state-of-the-
art classification performance [59].

In the domain of image segmentation, the framework is applied to address the
skin segmentation problem precisely, distinguishing between skin and non-skin
regions in a digital image. This task holds significance across various applica-
tions, including face detection [35], body tracking [5], gesture recognition [32],
and objectionable content filtering [49]. Skin detection is also highly relevant
in the medical field, where it serves as a component in applications such as
face detection and body tracking. In their experiment, the authors conduct a
comparison of several approaches by training on a small dataset comprising
only 2000 labeled images. Testing is then performed on 11 different datasets
including images from diverse applications. The reported results demonstrate
that the proposed method achieves state-of-the-art performance [57] across most
benchmark datasets, even without ad-hoc tuning.

In the experiments, the authors choose two top-performing models: ResNet50
[34] for image classification and Deeplabv3+ [12] for segmentation. In the image
classification experiments, all the models are fine-tuned on the training set of
each classification problem. For the task of image segmentation, the authors
opt for DeepLabv3+ [12], a recent architecture that employs atrous convolution.
Unlike traditional convolutions, atrous convolution skips certain adjacent pixels
in a spaced-out lattice fashion. DeepLabv3+ incorporates four parallel atrous
convolutions, each with varying atrous rates, followed by a "Pyramid Pooling"
method. Given its encoder-decoder structure, DeepLabv3+ can leverage a pow-
erful pre-trained CNN architecture, and in this instance, the authors choose
ResNet50. It’s noteworthy that internal evaluations indicate that ResNet101 and
ResNet34 exhibit similar performance for this task.

13

3
Methods

3.1 Topologies

3.1.1 ResNet50

In this study, we explored the ResNet50 [76] model, which is a convolutional
neural network (CNN) an architecture belonging to the Residual Network family,
also known for its skip or shortcut connections. ResNet, introduced by Kaiming
He et al. in 2015 [76], introduced a key innovation to address the issue of
vanishing gradients in deep neural networks. ResNet-50 is designed to take an
input image of size 224 x 224 x 3, where 3 represents the RGB channels. The initial
layers of ResNet-50 include standard convolutional layers responsible for feature
extraction from the input image. The fundamental building blocks of ResNet
are residual blocks [34]. Each residual block comprises two paths: a "shortcut"
path and a "main" path. The main path incorporates several convolutional
layers, batch normalization [72], and activation functions [73]. Simultaneously,
the shortcut path establishes a direct connection from the input to the output,
effectively bypassing the main path. This shortcut mechanism proves crucial in
mitigating the vanishing gradient problem. The output of a residual block is
obtained through the element-wise sum of the shortcut and the output of the
main path, facilitating more effective learning in deep neural networks.

ResNet-50 consists of several stacks of residual blocks. Some of these blocks
are identity blocks (shortcuts have no convolutions), and others are convolu-

15

3.1. TOPOLOGIES

Figure 3.1: The left part of this figure is a classic block of two convolutional layers and
an activation layer. On the right, a residual connection: the block input is added to the
block output if the block output is zero then we have zero plus x, so f(x) is equal to x.

tional blocks (shortcuts include a convolution to match dimensions). After the
stacks of residual blocks, global average pooling is applied. This operation re-
duces the spatial dimensions to a 1x1 size for each feature map, resulting in a
vector that represents the entire image. A fully connected layer is added to the
output of the global average pooling to map the features to the desired number
of classes. The final layer usually includes a softmax activation function to ob-
tain class probabilities. ResNet-50, in particular, has 50 layers, including weight
layers and batch normalization layers. The use of residual connections allows
ResNet architectures to be very deep without suffering from degradation issues,
making them effective for image classification tasks, among others.

Figure 3.2: The ResNet-18 architecture.

16

CHAPTER 3. METHODS

3.1.2 YOLO

YOLO (You Only Look Once) is a family of real-time object detection algo-
rithms popular for their speed and accuracy. The core concept of YOLO involves
partitioning the input image into a grid and generating predictions for each
grid cell. Unlike conventional object detection approaches that follow region
proposal and sequential classification steps, YOLO executes both tasks concur-
rently in a single pass through the neural network. To grasp the YOLO algorithm,
it’s crucial to comprehend the nature of the predictions. The ultimate goal is
to predict the object’s class and the bounding box that precisely outlines the
object’s location. These bounding boxes are characterized by four descriptors:

• center of a bounding box (b! , b"),

• width (b#),

• height (bℎ)

and the value c corresponds to a class of an object (e.g., the shark in our case).
In addition, we have to predict the %& value, which is the probability that there
is an object in the bounding box y = (%& ,'! ,'" ,'# ,'ℎ ,c).

Figure 3.3: Description of bounding box.

As we mentioned earlier, when working with the YOLO algorithm we are
not searching for interesting regions in our image that could potentially contain
an object. The final level of the network predicts both class probabilities and
bounding box coordinates for recognized objects.

17

3.1. TOPOLOGIES

The YOLO architect integrates the various elements of object detection into a
unified neural network. Utilizing features from the entire image, the network
predicts each bounding box, simultaneously forecasting all bounding boxes
across all classes for a given image. This global reasoning approach considers
the complete image and all its objects collectively. The architecture partitions
the input image into an S x S grid, where each grid cell becomes responsible
for detecting an object if the object’s center falls within that cell. Every grid cell
predicts B bounding boxes and assigns a confidence score to each, indicating the
likelihood of containing an object (()(Object)), along with the accuracy of the
bounding box’s size and location concerning the object (IOU intersection over
union).

For every predicted bounding box, the model provides five values: x, y, w, h,
and the confidence score "()(Object) ∗ IOU" Here, (x, y) denote the coordinates
of the bounding box center relative to the edges of the grid cell, while w and
h represent the width and height of the bounding box relative to the entire im-
age. Each grid cell, predicts C classes along with their conditional probabilities
()(Class* |Object). Subsequently, the model calculates, for each bounding box,
the product of the conditional probabilities of the classes (of the cell) with the
confidence score of the bounding box, resulting in a specific confidence score
for each class in each bounding box:

()(+,-..* |/'01&2) ∗ ()(/'01&2) ∗ 3/42)52ℎ
%)16 = ()(+,-..*) ∗ 3/42)52ℎ

%)16 (3.1)

The value obtained contains both the probabilities of an object belonging
to a specific class within the bounding box and the precision with which the
predicted bounding box defines the spatial boundaries of the object.

Architecture of YOLO

The authors implemented the model as a CNN and evaluated it on the PAS-
CAL VOC [20] detection dataset. In the architecture, the initial convolutional
layers are responsible for feature extraction, and the fully connected layers pre-
dict the output probabilities and coordinates. The network architecture draws
inspiration from the GoogleNet model [36], featuring 24 convolutional layers

18

CHAPTER 3. METHODS

Figure 3.4: The graphical representation of YOLO’s workflow.

and 2 fully connected layers. Instead of employing the inception modules of
GoogLeNet, the model utilizes 1 x 1 reduction layers followed by 3 x 3 convo-
lutional layers, similar to [62]. The complete network structure is depicted in
Figure 3.5.

YOLO employs a linear activation function for the last layer where backprop-
agation is not feasible due to the constant derivative. For all other layers, the
following activation function is utilized:

Φ(x) =
{

x if x > 0
0.1x otherwise

(3.2)

The convolutional layers are initially pre-trained on the ImageNet classifica-
tion task with a resolution of 224 x 224 for the input image. Later, for detection,
the resolution is doubled. In YOLO, the output layer has a size of 7 x 7 x 30,
where 7 is fixed in the original YOLO. The image is divided into a 7 x 7 grid, and
for each grid cell, the model predicts 2 bounding boxes, confidence scores for
those boxes, and probabilities for 20 classes (C = 20). This results in predictions

19

3.1. TOPOLOGIES

Figure 3.5: The architecture of the detection network has 24 convolutional layers fol-
lowed by 2 fully connected layers.

encoded as an S x S x (B x 5 + C) tensor, where B is set to 2 for this example. The
training dataset used is the PASCAL VOC, containing 20 labeled classes.

Training of YOLO

According to the authors, The YOLO training process consists of two phases:
an initial pre-training phase, where only the deepest levels of the network are
trained, and a subsequent phase that involves training the entire network.

During the pre-training phase, the authors of YOLO initiate the training by
focusing on the first 20 convolutional layers. In addition to these layers, they
include an average pooling level and a fully connected layer. The training utilizes
the ImageNet dataset, which involves a classification problem with input images
sized at 224x224 pixels. During the training phase, they eliminated the last two
levels of the network, added specifically for the first part of the training, to added
another 4 convolutional levels, finally followed by 2 fully connected levels.

For the second training phase, crucial for enhancing accuracy in object detec-
tion, the authors opt for high-resolution images (448x448 pixels). This phase
spans 135 epochs and employs both the training and validation sets from the
PASCAL VOC 2007 and PASCAL VOC 2012 datasets. To mitigate overfitting,
a dropout layer with a 50% reduction rate is strategically placed after the first
fully connected layer, preventing co-adaptation among these layers. Further

20

CHAPTER 3. METHODS

measures to counter overfitting involve the introduction of data augmentation
techniques. Before utilizing the input images, the model processes them by
incorporating translations and altering the aspect ratio by up to 20% compared
to their original characteristics. Additionally, the images undergo modifications
in exposure and saturation, with changes occurring by a factor between 0 and
1.5.

In the final layer of the network, the model is designed to predict both class
probabilities and bounding box coordinates for identified objects. Notably, the
width and height of the bounding boxes are normalized concerning the size of
the input image, ensuring their values fall within the real range between zero
and one. Similarly, the center of the bounding boxes undergoes normalization,
expressed as a function of the grid cell to which it belongs, thereby restricting
its values to the interval between zero and one. The learning rate begins with a
low value of 10−3, The rate slowly increases in the first epochs until it reaches the
value of 10−2. Remains constant until epoch 75 and for the following 30 epochs
a rate of 10−3 is applied. For the last 30 epochs a learning rate of 10−4 is used.

loss function of YOLO

The YOLO loss function consists of:
1. Classification loss.
2. Localization loss (spatial error between the predicted and the real bound-

ing box).

3. Confidence loss (general error of the bounding box, i.e. calculated confi-
dence score error).

The classification loss measures the error in classifying a specific object,
determining whether the identified class aligns with the object present in the
image. The error in this operation is computed using a quadratic function,
evaluating the conditional probabilities associated with the recognized class.

S2∑
*=0

obj
*

∑
&∈classes

(%*(&) − %̂ *(&))2 (3.3)

where, obj
* it is 1 if an object appears in the i-th cell, OR 0 otherwise;

%̂ *(&))2 denotes the conditional probability of the c-th class to appear in the i-th
cell.

21

3.1. TOPOLOGIES

Localization loss quantifies the error in predicting the bounding boxes, includ-
ing the height, width, and coordinates of the center. YOLO specifically computes
this error solely for the bounding boxes responsible for recognizing an object.
The localization error is determined through the following calculation:

"coord

S2∑
*=0

B∑
0=0

obj
* 0

((!* − !̂ *)2 + ("* − "̂ *)2 + (√#* −
√
#̂*)2 + (

√
ℎ* −

√
ℎ̂ *)2

)
(3.4)

where, obj
* 0 it is 1 if the j-th bounding box of the i-th cell is responsible for

recognizing an object (i.e. an object is located in that bounding box), 0 otherwise
and "coord = 0.5.

It is worth noting that the error concerning the size of the bounding box is
computed on the square root of the values. This adjustment is made to avoid
assigning the same weight to errors irrespective of the size of the bounding
box. The square root operation scales down larger values while having a lesser
impact on smaller values of width and height.

The Confidence Loss is employed to measure the certainty of the prediction
made for an individual bounding box. When the model identifies an object
within a bounding box, the confidence loss is calculated as follows:

S2∑
*=0

B∑
0=0

obj
* 0

(
+*0 − +̂ *0)2 (3.5)

where, obj
* 0 it is 1 if the j-th bounding box of the i-th cell is responsible for

recognizing an object, or 0 otherwise; +̂ *0 confidence score of the j-th bounding
box of the i-th cell, i.e. it is one of the parameters of the bounding box, it is an
output of the network.

As many bounding boxes do not encompass any objects, it creates an imbal-
ance in the model, leading it to more frequently train to recognize backgrounds
rather than objects. To address this, the confidence loss for bounding boxes
that do not contain objects is adjusted by a factor (default value: 0.5). This

22

CHAPTER 3. METHODS

adjustment is expressed as:

"noobj

S2∑
*=0

B∑
0=0

noobj
* 0

(
+*0 − +̂ *0)2 (3.6)

where, noobj
* 0 is the complement of obj

* 0 . +̂ *0 is the confidence score of the j-th
bounding box of the i-th cell.
On combining equations 3.5 and 3.6 we get,

S2∑
*=0

B∑
0=0

obj
* 0

(
+*0 − +̂ *0)2 + "noobj

S2∑
*=0

B∑
0=0

noobj
* 0

(
+*0 − +̂ *0)2 (3.7)

Consequently, the loss function of YOLO is expressed as follows:

"coord

S2∑
*=0

B∑
0=0

obj
* 0

((!* − !̂ *)2 + ("* − "̂ *)2 + (√#* −
√
#̂*)2 + (

√
ℎ* −

√
ℎ̂ *)2

)

+
S2∑
*=0

B∑
0=0

obj
* 0

(
+*0 − +̂ *0)2 + "noobj

S2∑
*=0

B∑
0=0

noobj
* 0

(
+*0 − +̂ *0)2

+
S2∑
*=0

obj
*

∑
&∈classes

(%*(&) − %̂ *(&))2

(3.8)

Limitations of YOLO

The YOLO model enforces strong spatial constraints on bounding box pre-
dictions as each grid cell predicts only two boxes and is restricted to one class.
This spatial constraint restricts the number of nearby objects the model can pre-
dict, leading to challenges in dealing with small objects appearing in groups,
such as flocks of birds. The model encounters difficulties in generalizing to ob-
jects with new or unusual aspect ratios or configurations. The training process
employs a loss function that approximates detection performance, yet it treats
errors the same way for both small and large bounding boxes. While a small
error in a large box might have limited impact, a small error in a small box sig-
nificantly affects the Intersection over Union (IOU). The primary source of error
in the model is attributed to incorrect localizations. YOLO faces challenges in
accurately localizing objects, with localization errors constituting a significant

23

3.1. TOPOLOGIES

portion of its overall errors.

3.1.3 YOLOv3

YOLOv3 [66], an advancement over YOLOv2, introduces improvements to
address limitations and enhance the overall performance of the object detection
algorithm. One notable enhancement is the incorporation of Darknet-53, a
neural network architecture with 53 convolutional layers. Additionally, YOLOv3
adopts multi-label classification, allowing for output labels that are not mutually
exclusive, such as "pedestrian" and "child." These improvements contribute to
the algorithm’s capabilities in accurately detecting and classifying objects in
diverse scenarios.

Figure 3.6: YOLOv3 runs significantly faster than other detection methods with compa-
rable performance.

Bounding Box Prediction

In YOLOv3, the network adopts a system similar to YOLO9000 for predicting
bounding boxes, utilizing dimension clusters as anchor boxes. The network
provides predictions for four coordinates associated with each bounding box:
t! , t" , t# , tℎ . These predictions are determined based on the offset of the cell
from the top left corner of the image (c! , c") and the width and height of the

24

CHAPTER 3. METHODS

bounding box prior (p# , pℎ):

b! = (t!) + c!
b" = (t") + c"

b# = p#e2#

bℎ = pℎe
2ℎ

(3.9)

In YOLOv3, an objectness score is predicted for each bounding box through
logistic regression. This score is expected to be 1 if the bounding box prior has
a higher overlap with a ground truth object than any other bounding box prior.
Bounding boxes with class probabilities below a certain threshold are discarded,
and the author of YOLOv3 uses a threshold value of 0.5.

Figure 3.7: Bounding boxes dimensions and location prediction.

Class Prediction

Each bounding box predicts the classes it may contain through multilabel
classification. Unlike the standard DarkNet [67], which uses the softmax func-
tion, YOLOv3 employs independent logistic classifiers to estimate the likelihood
of the input belonging to specific labels. YOLOv3 introduces changes in the
calculation of the cost function and predicts boxes at three different scales. This
multiscale approach, inspired by feature pyramid networks, allows the system
to extract features from different scales, aiding in the detection of objects with
varying sizes and handling scale variations.

25

3.1. TOPOLOGIES

Feature Extraction

The developers introduced a new network for feature extraction called Darknet-
53. This network adopts a hybrid approach, incorporating elements from the
YOLOv2 network, Darknet-19, and the concept of residual networks. Darknet-
53 utilizes a sequence of 3 x 3 and 1 x 1 convolutional layers, and unlike its
predecessor, includes shortcut connections. With a total of 53 convolutional
layers, Darknet-53 is a significantly larger network designed to enhance feature
extraction capabilities.

Figure 3.8: Structure of DarkNet-53

Intersection over Union (IoU)

Intersection over Union (IoU) is a critical component in the YOLOv3 and is
commonly employed in state-of-the-art object detection models. IoU serves as
a metric to assess the extent of overlap between predicted bounding boxes and

26

CHAPTER 3. METHODS

ground truth bounding boxes. The concept involves comparing the ratio of the
overlapping area to the total combined region of the two boxes, expressed as:

374 =
Area of overlap
Area of Union (3.10)

In the YOLOv3, object detection relies on bounding boxes and the concept of
Intersection over Union (IoU). A score of 1 indicates a perfect match between the
predicted bounding box and the ground truth box whereas a score of 0 signifies
no overlap between the predicted and ground truth boxes.

Differences from YOLOv2

• Multi-Scale Detection: YOLOv3 introduces the concept of multi-scale
detection, allowing the model to detect objects of different sizes more
effectively.

• Deeper Backbone: YOLOv3 uses the Darknet-53 backbone, which is a
deeper neural network compared to the Darknet-19 used in YOLOv2. This
deeper backbone captures more complex features.

• Feature Pyramid Network: YOLOv3 incorporates a Feature Pyramid Net-
work to handle scale variations and improve the detection of small and
large objects.

• IoU Loss: YOLOv3 replaces the traditional mean squared error loss with
the IoU loss for bounding box predictions.

• Class Confidence Threshold: YOLOv3 introduces class confidence
threshold, providing a way to filter out low-confidence predictions.

3.1.4 YOLOv4

YOLOv4, introduced in April 2020 by Alexey Bochkovsky and his team [3],
represents the fourth version of the YOLO series. This version achieved state-of-
the-art (SOTA) performance on the COCO dataset, which comprises 80 different
object classes.

The architecture consists of a set of input training images which will be fed to
the network and they are processed in batches in parallel. Next are the Backbone
and the Neck which do the feature extraction and aggregation. The Detection
Neck and Detection Head together can be called the Object Detector. Finally, the
head does the detection/prediction both localization and classification.

27

3.1. TOPOLOGIES

Figure 3.9: Comparison of the YOLOv4 and other state-of-the-art object detectors.

Figure 3.10: Different components of object detector.

An ordinary object detector is composed of several parts:

• Input: Image, Patches or Image Pyramid

• Backbones: VGG16[77], ResNet50[15], SpineNet[88], EfficientNet B0/B7[83],
CSPResNeXt50[14], CSPDarknet53[14]

• Neck:

– Additional blocks: SPP[42], ASPP[50], RFB[54]
– Path-aggregation blocks: FPN [84], PAN[53], NAS-FPN[31],

Fully-connected FPN, BiFPN[64], ASFF[79], SFAM[65]

• Heads:

– Dense Prediction (one-stage):
RPN[69], SSD[55], YOLO[39], RetinaNet[92] (anchor based)
CornerNet[46], CenterNet[43], MatrixNet[1], FCOS[94] (anchor free)

28

CHAPTER 3. METHODS

– Sparse Prediction (two-stage): Faster R-CNN [69],
R-FCN [37], Mask RCNN[41] (anchor based)
RepPoints[91] (anchor free)

Backbone Network

Initially, the authors evaluated CSPResNet50, CSPDarknet53, and EfficientNet-
B3 as potential backbone networks but based on extensive testing and experi-
mental results, they opted for CSPDarknet53. It follows the DenseNet design,
employing a dense connectivity pattern where the previous inputs are concate-
nated with the current input before passing through the dense layers. It consists
of two blocks:

• Convolutional Base Layer

• Cross Stage Partial (CSP) Block

The Cross Stage Partial (CSP) strategy involves dividing the feature map in
the base layer into two parts and merging them through a Cross-stage hierarchy.
This approach facilitates increased gradient flow through the layers, addressing
the challenge of vanishing gradients. The Convolutional Base Layer consists the
entire input feature map. The CSP block, positioned alongside the Convolu-
tional Base layer, partitions the input into two halves, where one half undergoes
processing through the dense block, and the other half is directly routed to
the subsequent step without any processing. This strategy in CSP helps retain
fine-grained features, promotes the network to reuse features, and reduces the
overall number of network parameters.

Neck

The neck serves as the component responsible for feature aggregation. It
gathers feature maps from various stages of the backbone and employs a com-
bination of bottom-up and top-down paths to mix and integrate these features,
preparing them for subsequent processing. Typically, a neck comprises multiple
pathways for both bottom-up and top-down operations.

29

3.1. TOPOLOGIES

Between the CSPDarkNet53 backbone and the feature aggregator network
(PANet) in YOLOv4’s architecture, an extra block named SPP (Spatial Pyramid
Pooling) is introduced. This addition aims to expand the receptive field, isolating
crucial contextual features with minimal impact on network operation speed.
SPP is linked to the final layers of the densely connected convolutional layers of
CSPDarkNet.

Figure 3.11: The diagram demonstrates how SPP block is integrated into YOLOv4

The Path Aggregation Network (PANet) plays a crucial role in improving in-
stance segmentation by preserving spatial information, leading to more accurate
localization of pixels for mask prediction. The main properties of PANet include
Bottom-up Path Augmentation, Adaptive Feature Pooling, and Fully-Connected
Fusion. A key modification in the YOLOv4 PANet involves concatenating neigh-
boring layers instead of adding them during the use of Adaptive Feature Pooling.
This modification contributes to the accuracy of mask prediction.

YOLOv4 Additions

Two new terms were introduced by the authors called Bag of Freebies (BoF)
and Bag of Specials (BoS).

The Bag of Freebies (BoF) aimed to improve the network’s performance with-
out introducing additional inference time. These enhancements primarily in-
volve data augmentation techniques. Data augmentation is a strategy that in-
volves creating various versions of a single image by applying transformations

30

CHAPTER 3. METHODS

Figure 3.12: Modified PAM

such as rotation, scaling, and flipping. The goal is to augment the training
dataset and make the network more robust, improving its ability to make accu-
rate predictions across different variations of input data.

Mosaic Data Augmentation and Self-Adversarial Training (SAT) are the two
main techniques introduced with this architecture.

• Bag of Freebies (BoF) for the backbone includes CutMix and Mosaic data
augmentation, Drop-Block regularization, and Class label smoothing.

• Bag of Freebies (BoF) for the detector include CIoU-loss, CmBN, Drop-
Block regularization, Mosaic data augmentation, Self-Adversarial Train-
ing, Eliminate grid sensitivity, Using multiple anchors for a single ground
truth, Cosine annealing scheduler, Optimal hyper-parameters, Random
training shapes.

Bag of Specials (BoS): These strategies add marginal increases to inference
time but significantly increase performance.

• BoS for backbone: Mish activation, Cross-stage partial connections (CSP),
and Multi-input weighted residual connections (MiWRC)

• BoS for detector: Mish activation, SPP-block, SAM-block, PAN path-
aggregation block, and DIoU-NMS.

31

3.2. ACTIVATION FUNCTIONS

Non-maximum suppression

The idea of Non-maximum suppression is to remove redundant and overlap-
ping bounding boxes. It works in one class at a time. For a particular class, it
picks the box with the maximum score obtained using SVM. Then it calculates
the IoU score with all other bounding boxes belonging to that class. The boxes
having IoU score greater than 70% are removed. In other words, the bounding
boxes which have very high overlap are removed. Then the next highest score
box is chosen and soon all the overlapping bounding boxes are removed for that
class. This is done for all classes to obtain the result as shown in the figure below.

Non-maximum suppression algorithm

Input: A list of Proposal boxes B, corresponding confidence scores S and
overlap threshold N.
Output: A list of filtered proposals D.
Algorithm:

1. Select the proposal with the highest confidence score, remove it from B,
and add it to the final proposal list D. (Initially D is empty).

2. Now compare this proposal with all the proposals calculate the IOU (In-
tersection over Union) with every other proposal. If the IOU is greater
than the threshold N, remove that proposal from B.

3. Again take the proposal with the highest confidence from the remaining
proposals in B, remove it from B, and add it to D.

4. Once again calculate the IOU of this proposal with all the proposals in B
and eliminate the boxes that have higher IOU than the given threshold.

5. This process is repeated until there are no more proposals left in B.

3.2 Activation functions
The primary objective of a neural network is to convert non-linearly separa-

ble input data into a more linearly separable representation through a series of
layers. These layers consist of combinations of linear and nonlinear activation
functions several popular options include Logistic Sigmoid, Tanh, ReLU, ELU,
Swish, and Mish. They play a very pivtol role in introducing nonlinearity and

32

CHAPTER 3. METHODS

the goal of any activation function is to avoid problems for instance vanishing
gradient, exploding gradient, overfitting, and underfitting. For instance, ReLU
is effective in addressing the vanishing gradient problem by permitting only
positive values, preventing the gradient from diminishing during backpropaga-
tion. In contrast, activation functions like sigmoid and tanh can potentially lead
to vanishing or exploding gradients, especially in deep networks. The choice of
activation function is a critical consideration in the design of neural networks,
impacting their ability to capture complex patterns and hierarchical represen-
tations in the data. [58]. This study considers the different activation functions
below, namely the widely used ReLU and several variants.

3.2.1 ReLU

ReLU is a widely adopted activation function for hidden layers owing to its
simplicity and non-saturating characteristics. On the other hand, Sigmoid and
Tanh activations are frequently employed in the output layer for binary and
multi-class classification tasks, respectively. This choice is driven by the re-
quirement for interpretable outputs that represent probabilities. In practice, the
selection of activation functions remains an active area of research, with various
proposed variants and ongoing studies. The following summary includes the
functions used, along with their derivatives.
The well-known ReLU activation function is defined as:

"* = 8 (!*) =



0, !* < 0
!* , !* ≥ 0

(3.11)

and its derivative is zero for negative or zero values of net and 1 for positive
values and therefore evaluated as:

6"*
6!*

= 8
′(!*) =




0, !* < 0
1, !* ≥ 0

(3.12)

In our study, we also included learnable ReLU and wider learnable ReLU.
Unlike traditional ReLU, where the rectification threshold is fixed at zero, in
Learnable ReLU, the threshold is a trainable parameter. The Wider Learnable
ReLU Layer is an extension of the Learnable ReLU Layer that introduces an

33

3.2. ACTIVATION FUNCTIONS

additional scaling parameter to control the width of the rectified output. The
wider parameter scales the rectified output by a learned factor.

3.2.2 Leaky ReLU

Leaky ReLU addresses the dying ReLU problem, where the gradient of ReLU
becomes zero for inputs of 0 or negative values, hindering back-propagation for
that neuron.

"* = 8 (!*) =


!!* , !* < 0
!* , !* ≥ 0

(3.13)

where ! is a small real number which is 0.01 in this study. The main advantage of
Leaky ReLU is that the gradient is always positive (no point has a zero gradient):

6"*
6!*

= 8
′(!*) =



!, !* < 0
1, !* ≥ 0

(3.14)

Figure 3.13: Illustrations of different activation functions: ReLU, LReLU, PReLU, and
ELU

34

CHAPTER 3. METHODS

3.2.3 Scaled Exponential Linear Unit (SELU)

The third variant of ReLU considered is the Scaled Exponential Linear Unit
(SELU). SELU is specifically designed to exhibit self-normalizing properties,
intending to maintain the mean and variance of activations close to certain
values for improved training stability. The SELU function is defined as follows:

"* = 8 (!*) =


.!(1!%(!*) − 1), !* < 0
.!* , !* ≥ 0

(3.15)

where ! and s are real numbers in our case -,%ℎ- = 1.6733 and s = 1.0507. SELU
is similar to ELU but includes additional scaling parameters to address gradient
issues such as exploding or vanishing. The gradient in this case is given by:

6"*
6!*

= 8
′(!*) =



.!1!%(!*), !* < 0
. , !* ≥ 0

(3.16)

3.2.4 Parametric ReLU (PReLU)

The Parametric ReLU (PReLU) is the fourth variant that is considered here.
PReLU is an activation function that extends the Rectified Linear Unit (ReLU)
by introducing a learnable parameter to control the slope of the negative part
of the function. While the standard ReLU uses a fixed slope (zero for negative
values), PReLU allows this slope to be learned during training. It is defined by:

"* = 8 (!*) =


!&!* , !* < 0
!* , !* ≥ 0

(3.17)

where !& is a set of real numbers, one for each input channel. PReLU is similar
to Leaky ReLU, with the key distinction that the !& parameters are learned. The
gradient of PReLU is given by:

6"*
6!*

= 8
′(!*) =



!& , !* < 0
1, !* ≥ 0

and
6"*
6!&

= 8
′(!*) =



!* , !* < 0
0, !* ≥ 0

(3.18)

PReLU offers a notable advantage over traditional ReLU by allowing the

35

3.2. ACTIVATION FUNCTIONS

learning of slopes for negative values. This becomes particularly valuable in
addressing the "dying ReLU" problem, where neurons can become inactive
(output zero) for all inputs during training, leading to issues such as vanishing
gradients.

3.2.5 S-Shaped ReLU (SReLU)

The fifth variant, S-shaped ReLU (SReLU), is defined as a piece-wise linear
function with a smooth transition between its linear and nonlinear regions. To
achieve this, it introduces two additional parameters, 2 , and 2) , which control
the points at which the function transitions from linear to nonlinear. The SReLU
function is expressed as follows:

"* = 8 (!*) =




2 , + !,(!* − 2 ,), !* < 2 ,

!* , 2 , ≤ !* ≤ 2)

2) + !)(!* − 2)), !* > 2)
(3.19)

In this case, four learnable parameters are used, 2 , , 2) , !, , and !) expressed
as real numbers. Where 2 , and 2) are the left and right transition points and !,

and !) are the slopes of the linear regions to the left and right of the nonlinear
part. They are initialized to !,= 0, 2 ,= 0, 2) = maxInput, where maxInput is a
hyper-parameter. SReLU is highly flexible thanks to the rather large number of
tunable parameters. The gradients are given by:

6"*
6!*

= 8
′(!*) =




!, , !* < 2 ,

1, 2 , ≤ !* ≤ 2) ,

!) , !* > 2)
(3.20)

6"*
!,

=



!* − 2 , , !* < 2 ,

0, !* ≥ 2 ,
(3.21)

6"*
2 ,

=



−!, , !* < 2 ,

0, !* ≥ 2 ,
(3.22)

36

CHAPTER 3. METHODS

3.2.6 Adaptive Piece-wise Linear Unit (APLU)

The Adaptive Piece-wise Linear Unit APLU is the fifth variant. As the name
suggests, it is characterized by a linear piece-wise function with adaptive slopes
and biases, allowing it to approximate any continuous function within a compact
set:

"* = 91:4(!*) +
;∑
&=1

!&<*;(0,−!* + '&) (3.23)

where !& and '& are real numbers, one for each input channel. The gradient
of ALPU is given by the sum of the gradients of ReLU and of the functions
contained in the sum. With respect to the parameters, !& and '& , the gradients
are:

68 (! , -)
6!&

=



−! + '& , ! < '&

0, ! ≥ '&
and

68 (! , -)
6'&

=



−!& , ! < 0
0, ! ≥ 0

(3.24)

3.2.7 Gaussian ReLU (GALU)

The Gaussian ReLU, also called GaLU, Its definition is based on the Gaussian
type functions:

#!,"
= (!) = <-!(" − |! − ! |, 0) + <*;(|! − ! − 2"| − ", 0), (3.25)

where ! and " are real numbers. The GaLU activation function is defined as:

"* = >-:4(!*) = (91:4&0(!*) +
?−1∑
0=1

&0#
! 0 ,"0
= (!*) (3.26)

The parameter k represents the number of learnable parameters for each input
channel, &0 are the learnable parameters, &0 is the parameter vector in PReLU,
and ! 0 and " 0 are fixed parameters chosen recursively.

3.2.8 Soft-Root-Sign (SRS)

In contrast to ReLU, SRS has a non-monotonic region when x < 0 which
helps capture negative information and provides zero-mean property. Mean-
while, SRS is bounded output when x > 0 which avoids and rectifies the output

37

3.3. TRANSFER LEARNING

distribution to be scattered in the non-negative real number space [90].

@9@(!) = !
!
! + 1−

!
$

(3.27)

where ! and $ are a pair of trainable non-negative parameters. Its derivative
can be defined as:

@9@′(!) =
(1 + !

$)1
− !

$

(!! + 1−
!
$)2

(3.28)

3.2.9 SWISH and MISH Activation

According to research carried out in this paper [45] SWISH activation func-
tion performs better than ReLU activation function, and also its variants because
none of these variants have managed to replace the inconsistent gains (i.e. cal-
culation of derivatives). SWISH can be considered a type of self-gated function,
expressed as:

@A3@B(!) = ! ∗ .*=<7*6(!$) (3.29)

Where x is the input of the activation function and $ is the hyperparameter. Al-
though the introduction of SWISH solved both vanishing gradient and provide
consistent gains, the development of the MISH activation function turned out to
provide an equivalent, and in many tasks, it had even better performance than
the SWISH activation function. Its mathematical form is presented as:

C3@B(!) = ! ∗ 2-;ℎ(,;(1 + 1!)) (3.30)

We also included the learnable swish layer and learnable mish layer. In the
Learnable Swish Layer, the parameter $ becomes trainable. This allows the
network to adaptively adjust the shape of the Swish function based on the input
data. Similarly, in the Learnable Mish Layer, the parameter ! in 2-;ℎ(!,;(1+1!))
becomes trainable. This enables the network to learn the optimal shape of the
Mish function for the given task.

3.3 Transfer Learning
In this project, we used transfer learning techniques to train pre-trained

ResNet50 and Darknet53 for our object detection task. Basically, it consists of

38

CHAPTER 3. METHODS

importing previously trained CNN models trained on a large dataset for a spe-
cific task, typically on a large-scale dataset like ImageNet for image classification
or BERT for natural language processing for a specific problem, and using them
after some small adaptations for a problem in hand. Transfer learning was first
introduced in 1976 by Stevo Bozinovski and Ante Fulgosi [8] for the field of
machine learning and artificial intelligence, its a technique that aims to transfer
previous "knowledge" of a task to a new one, and it is divided in two categories:

Fine-tuning: An existing and trained network is taken and the input or output
layers of the network are modified if necessary, the resulting model is trained on
the new dataset (it does not need to be very large) for a different task to adapt
to it. This significantly reduces the training time and computational resources
required for training a model from scratch.

Figure 3.14: Structure of Fine Tuning [6]

Deep Features: An existing and trained network is used without further fine-
tuning to generate deep feature vectors, which are then classified by another ML
algorithm like a Support Vector Machine. The weights of the existing network
are not updated during the training process, just the post-processing scheme
that uses its deep features as inputs.

39

3.3. TRANSFER LEARNING

Figure 3.15: Example of deep features transfer learning [60]

In our case, the fine-tuning approach is taken, with the pre-trained architec-
tures taken as a starting point for further training on our dataset. Fine-tuning
has been shown very valuable when there isnt enough data available for a newly
trained model to converge.

40

4
Experiments and Results

4.1 Data Augmentation
Data augmentation is a crucial technique extensively utilized in deep learning

to tackle the challenge of limited annotated data, especially crucial for computer
vision tasks. In the domain of deep learning, models thrive on abundant data,
and the effectiveness of a model is directly tied to the quantity and quality of the
data it is trained on. The objective of data augmentation methods is to improve
performance by expanding the pool of training data without the necessity of
collecting new data. This is accomplished by generating synthetic samples
that either replicate the original ones with modifications or are automatically
created to possess the same statistical characteristics as the real samples, or a
combination of both. The approach to generating additional samples varies
based on the specific requirements of the classification task. A comprehensive
exploration of data augmentation techniques for deep learning is available in
[75]. The process can be categorized into two main groups.

The first one is data augmentation through image manipulations and it can
be further categorized into various classes. Geometric transforms, including
rotation, flipping, warping, cropping, and more, can alter the spatial arrange-
ment of the image. Filters, such as low-pass filters and noise injection, introduce
variations to the image. The technique of random erasing, introduced by [2], in-
volves replacing random pixel regions with a constant value or noise. Statistical
approaches, like equalization and color casting, can alter the color space of the

41

4.1. DATA AUGMENTATION

image. Furthermore, the generation of new images can be achieved by per-pixel
weighted mixes of other images.

The other is deep learning techniques for image data augmentation, which
consists of various strategies. Feature space augmentation involves utilizing the
lower-dimensional representations of images generated by intermediate layers
of convolutional neural networks to create new data. Adversarial training is
another approach where an auxiliary network produces synthetic images to
mislead the main network. Generative adversarial networks (GANs), are a
widely adopted method for generating synthetic images resembling real ones.
Neural style transfer is a technique that uses an auxiliary network to transfer
the style of one image to another while retaining the original content. These
deep-learning approaches serve as potent tools for significantly enhancing the
performance of image classification models.

Here are the examples of data augmentation techniques we used in this thesis
to enhance our training data set:

Figure 4.1: Application of random horizontal flipping, random X/Y scaling, random
rotation, random translation, motion blur, and Gaussian noise.

42

CHAPTER 4. EXPERIMENTS AND RESULTS

4.2 Work Flow of our Proposed Method

The workflow in this project aims to apply the Stochastic Selection of Ac-
tivation Layer for CNNs - SSAL method to the Shark Detector - SD originally
presented in this paper [36]. We test our approach on Shark Identifier which is
a classification task and Shark Locator which is an object detection task.

4.2.1 Shark Identifier/classifier

The development of the classifier is similar to any classification task and
is mainly composed of these steps. First, we took ResNet50 CNN which is
pre-trained on the imageNet dataset [17]. These neural networks have been
trained on more than a million images and can classify images into 1000 object
categories. We fine-tune ResNet50 according to our classification task two classes
shark and non-shark. We created a dataset of approx. 61966 sharks and approx.
50,260 non-shark images. The input layer size of models is 224x224 pixels, with
three color channels (Red, Green, and Blue). To align with the model’s input
layer, all dataset images were resized. The training duration for all models
spanned 10 epochs. Stochastic Gradient Descent with momentum (SGDM)
[80] optimizer was employed for training, with the initial learning rate set to
3 × 10−4 with a mini-batch size of 50. The final three fully connected layers
underwent modification to ensure the correct number of output neurons, and
their outputs were normalized using the SoftMax activation function [10]. This
normalization allowed the outputs to be interpreted as probabilities. We trained
five ResNet50 each having a distinct activation layer stochastically drawn from
a set of activation functions as mentioned earlier.

4.2.2 Shark Locator/Detector

Regarding the development of the Shark Locator, we took each trained net-
work from the Shark Identifier task, and again we performed a fine-tuning
process and replaced the CNN as a backbone of YOLOv4 and YOLOv3 object
detection models and created our custom object detectors. The experiment was
conducted on a dataset consisting of 514 shark images. Some images from the
training set were reserved for validation. The training of YOLOv4 object de-
tector involved using hyperparameters such as 50 maximum epochs, the Adam

43

4.3. ENSEMBLE LEARNING ALGORITHM

optimizer [18], L2Regularization is set to 0.0005, an initial learning rate set to
0.001, minibatch size is set to 8, and validation dataset is used in the model
training process every 5 epochs. The training of YOLOv3 object detector in-
volved using options such as 80 maximum epochs, the SGDM optimizer [18],
L2Regularization is set to 0.0005, and an initial learning rate set to 0.001. We
subsequently combined the trained networks into an ensemble and assessed
and compared the individual locator’s performance and ensemble performance
based on our modified ResNet50s with YOLO’s base CNN network darknet53.

4.3 Ensemble Learning Algorithm

Ensemble learning refers to the idea of combining the predictions done by
multiple object detectors into a final output. Instead of relying on a single
model, By aggregating the predictions from diverse models, ensemble methods
can often achieve higher accuracy and robustness compared to any single model.

The algorithm that we have designed to combine the object detections obtained
from several detectors follows: The input of our ensemble algorithm is a list of
detectors : = [D1, . . . , D<] where each D* , with * % 1, ...,< is a list of
detections for a given image I and m is the total number of detectors m is 5
in our case as we trained 5 ResNets and 5 DarkNet53. Each D* contains the
list of detections produced using a particular model C* for example D1 is the
detections obtained from ResNet(1) or DarkNet53(1) for a given input image I.
In a few cases, we have observed that each D* doesn’t contain the detection so
we applied the majority/consensus rule meaning that out of 5 detectors if 3 of
them have detections then we keep the detection and continue to process them.

Subsequently, the detections inD* are grouped together based on the overlap-
ping of their predicted bounding boxes. To determine the overlap of bounding
boxes, the Intersection over union - IoU metric is employed. Considering two
bounding boxes '1 and '2, the IoU formula for finding the overlapped region
between them is given by

3/4('1, '2) =
-)1-('1 ∩ '2)
-)1-('1 ∪ '2)

(4.1)

44

CHAPTER 4. EXPERIMENTS AND RESULTS

This measure is employed to group the elements of L producing as a result
a list E = [DE

1 , ...,D
E
<] where each DE

* is a list of detections such that for all
6̄(= ['̄ , &̄ , .̄]), 6̂(= ['̂ , &̂ , .̂]) % DE

* . Where 374('̄ , '̂) > 0.5 and &̄ = &̂. At this point,
each DE

* % K is focused on a particular subject in the input image and we merge
all the predicted bounding boxes of E* by computing the mean of the bounding
boxes in E* . At this point, list K has the most robust bounding boxes for each
detector i.e. one bounding box for each subject and the final step is to calculate
IOU and merge all the bounding boxes in K for the final detection.

4.4 Metrics
The performance of shark classifier five in our case is evaluated using metrics:

precision, recall, accuracy, and F1-Score. These metrics measure the ability of
the classifiers to classify between our two classes accurately. Formally, they can
be described as:

• Precision = F(
F(+G(The rate of correct positive predictions among all positive

predictions.

• Recall = F(
F(+GH , The rate of correct positive predictions among all true

positives.

• Specificity = FH
FH+G(, The rate of correct negative predictions among all true

negatives.

• Accuracy = F(+FH
F(+FH+G(+GH , The proportion of correct predictions among all

predictions.

• F1 score = 2 · ()1&*.*7;·91&-,,()1&*.*7;+91&-,, , The harmonic mean of precision and recall.

True Positives (TP) are instances correctly predicted as positive by the model.
False Positives (FP) are instances incorrectly predicted as positive by the model.
In other words, the model predicted a positive outcome, but the true class is
negative. False Negatives (FN) are instances incorrectly predicted as negative
by the model. In other words, the model predicted a negative outcome, but the
true class is positive. True Negatives (TN) are instances correctly predicted as
negative by the model. The performance of the individual shark detector and
its ensemble was evaluated using Recall, Precision, and Specificity. We formed
ensembles by combining our five custom detectors (ResNet50) and five base
networks darknet53 and assessed their scores using these metrics.

45

4.4. METRICS

Figure 4.2: (a) True Positive: TP, (b) False Positive (FP). (c): False Negative (FP)

The figure demonstrates the accurate identification of a diverse array of shark
images, encompassing underwater photographs, images with foreground and
background noise, images featuring challenging-to-discern shark features, and
various shark species. Image (b) illustrates instances where the system misclas-
sified common subjects, including cetaceans and other marine and terrestrial
animals, empty foregrounds, mysterious objects, and fake sharks. Additionally,
the images in the right corner (c) highlight situations where the system failed to
detect shark presence due to partially concealed features.

Models Accuracy Precision Recall F1-
Score

ResNet50(1) 0.976 0.969 0.978 0.973
ResNet50(2) 0.977 0.978 0.971 0.974
ResNet50(3) 0.978 0.981 0.970 0.975
ResNet50(4) 0.977 0.980 0.969 0.974
ResNet50(5) 0.976 0.970 0.977 0.974

Table 4.1: The results of individual Shark Identifier/classifier

46

CHAPTER 4. EXPERIMENTS AND RESULTS

The above table shows the results from the shark classifier made up of differ-
ent ResNet50 models with modified activation function layers indicating consis-
tently high performance across various metrics. Overall, ResNet50(3) achieved
the highest accuracy of 97.8%, closely followed by ResNet50(2) and ResNet50(4)
with accuracies of 97.7%. Precision values were consistently high, indicating
a low false positive rate, with ResNet50(3) achieving the highest precision of
98.1%. Similarly, recall values, which measure the ability to identify positives
correctly, were also commendable, with ResNet50(2) achieving the highest recall
of 97.1%. The F1-Score, which balances precision and recall, remained consis-
tently high across all models, with ResNet50(3) achieving the highest F1-Score
of 97.5%. These results demonstrate the robustness and effectiveness of the
ResNet50 architecture in our classification task.

Architectures YOLOv3 (T=0.5) YOLOv3 (T=0.7) YOLOv4 (T=0.5) YOLOv4 (T=0.7)
Recall Precision Specificity Recall Precision Specificity Recall Precision Specificity Recall Precision Specificity

Resnet50(1) 0.91 0.82 0.82 0.86 0.86 0.88 0.91 0.82 0.82 0.86 0.86 0.88
Resnet50(2) 0.90 0.83 0.83 0.86 0.84 0.85 0.93 0.85 0.85 0.87 0.86 0.88
Resnet50(3) 0.90 0.83 0.84 0.86 0.86 0.88 0.90 0.86 0.87 0.87 0.87 0.88
Resnet50(4) 0.91 0.82 0.82 0.86 0.84 0.86 0.91 0.86 0.87 0.86 0.86 0.88
Resnet50(5) 0.91 0.83 0.84 0.86 0.86 0.88 0.91 0.85 0.85 0.86 0.86 0.88

Darknet53(1) 0.90 0.82 0.82 0.86 0.85 0.86 0.91 0.84 0.84 0.84 0.84 0.85
Darknet53(2) 0.91 0.84 0.84 0.88 0.86 0.86 0.92 0.82 0.82 0.85 0.85 0.87
Darknet53(3) 0.91 0.85 0.85 0.86 0.86 0.86 0.90 0.88 0.88 0.85 0.85 0.86
Darknet53(4) 0.90 0.85 0.85 0.86 0.85 0.85 0.90 0.88 0.88 0.84 0.84 0.86
Darknet53(5) 0.90 0.85 0.85 0.88 0.86 0.86 0.90 0.88 0.88 0.85 0.85 0.87
EResnet50(5) 0.93 0.86 0.86 0.86 0.86 0.88 0.94 0.86 0.86 0.88 0.86 0.88

EDarknet53(5) 0.92 0.84 0.84 0.86 0.86 0.88 0.93 0.84 0.86 0.86 0.86 0.88
EResnet50(5) + EDarknet53(5) 0.93 0.85 0.85 0.86 0.86 0.88 0.94 0.84 0.84 0.87 0.86 0.88

Table 4.2: The results of individual and ensemble tests for YOLOv3 and YOLOv4

The above table shows the result between YOLO’s baseline (DarkNet53) and
our modified Resnet50 for YOLOv3 and YOLOv4. According to the obtained
results, our modified ResNet50 performs better i.e. ResNet50(2) performs better
than all darknet53, and if we can see ensemble i.e. EResNet50(5) and EDark-
net(50)is the ensemble of five networks that we trained in classification tasks
outperform individual networks and EResNet50(5) performs better in compari-
son to EDarknet(50) with recall of 0.93 and 0.94 for YOLOv3 and YOLOv4.

47

5
Conclusion

In this study, a novel approach to modify convolutional neural network (CNN)
layer was introduced, involving changing CNN model architecture by stochastic
layer replacement. The proposed method entails the random replacement of
each activation layer in a CNN with a distinct activation function selected from
a predefined set. This results in a model featuring diverse activation function
layers, introducing variability and making it well-suited for ensemble creation.

Remarkably, this designed approach demonstrated outstanding performance
in ensemble creation. The ResNet50 model, created by stochastically replacing
ReLU layers and combined using a majority rule, outperformed the basenet
of YOLO and an individual stochastic ResNet50 in our experimental evalua-
tions. Through a comprehensive experimental evaluation focused on shark
object detection from images, our approach showcased its potential for building
high-performance CNN ensembles.

we plan in future work to evaluate the proposed method on a large class of
models including lighter architectures. Exploration of the latest state-of-the-
art YOLO models in multi-class object detection and zero-shot object detection
methods on large-scale datasets. The difficulty of studies involving the training
of CNNs, detectors and ensembles of CNNs lies in the GPU speed and memory
resources required to conduct such experiments.

49

References

[1] Agastya Kalra Abdullah Rashwan and Pascal Poupart. “Matrix Nets: A
new deep architecture for object detection.” In: 2019. doi: https://arxiv.
org/abs/1908.04646.

[2] Zhun Zhong et al. “Random Erasing Data Augmentation”. In: 2020. doi:
10.1609/aaai.v34i07.7000.

[3] Chien-Yao Wang Alexey Bochkovskiy and Hong-Yuan Mark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: doi: https://
arxiv.org/pdf/2004.10934v1.pdf.

[4] A. Palmer Alvarez Ellacura and 2019 M. Catalan I.A. Lisani. “Image-based,
unsupervised estimation of fish size from commercial landings using deep
learning.” In: doi: https://doi.org/10.1093/icesjms/fsz216.

[5] Lourakis M.I.A. Argyros A.A. “Real-time tracking of multiple skin-colored
objects with a possibly moving camera.” In: Lect. Notes Comput. Sci. (in-
cluding Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2004.

[6] Zachary C. Aston Zhang. “Dive Into Deep Learning”. In: doi: https:
//d2l.ai/chapter_computer-vision/fine-tuning.html.

[7] J.K. Baum and 2010. Blanchard W. “Inferring shark population trends from
generalized linear mixed models of pelagic longline catch and effort data”.
In: pp. 229–239. doi: https://doi.org/10.1016/j.fishres.2009.11.
006.

[8] Stevo. Bozinovski and Ante Fulgosi. “The influence of pattern similarity
and transfer learning upon the training of a base perceptron B2”. In: doi:
https://www.informatica.si/index.php/informatica/article/

view/2828/1433.

51

https://doi.org/https://arxiv.org/abs/1908.04646
https://doi.org/https://arxiv.org/abs/1908.04646
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/https://arxiv.org/pdf/2004.10934v1.pdf
https://doi.org/https://arxiv.org/pdf/2004.10934v1.pdf
https://doi.org/https://doi.org/10.1093/icesjms/fsz216
https://doi.org/https://d2l.ai/chapter_computer-%20vision/%20fine-tuning.html
https://doi.org/https://d2l.ai/chapter_computer-%20vision/%20fine-tuning.html
https://doi.org/https://doi.org/10.1016/j.fishres.2009.11.006
https://doi.org/https://doi.org/10.1016/j.fishres.2009.11.006
https://doi.org/https://www.informatica.si/index.php/informatica/article/view/2828/1433
https://doi.org/https://www.informatica.si/index.php/informatica/article/view/2828/1433

REFERENCES

[9] Waldeland A.U. Brautaset O. et al. “Acoustic classification in multifre-
quency echosounder data using deep convolutional neural networks”. In:
doi: https://doi.org/10.1093/icesjms/fsz235.

[10] J.S. Bridle. “Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition.” In:
2022. doi: https://doi.org/10.1007/978-3-642-76153-9..

[11] Manuel Carranza-García, Pedro Lara-Benítez Jesús Torres-Mateo, and
Jorge García-Gutiérrez. “On the Performance of One-Stage and Two-Stage
Object Detectors in Autonomous Vehicles Using Camera Data”. In: (). url:
https://www.mdpi.com/2072-4292/13/1/89.

[12] Zhu Y. Chen L.C., Schroff F. Papandreou G., and Adam H. ncoder-decoder
with atrous separable convolution for semantic image segmentation. 2018.

[13] Walia E. Chi J., Groot G. Babyn P. Wang J., and M. Eramian. “Thyroid nod-
ule classification in ultrasound images by fine-tuning deep convolutional
neural network”. In: doi: 10.1007/s10278-017-9997-y.

[14] Hong-Yuan Mark Liao Chien-Yao Wang, Ping-Yang Chen Yueh-Hua Wu,
and I-Hau Yeh. Jun-Wei Hsieh. “CSPNet: A new backbone that can en-
hance learning capability of cnn.” In: 2020. doi: https://arxiv.org/abs/
1911.11929.

[15] Yangqing Jia Christian Szegedy Wei Liu et al. “Going Deeper with Con-
volutions”. In: In Proceedings of the Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. 2015. doi: https:
//arxiv.org/abs/1409.4842.

[16] D.A. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and accurate deep
network learning by exponential linear units (ELUs).” In: 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceed-
ings. 2016. doi: 10.48550/arXiv.1511.07289.

[17] Dong W. Deng J., Li L. J. Socher R., and Fei-Fei L. Li K. “Imagenet: A large
scale hierarchical image database.” In: 2022. doi: https://ieeexplore.
ieee.org/abstract/document/5206848.

[18] Jimmy Ba. Diederik P. Kingma. “Adam: A Method for Stochastic Opti-
mization”. In: 2022. doi: https://arxiv.org/abs/1412.6980.

52

https://doi.org/https://doi.org/10.1093/icesjms/fsz235
https://doi.org/https://doi.org/10.1007/978-3-642-76153-9.
https://www.mdpi.com/2072-4292/13/1/89
https://doi.org/10.1007/s10278-017-9997-y
https://doi.org/https://arxiv.org/abs/1911.11929
https://doi.org/https://arxiv.org/abs/1911.11929
https://doi.org/https://arxiv.org/abs/1409.4842
https://doi.org/https://arxiv.org/abs/1409.4842
https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/https://ieeexplore.ieee.org/abstract/document/5206848
https://doi.org/https://ieeexplore.ieee.org/abstract/document/5206848
https://doi.org/https://arxiv.org/abs/1412.6980

REFERENCES

[19] Kuprel B. Esteva A. et al. “Dermatologist-level classification of skin cancer
with deep neural networks.” In: doi: https://arxiv.org/pdf/1810.
10348.pdf.

[20] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Chal-
lenge”. In: International Journal of Computer Vision 88 (2010), pp. 303–338.

[21] Fielding S. Fallon N. and Fernandes P. 2016. “Classification of Southern
Ocean krill and icefish echoes using random forests.” In: doi: https:
//doi.org/10.1093/icesjms/fsw057.

[22] McAllester D Felzenszwalb P and Ramanan D. “A discriminatively trained,
multiscale, deformable part model”. In: IEEE conference on computer vision
and pattern recognition (2008), pp. 1–8.

[23] Matthew Hoffman Forest Agostinelli and Pierre Baldi Peter Sadowski.
“Learning activation functions to improve deep neural networks”. In: 3rd
International Conference on Learning Representations. 2015. doi: 10.48550/
arXiv.1412.6830.

[24] Mackiewicz M. French G. et al. “Deep neural networks for analysis of
fisheries surveillance video and automated monitoring of fish discards.”
In: doi: https://doi.org/10.1093/icesjms/fsz149..

[25] Cheng-Yang Fu et al. DSSD: Deconvolutional Single Shot Detector. 2017.
arXiv: 1701.06659 [cs.CV].

[26] Prados R. Garcia R. et al. “Automatic segmentation of fish using deep
learning with application to fish size measurement.” In: doi: https://
doi.org/10.1093/icesjms/fsz186..

[27] Ross Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on
Computer Vision (ICCV). 2015, pp. 1440–1448. doi: 10.1109/ICCV.2015.
169.

[28] Ross Girshick et al. Rich feature hierarchies for accurate object detection and
semantic segmentation. 2014. arXiv: 1311.2524 [cs.CV].

[29] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural net-
works”. In: In Proceedings of the Journal of Machine Learning Research. 2011.
url: https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

53

https://doi.org/https://arxiv.org/pdf/1810.10348.pdf
https://doi.org/https://arxiv.org/pdf/1810.10348.pdf
https://doi.org/https://doi.org/10.1093/icesjms/fsw057
https://doi.org/https://doi.org/10.1093/icesjms/fsw057
https://doi.org/10.48550/arXiv.1412.6830
https://doi.org/10.48550/arXiv.1412.6830
https://doi.org/https://%20doi.org/10.1093/icesjms/fsz149.
https://arxiv.org/abs/1701.06659
https://doi.org/https://doi.org/10.1093/icesjms/fsz186.
https://doi.org/https://doi.org/10.1093/icesjms/fsz186.
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/1311.2524
https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

REFERENCES

[30] Bond T. Goetze J.S. et al. “A field and video analysis guide for diver
operated stereo-video.” In: doi: https : / / doi . org / 10 . 1111 / 2041 -
210X.13189.

[31] Tsung-Yi Lin Golnaz Ghiasi and Quoc V Le. “NAS-FPN: Learning scalable
feature pyramid architecture for object detection.” In: 2019. doi: https:
//arxiv.org/abs/1904.07392.

[32] Award G.M. Han J. and Wu H Sutherland A. “Automatic skin segmenta-
tion for gesture recognition combining region and support vector machine
active learning.” In: 2006.

[33] Zhang X. He K., S. Ren, and J. Sun. “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification.” In: IEEE
International Conference of Computer Vision. 2015. url: https://arxiv.
org/abs/1502.01852.

[34] Zhang X. He K. and J. Ren S. Sun. Deep Residual Learning for Image Recog-
nition. 2016.

[35] Abdel-Mottaleb M. Hsu R.L. and Jain A.K. “Face detection in color im-
ages”. In: doi: https://ieeexplore.ieee.org/document/1000242/.

[36] Z. Y.-C. Liu J. Jenrette, T. Hastie P. Chimote, and F. Ferretti E. Fox. “Shark
detection and classification with machine learning”. In: doi: https://
www.sciencedirect.com/science/article/pii/S1574954122001236.

[37] Kaiming He Jifeng Dai Yi Li and Jian Sun. “R-FCN: Object detection via
region-based fully convolutional networks.” In: 2016. doi:https://arxiv.
org/abs/1605.06409.

[38] Micheli F. Jorgensen J. et al. “Emergent research and priorities for shark
and ray conservation”. In: doi: https://doi.org/10.3354/esr01169.

[39] Santosh Divvala Joseph Redmon and Ali Farhadi Ross Girshick. You Only
Look Once: Unified, Real-Time Object Detection. 2015. arXiv: 1506.02640
[cs.CV].

[40] Ladds M.A. Kadar J.P., Lyall B. Day J., and Brown C. 2020. “Assessment of
machine learning models to identify port jackson shark behaviours using
tri-axial accelerometers.” In: doi: https://doi.org/10.3390/s20247096.

[41] Georgia Gkioxari Kaiming He and Ross Girshick Piotr Dollár. Mask R-
CNN. 2018. arXiv: 1703.06870 [cs.CV].

54

https://doi.org/https://doi.org/10.1111/2041-210X.13189
https://doi.org/https://doi.org/10.1111/2041-210X.13189
https://doi.org/https://arxiv.org/abs/1904.07392
https://doi.org/https://arxiv.org/abs/1904.07392
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://doi.org/https://ieeexplore.ieee.org/document/1000242/
https://doi.org/https://www.sciencedirect.com/science/article/pii/S1574954122001236
https://doi.org/https://www.sciencedirect.com/science/article/pii/S1574954122001236
https://doi.org/https://arxiv.org/abs/1605.06409
https://doi.org/https://arxiv.org/abs/1605.06409
https://doi.org/https://doi.org/10.3354/esr01169
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/https://doi.org/10.3390/s20247096
https://arxiv.org/abs/1703.06870

REFERENCES

[42] Xiangyu Zhang Kaiming He, Shaoqing Ren, and Jian Sun. “Spatial pyra-
mid pooling in deep convolutional networks for visual recognition”. In:
2015. doi: arXiv:1406.4729.

[43] Song Bai Kaiwen Duan, Honggang Qi Lingxi Xie, and Qi Tian. Qingming
Huang. “CenterNet: Keypoint triplets for object detection.” In: 2019. doi:
arXiv:1904.08189.

[44] Unterthiner T. Klambauer G. and Hochreiter Mayr A. “Self-Normalizing
Neural Networks”. In: In Proceedings of the NIPS. 2017. url: https://
arxiv.org/abs/1706.02515.

[45] Ravin Kumar. “APTx: better activation function than MISH, SWISH, and
ReLUs variants used in deep learning”. In: doi: https://arxiv.org/pdf/
2209.06119.pdf.

[46] Hei Law and Jia Deng. “CornerNet: Detecting objects as paired keypoints.”
In: 2018. doi: arXiv:1808.01244.

[47] Bengio Y. LeCun Y. “Convolutional Networks for Images, Speech, and
Time Series.” In: doi: https://dl.acm.org/doi/10.5555/303568.
303704..

[48] Bengio Y. LeCun Y. and 2015. Hinton G. “Deep learning”. In: (). doi: http:
//www.nature.com/articles/nature14539.

[49] Kuo Y.-M. Lee J.-S. and Chen E.-L. Chung P.-C. “Naked image detection
based on adaptive and extensible skin color model.” In: 2007.

[50] George Papandreou Liang-Chieh Chen, Kevin Murphy Iasonas Kokkinos,
and Alan L Yuille. “DeepLab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected CRFs.” In:
2017. doi: arXiv:1606.00915.

[51] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: 2017 IEEE
International Conference on Computer Vision (ICCV). 2017, pp. 2999–3007.
doi: 10.1109/ICCV.2017.324.

[52] Maire M. Lin T.-Y. et al. “Microsoft CoCo: common objects in context.
European conference on computer vision.” In: doi: https://doi.org/10.
48550/arXiv.1405.0312..

[53] Lu Qi u Liu, Jianping Shi Haifang Qin, and Jiaya Jia. “Path aggregation
network for instance segmentation.” In: 2018. doi: arXiv:1803.01534.

55

https://doi.org/arXiv:1406.4729
https://doi.org/arXiv:1904.08189
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://doi.org/https://arxiv.org/pdf/2209.06119.pdf
https://doi.org/https://arxiv.org/pdf/2209.06119.pdf
https://doi.org/arXiv:1808.01244
https://doi.org/https://dl.acm.org/doi/10.5555/30%203568.303704.
https://doi.org/https://dl.acm.org/doi/10.5555/30%203568.303704.
https://doi.org/http://www.nature.com/articles/nature14539
https://doi.org/http://www.nature.com/articles/nature14539
https://doi.org/arXiv:1606.00915
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/https://doi.org/10.48550/arXiv.1405.0312.
https://doi.org/https://doi.org/10.48550/arXiv.1405.0312.
https://doi.org/arXiv:1803.01534

REFERENCES

[54] Songtao Liu and Di Huang. “Receptive field block net for accurate and fast
object detection.” In: 2018. doi: https://arxiv.org/abs/1711.07767.

[55] Anguelov D Liu W et al. Ssd: single shot multibox detector. 2016. arXiv:
1512.02325 [cs.CV].

[56] Aditya Lohia, Rahul Raghvendra Joshi Kalyani Dhananjay Kadam, and
Dr. Anupkumar M. Bongale. “Bibliometric Analysis of One-stage and Two-
stage Object Detection”. In: Library Philosophy and Practice (e-journal). 4910
(). url: https://digitalcommons.unl.edu/libphilprac/4910.

[57] Alessandra Lumini Loris Nanni. “Fair comparison of skin detection ap-
proaches on publicly available datasets.” In: doi: arXiv1802.025312018.

[58] Alessandra Lumini Loris Nanni and Gianluca Maguolo Stefano Ghidoni.
“Stochastic Selection of Activation Layers for Convolutional Neural Net-
works.” In: doi: https://www.preprints.org/manuscript/202002.
0231/v1..

[59] Alessandra Lumini Loris Nanni and S. Stefano Ghidoni Brahnam. “Bioim-
age Classification with Handcrafted and Learned Features”. In: doi:https:
//arxiv.org/abs/1904.08084.

[60] Stefano Ghidoni Loris Nanni and Sheryl Brahnam. “Deep Features for
Training Support Vector Machines”. In: doi: https://www.mdpi.com/
2313-433X/7/9/177.

[61] Byra M. “Discriminant analysis of neural style representations for breast
lesion classification in ultrasound.” In: doi:https://www.sciencedirect.
com/science/article/abs/pii/S020852161730428X.

[62] A.L. Maas, A.Y. Hannun, and A.Y. Ng. “Rectifier nonlinearities improve
neural network, acoustic models”. In: In Proceedings of the in ICML Workshop
on Deep Learning for Audio, Speech and Language Processing. 2013. url: https:
//ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.

pdf.

[63] Handegard N.O. Malde K. and Salberg 2019. Eikvil L. “Machine intel-
ligence and the data-driven future of marine science.” In: doi: https:
//doi.org/10.1093/icesjms/fsz057.

[64] Ruoming Pang Mingxing Tan and Quoc V Le. “EfficientDet: Scalable and
efficient object detection.” In: 2020. doi: arXiv:1911.09070.

56

https://doi.org/https://arxiv.org/abs/1711.07767
https://arxiv.org/abs/1512.02325
https://digitalcommons.unl.edu/libphilprac/4910
https://doi.org/arXiv1802.02531%202018
https://doi.org/https://www.preprints.org/manuscript/202002.0231/v1.
https://doi.org/https://www.preprints.org/manuscript/202002.0231/v1.
https://doi.org/https://arxiv.org/abs/1904.08084
https://doi.org/https://arxiv.org/abs/1904.08084
https://doi.org/https://www.mdpi.com/2313-433X/7/9/177
https://doi.org/https://www.mdpi.com/2313-433X/7/9/177
https://doi.org/https://www.sciencedirect.com/science/article/abs/pii/S020852161730428X
https://doi.org/https://www.sciencedirect.com/science/article/abs/pii/S020852161730428X
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/https://%20doi.org/10.1093/icesjms/fsz057
https://doi.org/https://%20doi.org/10.1093/icesjms/fsz057
https://doi.org/arXiv:1911.09070

REFERENCES

[65] Tao Sheng Qĳie Zhao et al. “M2det: A single-shot object detector based on
multi-level feature pyramid network.” In: 2019. doi: arXiv:1811.04533.

[66] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: doi: https://arxiv.org/pdf/1804.02767v1.pdf.

[67] J. Redmon. “Darknet: Open source neural networks in c.” In: doi: http:
//pjreddie.com/darknet/.

[68] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 39.6 (2017), pp. 1137–1149. doi: 10.1109/TPAMI.
2016.2577031.

[69] He K. Ren S. and Sun J. 2016. Girshick R. “Faster R-CNN: towards real-time
object detection with region proposal networks. CoRR”. In: doi: https:
//doi.org/10.48550/arXiv.1506.01497..

[70] Sahil. “Object Detection (R-CNN)”. In: (). url: https://sahiltinky94.
medium.com/object-detection-r-cnn-aa2b180bfb49.

[71] Eigen D Sermanet P, Mathieu M Zhang X, and LeCun Y Fergus R. Overfeat:
integrated recognition, localization and detection using convolutional networks.
2013. arXiv: 1312.6229 [cs.CV].

[72] Dimitris Tsipras Shibani Santurkar and Aleksander Madry Andrew Ilyas.
“How Does Batch Normalization Help Optimization?” In: doi: https:
//arxiv.org/abs/1805.11604.

[73] Satish Kumar Singh Shiv Ram Dubey and Bidyut Baran Chaudhuri. “Acti-
vation Functions in Deep Learning: A Comprehensive Survey and Bench-
mark”. In: doi: https://arxiv.org/pdf/2109.14545.pdf.

[74] Ahmad Salman Shoaib Ahmed Siddiqui et al. “Automatic fish species
classification in underwater videos: exploiting pre-trained deep neural
network models to compensate for limited labeled data.” In: 2018. doi:
https://doi.org/10.1093/icesjms/fsx109.

[75] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data
augmentation for deep learning”. In: 2019. doi: 10.1186/s40537-019-
0197-0.

57

https://doi.org/arXiv:1811.04533
https://doi.org/https://arxiv.org/pdf/1804.02767v1.pdf
https://doi.org/http://pjreddie.com/darknet/
https://doi.org/http://pjreddie.com/darknet/
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/https://doi.org/10.48550/arXiv.1506.01497.
https://doi.org/https://doi.org/10.48550/arXiv.1506.01497.
https://sahiltinky94.medium.com/object-detection-r-cnn-aa2b180bfb49
https://sahiltinky94.medium.com/object-detection-r-cnn-aa2b180bfb49
https://arxiv.org/abs/1312.6229
https://doi.org/https://arxiv.org/abs/1805.11604
https://doi.org/https://arxiv.org/abs/1805.11604
https://doi.org/https://arxiv.org/pdf/2109.14545.pdf
https://doi.org/https://doi.org/10.1093/icesjms/fsx109
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0

REFERENCES

[76] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: 2019. doi: https://arxiv.
org/abs/1409.1556.

[77] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition.” In: 2014. doi: arXiv:1409.1556.

[78] Zisserman A. 2015 Simonyan K. “Very deep convolutional networks for
large-scale image recognition.” In: doi: https://doi.org/10.48550/
arXiv.1409.1556..

[79] Di Huang Songtao Liu and Yunhong Wang. “Learning spatial fusion for
single-shot object detection.” In: 2019. doi: arXiv:1911.09516.

[80] Martens J. Sutskever I. and G. Dahl G. Hinton. “On the importance of
initialization and momentum in Deep Learning.” In: 2022. doi: http:
//proceedings.mlr.press/v28/sutskever13.html.

[81] Kosmala M. Swanson A., R. Lintott C. Simpson, and 2015. Smith A. Packer
C. “Snapshot Serengeti, high-frequency annotated camera trap images of
40 mammalian species in an African savanna.” In: doi: https://doi.org/
10.1038/sdata.2015.26..

[82] Norouzzadeh M.S. Tabak M.A. et al. “Machine learning to classify animal
species in camera trap images: Applications in ecology.” In: doi: https:
//doi.org/10.1038/sdata.2015.26..

[83] Mingxing Tan and Quoc V Le. “EfficientNet: Rethinking model scaling for
convolutional neural networks.” In: 2019. doi: arXiv:1905.11946.

[84] Piotr Dollar Tsung-Yi Lin, Kaiming He Ross Girshick, and Serge Belongie
Bharath Hariharan. “Feature pyramid networks for object detection.” In:
2017. doi: https://arxiv.org/abs/1612.03144.

[85] J.R.R. Uĳlings, T. Gevers K.E.A. van de Sande, and A.W.M. Smeulders. “Se-
lective Search for Object Recognition"”. In: A Technical Report 2012, submit-
ted to ĲCV (2013). url: https://ivi.fnwi.uva.nl/isis/publications/
2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf.

[86] 2018 Weinstein B.G. “Automatic fish species classification in underwater
videos: exploiting pre-trained deep neural network models to compensate
for limited labeled data.” In: doi: https://doi.org/10.1093/icesjms/
fsx109..

58

https://doi.org/https://arxiv.org/abs/1409.1556
https://doi.org/https://arxiv.org/abs/1409.1556
https://doi.org/arXiv:1409.1556
https://doi.org/https://doi.org/10.48550/arXiv.1409.1556.
https://doi.org/https://doi.org/10.48550/arXiv.1409.1556.
https://doi.org/arXiv:1911.09516
https://doi.org/http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/https://doi.org/10.1038/sdata.2015.26.
https://doi.org/https://doi.org/10.1038/sdata.2015.26.
https://doi.org/https://doi.org/10.1038/%20sdata.2015.26.
https://doi.org/https://doi.org/10.1038/%20sdata.2015.26.
https://doi.org/arXiv:1905.11946
https://doi.org/https://arxiv.org/abs/1612.03144
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf
https://doi.org/https://doi.org/10.1093/icesjms/fsx109.
https://doi.org/https://doi.org/10.1093/icesjms/fsx109.

REFERENCES

[87] Swiezewski J. Whytock R.C. et al. “Robust ecological analysis of camera
trap data labelled by a machine learning model.” In: doi: https://doi.
org/10.1111/2041-210X.13576.

[88] Tsung-Yi Lin Xianzhi Du et al. “SpineNet: Learning scale-permuted back-
bone for recognition and localization.” In: 2019. doi: arXiv:1912.05027.

[89] Lawrence K Saul Youngmin Cho. “Large-margin classification in infinite
neural networks”. In: 2010. doi: 10.1162/NECO_a_00018.

[90] Dandan Li Yuan Zhou, Shuwei Huo, and Sun-Yuan Kung. “Soft-Root-Sign
Activation Function”. In: doi: https://arxiv.org/pdf/2003.00547.pdf.

[91] Shaohui Liu Ze Yang, Liwei Wang Han Hu, and Stephen Lin. “RepPoints:
Point set representation for object detection.” In: 2019. doi: https://
arxiv.org/abs/1904.11490.

[92] Wen L Zhang S and Li SZ Lei Z. “RefineDet++: single-shot refinement
neural network for object detection.” In: IEEE Trans Circuits Syst Video
Technol 31(2):674687. 2020. doi: 10.1109/TCSVT.2020.2986402.

[93] Sheng T Zhao Q et al. “M2det: a single-shot object detector based on
multi-level feature pyramid network”. In: Proceed AAAI Conf Artif Intell
33:92599266. 2017.

[94] Chunhua Shen Zhi Tian and Tong He. Hao Chen. “FCOS: Fully convolu-
tional one-stage object detection.” In: 2019. doi: arXiv:1904.01355.

[95] C. Lawrence Zitnick and Piotr Dollťar. “Edge Boxes: Locating Object Pro-
posals from Edges”. In: Microsoft Research (). url: https://pdollar.
github.io/files/papers/ZitnickDollarECCV14edgeBoxes.pdf.

59

https://doi.org/https://doi.org/10.1111/2041-210X.13576
https://doi.org/https://doi.org/10.1111/2041-210X.13576
https://doi.org/arXiv:1912.05027
https://doi.org/10.1162/NECO_a_00018
https://doi.org/https://arxiv.org/pdf/2003.00547.pdf
https://doi.org/https://arxiv.org/abs/1904.11490
https://doi.org/https://arxiv.org/abs/1904.11490
https://doi.org/10.1109/TCSVT.2020.2986402
https://doi.org/arXiv:1904.01355
https://pdollar.github.io/files/papers/ZitnickDollarECCV14edgeBoxes.pdf
https://pdollar.github.io/files/papers/ZitnickDollarECCV14edgeBoxes.pdf

Acknowledgments

I want to express my gratitude towards my supervisor, Loris Nanni, for
his mentorship and unwavering support throughout this journey. My heartfelt
thanks go out to my classmates who stood by me and assisted in various projects.
Lastly, thank you to my family, whose faith in me never wavered and who were
always there by my side.

61

	List of Figures
	List of Tables
	Introduction
	Related Work
	Shark Detector Pipeline
	Performance of different activation functions across image classification and image segmentation problem

	Methods
	Topologies
	ResNet50
	YOLO
	YOLOv3
	YOLOv4

	Activation functions
	ReLU
	Leaky ReLU
	Scaled Exponential Linear Unit (SELU)
	Parametric ReLU (PReLU)
	S-Shaped ReLU (SReLU)
	Adaptive Piece-wise Linear Unit (APLU)
	Gaussian ReLU (GALU)
	Soft-Root-Sign (SRS)
	SWISH and MISH Activation

	Transfer Learning

	Experiments and Results
	Data Augmentation
	Work Flow of our Proposed Method
	Shark Identifier/classifier
	Shark Locator/Detector

	Ensemble Learning Algorithm
	Metrics

	Conclusion
	References
	Acknowledgments

