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Abstract

This thesis objective is to characterize the topological defects of a particular two
dimensional conformal quantum field theory. Topological defects can be interpreted as
generalizations of global symmetries and, between other things, give rise to selection
rules in amplitudes.
In this thesis, starting with an in-depth introduction to two dimensional conformal
field theories, we will discuss the general properties of topological defects in such
theories. Finally, we will explicitly describe the topological defects in a particular
conformal field theory that is relevant for applications to string theory, as it describes
a string moving in a space with a non-trivial topology and geometry, namely a K3
surface.
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Chapter 1

Introduction

This thesis sets out with the main objective of talking about defects in conformal field theories. Let
us briefly introduce these two subjects and motivate why their study can be considered important.

1.1 CFTs and defects

Conformal field theories: they are field theories which are invariant under conformal transformations.
These transformations are characterized by the fact that they act on the metric multiplicating it by
a positive function of the position; intuitively they are all the transformations which keep the angles
fixed but not the distances. This kind of theories pop up in a lot of different areas of physics: when
talking about the renormalization group in quantum field theories, when considering critical phenom-
ena in statistical mechanics and in the quantization of strings. In this thesis we will mainly talk about
field theories defined in two dimensions which apply in particular to the last case, therefore let us
explain how the two study fields intersect ( [5], [6]).

The main difference between a point particle and a string is that
in the first case its motion in spacetime forms a world-line while in
the second it forms on a world sheet. The position of the string will
then be parameterized by two quantities: τ and σ, obtaining the
following fields Xµ(τ, σ). If the string is closed σ is taken periodic
giving rise to a theory defined on the cylinder.
Now the main idea, in the quantization process, is to consider this
theory as a quantum field theory defined in two dimensions. This
checks out with what we said before, but we still have to explain
where the conformal symmetry comes from. Fig.1.1: Closed string path

Such symmetry can be demonstrated to be the byproduct of two more fundamental local symmetries:
the reparametrization invariance and the Weyl invariance. Between these two gauge symmetries the
first one is obvious and everyone meets it when studying the point particle. The second one comes
from an extra redundancy in the Polyakov formulation of the string which we will not treat in this
thesis.

Actually the connection is a bit more complicated than it looks
and this becomes evident in the Polyakov path integral.
With the cylinder we described a single string moving in space-
time, but there will be more than that: the string can divide in
two more strings, then reconnect and in general produce all those
kind of phenomena which looks very similar to the perturbative
expansions in Feynman diagrams for point particles. This fact can
be formalized and one actually finds a perturbative expansion in
the geometries on which the conformal field theory is defined. Fig.1.2: Closed string path
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1.2. THE THEORY OF INTEREST CHAPTER 1. INTRODUCTION

Therefore one can associate conformal field theories to pieces of the perturbative expansion of string
theory.

To end this part let us note that conformal invariance is special in the two dimensional case compared
to the higher dimensional ones. In particular it is much more restrictive having an infinite number of
charges. This fact makes working with these theories much easier, so much that a lot of the recent
mathematical effort in constructing actual interacting quantum field theories, with vertex operator
algebras, has been developed in them.

After that let us bring up the defects ( [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26] ). First of all one can describe them as operators not localized on a point, but
on a manifold of an higher dimension.
From this large set of operators we are interested in those with two particular characteristics: they
are topological and they are defined on hypersurfaces. For a defect to be topological means that when
inserted in a correlator, its deformations do not change the correlation function, unless the defect
crosses the support of other operators. The reason why we restrict ourselves to these properties is
because it is always possible from a symmetry to define a defect with these characteristics, but not all
the defects of this type correspond to symmetries. This kind of defects, in analogy with symmetries,
will impose ulterior constraints on the correlators.

Since we are mainly talking about theories in two dimensions the premier choice will be one dimensional
operators. These line defects will represent a generalization of symmetries, which one can use when
fixing the value of some correlators or establishing relations between them.

1.2 The theory of interest

After a necessary introduction on all these concepts, which are by themselves interesting, we will also
show how to apply them in practice for a certain theory, which is of particular interest to string theory.

In order to arrive to the main point we have to start with a problem which arises in string theory.
One of the main properties of string theory is that there are special conditions on the dimension of the
space in which the string is defined. In particular, in the quantization procedure, the Lorentz group
becomes anomalous and such anomaly can be cancelled out only if the space we are in has a special
dimension. For the superstring, which is one of the most important type of strings (since for example
it does not predict tachyons), this dimension is D = 10.
Clearly experimental evidence so far tells us that only four dimensions are detectable, therefore for the
theory to be consistent the other six dimensions must be “hidden”. How to carry out such a procedure
can be difficult to explain, but the main idea is to have the six additional dimensions compactified.
Briefly, when considering the spacetime manifold, it is possible to assign the first four dimensions to
the usual flat geometry as we know it, while constraining the other six on a compact manifold, for
example like a six dimensional torus.
It turns out that the best results are obtained by the following two choices for the compact manifold:
orbifolds and Calaby-Yau manifolds. The first one is a procedure in which one identifies the coor-
dinates under a certain transformation. One of the most common is the following Z2 : X ≡ −X.
The second possibility corresponds to implementing the theory in particular types of geometries called
Calaby-Yau manifolds.
These two approaches are not completely separated, as in our case. In fact when considering the space
of moduli of a certain type of Calaby-Yau manifolds, which is given by the space of parameters or
metrics that one can choose for a manifold of a given topology (for example the radius in the torus),
under certain limits one can arrive to orbifold theories.

The theory we are interested in is a non linear sigma model on K3 [7]. First of all a non linear sigma
model means a theory whose fields are valued in a manifold with non-trivial metric, which is to be
expected if the space-time we are in is not trivial. A K3 surface, instead, is a particular 4 dimensional
(2 complex dimensions) Calaby-Yau manifold.
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1.2. THE THEORY OF INTEREST CHAPTER 1. INTRODUCTION

The plan is to divide the 6 remaining dimension into a K3 surface and a two dimensional manifold
which could be the torus T 2 or the orbifold of the torus T 2/Z2. The last part of this geometry is very
well understood therefore we are left with the K3 surface.
At this point one could ask why are we considering exactly this manifold. This is because one can
demonstrate that the only manifolds that preserve at least half of the supersymmetries of the super-
string are either a K3 surface or T 4. Since T 4 is not that interesting we take the other possibility.

With this introduction we understand why one may want to study this theory, but we did not explain
the reason behind the focus on their defects. Recent works have analyzed the symmetries of all the
moduli space of the K3 surfaces even though most of these theories are actually very obscure. Since
defects are generalizations of symmetries the hope is that in the future we can do the same with them,
but to start off we need to find the defects of at least one particular theory.
The simplest choice is T 4/Z2 which is an orbifold in the moduli space of K3 theories. That case is
described by a conformal supersymmetric theory with number of supercharges N = 4 (actually this
is true for any K3 surface), but can also be put in many different forms which, by the way, were also
used to study its symmetries [8]. Chosen a particular geometry for this theory one can show that it
can be written in the following form:

su(2)61 × su(2)
6

1, (1.2.1)

which is a tensor product of affine algebras. What exactly is an affine algebra will be explained in the
next section in which we will present conformal field theories. Such explanation will be complete in
the sense that everything needed to understand our analysis will be there, but not much more after
that. After all this topic is very extensive and to treat it in full it would require much more time and
many pages. The same is to be said about the presentation of defects: the main points are presented
in a way that guides the reader to the calculation.
After these two sections we will continue with some examples of defect analysis, showing how it can
be carried out, and specializing at last to the case we have here motivated.

Before starting the new chapter a last note would be that even though we motivated this effort using
string theory, it is by no means necessary in the calculation. Our analysis will be completely general
and any use of the conformal field theory above mentioned can refer to this study when concerned
with defects.
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Chapter 2

Conformal field theory

2.1 CFTs in d-dimensions

We start by talking about these theories in a general way, defining the symmetry group in any dimen-
sion and looking for the direct general results of this. We will focus in particular on the case in which
d > 3, that is the least particular example from which we can start and, on a later section, consider
the d = 2 case: the one that we are interested in.
This chapter follows the references: [1], [2], [3], [4].

Global conformal invariance

Conformal field theories are theories which are conformal invariant. It is clear that to study these
theories we have to start from defining what are conformal transformations.
The conformal group is formed by globally defined and invertible coordinate transformations with the
following property:

g′µν(x
′) = Λ(x)gµν(x) Λ(x) > 0, (2.1.1)

where gµν is the metric tensor of our d-dimensional theory.
First of all it is clear that Poincaré transformations are the subgroup with Λ(x) = 1. While Poincaré
transformations are isometries of the space which keep the distances and the angles fixed, one can
instead conceive the conformal group as the one that retain only angles still.
Then let us analyze the infinitesimal coordinate transformation x′ = x+ ϵ(x):

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) = (δαµ − ∂µϵ

α)(δβν − ∂νϵ
β)gαβ(x) = gµν(x)− (∂µϵν + ∂νϵµ). (2.1.2)

The requirement for this transformation to be conformal is to have

(∂µϵν + ∂νϵµ) = f(x)gµν . (2.1.3)

Now we assume for simplicity that gµν = ηµν = diag(1, 1, 1, ...) is the Euclidean metric, which will
also be our main case of interest (if we took instead a Minkowskian metric there would not be much
to change in the discussion).
So we manipulate this equation to find more convenient forms. First of all taking the trace

f(x) =
2

d
∂ρϵ

ρ. (2.1.4)

Adding instead a derivative and permuting the indices one arrives at

2∂µ∂νϵρ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf. (2.1.5)

Multiplying by ηµν

2∂2ϵµ = (2− d)∂µf. (2.1.6)
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2.1. CFTS IN D-DIMENSIONS CHAPTER 2. CONFORMAL FIELD THEORY

Applying ∂ν to this last equation and using (2.1.3) and again (2.1.6)

(2− d)∂µ∂νf = ηµν∂
2f. (2.1.7)

Finally multiplying again by ηµν we get

(d− 1)∂2f = 0. (2.1.8)

Now that we have everything we need we can make some considerations. First of all when d = 1 these
equations do not put any constraint: any smooth transformation is conformal. This is coherent with
the fact that in one dimensions we do not have any notion of angles. Another special case is d = 2
and we will treat it later since it is going to be the one we will use in this thesis.

Then we start with d ≥ 3. Equations (2.1.7) and (2.1.8) tell us that ∂µ∂νf = 0, so at most f(x) =
A+Bµx

µ.
Substituting this equation in (2.1.5) we get ∂µ∂νϵ = const which implies

ϵµ = aµ + bµνx
ν + cµνρx

νxρ cµνρ = cµρν . (2.1.9)

The coefficients in this equation must satisfy some constraints.
Since all the expressions derived before are “derivative” we do not put any on aµ. Instead from
equation (2.1.3) and (2.1.4) we have the following restriction:

bµν + bνµ =
2

d
bλλ ηµν , (2.1.10)

which implies that bµν must be written in the following way:

bµν = αηµν +mµν mµν = −mνµ. (2.1.11)

Finally using (2.1.5) and (2.1.6) we find:

cµνρ = ηµρbν + ηµνbρ − ηνρbµ bµ =
1

d
cσσµ. (2.1.12)

These are the full infinitesimal transformations, when exponentiated they correspond to:

translation x′µ = xµ + aµ,

dilation x′µ = α xµ,

rotation x′µ =Mµ
ν x

ν ,

SCT x′µ =
xµ − bµx2

1− 2b · x+ b2x2
.

(2.1.13)

It is well known that translations and rotations are generated by aµ andmµν , the fact that the dilations
come from α is also easily demonstrated. As for the special conformal transformations (SCT), to
convince ourselves that that is the right form, we can calculate the infinitesimal transformation and
confront it with the one we found. Moreover transforming the metric with this transformation one
finds a scale factor Λ(x) = (1− 2b · x+ b2x2).
Special conformal transformations also have an interesting property: they are not globally defined if
our space is Rd,0 (or Rd−1,1). In fact there always exists an x for which 1 − 2b · x + b2x2 = 0. The
solution to this is provided by the implementation of the conformal compactification of our space,
which basically means that we add the point {∞} to our space.

After this discussion we can continue by studying the algebra of the transformations still in the d ≥ 3
case.
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2.1. CFTS IN D-DIMENSIONS CHAPTER 2. CONFORMAL FIELD THEORY

Conformal algebra

We want to study the representations of the conformal group on fields Φ(x) and to do that we use
the algebra. To discuss the algebra one has to find the representations of the generators Ga which
enter the following formula Φ′(x) − Φ(x) ≈ −iwaGaΦ(x) (we are expanding up to first order in the
infinitesimal parameter wa).

We start then by considering the simplest possible field transformation: Φ′(x′) = Φ(x). We find for
this the following table of generators:

translation Pµ = −i∂µ,
dilation D = −ixµ∂µ,
rotation Lµν = i(xµ∂ν − xν∂µ),

SCT Kµ = −i(2xµxν∂ν − x2∂µ).

(2.1.14)

From this one can demonstrate that the algebra can be written in a compact form if we define the
following antisymmetric tensor:

Jµν = Lµν J−1µ =
1

2
(Pµ −Kµ),

J−10 = D J0µ =
1

2
(Pµ +Kµ).

(2.1.15)

Then, if the spacetime is euclidean, we can use η = diag(−1, 1, 1, ...) in d+2 dimensions to write

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac). (2.1.16)

This form also proves that the conformal group in d dimensions is isomorphic to SO(d+ 1, 1).

Now we proceed to study any possible infinitesimal conformal transformation of the fields:

Φ′(x′) ≈ (1− iwaTa)Φ(x). (2.1.17)

First of all we now consider only the Poincarè transformations and take those that leave x = 0 invariant:
the Lorentz group. Using the definition of the representations of the generators and equation (2.1.17)
one finds that:

Φ′(0)− Φ(0) ≈ −iwaGaΦ(0) ≈ −iwaTaΦ(0). (2.1.18)

In this way we can define the spin operators as the following operator:

LµνΦ(0) = SµνΦ(0). (2.1.19)

Then such operator can be translated to a non zero value of x using this transformation:

eix
ρPρLµνe

−ixρPρ = Sµν − xµPν + xµPν . (2.1.20)

The right side of this equation was calculated using the previous commutation rules and the Hausdorff
formula.
If now we ask for the field to transform under translation like this:

Φ′(x+ a) = Φ(x), (2.1.21)

which is a reasonable condition, the representation of the generator Pµ will be the same as the one we
found previously. In total, one finds:

PµΦ(x) = −i∂µΦ(x),
LµνΦ(x) = i(xµ∂ν − xν∂µ)Φ(x) + SµνΦ(x).

(2.1.22)

This exact same procedure can be carried out for the full conformal group.
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2.1. CFTS IN D-DIMENSIONS CHAPTER 2. CONFORMAL FIELD THEORY

Considering the subgroup which leaves the origin invariant we get the following matrices: Sµν as before
for the rotations, ∆̃ for the dilations and kµ for the special conformal transformations.
This matrices must form a representation of the conformal algebra so that, with the Hausdorff formula,
we can calculate the following general transformations:

DΦ(x) = (−ixν∂ν + ∆̃)Φ(x),

kµΦ(x) = {kµ + 2xµ∆̃− xνSµν − 2ixµx
ν∂ν + ix2∂µ}Φ(x).

(2.1.23)

In QFT the usual demand is that Φ(x) belongs to an irreducible representation of the Lorentz group.
This has consequences for our matrices ∆̃ and kµ. We are looking in particular at the following
commutation relations:

[∆̃, Sµν ] = 0,

[∆̃, kµ] = −ikµ.
(2.1.24)

The first equation tells us that ∆̃ commutes with Sµν ; if now we know that Sµν is irreducible, by
Schur’s lemma, one must have that any matrix commuting with it must be a multiple of the identity.
We deduce from this that ∆̃ is basically a number, we define ∆̃ = −i∆I and call −i∆ the dimension
of the field.
The next equation instead, now that we know that ∆̃ is a multiple of the identity, has only one solution
kµ = 0.

In principle from the generators calculated above we could derive the changes of Φ under any finite
transformation, but we will present now only the case of a spin-less field. Under the conformal
transformation x→ x′:

Φ(x) → Φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

Φ(x), (2.1.25)

where
∣∣∣∂x′∂x

∣∣∣ is the Jacobian of the conformal transformation of the coordinates.

A field transforming as the above is called quasi-primary. This type of fields will be very important
in our study, in particular when we will define primary fields.

Correlation functions

A direct effect of conformal invariance is that the correlation functions of the theory are constrained.
In particular we will consider correlators of quasi-primary fields.

Before that we seize the opportunity to explain a detail on the terminology that we are going to use.
When we will talk about fields we will not mean that it figures independently into the function integral
measure, but also composite quantities like the energy-momentum tensor are called as such, given that
they are local quantities.
In the theories that we will study in two dimensions we are going to consider only the correlators
and their symmetry properties; so “How many continuous, independent degrees of freedom there are”
becomes often not so clear. Useful instead in the analysis will be to consider “How many and which
primary fields (or quasi-primary) are there”.

Let us now return to our previous topic and write the definition of a two point correlation function of
quasi-primary fields:

⟨Φ1(x1)Φ2(x2)⟩ =
1

Z

∫
[dΦ] Φ1(x1)Φ2(x2) e

−S[Φ]. (2.1.26)

The invariance of the action and the functional integration measure leads to the following transfor-
mation of the correlator:

⟨Φ1(x1)Φ2(x2)⟩ =
∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣∆2/d

x=x2

⟨Φ1(x
′
1)Φ2(x

′
2)⟩, (2.1.27)
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2.2. CFTS IN 2-DIMENSIONS CHAPTER 2. CONFORMAL FIELD THEORY

which, if we specialize to a scale transformation x→ λx, becomes

⟨Φ1(x1)Φ2(x2)⟩ = λ∆1+∆2⟨Φ1(x
′
1)Φ2(x

′
2)⟩. (2.1.28)

It is now already known that rotation and translation invariance have as a consequence

⟨Φ1(x1)Φ2(x2)⟩ = f(|x1 − x2|). (2.1.29)

Requiring equation (2.1.28) (which is to ask for f to be homogeneous of a certain degree) fixes further
the expression to

⟨Φ1(x1)Φ2(x2)⟩ =
C1,2

|x1 − x2|∆1+∆2
, (2.1.30)

where C1,2 is a constant coefficient.
At last we consider the SCT:∣∣∣∣∂x′∂x

∣∣∣∣ = 1

γd
γ = (1− 2b · x+ b2x2). (2.1.31)

They lead to the equality

C1,2

|x1 − x2|∆1+∆2
=

C1,2

γ∆1
1 γ∆2

2

(γ1γ2)
(∆1+∆2)/2

|x1 − x2|∆1+∆2
, (2.1.32)

which is satisfied only if ∆1 = ∆2.
This can be “parameterized” by C1,2 = 0 if ∆1 ̸= ∆2.

The same exact procedure can be carried out for the three point correlation function obtaining:

⟨Φ1(x1)Φ2(x2)Φ3(x3)⟩ =
C1,2,3

x∆1+∆2−∆3
1,2 x∆2+∆3−∆1

2,3 x∆3+∆1−∆2
1,3

, (2.1.33)

where xi,j = |xi − xj |.

Unfortunately this stops here, from four (or more) point functions it is in fact possible to construct
anharmonic ratios, which are conformal invariant. Any function of these quantities will be possible in
the correlator.
For example the four point function will have the following expression:

⟨Φ1(x1)Φ2(x2)Φ3(x3)Φ4(x4)⟩ = f(a, b)

4∏
i<j

x
∆/3−∆i−∆j

i,j ∆ =

4∑
i=1

∆i,

a =
x1,2x3,4
x1,3x2,4

b =
x1,2x3,4
x2,3x1,4

,

(2.1.34)

where f(a, b) is a generic function of a and b which are anharmonic ratios.

2.2 CFTs in 2-dimensions

This particular case of conformal theory requires special attention. As we will see in two dimensions
there are an infinite number of coordinate transformations that are locally conformal. Among this
set, of course, there are the ones we studied in the previous section, which are all the ones globally
defined.
The theory should nevertheless be sensitive to the infinite number of local symmetries and therefore
appear more constrained.
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2.2. CFTS IN 2-DIMENSIONS CHAPTER 2. CONFORMAL FIELD THEORY

Conformal group and algebra

Recollecting now equations (2.1.3) and (2.1.4) we get either one of the two following conditions on
conformal transformations in two dimensions:

∂0ϵ0 = ∂1ϵ1 ∂0ϵ1 = −∂1ϵ0,
∂0ϵ0 = −∂1ϵ1 ∂0ϵ1 = ∂1ϵ0.

(2.2.1)

From these we clearly recognize the Cauchy-Riemann equations appearing in complex analysis. A
good idea would then be to use complex coordinates:

z = x0 + ix1 ϵ = ϵ0 + iϵ1 ∂z =
1

2
(∂0 − i∂1),

z = x0 − ix1 ϵ = ϵ0 − iϵ1 ∂z =
1

2
(∂0 + i∂1).

(2.2.2)

Note that now in terms of these variables:

gµν =

(
0 1

2
1
2 0

)
gµν =

(
0 2
2 0

)
,

ϵµν =

(
0 1

2 i
−1

2 i 0

)
ϵµν =

(
0 −2i
2i 0

)
.

(2.2.3)

Before carrying on with the analysis of the algebra, let us notice that for certain manipulations it can
be useful to extend our variable space making z and z independent. Then one can always find the
physical space in the two dimensional plane z∗ = z.

Returning to equation (2.2.1) we will have that any holomorphic and antiholomorphic function on the
complex plane defines an infinitesimal conformal transformation. Actually since we are talking about
infinitesimal transformations it is enough for the functions to be meromorphic.

Now we know that any meromorphic function can be Laurent expanded as

ϵ(z) =

∞∑
−∞

cnz
n+1. (2.2.4)

Then calculating the representations of the generators for the simple field conformal transformation
Φ′(z′, z′) = Φ(z, z) one finds the following:

Φ′(z′, z′) = Φ(z, z)

= Φ(z′, z′)− ϵ(z′)∂′Φ(z′, z′)− ϵ(z′)∂
′
Φ(z′, z′)

δΦ = −ϵ(z)∂Φ(z, z)− ϵ(z)∂Φ(z, z)

=
∑
n

cnlnΦ(z, z) + cnlnΦ(z, z),

(2.2.5)

where we introduced:
ln = −zn+1∂ ln = −zn+1∂. (2.2.6)

These two infinite sets of generators form two commuting Witt algebras:

[lm, ln] = (m− n)lm+n,

[lm, ln] = (m− n)lm+n,

[lm, ln] = 0.

(2.2.7)

It is interesting now to note which of these generators produce globally defined transformations. Let
us focus only on one of the copies of the algebra, the other part will follow this discussion identically.
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Take the lns, they are not all everywhere well defined: first of all in z = 0 they are non-singular only
for n ≥ −1.
The other ambiguous point would be z = ∞ which is part of the Riemann sphere (remember conformal
compactification). To study it we need to perform a change of variables (or change of chart thinking
from a differential manifold point of view): z = − 1

w .

ln = −
(
− 1

w

)n−1

∂w (2.2.8)

which in w = 0 (z = ∞) is non singular only for n ≤ 1.

In conclusion one finds that the conformal transformations on the Riemann sphere are generated by
{l−1, l0, l1} ∪ {l−1, l0, l1}.

One can investigate what they correlate to and find that:

• l−1 corresponds quite clearly to translations;

• l0 must instead be combined with l0 to form: (l0 + l0) dilations and i(l0 − l0) rotations;

• l1 can be demonstrated to correspond to SCT.

Moreover, one can analyze these transformations looking at finite ones. Exponentiation of an holo-
morphic function gets another holomorphic function. Complex analysis then tells us that invertible
holomorphic functions globally defined on the Riemann sphere are only of the following form:

f(z) =
az + b

cz + d
ad− bc ̸= 0. (2.2.9)

Note now that we can completely characterize this group with the set of matrices:

A =

(
a b
c d

)
det(A) = 1 A ≡ −A, (2.2.10)

equipped with its standard matrix multiplication.
So the conformal group will be isomorphic to the Möbius group SL(2,C)/Z2.

Central extension

Let us go back to the Witt algebra. It turns out that this algebra admits a so-called central extension.
This is a very important topic, in fact these extensions of the algebra are closely related to projective
representations which are needed in Quantum Mechanics.
Moreover, if one “blindly” tries to quantize some of the most common classical conformally invariant
theories, they will not arrive to a representation of the Witt algebra but to one of its extensions. At
last if one tries to quantize the same theories on a curved manifold, instead of on a flat one, one will
find that the conformal symmetry becomes anomalous and such anomaly will be connected to the
central extension.

So first of all let us briefly explain what is a central extension.
The main idea is that we want to add a constant number to the usual commutation relations of a
certain algebra g. To do so what we will do is to add one new operator, C, which has a constant
eigenvalue on any irreducible representation of our original algebra (the general theory of central
extensions admits the possibility to add more than only one of these operators). By Schur’s lemma
we have that this property is satisfied by C if it commutes with all the elements of g.
Note that this is exactly why it is called central extension: the new element C will be part of the
center of the new algebra, which we will call ĝ.

Now we implement this in Witt’s algebra, the new commutation relations will be:

[Lm, Ln] = (m− n)Lm+n + p(m,n)C,

[Lm, C] = 0,

[C,C] = 0.

(2.2.11)
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2.2. CFTS IN 2-DIMENSIONS CHAPTER 2. CONFORMAL FIELD THEORY

This algebra has to satisfy some properties, the value of p(m,n) is not arbitrary. The trivial solution
is p(m,n) = 0 for any given m,n. This is the least interesting case, since the new algebra will be the
direct sum of Witt’s algebra and the one dimensional algebra.
We look then for an alternative solution:

• first of all the commutator antisymmetry imposes p(n,m) = −p(m,n);

• then we can always fix p(1,−1) = p(n, 0) = 0 redefining L̂n = Ln + Cp(n,0)
n for n ̸= 0 and

L̂0 = L0 +
Cp(1,−1)

2 ;

• Using then the following Jacobi identity:

0 = [[Lm, Ln], L0] + [[Ln, L0], Lm] + [[L0, Lm], Ln]

0 = (m− n)cp(m+ n, 0) + ncp(n,m)−mcp(m,n)

0 = (m+ n)p(n,m),

(2.2.12)

where c is the eigenvalue for the operator C, one finds that for n ̸= −m p(n,m) = 0;

• At last we use this Jacobi equality:

0 = [[L−n+1, Ln], L−1] + [[Ln, L−1], L−n+1] + [[L−1, L−n+1], Ln]

0 = (−2n+ 1)cp(1,−1) + (n+ 1)cp(n− 1,−n+ 1) + (n− 2)cp(−n, n),
(2.2.13)

from which we get a recursive relation that yields the result:

p(n,−n) = n+ 1

n− 2
p(n− 1,−n+ 1) =

1

12
(n+ 1)(n− 1)n, (2.2.14)

having normalized p(2,−2) = 1
2 while keeping c free of constraints.

In total then we obtain a very important algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, (2.2.15)

which is called Virasoro algebra and c is called central charge.

Primary fields

First of all we define a quasi-primary field in two dimensions; it is a field that under any global
conformal transformation z → w(z), z → w(z) transforms like

Φ′(w,w) =

(
dw

dz

)−h(dw
dz

)−h
Φ(z, z). (2.2.16)

This generalizes to a primary field if Φ transforms like this under any conformal transformation, both
local and global. By definition it is immediate to observe that any primary field is quasi-primary, but
not necessarily the reverse.
Fields which are neither primary nor quasi-primary exist and are called secondary.

Notice that in this expression we have introduced two new variables: h and h. They are called
conformal weights and their introduction comes with the fact that, differently than in the d > 2 case,
these fields can have spin different from zero; in particular we have

h =
1

2
(∆ + s) h =

1

2
(∆− s). (2.2.17)

In fact in a complex variable environment the transformation w(z) = λz is both a dilation and a
rotation. Decomposing λ = |λ|eiθ and imposing that we stay on the physical plane w∗ = w → λ∗ = λ
we get the following expression:

Φ′(w,w) = λ−∆/2−s/2λ
−∆/2+s/2

Φ(z, z) =

=
(
|λ|eiθ

)−∆/2−s/2 (
|λ|e−iθ

)−∆/2+s/2
Φ(z, z) = |λ|−∆e−iθsΦ(z, z).

(2.2.18)
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The field is both dilated and rotated in the complex plane.

Since primary fields will be very important let us write down how they change under an infinitesimal
conformal transformation:

δϵ,ϵΦ(z, z) = −(h∂ϵ+ ϵ∂ + h∂ϵ+ ϵ∂)Φ(z, z). (2.2.19)

At last another important field property in these theories is the following. A field is called chiral if it
only depends on z (Φ(z)) and antichiral if it only depends on z (Φ(z)).

Energy-momentum tensor and Ward identities

Since we have these symmetries let us look at the conserved currents from the Noether theorem. It is
well known that for translations and rotations the conserved currents are:

Traslations jµνT = Tµν ,

Rotations jµνρR = Tµνxρ − Tµρxν ,
(2.2.20)

where Tµν is the symmetrized energy-momentum tensor.
For the dilations one can show that the Noether current can be written as

jµD = Tµν x
ν . (2.2.21)

From these we want to find the Ward identities. Their general form is

∂µ⟨jµa (x)Φ(x1)...Φ(xn)⟩ = −i
n∑
i=1

δ(x− xi)⟨Φ(x1)...GaΦ(xi)...Φ(xn)⟩, (2.2.22)

with Ga being the representation of the generator of the symmetry and jµa the conserved current.
With some calculations one arrives at:

Traslations ∂µ⟨Tµν (x)X⟩ = −
n∑
i=1

δ(x− xi)∂νi⟨X⟩,

Rotations ϵµν⟨Tµν(x)X⟩ = −i
n∑
i=1

siδ(x− xi)⟨X⟩,

Dilations ⟨Tµµ (x)X⟩ = −
n∑
i=1

δ(x− xi)∆i⟨X⟩,

(2.2.23)

where X stands for a product of n primary fields.
One may think that we forgot something: the special conformal transformations. Actually it can
be demonstrated that they do not bring any additional conserved charge. The only addition, from
Poincaré invariance to conformal invariance, is the tracelessness of the energy-momentum tensor.

Until now we have studied everything using the usual spatial coordinates (not the complex ones).
This is because our discussion actually holds for other dimensions as well (adding just some minor
modifications). Now we go to the complex coordinates specializing to the two dimensional case.
In order to do so we must write the Dirac delta function in complex coordinates:

δ(x) =
1

π
∂z∗

1

z
=

1

π
∂z

1

z∗
. (2.2.24)

These are demonstrable equalities. To understand why intuitively this is so, look at 1
z , it is a mero-

morphic function, therefore ∂z∗
1
z = 0 for z ̸= 0. The behaviour at z = 0 instead can be reconduced to

a delta function.
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The Ward identities explicitly written in complex coordinates are then:

2π∂z⟨Tz,zX⟩+ 2π∂z⟨Tz,zX⟩ = −
n∑
i=1

∂z
1

z − wi
∂wi⟨X⟩,

2π∂z⟨Tz,zX⟩+ 2π∂z⟨Tz,zX⟩ = −
n∑
i=1

∂z
1

z − wi
∂wi⟨X⟩,

2π⟨Tz,zX⟩ = −
n∑
i=1

∂z
1

z − wi
hi⟨X⟩,

2π⟨Tz,zX⟩ = −
n∑
i=1

∂z
1

z − wi
hi⟨X⟩,

(2.2.25)

where the last two Ward identities, corresponding to rotations and dilations, have been added and
subtracted. In total these equations give the following equalities:

∂z

[
⟨T (z, z)X⟩ −

n∑
i=1

(
1

z − wi
∂wi⟨X⟩+ hi

(z − wi)2
⟨X⟩

)]
= 0,

∂z

[
⟨T (z, z)X⟩ −

n∑
i=1

(
1

z − wi
∂wi⟨X⟩+ hi

(z − wi)2
⟨X⟩

)]
= 0,

(2.2.26)

where we have introduced the new quantities: T = −2πTz,z and T = −2πTz,z.
From the above equalities we find first of all that T is chiral field, while T is antichiral. Then we get
the following expression

⟨T (z)X⟩ =
n∑
i=1

[
1

z − wi
∂wi⟨X⟩+ hi

(z − wi)2
⟨X⟩

]
+ reg.; (2.2.27)

followed by a corresponding one for T .
The reg. means a regular holomorphic function of z without any poles.

2.3 The operator formalism

Until now we have studied the general consequences of a conformal symmetry without worrying too
much about which was the theory in consideration. To continue our analysis is now useful, instead,
to specify to a certain extent the object of our studies.
The theories that we want to consider are the ones on the cylinder, which mean a periodic spatial
direction. These are ones of the most studied theories due to its connection to string theory. As
mentioned in the introduction, if one thinks at the world-sheet, which is generated by a single string
moving in spacetime, it can be parameterized by a cylinder.

Radial quantization

First of all one can take any radius but for simplicity we take R = 1. Then in complex coordinates
the periodicity condition is

w ∼ w + 2πi. (2.3.1)

Now we map this cylinder to the complex plane with the following transformation

z = ew. (2.3.2)

This mapping sends the t→ −∞ to z = 0 and the t→ ∞ to the infinite point on the Riemann sphere.
The periodic condition is integrated in the various fields when they are single valued on the plane. In
the exact same way other conditions, like the antiperiodic one, are easily integrated using functions
which are not single valued on the complex plane.
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Fig.2.1: Mapping from the cylinder to the complex plane

Note that the passage from the cylinder to the plane is only necessary from a Minkowski/string
point of view (we are talking about the Minkowski with imaginary time which becomes euclidean
and makes for a well defined path integral). In the context of statistical mechanics, using euclidean
spacetime, one could have arbitrarily chosen the time direction to be “radial”, getting directly the
theory on the plane.
This will be a general property of our analysis. Our results will be justified in the infinite cylinder
framework, but everything we say holds also if we put all the premises as definition and construct, in
this way, a general euclidean conformal field theory in two dimensions.

Now we begin to build the theory starting by some properties of the operators and in particular
primary fields.
In fact, regarding the latter one, let us consider their Hermitian conjugation. It takes a form a bit
different than what we are used to:

[Φ(z, z)]† = z−2hz−2hΦ

(
1

z
,
1

z

)
. (2.3.3)

This is not surprising, as a matter of facts considering the map from the cylinder to the complex plane
as a conformal transformation we have

Φ(w,w) = zhzhΦ(z, z). (2.3.4)

Then imposing the usual Hermitian conjugation property for euclidean time in the physical cylinder:

[Φ(w,w∗)]† = Φ(w′, w′∗), (2.3.5)

with w′ = −τ + ix, time inversion in complex coordinates, we get

z∗hzh[Φ(z, z∗)]† = z∗−hz−hΦ

(
1

z∗
,
1

z

)
, (2.3.6)

since 1
z∗ = ew

′
.

After that we consider the Laurent expansion of primary fields:

Φ(z, z) =
∑
n,m∈Z

z−m−hz−n−hΦm,n,

Φm,n =
1

2πi

∮
dzzm+h−1 1

2πi

∮
dzzn+h−1Φ(z, z).

(2.3.7)

This expressions can be reconduced to the Fourier expansion of the field on the cylinder (given its
periodic behaviour) using the conformal map between it and the complex plane.
Using the Hermitian conjugation property above, we find that

Φ(z, z)† =
∑
n,m∈Z

z−m−hz−n−hΦ†
m,n,

Φ†
m,n = Φ−m,−n.

(2.3.8)
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Within radial quantization one finds out that time ordering, which is used to define correlators,
becomes radial ordering:

R[Φ1(z)Φ2(w)] =

{
Φ1(z)Φ2(w) |z| > |w|
Φ2(w)Φ1(z) |z| < |w|

. (2.3.9)

Note that now we are considering chiral fields, on the physical plane. Adding an antiholomorphic part
does not cause any problem.

Let us make a last consideration that is going to be useful later on. In our previous explanation,
we used the transformation of primary fields from the cylinder to the complex plane, but, since the
energy-momentum tensor is just a quasi-primary field, its transformation properties differ:

T (w) = z2T (z)− c

24
. (2.3.10)

When going from the Riemann sphere to the cylinder we gain a vacuum expectation value of − c
24 for

the holomorphic part and a similar one for the antiholomorphic one.
We will introduce the Laurent expansion of the energy-momentum tensor in the next section but
the treatment is not different from the one for the primary fields. The difference is that the Fourier
expansion of T on the cylinder and the Laurent expansion on the complex plane do not have exactly
the same modes due to the appearance of the new term we introduced before. What is generally
natural to do then is to make the following association:

Lcylinder0 = Lplane0 − c

24
, (2.3.11)

so that now one has a ground state energy different form zero on the cylinder.

The operator product expansion

Before writing down the Hilbert space of our radially quantized theory let us discuss one of the most
important topics in conformal field theories, which is the operator product expansion (OPE).
First of all, take a look at equation (2.2.27): on the left side we have a correlator of T with X, while
on the left side only a correlator of X. The number of fields in the correlation function diminished.
In particular consider two points z and w, then send z → w. In such case one finds that

T (z)Φ(w,w) ∼ h

(z − w)2
Φ(w,w) +

1

z − w
∂wΦ(w,w), (2.3.12)

and a similar expression for T .
It is important to stress that this kind of expressions have to be considered always inside a correlator.

This fact sets the road to an interesting proposition: what if in a CFT two operators, like A(z) and
B(w), always respected a formula like the following one:

A(z)B(w) =
N∑

n=−∞

[AB]n(w)

(z − w)n
, (2.3.13)

for a certain set of fields [AB]n(w) which are non singular at w = z.
It turns out that this is the case and this property is of fundamental importance since with it one
can solve the theory. As we will see the continuous use of (2.3.13) inside the correlators completely
determine their value.

For example let us study the OPE between two energy-momentum tensors and, by doing so, also
determine the relation between the OPE and the commutation relations of the modes.
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First of all it is quite easy to see that the charge for the conformal symmetry is

Q =
1

2πi

∮
(dzT (z)ϵ(z) + dzT (z)ϵ(z)), (2.3.14)

where these are equal time integrals and their orientation is appropriately chosen.
Considering only the chiral part (the other one is identical), we expand both T (z) and ϵ(z) in modes:

T (z) =
∑
n∈Z

z−n−2Ln Ln =
1

2πi

∮
dzzn+1T (z),

ϵ(z) =
∑
n∈Z

zn+1ϵn Q =
∑
n∈Z

ϵnLn,
(2.3.15)

where the integral is again an equal time one.
In quantum field theory the charge generates the symmetry using the commutator. Then Ln must
respect the Virasoro algebra as previously stated.
In total we get:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δn+m,0,

[Lm, Ln] = 0,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δn+m,0.

(2.3.16)

Now we will relate the OPE to the commutation relations.
We define

∮
w as an integral along a path that encircles w. Then we can write∮

w
dzR(a(z)b(w)) =

∮
C1

dza(z)b(w)−
∮
C2

dzb(w)a(z) = [A, b(w)]

A =

∮
a(z)dz,

(2.3.17)

where C1 and C2 are fixed time contour with radii |w|+ ϵ and |w| − ϵ.
The first equality correspond to the contour equality in the image below.

Fig.2.2: Contours subtraction

After that one sends ϵ→ 0 obtaining something like an equal time commutator.

Similarly one finds that

[A,B] =

∮
0
dw

∮
w
dzR(a(z)b(w)),

A =

∮
a(z)dz B =

∮
b(z)dz.

(2.3.18)

This last equation can be used to demonstrate the validity of the following OPE:

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
. (2.3.19)
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We have already fixed the commutation relation between the energy-momentum tensor modes in
equation (2.3.16). What is left to do is to verify that equation (2.3.19) inserted in (2.3.18) gives the
right result:

[Lm, Ln] =
1

(2πi)2

∮
dz

∮
dwzm+1wn+1[T (z), T (w)]

=
1

(2πi)2

∮
0
dwwn+1

∮
w
dzzm+1R(T (z)T (w))

=
1

(2πi)2

∮
0
dwwn+1

∮
w
dzzm+1 c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w

=
1

2πi

∮
0
dwwn+1

∮
w
dzzm+1 c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w

= (m− n)Lm+n +
c

12
m(m2 − 1)δn+m,0.

(2.3.20)

Notice that confronting (2.3.19) with (2.3.12) we find that T (z) cannot be primary, but it could be
quasi-primary. Since with this OPE we can also calculate how T (z) transforms infinitesimally under
a conformal transformation, it is possible to verify if it is quasi-primary or not.

δϵT (w) = −[Q,T (w)] = − 1

2πi

∮
w
dzϵ(z)T (z)T (w) = − c

12
∂3wϵ(w)− 2T (w)∂wϵ(w)− ϵ(w)∂wT (w).

(2.3.21)
Now it is possible to demonstrate that the exponentiation of this expression is

T ′(w) =

(
dw

dz

)−2

[T (z)− c

12
{w; z}] {w; z} =

d3zw

dzw
− 3

2

d2zw

dzw
, (2.3.22)

where {w; z} is called Schwarzian derivative. With an explicit calculation one finds that

{az + b

cz + d
; z} = 0 (ad− bc = 1). (2.3.23)

Therefore T (z) is definitely a quasi-primary field of conformal dimension 2.

The Hilbert space of radial quantization

First of all we need a vacuum state. In a free field theory it is easy to define it, otherwise one does
the usual assumptions about the interaction “turning on” and “off”.
In this framework a field at infinity can be considered free, then we define an in state as

|Φin⟩ = lim
z,z→0

Φ(z, z)|0⟩, (2.3.24)

since on the complex plane the origin corresponds to the point at −∞ in time on the cylinder.
Using now the Laurent expansion of the field given in formula (2.3.7) we find that for this in state to
be well defined one must have that

Φm,n|0⟩ = 0 (m > −h, n > −h), (2.3.25)

otherwise we encounter divergences.
If we consider in particular the in states of T (z) we get the conditions:

Ln|0⟩ = 0 Ln|0⟩ = 0 n ≥ −1, (2.3.26)

which by the way also imply the invariance of the vacuum under global conformal transformations,
since they are generated by n = 1, 0,−1. This property also implies that its vacuum expectation
value vanishes.
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From the OPE of T (z) and a general primary field Φ(w,w) we get the following equation

[Ln,Φ(w,w)] = h(n+ 1)wnΦ(w,w) + wn+1∂Φ(w,w) n ≥ −1 (2.3.27)

and a similar one for the antiholomorphic part.
Denoting now the following state by its conformal weights

|h, h⟩ ≡ Φ(0, 0)|0⟩, (2.3.28)

we get the following properties:

L0|h, h⟩ = h|h, h⟩ L0|h, h⟩ = L|h, h⟩,
Ln|h, h⟩ = 0 Ln|h, h⟩ = 0 n > 0.

(2.3.29)

These looks a lot like highest weight representations of an algebra, with Cartan subalgebra given by
L0 and C the central charge. This is reinforced by the following commutator too

[L0, L−m] = mL−m. (2.3.30)

This fact can be demonstrated, the triangular decomposition of this algebra proves the existence of
highest weight representations.
To each primary field then corresponds a representation with highest weight |h⟩; descendants of this
states are obtained as in the following expression:

L−k1L−k2 ...L−kn |h⟩. (2.3.31)

Such a state will be an eigenvector of L0 with eigenvalue h′ = h+ k1 + k2 + ...+ kn ≡ h+N .
These representations are called Verma modules.

Normal ordering

We want now to introduce a notion of normal ordering in this context. The idea is that we want to
consider only the regular part in the product of two local operators inserted at the same point.
Involving the OPE, consider the expansion

A(z)B(w) =
N∑

n=−∞

[AB]n(w)

(z − w)n
. (2.3.32)

Then we can define and denote the normal order product in the following way

(AB)(w) = [AB]0(w). (2.3.33)

If we think at the OPE as a Laurent expansion of the first operator in w we have another useful
representation of the normal ordered product:

(AB)(w) =
1

2πi

∮
w

dz

z − w
A(z)B(w). (2.3.34)

We now use this formula to write an expression for the modes of the normal ordered product.
First of all

(AB)(w) =
∑
n∈Z

w−n−hA−hb(AB)n,

(AB)n =

∮
0

dw

2πi
wn+hA+hB−1(AB)(w).

(2.3.35)

Then

(AB)n =

∮
0

dw

2πi
wn+hA+hB−1

∮
w

dz

2πi

A(z)B(w)

z − w

=

∮
0

dw

2πi
wn+hA+hB−1

(∮
|z|>|w|

dz

2πi

A(z)B(w)

z − w
−
∮
|z|<|w|

dz

2πi

B(w)A(z)

z − w

)
.

(2.3.36)
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Divided as it is in two pieces, we start from the first one. Expanding A and B in their Laurent series
we get∮

|z|>|w|

dz

2πi
wn+hA+hB−1A(z)B(w)

z − w
=

∮
|z|>|w|

dz

2πi

∑
p≥0

∑
r,s

z−r−hA−p−1w−s−hB+pArBs, (2.3.37)

using 1
z−w = 1

z(1−w/z) and the geometric series expansion (since |z| > |w|).
After that the integral over z giver a delta function setting r = −hA − p, while from the the one over
w the only contributing term is the one with s = p+ n+ hA. This yields the total result of

I1 =
∑

k≤−hA

AkBn−k. (2.3.38)

For the second term I2 a similar calculation produces a similar result.
We obtain the following formula

(AB)n = I1 + I2 =
∑

k≤−hA

AkBn−k +
∑

k>−hA

Bn−kAk. (2.3.39)

Now consider equation (2.3.25), one can think at the modes having m > −h as being annihilation
operators, the others can instead be thought as creation operators.
In the expression we have just found, we can see that annihilation operators are moved to the right
while the creation ones remain on the left. Therefore one can interpret normal ordering as in the
usual way with the placement of creation/annihilation operators.

Some technical notes about this. The normal ordered product is both non-commutative and
non-associative. Moreover our treatment was for the case of bosonic fields, but a similar one can be
applied to fermionic fields.

The normal ordered product comes in handy right away.
In fact one can write the regular part of the OPE as

A(z)B(w) = sing +
∑
k≥0

(z − w)k

k!
(∂kAB)(w). (2.3.40)

This can be easily verified. If we write the general form for the OPE and apply first the operator ∂kz
k!

and then the normal ordering, we will obtain exactly the term [A,B]k(w) in the expansion.

Solving a theory

Finally after finding all these properties we can use them in order to almost solve our theory. By
solving a theory what we mean in this context is the calculation of all the correlators in the theory.
The fact that this is possible is a very important consequence of the conformal symmetry which,
makes these theories a very controlled and constrained environment in which one can work.

We start by considering correlators in which we have a string of primary fields X = Φ1(w1)...ΦN (wN )
and what we will call a descendant field Φ−n(w) = L−nΦ(w) (connected to descendant states by its
application to the vacuum inserted in w = 0):

⟨Φ−nX⟩ = 1

2πi

∮
w
dz(z − w)1−n⟨T (z)Φ(w)X⟩

= − 1

2πi

∮
{wi}

dz(z − w)1−n
∑
i

[
1

z − wi
∂wi⟨Φ(w)X⟩+ hi

(z − wi)2
⟨Φ(w)X⟩

]
= L−n⟨Φ(w)X⟩,

(2.3.41)
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wherein we defined the differential operator

L−n =
∑
i

[
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

]
. (2.3.42)

Without any difficulty this result is generalizes to

⟨Φ(−k1,...,−kn)(w)X⟩ = Lk1 ...Lkn⟨Φ(w)X⟩, (2.3.43)

where Φ(−k1,...,−kn)(w) is obtained applying various energy-momentum tensor modes in order.
Therefore correlators of descendants fields are always reducible to those with only primary fields
which will be our main object of study.

So, first of all, let us look at the simplest correlator: the two point function. We already know that,
for fields that do not have the same conformal dimensions, it will be null. Let us take some fields
which instead have the same dimension

⟨Φα(w,w)Φβ(z, z)⟩ =
Cαβ

(w − z)2h(w − z)2h
. (2.3.44)

Now Cαβ is symmetric therefore we can always combine and rescale the fields so that Cαβ = δαβ. The
orthogonality of the fields also means that their conformal families (sets of a primary field and all its
descendants) are orthogonal by formula (2.3.43).

To solve all the other correlators we actually just need two other informations.
First of all in complete generality the OPE takes the following formula

Φ1(z, z)Φ2(0, 0) =
∑
p

∑
[k,k]

C
p[k,k]
12 zhp−h1−h2+Kzhp−h1−h2+KΦ[k,k]

p (0, 0), (2.3.45)

where K =
∑

i ki, the expression [k] means a set of ki and the same for k. The fact that the OPE of
quasi-primary and primary fields only contains such fields and their descendants can be demonstrated
but it is quite non trivial.
Then let us consider the other fully determined correlator of any conformal field theory: the three
point function.

⟨Φr|Φ1(z, z)|Φ2⟩ = lim
w,w→∞

w2hrw2hr⟨Φr(w,w)Φ1(z, z)Φ2(0, 0)⟩ =
Cr12

zh1+h2−hrzh1+h2−hr
. (2.3.46)

Using the OPE one finds that

C
p[0,0]
12 ≡ Cp12 = Cp12, (2.3.47)

where the last one is the one we found in expression (2.3.46). Moreover since the correlators of
descendants are built on the correlators of primaries, as seen in (2.3.43), one can write

C
p[k,k]
12 = Cp12β

p[k]
12 β

p[k]
12 (2.3.48)

with β
p[0]
12 = β

p[0]
12 = 1.

The important property of these β coefficients is that they are completely determined by the Virasoro
algebra. We do not calculate them here or show their formula, but it is enough to know that such
things can be found.

From this analysis a theory then is specified solely by the following parameters: the central charges,
the conformal dimensions of the primary fields and the three point function coefficient Cpmn. Any
correlator of such a theory can be calculated by successive reduction of the product of primary fields.
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Bootstrap

There is actually the hope that we can say more about the parameters that we are left with from the
analysis in the previous section, this approach is called bootstrap.

In order to do this we are going to need the four point function

G(z, z) = ⟨Φi(z1, z1)Φj(z2, z2)Φl(z3, z3)Φm(z4, z4)⟩. (2.3.49)

We know that such function has a dependence on the positions of the insertions determined by con-
formal invariance and a “free” dependence on the crossing ratios (anharmonic ratios). We are only
interested in the second one and that is the part we will consider. Let us define:

x =
z12z34
z13z24

x =
z12z34
z13z24

, (2.3.50)

where zij = zi − zj .

In order to solve the correlator we said we needed to use the OPE, so first we contract Φi with Φj and
then Φl with Φm. We are left with a two point function of which we know the exact formula.
Explicitly the result is:

G(z, z) =
∑
p

CpijC
p
lmF

lm
ij (p|x)F

lm
ij (p|x). (2.3.51)

Flmij (p|x) and its antiholomorphic partner are called conformal blocks, they have quite complicated
formulas but given the central charges and the conformal dimensions they are fully determined.

Notice now that one can solve the same correlator in a different way: first contracting Φj with Φl and
then Φi with Φm. Effectively this means exchanging Φj and Φm which at the level of crossing ratios
is achieved by x→ 1− x.
The expression one finds after an explicit calculation this time is:

G(z, z) =
∑
p

CpimC
p
jlF

jl
im(p|1− x)F

jl
im(p|1− x). (2.3.52)

One can depict the fact that these two expressions are the same using the figure below.

Fig.2.3: On the left we have the first expression, on the right the second

This is the reason why these are called crossing symmetry conditions.

Actually we have a last way to evaluate this function which is contracting first Φj with Φm. One then
finds:

G(z, z) =
∑
p

CpilC
p
jmF

jm
il

(
p|1
x

)
F
jm
il

(
p|1
x

)
. (2.3.53)

The hope for this kind of analysis would be to determine the coefficients Cpij and the conformal dimen-
sions of the theory thought these constraints even though there is no proof that in general this happens.

Let us end this section by saying that there are cases in which we can say a little bit more. This is
the case of rational conformal field theories (RCFT) which we will study in section (2.4).
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In that case there are only a finite number of conformal families and the conditions can be written as
matrix equalities which are a little bit easier to solve.

Operators and states

As the last part of our discussion about the operator formalism in conformal field theories, let us talk
briefly about another one of their important aspects.
In general, in a quantum field theory there is on one hand the space of states, while on the other, a
set of local operators. What happens in our case is that there is a simple useful isomorphism between
these two.

To explain how this works let us look at the following consideration. First of all take the infinite
cylinder, in a path integral formalism one has to specify the initial state of our theory at t→ −∞.
What one is able to demonstrate is that the path integral is the same as the one on the plane with
a particular local operator inserted at z = 0. This equality is extremely evident in our previous
construction of the Hilbert space.

One of the interesting corollaries one can get from this obser-
vation is the justification of the OPE.
First of all consider two operators inserted in a correlator.
With a conformal transformation we can always bring one at
the origin and the other one at a certain point z with |z| < 1
(as long as one does not have any operator between them):

Ai(z)Aj(0). (2.3.54)

It is possible then to divide the path integral in two parts, one
over the interior of the unit disk and one over the exterior.

Fig.2.4: Insertion of two local operators

Computing first the one on the interior
we get a path integral on the exterior of
the disk with a certain kind of boundary
condition/initial state at the unit disk.
This is compatible with a path integral
on the full plane with a specific initial
condition and therefore also with a path
integral with a particular operator in-
serted at the center by the operator-state
correspondence which we previously de-
scribed.

Fig.2.5 Path integral with boundary condition on the
left, with operator insertion on the right

This discussion clearly justifies the OPE.

Another way to see this is the following: if one does not have any operator between two other
operators a conformal transformation can bring these two operators as close as one wants, therefore
it kind of makes sense to have the product of these two operators represented by a single operator.
Also, from this argument, it looks as if the same theory constructed on spaces of the same homotopy
type gives the same results. For example a theory constructed on a contractible space would be the
same as one on a point.

2.4 Models

In this section let us introduce some theorise and some methods to construct them. They will be the
main objects on which we will work when looking for the defects.
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Free fermion

First of all the action of the free Majorana fermion with metric hαβ = diag(+1,−1) is

S =
1

4πk

∫
dx0dx1

√
|h|(−i)Ψγα∂αΨ, (2.4.1)

where k is a normalization constant, Ψ is a two dimensional vector, Ψ = Ψ†γ0 and

γ0 =

(
0 1
1 0

)
γ1 =

(
0 1
−1 0

)
. (2.4.2)

With this choice of γ matrices the Majorana condition becomes that the components of the spinor are
real.
Now we perform a Wick rotation: x0 → x0, x1 → ix1, which entails ∂1 → −i∂1. What we find with
that is

γ0γα∂α =

(
∂0 + i∂1 0

0 ∂0 − i∂1

)
= 2

(
∂z 0
0 ∂z

)
. (2.4.3)

After that we rewrite everything in complex variables and extend z to the whole plane. Setting the
notation for the components of the spinor as ΨT = Ψ† = (ψ(z, z), ψ(z, z)) one obtains the following
form for the action:

S =
1

4πk

∫
dzdz

√
|g|2Ψ†

(
∂z 0
0 ∂z

)
Ψ

=
1

4πk

∫
dzdz(ψ∂ψ + ψ∂ψ).

(2.4.4)

Note that, as in equation (2.2.3), the components of the metric g are obtained through the change of
coordinate to the complex ones:

gab =

(
0 1

2
1
2 0

)
gab =

(
0 2
2 0

)
. (2.4.5)

The equation of motions for the theory are obtained varying the action with respect to ψ and ψ.
First of all for ψ we get:

0 = δψS =
1

4πk

∫
dzdz[δψ∂ψ + ψ∂(δψ)]

=
1

2πk

∫
dzdzδψ∂ψ.

(2.4.6)

The variation with respect to ψ yields a very similar result. In total then

∂ψ = ∂ψ = 0, (2.4.7)

which means that these fields are chiral ψ = ψ(z) and antichiral ψ = ψ(z).

Note now that the action is conformally invariant if ψ is a primary field with conformal dimension
(h, h) = (12 , 0) and ψ with (h, h) = (0, 12). Moreover the theory is free therefore the engineering
dimension is the same as the actual one in the quantum theory.

There are two possibilities for the behaviour under rotations by 2π:

ψ(e2πiz) = +ψ(z) Neveu-Schwarz sector (NS),

ψ(e2πiz) = −ψ(z) Ramond sector (R).
(2.4.8)

We are focusing on the chiral sector since the antichiral one has exactly the same properties.
Then we Laurent expand the field:

Ψ(z) =
∑
r

ψrz
−r− 1

2 ψr =

∮
dz

2πi
ψ(z)zr−

1
2 ,

r ∈ Z+
1

2
(NS) r ∈ Z (R).

(2.4.9)
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Notice that the expansion is coherent with the field being single or multi valued on the plane.

We start by analyzing the Neveu-Schwarz sector.
One can verify that the propagators are:

⟨ψ(z)ψ(w)⟩ = k

z − w
,

⟨ψ(z)ψ(w)⟩ = k

z − w
,

⟨ψ(z)ψ(w)⟩ = 0.

(2.4.10)

With this we can calculate the anticommutator between the modes:

{ψr, ψs} =

∮
0

dw

2πi
ws−

1
2

∮
w

dz

2πi
zr−

1
2R(ψ(z)ψ(w))

= k

∮
0

dw

2πi
wr+s−1

= kδr+s,0

(2.4.11)

The first equality comes from formula (2.3.18), wherein for the fermions we have the anticommutator
instead of the commutator. Then we used the propagator in (2.4.10).

The energy-momentum tensor can be derived using the following generic well known equation:

Tµν = 8πkg

(
−ηµνL+

∑
i

∂L

∂(∂µϕi)
∂νϕi

)
. (2.4.12)

We get:
Tzz = gψ∂ψ Tzz = −gψ∂ψ Tzz = −gψ∂ψ Tzz = gψ∂ψ. (2.4.13)

Even though it does not look symmetric, the terms off of the diagonal vanish using the equations
of motion. We know from equation (2.2.26) that the diagonal terms are one chiral and the other
antichiral. We will focus on the chiral one since for the other the behaviour is identical.

T (z) = g(ψ∂ψ)(z). (2.4.14)

Let us now write the Laurent modes:

Lm = g
∑
s>− 3

2

ψm−sψs

(
s+

1

2

)
− g

∑
s≤− 3

2

ψsψm−s

(
s+

1

2

)
. (2.4.15)

Using the anticommutator between the fermion modes we find

[Lm, ψr] = gk(−m− 2r)ψm+r. (2.4.16)

Then choosing gk = 1
2 we get

[Lm, ψr] = (−m
2

− r)ψm+r, (2.4.17)

which can be easily demonstrated to be the commutation relation for a primary field of conformal
dimension h = 1

2 , as expected.
From now on we will choose the usual normalization k = 1.

Finally let us look at the central charge of the theory. It is possible to show that:

⟨0|L2L−2|0⟩ = ⟨0|[L2, L−2]|0⟩ =
c

2
. (2.4.18)

Then explicitly:

L−2|0⟩ =
1

2
ψ− 3

2
ψ− 1

2
|0⟩ ⟨0|L2 =

1

2
⟨0|ψ 3

2
ψ 1

2
. (2.4.19)
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Finally:

c

2
=

1

4
⟨0|ψ 3

2
ψ 1

2
ψ− 3

2
ψ− 1

2
|0⟩ = 1

4
⟨0|ψ 1

2
{ψ 3

2
ψ− 3

2
}ψ− 1

2
|0⟩

=
1

4
⟨0|ψ 1

2
ψ− 1

2
|0⟩ = 1

4
⟨0|{ψ 1

2
ψ− 1

2
}|0⟩ = 1

4
.

(2.4.20)

Therefore the free fermion theory has central charge c = 1
2 .

Let us now consider the Ramond sector instead.
It is possible to show, using for example the mode decomposition, that this time the propagators are:

⟨ψ(z)ψ(w)⟩ = 1

2

√
z/w +

√
w/z

z − w
,

⟨ψ(z)ψ(w)⟩ = 1

2

√
z/w +

√
w/z

z − w
,

⟨ψ(z)ψ(w)⟩ = 0,

(2.4.21)

where we have already fixed k = 1.
This does not change the discussion on the anticommutator of the modes which in fact yields the same
result.
The energy-momentum tensor has the same expression but we encounter some difficulties when looking
at the modes. The main problem is given by ψ0 which has the following property:

{ψ0, ψ0} = 1 ψ0ψ0 =
1

2
(2.4.22)

This fact makes the normal ordering prescription we used for L0 inexact, since there is not a “right”
choice when ordering the pair ψ0ψ0. What we can instead say is that the expression will be of the
form:

L0 =
1

2

∑
s>− 3

2

ψ−sψs

(
s+

1

2

)
− 1

2

∑
s≤− 3

2

ψsψ−s

(
s+

1

2

)
+ a, (2.4.23)

where we added a new constant term a which takes into account a possible reorganization of the terms.
Such constant term can be calculated using the commutation relations between the Lns, but in this
case there is a faster method:

⟨T (z)⟩ = lim
w→z

[
−1

2
∂w

(√
z/w +

√
w/z

z − w

)
+

1

2(z − w)2

]
=

1

16z2
. (2.4.24)

The first term corresponds to the correlator ⟨ψ(z)∂wψ(w)⟩, then, to take the normal ordering of this
composition of fields, we subtract its singular part and then send w → z, resulting in expression
(2.4.24). We have just obtained is the vacuum energy, which tells us that the generator L0 can be
written in the following way:

L0 =
1

2

∑
s>0

ψ−sψs

(
s+

1

2

)
− 1

2

∑
s<0

ψsψ−s

(
s+

1

2

)
+

1

16
. (2.4.25)

Notice now that the ground state of the Ramond sector has conformal dimension 1
16 since

L0|0⟩R =
1

16
|0⟩R. (2.4.26)

Moreover the ground state is degenerate. Since ψ0 commutes with the whole Virasoro algebra, its
application to the ground state gives a representation identical to the first one except for the different
fermion number.
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RCFT

When we talked about the Hilbert space we did not consider two possibilities: we can have null norm
states and negative norm states.

First of all let us talk about null vectors. When considering all the states in (2.3.31) one finds that
sometimes the representation of the Virasoro algebra is reducible; this happens in particular when a
state exists such that Ln|χ⟩ = 0 for n > 0. That state will be called null state and will be the highest
weight of a full representation of the algebra.
The state |χ⟩ and the all its descendants can be demonstrated to be also perpendicular to the whole
Verma module:

⟨χ|L−k1 ...L−kn |h⟩ = ⟨h|Lkn ...Lk1 |χ⟩∗ = 0 (2.4.27)

and in particular one has that ⟨χ|χ⟩ = 0. For |χ⟩s descendants one just has to use the commutation
relations between Ln.

From these representations one can obtain irreducible ones by quotienting out the null submodes,
identifying states that differ by states of zero norm. For these reasons it is important to study null
vectors.
To do that we start by considering a general vector; it can always be written in a certain basis as the
following: |v⟩ =

∑
a λa|a⟩. Then its norm is:

||v||2 =
∑
a,b

λa⟨a|b⟩λb ≡
∑
a,b

λaMabλb. (2.4.28)

This expression can be zero if and only if λb is an eigenvector of M with eigenvalue zero and this only
happens when detM = 0.

In our case this process uses the so-called Kač-determinant at level N, that is the determinant of the
matrix MN (h, c) composed by the following entries:

⟨h|
∏
i

Lki
∏
j

L−mj |h⟩
∑
i

ki =
∑
j

mj = N. (2.4.29)

V. Kač found and proved the following formula:

detMN (c, h) = αN
∏

0<p,q≤N
(h− hp,q(c))

P (N−pq),

hp,q =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
m = −1

2
± 1

2

√
25− c

1− c
,

(2.4.30)

where P (n) is the number of partitions of n and p, q are integers.
For the square root one usually chooses the branch m ∈ (0,∞) even though the determinant is
independent from the choice thanks to the the symmetry of hp,q: {p→ m− p, q → m+ 1− q}.

Now let us look at negative norm states. Clearly we do not want them in any field theory, we call this
property unitarity. The first consideration is that since

⟨h|L1L−1|h⟩ = 2⟨h|L0|h⟩ = 2h (2.4.31)

we must have h ≥ 0.
After that the considerations becomes more complicated, so we will just summarize the results:

• For c > 1 and h ≥ 0 there are no null states and no negative norm states.
• For c = 0 one finds detMN = 0 for h = n2

4 , n ∈ Z.
• At last in the region c < 1 and h ≥ 0 for sure all points not laying on a the curve hp,q(c)
are not unitary. A more careful analysis shows that negative states are absent only on certain
intersection points of such curves.
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In the last case we considered, one can
parameterize the set of unitary represen-
tations in the following way:

c = 1− 6

m(m+ 1)
m = 3, 4, ...

hp,q(m) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
(2.4.32)

with 1 ≤ p ≤ m − 1 and 1 ≤ q ≤ m
integers.

Fig.2.6: Curve of vanishing Kač determinant (image from [2])

After this considerations, because of these constraints, only a discrete sets of c survives with a finite
number of highest weight representations. These theories are called Rational CFT because they
admit only rational values of the central charges. Another way to call these theories, especially in
statistical mechanics is minimal models.

Kač-Moody algebras

We have seen what concerns the Virasoro algebra in the previous section, but it is not always true
that such an algebra appears alone. There are a lot of cases in which the conformal symmetry
is encapsulated in a bigger symmetry group or in general we have that the conformal algebra is
encapsulated in a bigger algebra.
This also usually means that the representations of the Virasoro algebra are contained in the
representations of these bigger algebras too. As we will see, this is interesting because it permits to
analyze, using this bigger algebras, theories that have an infinite number of representations of our
original algebra, contrarily to the RCFT which have only a finite number of possible representations.

Showing where these algebras may come from will help us understand why they are very relevant,
therefore let us start with that.
First of all consider a finite dimensional simple Lie algebra g = {ja|a = 1, 2, ..., d} on C , with it we
want to construct a Loop algebra. A loop algebra is an infinite dimensional algebra composed by the
maps from the circle S1 to g (P (θ) ∈ g, θ ∈ S1). If these maps are taken single valued the algebra
will be called untwisted (P (0) = P (2π)), if instead they are not the algebra will be called twisted
(P (2π) = T [P (0)], where T is a map g → g ).

Focusing on the untwisted case, Fourier analysis tells us that a basis for this new algebra is

ĝ = {jan = j
a ⊗ zn = j

a ⊗ e2πint|a = 1, 2, ..., d;n ∈ Z}. (2.4.33)

And knowing

[j
a
, j
b
] =

d∑
c=1

fabcj
c
. (2.4.34)

The commutation relations for the new algebra will be:

[jam, j
b
n] =

d∑
c=1

fabcj
c
m+n. (2.4.35)

This is not yet an affine algebra (or Kač-Moody algebra), as we have seen for the Virasoro algebra
central extensions are usually needed in quantum theories.
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One can demonstrate then that the only non trivial central extension of this algebra by a central
element K will be

[jam, j
b
n] =

d∑
c=1

fabcj
c
m+n +mδm+n,0δ

abK (2.4.36)

supposing that the Killing form of g is δab which in many cases is true.
A last technicality is actually needed to conclude this treatment, we just need to know that, in order
to make the Killing form of the resulting algebra non-degenerate, we must add another element: the
derivation D.

In total then one find that we can describe our algebra as:

g = ĝ⊕ CK ⊕ CD, (2.4.37)

with commutation rules:

[jam, j
b
n] =

d∑
c=1

fabcj
c
m+n +mδm+n,0δ

abK,

[D, jam] = mjam,

[K, jam] = 0,

[D,K] = 0.

(2.4.38)

Clearly this is an algebra of Laurent modes, we can then write them starting from a certain field:

ja =
∑
n∈Z

janz
−n−1 jan =

∮
dz

2πi
znja(z). (2.4.39)

Then from the commutation rules of the modes one can extract the OPE, which is:

ja(z)jb(w) ∼ kδab

(z − w)2
+
∑
c

ifabc

z − w
jc(w), (2.4.40)

where k is the eigenvalue of K in the representation.

An algebra like this is also naturally associate a certain energy-momentum tensor. This method is
called Sugawara construction.
First of all our ansatz will be:

T (z) = γ
d∑
a=1

(jaja)(z),

Lm = γ

d∑
a=1

(
∑
l≤−1

jal j
a
m−l

∑
l>−1

jam−lj
a
l ).

(2.4.41)

As previously mentioned using the OPE between the energy-momentum tensor and a primary field
Φ(z) one gets

[Lm,Φn] = ((h− 1)m− n)Φm+n. (2.4.42)

It turns out that using the structure constant properties in an explicit calculation one arrives at

[Lm, j
a
n] = −2γn(k + Cg)j

a
m+n, (2.4.43)

where the dual Coxeter number can be defined by:
∑

b,c f
bacf bcd ≡= −2Cgδ

ad.

If we fix γ = (2(k + Cg))
−1 we obtain that ja(z) will be a primary field of conformal dimension one.
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Therefore in total:

T (z) =
1

2(k + Cg)

d∑
a=1

(jaja)(z). (2.4.44)

This theory also has a determined central charge, which can be calculate it explicitly:

c

2
= ⟨0|L2L−2|0⟩ = γ2

∑
a,b

⟨0|jb1jb1ja−1j
a
−1|0⟩ =

kd

2(k + Cg)
. (2.4.45)

This means that the central charge of the conformal theory associated
to the affine algebra gk (it is costume to write k as a subscript) through
the Sugawara energy-momentum tensor is

c =
kd

(k + Cg)
. (2.4.46)

Algebra Cg

su(N) N
so(N) N − 2

Dual Coxeter number
relevant examples

Coset construction

We will now introduce a method to produce new theories from known ones. One can also use this
procedure to decompose a theory in different, smaller parts.

Let us start with an affine algebra gkg originating from the simple Lie algebra g. Suppose that g

contains a subalgebra h ⊂ g; we will call the affine algebra deriving from such sub algebra hkh .
From the Sugawara construction we get:

Tg(z) =
1

2(kg + Cg)

dimg∑
a=1

(jag j
a
g )(z),

Th(z) =
1

2(kh + Ch)

dimh∑
a=1

(jah j
a
h )(z).

(2.4.47)

Observe now that jah is a primary field of dimension h = 1 both with respect to Tg and Th and that
Th is constructed only using the jah s, then:

(Tg − Th)(z)j
a
h = reg.

(Tg − Th)(z)Th(w) = reg.
(2.4.48)

After that, we split
Tg = Tg/h + Th Tg/h = Tg − Th (2.4.49)

and use Tg/h as the energy-momentum tensor of a new theory: gkg/hkh .

In order to understand how this new theory will be like we look at the singular part of the OPE
between two energy-momentum tensors:

Tg/hTg/h ∼ TgTg − ThTh. (2.4.50)

From this we immediately understand that

cg/h = cg − ch =
kgdimg

kg + Cg
−
khdimh

kh + Ch
. (2.4.51)

This formula will be quite important since, in many cases, it identifies in a very clear way what theory
we are obtaining from this process.

Finally we specify the field content of what we will call the coset theory: all the fields in gkg which
have a non singular OPE with the operators in hkh . From a modes point of view we are asking them
to commute with the algebra hkh .
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An important case of coset constructions is the diagonal cosets: (gk1 × gk2)/gk1+k2 . As a mater of
facts in the tensor product algebra one always finds the following operators jan = ja1,n + ja2,n where the
ja1,n generate gk1 and the ja1,n gk2 . Then one easily shows that

[jam, j
b
n] =

d∑
c=1

fabcj
c
m+n +mδm+n,0δ

ab(k1 + k2). (2.4.52)

Therefore we have found the gk1+k2 subalgebra justifying the diagonal coset construct.

Another important property is that the coset construction determines the decomposition of the highest
weight representations of g into highest weight representations of h and g/h. The fact that this is true
is highly non trivial and interesting. These rules are called branching rules and usually, given a
subalgebra h, they are very hard to find.
In general one can write:

Rg
λ =

⊕
Rh

λ

Rh
λ ⊗R

g/h
λ , (2.4.53)

where Rg
λ corresponds to the representation of g with highest weight λ.

We will explain better how this practically works when we will introduce the characters, which is in
section (2.5).

Affine algebra example

We now finally apply everything we learned in this section to the theory we will work with the most.
It is the case of the affine algebra constructed from the su(2) algebra. To set the convention let us
write explicitly the commutation relations:

[jam, j
b
n] = i

√
2

d∑
c=1

ϵabcjcm+n +mδm+n,0δ
abk, (2.4.54)

where ϵabc is the usual totally antisymmetric tensor. We define then the raising and lowering operators
and write down the resulting commutation rules:

ĵ3m =
1√
2
j3m ĵ±m =

1√
2
(j1m ± ij2m),

[ĵ3m, ĵ
3
n] =

mk

2
δm+n,0 [ĵ3m, ĵ

±
n ] = ±ĵ±m+n [ĵ+m, ĵ

−
n ] = kmδm+n,0 + 2ĵ3m+n.

(2.4.55)

We can now write the following conditions for a highest weight state:

ĵ3n|h, q⟩ = ĵ±n |h, q⟩ = 0 n > 0,

ĵ30 |h, q⟩ =
q

2
|h, q⟩,

ĵ+0 |h, q⟩ = 0.

(2.4.56)

The triangular decomposition is obvious from these conditions: any operator with n > 0 is an annihi-
lation operator and any operator with n < 0 will be a creation operator, while for the zero mode we
keep the usual decomposition.

We can analyze these representations further. First of all one can immediately see that the zero modes
form a su(2) subalgebra of su(2)k. If we ask for the representation of the zero modes to be a finite
dimensional spin l

2 representation we have the usual condition: q = l ∈ Z.
Apart from the highest weight state, we denote the other states of this sub-representation as

|h, qα⟩ ≡ (ĵ−0 )
α|h, q⟩, (2.4.57)

were qα = l − 2α.
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One also finds that the zero mode one is not the only su(2) subalgebra, actually we have an infinite
number of them:

j̃+(n) = ĵ+−n,

j̃−(n) = ĵ−n ,

j̃3(n) = ĵ30 −
nk

2
.

(2.4.58)

If we ask for all of these to be spin representations, identically to the first one, we get the condition
k ∈ Z.
There is actually one more constraint on these theories, consider the norm of the state j̃+(1)|h, l⟩:

⟨h, l|j̃−(1)j̃
+
(1)|h, l⟩ = ⟨h, l|[j̃−(1), j̃

+
(1)]|h, l⟩

= ⟨h, l| − 2j̃3(1)|h, l⟩

= −2⟨h, l|ĵ30 −
k

2
|h, l⟩

= −l + k.

(2.4.59)

Since this value must be non negative we have to require two things: k ∈ Z+ and 0 ≤ l ≤ k.

Given the representation of the zero modes, everything else is determined, including the conformal
dimensions of all the states. Knowing that for this group Cg = 2 and d = 3 we can write:

L0 =
1

2(k + 2)

3∑
a=1

(
∑
l≤−1

ja+lj
a
−l
∑
l>−1

ja−lj
a
+l). (2.4.60)

Then the highest weight conformal dimension is:

L0|h, q⟩ =
1

2(k + 2)

3∑
a=1

ja0 j
a
0 |h, q⟩

=
1

(k + 2)

3∑
a=1

ĵa0 ĵ
a
0 |h, q⟩ =

l(l + 2)

4(k + 2)
|h, q⟩.

(2.4.61)

From that one can calculate the conformal dimension of all the other states using equation (2.4.43).

This algebra is also used in one of the most important diagonal coset constructions:

su(2)k × su(2)1
su(2)k+1

. (2.4.62)

The central charge of the resulting theory is

c =
3k

k + 2
+ 1− 3(k + 1)

k + 3
= 1− 6

(k + 2)(k + 3)
, (2.4.63)

which is the same as (2.4.32) with m = k+2. This means that, with this coset construction, we obtain
all the minimal models.
As for the branching rules one can demonstrate that they are:

Rkλ ⊗R1
µ =

∑
0 ≤ ν ≤ k + 1

λ+µ+ ν = 0 mod2

Rk+1
ν ⊗Rk+2

hλ+1,ν+1
(2.4.64)

Where λ, µ, ν are the q values of the highest weight state of the corresponding representation of su(2)j
with j = k, 1, k+ 1 (2.4.56). Instead Rmhp,q corresponds to the Virasoro representation with conformal

weight calculated by the equation (2.4.30).
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2.5 CFT on the torus

So far we have considered theories on the Riemann sphere. In string theory such theories are used
to calculate the tree level amplitude, while other terms of the perturbative expansion correspond
to theories defined on higher genus Riemannian surfaces. In particular the second term (one-loop)
corresponds to the torus. This is the reason why evaluating the behaviour of conformal field theories
on the torus is important, it will be the first step to the construction of the theory on an arbitrary
surface.
Of course in statistical mechanics, while a general Riemannian surface may not be interesting, the torus
corresponds to a plane with periodic conditions in the two directions, making this section important
for this other field as well.

As we will see the most important implication of this construction will be the fact that unlike before
the holomorphic and antiholomorphic part will not decouple. Before we generally considered the chiral
and antichiral part as independent while now there will be rules on how to combine them. Exactly
how will be clarified in the next section.

Modular invariance

The torus can be described by a com-
plex plane on which one puts a lattice
and then identifies the various zones of
that lattice. This corresponds to the con-
dition:

w ∼ w +mα1 + nα2, (2.5.1)

where (α1, α2) is a pair of complex
numbers with different phases. The
quantity describing the shape of the
torus τ = α2

α1
= τ1+ iτ2 is called complex

structure or modular parameter. Fig.2.7: Lattice on the complex plane

There are multiple lattices describing the same torus, in particular if (β1, β2) is equivalent to (α1, α2)
a matrix must exist such that:(

β1
β2

)
=

(
a b
c d

)(
α1

α2

)
a, b, c, d ∈ Z (2.5.2)

and in a similar fashion the inverse must be true too(
α1

α2

)
=

1

ad− bc

(
d −b
−c a

)(
β1
β2

)
, (2.5.3)

with integer entries. This imposes the condition ad − bc = ±1 which is the same as saying that the
unit cell in each basis must have the same area (up to a sign). Furthermore the lattice spanned by
(α1, α2) and (−α1,−α2) have the same base cell, which means that they do not count as different
parametrizations.

From this considerations we find that the modular group which relates different ways to describe the
same lattice is SL(2,Z)/Z2.
Choosing then (α1, α2) = (1, τ) we get the following transformations for the parameter τ :

τ → aτ + b

cτ + d

(
a b
c d

)
∈ SL(2,Z)/Z2. (2.5.4)
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It is possible, but not easy, to demonstrate that every modular transformation is generated by the
following two transformations:

• The first one is the modular T-transformation:

T : τ → τ + 1. (2.5.5)

• The second one is the modular S-transformation, this one will be the most important and the
one that constrains the theory the most:

S : τ → −1

τ
. (2.5.6)

An interesting property of this transformation is S2 = I.

The partition function

Now let us look into the application where the modular invariance becomes relevant.
The fact that the partition functions is important both in statistical mechanics and as a generating
functional in a quantum field theory is well known. In string theory it is relevant as well, since it is
used in the calculation of the one-loop amplitude which, as we have already said, corresponds to the
torus.

We define then a partition function for the torus with the following process:

1. Start from a certain state |ψ⟩;
2. Evolve such state around the torus until it returns to the starting point e−2πτ2He2πτ1P |ψ⟩;
3. Take the product between the resulting state and the one we started with ⟨ψ|e−2πτ2He2πτ1P |ψ⟩;
4. Finally sum over all the states in the Hilbert space

∑
ψ⟨ψ|e−2πτ2He2πτ1P |ψ⟩.

Notice that in the third step we had to evolve the state both in time (τ2) and in space (τ1), this is
coherent with the identification we carried out using the lattice.

The final result is:
Z(τ) = TrH(e

−2πτ2He2πτ1P ), (2.5.7)

where the 2π is just a convention.
In the complex plane dilations are time translations and rotations are spatial translations therefore:

Hplane = L0 + L0,

Pplane = i(L0 − L0).
(2.5.8)

This expressions can be determined using the considerations we made in the section about the con-
formal group and algebra in two dimensions (2.2).
From the plane to the cylinder we have seen that the only difference is, looking at equation (2.3.11),
the fact that we have a ground state energy:

Hcylinder = L0 + L0 +
c+ c

24
,

Pcylinder = i(L0 − L0 +
c− c

24
).

(2.5.9)

Since for the torus we have the same expression as for the cylinder, in total we get

Z(τ) = TrH(q
L0− c

24 q−L0− c
24 ), (2.5.10)

with q = e2πiτ .

As we have seen before, a modular transformation does not change the lattice. In the same way our
theory must be invariant under such a transformation and in particular the partition function must
be invariant.
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This is the main way in which we obtain constraints on the possible combinations of the holomorphic
and antiholomorphic representations.
Let us look at the best way to confirm this property. Since we are usually considering various highest
weight representations of the chiral and antichiral algebra, which could both be Virasoro algebras or
one of its extensions, the partition functions will be expressed as a sum of characters.

A character is defined as
χi(τ) ≡ TrRi(q

L0− c
24 ), (2.5.11)

where Ri is the space of one of our representations.
Then generally the partition function will be written as

Z(τ, τ) =
∑
i,j

χiMijχj Mij ∈ N, (2.5.12)

where Mij is the multiplicity of the Ri ⊗Rj representation in our algebra.

In a lot of theories one has that under the T transformation the characters only obtain a phase, making
the partition function invariance easy to verify. For the S transformation instead, in many cases, one
can represent it as in the following:

χm

(
−1

τ

)
=
∑
m′

Smm′χm′(τ). (2.5.13)

Then, under that transformation,

Z

(
−1

τ
,−1

τ

)
=

∑
i,j,m,m′

χiS
T
imMmm′S∗

m′jχj . (2.5.14)

It is possible to demonstrate that S = ST , then in total the condition for modular invariance will be

SMS† =M. (2.5.15)

Another property, that is possible to demonstrate, is that this matrix is also unitary SS† = I and,
while it does not necessarily square to identity, S2 = C which is the conjugation matrix and C2 = I.

Example theories

Since su(2)k and RCFTs will be the main objects of our study let us talk about their partition
functions, characters and S matrices.

First of all we start with su(2)k. From the so called Weyl-Kač character formula it is possible to
determine that the character with highest weight 0 ≤ l ≤ k has the following form:

χ
(k)
l (τ, z) =

Θl+1,k+2(τ, z)−Θ−l−1,k+2(τ, z)

Θ1,2(τ, z)−Θ−1,2(τ, z)
Θl,k(τ, z) =

∑
n∈Z+ l

2k

qkn
2
e−2πinkz (2.5.16)

with z → 0.
At z = 0 the theta-functions have a well known S modular matrix in literature which is

S
(k+2)
l,l′ =

1√
2(k + 2)

exp

(
−πi ll′

k + 2

)
. (2.5.17)

Using some trigonometric identities it is possible to arrive to the expression for the S modular matrix
of our characters:

S
(k)
l,l′ =

√
2

(k + 2)
sin

(
π

k + 2
(l + 1)(l′ + 1)

)
. (2.5.18)
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Notice that in this case the matrix
has real entries, therefore we have
S∗ = S and S2 = I.
While for the T-transformation in-
variance one just needs hl−hl′ ∈ Z,
it turns out that there is a complete
classifications of the matrices that
respect:

S(k)MS(k) =M. (2.5.19)

This is known as A-D-E classifica-
tion, the table on the right shows
all the possible cases.

Level Partition function Name

k = n Z =
∑n

l=0 |χl|2 An+1, n ≥ 1

k = 4n Z =
∑n−1

l=0 |χ2l − χk−2l|2 + 2|χk/2|2 D2n+2, n ≥ 1

k = 4n−2 Z =
∑k/2

l=0 |χ2l|2 +
∑2n−2

l=0 χ2l+1χk−2l−1 D2n+1, n ≥ 2

k = 10 Z = |χ0 +χ6|2 + |χ3 +χ7|2 + |χ4 +χ10|2 E6

k = 16
Z = |χ0+χ16|2+|χ4+χ12|2+|χ6+χ10|2+

(χ2 + χ14)χ8 + χ8(χ2 + χ14) + |χ8|2
E7

k = 28
Z = |χ0 + χ10 + χ18 + χ28|2+

|χ6 + χ12 + χ16 + χ22|2
E8

The analysis of minimal models arises naturally from the one we just did; in fact remembering the
branching functions from the coset construction (2.4.64) we can write the following equality for the
characters:

χ
(k)
(p−1)(τ)χ

(1)
ϵ (τ) =

∑
0 ≤ (q − 1) ≤ k + 1

p− q + ϵ = 0 mod2

χ
(k+1)
(q−1)(τ)χ

V ir(k+2)
(p,q) (τ), (2.5.20)

where V ir(k + 2) corresponds to the minimal model with m = k + 2 (2.4.32).
Since a core element of the characters formula is the sum over the representation, knowing how these
representations decompose gives us the possibility to rewrite such sum in different ways and hence
find equalities as the one we just wrote.

Applying then the modular transformation to both sides, one arrives at the following formula:

S
V ir(k+2)
(p,q),(p′,q′) =

√
2

(k + 2)(k + 3)
(−1)(p−q)(p

′−q′) sin

(
π

k + 2
pp′
)
sin

(
π

k + 3
qq′
)
. (2.5.21)

As for su(2)k a classification of modular invariant partition functions exists. In particular we have
that such classification boils down to the combination of the possibilities for our previous case. This
is always thanks to the branching function formula.
For this case we will not go into any deeper detail since it will not be needed for our purposes.
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Chapter 3

Topological defects

Now we dive into our main object of study, first in a general way, then specifically in conformal field
theories. Here we will introduce all the elements needed for the next section in which we will attempt
to find the defects of some particular theories.
This chapter follows the reference [10].

3.1 Defects in a general theory

When studying a theory usually we are inter-
ested in correlators of local operators like

⟨O1(x1)O2(x2)O3(x3)O4(x4)...⟩. (3.1.1)

It is possible to get more informations about
a theory considering instead

⟨O1(x1)O2(C1)O3(Σ1)...⟩, (3.1.2)

which are correlators of operators that are
supported on higher dimensional manifolds,
like lines or surfaces.

Fig.3.1: Insertions for correlation functions

For example, it is well known that, in a U(1) gauge 4-dimensional theory, it is interesting to consider

the following operators Wq(γ) = eiq
∮
γ A, which are called Wilson loops.

In our discussion we will be interested in characterizing the operators with respect to how they
behave inside correlation functions.

An operator O(M) supported on a d-dimensional closed manifold M is said to be topological if any
correlator containing it,

⟨...O(M)...⟩, (3.1.3)

is invariant under deformations of M which do not cross the support of the other insertions. Another
name for these operators is topological defects.
The main example of these objects is global symmetries. To describe how they give rise to topological
operators we start with an example.

Consider a U(1) symmetry (or a general continuous symmetry), such a symmetry, by Noether theorem,
has a conserved current d ∗ J = 0. Quantistically this is represented by the expression ⟨d ∗ J...⟩ = 0
which holds outside of contact points.
Let us now define the following operator: Uα(M

d−1) = eiα
∫
Md−1 ∗J . This operator is topological, in

fact if one considers a deformation of the support to M ′d−1 we will have that

Uα(M
′d−1)− Uα(M

d−1) = eiα
∫
M′ ∗J − eiα

∫
M ∗J

= eiα
∫
M ∗J(eiα

∫
M′ ∗J−iα

∫
M ∗J − 1) = eiα

∫
M ∗J(eiα

∫
N d∗J − 1) = 0,

(3.1.4)
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where we call N the d dimensional manifold
with the property: ∂N =M ′ −M .
Remember that quantistically the above equa-
tion is true only if in the correlator there are
no operators inserted in N (and therefore we
do not have contact terms). This is consis-
tent with our definition of topological opera-
tor since we asked for the supports of different
operators to not cross. Fig.3.2: Representation of the manifold we are considering

In this particular case, if we cross a point-like insertion, we can expect the following effect:

⟨Uα(M ′d−1)Oq(x)...⟩ = eiαq⟨Oq(x)Uα(Md−1)...⟩, (3.1.5)

where we are supposing that Oq(x) has charge q under our symmetry.
One can show the veracity of the statement by deforming Md−1 and M ′d−1 to be space-like, then∫
M ∗J = Q, where Q is the charge of the state which arises after all the operators before Uα(M

d−1)
have acted on the vacuum.

We can generalize this kind of “symmetry operator” to any symmetry, both continuous and discrete,
in the following way:

⟨Ug(M)O1(x1)O2(x2)...⟩ = ⟨(gO1)(x1)(gO2)(x2)...⟩, (3.1.6)

where M is an hypersurface enclosing the other points in the correlator. Such operator will be
topological by definition.

We have just discovered that each symmetry gives a topological operator, but not all topological
operators are symmetries. We are interested in these structures exactly for this reason, they enlarge
the constrictions on correlators from just symmetries to all topological operators.

Now, we look at some general properties of these topological defects and also find a way to characterize
the ones coming from symmetries:

1. At the very least we will have an identity operator coming from the trivial identity “symmetry”.

2. The orientation of the underlying manifold matters.
For example

Uα(M) = eiα
∫
M ∗J = e−iα

∫
M ∗J = U−α(M), (3.1.7)

where M is the orientation reversed manifold.

3. We can define a trivial sum between defects in the following way:

⟨(L1 + L2)O1(x1)O2(x2)...⟩ = ⟨L1O1(x1)O2(x2)...⟩+ ⟨L2O1(x1)O2(x2)...⟩. (3.1.8)

4. A fusion product between line defects also exists (we are considering the case in which there is
no operator between the defects), corresponding to the limit where two topological defects get
closer until they coincide.
Just applying the definition one find that, if the defects come from group elements: L1 = Lg1
and L2 = Lg2 , L3 = L1L2 = Lg1◦g2 .

In general this product is associative and has a neutral el-
ement, the identity, but one does not necessarily obtain a
group. While every element coming from a symmetry group
has an inverse such that LL−1 = L−1L = LId, every element
not coming from a symmetry does not have to have one.
Actually one can demonstrate that this property is charac-
terizing: an element does not have an inverse if and only if it
does not come from a symmetry. Fig.3.3: Fusion of defects
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We have then found an immediate way to characterized the defects we are most interested in, which
are the non invertible ones.

3.2 Inserting defects in a 2-dim CFT

First of all notice that in this case the symmetry operators are one dimensional. Apart from line
defects the only other possibility would be to have area operators with a compact two dimensional
support. We will focus on the first case since, as said before, we are very interested in the concept of
symmetries’ extensions.

In a two dimensional conformal field theory we
have two conserved charges which arise from
the Noether theorem applied to the conformal
symmetry: T (z) and T (z).
Since these charges generates all the coordi-
nate transformations, we can adapt what it
means for a defect to be topological. In this
context a defect is called topological if it is
“transparent” with respect to T (z) and T (z),
as in the image on the right.

Fig.3.4: Transparency property

In figure (3.4) we also have the first way in
which one can insert a defect: horizontally.
Now we go from the infinite cylinder to the
plane. We can set the initial state to be Ψ
with an operator OΨ inserted at the origin of
the plane, obtaining the image on the right.
Then, it is possible to contract the defect on
the initial state since it is topological; this is
the same as sending the defect to t→ −∞ on
the infinite cylinder. The result of this opera-
tion is to modify the initial state with a linear
operator associated to the defect: Ψ → L̂Ψ.

Fig.3.5: Defect contraction

An example of an associated linear operator comes from the symmetry defects, in that case it will
just act as the symmetry on the state.
Then the transparency property can be written in the following way:

[Ln, L̂] = [Ln, L̂] = 0, (3.2.1)

where Ln and Ln are the modes of T (z) and T (z).
We have already seen that Ln and Ln generate the Virasoro algebra, therefore along each irreducible
representation of the algebra L̂ will be constant by Schur’s lemma.

There is actually another very important way one can
insert a defect. We place it vertically, even though it
looks similar to the previous case the results are very
different.
As usual the symmetry defect example clarifies what
we mean. Looking at its definition one can rephrase
it as: consider Lg, every operator passing through it

gets transformed with g and L̂g|0⟩ = |0⟩. In this regard
the vertical insertion of the defect, which we see on the
right, can be interpreted as a twisted theory. Fig.3.6: Vertical defects
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We mentioned twisted theories in the section about Kač-Moody algebras (2.4), basically the idea
is that they are not single valued: a rotation around the infinite cylinder (or around the origin in
the complex plane) does not give the same operator. In the symmetry case it is evident that the
condition is O(ze2πi) = (gO)(z).
Clearly, as it is a new theory, it will have a completely different Hilbert space. Remembering the
fact that the defect is transparent with respect to the energy-momentum tensor, we can determine
that it is still single valued on the plane. This permits us to say that the new space will still be a
representation of the Virasoro algebras (holomorphic and antiholomorphic).

Let us now look at some properties of these spaces which we will call HL:

• In general what might happen is that HL = ∅, but it is possible to demonstrate that if the CFT
is unitary, modular invariant and has an unique vacuum HL ̸= ∅.

• Since HL is a representation of the Virasoro algebras, on the torus, one will have that

ZL =
∑
i,j

Mijχiχj Mij ∈ N, (3.2.2)

where χi and χj are characters of representations of the Virasoro algebra.

• We defined before the sum of defects, then

HL1+L2 = HL1 ⊕HL2 . (3.2.3)

Since it is the direct sum of two spaces, the correlators in HL1+L2 will be the sum of the
correlators in HL1 and HL2 .

3.3 Defects in partition functions

The following considerations are fundamental for our analysis on defects, they give the first constraints
on the shape of our defects.

Consider the partition function of a certain theory with Hilbert space H and insert a defect in it
producing the following object:

Z(L) = TrH(Lq
L0− c

24 q−L0− c
24 ). (3.3.1)

The insertion of the defect in this way gives
figure (3.7A), in which we are representing the
torus as a square. This is similar to figure
(2.7) in the sense that the opposite sides of
the square are identified.
It is possible to demonstrate now that the
modular S transformation, which is τ → − 1

τ ,
applied to this first partition function gives
the partition function in figure (3.7B). Fig.3.7: Defect on the torus

We can show that this is true using the definition of τ = α2
α1
, where α2, α1 come from equation (2.5.1).

To invert τ would then mean to exchange α2 and α1 producing exactly the mentioned figure.
Reading now figure (3.7B) as a partition function, we get:

ZL = TrHL
(qL0− c

24 q−L0− c
24 ) =

∑
i,j

Mijχiχj Mij ∈ N. (3.3.2)

This is the partition function of the theory twisted with the defect.
The correspondence we just draw is often used to put constraints on which defects can appear in our
theory.
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The first step in order to do that is to notice that expression (3.3.1) can be written as

Z(L) =
∑
i,j

L̃ijχiχj L̃ij ∈ C, (3.3.3)

where the presence of the defect is embodied by L̃ij .
This is because, as we said before, the defect is constant along each irreducible representation of the
Virasoro algebras and χi, χj are exactly that.

Now a clarification is in order. Schur’s lemma states: any liner map that commutes with an algebra
will act on the irreducible representations of such an algebra either as an isomorphism or as the zero
map.
In the particular case of the map being an automorphism, one finds that the only possibility is for
the map to be a multiple of the identity, which give rise to the idea of “acting as a constant”. The
maps between different representations (different highest weights) must be the zero maps since no
isomorphism exits between those. The last possibility is to have Nij > 1, in that case one has Nij

identical representations which are naturally isomorphic.

Then one can always write such isomorphism as:

L̂
α,α′

i,j = Lα,α
′

i,j

∑
n,n

(|i, j, n, n⟩)(α)(⟨i, j, n, n|)(α′) Lα,α
′

i,j ∈ C;α, α′ ∈ {1, 2, ..., Nij}, (3.3.4)

where (|i, j, n, n⟩)(α) is the (n, n)-th member of a basis of the vector space of the irreducible α-th
representation with highest weights corresponding to i, j.
To explain better how this can be visualized, let us consider the example in which Nij = 2 and write
the following expression

L̂

(
R

(1)
ij

R
(2)
ij

)
=

(
L1,1
ij L1,2

ij

L2,1
ij L2,2

ij

)(
R

(1)
ij

R
(2)
ij

)
, (3.3.5)

where we labelled the representations as R
(α)
ij .

For each highest weight then the action of the defect should be thought not as a constant value, but as
a constant square matrix. Of course the matrix could be one dimensional giving rise to the constant
value interpretation.
Noticing that Schur’s lemma by itself already restricts the space of defects with which we have to
work, we now return to our previous discussion.

Looking at equation (3.3.1), it is quite easy to see that the L̃ijs, appearing in expression (3.3.3),
correspond to:

L̃ij = Trα(Lij) =
∑
α

Lααij . (3.3.6)

Then to complete the previously discussed procedure, we make an S transformation of (3.3.3) giving

ZL =
∑

i1,i2,j1,j2

χi1Si1i2L̃i2j2S
†
j2j1

χj1 =
∑
i,j

χiMijχj , (3.3.7)

where the last equality refers exactly to the argument on figure (3.7).
Equation (3.3.7) then becomes ∑

i2,j2

Si1i2L̃i2j2S
†
j2j1

=Mi1j1 . (3.3.8)

This last equation is our constraint, since even if Mi1j1 is not known, one must have Mi1j1 ∈ N. There
are cases in which this fixes all the defects of the theory. The practical aspect of this procedure will
be extensively explained when we will encounter the calculations.
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3.4 Defects properties

We now look at some other properties of defects which will be used in our successive analysis.

First of all we demonstrate that ⟨L⟩ ≥ 0, where

⟨L⟩|0⟩ = L̂|0⟩. (3.4.1)

⟨L⟩ is called quantum dimension of the defect.
Consider the partition function ZL(τ) and calculate it in τ = it. This means that q = e−2πt, therefore
the trace becomes a sum of positive numbers which is, again, positive.
We use this fact in the following equation:

Z(L)

(
− 1

it

)
= ZL(it) ≥ 0. (3.4.2)

Then one can combine this last inequality with

Z(L)

(
− 1

it

)
= TrH(Lq

L0− c
24 q−L0− c

24 ) = ⟨L⟩e
2π
t

c+c
24 + ..., (3.4.3)

where ⟨L⟩e
2π
t

c+c
24 arises, in the trace, from the vacuum state and as t → ∞ will be the only relevant

piece. In total we get

⟨L⟩e
2π
t

c+c
24 ≥ 0 → ⟨L⟩ ≥ 0, (3.4.4)

which is what we set out to show.

After that we have that many theories respect semi-simplicity. This property means that we have a
certain number of simple defects Li (which in most theories is finite) and that every other defect is
semi-simple. To be semi-simple means that such defect can be written as

L =
∑
i

N iLi N i ∈ N. (3.4.5)

Even though the definition of a simple defect is a bit more complicated that this, we can consider
simple a defect that cannot be written as a sum of other defects.

Semi-simplicity has a very interesting consequence.
First of all we can always write

L1L2 =
∑
i

N i
12Li N i

12 ∈ N, (3.4.6)

since, as we said before, the product of two defects is always a defect.
In the particular case of the product between a defect and its orientation reversed it is possible to
demonstrate that:

LL = LId +
∑
i

niLi ni ∈ N. (3.4.7)

This fact can be used to demonstrate that ⟨L⟩ ≥ 1.

Consider the correlators ⟨L⟩ and ⟨L⟩ which are
represented in the image on the right. Since
the two correlators are connected by the con-
formal transformation w = 1

z they are identi-
cal. This shows that

⟨L⟩ = ⟨L⟩. (3.4.8)
Fig.3.8: Defect correlators
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Then from (3.4.7) we get the following equation:

⟨L⟩2 = 1 +
∑
i

ni⟨Li⟩, (3.4.9)

that combined with equation (3.4.4) gives
⟨L⟩ ≥ 1, (3.4.10)

which is what we wanted to find.

Specifically if the defect is not invertible:

⟨L⟩2 ≥ 1 +
∑
i

ni → ⟨L⟩2 > 1 → ⟨L⟩ > 1, (3.4.11)

while if the defect is invertible:

⟨0|LL|0⟩ = 1 → ⟨L⟩2 = 1 → ⟨L⟩ = 1. (3.4.12)

This fact will become useful when trying to recognize such defects.

At last note that the same arguments in reverse gives from ⟨L⟩ ≥ 1 → ZL ̸= 0, which in turn means
HL ̸= ∅. Therefore we also demonstrate the property that we stated the section before the last.

3.5 Junctions

We now introduce junctions. We will not go into a very detailed discussion, but mostly state
properties as facts without demonstrating them. This is because the role of this section is to provide
context to some of the things we will do later, but it will not be used in the calculations.

First of all, let us consider the possibility of having an oper-
ator start a defect in a different position than the origin.
The correlator in image (3.9), in radial quantization, can be
described as in the following: an operator inserted at the ori-
gin creates a state in H at t→ −∞, which is evolved until at
a certain point in time, represented by the equal time circle
in red, then the operator OΨ maps it to a state in HL.
An important observation to make here is that while the de-
fect itself can be moved without any consequence, moving the
operator that starts the defect changes the correlator. Fig.3.9: Theory gluing

The only case in which nothing changes is when the operator’s conformal charges are null and
therefore any coordinate transformation leaves the operator invariant.

We can add now another possibility, an operator that starts
more than one defect. The treatment is exactly the same
as before: one finds a new theory with a new Hilbert space
HL1,L2,...,Lk

. The same method applies because fusing all
the defects one obtains a theory with a single vertical de-
fect: HL1L2...Lk

.
Notice that the order of the defects is important because to
exchange they must cross each other. It is possible to show
that a such Hilbert space and one obtained by a cyclic permu-
tation of the defects (for exampleHL2,...,Lk,L1) are isomorphic,
but with a possibly non trivial isomorphism.

Fig.3.10: Multiple defects
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The last possibility which we have not mentioned is easy to guess: we can have operators that send
spaces with a certain number of defects k1 to a space with another number of defects k2.

Knowing all this, we can now define what a junction is: in general a point in which defects intersect.
Now all these operators, which correspond to functions H → HL1,...,Lk

, are in a one to one correspon-
dence with the states in HL1,...,Lk

. In particular, to each operator corresponds the state into which
the vacuum is sent when acted upon:

|Ψ⟩ = OL1,...,Lk
(Ψ)|0⟩. (3.5.1)

Now the most used junctions are the topological ones, which send the vacuum to the subspace of
conformal weights h = h = 0: VL1,...,Lk

⊂ HL1,...,Lk2
.

The reason why we can assume most of the junctions are topological can be explained in the following
way.

First of all, let us consider a single defect: if L ̸= LId then VL = ∅.
This is because, if the operators starting and ending the defect
are topological, then one could transform a defect on an closed
line into a defect on a open line as shown in figure (3.11),
without changing a correlation function. This implies that
the defect encircling a local operator O can be opened and
then closed around the vacuum, as shown in figure (3.12).

Fig.3.12: Single defect acting on an operator Fig.3.11: Single defect with topological operators

This is clearly a problem because it means that the action of the defect is trivial on any operator,
which is in contradiction with the statement that such defect is not LId.

We found therefore that every operator starting a non trivial defect is not topological. The fact that
the focus is on topological junctions can be explained by showing that every other defect can be made
into a topological defect and an operator starting a single defect line.
In figure (3.13) we are executing the following steps:

1. First we have a non topological
junction;

2. In the second image we do a par-
tial fusion of the zone circled in
red. We still have not treated par-
tial fusion, but for now take it
for granted. What we are talking
about will be explained later;

3. At last, we find a certain defect
operator starting a single defect
(L) which connects to a topologi-
cal junction (u) of six defects.

Fig.3.13: Partial fusion of a non topological juction

The reason why the last junction is topological comes from a partial fusion property which we will
explain in the next section.

Before moving on, we add a last consideration.
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Consider a junction as the one in the image on the right.
Since we have for sure O = I the vector space of topo-
logical junctions has dimVL,L ≥ 1.
It is possible to show that if the defect is simple
dimVL,L = 1 otherwise it is strictly greater than one.
In fact if one consider a semi-simple defect Lss, O could
at least be the projectors on all the spaces of the defects
in witch Lss is written: Lss =

∑
iLi.

Fig.3.14: Junction of a defect L and L

Note that in the last case we have to exclude operator that transform a simple defect into another
one. This is because if such an operator existed we would not be able to distinguish the two defects
in any correlator function, arriving at considering them as one.

3.6 Partial fusion

When talking about junctions a fundamental operation one could do is the partial fusion. One of
the reasons why it is important is because it permits us to build identities for junctions-defects
configurations which in return gives constraints on the defects. The only problem with these
constraints is that usually they are very hard to solve, making them most of the times unusable.

Let us start by introducing, how the partial fusion arises.
Consider two defects L1 and L2 which in a certain region
of space have parallel support. Then, what one can do,
is to deform the supports of the defects, in the region in
which they are parallel, so that they get closer and closer
until they fuse. By the description we have just done, we
can clearly understand why the resulting junctions are
topological, in fact the portion of the support where the
two defects get close to each other is arbitrary and the
result must be the same since nothing in the description
changes until they are so close they fuse.

Fig.3.15: Partial fusion

Note also that the topological junctions u and ũ in figure (3.15) give an isomorphism between these
two Hilbert spaces: HL1,L1

∼= HL1L1 .

Before continuing with this discussion let us make a clarification about these junctions. We saw that,
when the junction is of the type H → HL1,...,Lk

, it is specified by a vector in HL1,...,Lk
.

In this case we have HL1,L2 → HL1L2 , one can show that these transformations are in a one to one
correspondence with the states in HL1,L2,L1L2

.

Let us suppose now that L1 and L2 are two
simple defects and that L1L2 =

∑
iN

i
12Li. It

is clear that locally the defect product looks
a lot like the partial fusion, the only differ-
ence is that, in the first case, the portion of
the support we use for the fusion is the whole
defect. It is possible to show that the partial
fusion can be decomposed as in figure (3.16),
where vi and ṽi are vectors respectively in the
spaces VL1,L2,Li

and VL1,L2,Li
and their ten-

sor product is completely determined by the
theory.

Fig.3.16: Partial fusion decomposed
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To end this part about junctions, we list two other possible operation one can do with defects without
explaining in detail what they entail.

The first one is the one on the left of figure (3.17): it is the contraction of a defect circling around a
local operator. The difference with the usual “action of the defect on the operator” come from the
fact that now the defect circling around has a junction. The result will be a new operator which is
not local anymore but starts a defect.

The second one, instead, is the one on the right of figure (3.17): it is the contraction of a “bubble”
between two defects. The result will be the connection of the two external defects with a junction,
which, in a certain sense, will be the composition of the two junctions attaching those defects to the
circle.

Fig.3.17: Contraction of a defect with a junction on the left, collapsing two junctions on the right
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Chapter 4

Defect calculations

In the end we study the practical way in which one usually finds defects.
We will start with an example theory: the Ising model, which corresponds to the Virasoro minimal
model of central charge c = 1

2 . After that we will proceed towards the original calculations of this thesis.

First of all considering su(2)61 × su(2)
6

1 and then going more in depth on a particular decomposition
of this theory, which is useful for this kind of analysis.

4.1 Ising model

This RCFT is one of the minimal models considered in section 2.4, in particular it is the one with
m = 3. In formula (2.4.32) we have already shown how one can calculate the three representations of
this Virasoro algebra:

h = 0 : |0⟩ h =
1

2
: |1/2⟩ h =

1

16
: |1/16⟩, (4.1.1)

where h is the conformal charge of the representation.
We want our theory to have also an antichiral part, which is constrained by modular invariance if we
want to be consistent on the torus. We make the easiest choice:

H = [R0 ⊗R0]⊕ [R 1
2
⊗R 1

2
]⊕ [R 1

16
⊗R 1

16
], (4.1.2)

which is a diagonal theory. It is standard to call these representations as:

|0; 0⟩ = |0⟩ |1/2; 1/2⟩ = |ϵ⟩ |1/16; 1/16⟩ = |σ⟩. (4.1.3)

Supposing that we do not know anything else about the theory let us try to find the defects.

First of all we know that a general defect L will act in the following way

L̂|0⟩ = a|0⟩ L̂|ϵ⟩ = b|ϵ⟩ L̂|σ⟩ = c|σ⟩ (4.1.4)

on the primary fields, but also on all of the corresponding secondary fields, since the defect is topo-
logical.
This means that the partition function with the defect inserted becomes

Z = χ0χ0 + χ1/2χ1/2 + χσχσ −→ Z(L) = aχ0χ0 + bχ1/2χ1/2 + cχ1/16χ1/16. (4.1.5)

After that, one wants to use the S matrix so that we can obtain ZL as showed in formula (3.3.7). In
the last part of the section on CFTs on the torus, we have already met the formula for the S modular
matrix (2.5.21) of this model. Working it out for the three representations explicitly, we get

SV irm=3 =
1

2

 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

 . (4.1.6)
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In the calculation one must remember that in formula (2.5.21) the indices q and p assume all the
possible values while the actual representations are half the amount due to the symmetry: {p →
m−p, q → m+1−q}. Basically one just has to multiply by two the result for each single representation.
Then, with this, we arrive at the equation:

ZL =
1

4

(
χ0 χ1/2 χ1/16

) 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

a 0 0
0 b 0
0 0 c

 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

 χ0

χ1/2

χ1/16


ZL =

1

4

(
χ0 χ1/2 χ1/16

)a+ b+ 2c a+ b− 2c
√
2(a− b)

a+ b− 2c a+ b+ 2c
√
2(a− b)√

2(a− b)
√
2(a− b) 2(a+ b)

 χ0

χ1/2

χ1/16


(4.1.7)

Now HL must be a sum of representations of the Virasoro algebra and therefore any combination
χiχj has to appear in ZL multiplied by a non negative integer, which will be the multiplicity of the

corresponding representation of V irm=3 × V irm=3 in HL. One can set up the following identity:

1

4

a+ b+ 2c a+ b− 2c
√
2(a− b)

a+ b− 2c a+ b+ 2c
√
2(a− b)√

2(a− b)
√
2(a− b) 2(a+ b)

 =

n1 n2 n3
n2 n1 n3
n3 n3 n4

 n1, n2, n3, n4 ∈ N. (4.1.8)

This equality is exactly the same as equation (3.3.8).
Then it translates into the following system of equations:

a+ b+ 2c = n1

a+ b− 2c = n2
1
2(a− b) =

√
2n3

1
2(a+ b) = n4

−→


a = n1 + n2 +

√
2n3

b = n1 + n2 −
√
2n3

c = n1 − n2

n1 + n2 = n4

, (4.1.9)

which, with some manipulations, can be put in the form on the right.
These conditions on a, b and c tell us all there is to know on our defects. In particular the decomposition
in simple defects is clear: we have three fundamental defects: L1, L2 and L3, while any other defect
decomposes as L = n1L1 + n2L2 + n3L3.
Let us give these defects a name and show how they act on our Hilbert space:

L1 : I

Î|0⟩ = |0⟩ Î|ϵ⟩ = |ϵ⟩ Î|σ⟩ = |σ⟩,
L2 : η

η̂|0⟩ = |0⟩ η̂|ϵ⟩ = |ϵ⟩ η̂|σ⟩ = −|σ⟩,
L3 : N

N̂ |0⟩ =
√
2|0⟩ N̂ |ϵ⟩ = −

√
2|ϵ⟩ N̂ |σ⟩ = 0.

(4.1.10)

Looking at how they act on the vacuum we can already tell that the first two defects are invertible
while the last one is not. In fact the first defect corresponds to the identity while the second one is
associated to the well known Z2 symmetry of the theory.
The fact that η is a representation of that group can be also shown comparing the composition rule
of the group in question with the algebra of the defect. Let us write the algebra:

η̂2 = Î N̂2 = Î + η̂ N̂ η̂ = η̂N̂ = N̂ . (4.1.11)

The composition of two ηs gives the identity and this is in conformity with the Z2 group as expected.
Note that in this particular case the defects are orientation independent. The orientation reversed of
a defect L can be recognized by the following property: if the defect L is invertible, L is the inverse
defect; if instead L is not invertible, L is such that the simple defect expansion of LL contains the
identity.
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From this, it results clear that reversing the orientation of each defect gives the defect we started with.

The most interesting defect for our purposes is N since it is the only non invertible one. Let us have
a brief look at how can we use this defect to impose constraints on the correlators of our theory.

First of all consider the situation in which we have N besides an operator O as in figure (3.18). It
is now possible to “bring the defect on the other side”. When doing a partial fusion, the defect we
will find, is the same defects one finds in the total fusion. As argued before locally they are the same
thing. What instead changes is the presence of two junctions that connect all our defects. In the end
collapsing N on our operator gives a certain operator Õ that starts the defect it is attached to.

Fig.3.18: Passing the defect N through an operator O

Knowing this one can carry out a transformation like the one in figure (3.19) on a correlator.
Consider a four points correlator, adding N around the four points corresponds to multiplying the
correlator by

√
2. In fact, to send the defect to infinity, is the same as applying it to |0⟩.

After that one can bring the defect inside the four points, in the same way as we have just done in
figure (3.18), and then collapse it. This last step, as before, gives a contribute of

√
2.

Fig.3.19: Correlators equalities

Finally we obtained what we set out to do: a non trivial equality between correlators.

Even though the Ising model is a completely solved theory in general one might conduct the analysis
in an unsolved one. Therefore in principle this kind of equalities may help us in determining all the
correlators of a theory or at least explain why certain correlators might be equal or even vanish.

4.2 Defects preserving su(2)61 × su(2)
6

1

Now that we have made an example of a complete analysis on defects, let us start to look at the

theory we want to do the calculation on: su(2)61 × su(2)
6

1.

As the first step, we start by considering a simpler theory which is the diagonal one of the algebra
su(2)1 × su(2)1:

Z = χ0χ0 + χ1χ1. (4.2.1)

This is the partition function with the representations we have already seen in section (2.4).

Before going on with the discussion about the defects let us point out an important difference between
this case and the previous one. In the algebra we are considering it is possible to show that its
representations, λ = 0 and λ = 1, contain an infinite number of representations of the Virasoro
algebra. This fact makes it impossible to divide the partition functions in Virasoro characters and
therefore follow with the same analysis we completed for the Ising model.
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What we can instead do is to restrict ourselves to the defects that are not only topological but also
commute with the full algebra su(2)1. In such case the defect will act as a constant on its two
representations, exactly as it does when we have a finite number of representations of the Virasoro
algebra.

Now one could use the same technique we used in the previous section, but for diagonal theories
a theorem helps us. Such theorem states that, if a theory is diagonal and has a finite number of
representations of its algebra A×A, the simple defects commuting with A×A are the Verlinde lines.
Such defects Li are in one to one correspondence with the irreducible representations of A and acts
on the primary states as:

L̂i|j, j⟩ =
Sij
S0j

|j, j⟩, (4.2.2)

where S is the matrix responsible for the the corresponding modular transformation. More informa-
tions on this argument can be found in article [10].

In this case using formula (2.5.18) we find two defects:

I

Î|0⟩ = |0⟩ Î|1⟩ = |1⟩,
L1

L̂1|0⟩ = |0⟩ L̂1|1⟩ = −|1⟩.

(4.2.3)

Notice that they are both invertible and the algebra is straightforward: L̂2
1 = I.

L1 comes from a Z2 symmetry, in agreement with its algebra. This does not bring anything new to
what we already know about the theory, in fact, as mentioned in the introduction, all its symmetries
have already been studied.

Now we take into consideration the full algebra: a su(2)61 × su(2)
6

1 diagonal theory.
The partition function is:

Z =
1∑

i1,i2,i3,i4,i5,i6=0

χi1i2i3i4i5i6χi1i2i3i4i5i6 . (4.2.4)

The various representations are marked by six indices ik and each of them can assume the values 0 or
1.
As before, to find the defects, one just needs to use the Verlinde lines:

L̂i1i2i3i4i5i6 |j1j2j3j4j5j6⟩ =
Si1i2i3i4i5i6j1j2j3j4j5j6
S000000j1j2j3j4j5j6

|j1j2j3j4j5j6⟩. (4.2.5)

The S modular matrix can be easily found by taking the tensor product of the S modular matrices of
each su(2)1 factor. Then:

L̂i1i2i3i4i5i6 |j1j2j3j4j5j6⟩ =
6∏

k=1

sin(π3 (ik + 1)(jk + 1))

sin(π3 (jk + 1))
|j1j2j3j4j5j6⟩. (4.2.6)

Now let us simplify the expression:

sin(π3 (ik + 1)(jk + 1))

sin(π3 (jk + 1))
=


1 ik = 0

1 ik = 1 jk = 0

−1 ik = 1 jk = 1

= (−1)ikjk . (4.2.7)

In total then one gets:

L̂i1i2i3i4i5i6 |j1j2j3j4j5j6⟩ =
6∏

k=1

(−1)ikjk |j1j2j3j4j5j6⟩ = (−1)
∑6

k=1 ikjk |j1j2j3j4j5j6⟩. (4.2.8)
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Since these defects act as the identity on |000000⟩, they are all invertible. To understand what group
they form let us look at the algebra of these defects:

L̂i11i
1
2i

1
3i

1
4i

1
5i

1
6
L̂i21i

2
2i

2
3i

2
4i

2
5i

2
6
|j1j2j3j4j5j6⟩ = (−1)

∑6
k=1(i

1
k+i

2
k)jk |j1j2j3j4j5j6⟩

= (−1)
∑6

k=1 i
3
kjk |j1j2j3j4j5j6⟩

= L̂i31i
3
2i

3
3i

3
4i

3
5i

3
6
|j1j2j3j4j5j6⟩,

(4.2.9)

with i3k = (i1k + i2k) mod2.
This is exactly the algebra of the group

Z2 × Z2 × Z2 × Z2 × Z2 × Z2. (4.2.10)

As one could have expected from the simplified analysis, we could not find anything new, no non-
invertible defect. The reason behind this may be because asking for the defects to commute with the

whole su(2)61 × su(2)
6

1 algebra is too restrictive to get anything interesting. In the next section we will
try to address this point.

4.3 Free fermion construction of V irm=3 × su(2)2

First of all let us explain the main points of the analysis we are going to carry on from this point.
Since the previous constraints were to severe, we were not able to find any useful defect. On the
other hand we are not able to describe all topological defects commuting with the Virasoro algebra,
because the spectrum contains an infinite number of Virasoro representations. What we will do is to

find a middle ground between these two possibilities, looking for a sub algebra of su(2)61 × su(2)
6

1 that
is still rational, which means to have a finite number of representations.

We will find that the main challenge of the theory is that the partition function will not be diagonal
and therefore we will not be able to use the Verlinde lines. Nevertheless, there are other constraints
one can use to determine the theory’s defects.

Finally, to simplify the calculations, we will start by considering only su(2)21 × su(2)
2

1.

Now that everything has been clarified, let us make the following consideration: su(2)21 × su(2)
2

1 can
be easily decomposed using the coset construction.
We have already seen that

su(2)1 × su(2)1
su(2)2

→ V irm=3. (4.3.1)

Using equation (2.4.64) it is then possible to calculate the branching rules which, used in the characters,
give the following expressions:

λ00 = χ(1,1)0 + χ(2,1)2;

λ01 = χ(2,2)1;

λ10 = χ(2,2)1;

λ11 = χ(2,1)0 + χ(1,1)2,

(4.3.2)

where λij with i, j ∈ {0, 1} are characters of su21, while χ(p,q),k are characters of V irm=3 × su(2)2.

In particular the pair (p, q) determine the Virasoro minimal model representation through equation
(2.4.32), while k determines the representation of su(2)2.
Also we are taking the convention 3q < 4p. This selects one of the two possible ways in which such a
representation can be written using the symmetry {p→ m− p, q → m+ 1− q}.

To be more concrete let us make the following considerations: V irm=3 is the Ising model, (p, q) = (1, 1)
corresponds to the h = 0 representation, (p, q) = (2, 1) to the h = 1

2 and (p, q) = (2, 2) to the h = 1
16 .
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Then, relabeling the characters of V irm=3 with the conformal weights instead of the two numbers
(p, q), we get:

λ00 = χ0,0 + χ 1
2
,2;

λ01 = χ 1
16
,1;

λ10 = χ 1
16
,1;

λ11 = χ 1
2
,0 + χ0,2.

(4.3.3)

Now we should write the su(2)21 × su(2)
2

1 diagonal partition function and then decompose it using
equation (4.3.3):

Z = λ00λ00 + λ10λ10 + λ01λ01 + λ11λ11

= (χ0,0 + χ 1
2
,2)(χ0,0 + χ 1

2
,2) + χ 1

16
,1χ 1

16
,1 + χ 1

16
,1χ 1

16
,1+

(χ 1
2
,0 + χ0,2)(χ 1

2
,0 + χ0,2)

= χ0,0χ0,0 + χ0,0χ 1
2
,2 + χ 1

2
,2χ0,0 + χ 1

2
,2χ 1

2
,2 + 2χ 1

16
,1χ 1

16
,1+

χ 1
2
,0χ 1

2
,0 + χ 1

2
,0χ0,2 + χ0,2χ 1

2
,0 + χ0,2χ0,2.

(4.3.4)

It is better to write partition functions in matrix form. We start with

Z =
(
λ00 λ01 λ10 λ11

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



λ00
λ01
λ10
λ11

 . (4.3.5)

Calling then

V =
(
χ0,0 χ 1

2
,2 χ 1

16
,1 χ 1

2
,0 χ0,2 χ0,1 χ 1

16
,0 χ 1

2
,1 χ 1

16
,2

)
(4.3.6)

we also write:

Z = V



1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


V
T ≡

∑
i,j

ViM
Th
ij V j . (4.3.7)

where the last step is a definition for MTh.

In the next section we are going to find the defects, but before that, to make the following consid-
eration, will turn out to be useful. Both the algebras su(2)1 × su(2)1, su(2)2 × V irm=3 and their
representation can be described using a CFT of four free Majorana fermions. We will show this
starting with the first theory then passing to the second one which is the one we are mainly interested
in.

Let us consider four Majorana fermions ψ1, ψ2, ψ3 and ψ4. Each fermion will be described by a theory
identical to the one in section (2.4).
It is possible to organize ψ1, ψ2, ψ3 and ψ4 in the following complex fermions:

with Ψj =
1√
2
(ψ2j−1(z) + iψ2j(z)) Ψ∗

j =
1√
2
(ψ2j−1(z)− iψ2j(z)) j = 1, 2. (4.3.8)
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Using the OPEs for the Majorana fermions in section (2.4), one can show that:

Ψi(z)Ψ
∗
j (w) ∼

δij

z − w
Ψ∗
i (z)Ψ

∗
j (w) ∼ 0 Ψi(z)Ψj(w) ∼ 0. (4.3.9)

Then, with an easy calculation, we find that the following currents have OPEs which correspond to
the algebra su(2)1 × su(2)1:

J3,1(z) =
1

2
((Ψ∗

1Ψ1)(z) + (Ψ∗
2Ψ2)(z));

J+,1 = i(Ψ∗
1Ψ

∗
2)(z) J−,1 = i(Ψ1Ψ2)(z);

J3,2(z) =
1

2
((Ψ∗

1Ψ1)(z)− (Ψ∗
2Ψ2)(z));

J+,2 = i(Ψ∗
1Ψ2)(z) J−,2 = i(Ψ1Ψ

∗
2)(z);

(4.3.10)

where the generators labelled with 1 give rise to the first su(2)1 and commute with all the generators
labelled with 2, which instead form the second su(2)1.
With these currents, one can apply the Sugawara construction in order to obtain an energy-momentum
tensor. What one can show is that such tensor will be equal to the energy-momentum tensor of the
theory with the four fermions.

Furthermore one can describe all representations of su(2)1 × su(2)1 in terms of fermions.

First of all let us consider the (NS) sector of the fermionic theory.
In this sector the modes of the various currents are:

J3,1
n =

i

2
[
∑
k>− 1

2

ψ1
n−kψ

2
k −

∑
k≤− 1

2

ψ2
kψ

1
n−k +

∑
k>− 1

2

ψ3
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

3
n−k],

J+,1
n =

i

2
[
∑
k>− 1

2

ψ1
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

1
n−k −

∑
k>− 1

2

ψ2
n−kψ

4
k +

∑
k≤− 1

2

ψ4
kψ

2
n−k+

−i(
∑
k>− 1

2

ψ1
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

1
n−k)− i(

∑
k>− 1

2

ψ2
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

2
n−k)],

J−,1
n =

i

2
[
∑
k>− 1

2

ψ1
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

1
n−k −

∑
k>− 1

2

ψ2
n−kψ

4
k +

∑
k≤− 1

2

ψ4
kψ

2
n−k+

+i(
∑
k>− 1

2

ψ1
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

1
n−k) + i(

∑
k>− 1

2

ψ2
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

2
n−k)],

J3,2
n =

i

2
[
∑
k>− 1

2

ψ1
n−kψ

2
k −

∑
k≤− 1

2

ψ2
kψ

1
n−k −

∑
k>− 1

2

ψ3
n−kψ

4
k +

∑
k≤− 1

2

ψ4
kψ

3
n−k],

J+,2
n =

i

2
[
∑
k>− 1

2

ψ1
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

1
n−k +

∑
k>− 1

2

ψ2
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

2
n−k+

+i(
∑
k>− 1

2

ψ1
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

1
n−k)− i(

∑
k>− 1

2

ψ2
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

2
n−k)],

J−,2
n =

i

2
[
∑
k>− 1

2

ψ1
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

1
n−k +

∑
k>− 1

2

ψ2
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

2
n−k+

−i(
∑
k>− 1

2

ψ1
n−kψ

4
k −

∑
k≤− 1

2

ψ4
kψ

1
n−k) + i(

∑
k>− 1

2

ψ2
n−kψ

3
k −

∑
k≤− 1

2

ψ3
kψ

2
n−k)].

(4.3.11)

Then, using these expressions, we want to find the highest weights of the representations using the
conditions posed in (2.4.56).
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Let |0⟩NS denote the (NS) vacuum of the free theory, then it is easy to verify that:

J3,i
n |0⟩NS = J±,i

n |0⟩NS = 0 n > 0;

J3,i
0 |0⟩NS = 0;

J+,i
0 |0⟩NS = 0 i = 1, 2.

(4.3.12)

This implies that |0⟩NS corresponds to a primary field ϕ00 for su(2)1 × su(2)1, which is the vacuum
representation, corresponding to λ00.

An intuitive attempt to find the other representations would be to apply the following modes to the
vacuum: ψ1

− 1
2

, ψ2
− 1

2

, ψ3
− 1

2

and ψ4
− 1

2

. Indeed, these states are not su(2)1 × su(2)1 descendants of the

vacuum, therefore they must belong to some other representation.

Moreover the conformal weight of the states ψ1
− 1

2

|0⟩, ψ2
− 1

2

|0⟩, ψ3
− 1

2

|0⟩ and ψ4
− 1

2

|0⟩ is 1
2 . This is the same

weight as ϕ11|0⟩, where we are defining in a general way ϕij as the primary field corresponding to the
character λij , calculated using equation (2.4.61). Therefore, from these four states, we expect to find
ϕ11|0⟩.

First of all let us make the following consideration:

J3,i
n ψj− 1

2

|0⟩NS = [J3,i
n , ψj− 1

2

]|0⟩NS n > 0;

J±,i
n ψj− 1

2

|0⟩NS = [J±,i
n , ψj− 1

2

]|0⟩NS ;

J3,i
0 ψj− 1

2

|0⟩NS = [J3,i
0 , ψj− 1

2

]|0⟩NS i = 1, 2;

J+,i
0 ψj− 1

2

|0⟩NS = [J+,i
0 , ψj− 1

2

]|0⟩NS j = 1, 2, 3, 4.

(4.3.13)

Then it turns out that the commutator between any mode n of any generator with any field ψi− 1
2

will give a linear combination of fields of the type ψj
n− 1

2

. Such fields obey the following relation:

ψj
n− 1

2

|0⟩ = 0 for n > 0. Therefore, to check equation (2.4.56), we just have to consider the n = 0

modes.

With a long calculation one finds:

[J3,j
0 , ψ1

− 1
2

] = − i

2
ψ2
− 1

2

[J3,j
0 , ψ2

− 1
2

] =
i

2
ψ1
− 1

2

,

[J3,j
0 , ψ3

− 1
2

] = (−)j
i

2
ψ4
− 1

2

[J3,j
0 , ψ4

− 1
2

] = (−)j−1 i

2
ψ3
− 1

2

.

(4.3.14)

This can be reorganized as in equation (4.3.8):

[J3,1
0 ,Ψ1,∗

− 1
2

] =
1

2
Ψ1,∗

− 1
2

[J3,2
0 ,Ψ1,∗

− 1
2

] =
1

2
Ψ1,∗

− 1
2

,

[J3,1
0 ,Ψ2,∗

− 1
2

] =
1

2
Ψ2,∗

− 1
2

[J3,2
0 ,Ψ2,∗

− 1
2

] = −1

2
Ψ2,∗

− 1
2

,

[J3,1
0 ,Ψ2

− 1
2

] = −1

2
Ψ2

− 1
2

[J3,2
0 ,Ψ2

− 1
2

] =
1

2
Ψ2

− 1
2

,

[J3,1
0 ,Ψ1

− 1
2

] = −1

2
Ψ1

− 1
2

[J3,2
0 ,Ψ1

− 1
2

] = −1

2
Ψ1

− 1
2

.

(4.3.15)

This clearly looks like the 0 mode representation corresponding to the character λ11.

At last one easily verifies that

[J+,1
0 ,Ψ1,∗

− 1
2

] = 0 [J+,2
0 ,Ψ1,∗

− 1
2

] = 0, (4.3.16)

confirming that Ψ1,∗
− 1

2

|0⟩NS is indeed ϕ11|0⟩NS .
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To find the last two representation: ϕ10 and ϕ01 of su(2)1 × su(2)1 we have to use the (R) sector.
As already mentioned in section (2.4) the ground state of this sector is degenerate. When we have
four fermions the construction of the degenerate states is as follows.
First of all we note the following anticommutation rules:

{Ψa
0,Ψ

b,∗
0 } = δab,

{Ψa
0,Ψ

b
0} = {Ψa,∗

0 ,Ψb,∗
0 } = 0.

(4.3.17)

In particular (Ψa
0)

2 = (Ψa,∗
0 )2 = 0.

Now we can form a representation for the ground states first of all defining a lowest weight state |0⟩R
such that

Ψa,∗
0 |0⟩R = 0 a = 1, 2. (4.3.18)

Then the other ground states will be the followings:

Ψ1
0|0⟩R Ψ2

0|0⟩R Ψ1
0Ψ

2
0|0⟩R. (4.3.19)

After that we have to consider the modes of the various currents. For the most part they are the same
as in the (NS) sector, but J3,1

0 and J3,2
0 suffer from the same ordering ambiguity we had when we

were determining the zero mode of the Virasoro algebra for the free fermion. The ambiguity can be
fixed by requiring J3,1

0 and J3,2
0 to obey the expected commutation relations:

[J+,1
1 , J−,1

−1 ] = 1 + 2J3,1
0 [J+,2

1 , J−,2
−1 ] = 1 + 2J3,2

0 . (4.3.20)

Imposing such relations one is able to determine the following expressions:

J3,1
0 =

i

2
(
∑
k≥0

ψ1
−kψ

2
k −

∑
k<0

ψ2
kψ

1
−k +

∑
k≥0

ψ3
−kψ

4
k −

∑
k<0

ψ4
kψ

3
−k),

J3,2
0 =

i

2
(
∑
k≥0

ψ1
−kψ

2
k −

∑
k<0

ψ2
kψ

1
−k −

∑
k≥0

ψ3
−kψ

4
k +

∑
k<0

ψ4
kψ

3
−k).

(4.3.21)

Now since the (R) ground states of the free fermion theory have the same conformal weight as ϕ10
and ϕ01, which is 1

4 , let us look for the highest weights within those states.

First of all, as they are ground states, it is easy to show that any mode J i,kn with n > 0 applied to
them gives zero. What remains to check are, again, the n = 0 modes:

J3,1
0 |0⟩R =

1

2
|0⟩R J3,2

0 |0⟩R = 0,

J3,1
0 Ψ1

0Ψ
2
0|0⟩R = −1

2
Ψ1

0Ψ
2
0|0⟩R J3,2

0 Ψ1
0Ψ

2|0⟩R = 0,

J3,1
0 Ψ2

0|0⟩R = 0 J3,2
0 Ψ2

0|0⟩R =
1

2
Ψ2

0|0⟩R,

J3,1
0 Ψ1

0|0⟩R = 0 J3,2
0 Ψ1

0|0⟩R = −1

2
Ψ1

0|0⟩R.

(4.3.22)

These look like the 0 mode representations corresponding to the characters χ10 and χ01.

As a last check, one can verify that

J+,1
0 |0⟩R = 0 J+,2

0 |0⟩R = 0,

J+,1
0 Ψ2

0|0⟩R = 0 J+,2
0 Ψ2

0|0⟩R = 0,
(4.3.23)

confirming that |0⟩R = ϕ10|0⟩NS and Ψ2
0|0⟩R = ϕ01|0⟩NS .
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Now that we have determined the representations of su(2)1 × su(2)1 we would like to do the same for
su(2)2 × V irm=3. First of all we have to determine how the generators of the algebra are composed
by fermions.
One can easily verify that the su(2)2 subalgebra of su(2)1 × su(2)1 is given by:

J3(z) = J3,1(z) + J3,2(z) = (Ψ∗
1Ψ1)(z) = i(ψ1ψ2)(z),

J+(z) = J+,1(z) + J+,2(z) = i(Ψ∗
1Ψ

∗
2)(z) + i(Ψ∗

1Ψ2)(z) = i[(ψ1ψ3)(z)− i(ψ2ψ3)(z)],

J−(z) = J−,1(z) + J−,2(z) = i(Ψ1Ψ2)(z) + i(Ψ1Ψ
∗
2)(z) = i[(ψ1ψ3)(z) + i(ψ2ψ3)(z)].

(4.3.24)

In these equations we can notice the complete absence of ψ4(z). Then if we write

T (z) =
1

2
ψ4∂ψ4 (4.3.25)

we find a field that both commutes with the full su(2)2 algebra and generates the Virasoro algebra
c = 1

2 . Therefore all the generators of su(2)2 × V irm=3 have now been written.

As before we are interested in the representations and equation (4.3.3) is going to help us. The
calculations may be a bit lengthy but, to verify the statements we are going to make, one just have
to use the same procedures we showed for the representations of su(2)1 × su(2)1.

Firstly, regarding the notation, we will call Φi,j the primary field corresponding to the character χi,j .
Then we start with:

Φ0,2|0⟩NS = Ψ1,∗
− 1

2

|0⟩NS ,

Φ 1
2
,0|0⟩NS = (Ψ1

− 1
2

−Ψ1,∗
− 1

2

)|0⟩NS =
√
2iψ4

− 1
2

|0⟩NS .
(4.3.26)

As expected they both come from the representation of ϕ11.

Next for Φ
(1)
1
16
,1
and Φ

(2)
1
16
,1
they are exactly respectively the representations ϕ10 and ϕ01:

Φ
(1)
1
16
,1
|0⟩NS = |0⟩R,

Φ
(2)
1
16
,1
|0⟩NS = Ψ2

0|0⟩R.
(4.3.27)

The last one requires more work. As |0⟩NS is obviously the representation for ϕ0,0|0⟩NS , we need to
find ϕ 1

2
,2.

First of all notice that every J+,i
n respect the commutation relation [J3

0 , J
+,i
n ] = J+,i

n , which means
that the states J+,i

n |0⟩(NS) potentially could all give rise to l = 2 representations of su(2)2.

In order to determine the su(2)2×V irm=3 primary state, we impose [J−
m, a1J

+,i
n1 +a2J

+,i
n2 +...]|0⟩NS = 0

for m > 0. In total one finds

Φ 1
2
,2|0⟩NS = (J+,1

−1 − J+,2
−1 )|0⟩NS = (ψ1

− 1
2

− iψ2
− 1

2

)ψ4
− 1

2

|0⟩NS . (4.3.28)

As we have determined all the highest weights we conclude this section. In the next section we will
start with the analysis of defects.

4.4 Defects preserving V irm=3 × su(2)2

Let us look back at the partition function we wrote in (4.3.7). Notice that it is not diagonal and
therefore we cannot use the Verlinde lines. As per usual the first condition we can put on the defects
is the one in equation (3.3.8) and, in order to do that, we need to know the S modular matrix.
The S modular matrix for su(2)2 × V irm=3 will be the tensor product of the S modular matrices of
the two algebras su(2)2 and V irm=3. Let us write it:

STOT(p,q)l(p′,q′)l′ = S2
ll′S

V ir
(p,q)(p′,q′) =

1√
3
(−1)(p+q)(p

′+q′) sin(
π

4
(l + 1)(l′ + 1)) sin(

π

3
pp′) sin(

π

4
qq′). (4.4.1)
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S2 is the S modular matrix for su(2)2 and SV ir is the one for V irm=3.
Calculating the matrix values for the various representation in the same order as the vector V in
equation (4.3.6), we get the following result:

STOT =
1

4



1 1 2 1 1
√
2

√
2

√
2

√
2

1 1 2 1 1 −
√
2 −

√
2 −

√
2 −

√
2

2 2 0 −2 −2 0 0 0 0

1 1 −2 1 1
√
2 −

√
2

√
2 −

√
2

1 1 −2 1 1 −
√
2

√
2 −

√
2

√
2√

2 −
√
2 0

√
2 −

√
2 0 2 0 −2√

2 −
√
2 0 −

√
2

√
2 2 0 −2 0√

2 −
√
2 0

√
2 −

√
2 0 −2 0 2√

2 −
√
2 0 −

√
2

√
2 −2 0 2 0


(4.4.2)

Now we parameterize the defects imposing that they commute with the su(2)2 × V irm=3 × su(2)2 ×
V irm=3 algebra.

As explained in section (3.3), the defects that commute with the algebra, when acting on a primary
field with L̂, will send such field in a primary field of the same representation.
The decomposition in (4.3.7) of the partition function shows that there are eight representations of
su(2)2×V irm=3×su(2)2×V irm=3 and that seven of them have multiplicity 1 while ((2, 2)1)×((2, 2)1)

has multiplicity 2. This means that L̂ will act on the non degenerate primary fields just multiplying
them by a constant, while for the two ((2, 2)1)× ((2, 2)1) primary fields it will act as a 2× 2 matrix.
We can therefore write:

Z(L) = V



a b 0 0 0 0 0 0 0
c d 0 0 0 0 0 0 0
0 0 e 0 0 0 0 0 0
0 0 0 f g 0 0 0 0
0 0 0 h q 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


V
T
, (4.4.3)

where e = TrE with E being a 2× 2 matrix.

By the relation ZL(τ) = Z(L)(−1/τ) and using using the modular transformation of the characters
we find:

a+ b+ c+ d+ 4e+ f + g + h+ q = 16n1

a+ b+ c+ d− f − g − h− q = 8n2

a+ b+ c+ d− 4e+ f + g + h+ q = 16n3

a+ b+ c+ d+ f + g + h+ q = 4n4√
2(a− b+ c− d+ f − g + h− q) = 16n5√
2(a− b+ c− d− f + g − h+ q) = 16n6√
2(a+ b− c− d+ f + g − h− q) = 16n7√
2(a+ b− c− d− f − g + h+ q) = 16n8

a− b− c+ d+ f − g − h+ q = 8n9

a− b− c+ d− f + g + h− q = 8n10

ZL = V



n1 n1 n2 n3 n3 n5 n6 n5 n6
n1 n1 n2 n3 n3 n5 n6 n5 n6
n2 n2 n4 n2 n2 2n6 2n5 2n6 2n5
n3 n3 n2 n1 n1 n5 n6 n5 n6
n3 n3 n2 n1 n1 n5 n6 n5 n6
n7 n7 2n8 n7 n7 n9 n10 n9 n10
n8 n8 2n7 n8 n8 n10 n9 n10 n9
n7 n7 2n8 n7 n7 n9 n10 n9 n10
n8 n8 2n7 n8 n8 n10 n9 n10 n9


V
T
,

(4.4.4)
where n1, n2, n3, n4, n5, n6, n7, n8, n9 and n10 are non negative integers, related to a, b, c, d, e, f, g, h
and q by the interpretation of ZL as a sum of characters of representations of the algebra su(2)2 ×
V irm=3 × su(2)2 × V irm=3 .
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With some manipulations one can arrive at the following form

a = n1 + n2 + n3 + n9 + n10 +
√
2(n5 + n6) +

√
2(n7 + n8)

b = n1 + n2 + n3 − n9 − n10 −
√
2(n5 + n6) +

√
2(n7 + n8)

c = n1 + n2 + n3 − n9 − n10 +
√
2(n5 + n6)−

√
2(n7 + n8)

d = n1 + n2 + n3 + n9 + n10 −
√
2(n5 + n6)−

√
2(n7 + n8)

e = 2(n1 − n3)

f = n1 − n2 + n3 + n9 − n10 +
√
2(n5 − n6) +

√
2(n7 − n8)

g = n1 − n2 + n3 − n9 + n10 −
√
2(n5 − n6) +

√
2(n7 − n8)

h = n1 − n2 + n3 − n9 + n10 +
√
2(n5 − n6)−

√
2(n7 − n8)

q = n1 − n2 + n3 + n9 − n10 −
√
2(n5 − n6)−

√
2(n7 − n8)

n4 = 2(n1 + n3)

. (4.4.5)

From the last expression it may look like we have nine simple defects, but we should not forget that
these equations put constraints only on e = TrE, but otherwise leave the matrix E unconstrained.

Representing the defects with its values(
a b c d E f g h q

)
, (4.4.6)

a “defect of type ni” is one with the corresponding following form:

n1 :
(
1 1 1 1 E1 1 1 1 1

)
trE1 = 2,

n2 :
(
1 1 1 1 E2 −1 −1 −1 −1

)
trE2 = 0,

n3 :
(
1 1 1 1 E3 1 1 1 1

)
trE3 = −2,

n5 :
(√

2 −
√
2

√
2 −

√
2 E5

√
2 −

√
2

√
2 −

√
2
)

trE5 = 0,

n6 :
(√

2 −
√
2

√
2 −

√
2 E6 −

√
2

√
2 −

√
2

√
2
)

trE6 = 0,

n7 :
(√

2
√
2 −

√
2 −

√
2 E7

√
2

√
2 −

√
2 −

√
2
)

trE7 = 0,

n8 :
(√

2
√
2 −

√
2 −

√
2 E8 −

√
2 −

√
2

√
2

√
2
)

trE8 = 0,

n9 :
(
1 −1 −1 1 E9 1 −1 −1 1

)
trE9 = 0,

n10 :
(
1 −1 −1 1 E10 −1 1 1 −1

)
trE10 = 0.

(4.4.7)

As we were saying for each “type ni” there might be different defect, which differ from one another
by the specific form of the matrix E. Let us call mi the number of non equivalent defects of type ni
and denote such defects as L

(1)
i ,L

(2)
i , ...,L

(mi)
i .

In order to calculate eachmi we have to use techniques more sophisticated than the constraints applied
so far. For example, in article [9], one considers correlators of theories on the torus in which one inserts
two parallel defects. Imposing then modularity and consistency on these correlators, one finds out
ulterior constraints on the defects.
We will not report the argument in detail, but just use the formula (4.4.9).

First of all let us introduce the following notation for the partition functions:

Z =
∑
i,j

V iZijV
j

ZL =
∑
i,j

V iZL
ijV

j
. (4.4.8)

Then the following equality holds∑
i3j3

N i3
i1i2

N j3
j1j2

Zi3j3 =
∑
L

ZL
i1j1Z

L
i2j2

with Nk
ij =

∑
m

SimSjmS
∗
mk

S0m
.

(4.4.9)
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S is the S modular matrix of the theory and
∑

L is the sum over all simple defects.

At the end of our analysis we will be able to write explicitly all of our defects, with that it will be easy
to show that in our case ZL = ZL. Knowing this, we can write the previous equation in the following
form ∑

i3j3

N i3
i1i2

N j3
j1j2

Zi3j3 =
10∑

i=1,i ̸=4

miZ
ni
i1j1

Zni
i2j2

, (4.4.10)

where Zni is the partition function of a simple defect of type ni .

Now the only things left to determine in equation (4.4.10) are the various values of mi. Using smart
choices for the four numbers (i1, i2, j1, j2) we can even isolate each mi like:

(i1, i2, j1, j2) = (1, 1, 1, 1) → 1 = m1 (4.4.11)

Without doing explicitly the full calculation we will just report the results. It turns out that we have
two defects of the types n2, n9 and n10, while all the other types only get one defect.

In total then we have twelve defects which we will call: L1, L
(1)
2 , L

(2)
2 , L3, L5, L6, L7, L8, L

(1)
9 , L

(2)
9 ,

L
(1)
10 and L

(2)
10 .

Notice that the parameter a is just the quantum dimension ⟨L⟩. From this observation and by
equation (4.4.7), we can already recognize which defects are non invertible: L5, L6, L7 and L8.

As the last step will use different techniques in order to determine the unknown parameters in the
matrices of which, up to now, we only know the trace.

The first consideration we can make is that the only defect compatible with the identity is L1. Then
we must have

L1 = LId :
(
1 1 1 1 E1 1 1 1 1

)
E1 =

(
1 0
0 1

)
. (4.4.12)

We also know that, among the topological defects that preserve su(2)2 × V irm=3, there are the ones
that preserve the larger algebra su(2)1 × su(2)1.
Because the theory is diagonal with respect to su(2)1× su(2)1 the simple defects are only the Verlinde
lines Lij , where i, j ∈ {0, 1}. Since this is identical to the su(2)61 analysis in section (4.2), we just show
the result:

L̂10|00⟩ = |00⟩ L̂10|01⟩ = |01⟩ L̂10|10⟩ = −|10⟩ L̂10|11⟩ = −|11⟩,
L̂01|00⟩ = |00⟩ L̂01|01⟩ = −|01⟩ L̂01|10⟩ = |10⟩ L̂01|11⟩ = −|11⟩,
L̂11|00⟩ = |00⟩ L̂11|01⟩ = −|01⟩ L̂11|10⟩ = −|10⟩ L̂11|11⟩ = |11⟩.

(4.4.13)

while L00 = LId. The states |ij⟩ are the highest weight states corresponding to the representations
Rij ×Rij of the algebra.

Using now equations (4.3.3) and (4.3.4) to compare su(2)1 × su(2)1’s representations with su(2)2 ×
V irm=3’s, we see that the following defects must be present in the theory we are studying right now:

(
1 1 1 1 A 1 1 1 1

)
A =

(
−1 0
0 −1

)
,

(
1 1 1 1 B −1 −1 −1 −1

)
B =

(
1 0
0 −1

)
,

(
1 1 1 1 C −1 −1 −1 −1

)
C =

(
−1 0
0 1

)
.

(4.4.14)

For compatibility reasons one easily determines that, in order, these defects must be L3, L
(1)
2 and L

(2)
2 .
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The next constraint is the fact that the defect algebra must be closed under the fusion product.

Take a correlator with two concentric defect lines which act on the representations in the following
way:

La :
(
a1 a2 a3 a4 Ea a5 a6 a7 a8

)
,

Lb :
(
b1 b2 b3 b4 Eb b5 b6 b7 b8

)
.

(4.4.15)

Now, by definition, the fusion product tells us that such correlator is identical to one with a single
defect line in which the defect is the product of the original ones. Then, in the first configuration, we
can act on the operator encircled by the defects first with the nearest one and that with the second,
while, in the second configuration, we just act with the only defect present.
The resulting equality tells us that the defect which arises from the fusion product act on the various
representations as

LbLa :
(
b1a1 b2a2 b3a3 b4a4 EbEa b5a5 b6a6 b7a7 b8a8

)
, (4.4.16)

where we have taken La to be be the nearest defect.
Notice that in general the fusion product is not commutative and its eventual commutativity depends
on the matrices E of the two defects.

Knowing that the result of the fusion product must be a defect and therefore a sum of simple defects,
we can get some constraints. The first one comes from the following product

L3L5 :
(√

2 −
√
2

√
2 −

√
2 −E5

√
2 −

√
2

√
2 −

√
2
)
. (4.4.17)

Looking at all the parameters, except for the matrix which is still undetermined, the result has to a
be a simple defect and not a sum of them. In particular the defect must be none other than L5 itself.
This determines E5 as

−E5 = E5 → E5 =

(
0 0
0 0

)
. (4.4.18)

The exact same argument holds for L6, L7 and L8, therefore: E6 = E7 = E8 = E5.

We are left with just four defects to determine. Let us start with L
(1)
9 and L

(2)
9 .

As before we calculate

L3L
(1)
9 :

(
1 −1 −1 1 −E(1)

9 1 −1 −1 1
)
,

L3L
(2)
9 :

(
1 −1 −1 1 −E(2)

9 1 −1 −1 1
)
.

(4.4.19)

If we had E
(1)
9 = E

(2)
9 = E5 as before L

(1)
9 would then be the same defect as L

(2)
9 . But, from our

previous discussion, we know that we need two distinct defects of type n9. This means that the only

possible solution for the algebra, in this case, is L3L
(1)
9 = L

(2)
9 which implies −E(1)

9 = E
(2)
9 .

We should also consider the fact that both defects L
(1)
9 and L

(2)
9 are invertible.

Looking at the determined parameters, the only possibilities are either:

E
(1)
9 E

(1)
9 = I or E

(1)
9 E

(2)
9 = −E(1)

9 E
(1)
9 = I → E

(1)
9 E

(1)
9 = −I, (4.4.20)

thus
E

(1)
9 E

(1)
9 = (−)q9I TrE9 = 0, (4.4.21)

where q9 ∈ {0, 1} is an unknown parameter.
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The general solution to these constraints is

E
(1)
9 =

(√
(−)q9 − b9c9 b9

c9 −
√
(−)q9 − b9c9

)
, (4.4.22)

for unknown parameters b9, c9 ∈ C and q9 ∈ {0, 1}.

Let us now take into consideration L
(1)
10 and L

(2)
10 . First of all, the previous discussion hold in this case

as well with the result: −E(1)
10 = E

(2)
10 .

Now consider the following defect

L
(1)
2 L

(1)
9 :

(
1 −1 −1 1 E

(1)
2 E

(1)
9 −1 1 1 −1

)
. (4.4.23)

It is clear that L
(1)
2 L

(1)
9 is either L

(1)
10 or L

(2)
10 . Since both defects are still not completely determined

we can choose which one is it. We choose L
(1)
2 L

(1)
9 = L

(1)
10 and for this algebraic rule to be consistent

we must have that
E

(1)
2 E

(1)
9 = E

(1)
10 → Tr[E

(1)
2 E

(1)
9 ] = Tr[E

(1)
10 ] = 0. (4.4.24)

Imposing this constraint one finally finds the following parametrizations:

E
(1)
9 =

(
0 (−)q9c−1

9

c9 0

)
E

(1)
10 =

(
0 (−)q9c−1

9

−c9 0

)
. (4.4.25)

Automatically, then, the other constraint that we previously put on E
(1)
9 is verified for E

(1)
10 :

E
(1)
10 E

(1)
10 =

(
(−)q9+1 0

0 (−)q9+1

)
. (4.4.26)

We are left therefore with exactly two parameters, q9 and c9, to determine, but there are not any
more constraints coming just from the fusion algebra. As a last step we will use the OPE between
our representations to complete this analysis.

The OPE is a relation, which applies inside correlators, between two neighbouring fields.
The main strategy here is to consider a correlator with two operators encircled by a defect and some
other fields. Such correlator will be equivalent to the one in which we used the OPE between the two
encircled fields:

⟨...LA(z)B(w)...⟩ = ⟨...L
∑
k

(z − w)k[AB]k(w)...⟩. (4.4.27)

Collapsing then the defect on the operators, if the OPE is known, we will find a condition on the
defect.

Even though the contraction of a defect on two operators A(z) and B(w) may be non trivial, in our
case we will consider a defect which corresponds to a symmetry. In such case, the defect will act on
the two operators as the symmetry it corresponds to.

For our scopes it will be enough to consider the OPE between just the two Φ
(i)
1
16
,1
primary fields. Let

us write the Ramond fields in the following way:

|0⟩R = (ξ−1 ξ
−
2 )(0)|0⟩NS Ψ2

0|0⟩R = (ξ−1 ξ
+
2 )(0)|0⟩NS . (4.4.28)

It is possible to show that each highest weight |H⟩ in a one to one correspondence to a primary field
Φ(z) defined on the whole plane. In particular we have the relation:

Φ(0)|0⟩ = |H⟩. (4.4.29)

In this sense we can extend the field values to all the plane obtaining the primary fields: (ξ−1 ξ
−
2 )(z)

and (ξ−1 ξ
+
2 )(z).
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From [8] we know that the following OPEs hold:

ξ±k (z)ξ
∓
k (w) ∼ (z − w)−

1
4

(
1± 1

2
(z − w)(ΨkΨ

∗
k)(w)

)
,

ξ+(z)ξ+k (w) ∼ Ψk(w)(z − w)
1
4 c,

ξ−(z)ξ−k (w) ∼ Ψ∗
k(w)(z − w)

1
4 c,

(4.4.30)

where c ∈ C such that c2 = i. Also the ∼ symbol means equality up to a regular part.

So, first of all, let us calculate the following OPEs:

Φ
(1)
1
16
,1
(z)Φ

(1)
1
16
,1
(w) = (ξ−1 ξ

−
2 )(z)(ξ

−
1 ξ

−
2 )(w) = − : ξ−1 (z)ξ

−
1 (w)ξ

−
2 (z)ξ

−
2 (w) :

∼ − : (Ψ∗
1(w)(z − w)

1
4 c)(Ψ∗

2(w)(z − w)
1
4 c) := −i(z − w)

1
2 (Ψ∗

1ψ3)(w)− (z − w)
1
2 (Ψ∗

1ψ4)(w),

Φ
(2)
1
16
,1
(z)Φ

(2)
1
16
,1
(w) = (ξ−1 ξ

+
2 )(z)(ξ

−
1 ξ

+
2 )(w) = − : ξ−1 (z)ξ

−
1 (w)ξ

+
2 (z)ξ

+
2 (w) :

∼ − : (Ψ∗
1(w)(z − w)

1
4 c)(Ψ2(w)(z − w)

1
4 c) := −i(z − w)

1
2 (Ψ∗

1ψ3)(w) + (z − w)
1
2 (Ψ∗

1ψ4)(w),

Φ
(1)
1
16
,1
(z)Φ

(2)
1
16
,1
(w) = (ξ−1 ξ

−
2 )(z)(ξ

−
1 ξ

+
2 )(w) = − : ξ−1 (z)ξ

−
1 (w)ξ

−
2 (z)ξ

+
2 (w) :

∼ − : (Ψ∗
1(w)(z − w)c)

(
1− 1

2
(z − w)(Ψ2Ψ

∗
2)(w)

)
:= −cΨ∗

1(w)−
ci

2
(z − w)(Ψ∗

1ψ3ψ4)(w),

Φ
(2)
1
16
,1
(z)Φ

(1)
1
16
,1
(w) = (ξ−1 ξ

+
2 )(z)(ξ

−
1 ξ

−
2 )(w) = − : ξ−1 (z)ξ

−
1 (w)ξ

+
2 (z)ξ

−
2 (w) :

∼ − : (Ψ∗
1(w)(z − w)c)

(
1 +

1

2
(z − w)(Ψ2Ψ

∗
2)(w)

)
:= −cΨ∗

1(w) +
ci

2
(z − w)(Ψ∗

1ψ3ψ4)(w).

(4.4.31)

The notation : ... : means that the quantity has to be normal ordered.

Right now we have just written the first terms of these OPEs, but similarly as what we said about
equation (2.3.48) the rest of the expansion can be completely determined using the algebra.
Looking always at the same section one could wonder why the expression we found is quite different
from the one in (2.3.45), this is because we did not choose the same normalization as in equation
(2.3.44). Note also that the important part of these OPEs is not the actual coefficients, since with a
simple rescaling of the fields they would change, but, as we will see, how they relate to each other.

Let us consider the highest weights we found in the previous section, it is immediate to see which
primary fields respect the relation in (4.4.29). Then one easily arrives to the following identifications:

(Ψ∗
1ψ3)(w) = − i√

2
(J+Φ0,0)(w),

(Ψ∗
1ψ4)(w) =

1√
2
Φ 1

2
,2(w),

Ψ∗
1(w) = Φ0,2(w),

(Ψ∗
1ψ3ψ4)(w) = −1

2
(J+Φ 1

2
,0)(w).

(4.4.32)

Therefore we can rewrite the OPEs as:

Φ
(1)
1
16
,1
(z)Φ

(1)
1
16
,1
(w) ∼ − 1√

2
(z − w)

1
2 (J+Φ0,0)(w)−

1√
2
(z − w)

1
2Φ 1

2
,2(w),

Φ
(2)
1
16
,1
(z)Φ

(2)
1
16
,1
(w) ∼ − 1√

2
(z − w)

1
2 (J+Φ0,0)(w) +

1√
2
(z − w)

1
2Φ 1

2
,2(w),

Φ
(1)
1
16
,1
(z)Φ

(2)
1
16
,1
(w) ∼ −cΦ0,2(w) +

ci

4
(z − w)(J+Φ 1

2
,0)(w),

Φ
(2)
1
16
,1
(z)Φ

(1)
1
16
,1
(w) ∼ −cΦ0,2(w)−

ci

4
(z − w)(J+Φ 1

2
,0)(w).

(4.4.33)
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Up to now we have just talked about chiral fields, but for the antichiral case we obtain exactly the
same results. Now let us compose holomorphic and antiholomorphic part finding:

Φ
(1)
1
16
,1; 1

16
,1
(z, z)Φ

(1)
1
16
,1; 1

16
,1
(w,w) ∼

∼ 1

2
|z − w|[(J+J

+
Φ0,0;0,0)(w,w) + Φ 1

2
,2; 1

2
,2
(w,w) + J+Φ

0,0; 1
2
,2
(w,w) + J

+
Φ 1

2
,2;0,0(w,w)],

Φ
(2)
1
16
,1; 1

16
,1
(z, z)Φ

(2)
1
16
,1; 1

16
,1
(w,w) ∼

∼ 1

2
|z − w|[(J+J

+
Φ0,0;0,0)(w,w) + Φ 1

2
,2; 1

2
,2
(w,w)− J+Φ

0,0; 1
2
,2
(w,w)− J

+
Φ 1

2
,2;0,0(w,w)],

(4.4.34)

Φ
(1)
1
16
,1; 1

16
,1
(z, z)Φ

(2)
1
16
,1; 1

16
,1
(w,w) ∼ iΦ0,2;0,2(w,w)−

i

16
|z − w|2(J+J

+
Φ 1

2
,0; 1

2
,0
)(w,w)+

+
1

4
(z − w)(J+Φ 1

2
,0;0,2)(w,w) +

1

4
(z − w)(J

+
Φ
0,2; 1

2
,0
)(w,w),

Φ
(2)
1
16
,1; 1

16
,1
(z, z)Φ

(1)
1
16
,1; 1

16
,1
(w,w) ∼ iΦ0,2;0,2(w,w)−

i

16
|z − w|2(J+J

+
Φ 1

2
,0; 1

2
,0
)(w,w)+

− 1

4
(z − w)(J+Φ 1

2
,0;0,2)(w,w)−

1

4
(z − w)(J

+
Φ
0,2; 1

2
,0
)(w,w).

(4.4.35)

Then consider a correlator where the defect L
(1)
9 is inserted on a circle enclosing the pair of fields

[Φ
(1)
1
16
,1; 1

16
,1
(z, z)Φ

(1)
1
16
,1; 1

16
,1
(w,w)], we obtain

(c9)
2Φ

(2)
1
16
,1; 1

16
,1
(z, z)Φ

(2)
1
16
,1; 1

16
,1
(w,w) ∼

∼ 1

2
|z − w|[(J+J

+
Φ0,0;0,0)(w,w) + Φ 1

2
,2; 1

2
,2
(w,w)− J+Φ

0,0; 1
2
,2
(w,w)− J

+
Φ 1

2
,2;0,0(w,w)].

(4.4.36)

Comparing this to the OPE [Φ
(2)
1
16
,1; 1

16
,1
(z, z)Φ

(2)
1
16
,1; 1

16
,1
(w,w)] we get the constraint (c9)

2 = 1.

Since E
(2)
9 = −E(1)

9 we can choose c9 = 1, the case with c9 = −1 will correspond to E
(2)
9 .

At last we consider a correlator where L
(1)
9 now encircles the pair of fields

[Φ
(1)
1
16
,1; 1

16
,1
(z, z)Φ

(2)
1
16
,1; 1

16
,1
(w,w)], obtaining:

(−)q9Φ
(2)
1
16
,1; 1

16
,1
(z, z)Φ

(1)
1
16
,1; 1

16
,1
(w,w) ∼ iΦ0,2;0,2(w,w)−

i

16
|z − w|2(J+J

+
Φ 1

2
,0; 1

2
,0
)(w,w)+

− 1

4
(z − w)(J+Φ 1

2
,0;0,2)(w,w)−

1

4
(z − w)(J

+
Φ
0,2; 1

2
,0
)(w,w).

(4.4.37)

Again comparing this to the OPE [Φ
(2)
1
16
,1; 1

16
,1
(z, z)Φ

(1)
1
16
,1; 1

16
,1
(w,w)] we finally find q9 = 0.

So everything about the defects has been determined, let us write them all:

LId :
(
1 1 1 1 E1 1 1 1 1

)
E1 =

(
1 0
0 1

)
,

L
(1)
2 :

(
1 1 1 1 E

(1)
2 −1 −1 −1 −1

)
E

(1)
2 =

(
1 0
0 −1

)
,

L
(2)
2 :

(
1 1 1 1 E

(2)
2 −1 −1 −1 −1

)
E

(2)
2 =

(
−1 0
0 1

)
,

L3 :
(
1 1 1 1 E3 1 1 1 1

)
E3 =

(
−1 0
0 −1

)
,

(4.4.38)
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L5 :
(√

2 −
√
2

√
2 −

√
2 E5

√
2 −

√
2

√
2 −

√
2
)

E5 =

(
0 0
0 0

)
,

L6 :
(√

2 −
√
2

√
2 −

√
2 E6 −

√
2

√
2 −

√
2

√
2
)

E6 =

(
0 0
0 0

)
,

L7 :
(√

2
√
2 −

√
2 −

√
2 E7

√
2

√
2 −

√
2 −

√
2
)

E7 =

(
0 0
0 0

)
,

L8 :
(√

2
√
2 −

√
2 −

√
2 E8 −

√
2 −

√
2

√
2

√
2
)

E8 =

(
0 0
0 0

)
,

L
(1)
9 :

(
1 −1 −1 1 E

(1)
9 1 −1 −1 1

)
E

(1)
9 =

(
0 1
1 0

)
,

L
(2)
9 :

(
1 −1 −1 1 E

(2)
9 1 −1 −1 1

)
E

(2)
9 =

(
0 −1
−1 0

)
,

L
(1)
10 :

(
1 −1 −1 1 E

(1)
10 −1 1 1 −1

)
E

(1)
10 =

(
0 1
−1 0

)
,

L
(2)
10 :

(
1 −1 −1 1 E

(2)
10 −1 1 1 −1

)
E

(2)
10 =

(
0 −1
1 0

)
.

(4.4.39)

As for the fusion algebra one can easily show that the invertible elements form the dihedral group
(D4), also known as the octic group, with relations:

(L
(k)
10 )

4 = I k = 1, 2;

(L
(k)
2 )2 = (L

(k)
9 )2 = (L3)

2 = I;

(L
(k)
10 )

2 = L3.

(4.4.40)

This group corresponds to the theory’s symmetries.
Let us also write the most important fusion products for the non invertible defects:

(L5)
2 = LId + L3 (L6)

2 = LId + L3

(L7)
2 = LId + L3 (L8)

2 = LId + L3

L5L6 = L6L5 = L
(1)
2 + L

(2)
2 L5L7 = L7L5 = L

(1)
9 + L

(2)
9

L5L8 = L8L5 = L
(1)
10 + L

(2)
10 L6L7 = L7L6 = L

(1)
10 + L

(2)
10

L6L8 = L8L6 = L
(1)
9 + L

(2)
9 L7L8 = L8L7 = L

(1)
2 + L

(2)
2 .

(4.4.41)

All the other rules of the algebra can be easily calculated using the expressions in (4.4.38).

4.5 Connection to the full theory

Let us now explain how the analysis in the previous section relates to the full theory with the algebra

su(2)41 × su(2)2 × V irm=3 × su(2)
4

1 × su(2)2 × V irm=3.

First of all we introduce the concept of a theory which is the tensor product of two. With this we do
not only refer to the subdivision of the theory algebra into the tensor product two subalgebras, but
to the full separation of the Hilbert space, and therefore also of the operatorial content of the theory,
into the tensor product of two.

The most immediate consequence of this definition is the factorization of all correlators into the
product of two correlators in the corresponding two theories.
A characterizing property of this kind of phenomenon is the following: a theory with Hilbert space H

is the tensor product of two theories with Hilbert spaces H1 and H2 if and only if the theory’s partition
function can be factorized into the product of the partition functions of the other two theories.

ZH = ZH1ZH2 . (4.5.1)
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This fact can be easily demonstrate using H = H1 ⊗H2.

We are going to show that this is true in our case. In particular the two pieces will be the representa-

tions of the su(2)41 × su(2)
4

1 algebra and the ones of the su(2)2 × V irm=3 × su(2)2 × V irm=3 algebra.
First of all, by definition (2.5.11), the characters always factorize in the following way:

χRi⊗Rj = χRiχRj , (4.5.2)

which in our case means:
χi1i2i3i4;h,l = χ

(1)
i1i2i3i4

χ
(2)
h,l , (4.5.3)

where the indices i1i2i3i4 correspond to a representation of su(2)41 as in section (4.2), while h, l are
respectively the conformal weight of the V irm=3 representation and the highest weight label of the
su(2)2 representation as in section (4.3). Notice also that we are going to label the theory and the

characters corresponding to the su(2)41 × su(2)
4

1 algebra with (1) and the other with (2).

Then the full partition function can be written as:

Z =
∑

i1i2i3i4ij1j2j3j4j

χ
(1)
i1i2i3i4

V
(2)
i Ni1i2i3i4ij1j2j3j4jχ

(1)
j1j2j3j4

V
(2)
j , (4.5.4)

with
Ni1i2i3i4ij1j2j3j4j = δi1j1δi2j2δi3j3δi4j4M

Th
ij , (4.5.5)

where V and MTh were defined in section (4.3), equations (4.3.7) and (4.3.6).

It is easy to see then that the partition function factorizes into

Z = Z(1)Z(2) = (
∑

i1i2i3i4j1j2j3j4

χ
(1)
i1i2i3i4

δi1j1δi2j2δi3j3δi4j4χ
(1)
j1j2j3j4

)(
∑
ij

V
(2)
i MTh

ij V
(2)
j ), (4.5.6)

which is exactly what we wanted to show.

Now, in order to find the full theory defects, let us proceed with the following construction: given

a defect L
(1)
1 in theory (1) and L

(2)
2 in theory (2) we can define the tensor product between defects

L
(1)
1 ⊗ L

(2)
2 as the defect such that on the various representations acts as L̂

(1)
1 ⊗ L̂

(2)
2 .

From the factorization of the partition function, and in general of the theory, we will have that this
definition gives, indeed, a topological defects of the full theory. Moreover, what one can show, is that
they are all the topological defects of the theory.
Finally, due to this last property, all the defects can be written as a sum of tensor products between
simple defect of the two theories. This means that

{L(1)
i ⊗ L

(2)
j |L(1)

i is a simple defect in theory (1) and L
(2)
j is a simple defect in theory (2)} (4.5.7)

is the set of simple defects in the full theory.

In our case we have that the defects of the theory (2) were studied in the previous section, while in
theory (1), in analogy with section (4.3), the simple defect are the Verlinde lines.

If we take a step back and consider the diagonal theory of the algebra su(2)61 × su(2)
6

1, one can
easily show that it can be decomposed into the tensor product of six diagonal theories with algebra
su(2)1 × su(2)1. In this sense (4.5.6) is a direct consequence of the fact that the full theory can be

written as a tensor product of a diagonal su(2)41× su(2)
4

1 theory and a diagonal su(2)21× su(2)
2

1 theory.
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In the end, knowing this last information, we can take the analysis even further.

Let us consider the full theory as the tensor product of three su(2)21 × su(2)
2

1 theories. After that we
can use equation (4.3.3) to decompose every representation of su(2)21 into representations of V irm=3×
su(2)2.

From these considerations one determines the simple defects that commute with the algebra (V irm=3×
su(2)2)

3 × (V irm=3 × su(2)2)
3 are:

{L(1)
i1

⊗ L
(2)
i2

⊗ L
(3)
i3

|L(j)
ij

is a simple defect in the j-th theory with algebra V irm=3 × su(2)2}, (4.5.8)

noticing that the defect analysis for each of these theories follows identically to section (4.4).

This concludes our analysis.
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Conclusion

Let us recap what we have seen so far.

First of all, we introduced conformal field theories basically from scratch. Then we brought up
topological defects and demonstrated their usefulness. Finally we showed actual calculations in
example theories and in actually relevant ones.

The results of this are the followings:

• We were not able to determine any new information from the su(2)61× su(2)
6

1 diagonal theory as
it was;

• We were instead able to find the decomposition of the algebra, and of the representations,

su(2)21 × su(2)
2

1 = su(2)2 × V irm=3 × su(2)2 × V irm=3 ;
• This decomposition allowed us lessen the constraints on the defects and find various non invertible
ones;

• After that we reconducted the results of the smaller theory on the algebra su(2)2 × V irm=3 ×
su(2)2×V irm=3 to the actual theory which has the algebra su(2)41× su(2)2×V irm=3× su(2)

4

1×
su(2)2 × V irm=3;

• As the last point we also showed how the full algebra decomposes into (V irm=3 × su(2)2)
3 ×

(V irm=3×su(2)2)
3 and demonstrated how to calculate the theory’s defects which commute with

such algebra.

In total we could say that this gives us an overview both on the problem on hand, but also on the
general possible uses for this kind of tool.

Let us be reminded what was the long term objective of this line of work.
The theory we took into consideration is one of the possible ways to write a specific non linear sigma
model on a K3 surface. The symmetries of all moduli space of these theories have already been
determined, even though some of this theories are very obscure. Our aim is to take this one step
further and determine also the defects of all the moduli space of these theories, in this way we might
be able to understand these theories better.

In this thesis we started with analyzing the defects of just one of these non liner sigma models on K3.
The next steps in order to take the analysis further would be the following ones:

• The decomposition using diagonal cosets can be iterated, obtaining a su(2)1×su(2)5×V irm=6×
V irm=5 × V irm=4 × V irm=3 algebra, where the antiholomorphic part is identical;

• With some inspiration one may also find finer decomposition with still a finite number of repre-
sentations;

• Looking at this progression, it may give us an insight on what kind of topological defects, which
only commute with the Virasoro algebra, we can expect in the theory.

As stated in the introduction every sigma model is described by a certain supersymmetric N = 4
algebra. The problem is that this kind of algebras have an infinite number of representations and
therefore are hard to deal with when looking for defects.
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Following this procedure we hope to find more and more defects, which will give us a glimpse of what
the total defect content may look like.

In the last decomposition mentioned we left the last su(2)1 untouched, this is because one can show
that the N = 4 supersymmetric theory has a su(2)1 subalgebra.

The next step, that we have just mentioned, should follow the guidelines we traced in this thesis, the
only worrying point would be the increasing number of representations one has to deal with. A last
advice for anyone who might want to take on this work would be to try to automatize the defect
calculations in a way that makes the computer do the heavy lifting.

68



Bibliography
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