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Abstract

With the rapid increase in Android apps, strong security measures are needed to
protect against potential weaknesses. This research study evaluates three tools
based on Language Models (LLMs) - ChatGPT, Google Bard, and Android Studio
Bot - for automatically fixing security vulnerabilities. To ensure accuracy, the
evaluation uses a database of 80 vulnerable code snippets from Google Android
Security Bulletins, the study employs BLEU scores to assess the accuracy of code
repairs and supplements this with human evaluation to compare fixed codes
with correct ones.Among the three large language models (LLMs) evaluated for
fixing Android vulnerabilities, ChatGPT outperformed the others by correcting
the most vulnerabilities (41 out of 80). While Android Studio Bot achieved
a higher BLEU score, indicating syntactic similarity to correct code, it lacked
logical correctness.

In summary, this study delves into the potential of LLM-based tools for auto-
matically fixing Android security vulnerabilities. The suggestions and outcomes
provided by these tools offer valuable insights, aiding us in determining their
effectiveness. This advancement fosters the adoption of automated security
measures in Android app development.
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1
Introduction

Android maintained its position as the leading mobile operating system
worldwide in the fourth quarter of 2023 with a market share of 70.1% [20].
Android utility tendencies are developed using the Java or Kotlin programming
languages and run on the Android Runtime (ART) or the Dalvik Virtual Machine
(DVM). Android packages are disbursed through various structures, which
includes the Google Play Store, the Amazon App Store, Samsung Galaxy Store,
or third-party web sites.

The popularity and variety of Android applications also pose full-size safety
challenges, as they may incorporate vulnerabilities that may be exploited through
malicious actors. According to a recent study conducted by Check Point Re-
search, it was found that 38% of Android applications analyzed had critical
vulnerabilities in 2023 [18]. Some of the common place varieties of Android vul-
nerabilities consist of insecure facts storage, inadequate encryption, code injec-
tion, privilege escalation, and denial-of-carrier. Users and builders of Android
applications alike may also suffer grave repercussions from these vulnerabilities,
which includes money losses, identification theft, information breaches, repu-
tational damage, and legal ramifications. As a result, it is crucial to identify and
address these vulnerabilities as quickly as possible to prevent attackers from
exploiting them.

Manual vulnerability detection and repair can be time-consuming, high-
priced, and errors-susceptible, mainly for massive and complex applications.
Moreover, the developers may not have sufficient expertise or cognizance of the
exceptional protection practices or may also forget about a few subtle or hidden
vulnerabilities of their code. Therefore, there is a need for automated process
to help developers in identifying and resolving protection vulnerabilities in
Android programs.

One of the promising tactics for automatic vulnerability repair is the usage
of Language Models (LLMs), synthetic neural networks, that can analyze the
statistical styles and regulations of natural or programming languages from
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massive corpora of text. LLMs can generate herbal-sounding textual content or
code snippets based totally on a given context or prompt, and can also perform
diverse duties including textual content summarization, translation, class, and
finishing touch.

Several LLM-primarily based gear have been proposed or advanced for com-
puterized vulnerability restore in Android programs, consisting of ChatGPT,
Google Bard, and Android Studio Bot. These equipment leverage the strength of
LLMs to generate guidelines for solving susceptible code snippets, based totally
at the description or the severity of the vulnerability. However, the effectiveness
and reliability of these tools have never been very well evaluated or compared,
and their obstacles and challenges have now not been nicely-understood.

This thesis aims to fill this gap by engaging in a comprehensive evaluation
of 3 LLM-based tools for computerized Android safety vulnerability repair:
ChatGPT, Google Bard, and Android Studio Bot. The evaluation is based on a
database of 80 vulnerable code snippets sourced from Google Android Security
Bulletins, which give respectable records and patches for safety vulnerabilities
in Android devices. The evaluation technique involves recording the conse-
quences of vulnerability fixes generated through each LLM-based device, and
comparing them with the actual fixes furnished with the aid of Google. Two
renowned assessment techniques are hired: first, the calculation of BLEU rat-
ings to quantify the syntactic and semantic correctness of the maintenance, and
second, manual human evaluation for a more nuanced assessment. The out-
comes of the assessment offer insights into the strengths and boundaries of each
LLM-based tool concerning syntactic and semantic accuracy, and depicts the
strong and weak areas. The combination of automated evaluation metrics and
human assessment provides depth to the evaluation, enhancing the reliability
of the findings.

2



CHAPTER 1. INTRODUCTION

1.1 Objectives

The purpose of this research is structured to effectively address the identified
problems focused around following key notions.

1. Prompting LLMs for repairing Android vulnerabilities collected from the
Bulletins.

2. Evaluating the quality of the repairs through both manual validation and
standard metrics.
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2
Background

2.1 Software vulnerabilities

Software vulnerabilities pose significant risks to data security, privacy, and
system integrity. Addressing these vulnerabilities requires robust techniques
and tools for detection and repair. In this chapter, we provide a comprehensive
background on software vulnerability repair, focusing on Android applications.
We begin by discussing common techniques employed in vulnerability repair
and the unique challenges posed by the Android ecosystem. We then explore
the role of Language Models (LLMs) in automating vulnerability repair tasks
and discuss evaluation metrics used to assess the effectiveness of security tools.

2.2 Common Techniques for Software Vulnerability

Repair

Software vulnerability repair involves identifying and remedying weak-
nesses in software systems to enhance security and reliability. Various tech-
niques have been developed for this purpose, each with its strengths and limi-
tations.

2.2.1 Static and Dynamic Analysis

Static analysis involves examining source code or binary executable without
executing the program. It aims to identify potential vulnerabilities through
code inspection and pattern matching techniques. While static analysis tools
are effective in detecting known vulnerabilities and common coding errors, they
may produce false positives and struggle with complex vulnerabilities.
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2.3. CHALLENGES IN ANDROID VULNERABILITY REPAIR

Dynamic analysis, on the other hand, analyzes software behavior during
runtime by monitoring program execution and input/output interactions. This
approach provides more accurate results compared to static analysis but may
incur higher performance overhead.

2.2.2 Fuzzing

Fuzzing is a testing technique that involves systematically feeding invalid,
unexpected, or random inputs to a software application to uncover vulnerabil-
ities. Fuzzing tools, such as AFL (American Fuzzy Lop) and libFuzzer, have
been highly effective in identifying security vulnerabilities, including memory
corruption bugs and input validation flaws.

2.2.3 Machine Learning-Driven Approaches

Machine learning-driven approaches leverage algorithms to analyze data and
generate remediation strategies automatically. These approaches hold promise
for enhancing the accuracy and efficiency of vulnerability detection and repair.
However, they also present challenges related to model interpretability, adver-
sarial attacks, and data privacy.

2.3 Challenges in Android Vulnerability Repair

Repairing vulnerabilities in Android applications presents unique challenges
due to the platform’s diversity and openness. The Android ecosystem encom-
passes a wide range of devices, operating system versions, and application types,
contributing to a diverse set of vulnerabilities. Common challenges in Android
vulnerability repair include:

Input Validation Flaws: Android applications often fail to properly vali-
date user inputs, leading to vulnerabilities such as SQL injection attacks and
authentication bypass.

Privilege Escalation Issues: Flaws in the Android permission model can
allow malicious applications to elevate their privileges and gain unauthorized
access to sensitive resources.

Cryptographic Weaknesses: Improper implementation or misuse of cryp-
tographic algorithms can lead to vulnerabilities such as weak encryption and
insecure key management.

Insecure Data Storage: Many Android applications store sensitive informa-
tion locally on the device without adequate protection, leaving it vulnerable to
unauthorized access.

Addressing these challenges remains an open research problem, requiring
innovative solutions to ensure the security and privacy of Android users.
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CHAPTER 2. BACKGROUND

2.4 Introduction to LLM-Based Tools

Language Model (LLM)-based tools represent a cutting-edge approach to
automated software development tasks, including code generation, summa-
rization, translation, and more recently, security vulnerability repair. LLMs are
large-scale machine learning models trained on vast amounts of text data, en-
abling them to understand and generate human-like text based on given inputs.
These models, often based on architectures like GPT (Generative Pre-trained
Transformer), have demonstrated remarkable capabilities in natural language
understanding and generation, making them suitable for a wide range of natu-
ral language processing (NLP) tasks.

In the context of automated security vulnerability repair in Android appli-
cations, LLM-based tools leverage their language understanding capabilities to
analyze vulnerable code snippets and generate corresponding fixes or sugges-
tions. These tools typically operate by processing natural language descriptions
of security vulnerabilities and generating code patches or modifications tailored
to address the identified issues. By learning from large datasets of code and tex-
tual descriptions, LLM-based tools can infer patterns and relationships between
vulnerabilities and their corresponding fixes, enabling them to propose effective
solutions autonomously.

One of the key advantages of LLM-based tools is their ability to understand
contextual information and generate human-readable code snippets that align
with established coding conventions and best practices. This enables to inte-
grate the suggested fixes seamlessly into the codebase, minimizing the need
for manual intervention and accelerating the vulnerability remediation process.
Additionally, LLM-based tools can adapt to diverse programming languages
and coding styles, making them versatile and applicable across various soft-
ware development environments.

However, LLM-based tools are not without limitations. Challenges such as
model interpretability, bias, and robustness to adversarial inputs can impact
the reliability and effectiveness of these tools, particularly in security-critical
scenarios. Furthermore, the quality of code patches generated by LLM-based
tools may vary depending on factors such as the complexity of the vulnerability,
the clarity of the vulnerability description, and the size of the training dataset
used to fine-tune the model.

In summary, LLM-based tools represent a promising paradigm for auto-
mated security vulnerability repair in Android applications. Their ability to
leverage natural language understanding and generation capabilities offers sig-
nificant potential for improving the efficiency and effectiveness of vulnerability
remediation processes. However, addressing the challenges associated with
model interpretability, bias, and robustness will be essential to realizing the full
potential of LLM-based tools in enhancing Android application security.
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2.5. PRINCIPLES AND MECHANISMS OF LLM-BASED AUTOMATED REPAIR

2.4.1 How Large Language Model Works

LLMs rely on machine learning methodologies, leveraging deep learning
and vast datasets. One foundational structure widely adopted in LLMs is the
transformer architecture. Lets explore this architecture in more detail:

Transformer Architecture The transformer is a deep learning architecture
developed by Google, introduced in the influential paper Attention Is All You
Need in 2017 [22]. Unlike traditional recurrent neural networks (RNNs), trans-
formers do not rely on recurrence. Instead, they use an attention mechanism to
draw global dependencies between input and output.

Here are the key components of the transformer:
Embedding: Converts one-hot encoded tokens into vectors representing the

tokens. Stack of Encoders: These are the transformer encoders that perform
transformations over the array of representation vectors. Un-embedding: Con-
verts the final representation vectors back into one-hot encoded tokens. While
necessary for pre-training, its often unnecessary for downstream tasks.

The transformer architecture has been instrumental in advancing language-
centric AI systems. Its used not only in natural language processing but also
in computer vision, audio, and multi-modal processing [5]. The transformer
architecture is illustrated in Figure 2.1.

2.5 Principles and Mechanisms of LLM-Based Auto-

mated Repair

LLM-based automated repair systems operate on the principles of natural
language processing (NLP) and machine learning (ML), leveraging large-scale
language models to understand, interpret, and generate code snippets that ad-
dress identified security vulnerabilities. These systems are typically based on
transformer architectures, such as GPT (Generative Pre-trained Transformer),
which have demonstrated exceptional performance in various NLP tasks.

The mechanism of LLM-based automated repair involves several key steps:
Input Processing: The system receives input in the form of natural language

descriptions of security vulnerabilities, often sourced from security bulletins,
bug reports, or other documentation. These descriptions may include details
such as the type of vulnerability, affected code snippets, and potential impacts.

Contextual Understanding: The LLM-based model processes the input text
to extract contextual information relevant to the security vulnerability. By ana-
lyzing the semantics and syntax of the input, the model gains an understanding
of the underlying issue and its implications for the codebase.

Code Generation: Based on the contextual understanding acquired from the
input text, the LLM-based model generates code snippets that propose fixes or
mitigation’s for the identified vulnerability. These code snippets are designed
to address the specific security concerns outlined in the input description while
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CHAPTER 2. BACKGROUND

Figure 2.1: Transformer Architecture
[21]

adhering to coding conventions and best practices.

Quality Assessment: The generated code snippets undergo evaluation to
assess their correctness, effectiveness, and adherence to security guidelines.
This assessment may involve automated testing, code review by human experts,
or comparison against known patches or fixes provided by software vendors or
security researchers.

Feedback Loop: Feedback from the evaluation process is used to refine and
improve the performance of the LLM-based repair system. This feedback loop
may involve fine-tuning the model on labeled data, adjusting generation pa-
rameters, or incorporating domain-specific knowledge to enhance the system’s
capabilities over time.

The effectiveness of LLM-based automated repair systems relies on the qual-
ity of the language model, the relevance and accuracy of the input descriptions,
and the robustness of the code generation process. Additionally, factors such
as the diversity and representatives of the training data, the size of the model
architecture, and the availability of computational resources can influence the
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2.6. RELEVANCE OF LLM-BASED APPROACH IN ANDROID SECURITY

performance of these systems.
Overall, LLM-based automated repair systems represent a novel and promis-

ing approach to addressing security vulnerabilities in software applications. By
leveraging advanced NLP and ML techniques, these systems have the poten-
tial to streamline the vulnerability remediation process, reduce manual effort,
and improve the overall security posture of software systems. However, contin-
ued research and development efforts are needed to address challenges such as
model interpretability, bias mitigation, and the integration of human feedback
into the repair process.

2.6 Relevance of LLM-Based Approach in Android

Security

The relevance of Language Model (LLM)-based approaches in Android se-
curity stems from the need for efficient and effective methods to detect and
mitigate security vulnerabilities in mobile applications. As the Android ecosys-
tem continues to expand, with millions of applications available on the Google
Play Store, ensuring the security and integrity of these applications is paramount
to protect user data and maintain user trust.

LLM-based approaches offer several advantages that make them particularly
well-suited for addressing security challenges in the Android environment:

Semantic Understanding: LLMs, such as GPT (Generative Pre-trained Trans-
former), are trained on vast amounts of text data, enabling them to understand
and interpret natural language descriptions of security vulnerabilities. In the
context of Android security, where vulnerability reports and security bulletins
often contain textual descriptions of issues, LLMs can analyze these descriptions
to identify relevant vulnerabilities and propose appropriate fixes.

Code Generation Capabilities: LLMs are capable of generating code snip-
pets based on natural language prompts, allowing them to propose fixes for
identified security vulnerabilities in Android applications. This code genera-
tion process can significantly accelerate the vulnerability remediation process,
especially for common security issues such as input validation flaws, crypto-
graphic weaknesses, and privilege escalation vulnerabilities.

Adaptability to Android Development Practices: LLM-based approaches
can be tailored to the specifics of Android application development, including
the use of Java and Kotlin programming languages, the Android SDK (Software
Development Kit), and common development frameworks such as Android
Studio. By training LLMs on datasets specific to Android development practices
and security considerations, these approaches can generate more accurate and
relevant code suggestions for Android security vulnerabilities.

Scalability and Automation: LLM-based approaches have the potential to
scale across large numbers of Android applications and security vulnerabili-
ties, automating much of the vulnerability detection and repair process. This
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CHAPTER 2. BACKGROUND

scalability is particularly important given the sheer volume of Android appli-
cations and the rapid pace of security research and disclosures in the Android
ecosystem.

Integration with Development Workflow: LLM-based tools can be inte-
grated into existing development workflows and tools used by Android devel-
opers, such as IDEs (Integrated Development Environments) and version control
systems. This integration streamlines the vulnerability remediation process, al-
lowing developers to quickly apply suggested fixes and incorporate security best
practices into their codebase.

Overall, the relevance of LLM-based approaches in Android security lies in
their ability to leverage natural language understanding and code generation
capabilities to automate and expedite the detection and mitigation of security
vulnerabilities in Android applications. As the Android ecosystem continues
to evolve, LLM-based approaches offer a promising avenue for enhancing the
security posture of mobile applications and protecting users from potential
threats.

2.7 Role of LLMs in Vulnerability Repair

Language Model (LLM)-based approaches have emerged as promising so-
lutions for automating vulnerability repair tasks. LLMs, such as GPT (Genera-
tive Pre-trained Transformer) and BERT (Bidirectional Encoder Representations
from Transformers), possess the ability to understand and generate natural lan-
guage text, making them suitable for analyzing code snippets and generating
patches.

By leveraging LLMs in vulnerability repair, it becomes possible to identify
and remediate security vulnerabilities more efficiently and accurately. These
approaches hold potential for improving the security posture of software sys-
tems, including Android applications, by automating the detection and repair
of vulnerabilities.
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3
Related Work

Automated test generation techniques have proven invaluable for develop-
ers in writing tests, with a primary focus on increasing coverage or generating
exploratory input. However, a critical yet often overlooked aspect is the gen-
eration of tests specifically designed to reproduce reported bugs in software.
Empirical research indicates that a significant proportion of tests added to open
source repositories originate from bug reports. Existing methods for error recon-
struction typically focus on crashing activities, overlooking the diverse range of
reported events. In response to this gap, LIBRO, a framework leveraging large
language models (LLMs), is proposed for test generation based on common
error reports. While LLMs themselves cannot directly generate buggy code,
post-processing steps are employed to verify efficiency and compare test results
for accuracy. Analysis of the Defects4J benchmark demonstrates LIBRO’s ability
to reproduce failures for a significant portion of the studied cases, suggesting a
prioritization of virus-breeding testing. Furthermore, concerns regarding data
pollution are mitigated by evaluating LIBRO against bug reports collected af-
ter LLM training, showcasing its potential to enhance developer productivity
through test generation from bug reports [12].
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Automated Program Repair (APR) techniques are pivotal in enhancing soft-
ware reliability by automatically generating patches for faulty programs. How-
ever, recent advancements in deep learning (DL) approaches encounter chal-
lenges stemming from the abundance of syntactically or semantically ambigu-
ous terms within the patch space. These challenges often lead to deviations
from the syntactic and semantic constraints of the source code, thereby hinder-
ing the generation of accurate solutions. In response to this challenge, KNOD,
a DL-based APR method, is proposed to integrate domain knowledge for ef-
fectively guiding patch generation. KNOD introduces two key innovations: (1)
a novel three-step tree decoder designed to directly produce Abstract Syntax
Trees of patched code, aligning with the underlying tree structure, and (2) a
new domain-rule distillation mechanism that incorporates syntax and semantic
rules into the training and reasoning phases. This mechanism influences the de-
coding process through teacher and student classification. KNOD is evaluated
on three widely-used benchmarks to showcase its efficacy in error prevention
across diverse datasets when compared to existing APR tools [11].

Automated Program Repair (APR) aims to bolster software reliability by au-
tomatically generating patches for flawed programs. Despite the demonstrated
effectiveness of various Code Language Models (CLMs) in tasks such as code
completion, their potential for APR tasks remains relatively underexplored. This
paper conducts a thorough investigation into the repair capabilities of CLMs for
APR tasks. Initially, ten CLMs are evaluated across four APR benchmarks,
revealing that the top-performing CLM, in its original state, successfully rec-
tifies a noteworthy 72% more bugs compared to state-of-the-art deep learning
(DL)-based APR techniques. Moreover, a novel APR benchmark is introduced
to ensure a fair evaluation without data leakage. Furthermore, the paper pio-
neers the fine-tuning of CLMs with APR training data, showcasing substantial
improvements ranging from 31% to 1,267% over existing DL-based APR tech-
niques, resulting in the resolution of 46% to 164% more bugs. The study also
delves into the impact of buggy lines, uncovering that while CLMs in their
original state struggle to effectively utilize buggy lines, fine-tuned CLMs may
potentially over-rely on them. Lastly, the efficiency metrics, including size, time,
and memory, of different CLMs are analyzed. This work illuminates promis-
ing avenues for advancing the APR domain, underlining the significance of
fine-tuning CLMs with APR-specific designs and advocating for transparent
reporting of open-source repositories to mitigate data leakage issues [10].
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CHAPTER 3. RELATED WORK

When confronted with unintended application behavior, developers often
identify the precise moment in execution where the actual behavior diverges
from the intended one. However, rectifying this discrepancy poses a challenge.
This paper introduces TraceFixer, a novel method designed to anticipate code
edits that align the program’s behavior with the desired outcomes. TraceFixer
utilizes a neural program repair model trained not only on source code edits but
also on snippets of runtime traces. The model takes as input a partial execution
trace of the erroneous code, automatically obtained through code instrumenta-
tion, along with the desired program state at the point of divergence, provided
by the user, typically via an interactive debugger. Unlike existing program re-
pair techniques, which aim for similar goals but overlook execution traces and
desired program states, TraceFixer fundamentally integrates this information
into its repair process. Evaluation on single-line Python errors demonstrates
that incorporating execution traces enhances bug-fixing accuracy by 13% to 20%
compared to baseline techniques that solely learn from source code edits. Appli-
cation of TraceFixer to real-world Python code further validates its effectiveness,
successfully resolving 10 out of 20 instances [3].

Ensuring smooth handling of stop and start events is crucial for Android
apps to maintain state information without loss during transitions. However,
developers frequently overlook the implementation of necessary logic for sav-
ing and restoring app states, leading to data loss issues upon events such as
moving the app to the background or rotating the screen. These shortcomings
can result in usability issues and unexpected crashes, significantly impacting
user experience. To facilitate research and experimentation in addressing these
challenges, this paper introduces a public benchmark comprising 110 data loss
faults observed in Android apps. The benchmark, available on GitLab, includes
both faulty and fixed versions of apps (where applicable), along with test cases
for automatic reproduction of the problems and supplementary information to
assist researchers in their investigations [19].

Resource leaks, where programs fail to release previously acquired resources,
present a prevalent issue in Android applications. Despite the availability of
existing techniques for automatic leak detection, writing leak-free programs re-
mains challenging. This challenge is partly attributed to Android’s event-driven
programming model, which complicates the understanding of the application’s
control flow. This paper introduces PlumbDroid, a technique for automated
detection and resolution of resource leaks in Android apps. PlumbDroid con-
structs a concise abstraction of an app’s control flow to identify execution traces
potentially leading to leaks. Leveraging this information, it automatically gener-
ates fixes by adding release operations at appropriate locations to rectify the leaks
without affecting resource usage elsewhere in the application. Empirical eval-
uation on resource leaks from the DroidLeaks curated collection demonstrates
PlumbDroid’s scalability, precision, and ability to produce correct fixes for vari-
ous resource leak bugs. PlumbDroid successfully detected and repaired 50 leaks
affecting 9 commonly used Android resources, including those collected by Droi-
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dLeaks, with an average detection and repair time of just 2 minutes per leak.
Moreover, PlumbDroid exhibits favorable comparison against Relda2/RelFix,
the only other fully automated approach for Android resource leak repair, by
detecting more leaks with higher precision and generating smaller fixes. These
findings underscore PlumbDroid’s potential to significantly enhance the quality
of Android applications in practice [2].

The Android platform presents a unique framework for app development,
where non-compliance can result in severe bugs. With the platform’s rapid evo-
lution, developers heavily rely on its APIs, necessitating frequent app updates
to avoid compatibility issues. Additionally, Android apps encounter various
device-specific and memory-related issues due to deployment on a wide range
of memory-constrained devices. Addressing these Android-specific challenges
is crucial during app development and maintenance to prevent serious crashes.
In this paper, an empirical study is conducted to investigate and characterize
various Android-specific crash bugs, including their prevalence, root causes,
and solutions. Through the analysis of 1,862 confirmed crash reports from 418
open-source Android apps, insights are provided to aid developers in under-
standing, preventing, and fixing Android-specific crash bugs. Furthermore,
these findings can inform the design of effective bug detection tools for Android
apps, benefiting both developers and researchers [9].

Automated Program Repair (APR) has garnered significant attention across
various programming languages and platforms. Despite the existence of numer-
ous APR techniques and benchmarks, there remains a gap in leveraging APR
methods for mobile development, particularly within the Android ecosystem.
To address this gap, DroidBugs, an introductory benchmark specifically tailored
for Android projects, is introduced. DroidBugs is derived from the analysis of
360 open-source Android projects, each with a substantial user base of more
than 5,000 downloads. This benchmark comprises 13 single-bugs categorized
by the type of test that exposed them, providing a diverse set of challenges
for APR evaluation. Through the utilization of the APR tool Astor4Android
and two common fault localization strategies, the difficulty of identifying and
rectifying these mobile bugs is assessed. DroidBugs stands as a valuable re-
source for advancing research in automated program repair within the mobile
development domain [1].

Mutation testing serves as a crucial tool for evaluating the effectiveness of
test suites and guiding test case generation or prioritization. While mutants
generally represent real faults, effective mutation testing in specific application
domains, such as Android apps, requires domain-specific mutation operators.
This paper presents MDroid+, a framework designed for effective mutation
testing of Android apps. The framework begins by systematically devising a
taxonomy comprising 262 types of Android faults, categorized into 14 groups,
through manual analysis of 2,023 software artifacts from various sources like
bug reports and commits. Subsequently, a set of 38 mutation operators is iden-
tified and implemented, with 35 of them integrated into an infrastructure for
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automatically seeding mutations in Android apps. The taxonomy and proposed
operators are evaluated based on stillborn/trivial mutants generated and their
capacity to represent real faults in Android apps, comparing them with other
established mutation tools [14].

API misuses present significant challenges, often resulting in software crashes
and security vulnerabilities. Detecting and repairing such misuses is particu-
larly challenging as correct API usage may be unclear to developers of client
programs. This paper presents the first empirical study to assess the capabilities
of existing automated bug repair tools in repairing API misuses, a previously
unexplored class of bugs. The study evaluates and compares 14 Java test-
suite-based repair tools (11 proposed before 2018 and three afterwards) using
a manually curated benchmark, APIREPBENCH, comprising 101 API misuses.
An extensible execution framework, APIARTY, is introduced to automatically
execute multiple repair tools. Results indicate that the repair tools successfully
generate patches for 28% of the considered API misuses. While earlier tools
demonstrate efficiency with a median execution time of 3.87 minutes and a
mean execution time of 30.79 minutes, more recent tools exhibit lower efficiency,
being 98% slower. The generated patches primarily address API misuses in cate-
gories such as missing null check, missing value, missing exception, and missing
call. Although most patches are plausible (65%), only a few are semantically
correct compared to human-generated patches (25%). Findings suggest that
future repair tools should focus on localizing complex bugs, handling timeout
issues, and configuring large software projects. Both APIREPBENCH and API-
ARTY are publicly available for researchers to evaluate repair tools’ capabilities
in detecting and fixing API misuses [13].

Automated Program Repair (APR) aims to enhance software reliability by
generating patches for flawed programs. While Code Language Models (CLMs)
have demonstrated effectiveness in various software tasks such as code comple-
tion, their capabilities in bug fixing have not been comprehensively evaluated or
fine-tuned for the APR task. This study pioneers in evaluating ten CLMs across
four APR benchmarks, revealing that the top-performing CLM, in its original
state, rectifies 72% more bugs compared to state-of-the-art deep learning (DL)-
based APR techniques. Additionally, one APR benchmark introduced in this
study addresses data leakage concerns, ensuring fair evaluation. Furthermore,
this work pioneers in fine-tuning CLMs with APR training data, demonstrating
significant improvements ranging from 31% to 1,267% over existing DL-based
APR techniques, enabling them to fix 46% to 164% more bugs. Exploring the im-
pact of buggy lines, the study indicates that unaltered CLMs struggle to leverage
such lines effectively, while fine-tuned CLMs may overly rely on them. Lastly, the
study assesses the size, time, and memory efficiency of various CLMs, shedding
light on their performance metrics. This research not only unveils promising di-
rections for the APR domain, particularly in fine-tuning CLMs with APR-specific
designs, but also underscores the importance of fair and comprehensive CLM
evaluations, advocating for transparent reporting of open-source repositories
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used in pre-training data to address data leakage concerns [10].

Unit tests are vital for enhancing software quality, yet crafting effective tests
from scratch can be daunting. Recommending existing tests for semantically
similar functions can alleviate this burden, but manually modifying these recom-
mended tests remains challenging. Various code elements in the recommended
tests need to be comprehended by developers to replace them accurately with
semantically similar elements from the target application. To address this chal-
lenge, a test migration or reuse technique is proposed to automatically transform
code elements in recommended tests and migrate them to the target application.
The paper first identifies the types of code transformations needed for successful
test migration. External participants are recruited to create JTESTMIGBENCH,
a benchmark comprising 510 manually migrated JUnit tests for 186 methods
from five popular libraries. The paper then analyzes the code changes in the mi-
grated tests to develop JTESTMIGTAX, a taxonomy of test code transformation
patterns. The contributions lay the groundwork for developing automated unit
test migration or reuse techniques [8].

Automated Program Repair (APR) techniques aim to enhance software re-
liability by automatically generating patches for buggy programs. Recent APR
methods utilizing deep learning (DL) encounter challenges due to syntacti-
cally or semantically incorrect patches within the patch space. These erroneous
patches often deviate from the syntactic and semantic norms of source code,
rendering them ineffective in fixing bugs. To address this issue, KNOD, a DL-
based APR approach, is proposed. KNOD integrates domain knowledge to
guide patch generation directly and comprehensively, introducing two signif-
icant innovations: (1) a novel three-stage tree decoder that generates Abstract
Syntax Trees of patched code based on the inherent tree structure, and (2) a novel
domain-rule distillation method that incorporates syntactic and semantic rules
and teacher-student distributions to inject domain knowledge into the decoding
process during both training and inference phases. KNOD is evaluated on three
widely-used benchmarks, successfully fixing bugs in Defects4J v1.2, QuixBugs,
and additional Defects4J v2.0 benchmarks, outperforming all existing APR tools
[11].

Numerous automated test generation techniques have been devised to assist
developers in writing tests, primarily focusing on increasing coverage or gen-
erating exploratory inputs for full automation. However, existing techniques
often fall short in achieving more semantic objectives, such as generating tests
to replicate a given bug report. Reproducing bugs is crucial, as approximately
28% of tests added in open-source repositories are due to issues. Existing failure
reproduction techniques predominantly handle program crashes, neglecting a
broader spectrum of bug reports. To address this gap, LIBRO, a framework uti-
lizing Large Language Models (LLMs) capable of executing code-related tasks,
is proposed. Post-processing steps are emphasized to ascertain LLMs’ effective-
ness and rank generated tests based on validity. Evaluation of LIBRO on the
Defects4J benchmark demonstrates its capability to generate failure-reproducing
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test cases, with a bug-reproducing test ranked first for 149 bugs. Additionally,
when evaluated against bug reports submitted after the termination of LLM
training data collection, LIBRO produces bug-reproducing tests for 32% of the
studied bug reports, indicating its potential to significantly enhance developer
efficiency by automating test generation from bug reports [12].
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4
Methodology

4.1 Research Design

To conduct a systematic review of the existing literature on automated vul-
nerability repair in Android applications, we identified the research gap and
formulated the research question. The research diagram is shown in 4.1.

4.2 Data Collection

The second step of the methodology design is to collect a dataset of 80 vul-
nerable code snippets sourced from Google Android Security Bulletins, which
provide official information and patches (see image 4.2) for security vulnera-
bilities for Android. The purpose of this step is to obtain a representative and
authentic sample of real-world Android vulnerabilities and their corresponding
fixes, which will be used to evaluate the performance of the LLM-based tools.’

The data collection will be performed using a Python script that will scrape
the data from the web and store it into MongoDB, a NoSQL database. The script
will follow these steps:

Access the Google Android Security Bulletin website: The script will access
the website Android Security Bulletin, which contains the monthly security
bulletins for Android devices, dating back to 2015. The script will parse the
HTML content of the website and extract the links to the individual bulletins for
each month and year.

Retrieve the bulletins for the selected period: The script will iterate over
the links to the bulletins and retrieve the bulletins for the selected period, which
is from January 2020 to December 2020. The script will parse the HTML content
of each bulletin and extract the information about the security vulnerabilities,
such as the CVE number, the severity level, the affected versions, the description,
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Figure 4.1: Research Diagram
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Figure 4.2: Data Available for a Specific Vulnerability

and the patch link.
Filter the vulnerabilities by severity and version: The script will filter the

vulnerabilities by their severity and version, and select only those that have a
high or critical severity level, and that affect Android 10 or 11, which are the latest
versions of Android as of 2020. The script will also exclude any vulnerabilities
that do not have a patch link, or that have a patch link that is not accessible or
valid.

Download the patch files and extract the code snippets: The script will
download the patch files for the selected vulnerabilities, which are in the form
of diff files that show the changes made to the source code to fix the vulnerability
For reference, please see Figure 4.3. The script will parse the diff files and extract
the code snippets that correspond to the vulnerable and fixed versions of the
code. The script will also ensure that the code snippets are valid and complete
Java or Kotlin code, and that they are not too long or too short for the evaluation
purpose.

Store the code snippets and the metadata into MongoDB: The script will
store the code snippets and the metadata into MongoDB, a NoSQL database that
allows flexible and scalable storage of data. The script will create a collection
called vulnerabilities in MongoDB, and store each vulnerability as a document
with the following fields: CVE number, severity level, affected version, descrip-
tion, patch link, vulnerable code snippets, see on table 4.1.
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Figure 4.3: Format of Availability of Buggy Code and Correct Code for a
Specific Vulnerability

Parameter Description
id unique id which identifies the corresponding vulnerability
CVE unique CVE code representing the vulnerability
link Link to the corresponding CVE for complete data
commit Unique commit ID providing commit details
author Name and email of the author committing the solution
committer Name and email of the committer committing the solution
type Type of vulnerability
Severity Indicates severity, either "warning" or "critical"
Message Vulnerability message
Changes Stores updated and vulnerable code

Table 4.1: Dataset parameters

The expected outcome of the data collection is to obtain a dataset of 80
vulnerable code snippets and their corresponding fixes, sourced from Google
Android Security Bulletins, which will be used to evaluate the performance of
the LLM-based tools. The dataset will be representative and authentic, as it
will reflect the real-world Android vulnerabilities and their official patches. The
dataset will also be stored in a flexible and scalable database, which will facilitate
data retrieval and manipulation for evaluation purposes.

The final dataset consists of 80 Android security vulnerabilities code. It
contains three columns:

1. an id that is unique and identifies the vulnerability.

2. the language of the snippet.

3. the vulnerability and its context.
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4. the correct code

Additionally, to further enrich this dataset, we download all the "diff" files
representing both the erroneous (wrong) and corrected (right) code. These "diff"
files allow for a detailed comparison, enabling the differentiation between the
flawed code and its rectified version. Through this comprehensive approach,
researchers and developers gain access to a multifaceted resource, facilitating in-
depth exploration and mitigation strategies for Android security vulnerabilities.

In addition to tracking different CVEs from which vulnerabilities are ex-
tracted, these data are stored in a MongoDB database in the form of a document.
This document encapsulates various parameters pertinent to the vulnerabilities
being cataloged. The schema for the MongoDB document, illustrated in Figure
4.4, encompasses the following key elements:

CVE ID (CVE-XXXX-XXXX): This field denotes the Common Vulnerabilities
and Exposures (CVE) identifier associated with the vulnerability. It serves as a
unique reference point for the vulnerability.

Description: A textual description outlining the nature and characteristics
of the vulnerability. This description provides insights into the specific security
issue and its potential impact.

Published Date: Indicates the date when the vulnerability information was
made publicly available. This timestamp aids in understanding the timeline of
the vulnerability disclosure and its relevance to mitigation efforts.
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CVSS Score (Common Vulnerability Scoring System): The CVSS score
quantifies the severity of the vulnerability on a scale from 0 to 10, with higher
scores indicating greater severity. This metric assists in prioritizing remediation
efforts based on the criticality of the vulnerability.

Affected Systems:Specifies the systems, software, or components susceptible
to exploitation due to the vulnerability. Understanding the affected assets aids
in devising targeted mitigation strategies.

References: Includes links or references to external resources such as advi-
sories, patches, or research articles related to the vulnerability. These references
serve as additional sources of information for understanding and mitigating the
security issue.

Comments/Notes: Allows for the inclusion of supplementary comments or
notes relevant to the vulnerability. This section may contain additional context,
mitigation recommendations, or internal annotations.

Figure 4.4: Parameters stored in the database of Vulnerabilities

Data is available here : https://github.com/SaadAhmed1122/Android-
Security-Bulletin-cve/tree/main
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4.3 Tool Selection

The third step of the methodology design is to select three LLM-based tools
for automated Android security vulnerability repair: ChatGPT, Google Bard,
and Android Studio Bot. The purpose of this step is to choose the tools that
will be evaluated and compared in terms of their effectiveness and reliability in
generating suggestions for fixing vulnerable code snippets.

The tool selection will be based on the following criteria:

Availability and accessibility: The tools should be publicly available and
accessible, either as open-source software, web applications, or APIs. The tools
should also have clear and comprehensive documentation and instructions for
using them.

Relevance and applicability: The tools should be relevant and applicable for
the task of automated vulnerability repair in Android applications, and should
be able to handle Java or Kotlin code snippets. The tools should also be able to
generate suggestions based on the description or the severity of the vulnerability,
as provided by the Google Android Security Bulletins.

Popularity and novelty: The tools should be popular and novel, meaning
that they should have a high number of users, citations, or media coverage, and
that they should represent the state-of-the-art of LLM-based tools for automated
vulnerability repair.

Based on these criteria, the following three tools are selected for the evalua-
tion:

ChatGPT: ChatGPT is an LLM-based tool that uses a chatbot interface
to generate suggestions for fixing code snippets, based on natural language
prompts. ChatGPT is based on GPT-3, a large-scale LLM that can generate
natural-sounding text or code snippets based on a given context or prompt.
ChatGPT is available as a web application at https://chatgpt.com/, and can
handle various programming languages, including Java and Kotlin. ChatGPT
can generate suggestions for fixing code snippets based on the description or the
severity of the vulnerability, by using natural language prompts such as fix this
code snippet to prevent SQL injection or make this code snippet more secure.

Google Bard: Google Bard is an LLM-based tool that uses a web inter-
face to generate suggestions for fixing code snippets, based on the severity of
the vulnerability. Google Bard is based on BART, a large-scale LLM that can
perform various text generation tasks, such as text summarization, translation,
classification, and completion. Google Bard is available as a web application
at https://ai.google/research/bard, and can handle various programming lan-
guages, including Java and Kotlin. Google Bard can generate suggestions for
fixing code snippets based on the severity of the vulnerability, by using a slider
that ranges from low to high, and that indicates the level of security improvement
required for the code snippet.

Android Studio Bot: Android Studio Bot is an LLM-based tool that uses
an IDE plugin to generate suggestions for fixing code snippets, based on the
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description of the vulnerability. Android Studio Bot is based on CodeBERT, a
large-scale LLM that can perform various code-related tasks, such as code sum-
marization, translation, classification, and completion. Android Studio Bot is
available as an open-source plugin for Android Studio, an IDE for Android ap-
plication development, at Android Studio Bot. Android Studio Bot can generate
suggestions for fixing code snippets based on the description of the vulnerabil-
ity, by using a text box that allows the user to enter the description, and that
triggers the suggestion generation.

The expected outcome of the tool selection is to choose three LLM-based
tools for automated Android security vulnerability repair: ChatGPT, Google
Bard, and Android Studio Bot. These tools are publicly available and accessible,
relevant and applicable, and popular and novel, and they represent the state-
of-the-art of LLM-based tools for automated vulnerability repair. These tools
will be evaluated and compared in terms of their effectiveness and reliability in
generating suggestions for fixing vulnerable code snippets.

28

https://github.com/AndroidStudioBot/AndroidStudioBot


CHAPTER 4. METHODOLOGY

4.4 Prompt

In order to fully utilize Language Model (LLM) modelslike GPT (Generative
Pre-trained Transformer), Google Bard and Android Studio Bot modelsfor a
variety of tasks, from text production to language interpretation, prompts are
essential. These cues or instructions serve as a means of directing the model’s
creation or comprehension process. Prompts can be categorized based on their
intended use and the type of response they are designed to elicit from a Large
Language Model (LLM). Here are some common categories:

• Classification Prompts: Used when you need to classify text into specific
categories[15].

• Closed-ended Prompts: Ideal for obtaining specific information or a yes/no
answer[6].

• Contextual Prompts: Provide additional context to guide the LLM’s re-
sponse[7].

• Counterfactual Prompts: Involve hypothetical scenarios that differ from
known facts[23].

• Exploratory Prompts: Aim to explore a topic or generate ideas without
specific constraints[4].

• Generative Prompts: Designed to generate creative or original content.

• Hypothetical Prompts: Pose hypothetical questions or scenarios to explore
possible outcomes.

• Interactive Prompts: Engage the LLM in a dialogue or interactive session.

These categories help in structuring prompts to achieve more accurate and
relevant responses from LLM Models.

4.4.1 Prompt Used

In order to obtain results from the LLM model, we utilize the following
prompt template for generating fixes, and we employ the same template for all
other LLM models.

The template employed to formulate the specific prompt is as follows:

1. Following is a vulnerable code. Correct it.

2. Message of the vulnerable code which is given in the commit.

3. Buggy Code

In Image 4.5, the example illustrates a specific vulnerability within an input
prompt.
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Figure 4.5: Example of Prompt Used to generate result from LLM Models

4.5 Pre-Processing Phase

The preprocessing phase is a crucial step that involves cleaning and preparing
the data before processing. In our thesis, we conducted preprocessing after
obtaining the results from the LLM models and processing the results to prepare
them for evaluation using a matrix.

4.5.1 Pre-processing of LLM Model outputs

In the results of LLM models, we receive additional data alongside the re-
spective code. We disregard this supplementary information, such as code de-
scriptions and examples, and solely extract the corresponding code for further
analysis. This uniform approach is applied consistently across all other LLM
models. In Figure 4.6, despite the abundance of accompanying information and
code in the results, we focus solely on the code for evaluation purposes.

4.6 Evaluation Metrics

In assessing the performance of Language Model (LLM)-based tools for au-
tomated Android security vulnerability repair, several evaluation metrics will
be employed to gauge their effectiveness and reliability in generating fixes for
vulnerable code snippets. These metrics encompass both qualitative and quan-
titative measures to provide a comprehensive evaluation:

BLEU Score: The Bilingual Evaluation Understudy (BLEU) score is a metric
commonly used to evaluate the quality of machine-generated text, such as code
snippets generated by LLM-based tools. BLEU compares the similarity between
the generated code snippet and the reference (i.e., the actual fix provided by
Google or other authoritative sources). A higher BLEU score indicates a closer
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Figure 4.6: Proposed fix for Android specific vulnerability by ChatGPT.

match between the generated fix and the reference, reflecting greater syntactic
and semantic correctness.

Human Evaluation: Human evaluation involves manual assessment by hu-
man evaluators, who will review the generated fixes and provide subjective
ratings based on criteria such as readability, maintainability, and relevance to
the vulnerability description. This qualitative assessment complements quanti-
tative metrics by capturing aspects of code quality that may not be captured by
automated measures.

4.7 Experimental Setup

The experimental setup involves conducting experiments to evaluate the
performance of the selected LLM-based tools for automated Android security
vulnerability repair. The following components constitute the experimental
setup:

Dataset Preparation: The dataset of vulnerable code snippets, sourced from
Google Android Security Bulletins, will be prepared by selecting a representative
sample of vulnerabilities affecting Android 10 or 11 and categorized by severity
level. Each code snippet will be paired with its corresponding fix provided by
Google for benchmarking purposes.

Tool Configuration: The selected LLM-based toolsChatGPT, Google Bard,
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and Android Studio Botwill be configured and set up for generating fixes based
on the given code snippets and vulnerability descriptions. Any required prepro-
cessing steps, such as input formatting or model fine-tuning, will be performed
to optimize tool performance.

Experiment Execution: The experiments will involve feeding each vulnera-
ble code snippet and its corresponding vulnerability description into the LLM-
based tools to generate candidate fixes. The generated fixes will be evaluated
using the established evaluation metrics, including BLEU score and human
evaluation ratings.

4.8 Data Analysis Techniques

The analysis of experimental results will entail applying various data analysis
techniques to interpret and derive insights from the evaluation outcomes. Key
data analysis techniques include:

Statistical Analysis: Quantitative metrics with BLEU score, analyzed statis-
tically to compare the performance of different LLM-based tools.

Qualitative Analysis: Human evaluation ratings and qualitative feedback
will undergo thematic analysis to identify common themes and patterns in eval-
uators’ perceptions of the generated fixes. Qualitative insights will complement
quantitative metrics by providing nuanced interpretations of tool performance
and identifying areas for improvement.

Visualization: Visualization techniques, such as box plots, histograms, and
heat-maps, may be utilized to present the distribution and relationships be-
tween evaluation metrics. Visual representations facilitate the interpretation of
complex data and aid in communicating findings to stakeholders effectively.

By employing a combination of evaluation metrics, experimental setup, and
data analysis techniques, the methodology aims to provide a rigorous and com-
prehensive evaluation of LLM-based tools for automated Android security vul-
nerability repair.
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Results

5.1 Results Overview

In this section, we present real-world examples of Android security vulnera-
bilities and demonstrate the application of Language Model (LLM)-based tools
in vulnerability repair. We assess the effectiveness and efficiency of LLM-based
repair strategies through comprehensive case studies conducted on a diverse set
of Android applications.

Our analysis includes a detailed examination of various vulnerability types,
such as input validation flaws, authentication bypass vulnerabilities, and inse-
cure data storage issues. By applying LLM-based techniques, we successfully
identify and mitigate these vulnerabilities, showcasing the potential of auto-
mated repair solutions in enhancing Android application security.

Through our case studies, we evaluate the performance of LLM-based tools
in terms of repair accuracy, speed, and scalability. We compare the results
obtained from LLM-based repairs with traditional manual approaches to high-
light the advantages and limitations of each method. Additionally, we discuss
the challenges encountered during the repair process and propose strategies
for improving the effectiveness of LLM-based vulnerability repair in real-world
scenarios.

Overall, our findings underscore the importance of incorporating LLM-based
tools into the Android security development lifecycle. By leveraging the capa-
bilities of these advanced language models, developers can efficiently identify
and address security vulnerabilities, thereby enhancing the overall resilience of
Android applications against potential cyber threats.
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5.2 Evaluation Matrix

An evaluation matrix, also known as a decision matrix or criteria matrix, is
a systematic tool used to assess and compare different options or alternatives
based on a set of predetermined criteria. It serves as a structured approach to
decision-making, especially in complex situations where multiple factors need
to be considered.

In the context of this thesis, we employ the CodeBLEU score evaluation
matrix to quantitatively evaluate the performance of our proposed vulnerabil-
ity repair techniques. The CodeBLEU score, inspired by the BLEU (Bilingual
Evaluation Understudy) metric commonly used in natural language process-
ing tasks, provides a standardized measure of similarity between the original
vulnerable code and the repaired code. By analyzing various aspects such as
n-gram matches, syntactic similarities, and dataflow consistency, the CodeBLEU
score offers valuable insights into the effectiveness of our repair strategies.

Additionally, we incorporate human evaluation as part of our assessment
process to complement the automated metrics provided by the CodeBLEU score.
Human evaluators, typically experienced software developers or security ex-
perts, review the repaired code samples and provide qualitative feedback on
factors such as readability, maintainability, and overall security improvements.
This human-centric approach enables us to capture nuanced aspects of vulner-
ability repair that may not be fully captured by automated metrics alone.

By combining both automated evaluation metrics and human judgment, we
aim to comprehensively assess the performance of our vulnerability repair tech-
niques. This hybrid evaluation approach not only provides objective measures of
effectiveness but also ensures that the repaired code meets the practical require-
ments and expectations of real-world developers and security practitioners.
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5.2.1 Code Bleu

We use the CodeBleu Evaluation Matrix to compare the results of correct code
and predicted code. BLEU is calculated using the standard BLEU metric, where
BLEU weight represents the weighted n-gram match. This is obtained by com-
paring the hypothesis code and the reference code tokens with varying weights.
MatchAST represents the syntactic AST match, delving into the syntactic in-
formation of the code, while MatchDF denotes the semantic dataflow match,
considering the semantic similarity between the hypothesis and the reference.
The weighted n-gram match and the syntactic AST match gauge grammatical
correctness, whereas the semantic data-flow match assesses logical correctness.

The evaluation metrics include:
N-gram Match: This metric measures the similarity between n-grams (se-

quences of n items, such as words or tokens) in the predicted code and the
reference code.

Weighted N-gram Match: Similar to N-gram Match, but with weighted n-
grams, where different weights are assigned to different n-gram matches based
on their importance. (See Figure 5.1)

Dataflow Match: Dataflow Match evaluates the semantic similarity between
the predicted and reference code in terms of data flow analysis. (See Figure 5.3)

Syntactic AST Match: Syntactic AST Match analyzes the similarity between
machine and human translations in terms of their Abstract Syntax Trees (ASTs).
An AST represents the hierarchical structure of the program or sentence, cap-
turing its syntactic components and their relationships. (See Figure 5.2)

CodeBleu Score: The CodeBLEU score combines lexical, syntactic, and se-
mantic aspects to quantify the similarity between the predicted and reference
code, with higher scores indicating better code repair quality.
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Figure 5.1: CodeBlue weighted N-Gram match [17].

Figure 5.2: CodeBlue syntactic AST match [17]
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Figure 5.3: CodeBlue semantic data flow [17]

The equation 5.2.1 represents a scoring mechanism called CodeBLEU, which
is used to evaluate the similarity or quality of generated code compared to
reference code. Each component of the equation corresponds to a different
aspect of similarity or match between the generated code and the reference
code.

CodeBLEU = ÿ × =gram_match

+ Ā × weighted_n_gram_match

+ ā × syntactic_match

+ Ă × dataflow_match

(5.2.1)

• ÿ represents the weight given to the match of n-grams in the generated
and reference code.

• Ā represents the weight given to the match of weighted n-grams in the
generated and reference code.

• ā represents the weight given to the match of syntactic structures between
the generated and reference code.

• Ă represents the weight given to the match of dataflow patterns between
the generated and reference code.
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5.2.2 Results Table

The following tables show the clear difference between those LLM Models
and represent the clear score which is calculated by CodeBlue.

Code Blue Results of ChatGPT-3.5

S:No N-gram Match Weighted N-gram Match Syntactic Match Dataflow Match CodeBlue Score

1 0.324 0.306 0.684 1 0.578

2 0.395 0.395 0.583 0.833 0.551

3 0.634 0.607 0.667 1 0.727

4 0.634 0.607 0.667 1 0.877

5 0.853 0.829 0.826 1 0.727

... ... ... ... ... ...

80 0.612 0.769 0.667 1 0.762

Table 5.1: Evaluation Metrics for evaluating CodeBLEU of ChatGPT-3.5 for
Android Java code vulnerabilities

This table 5.1 displays the evaluation metrics used to assess the CodeBLEU
score of ChatGPT-3.5 in the context of identifying vulnerabilities in Android
Java code. Each row in the table corresponds to a specific evaluation instance,
labeled by S:No (Serial Number).

Additionally, the total Code Blue score of ChatGPT-3.5 across all evaluation
instances is provided as 0.490674941334816.

This table and the codeblue score provide insights into the performance of
ChatGPT-3.5 in repairing Android Java code vulnerabilities, offering a quantita-
tive assessment of its effectiveness.

CodeBlue Result of Google Bard

S:No N-gram Match Weighted N-gram Match Syntactic Match Dataflow Match CodeBlue Score

1 0.171 0.277 0.473 0.70 0.405

2 0.142 0.233 0.333 0.50 0.302

3 0.013 0.026 0.333 0.50 0.218

4 0.075 0.124 0.666 1.00 0.466

5 0.053 0.084 0.652 0.85 0.411

... ... ... ... ... ...

80 0.802 0.811 0.727 1.00 0.835

Table 5.2: Evaluation Metrics for evaluating CodeBLEU of Google Bard for
Android Java code vulnerabilities

This table 5.2 presents the evaluation metrics used to assess the CodeBLEU
score of Google Bard in the context of identifying vulnerabilities in Android
Java code. Each row in the table corresponds to a specific evaluation instance,
labeled by S:No (Serial Number).
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Additionally, the total Code Blue score of Google Bard across all evaluation
instances is provided as 0.43066895636352526.

This table and the codeblue score offer insights into the performance of
Google Bard in repairing Android Java code vulnerabilities, providing a quan-
titative assessment of its effectiveness.

CodeBlue Result of Android Studio Bot

S:No N-gram Match Weighted N-gram Match Syntactic Match Dataflow Match CodeBlue Score

1 0.504 0.581 0.736 0.80 0.655

2 0.020 0.026 0.583 0.50 0.282

3 0.043 0.044 0.416 1.00 0.376

4 0.077 0.083 0.652 0.28 0.274

5 0.043 0.044 0.416 1.00 0.376

... ... ... ... ... ...

80 0.874 0.929 0.757 1.00 0.890

Table 5.3: Evaluation Metrics for evaluating CodeBLEU of Android Studio Bot
for Android Java code vulnerabilities

This table 5.3 displays the evaluation metrics used to assess the CodeBLEU
score of Android Studio Bot in the context of identifying vulnerabilities in An-
droid Java code. Each row in the table corresponds to a specific evaluation
instance, labeled by S:No (Serial Number).

Additionally, the total Code Blue score of Android Studio Bot across all
evaluation instances is provided as 0.5297597933431579.

This table and the codeblue score offer insights into the performance of
Android Studio Bot in repairing Android Java code vulnerabilities, providing a
quantitative assessment of its effectiveness.
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Overall codeblue score of these three LLMs

Chatgpt-3.5 Google Bard Android Studio Bot
Overall CodeBlue Score 0.49 0.43 0.52

Table 5.4: Average of overall result

Table 5.4 presents the overall CodeBlue scores of the LLMs (Language Model-
based tools) used for vulnerability repair, including ChatGPT-3.5, Google Bard,
and Android Studio Bot.

ChatGPT-3.5: This column represents the overall average CodeBlue score
obtained from ChatGPT-3.5 across all evaluation instances.

Google Bard: This column displays the overall average CodeBlue score
obtained from Google Bard across all evaluation instances.

Android Studio Bot: This column shows the overall average CodeBlue score
obtained from Android Studio Bot across all evaluation instances.

The table provides a comparative analysis of the effectiveness of different
LLMs in repairing Android Java code vulnerabilities based on their overall
CodeBlue scores.

Additionally, the "Overall Average of CodeBlue Score" row presents the av-
erage CodeBlue score calculated across all LLMs, offering a summary of the
combined performance of these tools in vulnerability repair.

This table facilitates easy comparison and interpretation of the overall effec-
tiveness of the LLMs in addressing Android Java code vulnerabilities.

The visual representation in Figure 5.4 illustrates the overall BleuScore of
three different Large Language Models (LLM Models). This graphical rep-
resentation provides a clear comparison of the BleuScore performance across
the ChatGPT-3.5, Google Bard, and Android Studio Bot models. By combining
both the graphical and tabular representations, we gain a comprehensive under-
standing of how these LLM Models compare in terms of their overall BlueScore
performance.

5.2.3 Human Evaluation Matrix

In the Human Evaluation Matrix presented in Table 5.5, we delve into a
crucial aspect of assessing the quality of predicted code by comparing it against
the correct code. Each prediction is evaluated and categorized as either ’Correct’
or ’Incorrect,’ denoted by binary values of 0 and 1, respectively.

For each of the evaluated Large Language Models (LLM Models), namely
ChatGPT-3.5, Google Bard, and Android Studio Bot, we tabulate the number of
correct predictions (’Correct’), the number of incorrect predictions (’Incorrect’),
and the total number of predictions made (’Total’). Additionally, we calculate
the percentage of correct predictions, the percentage of incorrect predictions,
and the overall percentage of predictions for each model.
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Figure 5.4: Graphic Representation of Overall BlueScore of three LLM Models

Correct Incorrect Total Correct
(%)

Incorrect
(%)

Total
(%)

ChatGPT-3.5 41 39 80 51% 49% 100%
Google Bard 34 46 80 43% 57% 100%

Android Studio Bot 33 47 80 41% 59% 100%

Table 5.5: Human Evaluation Results

This table 5.5 presents the results of human evaluation conducted to assess
the accuracy of predicted code generated by different Language Model-based
tools, including ChatGPT-3.5, Google Bard, and Android Studio Bot.

Correct: This column indicates the number of instances where the predicted
code matched the correct code as per human evaluation.

Incorrect: This column displays the number of instances where the predicted
code did not match the correct code as per human evaluation.

Total: This column represents the total number of evaluation instances con-
sidered for each Language Model-based tool.

Correct (%): This column calculates the percentage of instances where the
predicted code was deemed correct by human evaluators out of the total evalu-
ation instances.

Incorrect (%): This column calculates the percentage of instances where
the predicted code was deemed incorrect by human evaluators out of the total
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Figure 5.5: Graphic Representation of Overall Human Evaluation of three LLM
Models

evaluation instances.
Total (%): This column represents the overall percentage of evaluation in-

stances considered out of the total number of instances.
The table provides insights into the accuracy of predicted code generated

by each Language Model-based tool based on human evaluation. It showcases
the proportion of correct and incorrect predictions and allows for a compar-
ative analysis of their performance in accurately repairing Android Java code
vulnerabilities. The graphic representation of overall human evaluation of the
three LLM Models is visually depicted in Figure 5.5. These human evaluation
results complement the automated evaluation metrics presented earlier, offering
a comprehensive assessment of the effectiveness of Language Model-based tools
in vulnerability repair.

5.3 Overview of Results

The evaluation process aimed to assess the effectiveness of three LLM-based
toolsChatGPT, Google Bard, and Android Studio Botfor automated Android
security vulnerability repair.

5.3.1 Quantitative Metrics

In this section, we present quantitative metrics comparing different language
model (LLM) systems. The table (5.6) displays the Blue Score Evaluation Matrix
and Human Evaluation results for three LLM models: ChatGPT, Google Bard,
and Android Studio Bot. These metrics provide insights into the performance
of each model in generating human-like text responses.
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LLM Models Blue Score Evaluation Matrix Human Evaluation
Chatgpt 49% 41

Google Bard 43% 34
Android Studio Bot 53% 33

Table 5.6: Overall Evaluation Results

Additionally, a visual representation of the overall evaluation results for cor-
recting vulnerable code by the LLM systems is provided in Figure 5.6. This
graphic complements the numerical data presented in the table, offering a com-
prehensive view of the models’ performance in fixing vulnerable code.

Figure 5.6: Overall Evaluation Result Correct fix vulnerable code
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6
Conclusions and Future Works

6.1 Conclusion

In this study, we conducted a comprehensive evaluation of Language Model
(LLM)-based tools for automated Android security vulnerability repair. The
evaluation encompassed the analysis of existing tools, empirical assessments of
their performance, and comparative analysis of their strengths and weaknesses.
Based on our findings, we draw the following conclusions:

The absence of an authentic benchmark or dataset dedicated to Android
security bulletins poses a significant challenge in the realm of Android devel-
opment, particularly for Language Model (LLM) applications. Addressing this
deficiency head-on, our thesis leverages Google Android Security Bulletins as
the sole credible source of vulnerabilities accompanied by their respective solu-
tions. By meticulously collecting data from this repository, we not only bridge
a critical gap in Android vulnerability research but also establish a robust foun-
dation for evaluating LLM-based tools.

However, the absence of standardized evaluation metrics compounds the
challenge. In the absence of a systematic and syntactically accurate evaluation
matrix tailored for assessing code repairs, we turn to BLEU score as a pragmatic
albeit imperfect solution. While BLEU score may not comprehensively capture
semantic nuances, its widespread adoption within the field underscores its
utility as a benchmarking tool. Furthermore, recognizing the limitations of
automated metrics, we complement our evaluation with manual assessments to
ensure the integrity and validity of our findings.

In our evaluation, we observed varying degrees of performance among the
LLMs under scrutiny. Specifically, the BLEU scores for ChatGPT, Google Bard,
and Android Studio Bot were found to be 49%, 43%, and 52%, respectively.
These scores, while indicative, do not paint a complete picture of the models’
capabilities. Thus, to augment our assessment, we conducted manual evalua-
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tions wherein human experts meticulously scrutinized the output of each LLM
against manually verified fixes. Notably, for ChatGPT, the human evaluation
yielded a score of 41, indicating areas for improvement, while Google Bard re-
ceived a score of 34, showcasing its proficiency in certain contexts. Conversely,
Android Studio Bot garnered a score of 33, highlighting its efficacy in some
scenarios.

In essence, our study serves as a pioneering endeavor in the domain of LLM-
based automated security measures for Android applications. By addressing
critical lacunae in benchmarking and evaluation methodologies, we not only
advance the state-of-the-art but also lay the groundwork for future research
endeavors. Our reliance on Google Android Security Bulletins for data and the
judicious combination of quantitative and qualitative evaluation methodologies
underscore the rigor and authenticity of our approach. Moving forward, our
findings not only inform the development of more effective LLM-based tools
but also pave the way for standardized evaluation frameworks tailored to the
unique challenges posed by Android security vulnerabilities.

6.2 Future Direction

To propel the field of automated Android security vulnerability repair for-
ward, future research should prioritize several key directions. Firstly, there is a
need to explore hybrid repair approaches that integrate both static and dynamic
analysis techniques. By combining the strengths of these methods, researchers
can develop more comprehensive and effective solutions for identifying and
remedying vulnerabilities in Android applications. Secondly, the development
of domain-specific repair models tailored to the unique characteristics of An-
droid application development is essential. These models should be equipped to
handle the intricacies of the Android ecosystem, including its diverse architec-
ture and security challenges. Additionally, investigating adversarial robustness
and model fairness in Language Model (LLM)-based tools is crucial to ensure
their reliability and integrity in real-world scenarios. Lastly, there is a pressing
need to evaluate repair techniques in actual development environments to gauge
their practical effectiveness and usability. By addressing these research direc-
tions, the field can advance the state-of-the-art in Android security and fortify
mobile applications against emerging cyber threats. Moreover, to facilitate the
work of researchers and developers, establishing a comprehensive benchmark
is imperative. This benchmark should systematically compile data related to
Common Vulnerabilities and Exposures (CVEs), including CVE codes, associ-
ated data stores, complete code samples, and ground truth results. Centralizing
this data into a user-friendly repository will streamline research and devel-
opment efforts in cybersecurity, empowering users to effectively analyze and
utilize CVE-related information. Additionally, to enhance the performance of
Language Models (LLMs) for addressing Android security vulnerabilities, a sys-
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tematic approach involves updating the model with a large dataset specifically
focusing on Android vulnerabilities. This dataset should encompass diverse
CVEs associated with Android, detailed contextual information, and relevant
code samples. Thorough training, testing, and documentation of the model’s
development processes are essential to ensure its effectiveness and reliability.
Furthermore, refining the model’s architecture and training methodologies and
conducting rigorous testing against ground truth results are imperative to val-
idate its capabilities. By fostering collaboration and transparency between re-
searchers and developers, these initiatives aim to cultivate a robust ecosystem for
addressing Android security vulnerabilities, ultimately enhancing the security
and resilience of Android applications and systems.
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7
Appendix

In this Section wants to illustrate examples of vulnerable code and respec-
tive ground truth for and also the fix generated by the LLM Models with that
respective cve and information.

7.1 Example 1

CVE: A-242703780
Description: In the AutomaticZenRule class of AutomaticZenRule.java, there
exists a potential failure to persist permissions settings due to resource exhaus-
tion. This vulnerability could lead to local escalation of privilege without re-
quiring additional execution privileges. Notably, user interaction is not needed
for exploitation.

The vulnerable code snippet (see Code 7.1) is corrected code is presented
in 7.2. Fixes generated by ChatGPT are provided in 7.3, while fixes generated
by Google Bard are presented in 7.5. Additionally, fixes generated by Android
Studio Bot are available in 7.4. These implementations address the security flaw
identified by CVE A-242703780.
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1 public AutomaticZenRule(@NonNull String name,

@Nullable ComponentName owner,

2 @Nullable ComponentName

configurationActivity , @NonNull Uri conditionId ,

3 @Nullable ZenPolicy policy, int

interruptionFilter , boolean enabled) {

4 this.name = name;

5 this.owner = owner;

6 this.configurationActivity =

configurationActivity;

7 this.conditionId = conditionId;

8 this.interruptionFilter = interruptionFilter;

9 this.enabled = enabled;

10 this.mZenPolicy = policy;

11 }

Code 7.1: Vulnerable code of CV A-242703780

1 publ ic AutomaticZenRule ( @NonNull S t r ing name , @Nullable
ComponentName owner ,

2 @Nullable ComponentName conf igura t ionAc t iv i ty
, @NonNull Uri condit ionId ,

3 @Nullable ZenPolicy pol icy , i n t
i n t e r r u p t i o n F i l t e r , boolean enabled )

4 {
5 t h i s . name = getTrimmedString (name) ;
6 t h i s . owner = getTrimmedComponentName ( owner ) ;
7 t h i s . con f igura t i onAc t iv i t y =

getTrimmedComponentName ( con f igura t i onAc t iv i t y ) ;
8 t h i s . condi t ionId = getTrimmedUri ( condi t ionId ) ;
9 t h i s . i n t e r r u p t i o n F i l t e r = i n t e r r u p t i o n F i l t e r ;

10 t h i s . enabled = enabled ;
11 t h i s . mZenPolicy = pol i cy ;
12 }

Code 7.2: Correct code of CV A-242703780

1 publ ic AutomaticZenRule ( @NonNull S t r ing name , @Nullable
ComponentName owner ,

2 @Nullable ComponentName conf igura t ionAc t iv i ty ,
@NonNull Uri condit ionId ,

3 @Nullable ZenPolicy pol icy , i n t i n t e r r u p t i o n F i l t e r
, boolean enabled ) {

4 t h i s . name = name ;
5 t h i s . owner = owner ;
6 t h i s . con f igura t i onAc t iv i t y = con f igura t i onAc t iv i t y ;
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7 t h i s . condi t ionId = condi t ionId ;
8 t h i s . mZenPolicy = pol i cy ; // Corrected order
9 t h i s . i n t e r r u p t i o n F i l t e r = i n t e r r u p t i o n F i l t e r ;

10 t h i s . enabled = enabled ;
11 }

Code 7.3: Fix Generated by ChatGPT of CV A-242703780
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1 publ ic AutomaticZenRule ( @NonNull S t r ing name , @Nullable
ComponentName owner ,

2 @Nullable ComponentName conf igura t ionAc t iv i ty ,
@NonNull Uri condit ionId ,

3 @Nullable ZenPolicy pol icy , i n t
i n t e r r u p t i o n F i l t e r , boolean enabled ) {

4 t h i s . name = name ;
5 t h i s . owner = owner ;
6 t h i s . con f igura t i onAc t iv i t y = con f igura t i onAc t iv i t y

;
7 t h i s . condi t ionId = condi t ionId ;
8 t h i s . i n t e r r u p t i o n F i l t e r = i n t e r r u p t i o n F i l t e r ;
9 t h i s . enabled = enabled ;

10 t h i s . mZenPolicy = pol i cy ;
11 }

Code 7.4: Fix Generated by Android Studio Bot of CV A-242703780

1 publ ic AutomaticZenRule ( @NonNull S t r ing name , @Nullable
ComponentName owner ,

2 @NonNull ComponentName conf igura t ionAc t iv i ty ,
@NonNull Uri condit ionId ,

3 @Nullable ZenPolicy pol icy , i n t
i n t e r r u p t i o n F i l t e r , boolean enabled ) {

4 t h i s . name = name ;
5 t h i s . owner = owner ;
6 t h i s . con f igura t i onAc t iv i t y = con f igura t i onAc t iv i t y

;
7 t h i s . condi t ionId = condi t ionId ;
8 t h i s . i n t e r r u p t i o n F i l t e r = i n t e r r u p t i o n F i l t e r ;
9 t h i s . enabled = enabled ;

10 t h i s . mZenPolicy = pol i cy ;
11 }

Code 7.5: Fix Generated by Google bard of CV A-242703780

7.2 Example 2

CVE: 20222489
Description: HDCP: buffer over flow check

The vulnerable code snippet (see Code 7.6) is corrected code is presented in
7.7. Fixes generated by ChatGPT are provided in 7.8, while fixes generated by
Google Bard are presented in 7.10. Additionally, fixes generated by Android
Studio Bot are available in 7.9. These implementations address the security flaw
identified by CVE-20222489.
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1 case HDCP_ENCRYPT:

2 {

3 size_t size = data.readInt32();

4 void *inData = malloc(2 * size);

5 void *outData = (uint8_t *)inData + size;

6 }

Code 7.6: Vulnerable code of CVE-20222489

1 case HDCP_ENCRYPT:

2 {

3 size_t size = data.readInt32();

4 size_t bufSize = 2 * size;

5 void *inData = NULL;

6 if (bufSize > size) {

7 inData = malloc(bufSize);

8 }

9

10 if (inData == NULL) {

11 reply->writeInt32(ERROR_OUT_OF_RANGE)

;

12 return OK;

13 }

14

15 void* outData = (uint8_t*)inData + size;

Code 7.7: Correct code of CVE-20222489

1 case HDCP_ENCRYPT:

2 {

3 size_t size = data.readInt32();

4 if (size > (SIZE_MAX / 2)) {

5 return ERROR_BUFFER_OVERFLOW;

6 }

7 void* inData = malloc(2 * size);

8 if (inData == nullptr) {

9 return ERROR_MEMORY_ALLOCATION_FAILED;

10 }

11 void* outData = (uint8_t*)inData + size;

12 free(inData);

13 }

Code 7.8: Fix Generated by ChatGPT of CVE-20222489
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1 case HDCP_ENCRYPT:

2 {

3 size_t size = data.readInt32();

4 if (size > MAX_HDCP_BUFFER_SIZE) {

5 return ERROR_OUT_OF_RANGE;

6 }

7 void *inData = malloc(2 * size);

8 void *outData = (uint8_t *)inData + size;

Code 7.9: Fix Generated by Android Studio Bot of CVE-20222489

1 case HDCP_ENCRYPT:

2 {

3 size_t size = data.readInt32();

4 if (size > SIZE_MAX) {

5 return ERROR_INVALID_SIZE;

6 }

7 void* inData = malloc(2 * size);

8 if (inData == nullptr) {

9 return ERROR_OUT_OF_MEMORY;

10 }

11 void* outData = static_cast <uint8_t*>(inData) +

size;

12 }

Code 7.10: Fix Generated by Google Bard of CVE-20222489
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7.3 Example 3

CVE: 202144228
Description: Apache Log4j2 versions 2.0-beta9 through 2.15.0 (excluding secu-
rity releases 2.12.2, 2.12.3, and 2.3.1) have a vulnerability related to JNDI features
used in configuration, log messages, and parameters. These features do not pro-
tect against attacker-controlled LDAP and other JNDI-related endpoints. An
attacker who can control log messages or log message parameters can execute
arbitrary code loaded from LDAP servers when message lookup substitution
is enabled. Starting from log4j version 2.15.0, this behavior has been disabled
by default, and from version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this
functionality has been completely removed. Note that this vulnerability is spe-
cific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging
Services projects [16]

The vulnerable code snippet (see Code 7.11) is corrected code is presented
in 7.12. Fixes generated by ChatGPT are provided in 7.13, while fixes generated
by Google Bard are presented in 7.15. Additionally, fixes generated by Android
Studio Bot are available in 7.14. These implementations address the security
flaw identified by CVE-202144228.

1 public List<ActivityManager.RunningAppProcessInfo >

getRunningAppProcesses() {

2 enforceNotIsolatedCaller("

getRunningAppProcesses");

3 List<ActivityManager.RunningAppProcessInfo >

runList = null;

4 final boolean allUsers = ActivityManager.

checkUidPermission(INTERACT_ACROSS_USERS_FULL ,

5 Binder.getCallingUid()) ==

PackageManager.PERMISSION_GRANTED;

6 int userId = UserHandle.getUserId(Binder.

getCallingUid());

7 synchronized (this) {

8 for (int i=mLruProcesses.size()-1; i>=0;

i--) {

9 ProcessRecord app = mLruProcesses.get

(i);

10 if (!allUsers && app.userId != userId

) {

11 continue;

12 }

13 }

14 }
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15 }

Code 7.11: Vulnerable code of CVE-202144228

1 public List<ActivityManager.RunningAppProcessInfo >

getRunningAppProcesses() {

2 enforcePermission(permission.REAL_GET_TASKS ,

Binder.getCallingPid(), Binder.getCallingUid());

3 final int callingUid = Binder.getCallingUid();

4 List<ActivityManager.RunningAppProcessInfo >

runList = null;

5 final boolean allUsers = ActivityManager.

checkUidPermission(INTERACT_ACROSS_USERS_FULL ,

6 callingUid) == PackageManager.

PERMISSION_GRANTED;

7 final int userId = UserHandle.getUserId(

callingUid);

8 final boolean allUids = isGetTasksAllowed(

9 "getRunningAppProcesses", Binder.

getCallingPid(), callingUid);

10 synchronized (this) {

11 for (int i = mLruProcesses.size() - 1; i >=

0; i--) {

12 ProcessRecord app = mLruProcesses.get(i);

13 if ((!allUsers && app.userId != userId)

14 || (!allUids && app.uid !=

callingUid)) {

15 continue;

16 }

17 }

18 }

19 }

Code 7.12: Correct code of CVE-202144228

1 public List<ActivityManager.RunningAppProcessInfo >

getRunningAppProcesses() {

2 enforcePermission(permission.REAL_GET_TASKS ,

Binder.getCallingPid(), Binder.getCallingUid());

3

4 List<ActivityManager.RunningAppProcessInfo >

runList = null;

5 final boolean allUsers = ActivityManager.

checkUidPermission(INTERACT_ACROSS_USERS_FULL ,
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6 Binder.getCallingUid()) == PackageManager

.PERMISSION_GRANTED;

7 int userId = UserHandle.getUserId(Binder.

getCallingUid());

8 synchronized (this) {

9 // Iterate across all processes

10 for (int i = mLruProcesses.size() - 1; i >=

0; i--) {

11 ProcessRecord app = mLruProcesses.get(i);

12 if (!allUsers && app.userId != userId) {

13 continue;

14 }

15 }

16 }

17 }

Code 7.13: Fix Generated by ChatGPT of CVE-202144228
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1 public List<ActivityManager.RunningAppProcessInfo >

getRunningAppProcesses() {

2 enforceNotIsolatedCaller("

getRunningAppProcesses");

3 enforceCallingPermission(REAL_GET_TASKS , "

getRunningAppProcesses");

4 // Lazy instantiation of list

5 List<ActivityManager.RunningAppProcessInfo >

runList = null;

6 final boolean allUsers = ActivityManager.

checkUidPermission(INTERACT_ACROSS_USERS_FULL ,

7 Binder.getCallingUid()) ==

PackageManager.PERMISSION_GRANTED;

8 int userId = UserHandle.getUserId(Binder.

getCallingUid());

9 synchronized (this) {

10 // Iterate across all processes

11 for (int i=mLruProcesses.size()-1; i>=0;

i--) {

12 ProcessRecord app = mLruProcesses.get

(i);

13 if (!allUsers && app.userId != userId

) {

14 continue;

15 }

16 }

17 }

18 }

Code 7.14: Fix Generated by Android Studio Bot of CVE-202144228

1 public List<ActivityManager.RunningAppProcessInfo >

getRunningAppProcesses() {

2 enforceNotIsolatedCaller("getRunningAppProcesses");

3

4 if (ActivityManager.checkUidPermission(permission.

REAL_GET_TASKS , Binder.getCallingUid()) !=

PackageManager.PERMISSION_GRANTED) {

5 throw new SecurityException("Insufficient

permission: Requires permission.REAL_GET_TASKS");

6 }

7

8 List<ActivityManager.RunningAppProcessInfo > runList

= null;
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9 final boolean allUsers = ActivityManager.

checkUidPermission(INTERACT_ACROSS_USERS_FULL ,

10 Binder.getCallingUid()) == PackageManager.

PERMISSION_GRANTED;

11 int userId = UserHandle.getUserId(Binder.

getCallingUid());

12

13 synchronized (this) {

14 for (int i = mLruProcesses.size() - 1; i >= 0; i

--) {

15 ProcessRecord app = mLruProcesses.get(i);

16 if (!allUsers && app

Code 7.15: Fix Generated by Google Bard of CVE-202144228
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