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Introduction

Nowadays, the most experimentally successful theory describing physics at its funda-
mental level is the Standard Model (SM) of Particle Physics. Despite its astonishing
agreement with experimental data, it is widely believed that the SM needs an ultra-
violet (UV) completion, that is a theoretical improvement to describe more properly
the behaviour of nature at higher energies. The most compelling reason suggesting
an UV completion of the SM is the hierarchy problem: the Higgs boson is a light
particle, but within the SM no argument is given to justify the huge gap between
the Higgs mass (mh ' 126 GeV [1, 2]) and the fundamental mass scale, that is the
Planck scale MP ' 1019 GeV.

Trusting the hierarchy problem, one would expect the existence of new physics
(NP) at or below the TeV scale, a scale which we are probing now at the LHC
experiments. This MSc thesis is inserted within this framework: its final aim will be
to develop phenomenological consequences of a TeV scale NP candidate in order to
verify if they are compatible with the current experimental results, finding out if that
model is still a valid solution to the hierarchy problem.

To describe NP contributions to physical observables, a powerful tool is provided
by the Effective Field Theory (EFT) approach [3, 4]. It allows to add to the SM
Lagrangian non-renormalizable operators (i.e. with dimension d > 4): even though
the new Lagrangian obtained is not renormalizable, it nevertheless provides definite
predictions in a suitable energy range, where a perturbative expansion is applicable.
Within an EFT approach, the NP effects are enclosed in the coefficients associated
with the higher dimensional operators, called Wilson coefficients. This enables to set
up a model-independent discussion where NP contributions are parametrized by the
Wilson coefficients; then a model-dependent analysis can be used to derive the exact
expression of such coefficients in specific NP models.

Among the most sensitive probes of NP signals there are flavor physics observables.
In the SM all the fermions have three different replicas, called flavors, with the same
quantum numbers and different masses. The term flavor physics refers to interactions
that distinguish between families and the observables related to these interactions are
highly suppressed within the SM for several reasons. Consequently, NP effects are
expected to be source of significant deviations from SM predictions for this class of
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observables [5].

Until now the search for NP signals has given negative results also in flavor physics.
As a consequence, a tension arises between the assumption of TeV scale NP and the
stringent bounds derived from flavor physics. Such tension is referred to at the new
physics flavor puzzle. To solve it, one can imagine possible mechanisms that suppress
NP contributions to flavor observables. Among the most popular ones, there are
the Minimal Flavor Violation (MFV) hypothesis [6] and the Partial Compositeness
(PC) paradigm [7]. The MFV hypothesis provides a rational for the suppression
of flavor violating effects, postulating that the SM Yukawas are the only sources of
flavor breaking also beyond the SM. The PC paradigm, on the other hand, could in
principle explain not only the NP flavor puzzle, but also the hierarchies in the Yukawa
matrices.

Among the most interesting proposals of TeV scale NP models, there are the Com-
posite Higgs (CH) models [8]. They assume the existence of an additional (unbroken)
SU(NTC) technicolor gauge group and of a spectrum of technifermions charged under
this group. Supposing the confining behaviour of this new strong sector to show up
at the TeV scale, this theory predicts a full spectrum of new resonances with masses
around the confining energy. The Higgs boson can then be thought of as one of these
composite particles. Further, the Higgs lightness with respect to the other (so far un-
seen) resonances can be explained if we assume it to be a pseudo Nambu–Goldstone
(pNG) boson arising from some unknown global symmetry breaking mechanism [9].

In these scenarios, one generates the fermion masses through the following mech-
anism: only the technifermions are assumed to interact with the Higgs boson, while
the SM fermions cannot. However, since the SM fermions can nevertheless interact
with the strong sector, they can still feel the EWSB, but only through the mediation
of the technifermions. The weakness of such technifermion mediation could explain
both the small fermion masses and suppressed flavor observables. This is the central
idea of the PC paradigm.

This kind of CH models admits a different interpretation, that can shed light to
the PC scenario. As already outlined, the strong sector generates a full spectrum
of composite massive particles (“technibarions” and “technimesons”). Within this
picture the existence of interactions between SM fermions and technifermons implies
the existence of linear interactions between SM fermions and technibarions. These
are nothing but off-diagonal mass terms, thus we conclude that the mass eigenstates
(i.e. the states we observe through experiments) are actually an admixture of SM
fermions and technibarions.

In this sense one talks about partial compositeness of the SM particles, referring
now with SM particles to the experimentally observed mass eigenstates. Since such
eigenstates also include a definite amount of technibarions in their admixture, they
can feel the EWSB, with a strength proportional to their degree of compositeness. As
already outlined, such degree of compositeness mitigates not only the fermion masses
but also the flavor physics contributions from the NP sector.

The CH models are very attractive models for their phenomenological implica-
tions, but since they are defined through a strong dynamics, even approximate com-
putations are often too difficult to be handled. To overcome this difficulty, one can
describe the theory using directly the bound states of the strong sector to write the
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Lagrangian, assuming that the interactions between strong resonances and the SM
sector are weak enough to justify a perturbative approach.

In this framework, one can exploit the PC picture outlined above. For example,
one can retain in its description only the lower-lying set of composite states relevant
for the PC phenomenology, obtaining a simpler Lagrangian that allows perturbative
computations [10]. Such models are called two-site models and have become popular
in recent literature, since they permit to find reliable quantitative results. The impor-
tance of such simplified models is thus to furnish a method to work out predictions
to be compared with the experimental results, in order to establish if the CH models
are still a valid solution to the hierarchy problem.

In this thesis, we consider a very general two-site model that reproduces a realistic
PC scenario for the SM particle content, considering for simplicity only the leptonic
sector. After analysing the general features of the model, we focus on the contribution
such NP model gives to a specific higher dimensional operator, the dipole operator.
We have chosen the dipole operator for two reasons: on the one hand it turns out
to be one of the most sensitive operators to NP effects in PC, on the other hand,
the experimental resolution on the related phenomenological observables, that are
the ` → `′γ decays, the anomalous magnetic moments ∆a` and the electric dipole
moments (EDMs) d`, are extraordinary.

For these reasons, the last part of this work is devoted to the explicit loop cal-
culations of the NP contribution to the Wilson coefficient associated with the dipole
operator within the two-site model. The goal will be to find out whether the exper-
imental bounds on BR(µ → eγ), ∆a` and de are still compatible with a TeV scale
strong sector.

This thesis is organized as follows. In chapter 1 we briefly review the reasons
that motivate why and at what energies we are looking for an UV completion of
the SM. In chapter 2, after having shortly recalled the SM and its flavor structure,
we describe the EFT methods also in conjunction with the flavor physics and the
search for NP signals, then we discuss in detail the MFV hypothesis. In chapter
3, after a concise summary of the proposed solutions to the hierarchy problem, we
describe thoroughly the CH models, starting from the earlier Technicolor models and
focusing also on the PC paradigm as an efficient method to suppress NP contributions
in flavor physics. In chapter 4, we consider a specific two-site model and we work
out some phenomenological consequences for it. For this purpose, we first describe
the important features of the dipole operator, and then we elaborate in detail the
dipole-mediated NP effects in our two-site model through loop calculations, focusing
in particular on µ→ eγ, ∆a` and de.
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CHAPTER 1

Why going beyond the Standard Model

The Standard Model (SM) of Particle Physics is a very successful theory. Its predic-
tions, tested in the last three decades with increasingly high precision, are in excellent
agreement with experimental data for a wide range of phenomena. The coronation
of this success has been the recent discovery of the Higgs boson [1, 2], the missing
piece of this theory that was still seeking for an experimental confirmation. Thus,
if we do not take into account a few number of discrepancies between the SM and
cosmological observations, and with the notable exception of evidence for neutrino
masses (all to be briefly discussed in section 1.1), we are facing a rather astonishing
absence of New Physics (NP) signals.

Despite this lacking of experimental proofs, nowadays it is widely believed that
the SM is just an effective field theory (EFT), i.e. it is a low energy approximation
of a more fundamental theory. Then, if one consider as true that the SM needs an
ultraviolet (UV) completion, the most urgent question becomes which is the energy
scale of this new physics. A great number of scenarios have been proposed so far to
answer this compelling question, and a complete list of them is far beyond the scope
of this MSc thesis. Nevertheless, section 1.2 will describe some general theoretical
arguments that suggest at which energy scale NP might show up.

The need for a beyond standard model (BSM) theory becomes more pressing when
the concept of naturalness is introduced. This theoretical tool, if adopted as a research
instrument, provides striking evidence that the SM is missing something and gives
strict bounds on the energy scale where NP should first occur. This will be the topic
of sections 1.3 and 1.4.

1.1 Experimental evidence for new physics

As already mentioned, there are just a few experimental clues for BSM physics and
most of them come from the comparison of the SM predictions with cosmological ob-
servations. Referring to the literature for a more complete discussion, in the following
the most important discrepancies are sketched:

� Dark matter : nowadays there is strong evidence that the 84.5% of the total
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matter in the universe is constituted of dark matter [11], i.e. matter made of
particles not included in the SM and with different properties. Then the SM
obviously needs a completion that introduces one (or more) kind of particle(s)
able to explain the presence of dark matter. So far among the most interesting
proposals to solve this problem there are the lightest supersymmetric particle in
the context of supersymmetric models [12] and the axion in models trying to
solve the strong CP problem [13].

� Baryon asymmetry : another well established cosmological observation is that
in the universe there is exceedingly more matter than antimatter, an anomaly
known as baryon asymmetry. As a consequence of one of his accidental sym-
metries, in the SM the baryon number is conserved1, then leading to a friction
between the SM and our present cosmological models. Maybe new interactions
and mechanisms in the NP sector could solve this problem.

� Inflation: the inflation mechanism was first proposed in the ’80s to solve some
serious cosmological problems (such as the horizon problem and the flatness
problem). In the last decades this theory has become more and more accepted
and recently the BICEP2 experiment has given striking experimental evidence
for it [15]. But the SM is unable to explain in a satisfactory way the inflation
era, resulting in a conflict between the two theories.

� neutrino masses and mixing : apart from the above cosmological arguments,
the only known evidence for BSM physics are neutrino masses and oscillation.
In the SM, neutrinos are massless particles. Instead, neutrinos are definitely
massive particles, as shown by different experiments by now. In more recent
years also the phenomenon of neutrino flavor oscillation has been studied and
confirmed by experiments2. Both these observations impose a modification of
the SM in order to accommodate neutrino masses and mixing. There is not a
unique way to do that and the possible mechanisms can shed light to the NP
sector, as it will be briefly sketched in the next section.

In summary, except for the neutrino masses and mixing, an unambiguous signal
of NP (such as an experimental deviation from the SM predictions or an unexpected
resonance at colliders) is still missing. Why is it so, despite the fact that an UV
completion of the SM should exist, is an urgent question. The next sections will try
to give an answer to this question.

1.2 The energy scale of new physics

Independently from experimental observations, it can be theoretically argued that
the SM cannot be a theory valid up to arbitrarily high energies. The reason is a long-

1Actually, in the SM the symmetry associated with the baryon number conservation is anomalous.
Thus, adding the C and CP violations (also present), the SM technically satisfy the first two Sakharov
conditions for baryogenesis [14]. However, coming to the third condition, the SM in not able to
quantitatively explain the departure from thermal equilibrium in the early universe.

2An overview of present experimental evidence regarding neutrino masses and oscillation can be
found e.g. in [16].
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standing problem: the SM does not include gravity interactions and furthermore
a consistent quantum theory of gravitation is still missing. Maybe this unification
cannot be reached within the context of quantum field theories and a dramatic change
of perspective might be needed, such as a string theory approach [17]. Nevertheless,
the energy scale at which the quantum gravity effects eventually show up represents
an ultimate UV cutoff for the SM. In other words, even in the absence of any other
kind of NP, the SM needs at least the UV completion necessary to include gravity.
Nowadays there is a broad agreement on putting this cutoff scale directly at the
Planck scale, Λ ∼MP ' 1019 GeV, since no theoretical reasons can be found to lower
this bound3. As mentioned, it is also believed that at those energies the quantum
field theory approach eventually stop to be applicable and new techniques have to be
developed.

The above argument put an ultimate cutoff scale for the SM at the Planck scale.
However, there are some theoretical and experimental clues that NP might exists at
slightly lower energies, the so-called GUT scale, MGUT ∼ 1014 ÷ 1016 GeV.

The first indication of NP at this scale comes from the evolution of the three
SM gauge coupling under the RGEs. In the SM they all merge at nearly the same
value at energies ∼ 1014 GeV [18] and an even better situation occurs in the Minimal
Supersymmetric Standard Model (MSSM), where they exactly merge at energies ∼
1016 GeV [18]. This gauge coupling unification is a genuine prediction of Grand
Unified Theories (GUT), where the SM gauge group is embedded in a simple group
such as SU(5) or SO(10) [19].

A second theoretical clue comes from the see-saw mechanism, that tries to explain
the small non-vanishing neutrino masses. It is well-known that there exist only one
independent five-dimensional effective operator compatible with SM symmetries [20],
the Weinberg operator:

L5 =
y

Λ
(φ̃†L)TC(φ̃†L) ,

where φ̃ is the charge conjugate of the Higgs doublet, L is the leptonic left-handed
doublet and C is the charge conjugation matrix. Here Λ represents the energy scale of
the physics which originates this effective term and y is a dimensionless O(1) coupling
constant4. After the Electroweak Symmetry Breakdown (EWSB), this term generates
a mass for the left-handed neutrinos5:

mνL =
y2v2

2Λ
,

with v = 246 GeV the Higgs vacuum expectation value (VEV). Now, if one tries to
deduce the energy scale Λ by inverting this relation, one gets

Λ ' 3 · 1014

(
0.1 eV

mνL

)
y2 GeV ,

3It can be said that the choice of this scale is a “natural” one, since the Planck mass is directly
related to the Newton constant GN : MP ≡

√
1/GN . This concept of naturalness will be thoroughly

discussed later on.
4Again, this could be seen as a “natural” choice for the value of this parameter, see note 3.
5The current upper cosmological bound for neutrino masses is

∑
imνi . 0.3 eV [21]. Weaker

bounds derive from laboratory experiments, for example mνe . 2 eV [22].
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suggesting that, if the see-saw mechanism is the right answer to neutrino masses, then
the NP behind it could be possibly found at the GUT scale.

A third, very recent suggestion comes from the results of the BICEP2 experiment
[15]. According to its results, the inflation epoch begun when the primordial universe
reached the temperature of T ' 1016 GeV. If confirmed by other ongoing experiments
(such as the Plank collaboration), this results would become strong experimental
evidence of NP at the GUT scale.

The energy scales of NP discussed so far (MP and MGUT ) are very far from
nowadays experimentally achievable energies (such as the TeV scale at LHC). This
enormous energy gap generates an high decoupling between the SM and the NP
sector, which in turns could explain why experiments have not seen NP signals yet.
But then the new question becomes if this is the end of the story, i.e. if NP appears
only at very high energies, unreachable to nowadays collider experiments. Perhaps
the answer is positive, but only if one completely ignores the naturalness problem.
How this principle works and how it can be used to explore NP scenarios is the topic
of the next sections.

1.3 The naturalness problem

If accepted as a physical principle, the concept of naturalness can be used as a powerful
theoretical tool that can put in crisis the SM at very low energies, suggesting the
existence of NP already at the TeV scale, as discussed in section 1.4.

Following the formulation of naturalness by ’t Hooft [23], a theory is natural if,
for all its parameters p which are small with respect to their fundamental scale Λ,
the limit p→ 0 corresponds to an enhancement of the symmetry of the system.

To understand the meaning of this definition, we take as an example the fermion
masses mf . Regularizing the theory through an ultraviolet cutoff Λ and computing
the loop corrections δmf to mf , näıvely one could have expected these corrections to
be proportional to Λ. However, the limit mf → 0 restore the fermion chiral symme-
try; thus, every contribution to δmf should be proportional to mf itself (i.e. every
contribution to the chiral symmetry breaking should be proportional to coefficients
associated with this breaking). Then the dependence of δmf through Λ can only be
logarithmic, ∼ log Λ. This mechanism, that is a direct consequence of the fulfilment
of the ’t Hooft condition, protect the fermion masses from planckian corrections and
makes a small value for the mf/MP ratio natural.

A complementary request to a natural theory is that all its parameters that do
not satisfy the ’t Hooft condition should have an O(1) value with respect to their
fundamental scale. Then, it can be said that a naturalness problem arise every time
a theory exhibit a small parameter without furnishing any symmetry that protect its
value.

We can turn this problem to a more quantitative form by introducing the notion
of fine tuning. Once identified the unnatural small parameter p and its fundamental
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scale6 Λ, one may define the amount f of fine tuning by:

f ≡ p

Λ
. (1.1)

The smaller f , the bigger the required fine tuning. Then, for example, if we have a
dimensionless constant p ' 10−2, since in this case Λ = 1, without any symmetry
protection we would say that our theory needs a fine tuning to the per cent level,
f ' 10−2.

Generally, an high fine tuning would go against the belief that the observable
properties of a physical theory are stable under small variations of its fundamental
parameters. One talks about the naturalness of a theory to describe such behaviour.

Once formalized these concepts, it can be easily argued that the SM is not a nat-
ural theory and a (sometimes huge) fine tuning is needed to explain the experimental
values of several quantities. The most urgent questions arising from this principle
and some attempts to solve them are:

� Cosmological constant : cosmological observation are consistent with the exis-
tence of a cosmological constant. However, experimentally it take the value
Λcosmo ∼ 10−47 GeV4 [11], while theoretically it would be expected the value
Λcosmo ∼ M4

P ∼ 1076 GeV4. Then in this case f ' 10−123. Until now this
discrepancy has remained a true mystery to us.

� Hierarchy problem: the SM Higgs sector include one independent dimension-
ful parameter, equivalently the Higgs VEV or the Higgs mass, both of order
∼ 102 GeV [22]. Theoretically one would have expected a value of order
∼MP ∼ 1019 GeV for these parameters. The next section will return on this
problem, called the hierarchy problem, while section 3.1 will discuss some at-
tempts to solve it.

� Charge quantization: the experiments suggest that the proton and electron
charges are equal and opposite in sign: |Qe + Qp| < 10−21 [22]. In the SM
this should be seen as a fine tuning (f ' 10−21) since it does not provide any
natural explanation. Theories of grand unification could be a possible solution,
since they predict a quantization of hypercharge [19].

� Strong CP problem: the four-dimensional term
∫

d4x θQCD ε
µνρσGaµνG

a
ρσ, that

could in principle appear in the SM Lagrangian and would lead to a CP violation
in the strong sector, has an extremely small coefficient, θQCD . 10−10 [22]. The
Peccei-Quinn mechanism could explain this value, and in turn it also imply the
existence of a new particle, the axion [13].

� Flavor puzzle: the fermion mass spectrum ranges from ∼ 170 GeV, for the case
of the top-quark, to ∼ 10−3 GeV, for the case of the electron. Even though the
smallness of the fermion masses, as argued before, cannot be interpreted as a
naturalness problem, this huge hierarchy in the mass spectrum (more that five

6We have already argued in note 3 that, for a parameter of mass dimension 1, its natural scale is
Λ = MP . Thus, for [p] = d in mass unit, we will have Λ = (MP )d and f ≡ p/(MP )d. Note that the
alternative choice f ≡ (p1/d)/MP would led to significantly different values for f .
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orders of magnitude) is unnatural. Furthermore, also the Cabibbo-Kobayashi-
Maskawa matrix (VCKM ) presents hierarchies between families. These struc-
tures are still unexplained, although progresses were made in the last years in
this direction.

According to the naturalness concept, all these problems require a SM completion
that can accommodate them in a natural way. In particular, the hierarchy problem
strongly suggests the existence of BSM physics already at the TeV scale, as it will be
discussed in detail in section 1.4.

What itemized above are difficulties of the SM, arising from the naturalness con-
cept, that can be put in a numerical form (i.e. the fine tuning f can be quantitatively
evaluated). However, other questions can be related to naturalness, once this prin-
ciple is somehow extended to include more qualitative aspects. These new problems
can be summarized with the following question: why the SM is the way it is? In other
words, is there any natural explanation for all the peculiar features of the SM (such as
particle content, particle quantum numbers, number of families, gauge groups)? After
all, one verify an amazing cancellation of all gauge anomalies due to the particular
choices of these SM features. Can it be just a coincidence?

Of course, according to personal taste, these last issues can appear of philosophical
nature and then with not much or no importance. But it is also completely licit to
believe, as the author does, that a satisfactory physical theory should explain, or at
least motivate, also these aspects.

1.4 The hierarchy problem

As already outlined, among the issues discussed in the previous section the hierarchy
problem is of critical importance for present physics since it predicts NP at the TeV
scale, i.e. energies that are becoming reachable to nowadays experiments. Thus, we
are about to find out whether the notion of naturalness and its predictions are correct
or whether there is something missing in its formulation.

The core of the hierarchy problem is that the Higgs boson is unnaturally light.
When discussing the naturalness concept, it has been argued that the fermions can
have masses far below the Planck scale in a natural way, since in the limit of massless
fermions the chiral symmetry is restored. In the case of the Higgs boson mass mh,
no such enhancement of the symmetry is found in the limit mh → 0. This, in
turn, implies that loop corrections δm2

h to m2
h are quadratically divergent, rather

than logarithmically divergent as in the case of fermion masses, making unnatural a
physical mass mh far away from the fundamental scale MP .

To make this last point clearer we can use a simple λφ4 theory, that describe a
single scalar boson φ. Indeed, introducing a finite cutoff scale Λ, the diagram given
in Fig. 1.1 gives a contribution

δm2 = λ

∫ Λ dk4

(2π)4

1

k2
∼ λ

(16π2

∫ Λ

dk2 ∼ λ Λ2

16π2
,

that can be interpreted as the one-loop correction to the boson mass m2; as antici-
pated, it presents a quadratic dependence on Λ.
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Figure 1.1: The scalar one-loop diagram leading to a quadratic divergence.

Thus, in this theory, at one-loop level the physical mass of the boson is

m2 = m2
0 +

αλ

16π2
Λ2 , (1.2)

where m2
0 is the bare mass, i.e. the parameter entering in the Lagrangian of the

theory and α is an O(1) coefficient. We can now appreciate the problem arising from
assuming the physical mass m far away from its fundamental scale Λ: even if we put
a small value of the bare mass m0 (that is a small value of the tree level boson mass),
this hierarchy would be spoiled by one-loop corrections; if we insist to impose a small
value of m at the one-loop order, we need an awkward fine tuning in order to gain a
cancellation between the two contributions on the r.h.s. of Eq. (1.2).

In the case of the SM, the Higgs mass receives the following one-loop corrections
[24]:

δm2
h =

3Λ2

8π2v2

[
(4m2

t − 2M2
W −M2

Z −m2
h) +O

(
log

Λ

µ

)]
. (1.3)

We can repeat the same argument outlined above to conclude that, if we put the
fundamental physical scale directly at the Planck scale, in the SM is required a fine
tuning

f ≡ m2
h

δm2
h

' m2
h

Λ2
∼ 10−34 (1.4)

in order to give the correct value to the Higgs mass.
A possible solution to eliminate (or at least reduce) this huge fine tuning is to

drastically lower the cutoff scale Λ. In other words, if we assume that NP first shows
up at energies not far above the EWSB scale, that is around the TeV scale, and
if we further supplement this NP with a mechanism that stabilize the Higgs mass,
protecting it from planckian corrections, then we would have solved the hierarchy
problem.

It is important to stress that, in order to have this solution to be truly natural,
the NP scale should be near the EWSB scale, otherwise a little hierarchy problem,
as sometimes is called, still remains. In the last decades various models satisfying
this request were proposed, the most important and still plausible ones will be briefly
described in section 3.1.

As already said, we are nowadays starting to be able to investigate experimentally
the TeV scale, thus reaching a turning point in our understanding of fundamental
physics: either NP will be found, solving the hierarchy problem and opening a new
era of discoveries, or no deviation from the SM will occur, imposing a deep changing of
perspective in order to understand why the apparently robust concept of naturalness
does not work.
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Until now no signal of BSM physics at TeV scale was found, also considering the
runs at 7 and 8 TeV of the LHC experiments. Then it is evident that whether the
present experimental data are compatible or not with models proposed to solve the
hierarchy problem, and which experiments can definitely reveal the presence/absence
of NP, are more than ever compelling questions, that deserve all the efforts needed
to answer them.



CHAPTER 2

Flavor physics

2.1 The Standard Model of particle physics

At present days, the most used and successful tools to describe nature at the quantum
level are Quantum field theories (QFT). A QFT is described by its Lagrangian L, that
should obey some very general rules:

� Since, for any process, the probabilities of the possible outcomes should sum
up to 1 at any time, the time evolution operator should be unitary. This imply
that the Hamiltonian operator (and then the Lagrangian) should be hermitian.

� The Lagrangian should be invariant under Poincaré transformations. As a
consequence, all field operators appearing in L should belong to a definite rep-
resentation of the Poincaré group.

� If we want a renormalizable theory1, the Lagrangian cannot contain operators
with dimension d > 4.

These are properties that every Lagrangian should have in order to furnish a
consistent theory. In addiction, to characterize a specific QFT we also need to define
its three following features:

(i) The gauge symmetry;

(ii) The particle content, that is which particles are present and to which represen-
tation of the gauge group they belong;

(iii) The pattern of spontaneous symmetry breaking.

Once defined these three points, we are able to write down the most general
Lagrangian satisfying them, i.e. we have completely defined our QFT. Of course, it
will have a finite number of parameters. In the context of QFT no arguments can be

1This last requirement can be relaxed if one deals with effective field theories: in that case d > 4
operators can occur. In section 2.2 we will return on this point.

17
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adduced in order to fix the value of any of them2; thus they represents free parameters
to be measured via experiments. Only after these set of measurements are performed,
the theory becomes predictive.

2.1.1 The Standard Model Lagrangian

Keeping in mind what outlined above, we can now define in a formal manner the
Standard Model of particle physics:

(i) The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y ; (2.1)

(ii) There are three fermion families (or flavors, or generations), each consisting of
five representations of GSM :

QLi(3, 2)+1/6 , URi(3, 1)+2/3 , DRi(3, 1)−1/3 ,

LLi(1, 2)−1/2 , ERi(1, 1)−1 .
(2.2)

This means, in our notation, that for example QLi are left-handed quarks (the
i = {1, 2, 3} index runs over families), triplets of SU(3)C , doublets of SU(2)L
and carrying hypercharge Y = +1/6. Decomposing the two SU(2)L doublets
into their components in order to fix the notation:

QLi =

(
ULi
DLi

)
; LLi =

(
ELi
νLi

)
. (2.3)

In addiction, there is one scalar representation:

φ(1, 2)+1/2 ; (2.4)

(iii) The scalar φ assumes a VEV:

〈φ〉 =

(
0

v/
√

2

)
, (2.5)

which implies that the SM gauge group is spontaneously broken to

GSM → SU(3)C × U(1)EM . (2.6)

This process is called Electroweak Symmetry Breakdown (EWSB).

The SM Lagrangian is the most general renormalizable one that fulfil these three
conditions3. It can be divided in three pieces:

L = LKinetic + LHiggs + LYukawa , (2.7)

2The best that can be done is to impose additional global symmetries to the theory: this typically
reduces the number of free parameters or puts some of them to zero.

3Actually, this statement is correct only if one forgets about the θQCD parameter. This caveat
leads to the strong CP problem, already discussed in section 1.3.
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with

LKinetic = −1

4
GaµνG

a,µν − 1

4
W b
µνW

b,µν − 1

4
BµνB

µν +
∑
f

Ψ̄f i /DΨf , (2.8a)

LHiggs = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2 , (2.8b)

−LYukawa = Y d
ijQ̄LiφDRj + Y u

ij Q̄Liφ̃URj + Y e
ijL̄LiφERj + h.c. , (2.8c)

where: Gaµν ,W
b
µν and Bµν are the field strength tensors of the eight gluon fields Gaµ,

the three weak interaction bosons W b
µ and the hypercharge boson Bµ, respectively;

Ψf is a collective symbol to denote all the fermions, with the index f running over all
the fermion representations and families; Dµ is the covariant derivative; φ̃ ≡ iσ2φ∗ is
the charge conjugate of the φ doublet; µ2 and λ are real parameters and Y u,d,e are
complex 3× 3 matrices.
LKinetic include the kinetic terms for gauge bosons and fermions, as well as interac-

tion terms among these fields. This part of the Lagrangian has three free parameters,
g, g′ and gs, that are the gauge couplings associated with the three simple subgroups
of GSM .
LHiggs is the Higgs doublet Lagrangian. It consists of the kinetic terms for this

field (again with the gauge interaction terms) and its potential. In order for the φ
field to acquire a VEV, we have to require µ2 < 0 and λ > 0. In addiction, the
following relation between µ2, λ and the VEV v (see Eq. (2.5)) holds:

v =

√
−µ2

λ
. (2.9)

Then, this part of the Lagrangian involves two free parameters, say λ and µ. The
implications of a dimensionful free parameter were already discussed in section 1.4.

Finally, LYukawa contains the Yukawa interactions between the fermions and the
Higgs doublet. After the EWSB, these terms give rise to fermion masses. We will
discuss in detail the structure of this piece of the Lagrangian in next sections, antic-
ipating only that it has 13 (dimensionless) free parameters. Thus, the complete SM
Lagrangian has 18 free parameters4 to be determined by experiments, and 13 of them
arise in the Yukawa sector.

2.1.2 The flavor structure of the Standard Model

The term flavor physics refers to interactions that distinguish between flavors, where
we have already discussed that with flavor one means the several copies of fermion
fields carrying the same quantum charges (i.e. belonging to the same representation
of GSM ). In the SM all the source of flavor physics is in the Yukawa interactions,
as can be seen directly in Eqs. (2.7) and (2.8), where LYukawa is the only part that
distinguish between families, through the Yukawa matrices Y u,d,e.

In the absence of the Yukawa interactions (namely Y u,d,e = 0), the SM Lagrangian
has a large U(3)5 global symmetry:

Gflavor = U(3)3
q × U(3)2

l , (2.10a)

4They really are 19, if one again include θQCD, see note 3.
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U(3)3
q = U(3)Q × U(3)U × U(3)D , (2.10b)

U(3)2
l = U(3)L × U(3)E , (2.10c)

under which the fermion fields mixes between families in this way:

QLi → (VQ)ijQLj , LLi → (VL)ijLLj ,
URi → (VU )ijURj , ERi → (VE)ijERj ,
DRi → (VD)ijDRj .

(2.11)

where in our notation VQ ∈ U(3)Q and so on.
Since5 U(3) ∼= SU(3) × U(1), we can split Gflavor into Abelian and non-Abelian

parts:

Gf = SU(3)3
q × SU(3)2

l × U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E , (2.12)

where U(1)B and U(1)L are the invariances associated with the baryon and lepton
number conservation, U(1)Y is the gauge invariance (then is actually a local sym-
metry), U(1)PQ rotates both DR and ER in the same way and U(1)E rotates only
ER.

When considering Y u,d,e 6= 0, the flavor symmetry Gf is broken down to a smaller
group:

Gf → U(1)B × U(1)e × U(1)µ × U(1)τ , (2.13)

that is the well-known global accidental symmetry group of the SM (we have no
longer considered the U(1)Y gauge symmetry, that of course is not an accidental
global symmetry). Actually, one of the U(1) factors, namely B + Le + Lµ + Lτ , is
anomalous. Thus the conserved quantum numbers of the SM, deriving from exact
accidental global symmetries, are

1

3
B − Lf , f = {e, µ, τ} . (2.14)

We are now able to count the number of free physical parameters contained in
the three Y u,d,e matrices, that is the free parameters of LYukawa. Each matrix has
18 parameters (9 real numbers and 9 phases), then giving 54 parameters overall.
However, every generator of Gf broken by the Y matrices imply an arbitrariness in
the choice of the fermion basis, that reduce by one the number of physical parameters.
In other words, if we use a broken generator to perform a rotation (2.11), then LYukawa

will go through the transformation

LYukawa(Y u, Y d, Y e)→ LYukawa(Ỹ u, Ỹ d, Ỹ e) , (2.15)

with:

Y u → Ỹ u = V †QY
uVU , (2.16a)

Y d → Ỹ d = V †QY
dVD , (2.16b)

5Actually, the exact relation would be U(3) ∼= SU(3)× U(1)/Z3, but this subtlety does not play
any role in the following discussion and we have stated it here only for completeness.
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Y e → Ỹ e = V †LY
eVE , (2.16c)

while the rest of the Lagrangian (2.7) remains unchanged. But this means that the
two sets {Y u, Y d, Y e} and {Ỹ u, Ỹ d, Ỹ e}, being related simply by a change of basis, are
different representations of the same physical theory. Thus, the parameter associated
with this change of basis is non-physical.

Then, being dim(Gf ) = 45 (corresponding to 15 real parameters and 30 phases),
while the residual symmetry group6 has dimension 4 (all phases), we can think of 41
parameters of the Y matrices as non-physical, leaving us with 13 physical one (12
real constants and 1 phase), as anticipated.

To understand the meaning of the free parameters of LYukawa it is useful to dis-
tinguish between the quark and the leptonic sector, starting from the latter, that has
a simpler structure. For leptons, the pattern of flavor symmetry breaking is

U(3)L × U(3)E → U(1)e × U(1)µ × U(1)τ . (2.17)

Carrying on the same argument outlined above, this time for leptons only, we find
that Y e has 3 physical parameters, all real; these are nothing but the charged lepton
masses.

Indeed, it is always possible to perform a change of basis (2.11) that makes the Y e

matrix diagonal; in other words, they always exist two unitary matrices VL and VE
such that, according to Eq. (2.16c), Ỹ e is diagonal, a procedure known as biunitary
diagonalization. In such a basis, after EWSB and considering only the Higgs VEV

contribution, this term becomes:

Lemass =
3∑
i=1

v√
2
Ỹ e
iiĒLiERi , (2.18)

that is exactly a mass term for the charged fermions; the three eigenvalues of Ỹ e

being related to the masses of each family.
The discussion for the quark sector is more involved, since this time we are dealing

with two Yukawa matrices, for the up-type and for the down-type quarks respectively.
All the difficulties arise because, as can be easily seen looking at the transformation
properties (2.16a) and (2.16b), this time it is not generally possible to simultaneously
diagonalize both Y u and Y d with a transformation belonging to Gf , since the same
matrix VQ appear twice.

Instead, the best that can be done within Gf is to reach a basis of this kind:

Y d = yd , Y u = V †CKMy
d , (2.19)

where yd,u are diagonal,

yd = diag(yd, ys, yb) , yu = diag(yu, yc, yt) , (2.20)

6Why we does not count U(1)Y among the unbroken generators, allowing it to act as a change
of basis instead, is a subtle point. The reason is that if we refer to U(1)Y as a rotation of only the
fermion fields (not rotating the φ doublet), then the Yukawas breaks this “fake” U(1)Y symmetry,
that thus can be used to reduce the physical parameters.
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and VCKM is a unitary matrix, known as the Cabibbo-Kobayashi-Maskawa (CKM)
matrix:

VCKM =

 V ud V us V ub
V cd V cs V cb
V td V ts V tb

 . (2.21)

The CKM matrix is of crucial importance for flavor physics because, in a certain
manner, this matrix contains all the information about the flavor structure of the
quark sector. We can also see it as a parametrization of the misalignment between
Y u and Y d, since for Y u = Y d we would have VCKM = 1.

If we analyse the structure of the quark part of LYukawa in this basis, we see that
after EWSB the mass terms for the up sector are not diagonal in flavor space. Indeed,
again focusing only on the Higgs VEV contribution, we have:

Lqmass =
3∑
i=1

v√
2
ydi D̄LiDRi +

3∑
i,j=1

v√
2

(V †CKM )ijy
u
j ŪLiURj . (2.22)

However, we are often interested in dealing with mass eigenstates, since they
are the experimentally detectable and distinguishable ones. As already discussed, to
reach a mass-diagonal basis we are forced to perform a rotation that should still be
unitary (in order to preserve the canonical kinetic terms) but explicitly breaks the
flavor symmetry Gf :

ULi → (VCKM )†ijULj , (2.23)

in particular, this rotation (often referred to as the switch from the interaction basis
to the mass basis) violates what we have called SU(3)Q, because we are rotating
only one component of the SU(2)L doublet. As a consequence, this change of basis
affects only the interactions that distinguish between doublet components, that are
the electroweak interactions and the Yukawa interactions. Since the latter (that are
the interactions between the fermions and the Higgs boson) are made flavor-diagonal
by the above change of basis, in the mass basis only weak interactions can mediate
flavor violating processes.

In the interaction basis, the electroweak interaction terms in the quarks sector are
described by the following Lagrangian:

Lint = LCC + LNC , (2.24)

where the charged current interactions are described by:

LCC =
g√
2

(J+
µW

+µ + h.c.) , (2.25)

JI+µ =

3∑
i=1

ŪLiγµDLi , (2.26)

and the neutral current interactions by:

LNC = eJemµ Aµ +
g

cos θW
J0
µZ

µ , (2.27)



2.1. The Standard Model of particle physics 23

JI,emµ =
∑
f

Qf Ψ̄fγµΨf , (2.28)

JI0µ =
∑
f

Ψ̄fγµ(vf − afγ5)Ψf , (2.29)

vf =
1

2
T f3 −Qf sin2 θW , af =

1

2
T f3 , (2.30)

where Qf and T f3 are the charge and the third component of the weak isospin, and
θW is the Weinberg angle. The superscript ‘I’ reminds that these expressions are
valid in the interaction basis.

An inspection of the above Lagrangian leads to the conclusion that only charged
current interactions feels the change of basis (2.23), i.e. the misalignment between
the mass basis and the interaction basis; in other words, at tree level only Flavor
Changing Charged Currents (FCCC) are admitted in the SM, while Flavor Changing
Neutral Currents (FCNC) can only appear at one-loop order. In the mass basis, the
new LCC reads:

LCC =
g√
2

(
(VCKM )ijŪLi /W

+
DLj + (VCKM )†ijD̄Li /W

−
ULj

)
, (2.31)

where a sum over flavor indices is understood.
If the SM description of flavor physics is correct, the Lagrangian (2.31) is the

only source of all flavor changing processes and the CKM matrix fully parametrize
this behaviour. Further, this is also the only Lagrangian term that could in principle
violate the CP symmetry, if VCKM is not real (as it is the case). Then in the SM
it also happens that CP and flavor violations are connected, in the sense that CP
violation occurs only in flavor violating processes. This is not true in generic NP
models, where new flavor-blind CP violating phases can be inserted.

2.1.3 The CKM matrix

Coming back to parameter counting, applying it to the quark sector gives us 9 real
constants and one phase. According to Eq. (2.20), six real parameters are associated
with the masses of the six quarks (i.e. to the eigenvalues of the Yukawa matrices
Y u,d); thus the CKM matrix can be parametrized through three real numbers and a
complex phase. There is not a unique way to perform this parametrization, the most
used are the standard parametrization [25] and the Wolfenstein parametrization [26].

The standard parametrization of the CKM matrix in terms of three rotational
angles (θij) and one complex phase (δ) is

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 , (2.32)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3). Their values are approximately
s12 ' 0.22, s23 ' 0.042, s13 ' 0.0041 and δ ' 69◦ [22].

Given the above values, the off-diagonal elements of the CKM matrix show a
strongly hierarchical pattern: |Vus| and |Vcd| are close to 0.22, the elements |Vcb|
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and |Vts| are of order 4 × 10−2 whereas |Vub| and |Vtd| are of order 5 × 10−3. The
Wolfenstein parametrization, being an approximate expansion of the CKM matrix
elements as a power series in the small parameter λ ≡ |V us| ' 0.22, is a convenient
way to exhibit this hierarchy in a more explicit way. At the third order it gives:

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (2.33)

and then the four free parameters in this representation of VCKM are

λ, A, ρ, η , (2.34)

where the {ρ, η} pair gives rise to the physical complex phase. Sometimes the follow-
ing redefinitions of these last two parameters are used [3]:

ρ̄ = ρ

(
1− λ2

2

)
+O(λ4) , η̄ = η

(
1− λ2

2

)
+O(λ4) , (2.35)

the reason being convenience when extending the Wolfenstein parametrization to
higher orders.

For what discussed above, in the SM all the flavor physics in the quark sector
is described by the Lagrangian (2.31) and then by the CKM matrix. This in turn
implies severe constraints on flavour changing processes, that can be experimentally
tested in order to verify the correctness of the SM description.

A first class of such constraints comes from the unitarity of VCKM . Indeed, from
the very definition of a unitary matrix, the following relations should hold:∑

k=1,2,3

V ∗ikVki = 1 , (2.36a)

∑
k=1,2,3

V ∗ikVkj = 0 for i 6= j , (2.36b)

These relations are a distinctive feature of the SM, therefore every deviation from
them would be a clean signal of new physics. Among the relations (2.36b), the one
obtained for i = 1 and j = 3, namely

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.37)

or
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 ,

is particularly interesting since it involves the sum of three terms all of the same order
in λ. This relation can be represented as a triangle in the complex plane, as shown in
Fig. 2.1, and indeed Eq. (2.36b) is often referred to as the CKM unitarity triangle. Its
sides Rt and Rb, as well as its angles α, β and γ (see Fig. 2.1) are accessible in many
flavor changing observables, thus the consistency of Eq. (2.37) can be experimentally
tested.

Moreover, since the CKM matrix depends only on four parameters, four indepen-
dent physical observables are sufficient to completely determine it; after this procedure
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Figure 2.1: The CKM unitarity triangle.

is carried out, the theory becomes predictive and any other observable in flavor physics
can be theoretically evaluated and compared with the experiments. The consistency
of all these theoretical predictions with experiments represents another severe test of
the SM description of flavor physics.

The numerical value of the first two parameters, λ and A, are known rather
accurately [27] from, respectively, K → πlν and b→ clν decays:

λ = 0.22457+0.00186
−0.00014 , A = 0.823+0.012

−0.042 . (2.38)

One can then express all the relevant observables as a function of the two remaining
parameters, ρ and η, and check if there is a region in the ρ−η plane that is consistent
with all measurements. Among the most sensitive observables used to determine ρ
and η are:

� The rates of inclusive and exclusive charmless semileptonic B decays depend on
|Vub|2 ∝ ρ2 + η2;

� The CP asymmetry in B → ψKS , SψKS = sin 2β = 2η(1−ρ)
(1−ρ)2+η2

;

� The rates of various B → DK decays depend on the phase γ, where

eiγ =
ρ+ iη√
ρ2 + η2

;

� The rates of various B → ππ, ρπ, ρρ decays depend on the phase

α = π − β − γ ;

� The ratio between the mass splitting in the neutral Bd and Bs systems is sen-
sitive to |Vtd/Vts|2 = λ2[(1− ρ)2 + η2];

� The CP violation in K → ππ decays, εK , depends in a complicated way on ρ
and η.
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Figure 2.2: Allowed region in the ρ − η plane [27]. Superimposed are the individual con-
straints from charmless semileptonic B decays (|Vub|), mass differences in the Bd (∆md) and
Bs (∆ms) systems, CP violation in the neutral kaon (εK) and in the Bd systems (sin 2β), the
combined constrains on α and γ from various B decays.

The resulting constraints are shown in Fig. 2.2.

The consistency of the various constraints is impressive. In particular, the follow-
ing numerical values for the ρ̄ and η̄ parameters can account for all the measurements
[22]:

ρ̄ = 0.131+0.026
−0.013, η̄ = 0.345+0.013

−0.014 . (2.39)

From the above picture it is clear that the SM is very successful in describing flavor
physics and we can come to the conclusion that very likely the CKM mechanism is the
dominant source of flavor and CP violation in flavor changing processes. A compelling
question is then if there exist still room for NP contributions and, if it is the case, why
they are so suppressed with respect to the SM. The rest of this chapter will discuss
these questions in detail.

2.2 Effective field theories

In order to describe NP effects in flavor physics, we can follow two main strategies:
(i) to build an explicit UV completion of the model, or (ii) to analyse the NP effects
using an EFT approach. The former approach is more predictive, but also more
model-dependent and it will be used in next chapters. The latter has the advantage
of furnishing a very general description of NP effects at low energies using a limited
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number of parameters, but it has the drawback to shed much less light on the NP
scenarios at high energies that could arise. We will use the second approach for the
rest of this chapter.

While building an UV completion, one has to specify which are the new fields
beyond the SM ones. Instead, in an EFT approach one assumes the new heavy
fields to have been integrated-out as dynamical degrees of freedom, this giving rise to
new terms in the Lagrangian. We can then parametrize NP contributions using the
coefficients associated with these new Lagrangian terms:

Leff = LSM +
∑

C
(d)
i Q

(d)
i (SM fields) , (2.40)

where Q
(d)
i are generic operators of dimension d and C

(d)
i are their associated coeffi-

cients, referred to as the Wilson coefficients, whose mass dimension is [C
(d)
i ] = 4− d.

Since LSM is the most general Lagrangian (compatible with the SM symmetries and

using SM fields) with operators of dimension d ≤ 4, the operators Q
(d)
i should have

d > 4.
Since there always exists an infinite number of such operators, the question of

whether such a theory could be predictive or not naturally arises. This is where the
simple, but powerful trick of “naive dimensional analysis” comes to play. Calling Λ

the mass scale of the underlying physics generating the effective operator Q
(d)
i , we

can decompose its Wilson coefficient in the following way:

C
(d)
i =

ci
Λd−4

, (2.41)

where ci is a dimensionless coefficient, that can be thought of O(1), according to the
naturalness concept of section 1.3. Then, Eq. (2.40) can be recast as:

Leff = LSM +
∑ ci

Λd−4
Q

(d)
i (SM fields) . (2.42)

Eq. (2.42) allows us to implement a perturbative approach that makes the EFT
predictive as long as we are studying low energy processes, i.e. processes at energies
E � Λ. Indeed, in that case we can associate with the contribution of the operator

Q
(d)
i a suppression factor (EΛ )d−4 � 1; then, the higher the dimension of an effective

operator, the higher the suppression factor arising from dimensional analysis. Conse-
quently, we can restrict ourself to considering only the operators of lowest dimension
contributing to the process under study, since they give rise to the bigger corrections
to the SM predictions.

It is important to stress that an EFT approach is justified (and then predictive)
only as long as this perturbative analysis holds. But, in the low energy regime, an
EFT is usable and useful exactly as a renormalizable theory. The only difference
being that in the first case we already know that the theory has an ultimate cutoff at
which an UV completion is needed, whereas in the second case the theory, from the
mathematical point of view, is consistent at every energy scale.

2.2.1 Generalities on EFT

Already within the SM, i.e. when the full renormalizable theory is known and under-
stood, it can be useful to adopt an EFT approach. In that case, the main advantage
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is a practical one, since typically in EFTs the computations are simpler with respect
to the full theory.

The most notable examples of such a situation are weak mediated decay and flavor
oscillation processes. In these cases, the use of an effective approach is naturally
suggested by the presence of two different energy scales: the weak interactions scale
(∼ 100 GeV), which mediate the processes, and the mass scale of the particles under
analysis, either leptons (e.g. mµ ' 100 MeV) or hadrons (e.g. mK ' 500 MeV).

According to this technique, when considering low energy processes (E � MW ),
we can integrate out the W± bosons from the SM Lagrangian, and work out the
observables with the new theory obtained, that is nothing but the well-known Fermi
theory of weak interactions:

Leff
weak = −4GF√

2
J+
µ J
−µ , (2.43)

J+
µ = (VCKM )ij ūLiγµdLj + ν̄LiγµlLi , J−µ = (J+

µ )† , (2.44)

with GF the Fermi constant (GF = 1.16639·10−5 GeV−2). The Lagrangian (2.43) can
then be used to calculate tree level amplitudes in substitutions to the SM Lagrangian.

Thus, at the tree level, EFTs provide a simpler framework for performing compu-
tations. But, beyond the tree approximation, the question arises of how to account
for the effects of the strong interactions in the derivation of the effective Lagrangian.

To overcome this difficulty, a general procedure called “matching” is used [4]. It
consists of the following steps:

1. To list all possible gauge-invariant operators of a given dimension allowed by
the symmetries and the quantum numbers associated with a given problem.
Generally, for calculations in flavor physics ones consider only d = 6 operators.

2. To write down the effective Lagrangian with undetermined Wilson coefficients
Ci:

Leff
weak =

∑
CiQ

(6)
i . (2.45)

3. To determine the values of the coefficients Ci such that

Mn = 〈fn|LSM|in〉 !
=
∑

Ci〈fn|Qi|in〉+ higher order terms , (2.46)

by computing a sufficient number of amplitudesMn to a given order in pertur-
bation theory, both using the full theory and the EFT.

With the above procedure, one determines the Wilson coefficients Ci that makes
the predictions of the effective Lagrangian (2.45) merge at a given order with the SM
ones.

If the underlying theory is weakly coupled, it is obvious that all these computations
can be carried out using perturbation theory. But QCD becomes strongly coupled at
low energies, thus we have to further justify the use of perturbation theory also in
this case.

The crucial point is that the we can still determine the Ci perturbatively if the
theory is weakly coupled at high energy (asymptotic freedom at short distances).
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To understand this point, one has to think about the meaning of the expansions
(2.42) and (2.45): the operators Qi represent the long-distance processes that we
want to describe, while the Wilson coefficients Ci parametrize our ignorance of the
underlying short-distance physics mediating these processes; the discriminant between
long-distance (i.e. small momentum) and short-distance (i.e. high momentum) effects
being the energy scale Λ. Thus, the coefficients Ci are influenced only by the physics
above the cutoff scale; as long as the theory is weakly coupled at and above the scale
Λ, the Wilson coefficients are calculable perturbatively.

In particular, regarding the QCD corrections to weak hadronic processes, they
influence the computations of the r.h.s. of the matching conditions (2.46) in two
different ways: long-distance, non-perturbative QCD effects enter in the computations
of 〈fn|Qi|in〉 (in the form of hadronic matrix elements), while only short-distance,
perturbative loop effects modify the Ci values. The perturbative approach is then
justified.

Once defined how to consistently perform the calculations for the matching con-
ditions (2.46), another problem arises: since (2.45) define no more a renormalizable
theory, generally the standard renormalization procedure of the SM does not com-
pletely eliminate the divergences from the physical amplitudes of the theory. There-
fore, an additional renormalization, referred to as operator renormalization [4, 3], is
necessary:

Q
(0)
i = ZijQj , (2.47)

where, here and after, the ‘0’ index indicates unrenormalized (bare) quantities. Two
remarks are in order:

First, we can see that in the general case the renormalization constant Zij is
a matrix. This means that, even when starting with a Lagrangian with only one
operator, after the renormalization procedure we could possibly find non vanishing
Ci coefficients even for others operators different from the starting one. This effect
is referred to as operator mixing. In principle, every operator could mix with every
other operator with the same dimension7, but certain mixings could be forbidden by
symmetries.

Second, it is useful to point out that one can think of the operator renormalization,
which sounds like a new concept, in terms of the completely equivalent, but more
customary, renormalization of the coupling constants Ci. This is clear, since the bare
terms appearing in the (2.45) Lagrangian are of the form:

C
(0)
i Q

(0)
i = ZijCiQj , (2.48)

and we can as well think of them as the result of the renormalization procedure

C
(0)
i = ZjiCj (2.49)

carried on the Wilson coefficients.
At this point, it seems that the procedure leading from the generic Lagrangian

(2.45) to a predictive theory has been completely settled. However, in our justification

7This is because, in the MS scheme, Zij is dimensionless. In a general mass-dependent scheme,
operators can also mix with operators of lower dimension.
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of the perturbative approach to the matching conditions, we have neglected one detail
that could in principle spoil all that argument.

Indeed, while computing in perturbation theory amplitudes of processes involving
different energy scales, typically large logarithms appear. For example, for weak
hadronic processes, at the leading order we always meet the quantity

αs log
MW

µ
∼ O(1) , (2.50)

where µ is a mass characteristic of the process under study, such as the mass of the
decaying particle (then µ � MW ). But thus, a perturbative expansion in the small
parameter αs = g2

s/4π is undermined by the presence of this large logarithm.
The solution to this problem, already present in ordinary QFT, is employing the

method of the renormalization group (RG). The renormalization group equations
(RGEs) describe the change of renormalized quantities, Green functions and param-
eters, with the renormalization scale µ in a differential form. Solving at the leading
(i.e. one-loop) order these equations allows to sum up the terms (αs log MW

µ )n to all
order in perturbation theory. For this reasons, this approximation is referred to as
leading logarithmic approximation (LLA). In this framework, the next-to-leading or-
der approximation (referred to as next-to-leading logarithmic approximation, NLLA)
would be to sum up, again via RGEs, all the terms of the kind αs(αs log MW

µ )n [3].
The employment of the RG method allows to restore a perturbative approach,

the so-called RG improved perturbation theory. First, the matching conditions are
computed at the cutoff scale, then in our case we would have µ ∼MW . This prevents
the appearance of large logarithms, and the ordinary perturbation theory can be
applied at the desired order, say k. Only after the matching procedure is carried out,
the RGEs are used to “run” the Wilson coefficients from their high energy to their
low energy value, where they can be used to compute physical observables. This last
procedure corresponds to sum all the contributions of the kind αis(αs log MW

µ )n, to all
order in n and for i ≤ k.

We have already discussed the generalities about the matching procedure, we now
briefly describe how to perform the running of the Wilson coefficients using the RGEs
[3, 4]. The RGEs for the Ci follows from the fact that the bare Wilson coefficients

C
(0)
i are independent from the renormalization scale µ. Then, recasting Eq. (2.49)

writing explicitly the µ dependence of the quantities, we have:

~C(0) = ZT (µ)~C(µ) , (2.51)

and, differentiating this equation, we get

d

d logµ
~C(µ) = γT ~C(µ) , (2.52)

where we have defined the anomalous dimension γ(αs) as:

γ = Z−1 d

d logµ
Z , (2.53)

Note that, in the absence of QCD loop corrections, the couplings ~C would be
µ-independent. The non-trivial µ-dependence of ~C expressed in (2.52) is a genuine
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quantum effect, that imply an anomalous scaling behaviour of ~C. For this reason,
the factor γ is called anomalous (scale) dimension.

The renormalization constant Z, and then the anomalous dimension γ, can be
computed using ordinary perturbation theory. Once these quantities are found, the
differential equation (2.52) can be solved:

Ci(µ) = P exp

[∫ g(µ)

g(MW )

γT (g)

β(g)
dg

]
ij

Cj(MW ) , (2.54)

where P denotes “coupling constant ordering” of the anomalous dimension matri-
ces, and Cj(MW ) are the values of the Wilson coefficients found via the matching
procedure.

In conclusion, we have seen that the employment of the RG improved perturbation
theory allows to consistently implement a perturbative procedure that leads to an
effective low-energy Lagrangian, giving an easier framework for phenomenological
computations in substitution to the SM one.

2.2.2 EFT, new physics and flavor physics

Even though they can be useful also within the SM, as discussed above, EFTs show
their full potentialities when studying NP scenarios, where the UV completion of
the theory is unknown. In those cases, one can fully parametrize NP contributions
by a limited number of parameters, the Wilson coefficients ci associated with the
higer-dimensional operators. Recalling Eq. (2.42):

Leff = LSM +
∑ ci

Λd−4
Q

(d)
i (SM fields) .

As already discusses at the beginning of this section, the higher the dimension
of an effective operator, the higher the suppression factor arising from dimensional
analysis. Then, what is usually done is to focus on dimension six operators, that
are often the lowest-dimension operators giving rise to corrections to the process
under study8. For this reason, all dimension six operators compatible with the SM
symmetries had been studied and a complete list of them can be found in literature
([20, 28]).

The procedure, when dealing with EFTs parametrizing NP, is usually the follow-
ing:

1. To take from the complete list of d = 6 operators the ones that contribute
to the process of interest. To associate with any of them an unknown Wilson
coefficient and to build up the effective Lagrangian (2.42).

2. To compute physical observables using the obtained Lagrangian, expressing the
result as a function of the ci and the NP scale Λ.

8As already pointed out in section 1.2, there exists only one dimension 5 operator compatible with
the SM symmetries, see Eq. (1.2), and it usually does not give contribution to processes of interest.
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3. To compare the results with present experimental bounds, in order to derive
constraints about either the Wilson coefficients ci or the NP scale Λ. In the
former case, one assumes NP to arise at a certain energy scale (typically the
TeV scale, as argued in section 1.4), deriving an upper limit for the ci. In the
latter case, one assumes ci ∼ O(1) (on the ground of naturalness considerations)
and derive a lower limit for Λ.

It is clear that, in order to improve the experimental constraints on NP param-
eters, it is worthwhile to focus on physical observables that are highly suppressed
within the SM, in order to reduce the background noise arising from SM-mediated
processes when looking for NP effects.

This request strongly suggests to use FCNC processes as NP probes. Indeed, for
this class of processes the corresponding amplitudes are suppressed for many reasons:

� First, as discussed in section 2.1, all flavor changing processes can only be
mediated by weak interactions, then their associated amplitudes are suppressed
by the weakness of such interactions at low energies.

� Second, all flavor changing processes must involve at least one off-diagonal el-
ement of the CKM matrix. Being this matrix hierarchical, its off-diagonal
elements introduce a suppression factor, referred to as CKM suppression.

� FCNC are further suppressed for two reasons. First, they are absent at tree
level and only appear at the one-loop order, then their amplitudes are loop-
suppressed. Also, the unitarity of the CKM matrix implies a further cancel-
lation of the leading one-loop contributions to these amplitudes, as a direct
consequence of the relations (2.36b). This additional suppression is known as
GIM mechanism.

� In the leptonic sector, flavor violating transitions are completely forbidden by
the accidental symmetries of the SM9.

The phenomenology of flavor violating processes is very various and many means
of classification can be used. We have already introduced the distinction between
FCCC and FCNC (section 2.1). Another common method of classification made use
of the amount by which the flavor quantum numbers are violated. According to this
notation, a ∆F = 1 transition involves a violation by one unit of one flavor quantum
number (e.g. a weak decay such as K+ → π+π0), while ∆F = 2 denotes processes
with an overall violation of flavor quantum numbers by two units (e.g. neutral meson
oscillations such as K0 → K̄0 transitions).

All these considerations make the flavor violating processes an hard test for the
SM predictions and a sensitive probe of NP contributions. As discussed in section
2.1, until now the SM picture completely fits experiments; thus, the flavor physics
phenomenology is a powerful tool to impose severe constraints to NP scenarios, via
EFTs.

9To be fair, anomalies arising at the one-loop level spoils these symmetries, but the corresponding
amplitudes are absolutely negligible.
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Operator
Bounds on Λ Bounds on ci Observables

Re (TeV) Im (TeV) Re Im

(s̄Lγ
µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆MK ; εK

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆MK ; εK

(c̄Lγ
µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆MD; |q/p|

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆MD; |q/p|
(b̄Lγ

µdL)2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6 ∆MBd ; SψKS
(b̄R dL)(b̄LdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7 ∆MBd ; SψKS

(b̄Lγ
µsL)2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5 ∆MBs ; Sψφ

(b̄R sL)(b̄LsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6 ∆MBs ; Sψφ

Table 2.1: Bounds on representative dimension six ∆F = 2 operators, assuming an effective
coupling ci/Λ

2 [29]. The bounds are quoted on Λ, setting |ci| = 1, or on ci, setting Λ = 1 TeV.
The right column denotes the main observables used to derive these bounds, all to be discussed
in appendix A.1.

Summarising what outlined above, we can use dimension six operators in an EFT
approach to derive bounds either on the Wilson coefficients of the effective Lagrangian
or on the NP scale. The flavor physics, providing processes highly suppressed within
the SM, furnishes an important framework where these constrains can be enhanced
by many orders of magnitude.

In Table 2.1 are summarised the constraints, derived using flavor physics observ-
ables, for representative ∆F = 2 dimension six operators. A detailed description of
the physical processes and the corresponding observables used to derive such con-
straints is given in appendix A.1. For the time being, let us just present an overview
of the general conclusions that can be drawn by a thorough analysis. Reading the
table, a tension between a natural choice for the ci and the assumption Λ ∼ TeV
is evident. As a consequence, NP models with generic (anarchical) flavor structures
(ci ∼ O(1)) at the TeV scale are definitely ruled out. This situation is sometimes
called the new physics flavor problem (or puzzle): it is problematic to accommodate
NP at the TeV scale when considering the constraints derived from flavor physics.

The only solution to readmit the existence of NP at the TeV scale, also preserv-
ing the validity of naturalness considerations regarding the Wilson coefficients, is to
assume that BSM physics has an highly non-generic flavor structure, such that its
contributions to flavor physics observables are sufficiently suppressed in order not to
create tensions with the nowadays experimental bounds. In sections 2.3 and 3.2, we
will discuss and compare in detail two different proposals of how this suppression
could be achieved.

2.3 Minimal flavor violation

A very reasonable set up which solves the NP flavor problem is the so-called Minimal
Flavor Violation (MFV) hypothesis. Under this assumption, the Yukawa couplings
are the only source of flavor violating interactions also beyond the SM. As a result,
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NP contributions to flavor violating transitions turn out to be suppressed to a level
consistent with experiments even for Λ ∼ few TeV. One of the most interesting
aspects of the MFV hypothesis is that it can be naturally implemented within the
generic effective Lagrangian in Eq. (2.42). Furthermore, SM extensions where the
flavor hierarchy is generated at a scale much higher than other dynamical scales tend
to flow to the MFV class of models in the infrared.

The MFV hypothesis consists of two ingredients [6]: (i) a flavor symmetry and
(ii) a set of symmetry-breaking terms. The symmetry is nothing but the large global
symmetry Gflavor (2.10), which is the flavor symmetry of the SM Lagrangian in
absence of the Yukawa couplings. As discussed in section 2.1, this symmetry is
already broken within the SM, giving rise to flavor violating processes. Thus, it would
be unreasonable to promote it to be an exact symmetry of the NP sector, and further
such an imposed symmetry would be spoiled at the quantum level because of the SM
contributions. Therefore, the best that can be done to protect in a consistent way
flavor violating transitions from excessive TeV scale NP contributions is to assume
that Y u and Y d are the only sources of flavor symmetry breaking also in the NP
sector.

It is now necessary to implement in a mathematical manner the MFV concept.
We start by recalling the notation of section 2.1 about the flavor symmetry, focusing
on the quark sector. The flavor group is

U(3)3
q = SU(3)3

q × U(1)3 ,

SU(3)3
q = SU(3)Q × SU(3)U × SU(3)D ,

under which the quark fields transform in the following way:

QLi → (VQ)ijQLj , URi → (VU )ijURj , DRi → (VD)ijDRj .

The symmetry U(3)3
q is broken by the Yukawa interactions (2.8c)

LYukawa = −Y d
ijQ̄LiφDRj − Y u

ij Q̄Liφ̃URj + h.c. .

Watching the expression of LYukawa, we notice that the flavor symmetry can be
restored if we promote the Yukawa matrices Y u and Y d to be non-dynamical fields
(spurions) with non-trivial transformation properties under SU(3)3

q :

Y u ∼ (3, 3̄, 1) , Y d ∼ (3, 1, 3̄) , (2.55)

Y u → VQY
uV †u , Y d → VQY

dV †d . (2.56)

The SM Yukawa couplings can then be thought of as the background values of
these spurionic fields. We can still perform a basis redefinition, and in particular from
now on we will work in the basis with Yukawa backgrounds given by Eq. (2.19):

Y d = yd , yd = diag(yd, ys, yb) ,

Y u = V †yu , yu = diag(yu, yc, yt) .

All the above observations suggest a solution for implementing the MFV hypoth-
esis directly on the effective Lagrangian (2.42): we will say that an effective theory
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satisfies the MFV criterion in the quark sector10 if all higher dimensional operators
are formally invariant under the flavor group SU(3)3

q , under which the SM fields and
Yukawas transforms according to Eqs. (2.11) and (2.56), respectively.

This criterion is very effective in suppressing NP contributions to flavor violating
processes. Indeed, to satisfy the MFV prescription while building a flavor violating
operator, at least one insertion of the CKM matrix is needed; this is clear since in
our basis Y u is the only flavor mixing spurion. But then, the leading amplitudes
generated by such operator will benefit of a CKM suppression, exactly as the SM
amplitudes.

Furthermore, working in the “minimal” case, where the two spurions Y d,u are
assumed to be the only sources also of CP violation (CPV), NP corrections to some
observables are completely cancelled by an alignment mechanism [5]. This is the case
e.g. for CP violating phases in neutral meson mixing. In that case, since both SM
and NP contributions have the same dependence on the CKM complex phase δ, they
clearly give the same CPV phase, that can be factored out, with no distinction from
the SM-alone case.

According to the MFV criterion, one should in principle consider operators with
arbitrary powers of the (dimensionless) Yukawa fields. However, a strong simplifi-
cation arises by the observation that all the eigenvalues of the Yukawa matrices are
small, but for the top one, and that the off-diagonal elements of the CKM matrix
are very suppressed. Thus, in our basis and neglecting the light quark masses with
respect to the top mass, we have:[

Y u(Y u)†
]n
i 6=j
' (yt)2nV ∗tiVtj . (2.57)

Consequently, at the leading order, including higher powers of the Yukawa matrices
leads only to a redefinition of the overall factor following the CKM suppression V ∗tiVtj
(remember that yt ∼ O(1)). This consideration makes more clear what argued above,
i.e. that the MFV hypothesis transfer the CKM suppression also to the NP sector.

The approximation (2.57) furnishes a great simplification for calculations, and
allows a simple framework to predict the suppression factor associated with a generic
higher dimension operator. To be specific, once identified the spurionic structure of
the operator under analysis, one can follow the Wolfenstein parametrization of the
CKM matrix elements (2.33), and carry out an expansion in power series of λ (the
sine of the Cabibbo angle). This procedure gives as a result the CKM suppression
associated with that operator.

Here follows an example of how these techniques can be used in practice. We will
work on a particular dimension six ∆F = 1 operator, the so-called electromagnetic
dipole operator :

Q7γ =
emb

16π2
Fµν s̄Lσ

µνbR . (2.58)

Notice that this is really a dimension six operator, since its gauge-invariant form
should involve an additional Higgs doublet:

Q7γ ∝ eFµν φ Q̄LσµνDR , (2.59)

10The notion of MFV can be extended also to the lepton sector. However, in this case there is not
a unique way to define the minimal sources of flavour symmetry breaking if we want to keep track
of the non-vanishing neutrino masses [30].
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but, after EWSB, the Higgs VEV combined with the Yukawa coupling for DR (arising
from the spurionic analysis we are about to carry out) becomes a mass term for the
right-handed field, exactly as expresses in Eq. (2.58).

The first step is to identify the lowest order combination of spurionic fields Y d,u

that makes Q7γ formally invariant under SU(3)3
q ; for this purpose, it is better to use

the covariant expression (2.59). It is easy to verify that the sought combination is

Q7γ ∝ eFµν φ Q̄LY uY u†Y dσµνDR . (2.60)

After EWSB and using explicitly the b and s fields, we are left with

Q7γ ∝ eFµν v
∑
k

s̄L(Y uY u†)2k(Y
d)k3σ

µνbR . (2.61)

Once identified the (leading order) spurionic structure of the operator, we can go
further and calculate the suppression factor arising from such structure. In the case
we are studying, applying Eqs. (2.19) and (2.57) we find:

Q7γ ∝ eFµν(vyb)(yt)2V ∗tsVtb s̄Lσ
µνbR ∼ λ2 mbs̄Lσ

µνbR . (2.62)

In Eq. (2.62) we have recovered the mb coefficient inserted in the definition (2.58).
Furthermore, we have found the predicted suppression factor in the SM and in all NP
models satisfying the MFV hypothesis. If we now consider the operator with opposite
chiralities, namely:

Q′7γ =
emb

16π2
Fµν s̄Rσ

µνbL , (2.63)

it is straightforward to verify that now one has:

Q′7γ ∼ λ2 mss̄Rσ
µνbL , (2.64)

and thus the “wrong chirality” operator Q′7γ receives in MFV the same suppression
factor ms/mb that one finds in the SM.

In an analogous manner, we can predict the suppression factor in MFV for the
contribution of every higher dimension operator. Consequently, one can actually
revise Tab. 2.1 by taking into account such suppressions.

The result of this analysis, carried out for some representative dimension six
operators, can be seen in Tab. 2.2. The general result is that NP at the TeV scale
satisfying the MFV paradigm is still consistent with nowadays experimental bounds.
In section 3.2, we will return on this analysis to compare it with other paradigms
used to suppress NP contributions to flavor physics.

Although MFV seems to be a natural solution to the flavor problem, it should be
stressed that (i) it is not a theory of flavor (there is no explanation for the observed
hierarchical structure of the Yukawas), and (ii) we are still far from having proved
the validity of this hypothesis from data (in the effective theory language we can say
that there is still room for sizeable new sources of flavor symmetry breaking beside
the SM Yukawa couplings [33]). Confirmation or falsification of MFV hypothesis can
be achieved only with evidence of BSM physics, checking if it presents or not the
flavor-universality pattern predicted by the MFV assumption.
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Operator Bound on Λ Observables

φ†
(
D̄RY

d†Y uY u†σµνQL
)

(eFµν) 6.1 TeV B → Xsγ, B → Xs`
+`−

1
2(Q̄LY

uY u†γµQL)2 5.9 TeV εK , ∆MBd , ∆MBs(
Q̄LY

uY u†γµQL
)

(ĒRγµER) 2.7 TeV B → Xs`
+`−, Bs → µ+µ−

i
(
Q̄LY

uY u†γµQL
)
φ†UDµφU 2.3 TeV B → Xs`

+`−, Bs → µ+µ−(
Q̄LY

uY u†γµQL
)

(L̄LγµLL) 1.7 TeV B → Xs`
+`−, Bs → µ+µ−(

Q̄LY
uY u†γµQL

)
(eDµFµν) 1.5 TeV B → Xs`

+`−

Table 2.2: Spurionic structure and bounds on the scale of new physics (at 95% C.L.)
for some representative ∆F = 1 [31] and ∆F = 2 [32] MFV operators (assuming effective
coupling ±1/Λ2) and the corresponding observables used to set the bounds.

The MFV idea has become a very popular concept in recent literature and has been
implemented and discussed in several works. Here we have presented its formulation
based on a renormalization-group-invariant symmetry argument, with the further
assumptions that no other sources of CP violation are present and that there exist
only one Higgs doublet. Relaxing the latter assumption, one can build up theories
where the bottom Yukawa yb is of O(1) (e.g. MSSM with large tanβ, see [34]),
thus giving rise to new order-one contributions. Alternatively, different definitions
or modifications of the MFV hypothesis can be proposed, such as constrained MFV
(CMFV, [35]) or general MFV (GMFV, [34]).

Further, since the connection between flavor and CP violation in the SM can be
thought of as accidental, one can add flavor-diagonal CPV phases to generic MFV
models [36]. However, because of the experimental constraints on electric dipole
moments, which are generally sensitive to such flavour-diagonal phases, in these more
general cases the bounds on the scale of new physics are substantially higher with
respect to the “minimal” case, where the Yukawa couplings are assumed to be the
only breaking sources of both symmetries.
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CHAPTER 3

Composite Higgs models

3.1 Possible solutions to the hierarchy problem

3.1.1 Overview on proposed models

In section 1.4 we have discussed about hierarchy problem, that is the naturalness
problem concerning the small value of the Higgs mass, compared with the fundamental
(planckian) mass scale, a fine tuning that does not have any explanation within the
SM. In the last decades different solutions has been suggested to explain the Higgs
mass, and we can group the main proposals in the following classes:

� Supersymmetry. In section 1.3 we have explained why a small value for the
fermion masses can be thought of as natural. We have also seen that the same
argument does not hold for a scalar boson mass (that is the Higgs mass). Su-
persymmetry (SUSY, [37]) is a symmetry that relates boson fields with fermion
fields: in the limit of exact SUSY, the masses of the boson and the fermion
fields must be equal, and the contribution from fermions to the quadratic diver-
gence of the boson mass exactly cancels the contribution of bosons, and only a
logarithmic dependence remains. In other words, this new symmetry allows to
extent the ’t Hooft condition to boson masses, solving the hierarchy problem.

However, exact SUSY is clearly unrealistic, then SUSY breaking terms must be
added to the theory, these introducing new quadratic divergences to the Higgs
mass. For approximate SUSY (with soft breaking terms and R-parity conserva-
tion), Λ2 of Eq. (1.3) is essentially replaced by the splitting of SUSY multiplets:
Λ2 ∼ m2

SUSY −m2
ord. Then in most realistic SUSY models a little hierarchy

problem still survives, since the mass corrections induced by Λ2 requires a little
fine tuning to be adjusted.

� Strongly interacting EWSB sector. The archetypal idea of this class of models
was the so-called Technicolor theory, where the EWSB was dynamically realized
by a new strong interaction and new particles at the TeV scale, and no additional
scalar bosons have to be introduced. In this class of models, the EWSB scale is
dynamically generated by the RG evolution of the technicolor coupling constant,

39
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that becomes non-perturbative (resulting in a strong interacting sector) at the
Fermi scale.

Since its first formulation, many extensions of the original Technicolor model
have been proposed, in order to introduce a naturally light Higgs boson, explain
the Fermion masses, satisfy the increasingly tight experimental constraints.
These ameliorated models sometimes are referred to as technicolor theories,
with the lower case, in order to distinguish them from the original Technicolor
theory (with capital T). We will discuss in detail these modifications through
this chapter.

� Extra dimensions. The existence of extra, compactified dimension(s) is a fas-
cinating physical idea. In last decades, QFT models in five (or even more) di-
mensions have been studied, resulting in several interesting results and analogies
with ordinary QFT in four flat dimensions. Within this very rich framework,
the hierarchy problem could possibly be addressed using models with one curved
extra dimension, such as Randall-Sundrum models [38]. In these models, the
background metric of the “warped” extra dimension can generate exponential
mass hierarchies.

In appendix A.2 models with one flat extra dimension are briefly described and
the analogies of these models with composite Higgs models are shown.

� Multiverse reformulation of the problem. The concept of Multiverse, realiz-
able e.g. in chaotic inflation models, is the idea that our Universe is just one
of infinitely many bubbles continuously created from the vacuum by quantum
fluctuations [39]. Further, each Universe could present its peculiar set of funda-
mental constants, according to the multitude of string theory solutions (∼ 10500

[40]). Within this picture, the hierarchy problem can be reformulated in the
following way: why, among all the possible sets of fundamental constants, our
Universe has its peculiar one, that looks so unlikely with all those hierarchies?
Two possible solutions have been proposed so far to solve the hierarchy problem
using this point of view.

One is the anthropic evasion of the problem, that is the idea that our Uni-
verse, although unlikely, is the only one that allows our existence as conscious
observers. This idea has become popular since Weinberg used it in 1987 to
predict the range of allowed values for the cosmological constant, on the ground
of consideration concerning the galaxies formation [41] (actually, the predicted
value is just a factor 10 ÷ 100 times larger than the measured one). However,
at present days it is unclear how this principle could work for certain SM pa-
rameters, that does not seems to affect in any way our existence (such as the
mixing angles and the mass hierarchies among fermions).

The second proposal arise from the observation that the SM parameters seems
to lie, in the parameter space, in the vicinity of specific critical points, on
the border of transitions between different phases. For example, the values of
Higgs and top-quark masses lie in the vacuum metastability region for the Higgs
potential [42]. This could lead to the speculation that, within the multiverse,
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critical points are attractors. Thus, maybe our Universe actually is a likely one,
despite our naturalness considerations.

� Disregard for naturalness argumentations. Electroweak precision tests and fla-
vor physics experiments have not revealed the existence of TeV physics yet,
even though a natural solution to the hierarchy problem apparently predicts it.
Since the naturalness concept is not supported by any mathematical theorem,
there has been in the last years a revival of models that simply ignore the fine
tuning problem while trying to accommodate the known facts.

3.1.2 Early Technicolor models, credits and problems

To introduce the basic ideas of Technicolor (TC) models, it is worthwhile to start using
an analogy with a better understood situation: the QCD chiral symmetry breakdown.
It is well-known that, when considering only the first family of quarks, the QCD
theory has an approximate global symmetry SU(2)L × SU(2)R (chiral symmetry),
that undergoes a dynamically realized symmetry breaking:

SU(2)L × SU(2)R → SU(2)V , (3.1)

being the pions the associated pseudo Nambu–Goldstone (pNG) bosons.
In the chiral limit (quark masses set to zero), the QCD chiral symmetry becomes

an exact symmetry and the breaking pattern (3.1) generates massless NG bosons
(the pions). In this limit, interesting considerations can be made when also the
electroweak gauge group SU(2)L × U(1)Y is taken into account. In this case, the
dynamical symmetry breaking (3.1) represents a spontaneous breaking of the local
(gauge) symmetry SU(2)L. In other words, in the chiral limit QCD dynamically
breaks the SU(2)L invariance and the (massless) pions are eaten to give mass to the
W and the Z bosons.

To see how the weak bosons get mass, let us consider e.g. the W propagator in
the Landau gauge (ξ = 0):

=
−i
q2

(PT )µν , (PT )µν = ηµν −
qµqν
q2

, (3.2)

To compute the loop correction to such propagator, one have to sum to all orders
its one-particle-irreducible contributions:

then, with

= iΠµν(q) = iq2
(g

2

)2
Π(q2)(PT )µν , (3.3)
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we have

= Gµν(q) =
−i

q2[1− g2Π(q2)/4]
(PT )µν . (3.4)

Thus, a mass for the W arises only if Π(q2) has a pole at q2 = 0. The pole in fact
exists as a result of the symmetry breaking, due to the exchange of a massless pion:

=⇒ =⇒ Π(q2) =
f2
π

q2
, (3.5)

where fπ is the pion decay constant.

Substituting Eq. (3.5) in Eq. (3.4), we finally find

Gµν(q) =
−i

q2 − g2f2
π/4

(PT )µν , (3.6)

that implies a mass for the W boson:

MW =
gfπ
2
' 29 MeV . (3.7)

Although the predicted mass for the W is completely wrong, this example shows
how EWSB could in principle be achieved with a dynamical symmetry breaking
mechanism and without the necessity for an Higgs boson.

Another important feature of this model, that will become an important request
for realistic technicolor models, is the presence of a residual SU(2)V global symmetry
(see Eq. (3.1)). In the absence of the U(1)Y gauge group (or, equivalently, in the
limit g′ → 0) this symmetry is preserved and imposes the same mass for both W±

and Z. In other words, in the limit g′ → 0 the residual SU(2)V symmetry imposes,
at tree level:

M2
W

M2
Z

= 1 . (3.8)

When we turn on the gauge group U(1)Y (g′ 6= 0), the SU(2)V symmetry is
broken, because W 3 now mixes with B. But, since this is the only source of symmetry
breaking (at tree level), it is easy to see that Eq. (3.8) is modified into

ρ ≡ M2
W

M2
Z cos2 θW

= 1 . (3.9)

Thus the residual SU(2)V global symmetry guarantees at tree level that ρ = 1,
protecting this SM prediction. This is important because electroweak precision tests
(EWPT) on ρ have confirmed until now this relation1.

1At one-loop level, the ρ parameter receives other contributions that spoil the ρ = 1 relation in
generic renormalization schemes. Until now, even considering loop corrections, the SM prediction is
consistent with experiments.
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For this reason, SU(2)V is sometimes called custodial symmetry, since it prevents
NP models from giving too strong (i.e. experimentally incompatible) corrections to
the ρ parameter.

The way the above example fails in describing realistically the EWSB suggests
a simple solution to overcome the difficulty. The above predicted W mass was
MW ∼ 29 MeV, more that three order of magnitude smaller than the actual W mass,
MW ' 80 GeV. One could then imagine that the actual EWSB dynamics could be
just a scaled-up version of QCD, with

fπ −→ Fπ ∼ v = 256 GeV . (3.10)

In general, one can think of an SU(NTC) “Technicolor” gauge group, together with
a certain number of “technifermions” charged under this gauge group and a global
symmetry breaking pattern SU(2)L × SU(2)R → SU(2)V triggered by confinement2.

Such models behave in the same way as the QCD example above, and further
they predict the correct values for the W and Z bosons. The hierarchy problem
is then solved by dimensional transmutation: the electroweak scale v is generated
dynamically as the scale at which the Technicolor coupling constant gTC grows strong
in the infrared, according to its RG evolution.

Since we can think of the would-be NG bosons as “technipions”, they will have
heavy resonances, such as the “techni-ρ” particles ρTC (in the same way as the first
heavy resonances of the pions are the ρ mesons), that should be detectable particles.
Actually, the global symmetry breaking pattern could be bigger than the minimal
one of Eq. (3.1). In this case, together with the would-be NG, other pNGs arise and
again these should be detectable.

What are the masses of these light technimesons? A simple argument based on
the QCD analogy can be adduced: since we are thinking of SU(NTC) as a scaled up
version of QCD, we can suppose that such scaling is roughly valid also for the masses
of the bound states3:

mρTC ∼
Fπ
fπ
mρ ' 2.1 TeV . (3.11)

Similar values can be found for the masses of the pNG arising from bigger symmetry
breaking patterns. Thus, a general prediction of TC theories is a whole spectrum of
new particles, starting roughly at the TeV scale.

Having discussed the features of the original TC theories that makes them inter-
esting candidates for EWSB, we now turn on predictions in conflict with experimental
data, that require more sophisticated models to be solved. The two main problems of
early TC theories were a parametrically too large correction to the Peskin-Takeuchi S
parameter and too fast FCNC processes. Referring to the literature for a discussion
of the first problem [43], we now concentrate to the second one.

To understand the problem of FCNC in Technicolor theories, it is first necessary
to explain how in these models the SM fermions become massive. In order for the

2To be fair, the assumption that a generic SU(N) gauge theory with N > 2 presents the phe-
nomenon of confinement is, until now, only a conjecture.

3A little less näıve argument, that takes into account also the fact that it could be NTC 6= 3, gives
an extra factor

√
3/NTC [9].
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ordinary fermions to feel the EWSB, some interaction must exist between fermions
and technifermions. A simple solution is to assume that both the color group SU(3)C
and the Technicolor SU(NTC) are embedded in a larger Extended Technicolor (ETC)
group,

SU(NETC) ⊃ SU(3)C × SU(NTC) , (3.12)

which is assumed to be spontaneously broken at the scale ΛETC . Now the fermions
are allowed to interact with technifermions via the exchange of the broken ETC gauge
bosons. Such interactions generate, at energy scales lower than ΛETC , effective four-
fermion operators with two SM fermions (ψ) and two technifermions (ψTC):

Lint =
g2
ETC

Λ2
ETC

(ψ̄ψ)
(
ψ̄TCψTC

)
. (3.13)

At the lower scale ΛTC ' Fπ ' v the SU(NTC) group condenses giving rise to effective
fermion mass terms:

Lint =
g2
ETC

Λ2
ETC

(ψ̄ψ)〈ψ̄TCψTC〉 ∼ ΛTC

(
ΛTC

ΛETC

)2

(ψ̄ψ) . (3.14)

This is the general mechanism that was proposed to generate mass terms for the
SM fermions in TC models. This proposal gives rise to two main difficulties:

� In order to explain the hierarchy of fermion masses, it is clear that the generation
of the four-fermion interactions (3.13) for different flavors cannot happen just at
one single scale ΛETC . Thus, a complicated (and awkward) cascade of symmetry
breakdowns is needed. Alternatives solutions (such as the tumbling mechanism
[44]) does not seem to gracefully solve this point.

Anyway, it is clear that, to reproduce the correct SM fermion masses, the ΛETC
scale(s) cannot be too large. For example, if ΛTC ' v one needs ΛETC ' 10 TeV
in order to reproduce the s quark mass. This will go into conflict with the next
point.

� A more serious problem, as anticipated, arises when considering FCNC pro-
cesses. The observation is that the exchange of a broken ETC gauge boson also
generates operators with four SM fermions:

L′int =
g2
ETC

Λ2
ETC

(ψ̄ψ)2 . (3.15)

Generically, these operators are flavor anarchic since different SM flavors have
to be embedded into the same ETC multiplet; this gives rise to various tree
level FCNC amplitudes. As already discussed in section 2.2, FCNC are highly
suppressed in the SM; thus to satisfy the experimental bounds on NP contri-
butions to FCNC, one needs to assume ΛETC & 103 ÷ 105 TeV (see Tab. 2.1).
However, this last assumption generates a great friction with the previous point,
since such lower bound on ΛETC leads to exceedingly too small masses for the
SM fermions.
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Figure 3.1: The pattern of symmetry breaking in a generic CH model.

One mechanism that has been proposed to resolve this tension is that of Walking
Technicolor (for references, see [9]). The basic idea of this proposal is to drift
from the above näıve dimensional analysis (NDA) arguments for the running
behaviour of the ETC operators exploiting large anomalous dimensions, that
could arise e.g. if the TC coupling constant has an IR non-perturbative fixed
point. Referring to the literature for a thorough discussion, we just add that
generally this solution can lead to a milder disagreement, but cannot solve the
above problem.

From the above discussion, it should be now clear that these early TC models,
although they suggest interesting mechanisms that can be alternatives to the SM
ones, need deep improvements in order to be able to represent a plausible theory
of EWSB. Last but not least, they also does not account for the by now confirmed
existence of the Higgs boson.

3.2 Composite Higgs models

3.2.1 Generalities

There is an interesting variation of the strong symmetry breaking paradigm presented
above that interpolates between simple TC theories and the Higgs model. In this class
of theories the Higgs boson, rather that being an elementary scalar, is one among
the strongly interacting sector bound states (that we will for now on call composite
particles): this is the basic idea of Composite Higgs (CH) models [8]. The hierarchy
problem is then solved as in TC theories: the compositeness scale of the new strong
interaction (i.e. the EWSB scale) is dynamically generated by the RG evolution of
its coupling constant.

Within this new scenario, the Higgs could naturally be lighter than the other
resonances if it emerges as the pNG boson of a global symmetry breaking pattern
characteristic of the strong dynamics under study; this further assumption allows
these models to solve in a simple way the little hierarchy problem.

A specific CH model is then characterized by its peculiar symmetry structure.
In the most general case, represented in Fig. 3.1, the strong interacting sector has a
global G symmetry group dynamically broken toH1 at the scale f , while the subgroup
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H0 ⊂ G is gauged by external vector bosons. The global symmetry breaking G → H1

implies n = dim(G) − dim(H1) Goldstone bosons, n0 = dim(H0) − dim(H) of which
are eaten to give mass to as many vector bosons, so that H = H0 ∩ H1 is the
unbroken gauge group. The remaining n− n0 are either NG or (as in our case) pNG
bosons, according to whether the broken symmetry associated with them is an exact
or approximated one.

We now specialize the outlined general structure to a realistic theory of EWSB,
specifying the features that it should have:

1. The SM electroweak gauge group GSM must be embeddable in the unbro-
ken subgroup H1. One should notice that this does not necessarily implies
GSM ⊂ H1, as it will soon be clear;

2. Since the Goldstone bosons live in the coset G/H1, in order to have a composite
pNG Higgs boson such coset must contains at least one SU(2) doublet, to be
identified with the SU(2)L Higgs doublet;

3. Even if it is not mandatory, it is desirable to furnish the unbroken subgroup H1

also of a custodial symmetry, to prevent too large corrections to the ρ parameter;

4. The global symmetry G is assumed to be explicitly broken by the interactions
between SM fields and the strong sector. If it is the case, the Higgs doublet
becomes a pNG bosons and it acquires a non-vanishing potential (and ergo
a mass) at one-loop order. This, in turns, triggers the EWSB and the SM
electroweak gauge group, previously unbroken, go through an Higgs-mediated
spontaneous breakdown.

The fourth condition already explains the SSB dynamics in these models, that can
be illustrated in two different passages. At tree level, the strong dynamics mediates
the G → H1 symmetry breaking, which occurs at the energy scale f . At this point,
the Higgs is a NG massless doublet and GSM ⊂ H1.

However, an interaction between SM fermions and composite sector is needed
in order to explain fermion masses, as illustrated in the previous section. If we
assume these interactions to explicitly breaks the G symmetry, we encounter the
second passage of the SSB: at one-loop order the Higgs, now a pNG boson, acquires
a non-vanishing mass and a VEV, and the latter triggers the EWSB. In other words,
at one-loop level a misalignment between GSM and H1 (GSM 6⊂ H1) arises from the
non-vanishing Higgs potential. As a consequence of such misalignment, now GSM
feels the global symmetry breaking G → H1, resulting in the EWSB process.

The dynamics described above is illustrated in Fig. 3.2. It is important to stress
that, in this picture, the energy scale of EWSB is the Higgs VEV v, that is different
from the scale f of the global G → H1 SSB. The ratio ξ = v/f is determined by the
vacuum misalignment between GSM and H discussed above. A mild fine tuning over
ξ can then explain why the Higgs boson is lighter that the other (so far unobserved)
composite particles, as expected from a pNG boson.

As an example, we now briefly comment on the minimal set satisfying the above
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Figure 3.2: Realization of the EWSB in a CH model. At one-loop level, the vacuum
misalignment ξ between the Higgs VEV v and the unbroken H1 group triggers the symmetry
breaking of the electroweak gauge group.

conditions, that is the SO(5)/SO(4) model4, where G = SO(5) and H1 = SO(4).
Indeed, with this pattern:

- Since SO(4) ∼= SU(2)L × SU(2)R ⊃ SU(2)L × U(1)Y , the unbroken H1 group
includes GSM , and furthermore it has the required custodial symmetry;

- The Goldstones of the coset SO(5)/SO(4) can be parametrized in terms of four
real fields, or equivalently of a complex doublet φ. Such doublet transforms
under SO(4) ∼= SU(2)L × SU(2)R as a bidoublet:

(φ̃, φ)→ VL(φ̃, φ)V †R , (3.16)

where φ̃ = iσ2φ∗. This behaviour encapsulates the right transformation prop-
erties of the Higgs doublet (to be identified with φ) under the SU(2)L ×U(1)Y
gauge group (the generator of U(1)Y is defined as Y = T 3R).

This configuration can be slightly ameliorated to include an extra U(1)X symme-
try, required to accommodate composite fermions with the correct quantum numbers
to interact with the SM fermions.

For all the above reasons, the SO(5)×U(1)X → SO(4)×U(1)X pattern is called
minimal composite Higgs model (MCHM) [45]. Of course, also less minimal sets can
be considered, such as the SO(6)/SO(5) pattern [46].

Until now, we have discussed the differences that improve the CH models with
respect to simple TC models. We have seen in the previous section that the latter fails
in explaining the SM fermion masses, basically because of the FCNC experimental
constraints. We now discuss if and how the CH models can address those tensions.

A first possible mechanism to explain SM fermion masses is essentially the repeti-
tion of the argument adduced in TC models: assuming an ETC broken gauge group
that leads to some fermion-technifermion interaction, the theory generates effective
four-fermion terms:

Lint =
g2
ETC

Λ2
ETC

(ψ̄ψ)
(
ψ̄TCψTC

)
. (3.17)

4Of course, an extra SU(3) gauge group has to be added to the following model in order to
describe also QCD. It can be simply added to the unbroken H group.
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Below the scale f , the strong dynamics condenses resulting in an interpolated Higgs
field. After EWSB, it takes a VEV leading to:

Lint =
g2
ETC

Λ2
ETC

(ψ̄ψ)〈ψ̄TCψTC〉 '
(

f

ΛETC

)2

(ψ̄φψ) ' v
(

f

ΛETC

)2

(ψ̄ψ) . (3.18)

Again, we have to admit the existence of generic flavor violating four-fermion
operators generated by the ETC interactions:

L′int =
g2
ETC

Λ2
ETC

(ψ̄ψ)2 , (3.19)

but, this time, we can conciliate both sufficiently high SM fermion masses and suffi-
ciently suppressed FCNC contributions by assuming ΛETC ' f � v. In other words,
we can completely solve the tension between contributions of (3.18) and (3.19), but
at the price of an high tuning over ξ, namely ξ ' 10−3 ÷ 10−5.

The fine tuning of the ξ parameter is not the only problem of this explanation
of the SM fermion masses. The difficulties related to the reproduction of the mass
hierarchies of fermions discussed in the previous section still hold. All these reasons
motivate the introduction of a different mechanism that can transmit the EWSB to
the SM fermions.

Suppose that some UV physics generates a linear coupling between a composite
operator O and one SM fermion [7]:

Lint = λψ̄O + h.c. , (3.20)

where O must be a fermionic composite operator, made for example, but not nec-
essarily, of three technifermions. It is important to notice that every SM fermionic
representation needs a different composite operator O, with the correct quantum
numbers to make the Lagrangian (3.20) invariant under GSM .

At low energy the composite Higgs field is interpolated by pairs of composite
operators OLOR, and the effective low energy Lagrangian generated from the Wick
contraction of two O operators becomes

Leff = λLλR〈(ψ̄ROL)(ψ̄LOR)〉+ h.c. ∼ vλLλRψ̄ψ + h.c. , (3.21)

then producing a mass term for the SM fermions. As discussed in Ref. [9], in this
case it is also possible, through a RG argument and using quite general assumptions,
to generate hierarchical mass terms exploiting different evolutions under the RGEs
of the different couplings λ, due to their peculiar anomalous dimensions.

3.2.2 Partial compositeness paradigm

Linear couplings have an interesting phenomenological consequence, already noticed
in Ref. [7]: at energies below f , at which the strong dynamics is assumed to condense,
the composite operator O can excite a heavy fermionic resonance (i.e. a composite
fermion that can be thought of as the analogous of a “technibarion” in Technicolor
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theories). More exactly, there will be a full tower of composite Dirac fermions χn of
increasing mass that can be excited by the operator O. In formulas:

〈0|O|χn〉 = ∆nuχn . (3.22)

where uχn is the Dirac spinor associated with χn. From this relation follows that one
can generate the same Green functions of the Lagrangian (3.20) with the following
Lagrangian:

L′mix =
∑
n

∆n(ψ̄χn + h.c.) . (3.23)

The Lagrangian (3.23) can be thought of a mass mixing term between the elementary
(ψ) and the composite (χ) fermions.

Similarly, a conserved current Jµ associated with the global symmetry G of the
strong sector will excite a tower of spin-1 resonances ρn, which will mix with the
elementary gauge fields Aµ:

L′mix =
∑
n

mρnfρnAµρ
µ
n , 〈0|Jµ|ρn(εr)〉 = εrmρnfρn . (3.24)

From the mixing terms (3.23) and (3.24) follows that the SM fields (that is the
physical fields) are an admixture of elementary and composite fields. In this case one
speaks of partial compositeness of the SM particles.

To clarify the above concepts, we first focus on a simple example, considering one
elementary chiral field with only one composite resonance, namely:

L = ψ̄Li/∂ψ + χ̄(i/∂ −m)χ+ (∆Lψ̄LχR + h.c.) . (3.25)

The Lagrangian (3.25) can be easily diagonalized by rotating the left-handed fields:(
ψL
χL

)
→
(

cosϕL sinϕL
− sinϕL cosϕL

)(
ψL
χL

)
, tanϕL =

∆L

m
. (3.26)

The mass eigenstates resulting from this rotation are a massless left-handed fermion

(to be identified with the SM field) and a heavy Dirac fermion of massm∗ =
√

∆2
L +m2

(to be identified with the first heavy resonance):

|SML〉 = cosϕL|ψL〉+ sinϕL|χL〉 ,
|heavyL〉 = − sinϕL|ψL〉+ cosϕL|χL〉 ,
|heavyR〉 = |χR〉 .

(3.27)

The above procedure can be straightforwardly extended to the case where a right-
handed elementary field is added. To be definite, for now on we will use the ele-
mentary/composite terminology when talking about the field basis before the mass
diagonalization, while we will use the SM/heavy terminology referring to the mass
basis, as done here.

As it can be seen in the example, at the moment the SM fermions are still mass-
less. This is clear since, in the language developed before, the first step of SSB,
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but not the second (that is the EWSB), has been carried out. Although the ex-
plicit implementation of the EWSB is a model-dependent issue, some far-reaching
and model-independent consequences can be derived using general assumptions of
CH models.

First, it is important to notice that the mass mixing parameters ∆L, again as a
result of a RG evolution argument, can be naturally much smaller than the masses m
of the composite fermions. From this fact follows that the mixing angles are ϕ � 1
and then the SM fields are a linear combination of almost elementary fields and a
small amount of composite fields. Also, one should recall that it is a general feature
of CH models that only the composite sector interacts with the Higgs boson and feels
the EWSB.

As a consequence of the above observations, we can identify two different con-
tributions that determine the strength with which a SM field feels the EWSB. It
depends upon the interaction of the corresponding composite field with the Higgs
doublet (determined by the unknown strong dynamics), and upon the degree of par-
tial compositeness of the SM field (parametrized by the mixing angle ϕ). In formulas,
we can express the Yukawa couplings of the SM fields as:

ySM = ycomp sinϕL sinϕR . (3.28)

Plugging this argument into a realistic three-families description, we conclude that
the Yukawa matrices for the SM fields have the following structure:

(Y SM )ij = (Y comp)ij sinϕLi sinϕRj , (3.29)

where we are not summing over the i, j indices. It is preferable to choose the com-
posite Yukawa matrix Y comp to be flavor anarchic, in order to avoid fine tuning. In
this picture, the hierarchies of both the SM fermion masses and the CKM matrix
can be explained by a hierarchical structure of the mixing angles ϕi, which in turn
can arise from a different RG evolution for the mixing parameter ∆i. Then, partial
compositeness furnishes a fascinating mechanism to solve the SM flavor puzzle.

From all the above considerations, we can work out a method to compute the
predicted suppression factor arising from partial compositeness for a generic operator
[63]. As a final result of the following analysis, we will be able to compare the
suppression generated by the partial compositeness paradigm with the one generated
by the MFV paradigm developed in section 2.3.

First, we define an unambiguous notation for the degrees of partial compositeness
of the SM fields. Clearly, we will focus here on the quark sector, as done in section
2.3. Calling ε the sine of the generic mixing angle, we set the following associations:

QLi → εqi i = {1, 2, 3} , (3.30a)

URi → εui i = {1, 2, 3} = {u, d, t} , (3.30b)

DLi → εdi i = {1, 2, 3} = {d, s, b} . (3.30c)

As explained above, we assume the composite sector to be flavor anarchic, thus all
the hierarchies of the SM arise from the hierarchies among the ε’s, where ε1 < ε2 < ε3.
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In particular, according to Eq. (3.29), the SM Yukawa matrices can be parametrized
as follows:

(Y u)ij ∼ εqi εuj , (Y d)ij ∼ εqi εdj . (3.31)

Keeping only the leading terms in the expansion, it is easy to see that the Yukawa
matrices can be diagonalized by these unitary matrices:

(Lu)ij ∼ (Ld)ij ∼ min

(
εqi
εqj
,
εqj
εqi

)
, (Ru,d)ij ∼ min

(
εu,di

εu,dj
,
εu,dj

εu,di

)
, (3.32)

resulting in:

(Lu †Y uRu)ij ∼ εqi εui δij ∼ yui δij , (Ld †Y dRd)ij ∼ εqi εdi δij ∼ ydi δij . (3.33)

The above relations imply:

εu,di

εu,dj
' yu,di

yu,dj

εqj
εqi
. (3.34)

Furthermore, observing that VCKM = Ld †Lu ∼ Lu,d, to reproduce the correct
CKM hierarchies we should have

εq1
εq2
' V12 ∼ λ ,

εq1
εq3
' V13 ∼ λ3 ,

εq2
εq3
' V23 ∼ λ2 , (3.35)

where λ is the sine of the Cabibbo angle.

Assuming the approximate equalities (3.34) and (3.35) to hold exactly, we have
fixed the ε coefficients up to two renormalization factors. Thus, we can choose that the
only two free parameters of this description are e.g. εq3 and εu3 , that can be both roughly
thought of as O(1) quantities (since they are the degrees of partial compositeness for
the top quark).

The set of relations (3.33), (3.34) and (3.35) furnishes a method to predict the
suppression factor due to the partial compositeness of any operator. As an example,
we work out an explicit calculation taking the electromagnetic dipole operator (2.58)
as in section 2.3, namely:

Q7γ =
emb

16π2
Fµν s̄Lσ

µνbR .

From Eqs. (3.30) we can immediately associate with this operator the suppression
factor

Q7γ ∼ εq2εd3 , (3.36)

and the only thing left to do is to recast it in a more intelligible form, using known
physical quantities. By elementary manipulations and using the above relations:

εq2ε
d
3 ∼ εq2

yd3
εq3
∼ yd3

εq2
εq3
∼ mbλ

2 . (3.37)
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In this case, we have found the same suppression factor as in the MFV case
(Eq. (2.62)), but this is not always the case. For example, let us now analyse the Q′7γ
operator defined in Eq. (2.63):

Q′7γ =
emb

16π2
Fµν s̄Rσ

µνbL .

The PC paradigm predicts for Q′7γ a suppression factor:

Q′7γ ∼ εd2εq3 ∼
yd2
εq2
εq3 ∼ yd2

εq3
εq2
∼ ms

λ2
. (3.38)

We can now appreciate that, this time, the MFV and PC paradigms give very
different predictions:

MFV −→ Q′7γ ∼ msλ
2 ,

PC −→ Q′7γ ∼
ms

λ2
,

(3.39)

and this leads to opposite conclusions for the two scenarios:

Q′7γ
Q7γ

=


ms

mb
' 0.025 in MFV

ms

mbλ4
' 10 in PC

. (3.40)

As can be directly seen, for the “wrong chirality” process (associated with Q′7γ)
the MFV predicts a considerable suppression factor, whereas the PC scenario predicts
an enhancement with respect to Q7γ . It turns out that this is a general feature of
models with PC: “wrong chirality” processes are not suppressed as in the SM (and
thus in MFV scenarios), instead sometimes they are even enhanced with respect to
the “SM-like chirality” processes, such as in this case.

In Tab. 3.1 the suppression factors arising from MFV and PC are compared for
the dipole operator and other representative ∆F = 1 operators (considering both
their chiralities), in order to fully appreciate this property of the PC scenarios.

Of course, the enhancement of the flavor coefficient associated to a definite op-
erator is not the only factor that determines the relevance of that operator for phe-
nomenological purposes. Indeed, the very important parameters are the ratio of such
coefficient with the SM dominant one and possible enhancements of the operator
matrix elements. The following two examples will make clearer these last points.

First, let us analyse again the dipole operator, but this time the one describing
the underlying transition s→ dγ:

Q7γ =
ems

16π2
Fµν d̄Lσ

µνsR , (3.41)

Q′7γ =
ems

16π2
Fµν d̄Rσ

µνsL . (3.42)

We can straightforwardly generalize the results of the previous analysis to conclude
that:

MFV −→
{
Q7γ ∼ msV

∗
tdVts ∼ msλ

5

Q′7γ ∼ mdV
∗
tdVts ∼ mdλ

5
−→

Q′7γ
Q7γ

=
md

ms
' 0.046 , (3.43a)
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Operator MFV PC

Fµν s̄Lσ
µνbR ybV ∗tsVtb ∼ ybλ2 εq2ε

d
3 ∼ ybλ2 εu3ε

q
3

Fµν s̄Rσ
µνbL ysV ∗tsVtb ∼ ysλ2 εd2ε

q
3 ∼ ys

λ2
εu3ε

q
3

Fµν d̄Lσ
µνsR ysV ∗tdVts ∼ ysλ5 εq1ε

d
2 ∼ ysλ εu3εq3

Fµν d̄Rσ
µνsL ydV ∗tdVts ∼ ydλ5 εd1ε

q
2 ∼ yd

λ εu3ε
q
3

(d̄LγµsL)(ēγµe) V ∗tdVts ∼ λ5 εq1ε
q
2 ∼ λ5(εq3)2

(d̄RγµsR)(ēγµe) ydysV ∗tdVts ∼ ydysλ5 εd1ε
d
2 ∼ ydys

λ5
(εu3)2

(c̄LγµuL)(ēγµe) (yb)2V ∗cbVub ∼ (yb)2λ5 εq1ε
q
2 ∼ λ5(εq3)2

(c̄RγµuR)(ēγµe) yuyc(yb)2V ∗cbVub ∼ yuyc(yb)2λ5 εu1ε
u
2 ∼ yuyc

λ5
(εu3)2

Table 3.1: Comparison between the suppression factors arising from the MFV or the partial
compositeness (PC) paradigm, computed for some representative ∆F = 1 operators and their
correspondent “wrong chirality” partners.

PC −→

Q7γ ∼ εq1εd2 ∼ msλ

Q′7γ ∼ εd1εq2 ∼
md

λ

−→
Q′7γ
Q7γ

=
md

msλ2
' 0.95 . (3.43b)

It can be immediately appreciated that this time the enhancement for Q′7γ in PC
is weaker that in the b → sγ case. However, as previously stated, the important
parameter is the total enhancement with respect to the SM dominant contribution.
Comparing such total enhancement for the dominant contribution in PC for the
b→ sγ and s→ dγ processes, one finds:

b→ sγ −→
Q′PC7γ

QSM7γ

=
ms

mbλ4
' 10 , (3.44)

s→ dγ −→
QPC7γ

QSM7γ

'
Q′PC7γ

QSM7γ

=
md

msλ6
' 407 . (3.45)

(3.46)

Thus, the overall enhancement of the dipole operator in PC with respect to the SM
is far more significant in the s → dγ process, despite the considerations regarding
Eqs. (3.40) and (3.43).

To understand the importance also of the contribution from the matrix elements,
let us analyse a ∆F = 2 process, the K0 − K̄0 mixing. In the SM, the most relevant
operator is

Q1 = (s̄LγµdL)(s̄Lγ
µdL) , (3.47)

since it is has the maximal chiral enhancement. The spurionic analysis gives:

Q1 ∝
[
Y u(Y u)†

]2

21
' (V ∗tsVtd)

2 ' λ10 . (3.48)

Switching to PC, the Q1 operator has the suppression factor

Q1 ∝ (εq2ε
q
1)2 ' λ10(εq3)4 ' 2.5 · 10−7 (εq3)4 , (3.49)
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However, now there is another operator5 with a similar suppression factor, namely

Q4 = (s̄RdL)(s̄LdR) , (3.50)

to which we can associate the coefficient

Q4 ∝ εd2εq1εq2εd1 ∼ ydys(εu3εq3)2 ∼ 1.7 · 10−8 (εu3ε
q
3)2 . (3.51)

Considering now that the Q4 matrix element has a chirality enhancement with respect
to the matrix element of Q1, in formulas

〈K0|Q4|K̄0〉
〈K0|Q1|K̄0〉 ∝

(
MK

md +ms

)2

' 20 , (3.52)

and that the running due to QCD corrections further increases this enhancement, it
turns typically out that Q4 is the dominant operator.

In appendix A.1 the complete basis of ∆F = 2 dimension six operators, Eq. (A.4),
is introduced and the importance of neutral meson system observables in imposing
constrains on NP contributions is discussed. It is interesting to systematically com-
pare also for these operators the suppressions predicted by the two different paradigms
in the light of the above considerations regarding “wrong chirality” processes. The
result of this comparison can be appreciate in Tabs. 3.2 and 3.3: as anticipated, the
enhancement of right currents contributions with respect to the MFV scenario is a
general feature of the PC paradigm.

A conclusion that can be established from all the above considerations is that
the CH models with partial compositeness generally use a different mechanism to
suppress contributions to flavor physics observables, thus presenting a different path
of flavor changing processes beyond the SM, alternative to the MFV scenario and
then experimentally distinguishable.

5As can be appreciated in Tab. 3.3 and in Eq. (A.4), they really are two operators, related to the
two different possible contractions of the color indecis. Here we consider for notational simplicity
just one of them.
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Operator MFV PC

Q1 = (ūαγµPLcα)2 (yb)4(VubV
∗
cb)

2 (εq1ε
q
2)2 ∼ (VubV

∗
cb)

2(εq3)4

Q̃1 = (ūαγµPRcα)2 (yuyc)2(yb)4(VubV
∗
cb)

2 (εu1ε
u
2)2 ∼

(
yuyc

VubV
∗
cb

)2
(εu3)4

Q2 = (ūαPLcα)(ūβPLcβ) (yu)2(yb)4(VubV
∗
cb)

2 (εu1ε
q
2)2 ∼ (yu)2

(
V ∗cb
Vub

)2
(εu3ε

q
3)2

Q̃2 = (ūαPRcα)(ūβPRcβ) (yc)2(yb)4(VubV
∗
cb)

2 (εq1ε
u
2)2 ∼ (yc)2

(
Vub
V ∗cb

)2
(εu3ε

q
3)2

Q3 = (ūαPLcβ)(ūβPLcα) (yu)2(yb)4(VubV
∗
cb)

2 (εu1ε
q
2)2 ∼ (yu)2

(
V ∗cb
Vub

)2
(εu3ε

q
3)2

Q̃3 = (ūαPRcβ)(ūβPRcα) (yc)2(yb)4(VubV
∗
cb)

2 (εq1ε
u
2)2 ∼ (yc)2

(
Vub
V ∗cb

)2
(εu3ε

q
3)2

Q4 = (ūαPLcα)(ūβPRcβ) yuyc(yb)4(VubV
∗
cb)

2 εu1ε
u
2ε
q
1ε
q
2 ∼ yuyc(εu3εq3)2

Q5 = (ūαPLcβ)(ūβPRcα) yuyc(yb)4(VubV
∗
cb)

2 εu1ε
u
2ε
q
1ε
q
2 ∼ yuyc(εu3εq3)2

Table 3.2: Comparison between the suppression factors arising from the MFV or the
partial compositeness (PC) paradigm, computed for the complete basis of ∆F = 2 dimension
six operators for the D0 − D̄0 system, Eq. (A.4). Greek letters denote color indices.

Operator MFV PC

Q1 = (D̄iαγµPLDjα)2 (V ∗tiVtj)
2 (εqi ε

q
j)

2 ∼ (V ∗tiVtj)
2(εq3)4

Q̃1 = (D̄iαγµPRDjα)2 (ydi y
d
j )2(V ∗tiVtj)

2 (εdi ε
d
j )

2 ∼
(

ydi y
d
j

V ∗tiVtj

)2

(εu3)4

Q2 = (D̄iαPLDjα)(D̄iβPLDjβ) (ydi )2(V ∗tiVtj)
2 (εdi ε

q
j)

2 ∼ (ydi )2
(
Vtj
V ∗ti

)2
(εu3ε

q
3)2

Q̃2 = (D̄iαPRDjα)(D̄iβPRDjβ) (ydj )2(V ∗tiVtj)
2 (εqi ε

d
j )

2 ∼ (ydj )2
(
V ∗ti
Vtj

)2
(εu3ε

q
3)2

Q3 = (D̄iαPLDjβ)(D̄iβPLDjα) (ydi )2(V ∗tiVtj)
2 (εdi ε

q
j)

2 ∼ (ydi )2
(
Vtj
V ∗ti

)2
(εu3ε

q
3)2

Q̃3 = (D̄iαPRDjβ)(D̄iβPRDjα) (ydj )2(V ∗tiVtj)
2 (εqi ε

d
j )

2 ∼ (ydj )2
(
V ∗ti
Vtj

)2
(εu3ε

q
3)2

Q4 = (D̄iαPLDjα)(D̄iβPRDjβ) ydi y
d
j (V ∗tiVtj)

2 εdi ε
q
jε
q
i ε
d
j ∼ ydi ydj (εu3ε

q
3)2

Q5 = (D̄iαPLDjβ)(D̄iβPRDjα) ydi y
d
j (V ∗tiVtj)

2 εdi ε
q
jε
q
i ε
d
j ∼ ydi ydj (εu3ε

q
3)2

Table 3.3: Comparison between the suppression factors arising from the MFV or the partial
compositeness (PC) paradigm, for the complete basis of ∆F = 2 dimension six operators for
the down type neutral meson systems, easily derivable from Eq. (A.4). Greek letters denote
color indices, latin letters denote flavor indices.
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CHAPTER 4

Phenomenological computations

4.1 The two-site model

In this chapter we want to work out some phenomenological consequences regarding
NP contributions, in CH models, to flavor violating processes in the leptonic sector.
In particular we will focus on the muon decay mode µ → eγ, which is forbidden
within the SM. To do this, we will use a simplified composite Higgs model.

Indeed, the problem is that in full CH theories (developed in section 3.2) the
computations are often prohibitive. Thus, some kind of simplification should be
carried out in order to obtain a model that still retains the important features of the
CH phenomenology (such as partial compositeness), but at the same time provides a
framework to perform simpler (and still reliable) explicit computations.

One interesting proposal, that has become popular in recent literature, is to con-
sider a model where only the lowest-lying set of composite states arising from the
strong dynamics is inserted in the Lagrangian [10]. Such minimal set is chosen in
order to fully recreate the partial compositeness phenomenology, both for fermions
and for gauge bosons. Due to the peculiar truncation carried out in these models,
they are called two-site models. According to the analogy of CH models with extra
dimension theories discussed in appendix A.2, this truncation can also be seen as the
addiction to the SM Lagrangian of only the set of first KK modes of the 5D fields.

This simplification leads to a much simpler Lagrangian that still leads to reliable
results. Indeed, the error due to this approximation is typically roughly around the
50% [10]. Even though this size of error may seems rather large, it implies that these
models are able to furnish the correct order of magnitude for the corrections to the
SM observables in CH theories. This is still an important information, in the context
of searches for NP signals, and thus the usage of these simplified models is justified.

Once explained the origins and the reasons to use these kind of models, we are
left with characterizing our considered one in detail. Following the general discussion
about QFT at the beginning of chapter 2, we define the two-site model we will deal
with from its three peculiar features1:

1Reading the properties of our two-site model, one can easily recognize them to be defined exactly
in order to reproduce the CH phenomenology described in the previous chapter.
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Subgroup Generator(s) Field(s) Coupling

el

SU(3)C λc, el, c = 1 . . . 8 Gc, el
µ gel

s

SU(2)L T aL, el, a = 1, 2, 3 W a, el
µ gel

1

U(1)Y Y Bel
µ gel

2

comp

SU(3)C λc, comp, c = 1 . . . 8 Gc, comp
µ gcomp

s

SU(2)L T aL, comp, a = 1, 2, 3 W a, comp
µ gcomp

1

SU(2)R × U(1)X

(T 3R, comp +X) Bcomp
µ gcomp

2

T 1R, comp, T 2R, comp W̃ 1,2, comp
µ gcomp

2

(T 3R, comp −X) B̃comp
µ gcomp

2

Table 4.1: Gauge subgroups and their associated generators, boson fields and couplings.

(i) The gauge group is:

Ggauge = Gel ×Gcomp , (4.1)

Gel = [SU(3)C × SU(2)L × U(1)Y ]el ,

Gcomp = [SU(3)C × SU(2)L × SU(2)R × U(1)X ]comp .

In Table 4.1 is summarized our notation for generators, boson fields and coupling
constants associated with each simple subgroup. Purely for convenience, we
have associated the same coupling both with SU(2)R and U(1)X , the most
general case being straightforward but computationally more involved and with
no significant phenomenological differences.

Notice that Gcomp has been chosen to be bigger that Gel, in order to provide a
custodial symmetry, whose importance has been discussed in section 3.1.

(ii) Regarding the particle content, there are two different sets of fermions. We have
a first set of chiral fermions, charged under the Gel gauge group in the same way
as in the SM, and a second set of vector-like fermions, charged under Gcomp;
three families for each representation are considered and we will distinguish
among them with an extra latin index as done in chapter 2. In addiction, we
have a real bidoublet (φ̃, φ) charged under [SU(2)L × SU(2)R]comp.

Focusing only on leptons, Table 4.2 summarises the quantum numbers for these
particles. In our notation, lower case letters denote elementary fields, whereas
capital letters denote composite fields. Further, the ‘tilde’ apex denotes SU(2)L
singlets, in order to distinguish them from the doublets. Finally, the decompo-
sition of the two SU(2)L doublets into their components reads:

`L =

(
νL
eL

)
; L =

(
N
E

)
. (4.2)
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Elementary Composite

SU(2)L U(1)Y SU(2)L SU(2)R U(1)X

`Li 2 −1
2 1 1 0

ẽRi 1 −1 1 1 0

Li 1 0 2 1 −1
2

Ẽi 1 0 1 1 −1

(φ̃, φ) 1 0 2 2 0

Table 4.2: Particle content and quantum numbers of the two-site minimal model. The index
i = 1, 2, 3 runs over three families for each representation.

(iii) We can divide the symmetry breaking pattern of the theory in two steps. The
first step breaks Ggauge into the SM gauge group:

Ggauge → [SU(3)C × SU(2)L × U(1)Y ]SM . (4.3)

And in particular:

λc, SM = λc, el + λc, comp , (4.4a)

T aL, SM = T aL, el + T aL, comp , (4.4b)

Y SM = Y + T 3R, comp +X . (4.4c)

The gauge fields associated with GSM are then a linear combination of elemen-
tary and composite fields:

Gµ = cos θsG
el
µ + sin θsG

comp
µ , tan θs ≡

gel
s

gcomp
s

, (4.5a)

Wµ = cos θ1W
el
µ + sin θ1W

comp
µ , tan θ1 ≡

gel
1

gcomp
1

, (4.5b)

Bµ = cos θ2B
el
µ + sin θ2B

comp
µ , tan θ2 ≡

gel
2

gcomp
2

, (4.5c)

this is exactly the partial compositeness scenario for gauge bosons, described in
Eq. (3.24). The massive gauge fields associated with the broken generators can
be divided into the combinations orthogonal to Eqs. (4.5):

G∗µ = − sin θsG
el
µ + cos θsG

comp
µ , (4.6a)

W ∗µ = − sin θ1W
el
µ + cos θ1W

comp
µ , (4.6b)

B∗µ = − sin θ2B
el
µ + cos θ2B

comp
µ , (4.6c)

and the fields that ultimately does not mix with the elementary bosons:

W̃±µ ≡
1√
2

(W̃ 1, comp
µ ∓ i W̃ 2, comp

µ ) , (4.7a)
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B̃µ ≡ B̃comp
µ . (4.7b)

We assume this first symmetry breaking to be carried out by some unknown
dynamics (perhaps a distinct Higgs mechanism at high energies) whose degrees
of freedom are above the cutoff scale of our effective description. Thus no
additional fields are inserted in the model to take account for this SSB.

The second step of symmetry breaking is the well-known EWSB in the SM,
already discussed in section 2.1. We not review it here.

4.1.1 The model Lagrangian

We will for now on focus on the leptonic sector of the model. Therefore we will
forget about not only the quark sector but also about the SU(3)C gauge groups
and associated bosons; indeed all our particles will be singlets with respect to these
subgroups of Ggauge. Under these premises, we first write down the Lagrangian of the
model in the elementary/composite basis:

L = Lel + Lcomp + Lmix , (4.8)

with

Lel = − 1

4
(F aµν)2 +

3∑
i=1

(
¯̀
Lii /D`Li + ¯̃eRii /DẽRi

)
, (4.9)

Lcomp = − 1

4
(ρaµν)2 +

M2
∗

2
(ρaµ)2 + |Dµφ|2 − V (φ)

+
3∑
i=1

(
L̄i(i /D −mi)Li + ¯̃Ei(i /D − m̃i)Ẽi

)
−

3∑
i,j=1

(
Y ∗L ijL̄RiφẼLj + Y ∗RijL̄LiφẼRj

)
+ h.c. , (4.10)

Lmix = −M2
∗1

gel
1

gcomp
1

W aµW ∗aµ +
M2
∗1

2

(
gel

1

gcomp
1

W a
µ

)2

−M2
∗2

gel
2

gcomp
2

BµB∗µ +
M2
∗2

2

(
gel

2

gcomp
2

Bµ

)2

−
3∑

i,j=1

(
∆ij

¯̀
LiLRj − ∆̃ij

¯̃eRiẼLj

)
+ h.c. . (4.11)

Several comments are in order:

� F aµν and ρaµν collectively denote the field strength tensors associated with the
gauge field of table 4.1 for the elementary and composite bosons, respectively.
Due to the particular choice of fields made for the SU(2)R × U(1)X subgroup,
the field strength tensors associated with these two simple subgroups involve
linear combinations of B̃comp and Bcomp in order to build up the correct gauge
invariant quantities.
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� The elementary sector is completely analogous to the SM, with the notable
exception of the Higgs field, that indeed is a composite particle. Thus, before
introducing any interaction with the composite sector, the mass spectrum of
the theory presents a set of massless chiral fermions.

� In the composite sector, we have inserted the mass terms 1
2M

2
∗ρ

a
µρ

aµ, where ρaµ
collectively denotes the composite gauge fields and thus in this expression a sum
over the different bosons is understood. As already discussed, we assume that
some high energy dynamics breaks the initial Ggauge group into GSM , without
exploring the underlying mechanism in detail. We just parametrize this SSB
using the masses M2

∗ of the composite gauge fields, that then should respect a
[SU(3)C ×SU(2)L×SU(2)R×U(1)X ]comp global symmetry in order to provide
the correct symmetry breaking pattern. For convenience, we further associate
with the subgroup SU(2)R × U(1)X the same mass parameter M2

∗2.

Again, the choice of the fields associated with the SU(2)R × U(1)X subgroup
makes the explicit expression of these mass terms using B̃comp and Bcomp a bit
involved.

� The composite leptons are vector-like, thus each of them presents both chiral-
ities, differently from the elementary sector. Also, without loss of generality,
we can choose a basis where the mass matrices m and m̃ are diagonal in flavor
space:

m = diag(mi) , m̃ = diag(m̃i) , i = {1, 2, 3}. (4.12)

� The Higgs doublet φ appears in the composite sector. Together with its ki-
netic term and its potential (that triggers the EWSB), it also presents Yukawa
interactions with composite fermions. An analogous coupling with elementary
leptons is clearly impossible since it is not possible in that case to build up a
gauge invariant interaction term.

If no supplementary symmetries are inferred, it should be considered (as it is
done here) the most general case in which two different Yukawa interactions
with different couplings Y ∗L and Y ∗R can be build up, where Y ∗L and Y ∗R are 3× 3
complex matrices in flavor space. Further, in the absence of supplementary
symmetries, these matrices should be considered flavor-anarchic, this assump-
tion resulting as we will see in more stringent experimental bounds. The term
involving Y ∗L is sometimes called the “wrong” Yukawa interaction, since the lep-
ton’s singlet and doublet chiralities are inverted with respect to the usual SM
Yukawa interaction.

� The mixing Lagrangian consists of two parts. The first part (corresponding
to the first two lines on the r.h.s. of Eq. (4.11)) is responsible for the elemen-
tary/composite mixing between gauge bosons. It is straightforward to see that
this part, together with the mass terms in Eq. (4.10), still preserve the gauge
invariance under GSM , as it is required by the model. Indeed, they give rise
to mass terms only for the linear combinations (4.6) and not for the SM fields
(4.5).
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The third line on the r.h.s. of Eq. (4.11) is a mixing term between elementary
and composite leptons. This mixing is regulated by two 3× 3 complex matrices
in flavor space, namely ∆ and ∆̃. These terms are fundamental features of
the model, since they allow the elementary sector to indirectly interact with
the Higgs doublet and then to feel the EWSB, giving mass to the elementary
leptons. Also these terms preserve the SM gauge invariance, since the chiral
fermions, before EWSB, remains massless (while a mass term for the heavy
Dirac fermions is allowed by the gauge symmetry).

Performing the fields redefinitions (4.5), (4.6) and (4.7), we switch to the mass
basis for the gauge bosons (before EWSB). It is easy to see that after these rota-
tions are performed, the SM gauge fields couple with the same strength to both the
elementary and the composite sector, with gauge couplings given by:

gSMi ≡ gel
i g

comp
i√

(gel
i )2 + (gcomp

i )2
, i = s, 1, 2 . (4.13)

while the same is not true for the heavy gauge bosons.
We now write down the Lagrangian in this new basis:

L = Lgauge + Lfermion + LHiggs , (4.14)

with

Lgauge = − 1

4
F 2
µν +

1

2
(DµρνDνρµ −DµρνDµρν) +

M2
∗2

2
ρ̃2
µ +

M2
∗

2 cos2 θ
ρ∗ 2
µ

+
igSM

2
Fµν [ρµ, ρν ] + 2igSM cot 2θDµρ

∗
ν [ρ∗µ, ρ

∗
ν ] +

igSM2

sin θ2
Dµρ̃ν [ρ̃µ, ρ̃ν ]

+ igSM2 cot θ2Dµρ
∗
ν [ρ̃µ, ρ̃ν ] + igSM2 cot θ2Dµρ̃ν

(
[ρ∗µ, ρ̃ν ] + [ρ̃µ, ρ

∗
ν ]
)

+
(gSM )2

4

(
sin4 θ

cos2 θ
+

cos4 θ

sin2 θ

)
[ρ∗µ, ρ

∗
ν ]2 +

(gSM2 )2

4 sin2 θ2
[ρ̃µ, ρ̃ν ]2

+
(gSM2 )2

4
cot2 θ2

(
[ρ∗µ, ρ̃ν ] + [ρ̃µ, ρ

∗
ν ]
)2

+ (gSM2 )2 cos θ2

sin2 θ2
[ρ̃µ, ρ̃ν ][ρ∗µ, ρ̃ν ] ,

(4.15)

Lfermion = ¯̀
Li /D`L + ¯̃eRi /DẽR + +L̄(i /D −m)L+ ¯̃E(i /D − m̃)Ẽ

− gSM tan θ ¯̀
Lγ

µρ∗µ`L − gSM tan θ ¯̃eRγ
µρ∗µẽR

+ gSM cot θ L̄γµρ∗µL+ gSM cot θ ¯̃Eγµρ∗µẼ

− gSM2

2 sin θ2
L̄γµB̃µL−

gSM2

sin θ2

¯̃EγµB̃µẼ

−∆¯̀
LLR − ∆̃¯̃eRẼL − Y ∗L L̄RφẼL − Y ∗RL̄LφẼR + h.c. , (4.16)

LHiggs = |Dµφ|2 − V (φ) +
(
igSM cot θ φ†ρ∗µD

µφ+ h.c.
)

− i gSM1√
2 sin θ1

φ̃†W̃−µ D
µφ+ i

gSM2

2 sin θ2
φ†B̃µD

µφ+ h.c.

− gSM1√
2 sin θ1

gSM cot θ φ̃†W̃−µ ρ
∗µφ+

gSM2

2 sin θ2
gSM cot θ φ†B̃µρ∗µφ+ h.c.
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+ φ†
[
(gSM cot θ ρ∗µ)2 +

(gSM1 )2

2 sin2 θ1
|W̃+

µ |2 +
(gSM2 )2

4 sin2 θ2
(B̃µ)2

]
φ . (4.17)

In order to simplify the final expressions, we have used a compact notation where
ρ∗µ ≡ {W ∗µ , B∗µ}, ρ̃µ ≡ {W̃µ, B̃µ}, gSM ≡ {gSM1 , gSM2 } and θ ≡ {θ1, θ2}. Every time
those collective symbols are used, a sum over the two possibilities is understood.
Then, for example:

gSM cot θ L̄γµρ∗µL ≡ gSM1 cot θ1 L̄γ
µW ∗µL+ gSM2 cot θ2 L̄γ

µB∗µL .

All the covariant derivatives are with respect to the unbroken SM gauge group, us-
ing the couplings defined in Eq. (4.13). All vector fields in Eqs. (4.16) and (4.17)
(including those in the covariant derivatives) are to be considered in a matrix nota-
tion, i.e. each gauge component multiplies its corresponding generator T a, normalized
according to the standard convention (Tr(T aT b) = δab/2 for the non-Abelian gener-
ators). The only exception is for W̃± and B̃ in Eq. (4.17), which are component
fields. This complication arises as a result of the subtle transformation of the Higgs
under SU(2)R. In the gauge Lagrangian (4.15) we adopt a different notation: gauge
fields are still in matrix notation, with an implicit trace operation over the whole
Lagrangian, but with the following normalization: Tr(T aT b) = δab for non-Abelian
generators, T = 1 for the Abelian ones. This choice leads to a more compact and
simple-to-read expression, compared to the standard normalization or the use of com-
ponent fields.

4.1.2 The mass insertion approximation

To reach the correct mass basis for all the fields, starting from the Lagrangian (4.14),
two more steps should be carried out. First, also the fermion fields before EWSB
should be diagonalized, switching to the SM/heavy basis. Second, and more difficult,
the EWSB should be taken into account.

When considering the Higgs VEV contribution, off-diagonal mass terms appear
both for bosons and for fermions. Further, the new basis rotation needed to diag-
onalize the mass matrices typically cannot be performed analytically. Here we are
interested in charged leptons, thus we now work out a strategy to take into account
the above effects for them. The mass matrix for charged leptons after EWSB becomes:

ẽR ER ẼR

ME =

 0 ∆ 0
 eL

0 m v√
2
Y ∗R EL ,

∆̃† v√
2
Y ∗L
† m̃ ẼL

(4.18)

where one should keep in mind that all the blocks in this matrix are 3×3 matrices, and
then ME is actually a 9× 9 complex matrix. Consequently, even though a biunitary
transformation that diagonalizes (4.18) exists for sure, its exact analytical expression
is overwhelmingly difficult to find in the general case.

A possible solution to the problem could be to perform such diagonalization in
a perturbative fashion. The consideration that leads to a perturbative approach is
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that, since the composite sector is conjectured to appear at the TeV scale, it is fair to
assume vY ∗L,R � m, m̃ (where we are actually comparing the vY ∗L,R matrix elements
with the eigenvalues mi, m̃i). Further, as discussed in section 3.2, it is also licit
to assume ∆, ∆̃ � m, m̃ (again using this short notation to mean the comparison
between eigenvalues).

These observations lead to the idea of setting up a perturbative expansion, where
v, ∆ and ∆̃ are order-one quantities while m and m̃ are zero order quantities. From
this perspective, ME is diagonal at the zero order (remember that we are working in
a basis where m and m̃ are diagonal) and its off-diagonal elements are all quatities
of the first order.

Actually, a further condition must be satisfied in order to fully legitimate the
above expansion. To be definite, not only mi and m̃i, but also mi − m̃j should be
zero order quantities. Intuitively, this is because in calculations such quantities could
possibly appear (in the numerator or, worst, in the denominator), and without the
above additional assumption they would spoil the perturbative power counting settled
above.

Using the approach just described, approximate expressions for the unitary matri-
ces that perform the mass diagonalization can be explicitly computed. For example,
up to the second order the unitary matrices that makes ME block-diagonal are

VL '

 1− 1
2∆m−2∆† ∆m−1 −∆m−1

(
J† + v√

2
Y ∗Rm̃

−1
)

−m−1∆† 1− 1
2m
−1∆†∆m−1 − 1

2J
†J −J†

v√
2
m̃−1Y ∗R

†m−1∆† J 1− 1
2JJ

†

 ,

(4.19)

VR '

 1− 1
2∆̃m−2∆̃† ∆̃m̃−1

(
K − v√

2
Y ∗R
†m−1

)
∆̃m̃−1

v√
2
m−1Y ∗Rm̃

−1∆̃† 1− 1
2K
†K −K†

−m̃−1∆̃† K 1− 1
2m̃
−1∆̃†∆̃m̃−1 − 1

2KK
†

 ,

(4.20)

where J and K are implicitly defined via the following Sylvester equations:{
Jm2 − m̃2J = v√

2
(Y ∗L

†m+ m̃Y ∗R
†)

Km2 − m̃2K = v√
2
(Y ∗R

†m+ m̃Y ∗L
†)

, (4.21)

that can be solved analytically since m and m̃ are diagonals, resulting in

(J)ij =
1

m2
j −m2

i

v√
2

(Y ∗L
†m+ m̃Y ∗R

†)ij , (4.22a)

(K)ij =
1

m2
j −m2

i

v√
2

(Y ∗R
†m+ m̃Y ∗L

†)ij . (4.22b)

The resulting diagonalized mass matrix becomes:

Mdiag
E = V †LMEVR =

 0 0 0
0 A 0
0 0 B

+ third order terms , (4.23)

A ≡ m+
v√
2

(Y ∗RK + J†Y ∗L
†) +

1

2
m−1∆†∆− 1

2
mK†K − 1

2
J†Jm+ J†m̃K , (4.24)



4.1. The two-site model 65

B ≡ m̃− v√
2

(JY ∗R + Y ∗L
†K†) +

1

2
∆†∆m̃−1 − 1

2
m̃K†K − 1

2
J†Jm̃+ Jm̃K† , (4.25)

where one can appreciate that, at the second order, the SM leptons are still massless,
implying that the SM lepton masses are at least third order quantities. In fact, they
first arise at the third order.

The solutions (4.22) are valid only in the case of non degeneracy between doublets
and singlets masses (i.e. mi 6= m̃j ∀i, j). Remarkably, they also show in a clear way
why, if the hypothesis mi − m̃j � v failed, all the analysis above would be spoiled.
Indeed, in that case J and K would not be anymore order-one quantities and all the
perturbative expansions made to consistently compute the above expressions would
be ruined.

Through the matrices VL,R one can infers the rotation to the mass basis (for
the SM charged leptons) into the Lagrangian (4.16). Introducing a nine-component
vector ξ to represent all the nine charged lepton fields of a definite chirality

ξL =

 eL
EL
ẼL

 , ξR =

 ẽR
ER
ẼR

 , (4.26)

the rotation from the interaction to the mass basis can be written as:

ξint
L = VLξ

mass
L , ξint

R = VRξ
mass
R , (4.27)

and hereafter we will shorten the ‘mass’ apex simply to ‘m’. Using this compact
notation, the Lagrangian (4.16) after the basis rotation becomes:

Lfermion = ξ̄mi /Dξm + ν̄Li /DνL + N̄i /DN −
(
ξ̄m
LM

diag
E ξm

R + h.c.
)

− 1√
2

(h+ iϕZ) ξ̄m
L Υξm

R − ϕ+N̄RΣLξ
m
L − ϕ+N̄LΣRξ

m
R + h.c.

+ heavy boson interactions , (4.28)

Υ = V †L

 0 0 0
0 0 Y ∗R
0 Y ∗L

† 0

VR , (4.29)

ΣL,R =
(

0 0 Y ∗L,R
)
VL,R . (4.30)

where we have expressed the Higgs doublets in terms of its components:

φ =

(
ϕ+

(v + h+ iϕZ)/
√

2

)
. (4.31)

The Lagrangian (4.28) allows to compute the Higgs doublet contribution in an
exact manner as functions of the Υ and Σ matrices and then to introduce the per-
turbative approach only in the end, deriving an approximate expression for Υ and Σ
using Eqs. (4.19), (4.20), (4.29) and (4.30).

The approach developed so far will be used only in this work only once to check
one obtained result. In all the other computations, we will adopt a different strategy:
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retaining the perturbative approach settled before (with the same caveat regarding
the composite fermions mass differences), we will perform calculations directly using
the Lagrangian (4.14), without changing the field basis. This can be done using the
so called mass insertion approximation: the off-diagonal terms of the mass matrices
(that, as already observed, are all perturbative quantities) are interpreted as inter-
action vertices, that have to be considered when building up the possible Feynman
diagrams. The Feynman rules involving leptons arising from the Lagrangian (4.14)
using the mass insertion approximation are listed in appendix A.3.

Clearly, one should keep in mind that the physical states are the mass eigenstates.
Thus, in order to find the correct physical amplitude, one should coherently sum up
all the contributions arising from the various components that make up the physi-
cal admixture. This procedure is equivalent to the rotation to the mass basis; the
difference is that, in this case, such rotation is performed after the evaluation of the
amplitudes.

In particular, such final basis rotation cancels tree level contributions to FCNC
processes. Indeed in this approximation, using the Feynman rules listed in appendix
A.3, one can in principle build up tree level FCNC diagrams exploiting the off-diagonal
elements of ME . However, one can easily verify that such amplitudes will become
flavor-diagonal when the rotation to the mass basis is performed.

In what follows, we have assumed that the perturbative approach is fully justified;
in particular, no quasi-degeneracy of the spectrum is supposed to occur. Thus, a mass
insertion approximation will be used to perform phenomenological computations of
FCNC leptonic processes.

4.2 The dipole operator

4.2.1 Generalities

The search for charged lepton flavor violation (cLFV) is one major goal of flavour
physics in the next years. Indeed, the observation of neutrino oscillations has clearly
demonstrated that lepton flavour is not conserved, then the question is whether LFV
effects can be visible also for charged leptons.

The most promising LFV low-energy channels are probably µ→ eγ, µ → eee,
µ → e conversion in Nuclei and τ LFV processes. Since, in the SM with mas-
sive neutrinos, LFV effects are loop suppressed and proportional to the GIM fac-
tor (mν/MW )4 (therefore completely negligible), any observation of such processes
would clearly point toward NP signal. Present bounds and future sensitivities of
next-generation experiments for these processes are collected in table 4.3.

Adopting the EFT approach described in section 2.2, examples of dimension six
operators contributing to the above processes are

(ēLγ
µµL)

(
f̄Lγ

µfL
)
, (ēLµR)

(
f̄LfR

)
, Fµνφ ēLσ

µνµR , (4.32)

where f are either lepton or quark fields. All the operators in (4.32) lead to processes
like µ→ eee and µ→ e conversion in Nuclei. However, only the third one generates,
at the leading order, also the LFV decay µ → eγ; this operator is nothing but the
electromagnetic dipole operator already introduced in the quark sector, Eq. (2.58).
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LFV Process Present Bound
Future Experiments Year

and Sensitivities (expected)

BR(µ→ eγ) 5.7 · 10−13 [48] MEG [49] ≈ 6 · 10−14 ∼ 2019
Project X [50] O(10−15) > 2021

BR(µ→ eee) 1.0 · 10−12 [51] Mu3e [52] O(10−15) ∼ 2017
” O(10−16) > 2017

Project X [50] O(10−17) > 2021
CR(µ−N → e−N) ∼ O(10−12) [53] COMET [54] O(10−17) ∼ 2017

MuSIC [54] O(10−16) ∼ 2017
Mu2e [55] O(10−17) ∼ 2020
Project X [50] O(10−19) > 2021

BR(τ → µγ) 4.4 · 10−8 [56] Belle II [57] O(10−9) > 2020
BR(τ → eγ) 3.3 · 10−8 [56] Belle II [57] O(10−9) > 2020
BR(τ → µµµ) 2.1 · 10−8 [58] Belle II [57] O(10−10) > 2020

Table 4.3: Present bounds for cLFV processes and future sensitivities of next-generation
experiments.

Which operators give the dominant LFV contributions in specific NP models
determines which are the observable most sensitive to NP effects. In CH models it
turns out that one of the most sensitive operator to NP contribution is the dipole
operator. Further, among the various dipole-mediated processes, it can be shown that
the most sensitive ones are the LFV decays `→ `′γ. For this reason, in the following,
we will focus our attention to these class of processes and in particular to the muon
decay mode:

µ→ e γ , (4.33)

describing the peculiar features of this process, and then evaluating the contribution
to this decay arising from the two-site model described in the previous section.

First, we consider the amplitude associated with the process (4.33):

µ e

γ

µ

p p′

q = M(p, p′) , (4.34)

where, being all the three external momenta on-shell, it is clear that only two of them
are linearly independent, the third fixed by the momentum conservation p = p′ + q;
thus M depends only upon two of them.

We now want to find how M(p, p′) can be cast. As we will see, our result will
be immediately generalizable to the more generic process `→ `′γ. We then start by
writing the most general expression that it can assume:

M(p, p′) = εµ(q)ē(p′)
[
(A+Bγ5)(p+ p′)µ + (C +Dγ5)(p− p′)µ

+ (E + Fγ5)γµ
]
µ(p)
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= εµ(q)ē(p′)
[
(A+Bγ5)(p+ p′)µ + (E + Fγ5)γµ

]
µ(p) , (4.35)

where we have already used the relation (p− p′) · ε = q · ε = 0, that is the transver-
sality of the photon polarizations. A,B,E, F are understood to be Lorentz scalars,
thus they can only be functions of mµ,e. Indeed, given the momentum conservation
p = p′ + q: {

p · p′ = 1
2(m2

µ +m2
e)

p · q = p′ · q = 1
2(m2

µ −m2
e)

. (4.36)

The expression (4.35) can be further simplified if one imposes the Ward identity,
namely:

0
!

= qµ ē(p
′)
[
(A+Bγ5)(p+ p′)µ + (E + Fγ5)γµ

]
µ(p)

= (m2
µ −m2

e) ē(A+Bγ5)µ+mµ ē(E + Fγ5)µ−me ē(E − Fγ5)µ

= (mµ −me) [(mµ +me)A+ E] ēµ+ (mµ +me) [(mµ −me)B + F ] ēγ5µ ,
(4.37)

thus: {
E = −(mµ +me)A
F = −(mµ −me)B

. (4.38)

Plugging (4.38) into (4.35) we get

M = 2ε · pA ēµ− (mµ +me)A ēγ · εµ+ 2ε · pB ēγ5µ− (mµ −me)B ēγ5γ · εµ .
(4.39)

Now we exploit the Gordon identities:{
2 ε · p ēLµR −mµ ēLγ · εµL −me ēRγ · εµR = iεµqν ēLσ

µνµR
2 ε · p ēRµL −mµ ēRγ · εµR −me ēLγ · εµL = iεµqν ēRσ

µνµL
, (4.40)

that can be equivalently written as:{
(p+ p′)µ ēµ− (mµ +me) ēγ

µµ = i(p− p′)ν ēσµνµ
2pµ ēγ5µ− (mµ −me) ēγ

5γµµ = i(p− p′)ν ēσµνγ5µ
, (4.41)

where σµν ≡ i
2 [γµγν ]. We finally get:

M = iA εµqν ēσ
µνµ+ iB εµqν ēσ

µνγ5µ

= iC1 εµqν ēLσ
µνµR + iC2 εµqν ēRσ

µνµL , (4.42)

where in the last line we have recast the expression making explicit the two different
chirality structures. It is easy to verify that C1,2 = A±B.

As a result of the above analysis, we can conclude that the effective Lagrangian

Leff =
m`

2
eFµν

[(
C``′ ¯̀′

Lσ
µν`R + C∗``′

¯̀
Rσ

µν`′L
)

+ `↔ `′
]

`, `′ = e, µ, τ , (4.43)

built up using the two different chiralities of the dipole operator in Eq. (4.32), com-
pletely accounts for the processes `→ `′γ, and then in particular for the decay (4.33).
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We are thus able to completely parametrize NP contributions to ` → `′γ using the
Wilson coefficients C``′ and C`′`.

Using Eq. (4.43), we can express the branching ratio for the LFV `→ `′γ process
as [59]

BR(`→ `′γ)

BR(`→ `′ν`ν̄`′)
=

48π3α

G2
F

(
|C``′ |2 + |C`′`|2

)
. (4.44)

If we assume C``′ = c``′/Λ
2, where Λ refers to the NP scale, we can evaluate which

are the values of Λ probed by µ→ eγ. We find that

BR(µ→ eγ) ' 10−12

(
500 TeV

Λ

)4 (
|cµe|2 + |ceµ|2

)
. (4.45)

Considering c``′ ∼ 1 on the ground of naturalness considerations, and comparing
Eq. (4.45) with the current experimental bound (see Tab. 4.3), we can conclude that
Λ > 500 TeV. Thus, a NP flavor problem arises also in the leptonic sector.

Furthermore, the underlying ` → `′γ transition can generate also lepton flavor
conserving processes (` = `′) like the anomalous magnetic moments ∆a` as well as
leptonic electric dipole moments (EDMs, d`). In terms of the effective Lagrangian of
Eq. (4.43), we can write ∆a` and d` as [59]

∆a` = 2m2
` Re(C``) ,

d`
e

= −m` Im(C``) . (4.46)

On general grounds, one then would expect that, in concrete NP scenarios, ∆a`,
d` and BR(` → `′γ), are correlated. In practice, their correlations depend on the
unknown flavor and CP structure of the NP couplings and thus we cannot draw any
firm conclusion. Nevertheless, interesting considerations can be made comparing the
different experimental results for NP contributions to these observables.

For example, taking into account the claimed ∼ 3.5σ discrepancy between SM
prediction and experimental value for aµ, ∆aµ = aEXP

µ − aSM
µ = (2.90 ± 0.90) · 10−9

[60], and further assuming that such a discrepancy is due to NP, we find a theoretical
prediction for BR(µ→ eγ) of:

BR(µ→ eγ) ' 10−12

(
∆aµ

3× 10−9

)2( θeµ
2× 10−5

)2

, (4.47)

where θeµ =
√
|ceµ|2 + |cµe|2/|cµµ|. From the comparison between Eq. (4.47) and the

current experimental constraint we learn that the aµ anomaly can be accommodated
while satisfying the BR(µ → eγ) bound only for an extremely small flavor mixing
angle θeµ. Thus, trusting the aµ anomaly, this can be seen as another clue for a NP
flavor problem in the leptonic sector.

An analogous problem arises when considering the electron EDM. This quantity
has a very strict experimental bound [61]:

de < 8.7 · 10−29 e cm , (4.48)

that, assuming näıve scaling [59], is again incompatible with the assumption of a NP
contribution to aµ of order ∼ 3·10−9, unless some highly non trivial flavor suppression
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is at work. Indeed one finds:

de '
(

∆aµ
3× 10−9

)
· 10−24 tanφe e cm , (4.49)

and thus tanφe ≡ Arg(Cee) . 10−4.
For completeness, let us consider also the experimental bound for dµ [22],

dµ . 10−18 e cm , (4.50)

and compare it with its prediction using the aµ anomaly,

dµ '
(

∆aµ
3× 10−9

)
2 · 10−22 tanφµ e cm , (4.51)

where again tanφµ = Arg(Cµµ). This time, no evident friction arises, and there is
still room for sizeable values for dµ compatible with the aµ anomaly in an anarchic
scenario.

Now that we have briefly discussed the importance, for present and future re-
searches, of cLFV contributions in NP scenarios, let us return on the process (4.33),
in order to develop a strategy to perform the computations in our two-site model.
There is a first important conclusion that can be immediately drawn from our previous
discussion. When computing the Feynman diagrams associated with M, both oper-
ators that flip chirality (ε · p ēµ and εµqν ēσ

µνµ) and that conserve chirality (ēγ · εµ)
can occur. However, the coefficients associated with all these operators should sat-
isfy Eqs. (4.40) and (4.42). As a result, only four over the six mentioned operators
have linearly independent coefficients, needed to compute the two parameters C1,2

(or equivalently Ceµ and Cµe).
As a consequence, we can arbitrarily make the choice of considering as independent

only the four chirality flipping operators ε · p ēµ and εµqν ēσ
µνµ (each of these two

operators indeed can appear with two different chiralities). This choice allows us, in
the calculation of the amplitude M, to consider only chirality-flipping contributions
(neglecting chirality-conserving ones) and still obtain the full, correct amplitude in
virtue of the above argument.

Now we have to embed the above discussion into the two-site model in mass
insertion approximation we are using. Indeed, all the three particles involved in the
process (4.33) are a compound of both elementary and composite fields and this
could in principle complicate the calculations, in the basis we are using. However, as
already observed, the SM fields admixture is made up of almost elementary fields. In
other words, the elementary fields give a zero order contribution to such admixture,
while the composite fields give an order-one contribution (using the power-counting
introduced in the previous section). Since we will perform the computations at the
first non-vanishing order, only the elementary components of the SM fields will give
their contribution.

Thus, in the elementary/composite basis, the process (4.33) at the leading order
can be written as

ei → ej γ , (4.52)
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where we will express the flavor indices i, j in an implicit form for generality, but for
the process under study one should at the end put i = 2 and j = 1.

In addiction, according to the previous discussion regarding the chiralities struc-
tures to be considered, we can further reduce ourselves to study the two chirality-
flipping processes, with which we will associate the following amplitudes and opera-
tors:

ẽRi → eLj γ −→ ML ∝ QγL ≡ iεµqν ēLiσµν ẽRj , (4.53a)

eLi → ẽRj γ −→ MR ∝ QγR ≡ iεµqν ¯̃eRiσ
µνeLj . (4.53b)

4.2.2 Spurionic analysis

Now that we have completely characterized the decay we are considering, we will soon
start the explicit computations of the associated amplitude. However, it is worthwhile
to first carry out a spurionic analysis of the amplitudes for the processes (4.53).

As a first step, we have to identify the flavor symmetry group of the Lagrangian
(4.14) and its breaking terms. Given the leptonic content Tab. 4.2 of the theory, we
can assume the following flavor group (focusing only on the non-Abelian part):

Gflavor = SU(3)6

= SU(3)` × SU(3)ẽ × SU(3)LL × SU(3)LR × SU(3)ẼL × SU(3)ẼR , (4.54)

under which the lepton fields rotate in generation space in the following way:

`Li → (V`)ij`Lj , ẽRi → (Vẽ)ij ẽRj ,

LLi → (VLL)ijLLj , ẼL → (VẼL)ijẼLj , (4.55)

LRi → (VLR)ijLLj , ẼR → (VẼR)ijẼRj .

It is straightforward to verify that the interaction terms between leptons and gauge
bosons preserve this flavor symmetry group2. The only flavor violating parameters
are then the composite leptons masses m, m̃, the mass mixing parameters between
elementary and composite leptons ∆, ∆̃ and the Yukawa matrices Y ∗L , Y

∗
R.

Once found the symmetry breaking terms, we have to promote them to spurions in
order to recover the flavor symmetry. It is again easy to see that the symmetry under
Gflavor can be restored assuming the following spurionic transformation properties
for the above parameters:

m→ VLLmV
†
LR

,

m̃→ VẼLm̃V
†
ẼR

,

∆→ V`∆V
†
LR

,

∆̃→ Vẽ∆̃V
†
ẼL

,

Y ∗R → VLLY
∗
RV
†
ẼR

,

Y ∗L → VLRY
∗
LV
†
ẼL

.
(4.56)

We are now ready to deduce the spurionic structure of the two amplitudes asso-
ciated with the QγL and QγR operators defined in Eqs. (4.53). Considering QγL, we
want to obtain a Gflavor invariant quantity starting from

ēL(. . .)¯̃eR → ēLV
†
` (. . .)VẽẽR , (4.57)

2Actually, one could consider a bigger flavor group, SU(6)2 × SU(3)2, that mixes among `L and
LL fields, and among ẽR and ẼR fields. The discussion would become more involved since heavy
bosons interactions breaks this bigger flavor group and further a new formalism should be introduced.
For our present purposes, the flavor group (4.54) is sufficient.
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where (. . .) stands for the spurionic structure we have to build up. A first possible
solution could be:

ēL∆Y ∗L ∆̃†ẽR , (4.58)

but this is not a valid combination, since it has the wrong mass dimension. Indeed
we have [QγL] = 2 and [M] = 1; since possible additional v factors in the expression
of M can occur, the spurionic structure should have mass dimension lower or equal
to −1.

The next possible invariant spurions combinations are

ēL∆m†Y ∗Rm̃
†∆̃†ẽR , (4.59)

ēL∆m†Y ∗Rm̃
†Y ∗L

†m†Y ∗Rm̃
†∆̃†ẽR , (4.60)

that again have both the wrong dimension. However, this time, a licit configuration
is found if, in the expression (4.60), we replace m†, m̃† with m−1, m̃−1 respectively,
that have the same spurionic transformation properties. We then find the allowed
spurionic structure:

ēL∆m−1Y ∗Rm̃
−1Y ∗L

†m−1Y ∗Rm̃
−1∆̃†ẽR . (4.61)

Since it has mass dimension −2, a v factor in the final amplitude will appear to
fix the dimensional analysis. Thus, also remembering Eq. (4.12), we can write the
lowest-order contribution to the process (4.53a) as

ML = cLv
∑
a,b,c,d

1

mdm̃cmbm̃a
(∆)jd(Y

∗
R)dc(Y

∗
L
†)cb(Y

∗
R)ba(∆̃

†)ai QγL , (4.62)

where cL is an unknown numerical coefficient.

The introduction of a negative power for the mass matrices in Eq. (4.61), sup-
ported above using a simple dimensional argument, can receive a further explanation.
Indeed, following the EFT discussion of section 2.2, we already know that for a di-
mension six operator (as the dipole operator Q7γ) a decoupling ∼ 1/Λ2

NP is expected,
where clearly ΛNP ∼ m, m̃. Further, according to the PC paradigm of these kind of
models (see section 3.2), the complete amplitude is expected to present a suppression
factor related to two tiny mixing angles (representing the composite state contribu-
tion to the SM particles admixture). According to Eq. (3.26), we can then conclude
that:

ML ∼
1

Λ2
NP

ϕLϕR ∼
1

mm̃

∆

m

∆̃

m̃
. (4.63)

Using this general argument, we have explained the appearance of four masses at the
denominator and partially reconstructed the correct spurionic structure (4.62).

To complete the argument above, we have to justify one subtlety: if in Eq. (4.60)

we perform the substitution Y ∗L,R → Y ∗L,R(Y ∗†L,RY
∗
L,R)n, we still have a correct spurionic

structure apparently with the same mass dimension, but we have not considered this
possibility. This is because one has to consider how a Yukawa matrix can appear
in the amplitude: it can be either as a mass insertion, and this does modify the
dimension through a VEV factor, or either as an interaction vertex with an Higgs
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boson (or a would-be Goldstone boson, if not in unitary gauge), and then the spurion

(Y ∗†L,RY
∗
L,R) arise from an extra loop (since we are looking for one-loop contributions,

we neglect also this case).
An identical reasoning can be carried out for the (4.53b) process. The result is

then:

MR = cRv
∑
a,b,c,d

1

m̃dmcm̃bma
(∆̃)jd(Y

∗
R
†)dc(Y

∗
L )cb(Y

∗
R
†)ba(∆

†)ai QγR , (4.64)

where again cR is an unknown numerical coefficient.

4.3 Explicit computations

After having deduced the expected structure of the amplitudes from spurionic con-
siderations, we are now ready to perform an explicit computation, using the mass
insertion approximation.

We have already discussed how FCNC processes arise first at the one-loop order.
In this section, we will evaluate the contribution to the process (4.52) given by the
exchange of a SM boson (either an Higgs or a gauge boson) in the loop.

Even though this outlined calculation is clearly incomplete, as one should in prin-
ciple take into account also the contribution from the heavy bosons, it is nevertheless
meaningful, as the result will give a reasonable approximation of the order of magni-
tude for the expected contribution of our NP scenario to the dipole operator.

4.3.1 Higgs boson contribution

We start with computing the contribution from an Higgs boson circulating in the
loop. We carry out explicit computations for the process (4.53a),

ẽRi → eLj γ ,

and then we will exploit simple analogies and similarities to deduce the corresponding
amplitude for the process (4.53b).

We start building the possible Feynman diagrams with finding the possible flavor
structure(s) of the fermionic line, limiting ourselves to the one(s) with the lowest
number of mass insertions (according to the perturbative approach chosen to perform
the calculation).

The steps needed to find the lowest order fermionic line are represented in Fig. 4.1.
First, we impose the correct external fermionic lines, corresponding to the elementary
charged leptons with the correct chiralities. The step 2 is a forced one, since we need
to switch to the composite sector in order to interact with the Higgs boson and there
is only one way to do that. Now, to connect the two composite fermions Ẽa and Ed,
an odd number of Yukawa insertions (either Yukawas interactions or mass mixings)
are required. But we need at least two Yukawa insertions in order to build an Higgs
loop. Then the lowest order solution has three Yukawa insertions, as represented in
the third step of Fig. 4.1.

Among the three Yukawa insertions, two of them are associated with the inter-
action vertex between the composite leptons and the Higgs, while the third one is a
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Step 1:
ẽRi eLj

Step 2:
eLjEdẼaẽRi

Step 3:

eLjEdẼaẽRi

Y ∗ Y ∗Y ∗†

Eb Ẽc

Figure 4.1: Steps of construction of the lowest order fermionic line leading to FCNC at
one-loop order.

mass insertion (i.e. an interaction between the two leptons and the Higgs VEV). It is
then clear that there are only three possibilities of creating the Higgs loop.

We are then left only with inserting the outgoing photon. In principle, this could
be done at any point of the fermionic line; however, a very general argument can be
adduced to prove that only if the photon is attached inside the loop, the amplitude
would not vanish. Indeed, if this would not be the case, the loop could only pro-
duce a contribution proportional to γµ; but then the total amplitude would become
ēLjγ · ε ẽRi, that clearly vanishes. Thus, imposing the photon line to be inserted inside
the loop, we find the four Feynman diagrams in Fig. 4.2. These are the amplitudes
to be evaluated in order to calculate the Higgs contribution to the ML amplitude.

The ML amplitude.

We now evaluate explicitly the diagrams of Fig. 4.2, using the Feynman rules listed
in appendix A.3. We start from the A1 amplitude, and for this first calculation we
will perform in great detail all the steps, in order to make them clear. In Fig. 4.3
are represented the conventions adopted for the loop momenta, while for the flavor
indices we use the same convention as in Fig. 4.2. We have:

A1 = ēLj(p
′) (−i(∆)jdPR)

i(/p′ +md)

p′2 −m2
d

[−i√
2

((Y ∗L )dcPL + (Y ∗R)dcPR)

]
×

×
{∫

d4k

(2π)4

i(/k + m̃c)

k2 − m̃2
c

[−iv√
2

(
(Y ∗L

†)cbPR + (Y ∗R
†)cbPL

)]
×

× i(/k +mb)

k2 −m2
b

(−ieγαεα(q))
i(/k + /q +mb)

(k + q)2 −m2
b

i

(k − p′)2 −M2
h

}
×

×
[−i√

2
((Y ∗L )baPL + (Y ∗R)baPR)

]
i(/p+ m̃a)

p2 − m̃2
a

(
−i(∆̃†)aiPR

)
ẽRi(p) . (4.65)

where a sum over all flavor indices a, b, c, d is understood.
There are several tricks that can be used to simplify this expression. First, since

we are working in a basis where the elementary fermions are massless, it immediately
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A1:

ẽRi eLj

γ

h

α

Ẽa Eb Ẽc Ed

A2:

ẽRi eLj
h

γ
α

Ẽa Eb Ẽc Ed

B1:
ẽRi eLj

h

γ
α

Ẽa Eb Ẽc Ed

B2:
ẽRi eLj

h

γ
α

Ẽa Eb Ẽc Ed

Figure 4.2: Higgs mediated dipole one-loop diagrams.

follows from the Dirac equation that:

{
/p ẽRi(p) = 0

ēLj(p
′) /p′ = 0

. (4.66)

In addiction, in this basis the elementary fermions are massless and then p2 = p′2 = 0.
The last two assumptions allow us to “shrink” the propagators of the composite
fermions that are outside the loop. Namely, for our present calculation:

i(/p+ m̃a)

p2 − m̃2
a

' − i

m̃a
, (4.67)

i(/p′ +md)

p2 −m2
d

' − i

md
. (4.68)

Once these shrinking are performed, we can further simplify the expression (4.65)
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p k + q k

k − p′

q p′

Figure 4.3: Convention for the loop momenta in the calculation of the amplitude A1.

by using simple projector algebra. Carrying on this simplification, we find:

A1 =
ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai εα×

× ēLj
{∫

d4k

(2π)4

1

[k2 − m̃2
c ][k

2 −m2
b ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]
×

× (/k + m̃c)
(

(Y ∗L
†)cbPR + (Y ∗R

†)cbPL

)
(/k +mb)γ

α(/k + /q +mb)

}
ẽRi

=
ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai εα×

× ēLj
{∫

d4k

(2π)4

1

[k2 − m̃2
c ][k

2 −m2
b ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]
×

×
(
m̃c(Y

∗
L
†)cbPR + /k(Y ∗R

†)cbPL

)
(/k +mb)γ

α(/k + /q +mb)

}
ẽRi

=
ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai εα×

× ēLj
{∫

d4k

(2π)4

1

[k2 − m̃2
c ][k

2 −m2
b ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]
×

×
[
mbm̃c(Y

∗
L
†)cb(2k

α + γα/q) + (Y ∗R
†)cb(m

2
b/kγ

α + k2γα(/k + /q))
]}

ẽRi . (4.69)

To deal with the denominator inside the loop integral we will use the method of
the Feynman parametrization. But before it we exploit a straightforward but useful
relation to simplify the computations. It is easy to verify that:

1

[k2 − m̃2
c ][k

2 −m2
b ]

=
−1

m2
b − m̃2

c

(
1

k2 − m̃2
c

− 1

k2 −m2
b

)
, (4.70)

this trick allow us to reduce the order of the denominator. We have:

1

[k2 − m̃2
c ][k

2 −m2
b ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]

=
−1

m2
b − m̃2

c

[
1

[k2 − m̃2
c ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]

− 1

[k2 −m2
b ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]

]
. (4.71)
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We are now ready to recast the denominator using the Feynman parametrization:

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[xA+ yB + (1− x− y)C]3
. (4.72)

Starting from the first part in the brackets in Eq. (4.71):

1

[k2 − m̃2
c ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]

= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

{x[k2 − m̃2
c ] + y[(k + q)2 −m2

b ] + (1− x− y)[(k − p′)2 −M2
h ]}3 ,

(4.73)

where

x[k2 − m̃2
c ] + y[(k + q)2 −m2

b ] + (1− x− y)[(k − p′)2 −M2
h ]

= [k + yq − (1− x− y)p′]2 − [xm̃2
c + ym2

b + (1− x− y)M2
h ] , (4.74)

and the computations for the second part of (4.71) is analogous, once replaced m̃2
c

with mb.
Then:

1

[k2 − m̃2
c ][k

2 −m2
b ][(k + q)2 −m2

b ][(k − p′)2 −M2
h ]

=
−2

m2
b − m̃2

c

∫ 1

0
dx

∫ 1−x

0
dy

1

{[k +Q]2 − Ω1}3
− 1

{[k +Q]2 − Ω2}3
, (4.75)

where: 
Q ≡ yq − (1− x− y)p′

Ω1 ≡ xm̃2
c + ym2

b + (1− x− y)M2
h

Ω2 ≡ (x+ y)m2
b + (1− x− y)M2

h

. (4.76)

We now perform in the expression (4.69) the change of variable

k → k −Q . (4.77)

We will start from the numerator inside the integral, namely:

εαēLj

[
mbm̃c(Y

∗
L
†)cb(2k

α + γα/q) + (Y ∗R
†)cb(m

2
b/kγ

α + k2γα(/k + /q))
]
ẽRi , (4.78)

but it is useful to remind some equalities and allowed substitutions to be used in the
calculations first:

- Since q · ε = 0, we have:

εαēLj/qγ
αẽRi = −εαēLjγα/qẽRi = iεαqβ ēLjσ

αβeRi = QγL ,

and also p · ε = p′ · ε.

- According to the general discussion made before, we are allowed to make the
substitution

2ε · p ēLjeRi → iεαqβ ēLjσ
αβeRi = QγL .
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- After the chosen change of variables, the loop integral will become even in the
variable k. Thus, every odd term with respect to k should be neglected since it
gives rise to a vanishing contribution to the integral.

- The following relation holds:∫
d4k kαkβf(k2) =

1

4
ηαβ

∫
d4k k2f(k2) ,

and then the following substitution into the integral is allowed:

kαkβ → 1

4
k2 ,

- Finally, we always have to keep in mind the Dirac equations (4.66).

We are now ready to compute the change of variable (4.77) into (4.78):

εαēLj

[
mbm̃c(Y

∗
L
†)cb(2k

α + γα/q) + (Y ∗R
†)cb(m

2
b/kγ

α + k2γα(/k + /q))
]
ẽRi

→ εαēLj

{
mbm̃c(Y

∗
L
†)cb

[
2kα − 2yqα + 2(1− x− y)p′α + γα/q

]
+ (Y ∗R

†)cb
[
m2
b/kγ

α −m2
by/qγ

α +m2
b(1− x− y)/p

′γα

+ (k2 − 2yk · q + 2(1− x− y)k · p′)γα(/k + (1− y)/q + (1− x− y)/p
′)
] }
ẽRi

= εαēLj

{
mbm̃c(Y

∗
L
†)cb

[
2(1− x− y)pα + γα/q

]
− (Y ∗R

†)cb
[
m2
by/qγ

α

+k2γα((1− y)/q + (1− x− y)/p
′) + 2k · (−yq + (1− x− y)p′)γα/k

] }
ẽRi

= −
[
mbm̃c(Y

∗
L
†)cb(x+ y) + (Y ∗R

†)cbm
2
by − (Y ∗R

†)cb
1

2
k2(1− 3x)

]
QγL . (4.79)

Plugging this result into (4.69), using also (4.75), we get

A1 =
ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai
2

m2
b − m̃2

c

×

×
{∫ 1

0
dx

∫ 1−x

0
dy
[
mbm̃c(Y

∗
L
†)cb(x+ y) + (Y ∗R

†)cbm
2
by
]
F1(Ω1,Ω2)

−
[
(Y ∗R

†)cb
1

2
(1− 3x)

]
F2(Ω1,Ω2)

}
QγL , (4.80)

where F1 and F2 are integral over the loop momentum k that can now be evaluated
using standard techniques:

F1(Ω1,Ω2) ≡
∫

d4k

(2π)4

[
1

{k2 − Ω1}3
− 1

{k2 − Ω2}3
]

=
−i

32π2

[
1

Ω1
− 1

Ω2

]
, (4.81)

F2(Ω1,Ω2) ≡
∫

d4k

(2π)4

[
k2

{k2 − Ω1}3
− k2

{k2 − Ω2}3
]

=
i

16π2
log

Ω2

Ω1
+ o(ε) . (4.82)
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Then:

A1 =
−iev

32
√

2π2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai
1

m2
b − m̃2

c

×{∫
dx

∫
dy

[
1

Ω1
− 1

Ω2

] [
mbm̃c(Y

∗
L
†)cb(x+ y) +m2

b(Y
∗
R
†)cby

]
− log

Ω1

Ω2

[
(Y ∗R

†)cb(1− 3x)
]}

QγL . (4.83)

We are now left only with the evaluation of some simple integrals over the Feynman
variables. They are:

∫ 1

0
dx

∫ 1−x

0
dy

x

Ω1(x, y)
=

=
1

2(m2
b−M2

h)

[
− m2

b

m2
b−m̃2

c

+
m4
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(m2
b−m̃2

c)
2

log
m2
b

m̃2
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− M2
h

m̃2
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h

− M4
h

(m̃2
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h)2
log

M2
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m̃2
c

]
' − 1

2(m2
b − m̃2

c)
+

m2
b

2(m2
b − m̃2

c)
2

log
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b

m̃2
c

, (4.84a)∫ 1
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h
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, (4.84b)∫ 1
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h − m̃4

c

m̃2
c −M2

h

+
2m4

b + 5M2
hm

2
b −M4

h

m2
b −M2

h

]
− m2

bm̃
2
c

2(m2
b − m̃2
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, (4.84d)

where, since Mh � m, m̃, the limit Mh → 0 has been eventually taken. Indeed, no
large logarithms nor infrared divergences prevent this to be a fair procedure.

Substituting the expressions (4.84) into (4.83) we finally find the amplitude for
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the A1 diagram:

A1 = − iev

32
√

2π2

1

m̃amd
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QγL . (4.85)

The computations regarding the other three amplitudes in Fig. 4.2 involve the
same techniques and tricks used for the evaluation of A1. Here we will state just the
final results, while in appendix A.4 can be found more detailed calculations.

The resulting amplitudes are:

A2 =
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B1 = − iev
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B2 = − iev
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After having evaluated all the diagrams of Fig. 4.2, we can derive the full one-loop
expression of the Higgs-mediated contribution to the amplitude ML of Eq. (4.53a).
Summing the amplitudes (4.85), (4.86), (4.87) and (4.88), we get:

ML,h = − 3iev

64
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†)ai QγL . (4.89)

The MR amplitude

To evaluate also MR, one should in principle start again from building up all the
possible Feynman diagrams and then compute them. However it is very easy to see
that, for the process (4.53b), the possible Feynman diagrams can be straightforwardly
obtained “reading backwards” the ones of Fig. 4.2. Furthermore, it can be seen that
also the computations of the resulting amplitudes are absolutely analogous to the ones
just performed, in particular they involve the same loop integrals already evaluated.

Using the above considerations, we can easily arrive to the conclusion that cL = cR,
where cL,R have been defined in Eqs. (4.62) and (4.64). Thus, the final result for the
Higgs contribution is:

MR,h = − 3iev
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†)ai QγR , (4.90)
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Figure 4.4: The only diagram representing the Higgs contribution to the dipole operator
using the mass basis. To reproduce the µ→ eγ process, it is sufficient to set i = 2 and j = 1.

with

Mh =ML,h +MR,h . (4.91)

Alternative procedure

Before having introduced the mass insertion approximation, we have developed a
different formalism to account for the Higgs interaction with the leptonic sector.
Rotating the fermion fields to the mass basis for the SM leptons, we have found the
Lagrangian (4.28):

Lfermion = ξ̄Li /DξR − ξ̄LMdiag
E ξR −

1√
2
h ξ̄LΥξR + h.c. + other terms ,

where now we have dropped the ‘m’ index and Υ is defined in (4.29). Here “other
terms” stands for the remaining terms in (4.28), that does not influence the Higgs
boson contribution. From this Lagrangian, the Feynman rule for the trilinear lepton-
Higgs interaction is easy derivable:

ξi

ξj

h
=

−i√
2

(
ΥjiPR + (Υ†)jiPL

)
. (4.92)

In addiction, now there is only one diagram that encloses the Higgs contribution
to the ξi → ξjγ process (and thus to the dipole operator) at the one-loop order,
represented in Fig. 4.4. According to Eq. (4.26), to reproduce the µ → eγ process,
one have to set i = 2 and j = 1.

Evaluating the diagram of Fig. 4.4 using the Feynman rule (4.92) one finds:

Mh =
ie

32π2

9∑
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∫ 1

0
dx

∫ x

0
dy

1
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[
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(
Υ1kΥk1QγL + Υ†1kΥ

†
k1QγR

)
−mµ (x− y)(1− x)

(
Υ1kΥ

†
k1QγL + Υ†1kΥk1QγR

)
+me y(1 + x− 2y)

(
Υ†1kΥk1QγL + Υ1kΥ

†
k1QγR

)]
, (4.93)



82 4. PHENOMENOLOGICAL COMPUTATIONS

where

Ωk(x, y) = xm2
k + (1− x)M2

h − (x− y)(1− x)m2
µ − y(1− x)m2

e . (4.94)

To evaluate Eq. (4.93) consistently in a perturbative fashion, one should make use
of Eqs. (4.19), (4.20) and (4.29) to find an approximate expression for the Υ matrix
elements. Further, one should recall that the SM lepton masses are third order
quantities. Using these notions, one can find that the leading order contribution of
Eq. (4.93) arises at the third order and it is:
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. (4.95)

Since, at the leading order, one finds:

9∑
k=4

1

mk
Υ1kΥk1 = − 3v√

2
∆m−1Y ∗Rm̃

−1Y ∗L
†m−1Y ∗Rm̃

−1∆̃† , (4.96a)

9∑
k=4

1
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Υ†1kΥ

†
k1 = − 3v√

2
∆̃m̃−1Y ∗R

†m−1Y ∗Lm̃
−1Y ∗R

†m−1∆† , (4.96b)

it is easy to verify that one obtains the same result as in Eq. (4.91).

4.3.2 W and Z bosons contribution

It is well-known that, in a generic gauge, to compute the exact contribution from the
W± and Z bosons one should consider also diagrams build up using the associated
would-be Goldstone bosons ϕ± and ϕZ . This is necessary in order to evaluate cor-
rectly the contribution from the longitudinal polarization of the weak gauge bosons.
In particular, there are two notable gauge choices:

� Unitary gauge. In this gauge the would-be Goldstone bosons are “rotated out”
and only the W and Z bosons should be considered. Their propagator becomes:

DWtr,Ztr
µν (k) =

−i
k2 −M2

W,Z

(
ηµν −

kµkν
k2

)
, (4.97a)

DWl,Zl
µν (k) =

−i
k2 −M2

W,Z

(
kµkν
k2
− kµkν
M2
W,Z

)
, (4.97b)

where we have separated the transverse (‘tr’) and longitudinal (‘l’) components
of the propagators.

� Feynman–’t Hooft gauge. In this other gauge, as we will see, the would-be
Goldstone bosons account for the leading contribution from the longitudinal
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ẽRi Ẽa Eb eLi

Figure 4.5: Allowed fermionic line with only one Yukawa insertion. A licit dipole diagram
can be obtained by inserting a Z loop and an outgoing photon anyhow through this line. This
diagram gives also the leading order contribution to the SM fermion masses.

polarization of the weak gauge bosons. Indeed, in this gauge, the longitudinal
component of the W and Z propagators now becomes

DWl,Zl
µν (k) =

−i
k2 −M2

W,Z

kµkν
k2

, (4.98)

the terms proportional to
kµkν
M2
W,Z

being now provided by the would-be Goldstone

bosons contribution.

We will use the unitary gauge to show how the leading contribution to the dipole
operator arises from the longitudinal polarizations of the weak gauge bosons. Then,
we will use the Feynman–’t Hooft gauge to isolate and compute only such contri-
bution; this can be done, as we will show, considering only the would-be Goldstone
bosons exchange in the loop.

Let us put ourselves in the unitary gauge, where only the W and Z bosons should
be considered. We now show that the leading contribution of the Z boson is due to its
longitudinal polarization and that such contribution has the same order of magnitude
as the Higgs one evaluated above. Of course this should be a gauge-independent
conclusion and we are using the unitary gauge only for convenience. Further, our
argument can be straightforwardly extended to the W contribution.

The first observation that can be made is that the lepton-lepton-Z vertex is fla-
vor diagonal. Consequently, the argument used to derive the fermionic structure of
Fig. 4.1 (in particular the needs for three Yukawa insertions) apparently ceases to
hold and a new fermionic line is allowed at the leading order, namely the one of
Fig. 4.5. However, diagrams arising from that fermionic line cannot contribute to
LFV processes. This happens because the diagram of Fig. 4.5, taken alone without
other insertions, contribute at the leading order to the SM lepton masses, and thus is
flavor diagonal in the mass basis by definition3 (see also Eq. (4.107)). Nevertheless,
such fermionic line can be used to generate diagrams which give NP contributions to
flavor conserving observables, such as anomalous magnetic moments and the EDMs
for leptons.

As a consequence of the above considerations, we are then back to consider the
fermionic line of Fig. 4.1 as the source of the leading contributions. However, now
all the three Yukawa insertions should be mass mixing terms, giving a v3 overall
coefficient; further, an additional (gSM1 / cos θW )2 factor arises from the two Z inter-
action vertices. Thus, apparently, these kind of diagrams has an extra suppression

3This argument is not completely correct. Indeed, the insertion of a Z loop in the fermionic line
could in principle modify its spurionic structure, thus resulting in a partial misalignment with the
mass matrix (i.e. the object that one diagonalizes). Thus a residual flavor violating contribution can
still survive, but it can be shown that it is subleading, thus we can safely neglect it.
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factor ∼ (MZ/Λ)2 (with Λ ∼ m, m̃) with respect to their counterpart with the ex-
change of an Higgs boson. This is actually true only for the contribution from the
transversal polarizations of Z, while it is not for the longitudinal one. This can be at
least qualitatively understood analysing separately the two pieces of the Z propagator
(Eq. (4.97)):

DZtr
µν (k) =

−i
k2 −M2

Z

(
ηµν −

kµkν
k2

)
∼ ηµν

1

k2
∼ ηµν

1

Λ2
, (4.99)

DZl
µν(k) =

−i
k2 −M2

W,Z

(
kµkν
k2
− kµkν
M2
W,Z

)
∼ 1

k2
ηµν

k2

M2
Z

∼ ηµν
1

M2
Z

, (4.100)

where we have taken k2 to approximately assume the value of the NP scale Λ. Now
we can appreciate that, while the transversal polarizations effectively decouples as
∼ (MZ/Λ)2, part of the longitudinal contribution has the same magnitude as the
Higgs contribution.

A completely analogous argument can be adduced for the case of the W contribu-
tion. The final result, as anticipated, is that the leading contribution comes from the
longitudinal polarizations for the weak gauge bosons. Further, the Feynman–’t Hooft
gauge furnishes the perfect framework to compute only such leading contribution,
since it is easy to see from Eqs. (4.98) that it is enclosed only in the would-be Gold-
stone bosons contributions. This conclusion can be seen as a result of the equivalence
theorem [62], that states the equivalence in the high energy limit (or, equivalently, in
the gaugeless limit gSM1,2 → 0) of the contribution of the W and Z and of the would-be
Goldstone bosons.

We then switch to the Feynman–’t Hooft gauge. Now that the computational
technicalities have been introduced and described while calculating the Higgs contri-
bution, we can easily derive the Feynman diagrams and the corresponding amplitudes
for the contributions to the dipole operator of the would-be Goldstone bosons.

Regarding the pseudoscalar ϕZ , it is straightforward to verify that the Feynman
diagrams to be considered are the same of Fig. 4.2, once substituted h with ϕZ .
Further, also the calculations are completely analogous, the only difference being the
substitutions of the Feynman rules (A.86) and (A.87) with (A.88) and (A.89). One
then finds:

MϕZ =ML,ϕZ +MR,ϕZ , (4.101a)
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MR,ϕZ =
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(4.101c)

Concerning the charged would-be Goldstone boson ϕ+, in principle one should
again consider the four diagrams of Fig. 4.2, once substituted h with ϕ+ and the
charged leptons in the loop with neutral leptons. However, noticing that no mass
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Figure 4.6: The only leading order diagram representing the contribution of the ϕ+ boson
to the dipole operator.

insertions in the neutral sector are presents (in other words, no neutral lepton singlets
are considered) and that only the charged singlets Ẽ interact through ϕ± with the
neutral sector, the only valid diagram left is the one corresponding to B2 (and, of
course, its chirality-flipped counterpart), represented in Fig. 4.6.

Evaluating the contribution of the diagram in Fig. 4.6 using the same techniques
already developed, one can easily find:

ML,ϕ+ =
iev
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and, considering the process of opposite chirality:

MR,ϕ+ =
iev
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(4.103)

Mϕ+ =ML,ϕ+ +MR,ϕ+ . (4.104)

We are now able to write down the complete leading order contribution of the
Higgs doublet φ to the amplitude for the process ei → ejγ:

Mφ =ML,φ +MR,φ (4.105a)

ML,φ = − iev
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(4.105b)

MR,φ = − iev
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We can straightforwardly translate the above result in terms of the effective La-
grangian (4.43), resulting in:
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v
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4.3.3 Phenomenological bounds

In section 4.2, we have discussed how NP contributions to the Wilson coefficients of
the dipole operator are constrained by present experimental measurements. We have
in particular focused our attention on the search for the cLFV process µ → eγ and
on the measurement of the flavor conserving parameters ∆a` and d` (the anomalous
magnetic moments and the electric dipole moments of the leptons respectively). Then,
in this section, we have computed the leading order NP contribution of the SM bosons
to the dipole operator, within the two-site model we are considering. We are now
ready to put the two discussions together in order to extrapolate some quantitative
informations about our two-site model.

Our final aim will be to derive a lower bound for the NP scale Λ for this class
of models, using the present experimental results. Thus, we should reduce the great
number of free parameters appearing in our NP Lagrangian (Y ∗L,R, m, m̃, ∆, ∆̃, ...)
to a limited number of significant parameters, possibly only Λ itself. For this purpose,
we can make the following considerations:

� We can safely assume m, m̃ ∼ Λ.

� Recalling the partial compositeness discussion of section 3.2, we can assume the
hierarchical structure of the SM Yukawas to arise completely because of the
hierarchy in the mixing parameters ∆, ∆̃. In this scenario, the Yukawa interac-
tions in the composite sector are completely anarchic4 and then |(Y ∗L,R)ij | ∼ Ŷ ∗
∀ i, j. Here Ŷ ∗ is a flavor-blind parameter that encloses the strong dynam-
ics of the Higg-composite interaction, thus Ŷ ∗ > 1. Nevertheless, we have
assumed through the discussion that a perturbative expansion is meaningful,
i.e. vŶ ∗ � Λ.

� Using the mass insertion approximation, one can easily see that the third order
diagram giving the leading contribution to the SM fermion mass terms is the
one of Fig. 4.5:

ẽRi Ẽa Eb eLi
=

v√
2

∑
a,b

∆ia

ma
(Y ∗R)ab

∆̃†bi
m̃b

ēLiẽRi , (4.107)

and then we have5:
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v√
2

∑
a,b

∆`a

ma
(Y ∗R)ab

∆̃†b`
m̃b
' v√

2

[∑
a

∆`a

ma

][∑
b

∆̃†b`
m̃b

]
Ŷ ∗ , (4.108)

where the analogy with Eqs. (3.26) and (3.29) of section 3.2 can be appreciated.
In the following we will assume the last equality to hold exactly.

4It should be clear that this is not the only possibility, i.e. also the strong sector (and then the
Y ∗L,R matrices) can be provided of additional flavor symmetries. We are considering the anarchical
case since it is the most conservative one, resulting in the most stringent experimental constraints.

5We have assumed to have switched to the basis where the SM leptons are diagonal at the third
order. In practice, this can always be seen as a redefinition of the matrices ∆, ∆̃ and then the
calculations made above in this section are not affected by this basis rotation. In such basis, of
course the quantity (4.108) is real.
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Through these approximations, we can rewrite the C``′ coefficients of Eq. (4.106)
using fewer parameters:
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C`` =
c``
Λ2
' 1

16π2

1

Λ2
(Ŷ ∗)2 . (4.110)

notice that, summing over the b and c indices, we have considered an incoherent con-
tribution from the phases of the Y ∗L,R matrix elements, that then sum up to approxi-
mately ∼ 1. In the best case, where all such contributions would sum up coherently,
one would find a further factor 9.

We also define the following mixing angles:

θ``′ =

√
|c``′ |2 + |c`′`|2
|c``|

, (4.111)

that somehow parametrize the fine tuning of the flavor structure in the composite
sector. They have a minimum value due to the constraint of Eq. (4.108), that is6:

θ``′,min =

√
2m`′

m`
. (4.112)

Now we are able to recast BR(` → `′γ) using only the NP scale Λ, the strong
interaction parameter Ŷ ∗ and the mixing angles θ``′ . Starting from Eq. (4.44), one
finds:

BR(`→ `′γ)

BR(`→ `′ν`ν̄`′)
=

48π3α

G2
F

θ2
``′ |C``|2 =

3α

16π
θ2
``′ (Ŷ

∗)4 1

G2
FΛ4

. (4.113)

In particular, focusing on the µ→ eγ decay, we get:

BR(µ→ eγ) ' 2 · 10−13

(
θeµ

θeµ,min

)2(20 TeV

Λ

)4

(Ŷ ∗)4 . (4.114)

We can see that, within our approximations, the current experimental bound imposes
a severe constraint on the NP scale. It is worthwhile to notice that the suppression
factor goes as ∼ 1/Λ4, then increasing by a factor of two the NP scale already lowers
of more than an order of magnitude the predicted branching ratio.

Analogous considerations can be made taking into account the flavor conserving
observables ∆a` and d` discussed in section 4.2. However, now one should be aware
of the fact that, since we are considering flavor conserving processes, other leading
contributions arising from different diagrams with different spurionic structures can
exist, as already mentioned while analysing Fig. 4.5. Nevertheless, we can assume

6It can be found e.g. using the method of the Lagrange multipliers.
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our result to be representative of the correct order of magnitude of the overall con-
tribution.

Using Eq. (4.46), one finds:

∆a` =
1

8π2

m2
`

Λ2
(Ŷ ∗)2 cosφ` ,

d`
e

= − 1

16π2

m`

Λ2
(Ŷ ∗)2 sinφ` , (4.115)

where φ` is the phase of c``, that cannot be predicted through our approximations
and that remains a free parameter. Again focusing on the most promising observables
(discussed in section 4.2):

∆aµ ' 3.5 · 10−9

(
200 GeV

Λ

)2

(Ŷ ∗)2 cosφµ , (4.116)

d`
e
' −7 · 10−29

(
30 TeV

Λ

)2

(Ŷ ∗)2 sinφe cm . (4.117)

The complete picture arising from the above analysis can be summarized as fol-
lows. If we compare our model predictions for BR(µ→ eγ) and de with the present
experimental constraints, Eqs. (4.114) and (4.117), we essentially find that the ex-
istence of a TeV scale composite sector can still be accommodated only assuming
Λ & 30 TeV. However, this estimation refers to the optimistic situation in which the
free parameters (especially θeµ and Ŷ ∗) take their most advantageous values.

The claimed ∆aµ anomaly could hardly be explained within our model, if one
pretend simultaneously to satisfy the present constrains on BR(µ→ eγ) and de. In-
deed, for Λ ∼ 20 TeV, one obtains an exceedingly small value for the anomaly (four
orders of magnitude).

In this thesis, we have performed an explicit analysis limiting ourselves to the
dipole operator and in particular to the dipole-mediated processes `→ `′γ. We have
already argued in section 4.2 that the dipole operator is the most sensitive one in
PC scenarios and also that, among the dipole-mediated processes, the most enhanced
are exactly the one we have considered. Thus, also taking into account the present
experimental sensitivity for other cLFV processes, it turns out that the constraints
derived through our analysis using the dipole operator and the µ→ eγ decay are the
most stringent that can be inferred using flavor physics in the leptonic sector.

In conclusion, the current experimental bounds (or at least the ones we have
considered in this work) are becoming a serious issue for CH models, as can be
appreciated with the above analysis. The most important question is then how much
the strong sector energy scale Λ can be raised with respect to the Higgs mass, before
the hierarchy problem is basically restored. We have seen that, presently, already
two orders of magnitude between the two energies are needed in order to satisfy the
experimental constraints. Thus we are clearly reaching a turning point for these class
of models and in the near future we will hopefully be able to give a definitive answer
to the question whether nature has chosen or not to give a natural mass to the Higgs
boson through a TeV scale strong interacting sector.



Conclusion

Whether new physics (NP) at the TeV scale exists or not is one major question in
modern particle physics, the hierarchy problem being the primary (if not the only)
reason to assume its existence. With nowadays and next-generation experimental
facilities at the LHC, we will be finally able to test experimentally the TeV scale;
thus, hopefully, an answer to the above question is about to be found.

In this context, flavor physics provides a unique framework for testing the SM.
It furnishes a great variety of suppressed processes, through which one can look for
deviations of the experimental results from the SM predictions. Unfortunately, so
far no NP signals have been found in flavor physics and, as a consequence, TeV
scale NP models with generic (anarchical) flavor structures are definitely ruled out
[29]. Insisting on TeV scale NP for naturalness arguments, highly non generic flavor
structures should be imposed to the NP models, such as the Minimal Flavor Violation
(MFV) [6] or the Partial Compositeness (PC) paradigms [7].

An important technique that has been used in this work, originally developed to
implement the MFV concept but that can be extended to more general situations, is
the spurionic analysis [6]. The basic idea of this method is to formally restore the
flavor symmetry group of the theory by defining suitable transformation properties
for the symmetry breaking terms, that are now called spurions. This technique is very
useful since it allows to immediately associate with a definite operator its suppression
factor in the theory one is considering.

Switching to a model-dependent analysis, Composite Higgs (CH) models [8] are
an interesting alternative to supersymmetry as TeV scale NP candidates. Assuming
a new strong interacting sector near the Fermi scale, one can imagine the Higgs boson
to be a composite particle, arising as a bound state of such new sector. Its lightness
can thus be explained assuming it to be a pseudo Nambu–Goldstone boson, solving
also the little hierarchy problem (that is the presence of a hierarchy between the Higgs
mass and the remaining mass spectrum of the NP sector) without any significant fine
tuning [9].

Further, CH models provide the intriguing mechanism of partial compositeness,
that is the idea that the SM particles are an admixture of elementary and composite
particles. Assuming that only the latter component can interact with the Higgs boson

89
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(and thus feel the EWSB), the PC paradigm can provide both a fascinating expla-
nation of the hierarchies in the fermionic mass spectrum and an effective suppression
mechanism for NP contributions to flavor observables [63]. It is important to stress
that MFV and PC outline two different scenarios, with different patterns of flavor
violation, thus potentially distinguishable experimentally.

However, unlike supersymmetry, the CH models are strong interacting models
and thus precise phenomenological predictions are far more difficult to be extracted.
For this purpose, in recent years simplified CH models have been proposed, that still
retain the important features of the CH phenomenology (such as PC), but at the same
time provide a framework to perform simpler (and still reliable) explicit computations
[10, 64]. The two-site model we have considered in this work has exactly this aim:
only the lowest-lying set of composite states has been retained, resulting in a model
which still presents a PC scenario but that allows simpler, perturbative computations.

Regarding the perturbative approach, another important technique that has been
exploited in this thesis is the mass insertion approximation. Instead of working in the
mass basis (something requiring a computationally involved rotation of the fermion
fields), this approximation allows to work in a more suitable basis and to consider
the off-diagonal elements of the fermion mass matrix as new interaction terms, to be
described with their own Feynman rules. It furnishes also a different point of view to
appreciate the mechanism behind the PC paradigm.

In this work we have considered a popular two-site model, that fully recreates a
PC scenario both for the fermions and for the bosons (indeed also the massless SM
gauge bosons can be nevertheless thought of as partially composite particles). After
having characterized in detail the leptonic sector of such model, we have settled both
a complete spurionic analysis and a coherent perturbative computation through the
mass insertion approximation.

Thus we have focused on the dipole operator, since it benefits of a significant
enhancement in this kind of models. First, by means of the spurionic analysis we
have successfully predicted the structure of the Wilson coefficient of the dipole op-
erator. Then, using the mass insertion approximation, we have explicitly computed
through one-loop calculations the leading order expression of such Wilson coefficient.
Remarkably, we also managed to partially perform such computations in the mass ba-
sis, correctly reproducing the corresponding results obtained with the mass insertion
approximation.

We have argued that the leading contribution arises from the exchange of SM
bosons and heavy fermions and in particular, in the Feynman–’t Hooft gauge, only
by the Higgs doublet exchange (i.e. when the Higgs boson or a would-be Goldstone
boson circulate in the loop). Expressing this result in a gauge-independent form,
we can say that the W and Z bosons contribute at the leading order only through
their longitudinal polarization: this can be seen as a non-trivial consequence of the
equivalence theorem.

Knowing the expression of the Wilson coefficient associated with the dipole opera-
tor, we have easily derived the predictions of our two-site model for some phenomeno-
logically relevant observables, in particular the branching ratio for the muon decay
mode µ → eγ, the electron EDM de (which are both overwhelmingly small within
a SM framework) and the anomalous magnetic moment of the muon aµ. Through
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these results, we have been able to make comparisons with the current experimental
bounds in order to establish if there is compatibility with the assumption that the NP
scale is not far above the Fermi scale. We have found that the present experimental
results regarding flavor violating and flavor conserving observables in the leptonic
sector, mainly BR(µ → eγ) and de, put some stringent constraints on the NP scale
Λ, imposing Λ & 30 TeV assuming a flavor-anarchical strong sector, see Eqs. (4.114)
and (4.117).

An even more drastic conclusion is drawn if one consider the claimed discrepancy
between SM prediction and experimental value for ∆aµ, the anomalous magnetic
moment of the muon. Even though this result is still ambiguous, one can decide to
trust it and try to predict its value using our two-site model. The conclusion in this
case is that the numerical value of such anomaly cannot be satisfactorily reproduced
(in a flavor-anarchic scenario for the strong sector) while accommodating also the
bounds on BR(µ→ eγ) and de.

In conclusion, here we have studied a very general scenario related to the CH
models with PC. Exploiting the fundamental tools of spurionic analysis and mass
insertion approximation, we managed to compute phenomenological predictions for
this class of models. Comparing our predictions with experimental results, we have
found that flavor physics observables are becoming a severe issue for CH models and
the PC paradigm in an anarchical scenario is seriously challenged.
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APPENDIX A

Appendix

A.1 Flavor violating observables

In section 2.2, we have seen how EFTs can be used to describe and parametrize
NP contributions to physical observables in a very economical way; also, we have
discussed how dimension six operators are particularly important in this context,
since they often furnish the leading contribution to the observables under study. We
have further seen how flavor physics, especially flavor violating processes, provides an
important framework where severe tests to the SM predictions and searches for NP
signals can be carried out.

For these reasons, when dealing with flavor physics, it is compulsory to perform
a thorough analysis of all the possible flavor violating dimension six operators and of
their contributions to physical observables. This is what will be done here. We will
divide the discussion in two pieces: first ∆F = 2 processes will be discussed, then we
will switch to ∆F = 1 processes.

A.1.1 ∆F = 2 processes

The ∆F = 2 sector concerns the neutral meson systems, i.e. the K0 − K̄0, D0 − D̄0,
B0
d − B̄0

d and B0
s − B̄0

s mixing. Before discussing in detail the observables accessible
in these systems, we briefly make some general comments about the basics of meson
mixing and the ∆F = 2 effective Hamiltonian.

The amplitude for the transition of a neutral meson M̄0 into its antiparticle M0

can be written as follows

〈M0|Heff |M̄0〉 = M12 −
i

2
Γ12 , (A.1)

where M12 and Γ12 are called dispersive part and absorptive part of the amplitude,
respectively. The phases of M12 and Γ12 are convention dependent, but their relative
phase is instead a physical observable. Then, the three fundamental parameters
describing meson–antimeson mixing are

|M12|, |Γ12|, φ12 = Arg

(
M12

Γ12

)
. (A.2)
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While in most BSM models the SM absorptive part Γ12 is hardly affected by
NP, the dispersive part M12 is sensitive to new short distance dynamics that can be
encoded in the Wilson coefficients of the ∆F = 2 effective Hamiltonian

Heff = −
5∑
i=1

CiQi −
3∑
i=1

C̃iQ̃i + h.c. , (A.3)

where the Qi and Q̃i operators form a complete basis of ∆F = 2 dimension six
operators. They are:

Q1 = (ūαγµPLcα)(ūβγ
µPLcβ) ,

Q2 = (ūαPLcα)(ūβPLcβ) ,

Q3 = (ūαPLcβ)(ūβPLcα) ,

Q4 = (ūαPLcα)(ūβPRcβ) ,

Q5 = (ūαPLcβ)(ūβPRcα) ,

Q̃1 = (ūαγµPRcα)(ūβγ
µPRcβ) ,

Q̃2 = (ūαPRcα)(ūβPRcβ) ,

Q̃3 = (ūαPRcβ)(ūβPRcα) , (A.4)

where α and β are color indices and PR,L = 1
2(1 ± γ5). For definiteness we quoted

here the operator basis for the cū→ c̄u transition. Completely analogous expressions
holds of course also in the case of the sd̄→ s̄d, bd̄→ b̄d and bs̄→ b̄s transitions.

As described in section 2.2, in the framework of specific UV completions of the
SM the Wilson coefficients Ci and C̃i in (A.3) can be determined at a high matching
scale µNP by integrating out the heavy degrees of freedom of the model. Then, one
can perform a RG running of the coefficients from this high scale down to the low
hadronic scale µl ' MM , where MM is the mass of the meson under study. The NP
contributions to the mixing amplitude is thus given by:

MNP
12 = 〈M0|HNP

eff |M̄0〉 = −
5∑
i=1

CNPi (µl)〈Qi(µl)〉 −
3∑
i=1

C̃NPi (µl)〈Q̃i(µl)〉 . (A.5)

While the Wilson coefficients encapsulate the high energy informations of the
theory, the operator matrix elements 〈Qi〉 and 〈Q̃i〉 enclose the low energy physics
and then they can be evaluated at the low scale with lattice QCD methods. They
are commonly written in the following way:

〈Q1〉 = 〈Q̃1〉 =
1

3
MDF

2
DB

D
1 ,

〈Q2〉 = 〈Q̃1〉 = − 5

24
R2
DMDF

2
DB

D
2 ,

〈Q3〉 = 〈Q̃1〉 =
1

24
R2
DMDF

2
DB

D
3 ,

〈Q4〉 =
1

4
R2
DMDF

2
DB

D
4 ,

〈Q5〉 =
1

12
R2
DMDF

2
DB

D
5 , (A.6)

where again we have considered for definiteness the cū → c̄u transition. Here, MD

and FD are the D0 meson mass and decay constant respectively, RD is a chiral factor
given by RD = MD/(mc+mu) and the so called Bag parameter BD

i parametrizes the
deviation of the matrix element from the vacuum insertion approximation. All these
numerical inputs can be found in literature, see e.g. [22, 65].

With the description developed above, one is thus able to fully parametrize NP
contributions to the mixing amplitude of the neutral meson systems; this enables to
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translate the experimental results of observables quantities into constraints on the
Wilson coefficients and thus on NP scenarios. Then, the only thing left to do is to
discuss which observables are accessible in the different neutral meson systems in
terms of the mixing amplitude (A.1).

D0 − D̄0 mixing

The neutral D meson mass eigenstates D1 and D2 are linear combinations of the
strong interaction eigenstates, D0 and D̄0:

|D1,2〉 = p|D0〉 ± q|D̄0〉 , q

p
=

√
MD∗

12 − i
2ΓD∗12

MD
12 − i

2ΓD12

. (A.7)

Their normalized mass and width differences, xD and yD, are given by:

xD =
∆MD

ΓD
= 2τDRe

[
q

p

(
MD

12 −
i

2
ΓD12

)]
, (A.8)

yD =
∆ΓD
2ΓD

= −2τDIm

[
q

p

(
MD

12 −
i

2
ΓD12

)]
. (A.9)

Experimentally, D0 − D̄0 mixing is now firmly established, whereas there is still
no evidence for CP violation [66]. Anyway, both mixing and CP violating observables
are until now compatibles with the SM predictions and therefore the mass and width
difference in D0 − D̄0 mixing can only be used to bound possible NP contributions.

The CP violating observables are of particular interest in this system, since any
experimental signal for CP violation above the per mill level would be an unambiguous
NP effect as in the SM CP violation is predicted to be of order 10−3. For this reason,
we now briefly focus on two of such observables.

The first one is the time dependent CP asymmetry SDf in decays of D0 and D̄0

to CP eigenstates f . These decay rates are to a good approximation given by [67]:

Γ(D0(t)→ f) ∝ exp
[
−Γ̂D0(t)→f t

]
, Γ(D̄0(t)→ f) ∝ exp

[
−Γ̂D̄0(t)→f t

]
, (A.10)

with effective decay widths:

Γ̂D0(t)→f = ΓD

[
1 + ηCPf

∣∣∣∣qp
∣∣∣∣ (yD cosφD − xD sinφD)

]
, (A.11a)

Γ̂D̄0(t)→f = ΓD

[
1 + ηCPf

∣∣∣∣pq
∣∣∣∣ (yD cosφD − xD sinφD)

]
, (A.11b)

where ηCPf is the CP parity of the final state f . One then defines the following CP
violating combination:

SDf = 2∆Yf =
1

ΓD

(
Γ̂D0→f − Γ̂D̄0→f

)
, (A.12)

that, using Eqs. (A.11) becomes:

ηCPf SDf = xD

(∣∣∣∣qp
∣∣∣∣+

∣∣∣∣pq
∣∣∣∣) sinφD − yD

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣) cosφD . (A.13)
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As explained in [67], to an excellent approximation the above relations hold also
in the presence of new weak phases in the decay, due to the nowadays experimental
constraints on such phases. Thus, ηCPf SDf is universal for all final states and prac-
tically independent of direct CP violation in the decays. The present experimental
value for this quantity is [68]:

ηCPf SDf = (−0.20± 0.22)% , (A.14)

and thus it is consistent with the SM estimation.

The second interesting CP violating observable is the semileptonic asymmetry in
the decay to “wrong sign” leptons. It is defined as

aDSL =
Γ(D0 → K+`−ν)− Γ(D̄0 → K−`+ν)

Γ(D0 → K+`−ν) + Γ(D̄0 → K−`+ν)
=
|q|4 − |p|4
|q|4 + |p|4 (A.15)

and it is a direct measure of CP violation in the mixing. It turns out that this
observable is correlated to the universal time dependent CP asymmetry SDf [67]:

SDf = −ηCPf
x2
D + y2

D

|yD|
aDSL . (A.16)

K0 − K̄0 mixing

The two main observables in K0 − K̄0 mixing are the mass difference ∆MK and the
parameter εK that is a measure of CP violation in such mixing. In terms of the
mixing amplitude MK

12 they can be written as:

∆MK = 2Re(MK
12) , |εK | =

κε√
2

Im(MK
12)

∆MK
, (A.17)

where κε ' 0.94 is a corrective factor that takes into account the long distance
contributions to εK [69]. While the SM prediction for ∆MK has a large uncertainty
due to unknown long distance contributions, the εK parameter is dominated by short
distance physics and can be predicted with good accuracy.

Using the SM expression for MK
12 one finds:

|εK |SM = κεCεB̂Kλ
2|Vcb|2 sinβ

(
|Vcb|2R2

t ηttS0(xt) cosβ +Rt(ηctS0(xc, xt)− ηccxc)
)
,

(A.18)
where S0 is a SM loop function that can be found e.g. in [3] and depends on the ratios
xi = m2

i /M
2
W (with i = c, t), ηij (with i, j = c, t) are QCD correction factors known

at the NLO [70], λ and Rt have been defined in section 2.1 and the factor Cε is given
by:

Cε =
G2
FM

2
WF

2
KMK

6
√

2π2∆MK

' 3.655 · 104 . (A.19)

Also here, the experimental and the SM values are in agreement (at the 1σ level),
leading to strong constraints on the flavor structure of NP models.
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Bd − B̄d mixing

The two most important observables in the Bd system are the mass difference ∆Md

and the time-dependent CP asymmetry in the tree level decay Bd → ψKS

Γ(B̄d(t)→ ψKS)− Γ(Bd(t)→ ψKS)

Γ(B̄d(t)→ ψKS) + Γ(Bd(t)→ ψKS)
= SψKS sin(∆Mdt) , (A.20)

where we neglected CP violation in the Bd → ψKS decay amplitude.
Parametrizing the Bd − B̄d mixing amplitude Md

12 in the following way:

Md
12 = (Md

12)SM + (Md
12)NP = |(Md

12)SM |e2iβd + |(Md
12)NP |eiθd = Cde

2iφd(Md
12)SM ,

(A.21)
the mass difference ∆Md and the coefficient SψKS can be written as

∆Md = 2|Md
12| = Cd(∆Md)

SM , SψKS = − sin
(

Arg(Md
12)
)

= sin(2β + 2φd) .

(A.22)
While ∆Md measures the absolute value of the mixing amplitude, SψKS measures

its phase that, in the SM, is determined by the CKM angle β, i.e. the phase of the
CKM element Vtd. In fact in the SM one has

(Md
12)SM =

G2
FM

2
W

12π2
ηBMBdF

2
Bd
B̂BdS0(xt)(VtbV

∗
td)

2 , (A.23)

where again ηB is a QCD correction factor and S0 a loop function depending on
xt = m2

t /M
2
W , see the discussion of the K0 − K̄0 for references.

Again, one finds a good agreement between SM predictions and experimental
measurements, implying severe constraints on NP models.

Bs − B̄s mixing

In analogy with the Bd system, also in the Bs− B̄s mixing the important observables
are the mass difference ∆Ms and the time dependent CP asymmetry in the tree level
decay Bs → ψφ:

Γ(B̄s(t)→ ψφ)− Γ(Bs(t)→ ψφ)

Γ(B̄s(t)→ ψφ) + Γ(Bs(t)→ ψφ)
= Sψφ sin(∆Mst) , (A.24)

where we set to zero CP violation in the decay amplitude. The Sψφ asymmetry is
induced by βs ' −1◦, the tiny phase of the CKM element Vts, and therefore is very
small. Consequently, Sψφ represents a very promising probe for NP effects.

Again, to parametrize NP contributions to the mixing amplitude M s
12, we make

use of the following decomposition (see Eq. (A.21)):

M s
12 = (M s

12)SM + (M s
12)NP = |(M s

12)SM |e2iβs + |(M s
12)NP |eiθs = Cse

2iφs(M s
12)SM .

(A.25)
As in the case of the Bd− B̄d mixing, the mass difference measures the absolute value
of the mixing amplitude, while the coefficient Sψφ measures its phase:

∆Ms = 2|M s
12| = Cs(∆Ms)

SM , Sψφ = − sin (Arg(M s
12)) = sin(2|βs| − 2φs) .

(A.26)
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The mixing amplitude in the SM is given by:

(M s
12)SM =

G2
FM

2
W

12π2
ηBMBsF

2
BsB̂BsS0(xt)(VtbV

∗
ts)

2 , (A.27)

and again no tensions with the experimental value arise.

A.1.2 ∆F = 1 processes

The ∆F = 1 sector spans a wide range of weak decays. In this context, a systematic
description of the most general effective Hamiltonian, made up of all the possible
∆F = 1 dimension six operators, is far more complicate than in the ∆F = 2 case,
since now there are 35 such operators in all [28]. Typically, only some of them give
a contribution to the specific process under study and only few of them are relevant
for phenomenological computations.

For all these reasons, when dealing with ∆F = 1 processes it is more advantageous
to consider and characterize the relevant operators case by case. Again, such analyses
allow to translate experimental results directly into bounds on the Wilson coefficients
and then on NP contributions.

Here we will briefly review only some representative weak decays, introducing for
each of them the important operators that describe the effective Hamiltonian for that
process. A systematic description of the effective Hamiltonian for a broad variety of
weak decays can be found in [3].

The radiative b→ sγ decay

The suitable framework for the theoretical description of the b → sγ decay is given
by the effective Hamiltonian [71]

Heff = −4GF√
2
VtbV

∗
ts

∑
i

(
CiQi + C ′iQ

′
i

)
, (A.28)

where

Q7γ =
e

16π2
mbFµν s̄σ

µνPRb , Q′7γ =
e

16π2
mbFµν s̄σ

µνPLb , (A.29)

Q8G =
gs

16π2
mbG

a
µν s̄σ

µνT aPRb , Q′8G =
gs

16π2
mbG

a
µν s̄σ

µνT aPLb . (A.30)

The operators (A.29) and (A.30) are the most sensitive to NP effects, they are
called electromagnetic and cromomagnetic dipole operators respectively. As explained
in section 2.3, in the SM and more generally in models with MFV the unprimed op-
erators are necessarily proportional to the bottom quark mass mb (a dependence that
has been made explicit in their definition), whereas the primed operators are propor-
tional to the strange quark mass ms. Therefore, in such models, the contributions of
Q′7γ and Q′8G are suppressed by a factor ms/mb ' 0.024 and thus they are completely
negligible. As discussed in section 3.2, instead, in other NP models this suppression
could be lifted and in these cases large contributions to the corresponding Wilson
coefficients C ′7γ and C ′8G are expected.
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The prediction for the inclusive b→ Xsγ branching ratio in the presence of arbi-

trary NP contributions to the Wilson coefficients C
(′)
7γ and C

(′)
8G can be well approxi-

mated by the following expression [72]:

BR(B→ Xsγ)

BR(B→ Xsγ)SM
= 1 + â77

(∣∣CNP7γ

∣∣2 +
∣∣C ′NP7γ

∣∣2)+ â88

(∣∣CNP8G

∣∣2 +
∣∣C ′NP8G

∣∣2)
+ Re

(
â7C

NP
7γ

)
+ Re

(
â8C

NP
8G

)
+ Re

(
â78

[
CNP7γ C∗NP8G + C ′NP7γ C ′∗NP8G

])
, (A.31)

where âi are O(1) numerical coefficients. Since the experimental data on the above
branching ratio and the corresponding NNLO SM prediction are in good agreement
with each other, the expression (A.31) can be used to derive severe contraints on the
flavor sectors of many NP models [73].

The semileptonic b→ s`+`− decay

Also semileptonic decays based on the b → s`+`− transition are sensitive probes of

NP contributions to the electromagnetic dipole operators C
(′)
7γ given in (A.29). In

addition, such decays are also very sensitive to semileptonic four fermion operators
in the effective Hamiltonian:

Q7V =
e2

16π2
(s̄γµPLb)(¯̀γµ`) , Q7A =

e2

16π2
(s̄γµPRb)(¯̀γµ`) , (A.32)

Q9V =
e2

16π2
(s̄γµPLb)(¯̀γµγ5`) , Q10A =

e2

16π2
(s̄γµPRb)(¯̀γµγ5`) . (A.33)

There are several meson decays that are based on the b→ s`+`− transition at the
parton level. They cover the inclusive B → Xs`

+`− decay as well as the exclusive
B → K`+`−, B → K∗`+`− and Bs → φ`+`− decays. The NP sensitivity of these
decay modes has been extensively studied in literature (see e.g. [74]); we will restrict
our discussion to a brief description of the B → K∗`+`− mode, referring to [75] for
further details and references.

The exclusive B → K∗(→ Kπ)`+`− decay is regarded as a very important channel
for B physics since its angular distribution gives access to a multitude of observables
that offer new important tests of the SM and its extensions. With an on-shell K∗, the
decay is completely described by four independent kinematic variables: the dilepton
invariant mass squared q2 and three angles, θK∗ , θ` and φ as defined e.g. in [75]. The
corresponding full angular decay distribution of B̄0 → K̄∗0(→ K−π+)µ+µ− can be
written as

d4Γ

dq2 d cos θK∗ d cos θ` dφ
=

9

32π
I(q2, θK∗ , θ`, φ) , (A.34)

where the q2 dependence in I(q2, θK∗ , θ`, φ) can be encapsulated in 12 angular coef-

ficients I
(a)
i = {Is1 , Ic1, Is2 , Ic2, I3, I4, I5, I

s
6 , I

c
6, I7, I8, I9}.

The corresponding expression for the CP conjugated mode, that is the process
B̄0 → K∗0(→ K+π−)µ+µ−, is

d4Γ̄

dq2 d cos θK∗ d cos θ` dφ
=

9

32π
Ī(q2, θK∗ , θ`, φ) , (A.35)
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where again the q2 dependence in I(q2, θK∗ , θ`, φ) is enclosed in 12 angular coefficients

Ī
(a)
i .

All the 24 angular coefficient functions I
(a)
i (q2) and Ī

(a)
i (q2) are independent and

physical observables. They can be expressed in terms of the Wilson coefficients of the
effective Hamiltonian and then they all can be used to bound NP contributions. They

are often recast as 12 CP averaged angular coefficients S
(a)
i and 12 CP asymmetries

A
(a)
i , in order to separate CP conserving and CP violating NP effects:

S
(a)
i =

I
(a)
i + Ī

(a)
i

d(Γ + Γ̄)/dq2
, A

(a)
i =

I
(a)
i − Ī

(a)
i

d(Γ + Γ̄)/dq2
, (A.36)

where the normalization to the CP averaged dilepton mass distribution reduces both
experimental and theoretical uncertainties in these observables.

This discussion offers a clean and comprehensive way to appreciate and analyse
the richness of angular distributions in B̄0 → K̄∗0(→ K−π+)µ+µ− decays, as probes
of NP signals.

The Bs → µ+µ− and Bd → µ+µ− decays

The purely leptonic Bs → µ+µ− and Bd → µ+µ− decays are strongly helicity sup-
pressed in the SM by the small muon mass, leading to tiny SM predictions for their
branching ratios.

The strong suppression of these decays make them ideal probes to investigate the
quark flavor structure of BSM physics. Indeed, their helicity suppression can be lifted
in the presence of scalar currents and even order of magnitude enhancements of the
branching ratios are possible for example in some supersymmetric models.

The operator that is responsible for the Bs → µ+µ− decay in the SM is the
semileptonic operator Q9V defined in (A.33). Possible scalar currents in NP models
give rise to scalar and pseudoscalar operators:

QS =
e2

16π2
mb(s̄PRb)(¯̀̀ ) , Q′S =

e2

16π2
mb(s̄PLb)(¯̀̀ ) , (A.37)

QP =
e2

16π2
mb(s̄PRb)(¯̀γ5`) , Q′P =

e2

16π2
mb(s̄PLb)(¯̀γ5`) . (A.38)

In terms of the Wilson coefficients of these operators, the branching ratio for the
Bs → µ+µ− decay can be expressed in the following way:

BR(Bs → µ+µ−) = τBs
G2
Fα

2

64π3
F 2
BsM

3
Bs |VtbV ∗ts|2

√
1−

4m2
µ

M2
Bs

(
|B|2

(
1−

4m2
µ

M2
Bs

)
+ |A|2

)
,

(A.39)
with A and B given by

A = 2
mµ

MBs

CSM9V +MBs(CP − C ′P ) , B = MBs(CS − C ′S), (A.40)

and CSM9V ' −4.1 [75]. A totally analogous expression of course holds for the Bd →
µ+µ− decay. The factor mµ/MBs in front of CSM9V clearly shows the above mentioned
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helicity suppression, that is lifted in the presence of the scalar and pseudoscalar
operators.

Recently, these processes has been observed at LHCb [76], again resulting in
a substantial agreement with the SM predictions and then to constraints on NP
contributions.

The K → πνν̄ decays

The KL → π0νν̄ and K+ → π+νν̄ decays (see [77] for a review) are the theoretically
cleanest processes among the many rare K and B decays. Their branching ratios have
been calculated in the SM to an exceptionally high precision. On the contrary, on
the experimental side, a precise measurement of such branching ratios is still missing.
Both decays, in particular the neutral KL → π0νν̄ mode that in the SM is purely
induced by direct CP violation, are known to offer unique possibilities in testing the
structure of flavor and CP violation in extensions of the SM [78].

The operators sensitive to short distance dynamics for these decays are

QKL =
e2

16π2
(s̄γµPLd)(ν̄γµPLν) , QKR =

e2

16π2
(s̄γµPRd)(ν̄γµPLν) , (A.41)

with which one can build up the effective Hamiltonian relevant for these processes:

Heff = −4GF√
2

[
H

(c)
eff + V ∗tsVtd(C

K
L Q

K
L + CKR Q

K
R )
]

+ h.c. , (A.42)

where H
(c)
eff denotes the operators which encoded physics below the electroweak scale

(i.e. not affected by possible NP contributions).
The dependence on the Wilson coefficients of the branching ratios for these decays,

KL → π0νν̄ and K+ → π+νν̄, can then be computed using the Hamiltonian (A.42),
in order to estimate the magnitude of possible NP contributions.
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A.2 Extra dimensions theories

A.2.1 Generalities

Higher-dimensional theories have always had the principal aim of describing gravity at
a deeper level, trying to explain its peculiarities with respect to the other interactions.
One of the first to postulate the existence of extra dimensions was Kaluza in 1921 [79].
He wanted to unify gravity with electromagnetism (within a classical framework) an
for this purpose he considered a 5D theory with only gravity.

Several years later, higher-dimensional theories were revitalized by string theory
[17]. Strings were found to give a consistent description of quantum gravity, but this
could only happen if strings were living in more than 4 dimensions. Therefore, as
sentenced at the beginning, extra dimensions might be the correct answer to describe
gravity at the quantum level.

In more recent years, QFT models with one warped extra dimension have been
proposed [38]. In these models, the curved geometry of the fifth dimension can explain
the huge hierarchy between gravity and the other interactions, using exponential
suppression/enhancement factors arising from the warped metric.

We will not discuss here the different proposals of these models concerning the
gravity interaction. A review of this subject can be found in [80]. Instead, we will for
now on focus on theories with one flat extra dimension, describing how such models
can furnish an alternative framework for the implementation of the CH ideas.

As we said before, Kaluza was one of the first to consider theories with more than
four dimensions. Even though his initial motivation and ideas do not seem to be
viable anymore, the formalism he and others developed is still useful nowadays. One
of these tools, fundamental when dealing with compactified extra dimensions, is the
so-called Kaluza-Klein (KK) reduction [81]. We now work out an explicit example of
this method using a simple 5D field theory of a scalar Φ. This will also give us the
opportunity to discuss some peculiarities of 5D field theories.

Let us consider a 5D action given by1:

S5 =

∫
d4x dy

[
|∂µΦ|2 + |∂yΦ|2 − g2

5|Φ|4
]
, (A.43)

where by y we refer to the extra fifth dimension.

In order to keep the action (A.43) dimensionless, we should have the following
dimensions in mass unit: [Φ] = 3

2 and [g2
5] = −1

2 . This dimensional analysis allows us
to recognize one feature of higher-dimensional theories: since the field self-coupling g2

5

is dimensionful, the theory is non-renormalizable. This is true in general, thus every
QFT in more than four dimensions necessarily requires an UV completion. Despite
this fact, extra dimensions QFT can be thought of as EFT and thus can be safely
used to make predictions, with the precautions discussed in section 2.2.

Let us now consider the fifth dimension compact and flat. Further, we will assume
that its topology is that of a circle S1, that corresponds to the identification of y with
y+2πR, where R becomes a free parameter of the theory. Even though some proposed
models can elude this conclusion [82], typically the compactification scale is found to

1Our convention here for the signature is ηMN = diag(1,−1,−1,−1,−1).
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be of the order of the Planck length R ∼ `P ' 10−34 m, when trying to describe
gravity in a consistent way.

The basic idea of the KK reduction is to expand the 5D complex scalar field in
Fourier series:

Φ(x, y) =

∞∑
n=−∞

einy/R√
2πR

φ(n)(x) =
1√
2πR

φ(0)(x) +
∑
n6=0

einy/R√
2πR

φ(n)(x) , (A.44)

that inserted in Eq. (A.43) and integrated over y gives

S5 = S
(0)
4 + S

(n)
4 , (A.45a)

S
(0)
4 =

∫
d4x

[
|∂µφ(0)|2 − g2

5

2πR
|φ(0)|4

]
, (A.45b)

S
(n)
4 =

∫
d4x

∑
n6=0

[
|∂µφ(n)|2 −

( n
R

)2
|φ(n)|2

]
+ quartic− couplings . (A.45c)

We have reduced the initial 5D action to a more customary 4D action. This is
very useful since we know much more about 4D theories that 5D theories. From
Eqs. (A.45) we can see that the corresponding 4D theory in this case consists of a
massless scalar field φ(0) and a tower of massive modes φ(n). The former will be
referred to as the zero-mode, the latter will be referred to as the KK modes.

As a consequence, at energies far below 1/R the effective theory can be described
using only the action (A.45b). Indeed, it is well-know that heavy fields effectively
decouples in a low energy description and thus only the zero-mode remains as a
dynamical degree of freedom. This is actually a very good approximation in models
where R ∼ `P , since the suppression factor of planckian physics at the TeV scale or
below is overwhelming. However, in models with a different compactification of the
extra dimension ,value of 1/R around the TeV scale can naturally arise. In this case,
it could be necessary to include in the effective description also the first KK modes.
Below we will discuss in detail this second possibility.

A.2.2 Orbifold extra dimension

In the discussion above we have used a simple S1 compactification. Of course this is
not the only possibility, and in particular another choice has become very popular in
recent literature, where the extra dimension y is compactified in a orbifold, S1/Z2.

This kind of compactification, whose advantages will become clear soon, is shown
in Fig. A.1. It correspond to a circle S1 with the extra identification of y with −y,
that gives a manifold which is an interval: y ∈ [0, L], L ≡ πR. Therefore the manifold
has boundaries at y = 0 and y = L, delimiting its “bulk”. Although this is not a
smooth manifold, it seems to be a consistent compactification in string theory.

As a consequence of the presence of boundaries, the action alone does not com-
pletely define the theory: the boundary conditions (BCs) at y = 0 and y = L have
also to be specified. These must be chosen so that the variation of the action vanishes,
upon evaluation of the equation of motion, both in the bulk and on the boundaries.
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y = 0 y = πR

y

Z2

S1

Figure A.1: The S1/Z2 orbifold.

As an example, we take again the action (A.43), this time with orbifold fifth
dimension, and we work out its variation:

δS5

δΦ
δΦ = −

∫
d4x

∫ L

0
dy
[
(∂µ∂

µ + ∂y∂
y)Φ∗ + 2g2

5|Φ|2Φ∗
]
δΦ−

∫
d4x
[
∂yΦ

∗δΦ
]L

0
,

(A.46)

The first term of the r.h.s. of the previous formula vanishes upon evaluation on the
bulk equation of motion. The second term, instead,∫

d4x
[
∂yΦ

∗δΦ
]L

0
,

must vanish when the BCs at yi = 0, L are imposed. It is easy to see that there can
be two different choices of BC:

Neumann BC (+) : ∂yΦ(yi) = 0 , (A.47)

Dirichlet BC (−) : Φ(yi) = 0 . (A.48)

Specifying whether of these two BCs are chosen at the two boundaries y = 0, L
completes the description of the theory. In the following, we will use the short notation
(s0, sL) to indicate the selected choice: si = ± indicate the chosen BC at the boundary
i = 0, L. Thus, for example, (−,+) means that we are using Dirichlet conditions at
y = 0 and Neumann conditions at y = L.

We have now made explicit calculations in the case of a scalar field, without a
bulk mass term. To extend these considerations also to fermion and gauge bosons
fields, some additional subtleties have to be taken into account. We will not discuss
them in detail, just stating the results of a careful dissertation, that can be found
e.g. in [9]. We anticipate that, once paid attention to those subtleties, basically what
can be found is that, again, only Neumann (+) or Dirichlet (−) BCs are allowed.

In the case of fermions one has to consider that their equations of motion entangle
together the two chiralities. It can be shown that, once decided the BCs of one
chiral component, the other should have opposite ones. In formulas, the two allowed
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configurations for the BCs of a 5D fermion field (i.e. a Dirac fermion2) Ψ are:{
ΨL(yi) = 0 (−)
∂yΨR(yi) = 0 (+)

or

{
∂yΨL(yi) = 0 (+)
ΨR(yi) = 0 (−)

. (A.49)

Very interesting considerations can be made when applying the KK reduction in
this framework. In this case, the Fourier modes along the fifth dimension are different
according to the BCs of the field under analysis. In particular, it is easy to see that
only (+,+) BCs give a non-vanishing massless zero-mode. But we have just argued
that, if the choice (+,+) is made for e.g. ΨL, then we automatically have to associate
(−,−) with ΨR; thus only one chiral component can have a zero-mode. Then, in these
theories, a spectrum of chiral fermions at low energy naturally arises as a result of the
KK reduction. This is one of the main reasons that motivate the compactification in
a orbifold.

Even more fascinating conclusions can be drawn concerning the BCs to be im-
posed to the gauge bosons. Let us consider a general 5D gauge symmetry G, whose
associated gauge bosons3 are AAM (with M = {µ, y}), with generators TA. Now one
has to be careful when defining the BCs, in order to formulate them in a gauge in-
variant manner. Using consistency arguments (and neglecting possible mass terms
localized at the boundaries), it can be shown that the BCs should satisfy the following
restrictions:

(i) The components AAµ of a gauge field should have BCs equal to each other and

opposite to AAy ;

(ii) The set of generators T a, associated with the fields AaM satisfying (+) conditions
at one boundary, should belong to a definite subgroup of G.

Using the above constraints, the most general set of BCs that can be consistently
applied to the gauge fields AAM are:

Aaµ(+,+) , Aay(−,−) T a ∈ Alg {H = H1 ∩H0} ,
Aāµ(+,−) , Aāy(−,+) T ā ∈ Alg {H0/H} ,
Aȧµ(−,+) , Aȧy(+,−) T ȧ ∈ Alg {H1/H} ,
Aâµ(−,−) , Aây(+,+) T â ∈ Alg {G/H0} ∩Alg {G/H1} ,

(A.50)

where H0,1 are subgroups of G. These subgroups represent the unbroken gauge sym-
metry on the boundaries, since only the fields associated with H0 (H1) do not vanish
at y = 0 (y = L). This situation is sketched in Fig. A.2.

We now apply the KK reduction to the gauge fields using the set of conditions
(A.50). This procedure results in the following considerations:

2Indeed the smallest irreducible representation of the 5-dimensional Lorentz group SO(1, 4) is a
Dirac fermion.

3Clearly the gauge bosons, since they lies in the fundamental representation of the 5D Lorentz
group SO(1, 4), have five components. When considering a brane y = k (with k a constant), under
the residual SO(1, 3) invariance (the customary 4D Lorentz group) the first four components AAµ
form a vector representation, while the fifth component AAy is a scalar.
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Figure A.2: Representation of the boundary conditions on the gauge fields: the bulk gauge
symmetry G is reduced to the subgroup H0 at the boundary y = 0, and to H1 at y = L.

� As already observed, only fields with (+,+) conditions admits a non-vanishing
massless zero-mode. Thus, the low energy spectrum of gauge bosons is AaµT

a ∈
Alg {H}. According to this spectrum, the low energy gauge invariance is H =
H1∩H0. This can be thought of as a spontaneous symmetry breakdown process;

� Together with the above vector bosons, the low energy spectrum presents also
a set of 4D scalars Aây living in Alg {G/H0} ∩ Alg {G/H1}. They are naturally
light since a potential (and then a mass) for such particles can arise only at
one-loop level from non local operators4;

� Among the various KK (i.e. massive) modes, only the A
(n)
µ are physical fields.

The heavy resonances A
(n)
y are eaten order by order in a Higgs mechanism to

give mass to the A
(n)
µ fields. In fact, it can be shown that there is always a

gauge transformation that eliminates the y dependence of Ay from the very
beginning, leaving only its zero-mode (if not vanishing).

We have then seen that in these class of theories, using the freedom in setting the
BCs, one is able to design the desired pattern of gauge symmetries and to obtain a
set of naturally light scalars. All of this suggests an analogy between these models
and CH models described in section 3.2.

This parallel becomes more striking when using an “holographic” approach [9, 83].
Let us adopt the point of view of a 4-dimensional observer located on one of the two
boundaries, for example at y = 0. We then have to reduce the 5D action S5 to an
effective 4D action Seff , describing the physics on the y = 0 brane. This can be done
using the holographic method reviewed in [83].

At the conceptual level, this procedure can be illustrated using the functional
integral approach. We initially have a set of bulk fields Φ(xµ, y) defining the bulk
action S5[Φ] and possible action terms S0[Φ0 ≡ Φ(xµ, 0)] localized at y = 0. The
generating functional of the 5D theory is then:

Z =

∫
dΦ eiS5[Φ]+iS0[Φ0] . (A.51)

We perform the above integral in two steps. First, we integrate over the bulk fields

4It is easy to see that in 5D gauge theories there is no way of building gauge invariant terms with
only Ay and no four-dimensional derivative.
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Figure A.3: Holographic interpretation of the 5D theory. The fields at y = 0 constitute a
weak interacting sector, while the holographic projection of the value of the fields in the bulk
and at the y = L brane form a strong interacting sector.

Φ while keeping their value at y = 0 fixed:

Z =

∫
dΦ0 e

iS0[Φ0]

∫
Φ0

dΦ eiS5[Φ] =

∫
dΦ0 e

iS0[Φ0]+iSeff [Φ0] , (A.52)

iSeff ≡ log

∫
Φ0

dΦ eiS5[Φ] , (A.53)

obtaining an effective 4D description of the same theory, in terms of the holographic
fields Φ0. As a second step, one integrates over all values of Φ0.

The action Seff of Eq. (A.53) encodes all the dynamics described above, in terms
of a 4D field theory. From this perspective, the values of the bulk fields at the y = 0
boundary (as well as possible localized fields) act like a 4D sector with local invariance
H0. On the other hand, the dynamics associated with the degrees of freedom living
in the bulk and at the y = L boundary, once “projected” on the y = 0 brane, can
be interpreted as a 4D strongly interacting sector, with a global invariance G broken
down to H1. Further, it can be shown that the symmetry breaking in the strong
sector G → H1 is spontaneous rather than explicit, and the associated NG bosons are
exactly the zero-modes of Ay.

In summary, our effective 4D theory has a weakly interacting sector (we will call
it the elementary sector) with gauge invariance H0, and a strong interacting sector
with a pattern of global symmetry breaking G → H1, as illustrated in Fig. A.3. We
have then exactly reproduced, within the new language of extra dimensions theories,
the symmetry structure of general CH theories, Fig. 3.1.

All these arguments, and in particular the holographic procedure in Eqs. (A.51)–
(A.53), thus define a correspondence between CH theories and 5D theories. Within
this equivalence, the KK modes of the 5D theory must be interpreted as the mass
eigenstates resulting from the admixture of the massive resonances of the strong sector
with the fields of the elementary sector. This is in fact in complete analogy with the
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discussion of partial compositeness of section 3.2: the SM and heavy fields of the CH
theories are, respectively, the zero mode and the KK modes of the bulk fields in the
language of 5D theories.

This strict parallelism between this two models is extremely useful to shed light
to both of them. On the one hand, 5D theories furnish a method to define the strong
dynamics, which in the discussion of section 3.2 was just assumed to behave in a
certain manner. Further, they provide a different framework to perform calculations,
and this is desirable since in strong interacting theories computations are typically
too difficult to be handled. On the other hand, 4D theories gives a clearer qualitative
understanding of the physics, since QFT in four dimension are far more understood
than QFT in higher dimensions.

To conclude, it is important to stress one point that has been left loose from the
above discussion. The distinction between an elementary sector (living at y = 0) and
a strong sector (associated with the dynamics in the bulk and at y = L) truly makes
sense only if the former is weakly coupled, to itself and to the strong sector. This
assumption was made without further justifications. In the context of one flat extra
dimension theories, this requests can be fulfilled by introducing large kinetic terms for
the elementary fields, localized at the y = 0 brane (that is using the S0 action term
in Eq. (A.51)). Remarkably, models with one warped extra dimension automatically
satisfy the above condition, provided the elementary sector to live in the so-called
UV brane [38].
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A.3 Feynman rules for the two-site model

Here are listed the Feynman rules involving leptons for the two-site model discussed in
section 4.1 in the mass insertion approximation, namely using the Lagrangian (4.14).
We express them in a straightforward generalization of the Feynman–’t Hooft gauge
(ξ = 1).

A.3.1 Propagators

µ ν
k

W,Z −i
k2 −M2

W,Z

ηµν (A.54)

µ ν
k

ρ −i
k2 −M2

ρ

ηµν (A.55)

p

w
i/p

p2
(A.56)

p

w i(/p+mf )

p2 −m2
f

(A.57)

p

h
i

p2 −M2
h

(A.58)

p

ϕZ
i

p2 −M2
Z

(A.59)

p

ϕ±
i

p2 −M2
W

(A.60)

A.3.2 Triple fermion-boson interactions

The fermion-boson interactions, in the basis we are using, are all flavor diagonal.
Both elementary and composite leptons interact with SM and heavy gauge bosons.
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Together with the SM coupling definitions (4.13), the following notations are used:

tan θW ≡ gSM2

gSM1

, (A.61)

tanωel ≡
gSM2 tan θ2

gSM1 tan θ1
, (A.62)

tanωcomp ≡ gSM2 cot θ2

gSM1 cot θ1
, (A.63)

vSMf =
1

2
T f3 −Qf sin2 θW ; af =

1

2
T f3 , (A.64)

vel
f =

1

2
T f3 −Qf sin2 ωel , (A.65)

vcomp
f =

1

2
T f3 −Qf sin2 ωcomp . (A.66)

ψν,e

ψe,ν

W±
µ

i
gSM1√

2
γµPL (A.67)

ψf

ψf

Zµ
i
gSM1

cos θW
γµ(vSMf − afγ5) (A.68)

ψf

ψf

Aµ

ieQfγ
µ (A.69)

ψν,e

ψe,ν

W ∗±
µ

−i(g
SM
1√

2
tan θ1)γµPL (A.70)
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ψf

ψf

Z∗
µ

i
gSM1 tan θ1√

2 cosωel

γµ(vel
f − afγ5) (A.71)

ψf

ψf

A∗
µ

igSM1 tan θ1 sinωel Qf γ
µ (A.72)

ψN,E

ψE,N

W±
µ

i
gSM1√

2
γµPL (A.73)

ψf

ψf

Zµ
i
gSM1

cos θW
γµ(vSMf − afγ5) (A.74)

ψf

ψf

Aµ

ieQfγ
µ (A.75)

ψN,E

ψE,N

W ∗±
µ

i(
gSM1√

2
cot θ1)γµPL (A.76)
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ψf

ψf

Z∗
µ

i
gSM1 cot θ1√
2 cosωcomp

γµ(vcomp
f − afγ5) (A.77)

ψf

ψf

A∗
µ

igSM1 cot θ1 sinωcomp Qf γ
µ (A.78)

ψf

ψf

B̃µ

i
gSM2

sin θ2
Qf γ

µ (A.79)

A.3.3 Mass insertion interactions

ẽRi ẼLj
−i(∆̃†)jiPR (A.80)

ẼLi ẽRj
−i(∆̃)jiPL (A.81)

La
Ri ℓbLj

−iδab(∆)jiPR (A.82)

ℓaLi Lb
Rj

−iδab(∆†)jiPL (A.83)

Ẽi Ej −i v√
2

[(Y ∗R)jiPR + (Y ∗L )jiPL] (A.84)
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Ei Ẽj −i v√
2

[(Y ∗L
†)jiPR + (Y ∗R

†)jiPL] (A.85)

A.3.4 Trilinear fermion-Higgs and fermion-Goldstone interactions

Ẽi

Ej

h −i√
2

[(Y ∗R)jiPR + (Y ∗L )jiPL] (A.86)

Ei

Ẽj

h −i√
2

[(Y ∗L
†)jiPR + (Y ∗R

†)jiPL] (A.87)

Ẽi

Ej

ϕZ 1√
2

[(Y ∗R)jiPR + (Y ∗L )jiPL] (A.88)

Ei

Ẽj

ϕZ
− 1√

2
[(Y ∗L

†)jiPR + (Y ∗R
†)jiPL] (A.89)

Ẽi

Nj

ϕ±

−i[(Y ∗R)jiPR + (Y ∗L )jiPL] (A.90)
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Ni

Ẽj

ϕ±

−i[(Y ∗L †)jiPR + (Y ∗R
†)jiPL] (A.91)
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A.4 Detailed computations for the dipole operator

Here we report the detailed computations for the amplitudes A2, B1 andB2 of Fig. 4.2,
in section 4.2.

A.4.1 The A2 amplitude.

The steps of the calculations are the same as for the amplitude A1, so we will use
the same techniques and trick without recalling them. In Fig. A.4 are represented
the conventions adopted for the loop momenta, while for the flavor indices we use
the same convention as in Fig. 4.2. Again a sum over all flavor indices a, b, c, d is
understood.

A2 = ēLj(p
′) (−i(∆)jdPR)

i(/p′ +md)

p′2 −m2
d

[−i√
2

((Y ∗L )dcPL + (Y ∗R)dcPR)

]
×

×
{∫

d4k

(2π)4

i(/k − /q + m̃c)

(k − q)2 − m̃2
c

(−ieγαεα(q))
i(/k + m̃c)

k2 − m̃2
c

×

×
[−iv√

2

(
(Y ∗L

†)cbPR + (Y ∗R
†)cbPL

)] i(/k +mb)

k2 −m2
b

i

(k − p)2 −M2
h

}
×

×
[−i√

2
((Y ∗L )baPL + (Y ∗R)baPR)

]
i(/p+ m̃a)

p2 − m̃2
a

(
−i(∆̃†)aiPR

)
ẽRi(p)

=
ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai εα×

× ēLj
{∫

d4k

(2π)4

1

[k2 − m̃2
c ][k

2 −m2
b ][(k − q)2 − m̃2

c ][(k − p)2 −M2
h ]
×

× (/k − /q + m̃c)γ
α(/k + m̃c)

(
(Y ∗L

†)cbPR + (Y ∗R
†)cbPL

)
(/k +mb)

}
ẽRi

=
ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai εα×

× ēLj
{∫

d4k

(2π)4

1

[k2 − m̃2
c ][k

2 −m2
b ][(k − q)2 − m̃2

c ][(k − p)2 −M2
h ]
×

×mbm̃c(Y
∗
L
†)cb(2k

α − /qγα) + (Y ∗R
†)cb(k

2(/k − /q)γα + m̃2
cγ
α/k)

}
ẽRi . (A.92)

To deal with the denominator of (A.92), we use the same technique as for the
A1 calculation. Actually, we can fully restore those calculations once performed the
substitutions mb ↔ m̃c, q → −q and p′ → p. We then get automatically:

1

[k2 − m̃2
c ][k

2 −m2
b ][(k − q)2 − m̃2

c ][(k − p)2 −M2
h ]

=
2

m2
b − m̃2

c

∫ 1

0
dx

∫ 1−x

0
dy

1

{[k +Q′]2 − Ω′1}3
− 1

{[k +Q′]2 − Ω′2}3
, (A.93)
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p

k − p

p′k − qqk

Figure A.4: Convention for the loop momenta in the calculation of the amplitude A2.

where 
Q′ ≡ −yq − (1− x− y)p
Ω′1 ≡ xm2

b + ym̃2
c + (1− x− y)M2

h

Ω′2 ≡ (x+ y)m̃2
c + (1− x− y)M2

h

. (A.94)

We now perform in the expression (A.92) the change of variable

k → k −Q′ , (A.95)

starting from the numerator inside the integral. We get:

εαēLj

[
mbm̃c(Y

∗
L
†)cb(2k

α − /qγα) + (Y ∗R
†)cb(m̃

2
cγ
α/k + k2(/k − /q)γα)

]
ẽRi

→ εαēLj

{
mbm̃c(Y

∗
L
†)cb

[
2kα + 2yqα + 2(1− x− y)pα − /qγα

]
+ (Y ∗R

†)cb
[
m̃2
cγ
α/k + m̃2

cγ
αy/q + m̃2

cγ
α(1− x− y)/p

+ (k2 + 2yk · q + 2(1− x− y)k · p)(/k − (1− y)/q + (1− x− y)/p) γ
α]
}
ẽRi

= εαēLj

{
mbm̃c(Y

∗
L
†)cb

[
2(1− x− y)pα − /qγα

]
+ (Y ∗R

†)cb
[
m̃2
cγ
αy/q+

+k2(−(1− y)/q + (1− x− y)/p)γ
α + 2k · (yq + (1− x− y)p)/kγα

] }
ẽRi

= −
[
mbm̃c(Y

∗
L
†)cb(x+ y) + (Y ∗R

†)cbm̃
2
cy − (Y ∗R

†)cb
1

2
k2(1− 3x)

]
QγL . (A.96)

Plugging Eqs. (A.93) and (A.96) into Eq. (A.92) we obtain:

A2 = − ev

2
√

2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai
2

m2
b − m̃2

c

×

×
{∫ 1

0
dx

∫ 1−x

0
dy
[
mbm̃c(Y

∗
L
†)cb(x+ y) + (Y ∗R

†)cbm̃
2
cy
]
F1(Ω′1,Ω

′
2)

−
[
(Y ∗R

†)cb
1

2
(1− 3x)

]
F2(Ω′1,Ω

′
2)

}
QγL , (A.97)

where the integrals over loop momentum F1 and F2 are the one defined and solved
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p
q

p′k + q

k − p′

k

Figure A.5: Convention for the loop momenta in the calculation of the amplitudes B1 and
B2.

in (4.81) and (4.82) respectively. Then:

A2 =
iev

32
√

2π2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai
1

m2
b − m̃2

c

×

×
{∫

dx

∫
dy

[
1

Ω′1
− 1

Ω′2

] [
mbm̃c(Y

∗
L
†)cb(x+ y) + m̃2

c(Y
∗
R
†)cby

]
− log

Ω′1
Ω′2

[
(Y ∗R

†)cb(1− 3x)
]}

QγL . (A.98)

We can straightforwardly exploit the integrals (4.84) by simply performing the
substitution mb ↔ m̃c in order to calculate the integrals over the Feynman variables.

The final result for the A2 amplitude is then:

A2 =
iev

32
√

2π2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
R)ba(∆̃

†)ai
1

m2
b − m̃2

c

×

× 1

2

[
(Y ∗L

†)cb

(
−mb

m̃c
+

mbm̃c

m2
b − m̃2

c

log
m2
b

m̃2
c

)]
QγL

=
iev

64
√

2π2

1

m̃amd
(∆)jd(Y

∗
R)dc(Y

∗
L
†)cb(Y

∗
R)ba(∆̃

†)ai
1

m2
b − m̃2

c

×

×
[(
−mb

m̃c
+

mbm̃c

m2
b − m̃2

c

log
m2
b

m̃2
c

)]
QγL . (A.99)

A.4.2 The B1 and B2 amplitudes.

We now switch to the B1 and B2 diagrams of Fig. 4.2. We use the same convention as
above for the flavor indices, whereas the loop momenta conventions are represented
in Fig. A.5.

Starting from B1:

B1 = ēLj(p
′) (−i(∆)jdPR)

i(/p′ +md)

p′2 −m2
d

[−iv√
2

((Y ∗L )dcPL + (Y ∗R)dcPR)

]
×

× i(/p′ + m̃c)

p′2 − m̃2
c

[−i√
2

(
(Y ∗L

†)cbPR + (Y ∗R
†)cbPL

)]
×
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×
{∫

d4k

(2π)4

i(/k +mb)

k2 −m2
b

(−ieγαεα(q))
i(/k + /q +mb)

(k + q)2 −m2
b

i

(k − p′)2 −M2
h

}
×

×
[−i√

2
((Y ∗L )baPL + (Y ∗R)baPR)

]
i(/p+ m̃a)

p2 − m̃2
a

(
−i(∆̃†)aiPR

)
ẽRi(p)

= − ev

2
√

2

1

m̃am̃cmd
(∆)jd(Y

∗
R)dc(Y

∗
L
†)cb(Y

∗
R)ba(∆̃

†)aiεα×

× ēLj
{∫

d4k

(2π)4

(/k +mb)γ
α(/k + /q +mb)

[k2 −m2
b ][(k + q)2 −m2

b ][(k − p)2 −M2
h ]

}
ẽRi

= − ev

2
√

2

1

m̃am̃cmd
(∆)jd(Y

∗
R)dc(Y

∗
L
†)cb(Y

∗
R)ba(∆̃

†)aiεα×

× ēLj
{∫

d4k

(2π)4

mb(2k
α + γα/q)

[k2 −m2
b ][(k + q)2 −m2

b ][(k − p)2 −M2
h ]

}
ẽRi . (A.100)

The recasting of the denominator using the Feynman parametrization is com-
pletely analogous to the computations carried out for the A1 amplitude, namely
Eqs. (4.73) to (4.76). We can then immediately write:

1

[k2 −m2
b ][(k + q)2 −m2

b ][(k − p)2 −M2
h ]

= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

{[k +Q]2 − Ω2}3
,

(A.101)
with Q and Ω2 given in (4.76), once having substituted p′ with p.

Performing in the numerator inside the loop integral of (A.100) the change of
variable k → k −Q, we get:

εαēLj
[
mb(2k

α + γα/q)
]
ẽRi

→ mbεαēLj
[
2kα − 2yqα + 2(1− x− y)p′α + γα/q

]
ẽRi

= −mb(x+ y)QγL . (A.102)

Then we have:

B1 =
ev
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1
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∗
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∗
L
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{∫ 1
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1
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= − iev
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(∆)jd(Y

∗
R)dc(Y
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L
†)cb(Y

∗
R)ba(∆̃

†)aiQγL . (A.103)

The calculations for B2 are rather identical. They involve essentially the same
loop integral, once provided the substitution mb → m̃c (and then Ω2 → Ω′2 according
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to (A.94)):

B2 = ēLj(p
′) (−i(∆)jdPR)

i(/p′ +md)

p′2 −m2
d
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2
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