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Abstract

In the last decades interest in black holes with an anti-de Sitter asymptotic behaviour has
been renewed, mainly thanks to the possibilities opened by the gauge/gravity correspond-
ence. Progress has been made in reproducing the Bekenstein–Hawking entropy through
the counting of degenerate microstates by making use of the dual conformal field theories.
Despite this, we still lack a proper understanding of these solutions from the gravity side,
mainly with respect to rotating solutions and multi-center configurations. This work is
motivated by recent developments: the finding of a first order description for rotating BPS
black holes in gauged supergravity and of stable bound states from probe analysis in an
AdS black hole background. The aim of this work is to recover the first order description
of rotating BPS black holes in gauged supergravity in a duality invariant formulation and to
work out possible developments with the ambition of proving the existence of multi-center
configurations. The flow equations are formulated in an explicit way by making use of the
symplectic invariance of the vector sector of the theory, starting from an appropriate ansatz
for the metric and vector fields. We provide an analysis of the solutions in a simplified
setting and this gives hints as to which is the role of the various quantities entering these
equations. Lastly we show that, in this simplified case, a superpotential drives the flow of
the scalar fields and warp factors.
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Introduction

Black holes in General Relativity

General relativity is the classical and relativistic theory describing the gravitational interac-
tion as a geometric property of spacetime. Black holes are peculiar solutions of the Einstein
equations of general relativity which are characterised by region of space, enclosed by the
so called event horizon, where the gravitational attraction becomes so strong that no in-
going particles can ever come back. A solution with these characteristics was found by
Schwarzschild as early as 1916 [1], even though it was not interpreted as a black hole at
first. In this solution the event horizon presents itself as a coordinate singularity which
can be removed with an appropriate extension of the coordinates [2], although, even with
such an extension, the metric inside of the horizon is still affected by singularities. The
fact that the Einstein equations can have solutions that evolve from a smooth asymptotic
configuration to a central singularity is a consequence of their non-linearity [3]. It is now
known that black holes are ubiquitous in our universe and can form as the final step in the
evolution of stars, provided that these are massive enough to completely collapse under
their own gravitational attraction. The first astrophysical object identified as a black hole
was Cygnus X-1 [4, 5], while recent and remarkable observations are the first black hole
merger through its gravitational wave’s signature by the LIGO–Virgo collaboration [6] and
the first direct image of a black hole shadow by the EHT collaboration [7]. The cosmic cen-
sorship hypothesis states that all singularities must be "dressed" by an horizon that protects
the outer region from causally interacting with the inner one and, as of now, observations
are consistent with this hypothesis.

From the theoretical point of view, black holes are among the most elementary solu-
tions of General Relativity and can be thought as elementary particles that are completely
specified by their mass, charges and angular momentum. This can be explained by the fact
that, once a black holes is formed, the gravitational field around its horizon sweeps away all
the details of the original star and we are left with a small set of parameters. On the other
hand, in a series of famous papers [8, 9] published in the 70’s, it was shown that black holes
must emit particles with a black body spectrum whose temperature is related to the surface
gravity at the horizon. With this in mind, the simplicity of black hole solutions could also
be attributed to the fact that they can be interpreted as thermodynamical systems, once a
semi-classical approach is used, and as such are described by a small number of paramet-
ers like their energy, temperature and possibly their charges and angular momentum. The
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insightful results obtained with a semi-classical approach, however, also reveal some in-
consistencies with respect to the classical description of black holes provided by general
relativity. First of all, according to general relativity, the emitted radiation must not carry
any information about the matter that has previously fallen inside the horizon, which leads
to an information loss paradox. As a matter of facts, it was shown that one cannot use black
hole solutions of general relativity in a system with quantum particles without breaking the
unitarity of the evolution of states [10]. Another important result of the semi-classical ap-
proach, and the one we are mainly concerned with in this work, comes from Bekenstein and
Hawking [11–14], who showed that black holes as thermal states must posses an entropy
that is proportional to the area of the horizon AH

SBH =
AH

4
,

known as the Bekenstein–Hawking entropy. This entropy must then depend only on the
mass, the charges and the angular momentum of the solution. A fundamental question
arises from this observation, is it possible to give a statistical interpretation of the Bekenstein–
Hawking entropy as a counting of degenerate microstates? The answer in the context of
picture of general relativity comes in the form of a set of theorems, known as no-hair theor-
ems [15, 16], which states that only one geometry corresponds to a given macrostate1. This
leads to a contradiction with the predictions of the Bekenstein–Hawking entropy based on
the area of the horizon. We can grasp the magnitude of the problem by considering, for in-
stance, the black hole at the center of our galaxy (Sgr A*) that has an estimated entropy of
S = 5 ·1066J/K [17] based on it radius. This entropy corresponds to around exp(3.6 ·1089)
degenerate microstate geometries, while general relativity is only able to predict one of
these geometries. It is clear that a consistent statistical interpretation of the Bekenstein–
Hawking entropy cannot be achieved in a classical theory of gravity.

Black holes in quantum gravity and supergravity

The microstate geometries contributing to the Boltzmann counting of the entropy must be
the states of the underlying fundamental theory and as such must have a quantum counter-
part. Their construction and counting is one of the most important requests that candidate
theories of quantum gravity must satisfy. String Theory is, today, the only one of these can-
didates to be able to successfully reproduce the Bekenstein–Hawking entropy as a counting
of microstates, even if only in some special cases. Examples have been built where the fun-
damental degrees of freedom, that are strings and branes, give rise to effective solutions in
the low energy and four-dimensional limit that correspond to what we interpret as a black
hole in general relativity. With this setup, it was found that different configurations of
string and branes can produce the same effective solution and as such are a good fit for
the role of degenerate microstates. In this case the counting of these degenerate config-
urations could be used to reproduce the entropy. As a matter of facts, this program was
carried out successfully for asymptotically flat, extremal and near-extremal black holes
that preserve some amount of supersymmetry, starting from the first groundbreaking result

1The no-hair theorems are valid for asymptotically flat black holes or other specific cases.
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of Strominger and Vafa [18]. Supersymmetry, in this context, protects the perturbative res-
ults from quantum corrections, which means that we can count the number of degenerate
microstates in the weak coupling limit without loss of generality and this result remains
the same in the strongly coupled regime, where gravity becomes effectively dynamical. In
these cases, the effective solutions correspond to black hole solutions of supergravity. One,
then, can gain important insights about the entropy and the quantum structure of black
holes without using a full theory of quantum gravity.

In this work we will be concerned mainly with charged extremal black holes in N = 2
supergravity, as these solutions present many interesting properties that facilitate the ana-
lysis of their entropy and have a well defined derivation from string theory, with an effective
theory under control. These solutions can be seen as a generalisation of the Reissner–
Nordström extremal solutions, that are characterised by the fact that their mass and charges
satisfy a BPS bound M =

√︁
p2 +q2. They have vanishing temperature and non-vanishing

entropy, hence are thermodynamically stable, leading to a regular near horizon geometry.
We will pay special attention to the role of scalar fields, whose presence in black hole
solutions of supergravity is unavoidable. The geometry of the solution will depend on the
scalars and this could be dangerous for a consistent statistical interpretation of the entropy:
the area of the horizon depends, in principle, on the initial values of the scalars, which are
continuous parameters. This is cured by the fact that the horizon of asymptotically flat ex-
tremal solutions in supergravity presents what is known as attractor behaviour: the horizon
is found at the critical point of an appropriate effective black hole potential whose minim-
isation stabilises the scalar fields at values that depend solely on the charges [19–23].
An important point is that the vector sector of N = 2 supergravity presents an extension
of the electromagnetic duality known as U-duality. Duality transformations do not change
the equations of motion of the theory and the metric while they do affect the charges of the
black hole. This means that we can use a charged "seed" solution to build a class of dif-
ferent solutions that fall in the same orbit by making use of duality transformations, while
keeping the geometry unchanged. All of the solutions built by making use of U-duality are
said to be in the same orbit and share the same entropy. With this in mind, we are going to
dedicate the first two chapters to a brief review of N = 2 supergravity, both in the gauged
and ungauged cases, and to black holes solutions of supergravity in the ungauged case.

Multi-center configurations

Extremal charged (Reissner–Nordström) solutions of a Maxwell–Einstein theory have the
fascinating feature that they can be superposed and combined into solutions that describe
several objects at equilibrium. The existence of static multi-center black hole configura-
tions can be explained by the presence of a cancellation of the gravitational attraction and
the electromagnetic repulsion between the centers. This feature is also present for extremal
black holes in supergravity, where, however, the fact that a superposition principle is ap-
plicable to solutions of highly non-linear equations is not trivial. The main point is that
the set of equations describing extremal BPS (and non-BPS) black holes in supergravity
can be reduced to first order thanks to supersymmetry. These equations are known as flow
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equations of the solution. The reduction of the problem to first order allows us to take
superpositions of multiple single-center solutions and construct to multi-center configur-
ations [24]. In the BPS case these bound states of black holes provided us with prime
candidate "microstate geometries" for BPS extremal black holes, since they descend from
5-dimensional smooth horizonless solutions that have the same charges and mass as a black
hole [25–27]. In the final section of chapter 2 we will take a closer look at asymptotically
flat multi-center solutions in supergravity.

Anti-de Sitter black holes

Up until now we have been mainly concerned with asymptotically flat black holes. In the
latter half of this thesis, however, we are going to focus on the case of black hole solu-
tions with an AdS4 asymptotic behaviour. Black holes of this kind are solutions of gauged
supergravity, where the gauging procedure has the effect of introducing a scalar poten-
tial which plays the role of a cosmological constant at spatial infinity. Supersymmetry,
then, forces the cosmological constant to negative values. Although these solutions are
not realised in our universe there is a strong theoretical interest in them, sparked by the
introduction of the gauge/gravity (AdS/CFT) correspondence [28]. The AdS/CFT corres-
pondence states that a string theory in a d-dimensional Anti-de Sitter spacetime is dual to
a (d−1)-dimensional conformal field theory (CFT) built on the boundary of AdSd . A par-
ticularly powerful application is that duality links the weakly coupled regime of the CFT
to to the strongly coupled one of the gravitational theory and vice versa. In principle, then,
one can gain insights onto the quantum structure of AdS black holes by making use of a
dual conformal field theory in the accessible perturbative regime. On the other side, using
the weakly coupled limit of the gravity theory, which is gauged supergravity, one can find
many interesting applications in condensed matter systems and strongly coupled field the-
ories. Another fascinating aspect of the CFT/AdS correspondence is that one can use the
conformal field theory on the boundary to provide a non-perturbative definition of quantum
gravity in the special case in which the gravitational field is asymptotically anti-de Sitter.

Thanks to the possibilities opened by the gauge/gravity correspondence, it has been
possible to achieve successful microstate counting for AdS black holes in the correspond-
ing dual CFT. Despite this, we still lack a proper understanding of these microstates in
the effective supergravity theory. As we will see in chapter 3, solutions for charged, static
and supersymmetric AdS4 black holes with spherical horizons in supergravity are known
[29–31]. These solutions are described by first order flow equations, provided that the
effective black hole potential has appropriate modifications with respect to the ungauged
case. An attractor mechanism is still present, with some key differences with respect to the
flat case. The main difference is that the values of the scalars at the boundary are stabilised
by the presence of the cosmological constant. This means that the AdS4 vacuum at spatial
infinity requires the scalars to have fixed initial values, starting from which the scalars flow
towards the attractor point where the horizon is found. This means that the S2 radius at
the horizon, and thus the entropy, is completely determined by the charges and gaugings.
Microstate counting for these static configurations in the simple case of the STU model,
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which has an uplifting to M-theory, has been recently performed [32, 33]. We will focus
on static asymptotically AdS4 black hole solutions in N = 2 supergravity in chapter 3.
The situation with respect to non-static AdS solutions is less clear. Supersymmetric rotat-
ing solutions that are 1/4-BPS, with compact horizons and a consistent static limit have
been recently found by Hristov, Katmadas and Toldo [34], where, however, heavy assump-
tions on the form of the metric and the sections have been made in order to find an explicit
expression for the entropy. In the latter part of this work we will mainly focus on these
solutions.

Since a first order description of rotating, single center solutions in AdS seems to be
possible, one could hope to be able to find the corresponding multi-center configurations.
These would be useful in order to build many classes of microstate geometries for AdS
black holes, similarly to what has been done in the asymptotically flat case. Proving the
existence of stationary multi-center AdS configurations, however, has been a long-standing
challenge. The main difficulty can be heuristically understood by the fact that the presence
of a negative cosmological constant acts as an effective attractive force between the centers
and has to be accounted for in the cancellation of the gravitational attraction and "electro-
magnetic" repulsion between the centers. This new contribution has implications for the
masses and charges of the centers needed in order to build stable configurations. Neverthe-
less, recent results from probe analysis in [35] and [36] revealed that stable bound states
for probes in an AdS4 black hole background are possible and could imply the existence
of the corresponding stationary multi-center configurations. We will give further details on
the state of the art of the search for multi-center AdS black holes at the end of chapter 3.

Entropy functional for rotating AdS black holes

Another interesting open problem that motivates the study of AdS4 rotating black holes in
supergravity N = 2 is the explanation of the entropy functional reported in (1.2) of [37].
This functional is derived by making use of the dual field theory and some educated guesses
based on simple models, for spherical black objects in AdS4×S7 and AdS5×S5 which can
be reduced to AdS4 rotating black holes solutions of N = 2 gauged supergravity. The main
obstacle in finding a proper expression for the entropy of this kind of black holes is the lack
of knowledge regarding the attractor mechanism for rotating AdS black holes. This entropy
functional is given by

I(pΛ,χΛ,ω) =
π

4GN

(︃
∑

σ=1,2
B
(︁
XΛ

(σ),ω(σ)

)︁
−2iχΛqΛ −2ωJ

)︃
,

where the gravitational block B is the one reported in (1.3) of the same work:

B
(︁
XΛ,ω

)︁
− F(X)

ω
.
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The qΛ are the electric charges and the χΛ are the electric potentials, J is the angular
momentum and ω is the conjugated potential. This functional gives us the entropy through

SBH(pΛ,qΛ,J ) = I(pΛ,χΛ,ω)|crit. ,

once is extremized with respect to χΛ and ω and is subject to an appropriate gauge-fixing
constraint. In order to do so the XΛ

(σ) and ω(σ) need to be expressed in terms of χΛ, qΛ

and ω . Hosseini, Hristov and Zaffaroni showed that this can be done in two different
ways, depending on the considered black hole solution and special Kähler model. The two
different ways of "gluing" the gravitational block differ by a sign, as reported in equations
(1.4) and (1.5) of [37]. This sign choice was not present in the case of static black holes
and needs to be explained by an analysis of the attractor mechanism for rotating AdS black
holes.

Original content of the thesis

The main problem addressed by this work is the construction of rotating BPS solutions in
N = 2 supergravity that are characterised by first order equations. This is motivated by
the recent developments with regards to BPS rotating black holes in [34] and multi-center
configurations of AdS4 black holes coming from [35, 36]. We are going to work with an
ansatz for the metric and the vector fields that takes into account a space-like Killing vector
related to the rotation of the vector fields. The starting point of our analysis is provided
by the equations, found by Meessen and Ortín in [38], that describe all d = 4 stationary
solutions of gauged N = 2 supergravity and contain both first and second order equations.
In order to achieve a first order description, in the static case [30], one makes use of the
fact that the electric potentials only appear in the action through their first derivatives to
remove their contribution in favour of the charges. We will show that such a procedure is
also possible in the case at hand and that the Meessen and Ortín equations can be reduced
to first order. Although such a reduction is possible, the resulting equations depend on
both the radial and the angular variables in such a way that the two cannot be immediately
separated.
In order to gain some initial insights we make use of a couple of simplifying assumptions
on the form of the vector fields and the sections. With these in place, we find a separation
of variables in the dependencies of the various quantities which noticeably simplifies the
equations. It becomes clear at this point that these simplified solutions do not reproduce
an AdS4 vacuum at spatial infinity unless we remove the non-static contribution, leading
us back to the static case. Despite this issue, we proceed in their analysis, hoping to find
some indication on the procedure to follow in the general case. We find, in particular,
that these solutions are determined by first order flow equations for the warp factors, the
scalar fields and the phase α associated to the spinor projector used in the Killing spinor
equations. These equations reduce correctly to the ones of [30] in the static limit. Then,
we show that these equations can be rewritten by making use of a superpotential W0 that
generalises the one in [30] and reduces to it when we remove the non-static contribution.
The superpotential drives the flow of the warp factors and the scalar fields. We lack however
a gradient flow expression for the flow equations. Lastly we look at the near–horizon limit
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of our simplified solutions. We find that the squared radius R 2
S of the S2 part of the near-

horizon metric is found as the solution of a second order equation, leading to the necessity
of choosing a sign which is reminiscent of the similar property of the entropy functional of
Hosseini, Hristov and Zaffaroni. A commented summary of the results is given at the end
of this work.
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Chapter 1

N = 2 supergravity

This chapter provides an introduction to N = 2, D = 4 supergravity theories. It does not
aim to be a comprehensive exposition of the topic but rather focuses on the main features
of supergravity that will be important in the following chapters. In particular we will fo-
cus on N = 2 supergravity theories without hypermultiplets. In these theories the scalar
fields are part of vector multiplets together with fermions and vector fields and, in order
for the theory to be supersymmetric, the action has to be invariant under transformations
that mix the fields in the same multiplet. As we will see, this has consequences on the
couplings of the theory and on the geometry of the scalar manifold. One particularly im-
portant consequence is that the geometry of the scalar manifold and the electro-magnetic
duality of the vector sector are tied together by supersymmetry. This interplay has the ef-
fect of further constraining the geometry of the scalar manifold, producing many important
relations between the fundamental quantities of the theory. These relations make N = 2
supergravity a fairly tractable theory from the mathematical point of view, without it being
so much constrained so we lose too many classes of solutions. General introductions to
supersymmetry and supergravity can be found in [39–43].

1.1 Supergravity field content

The gravity multiplet of N = 2 supergravity is{︁
gµν ,ψ

(1)
µ ,ψ

(2)
µ ,A0

µ

}︁
, (1.1)

composed of the spin 2 graviton gµν , two gravitinos ψ
(i)
µ and a vector A0

µ , which is usually
referred to as graviphoton. This multiplet can be coupled to matter in vector multiplets and
hypermultiplets. Vector multiplets are{︁

z ,λ (1) ,λ (2) ,Aµ

}︁
, (1.2)

where we find a vector field Aµ , two gauginos λ (i) and a complex scalar z. Hypermultiplets
are composed of 4 real scalars (hyperscalars) qu, with U= 1, . . . ,4, and 2 fermions (hyperi-
nos) ζ

(i)
α , with α = 1,2. The geometric structure of the scalar manifold can be factorised

9
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as

Mscal =Mvec ×Mhyper , (1.3)

where:

• Mscal is the manifold parameterized by the complex scalars in the vector multiplets;
supersymmetry constrains the geometry of this manifold to be a special Kähler man-
ifold. Depending if we ask for global or local supersymmetry, we will have either
global or local special Kähler geometry.

• The scalars in hypermultiplets parameterize Mhyper, which turns out to be an hyper-
Kähler manifold in supersymmetry or a quaternionic-Kähler manifold in supergrav-
ity. We will mostly neglect the contribution from the hypermultiplets, as these will
not play a significant role in the models we are going to use.

1.2 Kähler geometry and the gauge kinetic matrix in N = 2 su-
persymmetry

We can already gain some insights on the structure of N = 2 supergravity from looking
at global N = 2 supersymmetric theories. Let us consider the case of a global N = 2
supersymmetric theory with n vector multiplets, the lagrangian has the following kinetic
terms [43]

L N=2
kin =−Gab̄

[︃
∂µza

∂
µzb̄ +λ

a(1)
L /Dλ

b̄(1)
R +h.c.

]︃
− 1

4
Re( fab)

[︃
Fa

µνFb µν +8λ
a(2)

/∂λ
b(2)
]︃

+
1
4

Im( fab)

[︃
Fa

µν F̃b µν −4i∂µ

(︁
λ

a(2)
γ5γ

µ
λ

b(2))︁]︃ . (1.4)

The index a = 1, . . . ,n labels different multiplets, we use barred indices to label the con-
jugate scalar fields and right handed spinors. The matrix fab(z) is required to be symmetric
and have holomorphic dependence on the scalars. The covariant derivative on λ (1) will be
defined after introducing the geometry of the scalar manifold. Global N = 1 supersym-
metry constrains the geometry of the scalar manifold to what is known as Kähler geometry:

Definition 1: A Kähler manifold M, parameterized by coordinates za, is a complex
n-dimensional manifold endowed with an hermitian metric Gab̄(z, z̄) and a closed
fundamental form

J = iGab̄dza ∧dzb̄ , (1.5)

called Kähler form.

10
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Closure of the Kähler form J implies the local existence of a real function K(z, z̄), known
as the Kähler potential, such that

Gab̄ = ∂a∂b̄K and J = i∂a∂b̄Kdza ∧dzb̄ . (1.6)

This means that one can derive the whole geometry of the scalar manifold from the Kähler
potential K(z,z). Notice that the Kähler form J and the metric do not change under Kähler
transformations

K(z,z)→K(z,z)+h(z)+h∗(z) , (1.7)

where h(z) is a holomorphic function. The covariant derivative Dµλ a is

Dµλ
a ≡ ∂µλ

a +Γ
a
bc∂µzb

λ
c , (1.8)

where the connection is given by

Γ
a
bc ≡

1
2

Gad̄(︁
∂bGcd̄ +∂cGbd̄ −∂d̄Gbc

)︁
= Gad̄

∂bGcd̄ . (1.9)

The U(2)R R-symmetry of N = 2 supersymmetry contains, in particular, a discrete
transformation that exchanges the gauginos as

λ
a(1) → λ

a(2) and λ
a(2) →−λ

a(1) . (1.10)

The lagrangian (1.4) must be invariant under this transformation. In particular, expanding
the covariant derivative on λ (1) and ∂µ Im( fab) = (∂µzc∂c + ∂µzc̄∂c̄)Im( fab), we need to
request:

2Re( fab) = Gab̄ = Gbā , (1.11)

2i∂cIm( fab) = Γcab̄ = ∂cGab̄ = Γcbā . (1.12)

Notice that, since fab is holomorphic, the second equation can be found as a consequence
of the first.

It is convenient to introduce a complex matrix Nab ≡ −i f ab = Rab + iIab, known as
gauge kinetic matrix. Notice that, in global N = 2 supersymmetry, its imaginary part is
related to the scalar metric Gab̄ = −2Iab̄. The bosonic sector of the lagrangian (1.4) can
then be written as

L N=2
vec =−Gab̄∂µza

∂
µzb̄ +

1
4
IabFa

µνFb µν − 1
4
RabFa

µν F̃b µν . (1.13)

In the next section we will show that theories with a vector sector in this form present an
invariance of the equations of motion and Bianchi identities under a particular group of
transformations, known as U-duality of the theory.
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1.3 Symplectic invariance of the vector sector

In this section we will look into electromagnetic U-duality in theories with multiple abelian
vector fields. This topic was introduced by Gaillard and Zumino [44] as a generalisation
of the electro-magnetic duality of source free electromagnetism. This duality consist in an
invariance of the equations of motion under transformation in a so-called U-duality group.
This duality will be present in N = 2 supersymmetric theories and is one of the crucial
ingredients in the construction of special Kähler geometry.

We are going to consider a class of theories with nV abelian vector fields AΛ and nS

scalar fields za. Even if we do not specify nS and nV , the two must satisfy:

nV = nS in global N = 2 supersymmetry,

nV = nS +1 in N = 2 supergravity,

because of the introduction of the graviphoton in the second case. The vectors can be
coupled to the scalars through the complex, symmetric and scalar dependent gauge kinetic
matrix N (also known as the period matrix). Since we are going to use the results of
the following discussion in the context of supergravity, it is convenient to work in curved
spacetime. The lagrangian is

e−1L =
1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν + e−1Lrest , (1.14)

where e≡
√
−g; the matrices R and I are the real and imaginary parts of the period matrix,

in particular I describes the gauge kinetic couplings and must be negative definite, R can
be seen as a generalisation of the θ angle term; Lrest is a generic lagrangian1 that depends
on the scalars but not on the vectors, this means in particular that the scalars are taken to
be neutral under the U(nV ) gauge group. The abelian field strengths are given by

FΛ
µν = 2∂[µAΛ

ν ] and F̃Λ
µν =

1
2

εµνρσ FΛ ρσ . (1.15)

The dual field strengths are constructed using the the Levi-Civita tensor εµνρσ :

Definition 2: The Levi-Civita tensor is a 4-component tensor whose components in
the veirbein basis correspond to the Levi-Civita symbol

εmnrs ≡ ϵmnrs with εmnrs = eµ
meν

neρ
re

σ
s εµνρσ , (1.16)

1In a theory with multiple fields, Lrest can depend on any of these fields (and their first derivatives) apart
from the vector fields. Furthermore, we could introduce another coupling between these fields and the vector
in the form ∼ Oµν ΛFΛ µν , where O is a tensor combination of these fields and their first derivatives. For a
detailed discussion see [43].

12



1.3 - Symplectic invariance of the vector sector

where the Levi-Civita symbol is

ϵmnrs =

⎧⎪⎨⎪⎩
1 for m = 0, n = 1 ,r = 2 ,s = 3 and event permutations,
−1 for odd permutations,
0 if there are any repeated indices.

(1.17)

Hodge duality in 4-dimensional curved spacetime acts on a 2-form as

⋆A = ⋆

(︃
1
2

Aµνdxµ ∧dxν

)︃
=

1
2

(︃
1
2

εµνρσ Aρσ⏞ ⏟⏟ ⏞
Ãµν

)︃
dxµ ∧dxν , (1.18)

which means in particular that Ãµν depends on the metric gµν . The volume form is con-
sequentially defined as

√
−gd4x ≡ ⋆(1) =

1
4!

εµνρσ dxµ ∧dxν ∧dxρ ∧dxΣ . (1.19)

The equations of motion and Bianchi identities of the theory in consideration can be
written as

dFΛ = 0 and dGΛ = 0 , (1.20)

where we introduced dual field strengths GΛ µν , such that

GΛ µν ≡ εµνρσ

∂L

∂FΛ
ρσ

⇒

{︄
GΛ = IΛΣ ⋆FΣ +RΛΣFΣ

⋆GΛ = IΛΣFΣ −RΛΣ ⋆FΣ
. (1.21)

Since both FΛ and GΛ are closed forms, we can introduce the dual vector fields as 1-forms
AΛ, such that GΛ = dAΛ. In this case we are able to find a dual description where we use
AΛ µ in place of the starting fields AΛ

µ , then the Bianchi identities would be dGΛ = 0 and
the equations of motion would be dFΛ = 0. The theory is said to have a duality invariance
since these dual descriptions have the same equations. Notice that the equations of motions
and Bianchi identities are actually invariant under more general transformations

F =

(︃
FΛ

GΛ

)︃
→ F ′ = SF , (1.22)

where S could be, in principle, any constant GL(2nV ,R) matrix. However, in order for the
identification of GΛ as the dual field strengths to be valid in any frame, we need to impose

Gµν Λ
′ = εµνρσ

∂L ′

∂FΛ
ρσ

′ . (1.23)

13



1.3 - Symplectic invariance of the vector sector

This condition will restrict the actual U-duality group. Let us work, for the sake of simpli-
city, with an infinitesimal transformation

F ′ =

[︃
1+
(︃

A B
C D

)︃]︃
F ⇒

{︄
δFΛ = AΛ

Σ
FΣ +BΛΣGΣ

δGΛ =CΛΣFΣ +D Σ
Λ

GΣ

. (1.24)

In order to satisfy (1.23), we need to ask that the matrices I and R also transform under
U-duality and that

δ ⋆GΛ =CΛΣ ⋆FΣ +D Σ
Λ ⋆GΣ (1.25)

=δRΛΣ ⋆FΣ −δIΛΣFΣ +RΛΣδ ⋆FΣ −IΛΣδFΣ ,

i.e. the relations between GΛ and FΛ in (1.21) are preserved. We can now remove any
contribution from GΛ in favour of FΛ from the previous equation. The resulting equation
is satisfied for any configuration of the fields provided that the matrices R and I transform
as

δR =C+DR−RA+IBI−RBR , (1.26a)

δI =DI−IA−RBI−IBR . (1.26b)

Since we must have δRT = δR and δIT = δI in order to preserve the symmetry of the
gauge kinetic couplings, we can easily derive the following conditions on the transforma-
tion (1.24)

C =CT , B = BT , and AT =−D ⇒
(︃

A B
C D

)︃
∈ sp(2nV ,R) , (1.27)

which means that the U-duality group is the symplectic group Sp(2nV ,R), i.e. the matrix S
must satisfy

ST
ΩS = Ω with Ω =

(︃
0 −1n

1n 0

)︃
. (1.28)

We will call symplectic vector any object that transform under duality transformations S in
the same way as the field strength F . Let X and Y be symplectic vectors, we introduce an
inner product

⟨X ,Y ⟩ ≡ XT
ΩY , (1.29)

which we will refer to as symplectic product as it is manifestly invariant under symplectic
rotations. This property will be useful as we will often construct objects that need to be
symplectic invariants as symplectic products.

Finally, notice that U-duality is not necessarily a symmetry of the theory, since duality
invariance of dF = 0 does not imply invariance of the lagrangian. As a matter of fact,
under an infinitesimal transformation we have

δL =
1
4

FCF̃ +
1
4

GDG̃ , (1.30)
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1.3 - Symplectic invariance of the vector sector

where the first term is a total derivative, while the second is not. This means that symplectic
transformations are a symmetry of the action (1.14) only in the case in which B = 0. In or-
der to fully appreciate the effect of symplectic transformations, it is convenient to introduce
(anti) self-dual field strengths

F± =

(︃
FΛ±

G±
Λ

)︃
≡ 1

2
(︁
F ∓ i⋆F

)︁
such that ⋆F± =±iF± . (1.31)

The components of the (anti) self-dual field strengths are related one another by the period
matrix N =R+ iI , as

G+
Λ
=NΛΣFΣ+ and G−

Λ
=N ΛΣFΣ− , (1.32)

which allows us to rewrite the action as

S =
∫︂

d4x
√
−g
[︃

1
2

Im
(︃
NΛΣF Λ+

µν Fµν Σ+

)︃
+Lrest

]︃
. (1.33)

A symplectic transformation S ∈ Sp(2nV ,R)

S =

(︃
Â B̂
Ĉ D̂

)︃
, (1.34)

acts on the self-dual field strengths as

F+ ′ =
(︁
Â+ B̂N

)︁
F+ and G+ ′ =

(︁
Ĉ+ D̂N

)︁
F+ , (1.35)

while the period matrix must transform as

N ′ =
(︁
Ĉ+ D̂N

)︁(︁
Â+ B̂N

)︁−1
. (1.36)

These transformations are compatible with the relation between self-dual field strengths in
(1.32). Transformations with B̂ ̸= 0 correspond to non-perturbative duality transformations
since they involve an inversion of N , hence exchange weak and strong couplings. In the
quantum theory these non-perturbative transformations need to be restricted to Sp(2nV ,Z)
in order to not ruin the path integral formulation of the theory.

There is one last important result from [44] that we need to mention and it regards the
coupling of the vector sector with matter. The stress energy tensor for a theory like the
one considered in this discussion, where we could also add rather general interactions, is
invariant under duality transformations. This means that the Einstein equations are invari-
ant under U-duality transformations, which allows us to "rotate" one particular solution of
our theory into another without modifying the metric. For charged black hole solutions
the magnetic and electric charges form a symplectic vector Q = (pΛ ; qΛ), which means
that we can rotate solutions in the same orbit with a U-duality transformation and this will
not modify the metric. One can take advantage of this result and identify a simple "seed"
solution, for example with only electric charges, and then use appropriate U-duality trans-
formations to obtain new configurations with different charges. Solutions in the same orbit
share the same metric and hence crucial geometric quantities, like the horizon area. When
considering black hole solutions, we will try for the most part to work with symplectic
covariant objects, i.e. without fixing a particular symplectic frame.
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1.4 Special Kähler Geometry

We have seen that an N = 2 supersymmetric theory has a U-duality of the equations of the
vector sector under Sp(2nV ,R) transformations of the field strengths F . These transform-
ations act on the period matrix N , which is related to the Kähler metric by N = 2 super-
symmetry. This, however, appears to be a problem since we want the metric to be invariant
under symplectic transformations. On the other side the geometry of scalar manifold is in-
variant under general reparameterizations of the scalars. These reparameterizations cannot
act on symplectic vectors, since these only admit linear transformations. In this section we
will see how the geometry of the scalar manifold needs to be constrained in order to solve
these tensions in the case of local supersymmetry. One can find in depth reviews of special
Kähler geometry, both in the global and local cases, in [45–48].

Let us consider a supergravity theory with n vector multiplets, then:

• We have n+ 1 vector fields, this means that the symplectic group will be Sp(2n+
2,R). We will use the indices Λ = 0,1, . . . ,n to label these vector fields.

• The manifold Mvec spanned by the scalar fields belonging to the vector multiplets,
on the other side, is still parameterized by n complex scalars za. We will use the
indices a = 1, . . . ,n to label these scalars and barred indices to label their complex
conjugates.

• Local supersymmetry transformations require the scalar manifold to have a Kähler–
Hodge structure, i.e. the spinors must behave non-trivially under Kähler transforma-
tions.

The bosonic sector of the lagrangian is

e−1Lbos =
R
2
−Gab̄∂µza

∂
µzb̄ +

1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν , (1.37)

where we add the Ricci scalar contribution in order to be able to find the Einstein equations
as equations of motions. Now R and I are (n+ 1)× (n+ 1) matrices. We ask that the
symplectic transformations act only on symplectic vectors without touching the scalars
and spinors. On the other side, the scalars and spinors should transform under general
reparameterizations of the scalar manifold as

za → z̃a(z) and λ
a(i) → λ̃

a(i) =
∂ z̃a

∂ zb λ
b(i) , (1.38)

while symplectic vectors are invariant.

The coupling with gravity, as in N = 1 supergravity, constrains the scalar manifold to be
Kähler-Hodge manifold. This comes from the fact that, in order for the local supersym-
metry transformations to be satisfied and the lagrangian to be Kähler invariant, the fermions
need to transform under Kähler transformations as

K→K+h+h ⇒ χ → exp
(︁
−iqχ Im(h)γ5

)︁
χ , (1.39)
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1.4 - Special Kähler Geometry

where qχ is the Kähler "charge" of the fermion χ . This means in particular that fermions
are sections in a principal U(1)-bundle, with a connection

A = Aµdxµ =
i
2
(︁
∂µzā

∂āK−∂µza
∂aK

)︁
dxµ , (1.40)

called composite Kähler connection, such that the Kähler form is J = dA . The action is
then covariantized by introducing Kähler covariant derivatives on spinors

Dµ χ ≡ Dµ χ + iqχ Aµγ5χ , (1.41)

where Dµ χ is the previous covariant derivative on χ , that include the spin connection ω .
In particular we find that the gravitinos and the spinor parameters must transform as [43]

ψ
(i)
µ → exp

[︁
− i

2
Im(h)γ5

]︁
ψ

(i)
µ ⇒ D[µψ

(i)
ν ] = D[µψ

(i)
ν ] +

i
2

A[µγ5ψ
(i)
ν ] , (1.42a)

ε
(i) → exp

[︁
− i

2
Im(h)γ5

]︁
ε
(i) ⇒ Dµε

(i) = Dµε
(i)+

i
2

Aµγ5ε
(i) . (1.42b)

We can now look at supersymmetric transformations of the left handed gauginos along
ε(1), as these are simpler than the most general transformations but already give us all the
information we need. We have

δ
ε(1)λ

a(1)
L =

1
2
/∂ za

ε
(1)
L , (1.43)

δ
ε(1)λ

a(2)
L =− 1

4
Gab̄ f Λ

b IΛΣFΣ−
µν γ

µν
ε
(1)
L , (1.44)

where the f Λ
a are complex functions of the scalar fields. From these transformations we

can find that:

• From the first we see that the left handed gauginos λ a(1) must transform under scalar
reparameterizations as holomorphic tangent vectors. Because of the R-symmetry the
λ a(2) must transform in the same way, hence

λ
a(i) → (∂ z̃a/∂ zb)λ b(i) . (1.45)

• In order for the second equation to be consistent under scalar reparameterizations we
need to ask that the f Λ

a transform as holomorphic covectors

f Λ
a → (∂ zb/∂ z̃a) f Λ

b . (1.46)

• The anti-self dual field strength FΛ− and the matrix I transform under symplectic
transformations, while λ a(2) must be invariant. In order to keep this property we
need to ask that the left side of (1.44) is invariant. This is realised if the f Λ

a are the
upper components of a symplectic vector

Ua(z,z)≡
(︃

f Λ
a

hΛa

)︃
, (1.47)
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such that hΛa =N ΛΣ f Λ
a . If this is the case we have

f Λ
b IΛΣFΣ−

µν =− 1
2i
⟨F−

µν ,Ub⟩ , (1.48)

which is manifestly invariant under symplectic transformations.

• Under Kähler transformations, using (1.42b) in (1.43), we find that λ a(1) has a Kähler
charge q = −1/2. This must also hold for λ a(2) since the R-symmetry mixes the
two. Equation (1.44) seems to tell us otherwise, since δλ

a(2)
L is proportional to

ε
(1)
L , which has opposite Kähler charge. This is solved by asking that some of the

other objects in the left hand side of this equation also transform non trivially under
Kähler transformations. Since the inverse metric is Kähler invariant and non trivial
transformation of the period matrix N or the field strengths would lead to a non
Kähler invariant gauge sector, the only option left is to admit that the symplectic
vector Ua transforms as

Ua → exp
[︁
−iIm(h)

]︁
Ua . (1.49)

These simple observations lead us directly to the heart of local special Kähler geometry.
Let us introduce the symplectic section

V(z,z) =
(︃

LΛ

MΛ

)︃
, (1.50)

such that the Ua are obtained from its Kähler covariant derivative

Ua =DaV =

(︃
∂a +

1
2

∂aK
)︃
V , (1.51)

then the section V transforms as V → exp
[︁
−iIm(h)

]︁
V under Kähler transformations. V

cannot be a holomorphic section since its transformation depends on both h(z) and h(z̄).
We can, however, introduce another section

V =

(︃
XΛ

FΛ

)︃
≡ e−

1
2K(z,z)V(z, z̄) , (1.52)

in such a way that this transforms as V → e−hV under Kähler transformations. We ask V
to be holomorphic and this is equivalent to asking V to be covariantly holomorphic

Uā =DāV =

(︃
∂ā −

1
2

∂āK
)︃
V = 0 . (1.53)

Notice that, in order for the sections V ,V , . . . to be invariant under reparametrizations of
the scalar manifold, their components must be simple scalar functions of the scalar fields.
This means that the sections live in a complex (2n+2)-dimensional vector bundle over the
scalar manifold. Since this bundle is endowed with a structure group Sp(2n+2,R), we will
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call it symplectic bundle SV .

In order for the geometry of the scalar manifold to be invariant under symplectic transform-
ations, the Kähler potential should be expressed as a symplectic product between sections.
This expression should also satisfy the correct behaviour for the Kähler potential under
Kähler transformation. A consistent choice is provided by asking the Kähler potential to
satisfy

K =−log
(︁
i⟨V ,V ⟩

)︁
⇐⇒ ⟨V ,V⟩= i . (1.54)

The Kähler-Hodge structure of the scalar manifold means that now the holomorphic sec-
tion V is not only a section in SV , but also in a topologically non-trivial holomorphic line
bundle L, whose U(1) connection is given by the Kähler composite connection A . Sections
of SV ×L, on different patches of the manifold, can differ by a constant Sp(2nV + 2,R)
matrix and a holomorphic factor e−h(z).

For n > 1, one has to to impose the following condition

⟨DaV ,DbV ⟩= 0 ⇔ ⟨Ua,Ub⟩= 0 , (1.55)

in order to ensure the existence and uniqueness of the period matrix. With this condition
one can show the existence of a prepotential F(X), such that the lower components of V
are FΛ = ∂ΛF , in a particular symplectic frame2 [47]. In this symplectic frame we can write
the period matrix as [43]

NΛΣ = FΛΣ +2i
Im(FΛΩ)Im(FΣΓ)XΩXΓ

Im(FΞΦ)XΞXΦ
, (1.56)

where FΛΣ = ∂Λ∂ΣF .

Definition 3: An affine (or local) special Kähler manifold is an n-dimensional
Kähler-Hodge manifold of restricted type, equipped with a tensor bundle H

H = L×SV , (1.57)

where SV is a flat, holomorphic, (2n+ 2)-dimensional vector bundle with a sym-
plectic structure group, L is a holomorphic line bundle. On each patch UA of a good
cover of the manifold, a section of H is

VA =

(︃
XΛ

FΛ

)︃
, Λ = 1, . . . ,n , (1.58)

such that the transition function between two local trivializations of H on patches
UA and UB is

VA = e−hABSABVB , (1.59)

2for nV = 1 the condition (1.55) is empty, in this case counter-examples where there is no prepotential in
any symplectic frame have been constructed, see [49].
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where SAB is a constant Sp(2n+2,R) matrix and hAB(z) is a holomorphic function.
The Kähler Kähler potential is

K =−log
(︁
i⟨V ,V ⟩

)︁
, (1.60)

where the ⟨·, ·⟩ is a symplectic and hermitian inner product on H such that

⟨DaV ,DbV ⟩= 0 with DaV =
(︁
∂a +∂aK

)︁
V . (1.61)

If n > 1, the last equation ensures the existence of a holomorphic prepotential F in
some symplectic frame and the symmetry of the kinetic matrix NΛΣ.

Special Kähler geometry identities and constrains

Local special Kähler geometry is rich of constrains and relations between the various ob-
jects that we introduced. These are an important mathematical tool which make N = 2
supergravity theories fairly tractable and as such we will be use them extensively in later
chapters. In addition to the constraints that we already introduced in (1.53), (1.54) and
(1.55), we have [46]

⟨V ,Ua⟩= 0 = ⟨V ,Ua⟩ , (1.62a)

⟨Ua,Ub⟩= iGab̄ , (1.62b)

MΛ =NΛΣLΣ . (1.62c)

One can show that, using these constrains, the matrix ( f Λ

ā , LΛ) is invertible, which allows
us to express the period matrix as

NΛΣ =

(︃
hΛ ā
MΛ

)︃
·

(︄
f Σ

ā
LΣ

)︄−1

, (1.63)

this expression ensures the symmetry of N and the fact that its imaginary part is invert-
ible and negative definite. From (1.62c) and the previous relations we can derive some
particularly useful identities

IΛΣLΛLΣ =−1
2
, IΛΣ f Λ

a f Σ

b̄ =−1
2

Gab̄ , f Λ
a Gab̄ f Σ

b̄ =−1
2
I−1ΛΣ −LΛLΣ . (1.64)

1.5 Ungauged N = 2 bosonic truncation

We will now provide the explicit lagrangian and supersymmetric transformations for the
model that we will use in chapter 3 when working out asymptotically flat black hole solu-
tions. This model is obtained as a bosonic truncation of a N = 2 supergravity theory
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without hypermultiplets. This means, in particular, that we set the expectation values of
the spinors and the hyperscalars to zero. With these requests the lagrangian reads

e−1Lbos =
R
2
−Gab̄∂µza

∂
µzb̄ +

1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν . (1.65)

Let ε be the doublet of Majorana spinors that parameterize the local supersymmetry trans-
formation, then the theory needs to be invariant under

δεza = 0 and δεAΛ
µ = 0 , (1.66a)

since these would only be proportional to the expectation values of the fermions, and under

δεψµA =

[︃
∂µ −

1
4
(ωµ)

mn
γmn +

i
2

Aµ

]︃
εA + ⟨V ,F−

µν⟩γνϵABε
B , (1.66b)

δελ
aA =− i/∂ za

ε
A +

i
2

Gab̄⟨Ub,F−
µν⟩γµνϵAB

εB . (1.66c)

Since the ε spinors carries 8 independent parameters, the N = 2 action is invariant under
the transformations generated by 8 real supercharges. A generic solution of the theory does
not need, however, to be invariant under all of the 8 transformations. For instance, let us
admit to have a solution such that

δεsol ψµA = 0 = δεsol λ
aA , (1.67)

for a particular doublet of spinors εsol , when computed along the solutions. Let N ≤ 8 be
the (even) number of independent components of εsol , then the solutions is said to preserve
N supersymmetries. Solutions that preserve some of the supersymmetries are called BPS
solutions and, as we already mentioned, are a bridge with the UV theory, since they are
protected from quantum corrections. The equations in (1.67) are called Killing spinor
equations (or BPS equations) of the solution.

1.6 Gauged N = 2 supergravity

It is possible to introduce gauge symmetries in N = 2 supergravity, provided that the group
G that we choose to gauge is a subgroup of the isometries of Mscal =Mvec ×Mhyper. At
first we are going to focus on the gauging of isometries of Mvec as this will allow us to
introduce the basic concepts of the gauging procedure. In this case one gets a bosonic
sector modified by charges for the scalars and a scalar potential. On the other hand, instead
of gauging an isometry, one could also promote a subgroup of the U(2)R R-symmetry to
a local symmetry. This case, known as Fayet–Iliopoulos (F.I.) gauging, will be the one
we are going to work with in later chapters. One particular consequence of F.I. gauging is
that the gravitinos and gauginos gain charges, while the bosons remain neutral, this means
that, in the bosonic truncation, the whole Sp(2n+2,R) group of U-duality is preserved. At
the end of this section we are going to consider the case of U(1) Fayet–Iliopoulos gauged
supergravity without hypermultiplets. As we will see, the main difference between this
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model and the ungauged case is the introduction of a scalar potential. This last point is
of particular importance for the content of this thesis, as it will allow for solutions that
reproduce an anti-de Sitter vacuum at spatial infinity. For additional references regarding
gauged supergravity see for instance [48, 50–52].

1.6.1 Gauging of special Kähler manifold

Let us focus on the special Kähler manifold Mvec, parameterized by the nV complex scalars
za from the vector multiplets. Let G be the global group of the isometries of Mvec. An
infinitesimal transformation of G acts on the scalars as

δG za = α
Λka

Λ , (1.68)

where the αΛ are infinitesimal constants and the ka
Λ
(z, z̄) are Killing vectors. The Killing

vectors span the algebra of G[︁
kΛ , kΣ

]︁
= f Γ

ΛΣkΓ , with kΛ = ka
Λ∂a + ka

Λ∂ā , (1.69)

where f Γ
ΛΣ

are the structure constants of G . The Killing vectors have to be holomorphic in
order for transformations of this type to preserve the Kähler structure of the manifold. The
Killing equations are satisfied once we ask that the Kähler potential transforms at most as

δGK ≡ ka
Λ∂aK+ ka

Λ∂āK = α
Λ
(︁
rΛ(z)+ rΛ(z̄)

)︁
. (1.70)

The isometry has a lifting to the symplectic vector bundle, such that the sections also
transform under G . The lifting acts on the sections as

δGV = α
Λ
[︁
TΛV + rΛV

]︁
, (1.71)

where the TΛ are infinitesimal, symplectic and block diagonal matrices that coincide, in
each block, to the adjoint representation of g

TΛ =

(︃
aΛ 0
0 −a T

Λ

)︃
, (1.72)

where (aΛ)
Γ
Σ
= − f Γ

ΛΣ
, while rΛ(z) is the same function that appears in the Kähler trans-

formation. Closure of the gauge algebra tells us that [38, appendix B]

ka
Λ∂arΣ − ka

Σ∂arΛ = f Γ
ΛΣrΣ . (1.73)

We can now gauge the group G . This procedure involves the following substitutions:

∂µza → ∇µza = ∂µza +gka
ΛAΛ

µ , (1.74)

FΛ
µν = 2∂[µAΛ

ν ] → FΛ
µν = 2∂[µAΛ

ν ]+g f Λ
ΣΓAΣ

µAΓ
ν , (1.75)

where g is the coupling constant of the gauge group. We will need new terms to be added
to the lagrangian in order to keep it invariant under local transformations of this kind. In

22



1.6 - Gauged N = 2 supergravity

particular, the period matrix N also transforms non trivially under gauge transformations
and needs to be accounted for. The resulting lagrangian must still preserve supersymmetry.
We will not delve into details regarding the final structure of the resulting gauged theory
since we will not use it, one can find the full lagrangian in [48, section 8]

We showed that, thanks to the Kähler structure of the scalar manifold, the metric can be
expressed in terms of derivatives of the Kähler potential. In the same way, we can find real
scalar functions PΛ(z, z̄), called momentum maps, such that their derivatives are related to
the Killing vectors

ka
Λ =−iGab̄

∂b̄PΛ ka
Λ = iGbā

∂bPΛ . (1.76)

Using the holomorphicity of the Killing vectors and inserting the Kähler potential in place
of the metric, we find

PΛ = ika
Λ∂aK− irΛ =−ika

Λ∂āK+ irΛ . (1.77)

Finally, using the momentum maps in (1.73) we find the so-called equivariance condition

2ka
[ΛGab̄kb

Σ] = i f Γ
ΛΣPΓ . (1.78)

1.6.2 Abelian F.I. gauged supergravity without hypermultiplets

We are going to focus on the bosonic truncation of a U(1) F.I. gauged N = 2 supergravity
theory without hypermultiplets. This is the model that will be used in later chapters of this
work.

It is possible to have non-zero quaternionic momentum maps3 Px
Λ

even in absence of hy-
permultiplets, provided that we gauge a subgroup of the R-symmetry group. If we gauge a
subgroup U(1) of U(2)R we will have

Px
Λ = ξ

x
Λ , ϵxyz

ξ
y
Λ

ξ
z
Λ
= 0 . (1.79)

The second equation comes from an equivariance condition for the Px
Λ

momentum maps,
similar to (1.73). In this case the constants ξ x

Λ
are called Fayet–Iliopoulos parameters4.

Let us, then, admit to have p ≤ nV +1 gauge fields Aρ

µ and non vanishing constant Fayet–
Iliopoulos parameters ξ x

ρ = (0,ξρ ,0), such that Aµ = ξρAρ

µ gauges an U(1) subgroup of
SU(2)R. Once we put all the expectation values of the fermions to zero, the lagrangian
reads

e−1Lbos =
R
2
−Gab̄∂µza

∂
µza +

1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν −Vg , (1.80)

3The quaternionic momentum maps are the momentum maps coming from the gauging of isometries of
the hyperscalar manifold. They form a triplet, hence the index x is to be taken from 1 to 3. Further details
regarding this can be found in [48, 53]

4We mention that, with this procedure, it is also possible to gauge the SU(2) subgroup of the R-symmetry,
which leads to non abelian F.I. gauged supergravity [54, 55].

23



1.6 - Gauged N = 2 supergravity

where the field strengths are abelian, the scalars are neutral (the only charged fields are the
gravitinos and gauginos). The scalar potential Vg is generated by the non vanishing F.I.
constants and can be written as

Vg = g2
ξΛξΣ

(︁
Gab̄ f Λ

a fb
Σ −3LΛLΣ

)︁
. (1.81)

Notice that the scalar potential, which should be invariant under symplectic transformation,
depends on the components of the sections V and Ua. In order to obtain a manifestly
invariant expression we can introduce the gauging superpotential

L ≡ gξΛLΛ = gΛLΛ = ⟨G,V⟩ , (1.82)

such that the scalar potential turns out to be

Vg = |DL|2 −3|L|2 , where DaL = ∂aL+
1
2

∂aKL = ⟨G,Ua⟩ , (1.83)

and this is invariant if the F.I. constants are the lower component of a symplectic vector

G ≡
(︃

0
gξΛ

)︃
=

(︃
0

gΛ

)︃
. (1.84)

In this model the supersymmetric transformations for the fermions gain additional
terms due to the gauging, in particular [56, appendix A]

δεψµA =DµεA + ⟨V ,F−
µν⟩γνϵABε

B − i
2
LδABγ

ν
ηµνε

B , (1.85)

δελ
aA =− i/∂ za

ε
A +

i
2

Gab̄⟨Ub,F−
µν⟩γµνϵAB

εB +Gab̄DbLδ
AB

εB , (1.86)

where the covariant derivative on ε is

DµεA = ∂µεA −
1
4
(ωµ)

mn
γmnεA +

i
2

AµεA +gΛAΛ
µδABϵ

BC
εC . (1.87)

The fact that in (1.84) the Fayet–Iliopoulos gaugings are gathered in a symplectic vector
with only lower components suggests that we are choosing a preferred symplectic frame.
One could, in principle, restore symplectic covariance by introducing magnetic gaugings
gΛ, such that

G =

(︃
gΛ

gΛ

)︃
. (1.88)

As shown in [57, 58], the extension to magnetic gaugings needs the introduction of tensor
fields, hence one needs to add vector–tensor multiplets to the theory. The supersymmetry
transformations and scalar potential contribution for such a theory were worked out in [59].
For what we are concerned, when dealing with gauged supergravity, we are going to ask
for vanishing expectation values of the tensors.
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1.6 - Gauged N = 2 supergravity

In the following chapters we are going to work with charged black hole solutions,
where the black hole charges are given by

Q =

(︃
pΛ

qΛ

)︃
=

1
Vol(Σ)

∫︂
Σ

F , (1.89)

for a closed surface Σ that envelopes the black hole. In a theory with multiple non-local
charges we need to impose a Dirac quantization condition like

⟨G,Q⟩= n ∈ Z , (1.90)

which will have important applications in the case of black holes solutions in gauged su-
pergravity.
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Chapter 2

Asymptotically flat black holes

In this chapter we will first consider static, asymptotically flat, spherically symmetric and
charged black holes solutions of N = 2, d = 4 ungauged supergravity. These can be seen
as generalisations of the Reissner–Nördstrom solutions in General Relativity. As we will
see, the main difference we encounter when considering black holes in supergravity comes
from the presence of scalar fields in our theory. This means that the metric could depend
on the values of the scalars at the boundary, which are continuous parameters that could
ruin the statistical interpretation of entropy. We will show how, for extremal solutions,
independently that they preserve supersymmetry or not, there is an attractor mechanism at
work, which requires the scalar fields to lose all information of their initial condition dur-
ing the flow towards the horizon. This ensures that the entropy solely depends on discrete
parameters.

We will also look at multi-center configurations for extremal black holes, both for the
BPS case and the less understood non-BPS case. The physics of supersymmetric multi-
center black holes is quite rich and has led to many further developments in string theory.
Among other results, it has led to a deeper understanding of the quantization of spacetime
[60] and the identification of new candidate microstate geometries for extremal BPS black
holes [27, 61, 62].

2.1 Black holes in supergravity

We will now work out the main features of static, spherically symmetric, charged and
asymptotically flat black holes in supergravity. In order to do so we use the N = 2 super-
gravity model from (1.65), where no charged particles nor scalar potential appear

e−1L =
R
2
−Gab̄∂µza

∂
µzb̄ +

1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν . (2.1)

We will use a general ansatz for the metric that reproduces static and spherically symmetric
solutions

ds2 =−e2U dt + e−2U(r)[︁dr2 + f (r)2dΩ
2]︁ , (2.2)
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2.1 - Black holes in supergravity

where (r,θ ,φ) are spherical coordinates. We can further constrain our ansatz by fixing f (r)
[63, Section 4.1] to be

f (r)2 = r2e2U(r) = (r− r+)(r− r−) , (2.3)

where r± are the two roots of e2U where we expect to find coordinate singularities. These
are the radial values of the horizons, which allow us to introduce an extremality parameter
c ≡ r+− r−. We can then introduce a new radial coordinate ρ such that

ρ(r)≡−
∫︂

∞

r

1
f (s)2 ds , (2.4)

which means that the metric (2.2) can be rewritten as

ds2 =−e2U(ρ)dt2 + e−2U(ρ)

[︃
c4

sinh4(cρ)
dr2 +

c2

sinh2(cρ)
dΩ

2
]︃
. (2.5)

The extremality parameter that appears in this expression allows us to encompass both
extremal and non-extremal solutions. Notice that in the extremal case we only have one
horizon, hence the ρ coordinate takes the simple form

ρ=
1

r− rH
. (2.6)

Following the discussion in section 1.1, we introduce nV magnetic and electric charges
for our black hole, which are gathered in a symplectic vector

Q =

(︃
pΛ

qΛ

)︃
=

1
4π

∫︂
S2
F , (2.7)

where S2 is a 2-sphere at spatial infinity. We can also provide ansatze for the vectors AΛ

and their duals, that are consistent with the charges and the isometries of the metric:

AΛ = χ
Λ(ρ)dt − pΛcos(θ)dφ | FΛ = dAΛ , (2.8a)

AΛ = ψΛ(ρ)dt −qΛcos(θ)dφ | GΛ = dAΛ . (2.8b)

Here χΛ and ψΛ can be seen, respectively, as the electric and magnetic potentials. In
the original action we only find AΛ, however we will show that χΛ can be integrated out,
leaving us with a scalar potential that depends only on the charges. As a matter of fact, one
can already make use of the duality relation

GΛ = IΛΣ ⋆FΣ +RΛΣFΣ , (2.9)

which, using the explicit expressions from (2.8a) and (2.8b), implies

.
χ

Λ = e2U(I−1)ΛΣ
(︁
qΣ −RΣΩ pΩ

)︁
, (2.10)

in order to see that the electric potential can be removed in favour of a combination of the
charges and the matrices I and R.
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2.1 - Black holes in supergravity

The original action (2.1) can be reduced to a one dimensional effective theory thanks to the
isometries that we imposed on the solutions. The gravity and scalar sector of the action are
reduced to

Sgrav,scal =−N
∫︂

dρ
[︁ .
U2 − c2 +Gab̄(z, z̄)

.za .
z̄b̄]︁ , (2.11)

where N is a constant factor coming from the integration in (t,θ ,φ). The dimensional
reduction of the vector sector gives

Svec =
N
2

∫︂
dρ
[︃
IΛΣ

(︁
e2U pΛ pΣ − e−2U .

χ
Λ .

χ
Σ
)︁
−RΛΣ

(︁
pΛ .

χ
Σ + pΣ .

χ
Λ
)︁]︃

, (2.12)

where, as anticipated, the electric potentials only appear through their first derivatives. In
order for the χΛ’s equations of motion to reproduce (2.10) we need to add a total derivative

S′vec = Svec +N
∫︂

dρqΛ

.
χ

Λ , (2.13)

such that the boundary term appearing in the variation of the action in χΛ is zero along the
solutions. The on-shell action for the vector sector can be, finally, written as

S′vec =
N
2

∫︂
dρe2UQTMQ =−N

∫︂
dρe2UVBH(z, z̄) , (2.14)

where M is a real, symmetric and scalar dependent symplectic matrix

M =

(︃
I+RI−1R −RI−1

−I−1R I−1

)︃
| MΩM = Ω . (2.15)

The resulting 1-dimensional effective action is [23]

S1−dim =−N
∫︂

dρ
[︁ .
U2 − c2 +Gab̄

.za .zb̄ + e2UVBH
]︁
, (2.16)

from which we find the following equations of motion for the scalars and the warp factor
..

U = e2UVBH , (2.17a)
..za +Γ

a
bc

.za .zb = e2U Gab̄
∂b̄VBH . (2.17b)

These equations, however, do not contain all the information of the original theory. From
the Einstein equations of the 4 dimensional theory one finds the previous equations and a
constraint

.
U2 +Gab̄

.za .
z̄b̄ = c2 + e2UVBH , (2.18)

where no second order derivatives appear. This constraint has to be added to the equations
of motion from the reduced theory in order to achieve full equivalence with the original
theory. As we will see, the presence of the constraint is essential for the reduction of the
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2.2 - The attractor mechanism

equation of motion to first order.

The expression for the scalar potential VBH is a remarkable consequence of special
geometry. One can introduce the central charge Z of the N = 2 SUSY algebra

Z ≡ ⟨Q,V⟩ , (2.19)

which satisfies the following relation [46]

|Z |2 + |DZ |2 = ZZ+Gab̄DaZDbZ =−1
2
QTMQ =VBH , (2.20)

where DaZ ≡⟨Q,Ua⟩. This means that the potential is invariant under symplectic rotations
of the charges, then equation (2.17a) tells us that the metric is, as expected, invariant under
U-duality transformations.

2.2 The attractor mechanism

The equations of motion that we found in the previous discussion

..
U = e2UVBH and ..za +Γ

a
bc

.za .zb = e2U Gab̄
∂b̄VBH (2.21)

are coupled differential equations, meaning that the metric will depend on the behaviour
of the scalar fields and vice versa. The horizon area, in particular, will depend on the the
initial values za

∞ of the scalars. This is obviously a problem since these are continuous
parameters that would ruin the statistical interpretation of entropy, which should depend
only on discrete quantities. Extremal black holes, however, have the special property that
the scalars lose all information regarding their initial values during their flow towards the
horizon. This result is known as attractor mechanism and implies that, for extremal black
holes, the entropy does only depend on the quantized charges. We will now look at the
details of this mechanism.

In order to understand the special role of extremal black holes we have to first look
at the near horizon behaviour of the metric (2.5). Notice that, as we approach the outer
horizon, we have ρ → −∞. Then, assuming that the horizon area is finite, the metric
should have a near horizon limit in the form AdS2 × S2, where the factor in front of the
angular part is the square of the radius rH of the horizon. In our case we can set

e−2U c2

sinh2(cρ)
−→
ρ→−∞

r2
H , (2.22)

then one can introduce a proper radial coordinate ω(r) by asking that

e−2U c4

sinh4(cρ)
dρ2 −→

ρ→−∞
r2

Hdω
2 . (2.23)
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2.2 - The attractor mechanism

In the non-extremal case this means that ω = 2ecρ, the horizon sits at ωH = 0 and an
observer at ωO > 0 measures a finite proper distance from the horizon

LH =
∫︂

ωO

ωH

rHdω < ∞ . (2.24)

On the other side, in the extremal case we find ω =−log(−ρ), the horizon sits at ωH =−∞

and any observer measures an infinite proper distance from the horizon. This result has
particular consequences for the behaviour of the scalars in extremal black holes.
In order to have regular solutions one has to ask that [23]

Gab̄gµν
∂µza

∂νzb̄ < ∞ for r → rH . (2.25)

This means that, using the proper radial coordinate, in the near horizon limit the derivatives
of the scalars are finite constants

dza

dω
−→

ω→ωH
const. ⇒ za(ω) ∝ ω . (2.26)

On the other side we do not want to scalars to blow up at the horizon, hence:

• in the extremal case the only possibility is that dza/dω = 0, such that za(ω)≃ 0 near
the horizon.

• in the non-extremal case the scalars do not have time to blow up since they flow for
a finite proper distance, hence we do not need a similar condition.

Extremal black holes have, then, a precise behaviour in the near horizon limit, as vanishing
derivatives for the scalars mean that

..za +Γ
a
bc

.za .zb = e2U Gab̄
∂b̄VBH ⇒ ∂aVBH |hor = 0 , (2.27)

i.e. the horizon is a critical point for the potential. This means that the scalars, which
flow for an infinite proper distance, must always reach the critical value zc at the horizon,
independently of their values at spatial infinity. Let Vc be the critical value of the potential,
the warp factor behaves in the near horizon limit as

..
U ≃ e2UVc ⇒ U(ρ)≃−log

(︁√
Vcρ
)︁
, (2.28)

which allows us to factorise the near-horizon metric as

ds2 =
1
ρ2

(︃
−dt2

Vc
+Vcdρ2

)︃
+VcdΩ

2 , (2.29)

which corresponds to an AdS2×S2 metric. The horizon radius is rH =
√

Vc and the entropy
follows from the Bekenstein–Hawking formula. Furthermore, since the critical values of
the scalars depend only on the black hole charges, the entropy will actually be dependent
only on quantized quantities

SBH = πVc = πVBH
(︁

p,q,zc(p,q)
)︁
. (2.30)
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On the other side, for non-extremal black holes we have two horizons at radii that depend
on the initial values of the scalars and on the scalar charges [64]. There could be cases
where the scalar potential has multiple basins of attraction for different critical points for
a given choice of charges. In this situations the entropy depends on a discrete index that
labels the different basins, see for example [65].

2.3 Flow equations

Solutions that preserve some amount of supersymmetry, i.e. BPS solutions, admit a first
order description, meaning that the equations for the scalars and warp factors can actually
be reduced to first order differential equations. This is not surprising, since supersymmetric
states must be solutions of the supersymmetry equations, namely the Killing spinor equa-
tions (1.67), which are first order equations. It can be shown, however, that a first order
formalism is also possible for extremal non-BPS solutions [66]. We will now look at how
the first order flow equations are produced in both the BPS and non-BPS cases.

In order to grasp the basic idea behind the reduction to first order equations, let us
consider a 1-dimensional toy-model with n real scalar fields ϕA, an action

S =
∫︂

dx
(︃

G̃αβ

.
ϕ

α .
ϕ

β +V (ϕ)

)︃
, (2.31)

and an hamiltonian constraint in the form

H = G̃αβ

.
ϕ

α .
ϕ

β −V (ϕ) = 0 , (2.32)

where G̃ is an symmetric1 metric on the scalar manifold. Notice that the action (2.16) and
the constraint (2.18) obtained in section 2.1, in the extremal case, are in these forms once
we allow for complex scalar fields. Using the hamiltonian constraint we can rewrite the
action as

S =
∫︂

dx
[︃

G̃αβ (
.

ϕ
α +nα

√
V )(

.
ϕ

β +nβ
√

V )−2G̃αβ nα .
ϕ

β
√

V
]︃
, (2.33)

where nα is a unit vector in moduli space. The second term in (2.33) is a total derivative
provided that we can find a function W(ϕ), known as superpotential, that satisfies

√
V nα = ∇

αW = G̃αβ
∂βW ⇒ V = |∇W |2 , (2.34)

since, when this is the case, we have

−2G̃αβ nα .
ϕ

β
√

V =−2
.

ϕ
α

∂αW =−2
d
dx

W . (2.35)

1When we will work with complex scalar fields we will ask the metric G̃ to be hermitian.
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The resulting action is made up of a sum of squares of first order expressions and a bound-
ary term

S =
∫︂

dx
[︃

G̃αβ (
.

ϕ
α +∇

αW)(
.

ϕ
β +∇

βW)−2
d
dx

W
]︃
, (2.36)

which is referred to as BPS squared form. The equations of motion correspond to setting
to zero the squared expressions, which give us the actual flow equations in a gradient flow
form

.
ϕ

α =−∇
αW . (2.37)

For the extremal solutions of the model in section 2.1, identifying the scalar fields as ϕA =
{U,z,z}, we have to set

G̃UU = 1 G̃ab̄ =
1
2

Gab̄ , (2.38)

in order to have the correct identification with the toy model. The complete potential is
V = e2UVBH , which suggests to introduce a fake superpotential W = e−UW , such that W
only depends on the scalar fields. The fake superpotential has to satisfy

V = e2UVBH = G̃αβ
∂αW∂βW = e2UW 2 +4e4U Gab̄

∂aW∂b̄W . (2.39)

Using the fake superpotential we can rewrite the action as a sum of squares

S =−N
∫︂

dρ
[︃
(

.
U + eUW )2 +Gab̄(

.za +2eU Gac̄
∂c̄W )(

.
z̄b̄ +2eU Gdb̄

∂dW )

−2
d

dρ
(eUW )

]︃
, (2.40)

such that the flow equations are

.
U =− G̃UU

∂U(eUW ) =−eUW , (2.41a)
.zA =−2Gab̄

∂b̄(e
UW ) =−2eU Gab̄

∂b̄W . (2.41b)

It is clear now that, by comparison with the asymptotic gravitational potential, the mass of
the black hole is given by

M =

(︃
dU
dρ

)︃
ρ→0

=W∞ , (2.42)

which is related to the boundary term of (2.40). The problem resides now in if we can find
a superpotential W such that the above conditions are satisfied.
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2.3.1 Supersymmetric attractors

The geometric properties of the N = 2 special Kähler manifold allows us to write the
potential VBH as

VBH = |Z |2 + |DZ |2 = |Z |2 +4Gab̄
∂a|Z |∂b̄|Z | , (2.43)

where we used the fact that DaZ = 0. By comparing this expression with (2.41b), we
immediately find that the fake superpotential can be identified with the modulus of the
central charge, up to a sign. The flow equation for the warp factor is d(e−U)/dρ = ∓|Z |,
and the sign can be fixed by looking at the boundary and horizon behaviours of e−U . In
order to have asymptotically flat solutions we need to impose that eU → 1 at the boundary.
On the other side, in order for the horizon to have finite area we need to ask that the angular
part of the metric (2.22), with c = 0, is finite in the near horizon limit, which means that
e−U ∝ |ρ| at the horizon. The only acceptable sign is W = |Z |, from which we get that the
superpotential is W = eU |Z |, the flow equations are

.
U =− eU |Z | , (2.44a)
.zA =−2eU Gab̄

∂b̄|Z | , (2.44b)

and the ADM mass of the solution will be M = |Z |∞. This means that these solutions are
at the threshold of the BPS bound M ≥ |Z |, hence they must preserve some amount of
supersymmetry of the original theory. As a matter of fact, let us use the Killing spinor
equations (1.67) and impose on the Killing spinor εA

εA(ρ) = eg(ρ)
χA χA = constant , (2.45)

that ensures that the solution has the right symmetries, and the projection relation between
the components of χA

γ0χA = i
Z
|Z |

ϵABχ
B = ieiαϵABχ

B , (2.46)

where α(ρ) is the phase of Z . With these conditions, the solutions of the Killing spinor
equations are 1/2-BPS, since (2.46) halves the number of independent components of εA.
The resulting first order equations, once we impose our ansatz for the metric, are

.
U =− eU |Z | , (2.47a)
.za =−2e−iαeU Gab̄DbZ . (2.47b)

These are very similar to the the flow equations (2.44a) and (2.44b), where we set W = |Z |;
full equivalence with them is achieved by imposing a first order equation on the phase

.
α +Aρ = 0 , (2.48)

where Aρ is the radial component of the composite Kähler connection. It will be important
later to keep in mind that α in not an independent degree of freedom of the theory and
hence equations like (2.48) need to be identically satisfied once all the flow equations are.
All in all, the attractor mechanism for BPS solutions is fully determined by the modulus of
the central charge, as:
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• The horizon is a critical point of the potential that is also a critical point of |Z |.
Special Kähler geometry further contrains this critical point to be a minimum, since

∂a∂b̄|Z |= Gab̄|Z |> 0 . (2.49)

• Let Zc be the value of the central charge at the critical point, then the near-horizon
metric is

ds2
NH =− ρ2

|Zc|2
dt2 +

|Zc|2

ρ2 dρ2 + |Zc|2dΩ
2 , (2.50)

which means that the radius of the horizon is rH = |Zc|2 and the entropy is

SBH = π|Zc|2 . (2.51)

This makes it clear the knowledge of the superpotential is of great interest in order
to find the dependency of entropy on the charges.

2.3.2 Non supersymmetric attractors

For a given choice of charges there could be extremal solutions where a critical point of the
potential VBH is not a critical point of |Z |. These correspond to non-BPS solutions of the
Killing spinor equations, i.e. solutions that do not preserve any of the original supersym-
metries. In order for this situation to arise we have to ask that the horizon is at a critical
point of a fake superpotential W ̸= |Z |. The geometry at the horizon is, then, determined
by the critical value Wc of W and the metric has a near horizon behaviour

ds2
NH =− ρ2

W 2
c

dt2 +
W 2

c

ρ2 dρ2 +W 2
c dΩ

2 . (2.52)

In this case the entropy turns out to be SBH = πW 2
c . Notice that not all possible choices

of charges will lead to the existence of a fake superpotential W ̸= |Z | that satisfies the
requirements. Furthermore, even if techniques have been developed [67–69], finding a
superpotential is often a challenging task. As a last point, we mention that in the non-
BPS case the potential at the critical point can have flat directions, then these flat direction
extend to the whole potential and the solution will not depend at all on these scalar fields.
This is reflected by the fact that the fake superpotential is independent on these scalar fields
[67, 68, 70].

2.4 Multi-center solutions

It is clearly possible, in the context of Newtonian gravity and Maxwell electromagnet-
ism, to build configurations of charged particles at equilibrium by tuning their masses and
charges, thus balancing the gravitational attraction and electric repulsion. In an Einstein–
Maxwell theory, however, the Einstein equations are non-linear and we have no reason to
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2.4 - Multi-center solutions

believe that, a priori, a superposition principle should be applicable to their solutions. Yet,
composite objects made up of massive and charged constituents have been known for a
long time in general relativity, see [71–73] for static configurations and [74] for station-
ary configurations. Hertle and Hawking showed that there are static configurations that
describe a system of multi-center extremal Reissner–Nordström black holes. It turns out
that these configurations satisfy rather simple first order equations and this explains why
we can take superpositions of their elementary components, despite the non-linearity of the
Einstein–Maxwell equations.

Asymptotically flat, static or rotating2 black hole solutions of supergravity obey first
order equations, independently that they conserve some amount of the original supersym-
metries. The reduction of the equations to first order suggests, then, that multi-center
configurations could be possible in both the BPS and non-BPS cases. The study of multi-
center black holes in supergravity revealed a very rich physical landscape and has led to
many developments in our understanding of black hole physics and string theory. The best
understood case is the supersymmetric one, for which we have the general stationary 4-
dimensional solution found by Denef [24]. Among other important results, we remark that
some of the BPS multi-center configurations descend from 5-dimensional smooth horizon-
less solutions [25, 26], that have the same charges and mass of the 4-dimensional black
hole and hence are prime candidate microstates of extremal BPS black holes. Furthermore,
in the vicinity of these 5-dimensional solutions one can find an infinite dimensional fam-
ily of smooth horizonless solutions, parameterized by arbitrary functions of one variable
[27], whose quantization may yield an entropy with the same parametric dependence on
the charges and mass as the black holes.

The case of non-BPS multi-center configurations is more involved as many particular
solutions have been found but a general solution is still missing. Progress in this case has
come from the discovery of single center almost-BPS solutions, where supersymmetry is
weakly broken [75], from these solutions one can build multi-center configurations that
have non-trivial constrains on the positions of the charges. Satisfying these constrain, how-
ever, is challenging already in the two centers case. Over the last decades many particular
non-BPS multi-center solutions have been found, see for example [76, 77].

2.4.1 String theory origin

In order to construct multi-center configurations in N = 2, d = 4 supergravity we will
consider a setup which makes contact with a particular compactification of 11-dimensional
string theory. These solutions, however, can be extended to more general situations. We
will follow the derivation in [78], where one can find a much more detailed discussion, and
consider an 11-dimensional type IIB string theory, compactified on an inner space CY6×S1.
The 6-dimensional Calaby–Yau manifold is taken to be CY6 ≃ (T 2)3, such that this kind
of compactification leads to an N = 2 supergravity theory in 4 dimensions, with a scalar

2For example, an analysis of asymptotically flat, rotating, BPS black hole solutions of N = 2 supergravity
can be found in [24].
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manifold described by a STU model and no hypermultiplets. In the low dimensional theory
there will be 6 real charges (pI,qI) and two geometric charges (p0,q0). Let us call (t, x⃗) the
coordinates of 4-dimensional spacetime, ψ the coordinate on the circle S1 and (yI,1,yI,2)
the two coordinates on the I-th torus of CY6. The index I will be taken to run from 1 to 3.
We use the 11-dimensional stationary metric

ds2
11 =−Z−2(dt + k)2 +Zds2

4 +
3

∑
I=1

Z
ZI

ds2
I , (2.53)

where k is a one-form, ds2
4 is a metric on a Ricci-flat 4-dimensional eucledean space para-

meterized by (ψ, x⃗), ds2
I is the metric on the I-th torus. In order for no hypermultiplets to

appear in the low dimensional theory we fix the volume of the internal manifold to be 1.
The warp factors {Z,ZI} only depend on the coordinates (ψ, x⃗) and are related by

Z =
(︁
Z1Z2Z3

)︁1/3
. (2.54)

By providing the floating brane ansatz for the 3-form potential

A(3) = ∑
I

A(3)
I ∧dTI = ∑

I

(︃
−dt + k

ZI
+aI

)︃
∧dTI , (2.55)

where dTI is the volume form of the I-th torus, the equations of motion and Bianchi iden-
tities of the 11-dimensional theory will reduce to almost linear equations in the coordinates
(ψ, x⃗) [25]. In order to arrive to the 4-dimensional theory, let us set the ds2

4 metric to be
that of a Gibbons–Hawking space with a U(1) isometry along ψ

ds2
4 =V−1(dψ +A)2 +V ds2

3 , (2.56)

where V and A only depend on the spatial coordinates x⃗ and satisfy

⋆3dA =±V . (2.57)

The sign in (2.57) specifies the orientation of the space and leads to different types of
solutions: the plus sign will lead to supersymmetric ones, while the minus sign to non-
supersymmetric ones. The aI and k one-forms decompose accordingly as

aI =PI(dψ +A)+wI , k = µ(dψ +A)+ω , (2.58)

where ω and wI are 1-forms on the 3 dimensional space.

Once we perform the integration on the whole internal manifold we are left with the metric

ds2
4d =−e2U(dt +ω)2 + e−2U ds2

3 , (2.59)

for the 4-dimensional spacetime. We also find a 4-dimensional lagrangian whose bosonic
sector is in the familiar form (1.65). We have 3 vector multiplets, meaning that now the
indices can be identified as Λ = {0, I} and a = I. Notice that the metric (2.59) allows for a
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non-static contribution ω , which is to be expected since the vector fields for a configuration
of multiple static charges carry an intrinsic angular momentum3. The scalars, the warp
factor U and the vectors have a constrained form with respect to the various quantities
descending from the 11-dimensional theory

e−2U =
√︁

Z1Z2Z3V −µ2V 2 , (2.60)

zI =
(V ZIPI −V µ)− ie−2U

V ZI
, (2.61)

and AΛ = wΛ +χΛ(dt +ω), where

A0 =−A+ e4U
µV 2(dt +ω) , (2.62)

AI =wI − e4UV
ZI

(Z1Z2Z3 −µV PIZI)(dt +ω) . (2.63)

The wΛ will be related to the magnetic charges and the χΛ to the electric potentials. Duality
invariance of the vector sector allows to define the closed dual field strength GΛ = dAΛ.
The metric and the gauge kinetic couplings are fully determined in terms of the scalar by
the STU model structure, see [78, appendix A] for details.

Once we know a solution we can generate new solutions in the same orbit by making
use of U-duality transformations. The U-duality group, in the case of the STU model, is
SU(1,1)3 ∈ Sp(n,R) and its action is described by three 2×2 matrices

MI =

(︃
aI bI

cI dI

)︃
such that Det(MI) = 1 . (2.64)

These transformations act on the scalars as

zI −→ aIzI +bI

cIzI +dI
not summed over I , (2.65)

and on symplectic vectors as

a′abc = (M1)
d
a (M2)

e
b (M1)

f
c ade f , (2.66)

where we identify the components of a symplectic vector V = (V Λ;VΛ) as

V 0 = a222 V 1 = a211 V 2 = a121 V 3 = a112

V0 =−a111 V1 = a122 V2 = a212 V3 = a221 . (2.67)

2.4.2 The BPS case

The BPS case is obtained by asking for the plus sign in the orientation of the Gibbons–
Hawking space in equations (2.57). This leads to a set of almost linear equations in the

3we will expand on the role and physical meaning of the angular momentum later on in this section.
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spatial coordinates x⃗

d ⋆3 dZI =
|ϵIJK |

2
d ⋆3 d(V PJPK) , (2.68a)

⋆3dwI =−d(V PI) , (2.68b)

⋆3dω =V dµ −µdV −V ZIdPI , (2.68c)

which can be solved, in general, in terms of 8 harmonic functions {HΛ,HΛ}. This means,
in turn, that the scalars, the warp factors and the vector fields can be all expressed in terms
of these harmonic functions. We can gather these functions in a symplectic vector H, such
that

H =

(︃
HΛ

HΛ

)︃
⇒ ⋆3dA = ⋆3d

(︃
AΛ

AΛ

)︃
= dH . (2.69)

The equations for the warp factor and the scalars are then fully determined by the harmonic
functions as:

e−2U =
√

I4 , (2.70a)

zI =

(︃
HI + i

∂
√

I4

∂HI

)︃(︃
H0 + i

∂
√

I4

∂H0

)︃−1

, (2.70b)

where I4 = I4(HΛ,HΛ) is the quartic invariant of the STU model.

Notice that, since the harmonic functions form a symplectic vector, then they simply mix
one with the other under U-duality transformations in SU(1,1)3. This means that U-duality
does not change the ansatz we have given for the 11-dimensional metric and the 3-form po-
tential. This means that we are encompassing all possible BPS solutions, even though the
details of the specific solution depend on the choice of the harmonic functions.

Following the original derivation of the multi-center BPS solution by Denef [24], we
can find an explicit expression for the harmonic functions in terms of the charges and
positions of the centers. In order to do so, we can first look at the static single center
solution that we described in this chapter and use the flow equations (2.47a), (2.47b) and
the phase equation (2.48) to show that

Q =− d
dρ

[︁
e−U Im(e−iαV)

]︁
⇒ d ⋆3 d

[︁
e−U Im(e−iαV)

]︁
= 0 , (2.71)

from which we can set the symplectic vector of harmonic functions to be H≡ e−U Im(e−iαV).
Integration of the first one gives us an equivalent expression for H

H =− Q
r− rH

+2Im(e−iαV)|r=∞ . (2.72)
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This expression can be easily generalised to a configuration with N static centers by asking
that

H =−
N

∑
n=1

Qn

|⃗x− x⃗n|
+2Im(e−iαV)|r=∞ , (2.73)

where Qn is the vector of magnetic and electric charges for the n-th center and x⃗n is its
position. Let us then introduce central charges for the centers as Zn = ⟨Qn,V⟩ and "inverse
radial distances" from them as ρn = |⃗x− x⃗n|−1, these allow us to introduce a 1-form

ζ ≡−⟨dH,V⟩= ∑
n
Zndρn , (2.74)

such that taking symplectic products of H with V and Ua gives the flow equations for the
general solution

dα +A =eU Im(e−iα
ζ ) =−1

2
e2U⟨dH,H⟩ , (2.75a)

dU =e−U Re(e−iα
ζ ) , (2.75b)

dza =− eiαGab̄eU Dbζ , (2.75c)

and the non-static contribution ω obeys

⋆3dω =⟨dH,H⟩ . (2.75d)

Equation (2.75d) implies, as we already mentioned, that one has to introduce a non-static
contribution to the metric in order to find multi-center solutions. The presence of this
contribution, however, must not be interpreted as a rotation of the centers but as the angular
momentum contained in the vector fields produced by a static distribution of charges. As a
matter of fact, in classical electrodynamics one can have a distribution of non-local charges
at equilibrium, for example the monopole-electron system, that has an intrinsic angular
momentum even if the particles are at rest. With this in mind, we can interpret the ω

contribution as being is related to the intrinsic angular momentum J⃗ associated to the vector
fields, such that asymptotically

ωi = 2ϵi jk
J jxk

r3 +O
(︃

1
r3

)︃
⇒ J⃗ =

1
2 ∑

n<m
⟨Qn,Qm⟩

x⃗m − x⃗n

|⃗xm − x⃗n|
. (2.76)

Consistency of these solutions implies the following constraint on the charges of the centers
and their positions:

n

∑
m=1

⟨Qn,Qm⟩
|⃗xn − x⃗m|

= 2Im
(︁
e−iαZn

)︁
|r=∞ , (2.77)

whose zeros give the positions in moduli space related to marginal stability of the solutions.
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2.4.3 Non-BPS case

The non-BPS case is obtained by using the minus sign in equation (2.57), which leads to
a mild supersymmetry breaking and gives what are known as almost-BPS configurations
[75]. The floating brane ansatz gives us almost linear equations in the x⃗ coordinates

d ⋆3 dZI =
|ϵIJK |

2
V d ⋆3 d(PJPK) , (2.78a)

⋆3dwI =PIdV −V dPI , (2.78b)

⋆3dω =d(µV )−V ZIdPI . (2.78c)

From these equations we can still find harmonic functions to associate to the PI , however
this has the consequence that the ZI cannot be harmonic. The single center case is special,
in that we set PI = 0 and then V and ZI are harmonic. On the other side, the multi-center
case is rather complicated: we only have four of the eighth harmonic functions that where
found in the BPS case. We do not report the full solution, however the details can be found
in [76, 78].

The solution found in [76] can be used as a seed to generate new solutions by mak-
ing use of U-duality. In this case, however, U-duality transformations change the form of
the 5-dimensional metric obtained from compactification of the Calabi-Yau manifold [78].
This means that our ansatz does not encompass all possible solutions, hence non supersym-
metric configurations are far richer that the supersymmetric ones. Any attempt to construct
a general multi-center non-BPS solution, similar to the Denef solution in the BPS case,
have to face much harder challenges. Furthermore, an important property of the solution
in [76] is that, in order for it to be regular, we need to introduce non-trivial constraints on
the positions of the centers already in the 2-centers case, which are quite difficult to satisfy.
Some interesting configurations have been found, we cite as an example the case of a line
of rotating black holes [77].

As a side note, we mention that progress towards a general solutions encompassing all
multi-center non-BPS solutions have been made, in particular in the 4-dimensional case,
where one can make use of the timelike dimensional reduction [79], that allows us to re-
late black holes, regardless of supersymmetry, to geodesics on the scalar manifold. Then,
provided that the scalar manifold has sufficient symmetries, one can generate solutions,
even multi-center ones, by employing group theoretical methods [80]. With this method
one can find the general non-BPS multi-center solution [81], at the expense of the result
being expressed in a less explicit way. On the other side, we still lack a general non-BPS
solution using the explicit superpotential approach, which generalises the method used by
Denef in the BPS case, even if some progress has been made [82, 83].
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Chapter 3

Anti-de Sitter black holes

For a long time, black holes with an anti-de Sitter asymptotic behaviour have been neg-
lected in favour of the much more studied Minkowski ones, mainly because they do not
seem to be of particular relevance for the description of observable objects in our universe.
The situation drastically changed in the last decades, mainly thanks to the introduction of
the gauge/gravity correspondence. As a matter of fact, we can exploit the dual conformal
field theory built on the AdS boundary of these solutions to provide a microscopic inter-
pretation of the degenerate geometries that contribute to the black hole entropy [32]. These
gravitational systems also provide non trivial asymptotically AdS backgrounds that have
rich holographic structure and have many applications in the context of field theory and
condensed matter systems at strong coupling.

The zoology of AdS black holes is much broader than the one of asymptotically flat
ones, as the horizons can be compact Riemann surfaces of any genus [84] or non-compact
surfaces, corresponding for example to black brane solutions. For black holes with a com-
pact horizon, the Bekenstein–Hawking formula, which relates the entropy to the area of
the horizon, is still valid. The known solutions fall into a general rotating solution with
electric, magnetic and NUT charges [85]. In particular, purely electric black holes admit
both extremal and thermal, rotating and static solutions [86–89], while if we ask for super-
symmetric solutions we only have rotating configurations with constant scalars [84, 90]. In
the magnetic case we can have BPS solutions only for static black holes with non constant
scalars [29, 30, 91], while non-BPS and non-extremal solutions must have vanishing angu-
lar momentum [92–95]. Recently, a 1/4-BPS rotating solution has been proposed [34], this
solution has either compact or non-compact horizon and in the static limit it reduces to the
solution of [30]. We will focus on rotating AdS black holes in the next chapter.

In this chapter we are going to investigate supersymmetric static black hole solutions in
N = 2, d = 4, U(1) Fayet–Iliopoulos gauged supergravity. As we will see, we can still find
an attractor mechanism, although the situation is radically different from the asymptotically
flat case. The content of this chapter is based on the results of [30], which generalises, using
a full symplectic covariant description, a previous work [29] where the supersymmetric
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AdS black holes with non constant scalars where first described.

3.1 Setup and dimensional reduction

We will look for dyonic black holes solutions in N = 2 gauged supergravity in 4 dimen-
sions. We use the U(1) Fayet–Iliopoulos gauged theory with bosonic lagrangian

e−1L =
R
2
−Gab̄∂µza

∂
µzb̄ +

1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν −Vg (3.1)

and set the expectation values for the fermions to zero, as we have done in the previous
case. The potential Vg, introduced because of the gauging, takes the symplectic invariant
form

Vg = |DL|2 −3|L|2 , (3.2)

with L ≡ ⟨G,V⟩ known as gauging superpotential. We let both electric and magnetic
gaugings be part of the symplectic vector G = (gΛ;gΛ), such that can work out a fully
symplectic covariant description. One can recover the case where we only have electric
gaugings by moving to the appropriate symplectic frame.

Since we are looking for static, spherically symmetric and charged black holes we can
employ the following ansatz for the metric:

ds2 =−e2U(r)dr2 + e−2U(r)(︁dr2 + e2V (r)dΩ
2)︁ , (3.3)

where (r,θ ,φ) are spherical coordinates, U(r) and V (r) are warp factors that depends only
on the radial coordinate. In accordance with this ansatz for the metric, we ask the scalar
fields to only depend on the radial coordinate, then the scalar and gravity sectors of the lag-
rangian can be reduced to an effective 1-dimensional action. In the same way, we introduce
an appropriate ansatz for the vector fields

AΛ = χ
Λ(r)dt − pΛcos(θ)dφ AΛ = ψΛ(r)dt −qΛcos(θ)dφ , (3.4)

such that the integration of the field strengths F = (FΛ;GΛ) on a closed surface provides
us with the electric and magnetic charges

Q =
1

4π

∫︂
S2
F . (3.5)

The electric potentials χΛ only appear in the action through their first derivative in r and
can be integrated out using their equations of motion. These are in accordance with the
results of the duality relation (1.21), that, for our metric and vector fields ansatze, requires

.
χ

Λ = e2(U−V )(I−1)ΛΣ
(︁
qΣ −RΣΩ pΩ

)︁
. (3.6)
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As in the asymptotically flat case we need to add to the action a total derivative "qΛ

.
χΛ"

in order to match the equations of motion for χΛ and the request (3.6). All in all, the
dimensional reduction of the vector sector amounts to the introduction of a scalar potential

VBH =−1
2
QTMQ = |Z |2 + |DZ |2 (3.7)

that only depends on the charges. These reductions allow us to find a one dimensional
effective action

S1d =−N
∫︂

dr
[︃

e2V (︁ .
U2 −

.
V 2 +Gab̄

.za .
zb̄ + e−2UVg + e2U−4VVBH

)︁
−1
]︃
, (3.8)

where we removed the Einstein–Gibbons boundary term and the integration in time and in
the angular variables factors out. The equations of motion coming from the effective action
(3.8) govern the dynamics of the scalar fields and the two warp factors. They are:

..za +Γ
a
bc

.za .zb +2
.

V .za =e2U Gab̄
∂b̄
(︁
Vg + e−4UVBH

)︁
, (3.9a)

..
U +2

.
U

.
V =e2(U−2V )VBH − e−2UVg , (3.9b)

..
V +

.
V 2 +

.
U2 +Gab̄

.za .
zb̄ =e2(U−2V )VBH − e−2UVg . (3.9c)

Full equivalence between these equations of motion and the Einstein equations of the ori-
ginal 4-dimensional theory is ensured by the introduction of an hamiltonian constraint

.
U2 −

.
V 2 +Gab̄

.za .
zb̄ = e−2UVg + e2(U−2V )VBH − e−2V . (3.10)

The appearance of this hamiltonian constraint suggests that these solutions admit a first
order description. As we will see in the next sections, this is the case for BPS solutions,
where we can find first order flow equations that satisfy both the equations of motion and
the hamiltonian constraint.

3.2 The BPS rewriting and flow equations

In order to show that these solutions are characterised by a set of first order flow equations,
one has to achieve a rewriting of the action (3.8) as a sum of squares of first order expres-
sions up to boundary terms. One can, equivalently, derive these equations from the Killing
spinor equations and, in the case of supersymmetric solutions, one needs to prove that the
Killing spinors used in the Killing spinor equations do indeed preserve some amount of the
original supersymmetries. It was shown in [30] that, following the same procedure used in
the ungauged case [24], the action admits the following rewriting

S1d =−N
∫︂

dr
{︃
− 1

2
e2U−2V E TME − e2V

[︃
(

.
α +Ar)+2e−U Re(e−iαL)

]︃2

− e2V
[︃ .
V −2e−U Im(e−iαL)

]︃2

−1−⟨G,Q⟩

−2
d
dr

[︃
e2V−U Im(e−iαL)+ eU Re(e−iαZ)

]︃}︃
, (3.11)
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where α(r) is a real phase. Notice that, at this point, the phase α can be freely introduced
thanks to the properties of symplectic sections. We will see that α has a deeper meaning
when considering the KSE derivation of the flow equations. Ar = Im(

.za∂aK) is the radial
component of the composite Kähler connection. The quantity E is a symplectic vector
made up of multiple contributions

E =2e2V d
dr

(︁
e−U Im(e−iαV)

)︁
+4e2V−U(

.
α +Ar)Re(e−iαV)

+ e2V−2UM−1
ΩG+Q . (3.12)

In order to show the equivalence of the two actions it is necessary to use a plethora of
relations that follow from the basic identities of special Kähler geometry reported at the
end of section 1.3. The main relation, that is extensively used in deriving the other ones, is

1
2
(︁
M− iΩ

)︁
= ΩVVT

Ω+ΩUaGab̄UT
b̄ Ω , (3.13)

from which one finds that there are the following relations between the actions of Ω and
M on the sections:

MV = iΩV and MUa =−iΩUa . (3.14)

Other useful relations can be found in [30]. Using (3.13), one can also show that the
potential Vg can be rewritten as

Vg =|DL|2 −3|L2|=−1
2
GTMG−4|L2| . (3.15)

Notice that the rewriting (3.11) is a sum of squares only if we impose a constraint on the
charges and gaugings

⟨G,Q⟩=−1 , (3.16)

which is consistent with the request of the Dirac quantization condition (1.90). The equa-
tions of motion are all first order and follow directly from the action (3.11)

E =0 , (3.17a)
.

V =2e−U Im(e−iαL) , (3.17b)
.
α +Ar =−2e−U Re(e−iαL) , (3.17c)

where the equations for the scalar fields and the U warp factor are contained in the first
equation and can be extracted by taking appropriate projections of E along the sections V
and Ua. The projections along the real and imaginary parts of the section V provide

.
U = e−U Im(e−iαL)− eU−2V Re(e−iαZ) , (3.18a)

.
α +Ar =−e−U Re(e−iαL)− eU−2V Im(e−iαZ) , (3.18b)
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3.2 - The BPS rewriting and flow equations

while the projection along Ua provides

.za =−eiαGab̄(︁eU−2VDbZ+ ie−UDbL
)︁
. (3.18c)

Projections along the charges and the gaugings give already known identities, once the
other first order equations are used. Let us now focus on the fact that, in addition to the
two expected equations for the scalars and the remaining warp factor, we have found one
further equation for the phase α . Compatibility of the two different equations for the phase
introduces a constraint

e2(U−V )Im(e−iαZ) = Re(e−iαL) . (3.19)

The presence of such a constraint is important as it confirms that α is not an independent
degree of freedom of the theory. As a matter of fact, using the flow equations (3.17b, 3.18a,
3.18c) and the constraint (3.19), one can show that α is the phase of a complex combination
of the warp factors, the central charge and the gauging superpotential

e2iα =
Z+ ie2(V−U)L
|Z+ ie2(V−U)L|

. (3.20)

This expression is remarkable, since:

• using this identification and the flow equations for the scalars and warp factors, the
phase equation (3.18b) is trivially satisfied.

• the phase α gets identified with the phase of a complex quantity that in ungauged
case reduces to the central charge.

This last point suggests that the solutions are supersymmetric, which we can check from
the Killing spinor equations. The flow equations follow from the Killing spinor equations
obtained by setting to zero the variations of the fermions in the gauged case, i.e. the vari-
ations in (1.85, 1.86), along a Killing spinor ε̃(r) that satisfies

γ
0
ε̃A = ieiαϵABε̃

B and γ
1
ε̃A = eiα

δABε̃
B , (3.21)

where α(r) will correspond to the previously introduced phase. Once we impose the metric
ansatz, the vector fields ansatz and the requirement that the scalar fields only depend on
the radial coordinate, we find that the Killing spinor must be in the form εA = e f (r)χA, for
a constant spinor χA. Then:

• we find the flow equations for the U warp factor from the time component of the
variation of the gravitinos ;

• we find the phase equation (3.18b) from the radial component of the variation of the
gravitinos;

• the angular components of the variation of the gravitinos give the flow equation
for the V warp factor, the constraints (3.19) and the Dirac quantization constraint
⟨G,Q⟩=−1;
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3.3 - Superpotential and gradient flow equations

• we find the flow equations for the scalars from the variations of the gauginos.

Since we impose two independent projections, the resulting solutions are 1/4-BPS, mean-
ing that they conserve 2 of the original 8 supersymmetries. A detailed derivation of the
flow equations from the KSE can be found in [30, appendix A].

3.3 Superpotential and gradient flow equations

It is remarkable that these solutions are supersymmetric and that the phase α , appearing in
the projectors on the Killing spinor, corresponds to the phase of a complex quantity that
reduces to the central charge in the ungauged case. This suggests that the flow equations
for the degrees of freedom {U,V,z, z̄} can be expressed in a simple and suggestive way,
inspired by the discussion in section 2.3. As a matter of fact, we can find a superpotential
W that allows us to write the flow equations as

.
ϕ

A =−G̃αβ
∂βW , (3.22)

for an appropriate choice of G̃αβ , where ϕ = {U,V,z, z̄}. The superpotential can be ex-
pressed as W = eUW , for a "fake superpotential" W that replaces the modulus of the central
charge in the flat BPS case. Expression (3.20) suggests that we identify

W = eU |Z− ie2(V−U)L| . (3.23)

It is important to stress that the phase α , at this point, needs to be treated as a dependent de-
gree of freedom and the derivatives of the superpotential W need to take this into account.
In order to do so it is convenient to use the following expression for W :

W =

√︂
e2U |Z |2 + e4V−2U |L|2 +2e2V Im(LZ) , (3.24)

where the phase α does not appear. With this, the derivatives of W in the warp factors are

∂UW =W −2e2V−U Im(e−iαL) and ∂VW = 2e2V−U Im(e−iαL) , (3.25a)

while the derivatives in the scalar fields can be obtained from the expression (3.23), by
making use of the definition of the phase in (3.20), as

∂āW =
1
2

eiα(︁eU DbZ + ie2V−U DbL
)︁
. (3.25b)

Notice that, by making use of the constraint (3.19), the superpotential can also be written
as

W = eU Re(e−iαZ)+ e2V−U Im(e−iαL) , (3.26)

which means, in particular, that

∂UW = eU Re(e−iαZ)− e2V−U Im(e−iαL) . (3.27)
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We can then provide the following non-trivial coefficients for the metric G̃αβ

G̃UU =−G̃VV = e2V and G̃ab̄ =
1
2

e2V Gab̄ , (3.28)

such that the flow equations can be written in a gradient flow form:
.

U =−e−2V
∂UW =−eU−2V Re(e−iαZ)+ e−U Im(e−iαL) , (3.29a)

.
V =−e−2V

∂VW = 2e−U Im(e−iαL) , (3.29b)
.za =−e−2V Gab̄

∂b̄W =−e−iαGab̄(︁eU−2V DbZ+ ie−U DbL
)︁
. (3.29c)

The equation for the phase (3.17c) is identically satisfied once we have these three equa-
tions and we impose the constraint (3.19). The prepotential W satisfies the condition
(2.34), that in this case is

|∇W |2 = G̃αβ
∂αW∂βW =Vtot = e2(U−V )VBH + e2(V−U)Vg −1 , (3.30)

and it allows us to write the action in the BPS squared form

S1D =−N
∫︂

dr
[︃
| .
ϕ −∇W |2 −2

d
dr

(︁
W
)︁]︃

. (3.31)

We have found a first order description of supersymmetric solutions, where the flow equa-
tions can be written in a gradient flow form and hence are driven by a superpotential W ,
that mimics the situation in ungauged case. This provides a powerful tool to compute ex-
plicit solutions and to study their properties at the horizon. The presence of a negative
cosmological constant forbids, however, a direct relation between the mass of the black
hole and the value of superpotential at spatial infinity.

3.4 The gauged attractor

We will now work out the properties of the attractor mechanism for supersymmetric black
holes in U(1) F.I. gauged supergravity. First of all, we need to expand on the fact that the
attractor mechanism in the gauged case is fundamentally different from the ungauged one.
It still fixes the values of the scalar fields at the horizon in terms of algebraic equations on
the charges and on the symplectic sections, however the attractor point cannot be reached
from any initial condition. This happens because the presence of a cosmological constant
stabilises the initial values of the scalars, i.e. the scalars at the boundary need to minimise
the potential Vg such that its expectation value reproduces the cosmological constant. This
means that we have an asymptotic constraint in terms of the gaugings G that fixes the
possible initial values of the scalars. With this in mind, before proceeding with the analysis
of the near horizon behaviour, we introduce a different parameterization of the warp factors
where, in place of V , we use A =V −U . The metric takes the form

ds2 =−e2U dt2 + e−2U dr2 + e2AdΩ
2 , (3.32)
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3.4 - The gauged attractor

while the superpotential takes the form W = eU |Z − ie2AL|. It is important to notice that,
with such a reparameterization of the warp factors, we need to replace the derivatives (3.25)
with

∂UW =W , ∂AW = 2e2A−U Im(e−iαL) (3.33)

and the derivatives in the scalar with

∂āW =
1
2

eiα(︁eU DbZ + ie2A+U DbL
)︁
. (3.34)

The flow equations are now given by
.

U =− e−2(U+A)(︁
∂UW −∂AW

)︁
=−e−2(U+A)(︁W −∂AW

)︁
, (3.35a)

.
A =e−2(U+A)

∂UW = e−2(U+A)W , (3.35b)
.za =−2e−2(U+A)Gab̄

∂b̄W . (3.35c)

Let us admit to be working with a spherical horizon, which means that the metric ap-
proaches an AdS2×S2 form in the near horizon limit

ds2
NH =− r2

R2
A

dr2 +
R2

A
r2 dr2 +R2

SdΩ
2 , (3.36)

where RS is the radius of the two dimensional S2 space, and RA is the radius of the two
dimensional AdS2 spacetime. As we have already seen in the asymptotically flat case, we
also need to impose a regularity condition on the scalars, i.e. their derivatives must van-
ish at the horizon. Furthermore, the warp factors should have the following near-horizon
behaviour:

eU → r
RA

and eA → RS . (3.37)

These requests lead us to the following attractor conditions:

.za → 0 ⇒ ∂a|Z− ie2AL|= 0 , (3.38a)
.
A → 0 ⇒ W = 0 . (3.38b)

Notice the equation (3.38a) leads to

DaZ− ie2ADaL = 0 , (3.39)

which can be used to show that at the attractor point the sections, the charges and the
gaugings must satisfy the attractor equation

Q+ e2A
ΩMG =−2Im(ZV)+2e2ARe(LV) , (3.40)

which can be derived from special Kähler geometry identities as well as from the equation
E = 0, once we insert the other flow equations and the horizon condition (3.39). This
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condition specifies the values of the scalars at the horizon in terms of the charges and the
gaugings once we have the corresponding value of A. In order to do so we make use of the
second condition, namely that W = 0 at the horizon, and imposing eA ∈ R, then

e2A = R2
S =−i

Z
L ∈ R . (3.41)

Notice that the above ratio of the central charge and gauging superpotential is real only if
the phases φZ for the central charge and φL for the gauging superpotential differ by π/2.
From the definition of α we find that, using the relation between φZ and φL, we must have

e2iα = e2iφZ ⇒ α = φZ + kπ , k ∈ Z . (3.42)

Finally, inserting the near-horizon limits of the warp factors in the flow equations, we find
that

e−iαZ =−
R2

S
2RA

< 0 , (3.43)

that is only possible if at the horizon α = φZ +π . The attractor equations in (3.40) and
(3.41) are not all independent, since they provide 2nV +4 conditions and we need to fix the
values of 2nV scalars and the A warp factor. As a matter of fact, one can find identities by
contracting the (3.40) equations with V and Ua. On the other side, contracting the same
equation with the charges and gauging provides the following equations

e−2A = 2
(︁
|DL|2 −|L|2

)︁
e2A = 2

(︁
|DZ |2 −|Z |2

)︁
, (3.44)

that are, interestingly, related to the second quadratic invariant [46]

I2(Z) =−QTM(F)Q = |Z |2 −|DZ |2 , (3.45)

where M(F) is similar to the matrix in (2.15), where we use the real and imaginary parts
of the matrix FΛΣ = ∂Λ∂ΣF in place of the ones of the period matrix NΛΣ. From the
first equation in (3.44), starting from an AdS4 vacuum with |DL| = 0 and keeping the
scalars constant, one finds the contradictory result e−2A = −2|L|2 < 0. This means that
supersymmetric solutions with an AdS asymptotic are not possible for constant scalars and
explains the results of the early analysis of AdS black holes [84, 96, 97].

3.5 The open search for multi-center AdS black holes

Although the study of asymptotically flat composite systems of black holes has been really
successful and has played a crucial role in the understanding of the quantum structure of
the gravitational interaction, the same cannot be said with regards to multi-center config-
urations in asymptotically anti-de Sitter space. As a matter of facts, a definite proof of the
existence of AdS stationary multi-center configurations remains elusive. Heuristically, the
main difficulty in building stable configurations lies in the fact that the negative cosmolo-
gical constant provides an effective attractive force between the centers that plays a role in
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3.5 - The open search for multi-center AdS black holes

the equilibrium between the gravitational attraction and electromagnetic repulsion. As a
consequence of this fact, stable configurations in an asymptotically AdS spacetime should
be more complex than the one in the flat case and, up until recently, it was believed that
stationary solutions were not possible.

Despite these problems, the search for AdS multi-center has not stopped and recent
results are very promising. Indications that such bound states indeed exist came from
the construction of hovering black holes on top of black branes [98, 99], AdS black Sat-
urns [100] and probe multi-center black holes [35, 36]. These last results are of particular
interest since they open up the possibility of the existence of the full solution, once the
backreaction is taken into account. The analysis performed in [35] uses a simplified ver-
sion of 4-dimensional F.I. gauged N = 2 supergravity, where only two gauge vectors and
non-minimally coupled scalar are present, such that the gauging potential is analogous to
the one used in this chapter. Non-extremal charged black holes in AdS4 are used as a back-
ground solutions. Numerical analysis shows that small charged probes are subject to an
effective potential - that accounts for the contributions from gravity and the two U(1) in-
teractions - with stable and metastable minima. These minima represent stationary bound
states and are only present when the background black hole and the probe have mutually
non-local charges (i.e. in a symplectic frame where the background is only electrically
charged the probe must be only magnetically charged). Furthermore, the holographic du-
als of these bound states represent structural glasses. We stress that the analysis in [35]
does not take into account the embedding of the supergravity theory in string theory, which
would introduce many additional features. From this point of view, recent developments
were made in [36], where stable bound states in the probe approximation have been found
when working with a supergravity theory derived by the reduction of M-theory on a Sasaki–
Einstein manifold.

We mention that, on the other side, much more progress has been made in the search
for time-dependent multi-center solutions. Asymptotically de Sitter multi-center solutions
of a cosmological Einstein–Maxwell theory have been long known [101, 102]. These solu-
tions can be converted to supersymmetric multi-center configurations in N = 2, d = 5
supergravity, provided that we use an euclideanized metric or imaginary couplings [102].
The euclidean time-dependent solutions have been generalised to N = 2 supergravity with
arbitrary vector couplings [103] and to a general n-dimensional FLRW background [104].
These last kind of configurations are, however, affected by big bang/big crunch singularit-
ies which become real once we consider dynamical black holes and this ruins the possibility
of an AdS/CFT interpretation.
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Chapter 4

Towards multi-center AdS black
holes

The promising results regarding the existence of stable bound states in the probe approxim-
ation for anti-de Sitter black hole [35, 36] renewed the motivation for the search of full AdS
multi-center black holes. The main point is that if some of these bound states survive when
taking into account the backreaction then we would have multi-center configurations. The
hope is that, at least for solutions that preserve some amount of supersymmetry, one could
be able to build them in a way analogous to the one followed by Denef in the asymptot-
ically flat case [24]. Multi-center configurations require, in general, rotation of the vector
fields involved and hence the metric describing such configurations needs to be at least sta-
tionary. Construction of multi-center solutions requires, then, knowledge of single-center
supersymmetric rotating solutions, in particular regarding the first order flow equations
and the BPS square rewriting of the action. The construction of explicit BPS black holes
in gauged supergravity with non-zero angular momentum is, however, non trivial. As a
matter of fact, the known solutions found in the literature are affected by some problems:
1/4-BPS electrically charged solutions of [105] do not have a consistent static limit and
the 1/4-BPS magnetically charged solutions of [84, 91] must have a non compact horizon.
Non-extremal solutions are also known [85, 87–89] and display similar problems. Recent
and promising developments in the description of non-static BPS black holes in anti-de
Sitter come from the proposed 1/4-BPS dyonic rotating solutions in [34]. These solutions
have the correct behaviour in the static limit and admit compact horizons. The proposed
first order equations, however, do not make use of the symplectic invariance of the vector
sector in order to remove the contributions from the potentials in favour of the charges.
Furthermore, the proposed solutions are derived using important assumptions on the form
of the warp factors and the sections.

In this chapter we are going to investigate stationary supersymmetric black hole solu-
tions of U(1) F.I. gauged supergravity in a simplified setting, where we ask for an additional
space-like Killing vector. This additional symmetry is introduced with the idea that the an-
gular momentum of the vector fields should be directed along our Killing vector. What we
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are concerned with is if these solutions admit a consistent first order reduction of the equa-
tions of motion. If these conditions were to be satisfied by our solutions then we would
have a solid basis upon which to construct multi-center generalisations.

The chapter is organised as follows. In the first section we provide the ansatze for the
metric and vector fields and justify them based on known single-center AdS solutions. We
will then briefly report the results of [38], where a useful characterisation of the equations
governing time-like BPS solutions of gauged supergravity is provided. The equations gov-
erning our solutions will be found as a particular application of the ones by Meessen and
Ortín to our ansatz. Among these equations, however, we find second order ones. Inspired
by the procedure used in the asymptotically flat case and in the anti-de Sitter static case, we
will employ symplectic invariance of the vector sector to reduce the equations to first order.
We will then look at the main consequences of these equations in a simplified setting.

4.1 Supersymmetric stationary solutions with one spatial iso-
metry

We will work with the same N = 2, U(1) Fayet–Iliopoulos gauged supergravity theory as
the one considered in the previous chapter. We ask, however, the solutions to have both
a time-like and a space-like Killing vectors. In order to do so we need to specify ansatze
for both the metric and vector fields that are in accordance with these symmetries. All the
known rotating black hole solutions in AdS4 have a metric that can be brought in the form
[85]

ds2 =− f (dt +ω dz)2 + f−1
[︃

v
(︃

dq2

Q
+

d p2

P

)︃
+QPdz2

]︃
, (4.1)

where ω,v, f are functions of the coordinates (q, p), while Q and P are polynomials in q
and p respectively. Metrics of this kind have an additional spatial isometry generated by a
Killing vector along the z direction. With this in mind, the ansatz we are going to use for
the metric is

ds2 =−e2A(dt + ω̂)2 + e2B(dx 2
1 +dx 2

2 )+ e2Cdx 2
3 . (4.2)

The warp factors A,B and C can depend only the coordinates (x1,x2). Notice that we
introduced a non-static contribution through the 1-form ω̂ = ω(x1,x2)dx3. The ansatz for
the vector fields that we are going to use is

AΛ = χ
Λ(x1,x2)dt +ψ

Λ(x1,x2)dx3 , (4.3)

where χΛ are the electric potentials and ψΛ are related to the magnetic charges. A similar
ansatz applies to the dual vector fields

AΛ = φΛ(x1,x2)dt +ηΛ(x1,x2)dx3 . (4.4)

Let us remark that the proposed forms for the metric and the vector fields are not the most
general ones allowed by the two symmetries.
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4.1.1 Meessen–Ortín equations for BPS timelike solutions

In order to obtain BPS solutions that fall into our ansatz for the metric and vector fields,
one should, in principle, solve the Killing spinor equations and the equations of motion of
the full theory. We will, however, make use of the results of [38], where Meessen and Ortín
characterised all stationary supersymmetric solutions of gauged N = 2, d = 4 supergrav-
ity. We are going to summarise the result in the restricted case of Fayet–Iliopoulos U(1)
gauging and no hypermultiplets, which is the one we are interested in. We cite [106] as an
useful reference for this kind of reduction, where some corrections to the original paper by
Meessen and Ortín are also provided.

Let us recall the bosonic truncation of the U(1) F.I. gauged supergravity action, which will
be our starting point,

S =
∫︂

d4x
√
−g
(︃

R
2
−Gab̄∂µza

∂
µzb̄ +

1
4
IΛΣFΛ

µνFΣ µν − 1
4
RΛΣFΛ

µν F̃Σ µν −Vg

)︃
, (4.5)

where the scalar potential takes the form

Vg =−Px
ΛPx

Σ

(︃
LΛLΣ +

1
8
(I−1)ΛΣ

)︃
(4.6)

thanks to the introduction of the quaternionic momentum maps Px
Λ

. These are related to
the gauging of an U(1) subgroup of the R-symmetry U(2)R. Meessen and Ortín showed
that, by making use of the Killing spinor equations, supersymmetric timelike solutions can
be obtained as solutions of a reduced number of first and second order equations. This
provides a systematic method to find BPS solutions. The equations only depend on the
spatial coordinates and involve a number of time-independent building blocks constructed
from the following bilinears of the Killing spinors εA:

S =
1
2
ϵAB

εAεB , Vµ = iε
A
γµεA , and V x

µ = i(σ x) B
A ε

A
γµεB . (4.7)

It will be particularly useful to rescale the sections V with the scalar bilinear S as V/S ≡
R+ iI , where the real and imaginary parts of V/S are

R =

(︃
RΛ

RΛ

)︃
and I =

(︃
IΛ

IΛ

)︃
. (4.8)

Using the special geometry identity ⟨V ,V⟩ = i, Meessen and Ortín find that the modulus
of the scalar bilinear is fixed by the symplectic product:

1
2|S|2

= ⟨R,I⟩ . (4.9)

At this point we introduce a time-independent phase α for the scalar bilinear S as S =
eiα |S|. This phase has a particular physical interpretation: it appears in the projectors that
constrain the number of independent components of the Killing spinor, see [38, section
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5]. This is completely analogous to how the phase α , later identified with the phase of
the superpotential W , appears in the projector conditions in (3.21) for the static case. It is
important to keep in mind that the phase α is not an independent degree of freedom of the
theory. With the introduction of the phase we find that the real and imaginary parts of the
rescaled sections V can be written as

R = |S|−1Re(e−iαV) , I = |S|−1Im(e−iαV) . (4.10)

The last two bilinears in (4.7) can be seen as components of 1-forms:

V ≡Vµ dxµ and V x ≡V x
µ dxµ . (4.11)

The triplet of 1-forms V x is the dreibein basis of an auxiliary 3-dimensional space such that
the 4-dimensional metric can be written as

ds2 =−2|S|2(dt + ω̂)2 +
1

2|S|2
δxyV xV y . (4.12)

In order to avoid confusion, we use underlined indices to label the components in the
dreibein basis, i.e. x= {1,2,3}. The quaternionic momentum maps Px

Λ
form a triplet in this

auxiliary space. The 1-form V , on the other side, must be in the form V = 2
√

2|S|2(dt+ ω̂)
once the metric is fixed to (4.12) and it constrains the vector fields1 to be

AΛ =−RΛV + ÃΛ =−2
√

2|S|2RΛ(dt + ω̂)+ ÃΛ , (4.13)

where ÃΛ is a 1-form in the auxiliary 3-dimensional space.

With this setup, the degrees of freedom that still need to be fixed are just V x, ω̂ , ÃΛ and
I , since, once we fix the special Kähler geometry, for example by providing an explicit
prepotential, we can always find the sections R in terms of the sections I using to the
stabilization equations. Meessen and Ortín show that these quantities are governed by a
reduced set of first and second order equations such that, once these are satisfied, also the
equations of motion and the Killing spinor equations are. In particular, the V x, ω̂ and ÃΛ

1-forms are governed by first order equations. These equations can be conveniently written
using the components in the dreibein basis as

dV x =

(︃
1
2
ϵxyzÃΛPy

Λ
− 1√

2
IΛPy

Λ
V y

δ
x
z

)︃
∧V z , (4.14a)

(dω̂)xy =2ϵxyz

(︃
⟨I ,∂zI⟩−

1
2
√

2|S|2
RΛP z

Λ

)︃
, (4.14b)

(dÃΛ)xy =−
√

2ϵxyz
(︁
∂zIΛ +BΛ

z
)︁
, (4.14c)

where we introduced the combination

BΛ
x ≡

√
2Px

Σ

(︃
RΛRΣ +

1
8|S|2

(I−1)ΛΣ

)︃
. (4.15)

1Notice that, using the normalisation of the field strengths such the vector contribution to the action is the
one in (4.5), the vector fields in our notation must be double the ones used in [38].
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On the other side, the sections I are fixed by second order equations. These can be con-
veniently expressed by introducing covariant derivative ∇̃x in the auxiliary 3-dimensional
space, such that for a function f (⃗x), one has covariant laplacian

d(⋆3d f )≡ (∇̃2 f )V 1 ∧V 2 ∧V 3 , (4.16)

and, for a 1-form ν = νxV x, one has covariant gradient

d(⋆3ν)≡ (∇̃xνx)V 1 ∧V 2 ∧V 3 . (4.17)

With these definitions, the second order equations for the components of I are

∇̃
2IΛ + ∇̃xB

Λ
x = 0 , (4.18a)

∇̃
2IΛ + ∇̃xBΛx =

1
4
√

2
ϵxyz(dω̂)xyP z

Λ
, (4.18b)

where we introduce the combination

BΛx ≡
√

2Px
Σ

(︃
RΛRΣ +

1
8|S|2

(RI−1) Σ
Λ

)︃
. (4.19)

The presence of second order equations seems to be problematic as one would expect solu-
tions of a supersymmetric theory to be characterised by only first order equations. Notice,
however, that the first one of these second order equations is the integrability condition of
equation (4.14c) and hence it is automatically satisfied once (4.14c) is. On the other side,
the second equation has no immediate reduction to first order.

4.1.2 The Meessen–Ortín equations in our ansatz

We will now specialise the equations of Meessen and Ortín for BPS solutions to our ansatze
for the metric and vector fields, i.e. the ones in (4.2-4.3). In order to do so, we gauge the
U(1) subgroup of the R-symmetry along the σ2 generator2, which means that we can set
the momentum maps to be

Px
Λ = γ gΛδ

x2 , (4.20)

where γ is a constant factor that will be fixed later in the discussion. Since we are working
with only electric gaugings, this means that we are in a special symplectic frame where
G = (0 ,gΛ). Notice that, by comparing the expressions for the potential in equation (3.15)
and the one in (4.6), once we impose that the momentum maps are the ones in (4.20) then
the constant factor γ is fixed to either ±2.

2The gauging along the σ1 direction is completely analogous to the one along σ2, it just consists in the
exchange of the x1 and x2 coordinates. On the other hand, the gauging along the σ3 direction leads to trivial
equations because of the presence of the Killing vector along this direction.
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4.1 - Supersymmetric stationary solutions with one spatial isometry

The direct comparison of our ansatz for the metric and the one used by Meessen and
Ortín, which are

ds2 =− e2A(dt +ωdx3)
2 + e2B(dx 2

1 +dx 2
2 )+ e2Cdx 2

3

=−2|S|2(dt + ω̂)2 +
1

2|S|2
δxyV xV y , (4.21)

shows that the matching of the two implies the following identifications for the dreibein
and the ω̂ 1-form:

V 1 = eA+Bdx1 , V 2 = eA+Bdx2 , V 3 = eA+Cdx3 and ω̂ = ωdx3 . (4.22)

Furthermore, the modulus of the scalar bilinear is related to the warp factor A(x1,x2) by

|S|2 = e2A

2
⇒ S =

eiα
√

2
eA . (4.23)

This allows us to rewrite the sections R and I in terms of the warp factor A, the sections
V and the phase as

R =
√

2e−ARe(e−iαV) and I =
√

2e−AIm(e−iαV) . (4.24)

On the other side, the matching of the vector fields in our ansatz and the expression from
Meessen and Ortín, which are

AΛ = χ
Λdt +ψ

Λdx3 =−2
√

2|S|2RΛ(dt + ω̂)+ ÃΛ , (4.25)

gives us the following identifications for the electric potential and "magnetic charges":

χ
Λ =−2

√
2|S|2RΛ =−2eARe(e−iα LΛ) and ψ̃

Λdx3 = ÃΛ , (4.26)

where ψ̃Λ ≡ ψΛ −ω χΛ.

Now that all of the identifications are in place, we will look at the first order equations
for V x, ω̂ and ÃΛ and their consequences with regards to the dependencies on (x1,x2) of the
various objects. First of all, we will look at the dreibein equations, which give us equations
for the warp factors. These take a simple form once we introduce the reparameterization
of the warp factors:

A = A , E = A+B and F =C−B , (4.27)

such that the metric takes the form

ds2 =−e2A(dt +ω dx3)+ e−2A
[︃

e2E(dx 2
1 +dx 2

2 )+ e2(E+F)dx 2
3

]︃
. (4.28)

The dreibein basis is now identified as

V 1 = eEdx1 , V 2 = eEdx2 and V 3 = eE+Fdx3 (4.29)
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4.1 - Supersymmetric stationary solutions with one spatial isometry

and the equations (4.14a) tell us that

∂1E = 0 , ∂2E =− γ√
2

eEgΛIΛ , (4.30)

∂1F =
γ

2
e−FgΛψ̃

Λ , ∂2F = 0 , (4.31)

from which we find that the dependencies of the warp factors on the coordinates are
E = E(x2) and F = F(x1). Let us notice that, since the warp factors must be invariant
under symplectic transformations, then the non-trivial equations in (4.89) and (4.31) can
be written as

∂2e−E =
γ√
2
⟨G,IΛ⟩ and ∂1 eF =

γ

2
⟨G,Ψ̃⟩ , (4.32)

where we introduced the symplectic vector Ψ̃ such that

A =

(︃
AΛ

AΛ

)︃
= Φdt +Ψdt with Ψ = Ψ̃+ωΦ . (4.33)

This expression is justified by the fact that our ansatz for the vector fields must also apply
to the dual fields.
Equation (4.14b) for the 1-form ω̂ has non trivial components 13 and 23, these give us the
following equations for the derivatives of ω(x1,x2):

∂1ω =−2eF+E[︁⟨I ,∂2I⟩−
γ√
2

eE−2AgΛRΛ
]︁
, (4.34a)

∂2ω =2eF+E⟨I ,∂1I⟩ . (4.34b)

Analogously the 13 and 23 components of the equation for the 1-form ÃΛ in (4.14b) fix the
derivatives of ψ̃Λ as

∂1ψ̃
Λ =

√
2eE+F(︁

∂2IΛ + eEBΛ
2
)︁
, (4.35a)

∂2ψ̃
Λ =−

√
2eE+F

∂1IΛ , (4.35b)

while the 12 component is trivial. In addition to this set of equations, we can use the special
Kähler identities

⟨V ,∂iV⟩= 0 and ⟨V ,∂iV⟩= Ai , (4.36)

where Ai = Im(∂iza∂aK) are the components of the composite Kähler connection, to ex-
press the derivatives of the phase α as

e2A⟨I ,∂iI⟩= ∂iα +Ai . (4.37)

Lastly, we can look at the second order equations. The second order equations (4.18a-4.18b)
can written in a covariant form as

∇̃
2I+ ∇̃xBx =

1
4
√

2
ϵxyz(dω̃)xyP z , (4.38)
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4.2 - Static limit

where we introduced a triplet of symplectic vectors Px ≡ (0 ,Px
Λ
) and gathered the B2Λ

and BΛ
2 combinations in a symplectic vector

B2 ≡
(︃
BΛ

2
B2Λ

)︃
=
√

2γ

(︃
R ⟨G,R⟩− e−2A

4
ΩMG

)︃
. (4.39)

By making use of the explicit expressions for the covariant laplacian and gradient in our
ansatz, we find that equation (4.38) is

∂2
(︁
eE

∂2I+ e2EB2
)︁
+ eE−F

∂1
(︁
eF

∂1I
)︁
=− γ

2
√

2
eE−F

∂1ω G . (4.40)

4.1.3 Separation of variables

By making use of the Meessen–Ortín equations, we have found the set of equations that
determines the supersymmetric solutions in our ansatz. These equations have important
consequences on the structure and dependencies of the various quantities at play. We will
now focus on the equations for the warp factors

∂1E = 0 , ∂1F = 0 , (4.41a)

∂2e−E =
γ√
2
⟨G,I⟩ , ∂1eF =

γ

2
⟨G,Ψ̃⟩ . (4.41b)

An immediate and important result from the application of the Meessen–Ortín equations
to our ansatze is that equations in (4.41) imply a separation of the dependence on the
variables (x1,x2) for the warp factors, such that E = E(x2) and F = F(x1). Consistency of
the equations (4.41) with the separation of variables means that

∂1∂2 e−E = 0 ⇒ ∂1⟨G,I⟩= 0 , (4.42a)

∂2∂1 eF = 0 ⇒ ∂2⟨G,Ψ̃⟩= 0 , (4.42b)

from which we have a factorisation in the structure of I and Ψ̃, such that

I(x1,x2) = I0(x2)+G ∆I(x1,x2) and Ψ̃(x1,x2) = Ψ̃0(x1)+G ∆Ψ̃(x1,x2) . (4.43)

4.2 Static limit

Before proceeding with the analysis of the equations that describe BPS solutions in our an-
satz, let us work out their static limit. This is useful in order to fix the value of the constant
γ and in order to gain some insights as to which is the physical role of the various quantities
at play. The static supersymmetric solutions considered in [30] should be reproduced by
our solutions when the non-static contribution vanish. In order to do so we need to impose
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4.2 - Static limit

that ω is a constant, such that it can be reabsorbed in the time coordinate by a redefinition
t +ωdx3 → t. With this, our metric takes the form

ds2 =−e2Adt2 + e−2A
[︃

e2Edx 2
2 + e2E(︁dx 2

1 + e2Fdx 2
3
)︁]︃

. (4.44)

The coordinates {r,θ ,φ} in the metric (2.5) of [30] can be reproduced by asking that:

dr = eEdx2 , dθ = dx1 , dφ = dx3 , (4.45)

while the warp factors3 are identified as

A =U(r) , E =V (r) and eF =−sin(θ) . (4.46)

Since ω must be a constant, its derivatives vanish and the equations (4.34) tell us that:

0 =−2eF+E[︁⟨I ,∂2I⟩−
γ√
2

eE−2AgΛRΛ
]︁

and 0 = 2eF+E⟨I ,∂1I⟩ . (4.47)

In order to satisfy the second one it is sufficient to ask that ∂1I = 0, which has important
consequences on the dependencies of the sections, the phase and the A warp factor. As a
matter of facts, by asking ∂1I = 0 we find

∂1α +A1 = 0 and ∂1
(︁
e−AIm(e−iαV)

)︁
= 0 , (4.48)

that are satisfied if we ask that the scalar fields, the phase and the A warp factor only de-
pend on x2. This is consistent with the fact that these quantities only depend on the radial
coordinate in the static case. Let us notice that, since the scalar fields do not depend on x1,
the period matrix NΛΣ will not depend on it either. Lastly, the sections R, obtained from
I through the stabilisation equations, will also only depend on x2.
Let us notice that in the static case there is no distinction between ψ̃Λ and ψΛ. The equa-
tions for ψ̃Λ (4.35) are now

e−F
∂1ψ̃

Λ =
√

2eE(︁
∂2IΛ + eEB Λ

2
)︁

and ∂2ψ̃
Λ = 0 , (4.49)

the second one tells us that ψ̃Λ only depends on x1, the first one is satisfied by imposing

e−F
∂1ψ̃

Λ =
√

2cΛ , (4.50)

for a set of constants cΛ, since the left hand side only depends on x1 while the right hand
side only depends on x2. By employing the symplectic invariance of the vector sector we
can show that similar equations are also present for the ηΛ component of the dual fields
AΛ:

e−F
∂1η̃Λ =

√
2eE(︁

∂2IΛ + eEB2 Λ

)︁
and ∂2η̃Λ = 0 . (4.51)

3We call the ψ(r) warp factor in the paper by Dall’Agata and Gnecchi as V (r), as we have done in the
previous chapter. This is done in order to avoid confusion with the component of the vector fields ψΛ.
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4.2 - Static limit

This means that we can introduce constants cΛ such that

e−F
∂1η̃Λ =

√
2cΛ . (4.52)

The second order equations, written as an equation for symplectic vectors, in the static case
take the simpler form

0 = ∂2
(︁
eE

∂2I+ e2EB Λ
2
)︁
, (4.53)

that are trivially satisfied by introducing a symplectic vector of constants C such that

C = eE
∂2I+ e2EB Λ

2 (4.54)

and, in order for this to be consistent with the first two equations in (4.49) and (4.51), we
need to ask that C = (cΛ ; cΛ). At this point, by making use of the coordinates {r,θ ,φ}, the
warp factors {U,V} and fixing4 eF =−sin(θ), our set of equations takes the form

V ′ =− γe−U Im(e−iαL) , (4.55a)

α
′+Ar =γe−U Re(e−iαL) , (4.55b)

d
dθ

Ψ̃ =−
√

2Csin(θ) (4.55c)

d
dθ

eF =
γ

2
⟨G,Ψ̃⟩ (4.55d)

and
√

2e2V
(︃

e−U Im(e−iαV)
)︃′

+
√

2γe2V−2U
(︃√

2Re(e−iαL)Re(e−iαV)− 1
4

ΩMG
)︃
−C = 0 .

(4.55e)

We can integrate equation (4.55c) for Ψ̃ and find

Ψ̃ =
√

2C cos(θ) , (4.55f)

which, once compared with the ansatz for the vector fields used in the static case, tells us
that the constants C are related to the charges by Q=−

√
2C. Since we fixed eF =−sinθ ,

the fourth equation is now an algebraic constraint that tells us that

d
dθ

eF = cos(θ) =
γ

2
⟨G,Q⟩cos(θ) ⇒ ⟨G,Q⟩= 2

γ
=±1 , (4.55g)

depending on the value of γ . Lastly, using the equation for the phase (4.55g) and the
charges Q in place of C, equation (4.55e) gives us the vanishing combination:

E = 2e2V (︁e−AIm(e−iαV)
)︁′
+4e2V−U(α ′+Ar)Re(e−iαV)− γ

2
e2(V−U)

ΩMG+Q .

(4.55h)

It is clear now that the all of the equations and constraints describing BPS static black holes
are reproduced once we ask that γ =−2.

4We introduced a minus sign in eF = −sin(θ) in order to obtain the correct relation between cΛ and the
magnetic charges.

62



4.3 - Reduction to first order

4.3 Reduction to first order

Since the value of γ does not depend on the presence of the non-static contribution, from
now on we will set γ = −2 in all of our equations. The complete set of equations that
describes supersymmetric solutions in our ansatz is then provided by

∂1E = 0 , ∂1F = 0 , (4.56a)

∂2e−E =−
√

2⟨G,I⟩ , ∂1eF =−⟨G,Ψ̃⟩ , (4.56b)

∂1ω =−2eF+E[︁⟨I ,∂2I⟩+
√

2eE−2AgΛRΛ
]︁
, ∂2ω = 2eF+E⟨I ,∂1I⟩ , (4.56c)

∂1ψ̃
Λ =

√
2eE+F(︁

∂2IΛ + eEBΛ
2
)︁
, ∂2ψ̃

Λ =−
√

2eE+F
∂1IΛ , (4.56d)

coupled with the phase equations

∂1α +A1 = e2A⟨I ,∂1I⟩ , ∂2α +A2 = e2A⟨I ,∂2I⟩ , (4.56e)

and the algebraic relations

χ
Λ =−2eARe(e−iαV) , e2A = ⟨R,I⟩ . (4.56f)

Lastly, the second order equations have been gathered into

∂2
(︁
eE

∂2I+ e2EB2
)︁
+ eE−F

∂1
(︁
eF

∂1I
)︁
=

1√
2

eE−F
∂1ω G , (4.56g)

where

B2 =−2
√

2
(︃
R ⟨G,R⟩− e−2A

4
ΩMG

)︃
. (4.56h)

We are now ready to look at how this set of equations can be reduced to first order. For
static AdS4 black holes, reduction to first order of the supersymmetric solutions was pos-
sible thanks to the fact that the potentials can be integrated out in favour of the electric and
magnetic charges [30]. This could be done since the potentials only appeared in the action
through their first derivatives. The idea that we are going to work on in the following is
that a similar substitution of the charges in place of the potentials should also be possible,
although with some complications, in the case at hand. The equations derived in the previ-
ous section are all expressed in terms of the components χΛ and ψΛ of the vector fields AΛ,
which are related to the electric potentials and the magnetic charges. We have, however,
introduced the dual vector fields AΛ that contain information regarding the electric charges
and magnetic potentials. Using the duality relations between the field strengths FΛ and the
dual field strengths GΛ we should, in principle, be able to rewrite our equations in terms of
only the electric and magnetic charges.
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4.3 - Reduction to first order

4.3.1 Symplectic invariance in the vector sector

As we have shown in section 1.3, the vector sector of a N = 2 supergravity theory is
invariant under symplectic transformations. This means that we can introduce dual vector
fields AΛ from which we can build dual field strengths

GΛ = dAΛ such that F =

(︃
FΛ

GΛ

)︃
= ΩM⋆4 F . (4.57)

In our case, the ansatz for the vector fields can be extended to the duals, meaning that we
can impose

AΛ = φΛdt +ηΛdx3 = φΛ(dt +ωdx3)+ η̃Λdx3 , (4.58)

where φΛ are the magnetic potentials and ηΛ are related to the electric charges. The in-
variance condition (4.57) produces the following relations between the differentials of the
components of AΛ and AΛ:

dφΛ =RΛΣdχ
Σ + e2A−E−FIΛΣ ⋆2

(︁
dψ

Σ −ωdχ
Σ
)︁
, (4.59)

dηΛ =RΛΣdψ
Σ + e2A−E−FIΛΣ ⋆2

[︁
dψ

Σ − (ω2 − e2(E+F−2A))dχ
Σ
]︁
. (4.60)

From equation (4.59), by inserting the factorisation ψΛ = ψ̃Λ +ωχΛ, we find

dφΛ =RΛΣdχ
Σ + e2A−E−FIΛΣ ⋆2

(︁
dψ̃

Σ +χ
Σdω

)︁
(4.61)

and from this we can extract equations for the derivatives of the potential φΛ. Let us notice
that, since in the static case the x1 coordinate is related to the angular coordinate θ , while
x2 is related to the radial one r, it seems natural to impose that Hodge duality in the (x1, x2)
space is given by

⋆2dx1 =−dx2 and ⋆2dx2 = dx1 . (4.62)

By making use of these rules for ⋆2, we find that the equations for the derivatives of φΛ

from (4.61) are:

∂1φΛ =RΛΣ∂1χ
Σ + e2A−E−FIΛΣ

(︁
∂2ψ̃

Σ +χ
Σ
∂2ω

)︁
, (4.63a)

∂2φΛ =RΛΣ∂2χ
Σ − e2A−E−FIΛΣ

(︁
∂1ψ̃

Σ +χ
Σ
∂1ω

)︁
. (4.63b)

On the other side, rewriting (4.60) using η̃Λ and making use of (4.61) to replace the contri-
butions from the derivatives of φΛ, we find

dη̃Λ =−φΛdω +RΛΣ(dψ̃
Σ +χ

Σdω)+ eE+F−2AIΛΣ ⋆2 dχ
Σ , (4.64)

from which we find that the derivatives of η̃Λ satisfy

∂1η̃Λ =−φΛ∂1ω +RΛΣ(∂1ψ̃
Σ +χ

Σ
∂1ω)+ eE+F−2AIΛΣ∂2χ

Σ , (4.65a)

∂2η̃Λ =−φΛ∂2ω +RΛΣ(∂2ψ̃
Σ +χ

Σ
∂2ω)− eE+F−2AIΛΣ∂1χ

Σ . (4.65b)
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At this point we can manipulate these derivatives by making use of the first order equations,
the expression for χΛ in (4.56f), the equations for the derivatives of the phase in (4.56e)
and the fact that the upper and lower components of the sections V and Ua are related by

MΛ =NΛΣLΣ and ha Λ =N ΛΣ f Σ
a . (4.66)

The overall results is that the derivatives of φΛ can be written as

∂1φΛ = ∂1

[︃
−2eARe(e−iα MΛ)

]︃
, ∂2φΛ = ∂2

[︃
−2eARe(e−iα MΛ)

]︃
+ eEgΛ , (4.67)

which mean that the potential φΛ is in the form

φΛ =−2eARe(e−iα MΛ)+ f gΛ (4.68)

where f = f (x2) is a new warp factor that satisfies ∂2 f = eE . On the other side, the deriv-
atives of η̃Λ are:

∂1η̃Λ =
√

2eE+F(︁
∂2IΛ + eEB2 Λ

)︁
− (∂1ω) f gΛ , (4.69)

∂2η̃Λ =−
√

2eE+F
∂1IΛ −2eE+F⟨I ,∂1I⟩ f gΛ . (4.70)

4.3.2 First order equations

We are now ready to show that the BPS solutions in our ansatz are described by a set of
equations that are all of first order. The consequences of duality invariance in the vector
sector, analysed in the previous section, can be resumed in two equations for the derivatives
of the symplectic vector Ψ̃ = (ψ̃Λ ; η̃Λ)

e−F
∂2Ψ̃ =−

√
2eE

∂1I− e−F
∂2ω fG , (4.71)

e−F
∂1Ψ̃ =

√
2eE(︁

∂2I+ eEB2
)︁
− e−F

∂1ω fG , (4.72)

which also gather the equations in (4.56d), and the algebraic equation for the potentials

Φ =−2eARe(e−iαV)+ f G . (4.73)

At this point, let us notice now that the mixed second derivatives of Ψ̃ calculated from both
equations (4.71) and (4.72) must be the same, this means that

∂1∂2Ψ̃ =−
√

2eE
∂1(eF

∂1I)−∂1∂2ω fG
=
√

2eF
∂2
(︁
eE

∂2I+ e2EB2
)︁
−∂2

(︁
f ∂1ω)G , (4.74)

from which follows that

∂2
(︁
eE

∂2I+ e2EB2
)︁
+ eE−F

∂1
(︁
eF

∂1I
)︁
=

1√
2

eE−F
∂1ωG . (4.75)

This equation is exactly the second order equation that we found by starting from the
Meessen–Ortín equations. This means that our supersymmetric solutions are completely
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determined by first order equations. Before listing them all, let us notice that the equations
for the derivatives of ω and Ψ̃

∂1ω =−2eF+E[︁⟨I ,∂2I⟩+
√

2eE−2A⟨G,R⟩
]︁
, ∂2ω = 2eF+E⟨I ,∂1I⟩ , (4.76a)

e−F
∂2Ψ̃ =−

√
2eE

∂1I− e−F
∂2ω fG , (4.76b)

e−F
∂1Ψ̃ =

√
2eE(︁

∂2I+ eEB2
)︁
− e−F

∂1ω fG , (4.76c)

can be written as equations for differential forms dω and dΨ̃ if we introduce the 1-form

B=B2dx2 =B2V 2 ⇒ B2 = eEB2 , (4.77)

such that, by using the definition of B2 in (4.56h), we have

⟨I ,B⟩= 3
√

2
2

eE−2A⟨G,R⟩dx2 . (4.78)

Using this result, we are able to find that the two equations in (4.76b) can be written as

e−F ⋆2 dω = 2eE⟨I ,dI+
2
3
B⟩ , (4.79)

while equations (4.76b-4.76c) can be written as

e−F ⋆2 (dΨ̃+ fGdω) =−
√

2eE(︁dI+B
)︁
, (4.80)

where we can remove the contribution from ⋆2dω by employing equation (4.79). The
complete set of differential and algebraic equations describing our solution is then:

∂2e−E =−
√

2⟨G,I⟩ , (4.81a)

∂1eF =−⟨G,Ψ̃⟩ , (4.81b)

e−F ⋆2 dω = 2eE⟨I ,dI+
2
3
B⟩ , (4.81c)

e−F ⋆2 dΨ̃ =−2eE fG⟨I ,dI+
2
3
B⟩−

√
2eE(︁dI+B

)︁
, (4.81d)

in addition to which we also have an equation for the new "warp factor" f (x2)

∂2 f = eE , (4.81e)

the phase equations

∂iα +Ai = e2A⟨I ,∂iI⟩ with i = 1,2 (4.81f)

and the algebraic relations

Φ =−2eARe(e−iαV)+ fG , e2A = ⟨R,I⟩ . (4.81g)

Although we have not proved it, these should correspond to the ones proposed in (2.45) of
[34], once the appropriate identifications are in place. This reduction gives us hope that this
kind of solutions could admit a description in term of a superpotential, a rewriting of the
action in a BPS squared form and possibly a generalisation to multi-center configurations.
What is still missing is an identification of the charges Q and the angular momentum J of
the solution. We will comment on this at the end of this work.
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4.4 - The solutions in a simplified case

4.4 The solutions in a simplified case

The procedure that needs to be followed in the general case to achieve explicit expressions
for the flow equations in terms of the charges and angular momentum and, hopefully, find
a superpotential that drives the flow is still elusive. In order to gain some insights, for the
rest of this chapter we are going to employ simplifying assumption on the structure of I
and Ψ̃, that are

∆I = 0 ⇒ I = I(x2) , (4.82a)

∆Ψ̃ = 0 ⇒ Ψ̃ = Ψ̃(x1) . (4.82b)

These assumptions are inspired by the fact that this is the simplest way of satisfying the
requests of (4.42). As we will see, this will lead to solutions with interesting properties. The
first consequence is that the dependence on x1 and x2 of the various quantities is separated
in such a way that the dependence on the angular variable x1 can be completely solved and
we are left with a simple radial flow in x2. We will find that the first order equations are
driven by a real superpotential that generalises the one in the static case, which suggests
that an attractor mechanism is at work, but no gradient flow form can be found for all the
equations. However, despite these nice properties, we will see that the solutions resulting
from our simplifying assumptions can be asymptotically AdS4 only in the case in which
the non-static contribution disappears. Nonetheless the following analysis could be useful
in order to understand the physical role played by the coordinates and the various quantities
at play in the general case.

4.4.1 Separation of variables

The assumptions (4.82) have important consequences on the dependencies on x1 and x2 of
the various quantities entering our equations. Similarly to the static case, we find that the
only way of satisfying

∂1I = 0 and ∂1α +A1 = 0 (4.83)

is to ask for the scalar fields, the phase and the A warp factor to not depend on x1. Notice
that this means that the period matrix NΛΣ is independent of x1. Then the sections R
should also only depend on x2 because of the stabilisation equations. On the other side,
we find that the non-static contribution ω must only depend on x1, since equation (4.56c)
implies that ∂2ω = 0. The overall result of the separation of variables produced by our
assumptions is here summarised:

E = E(x2) , A = A(x2) , F = F(x1) and ω = ω(x1) (4.84a)

for the warp factors and the non-static contribution,

za = za(x2) (4.84b)

67



4.4 - The solutions in a simplified case

for the scalar fields, while

Φ = Φ(x2) and Ψ̃ = Ψ̃(x1) (4.84c)

for the components of the vector fields A. This separation of variables simplifies noticeably
the set of supersymmetric equations. The warp factors E and F still satisfy (4.81b). The
equations for ∂2ω and ∂2Ψ̃ are trivial. On the other side, the equation for ∂1ω is

e−F
∂1ω =−2eE[︁⟨I ,∂2I⟩+

√
2eE−2A⟨G,R⟩

]︁
, (4.85)

where the left hand side only depends on x1, while the right hand side only depends on x2.
This means that the only possible solution is to introduce a constant J , which should be
related to the angular momentum of the solution, such that

e−F
∂1ω = J . (4.86)

The other remaining non-trivial first order equation is the one for ∂1Ψ̃, which takes the
form

e−F
∂1Ψ̃ =

√
2eE(︁

∂2I+ eEB2
)︁
− f J G , (4.87)

where, again, the two sides depend on different coordinates. We can, then, solve this by
introducing a symplectic vector of constants C, such that

e−F
∂1Ψ̃ =

√
2C . (4.88)

By looking back at the static limit, the constants C should be related to the charges Q of
the solution. Notice that, thanks to the introduction of the constant J , we can recast the
the non-trivial equation for the phase as

∂2α +A2 =−e2A−E

2
J −2eE−ARe(e−iαL) . (4.89)

On the other side, thanks to the introduction of the constants C, by taking another derivative
in x1 of equation for the warp factor F we find

e−F
∂

2
1 eF =−

√
2⟨G,C⟩ (4.90)

and this means that the x1 dependence is completely solvable, since ⟨G,C⟩ is a constant.
As a matter of fact, in order to keep the correct static limit, we will ask that

√
2C = −Q

and then, depending on the sign of ⟨G,Q⟩= n, we will have

eF =

⎧⎪⎨⎪⎩
c1sin(

√
−nx1)+ c2cos(

√
−nx1) if n < 0 ,

c1e
√

nx1 + c2e−
√

nx1 if n > 0 ,

c1x2 + c2 if n = 0 .

(4.91)

The first two possibilities describe, respectively, the case of spherical and hyperbolic ho-
rizons. The last one is only admitted in the G = 0 case, i.e. in the ungauged case, where
we have a discontinuity of our solutions. With this in mind, we will only focus on the x2
dependence from now on.
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4.4 - The solutions in a simplified case

4.4.2 First order flow equations

From the discussion in the previous section we have found that, thanks to our simplifying
assumption, the set of first order equations is composed of equations for the warp factors

∂2E = 2eE−AIm(e−iαL) , ∂2 f (x2) = eE , (4.92a)

equations for the non-static contribution ω and the Ψ̃ components of the vector fields

∂1ω = eFJ , ∂1Ψ̃ =−eFQ , (4.92b)

an equation for the phase

∂2α +A2 =−2eE−ARe(e−iαL)− 1
2

e2A−EJ (4.92c)

and the vanishing combination

E =2eE
∂2(e−AIm(e−iαV)+4eE−A(︁

∂2α +A2 +
1
2

e2A−EJ
)︁
Re(e−iαV)

+ e2(E−A)
ΩMG+Q− f J G = 0 . (4.92d)

As in the static case, we expect to be able to extract further information from E = 0 by
asking that its projections on various symplectic vectors vanish. The projections on the
real and imaginary parts of the section V give us the flow equations for the warp factor A
and another equation for the phase α . Let us introduce the shorter notation:

Q̃ ≡Q− f J G , Z̃ = Z− f J L , (4.93)

then the two equations that come from ⟨E ,Re(e−iαV⟩= 0 and ⟨E , Im(e−iαV⟩= 0 are

∂2A =eE−AIm(e−iαL)− eA−ERe(e−iα Z̃) , (4.94a)

∂2α +A2 =− e2A−EJ − eE−ARe(e−iαL)− eA−EIm(e−iα Z̃) . (4.94b)

On the other side, by taking the projection of E on Ua we find the equations for the scalar
fields

∂2za =− eiαGab̄(︁eA−E DbZ̃+ ieE−ADbL
)︁
. (4.94c)

The other possible projections of E provide us with some already known identities:

0 = ⟨G,E ⟩ ⇒ − 1
2
GTMG = |L|2 + |DL|2 , (4.95a)

0 = Q̃TME ⇒ − 1
2
Q̃TMQ̃ = |Z̃ |2 + |DZ̃ |2 . (4.95b)

As in the static case, we have obtained two different equations for the phase α . In order for
(4.92c) and (4.94b) to be compatible we need to impose the constraint

e2A−E

2
J + eA−EIm(e−iα Z̃) = eE−ARe(e−iαL) . (4.96)
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4.5 - Attractor mechanism

The presence of such a constraint is not a surprise, as the phase is not an independent de-
gree of freedom in our theory. Notice that equations (4.94a, 4.94b, 4.94c), together with
the constraint (4.96), all correctly reduce to the ones of the static case once we set J = 0.

We can see that our simplified solutions cannot be asymptotically AdS4, mainly be-
cause the non-static contribution ω does not depend on the radial coordinate x2, which
means that it does not disappear at spatial infinity. This make it clear that no AdS4 vacuum
can be reproduced at spatial infinity by this kind of solutions.

4.5 Attractor mechanism

We introduced the concept of the superpotential and its role in the attractor mechanism
in section 2.2. We are interested in looking for a superpotential which drives the flow of
the scalars and the warp factors because it would give us a powerful tool to work out the
attractor mechanism, the near–horizon behaviour of the solution and hence the entropy
of the black hole. We are now going to show that the flow of our simplified solutions is
driven by a real superpotential |W0|, which generalises the one found in the static case
[30]. Despite this encouraging result, we have not been able to find a rewriting of the flow
equations in a gradient flow form.

4.5.1 A complex quasi-superpotential

In order to completely factor out the dependence on x1, it will be convenient to work in the
case of spherical horizon, where we normalise ⟨G,Q⟩=−1, such that

eF =−sin(x1) . (4.97)

We will also introduce the coordinates {r,θ ,φ}, inspired by the ones used in the reduction
to the static case, as

dr = eEdx2 , θ = x1 and φ = x3 , (4.98)

and a reparameterization of the warp factors {U,Anew} as

U = Aold and Anew = E −Aold , (4.99)

from now on we will label Anew as A. In this way we have the same notation as the one in
section 2.3 of [30]. Notice that with this choice of coordinates in place we have

′ ≡ d
dr

= e−E d
dx2

and f ′ = 1 ⇒ f = r− r0 , (4.100)
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4.5 - Attractor mechanism

for a constant r0. With these choices made, the set of flow equations is

U ′ =e−U Im(e−iαL)− e−U−2ARe(e−iα Z̃) , (4.101a)

A′ =e−U Im(e−iαL)+ e−U−2ARe(e−iα Z̃) , (4.101b)

za ′ =− eiαGab̄(︁e−U−2ADbZ̃+ ie−UDbL
)︁
, (4.101c)

α
′+Ar =−2e−U Re(e−iαL)− 1

2
e−2AJ

=− e−U Re(e−iαL)− e−U−2AIm(e−iα Z̃)− e−2AJ (4.101d)

and we add f (r) as an independent warp factors that obeys a first order flow equation

f ′ =1 . (4.101e)

With this notation, the constraint for the phase takes the form
1
2

eU−AJ + e−AIm(e−iα Z̃) = eARe(e−iαL) . (4.102)

Let us now introduce a complex function

W ≡ eU(︁Z̃− ie2AL
)︁
, (4.103)

that depends on the warp factors {U,A, f}, the scalar fields and the phase α , which we
treat as an independent degrees of freedom for the time being. This combination is a direct
generalisation of the superpotential found in the static case. Let us notice that, by making
use of the constraint, we have

Re(e−iαW) = eU Re(e−iα Z̃)+ e2A+U Im(e−iαL) , (4.104)

and, since we now have to treat {A,U, f ,z, z̄,α} as independent degrees of freedom, we
can introduce derivatives in the warp factors as

∂ARe(e−iαW) = 2e2AIm(e−iαL) and ∂AIm(e−iαW) =−2e2ARe(e−iαL) , (4.105)

derivatives in the scalar fields as

∂aW = eU(︁
∂aZ̃− ie2A

∂AL
)︁
. (4.106)

Using these derivatives we can write the flow equation in (4.101) as

U ′ =− e−2(A+U)
[︁
Re(e−iαW)−∂ARe(e−iαW)

]︁
, (4.107a)

A′ =e−2(A+U)Re(e−iαW) , (4.107b)

f ′ =1 , (4.107c)

za ′ =−Gab̄e−2(A+U)eiαDbW , (4.107d)

α
′+Ar =− e2(A+U)

[︁
Im(e−iαW)−∂AIm(e−iαW)+ e2UJ

]︁
, (4.107e)

and the constraint is written as

J =−2e−2U Im(e−iαW) . (4.108)

As we have not provided a definition of the phase α in terms of the independent degrees of
freedom, we have not yet reached the description in terms of a superpotential that we are
looking for.
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4.5.2 A real superpotential

We are now ready to introduce a new complex combination, derived from the previous one,
as

W0 ≡W +
i
2

e2U+iαJ . (4.109)

Let us impose that the phase of W0 corresponds with α , which means that we can set

W0 = eiα |W0| , (4.110)

it follows from this request that

W = eiα(︁|W0|−
i
2

e2UJ
)︁

⇒ |W0|=
√︃
|W |2 − 1

4
e4UJ 2 . (4.111)

With this request, the real and imaginary parts of e−iαW that appear in equations (4.107),
are

Im(e−iαW) =− 1
2

e2UJ , (4.112a)

Re(e−iαW) =Re(e−iαW0) = |W0| . (4.112b)

Notice that the constraint (4.108) is identically satisfied because of (4.112a). Since the
constraint is now implicit, we can take

eiα ≡
|W0|+ i

2 e2UJ
W (4.113)

to be the definition of α as a dependent degree of freedom and hence, from now on, we
will have to treat the phase as a function α(U,A, f ,z, z̄). With this in mind, we want to
rewrite the flow equations for the warp factors and the scalar fields in terms of the real
superpotential |W0|. We have to remark, however, that this cannot be done by simply
substituting |W0| in place of Re(e−iαW) in the equations, because now the derivatives of
|W0| have to take into account that α is a dependent degree of freedom. This is clear once
we use (4.111), which gives us an expression for |W0| where the phase does not appear, to
compute the following derivatives:

∂A|W0|=2e2A+U Im(e−iαL)+ e2A+3U

|W0|
J Re(e−iαL) , (4.114a)

∂U |W0|=
1

|W0|

(︃
|W0|2 −

e4U

4
J 2
)︃
, (4.114b)

∂ f |W0|=− eUJ Re(e−iαL)+ e3U

2|W0|
J 2Im(e−iαL) . (4.114c)

We can use these to find the coefficients of the metric G̃ need to reproduce

U ′ =−G̃UA
∂A|W0|− G̃UU

∂U |W0|− G̃U f
∂ f |W0|

= e−U Im(e−iαL)− e−U−2ARe(e−iα Z̃) , (4.115)
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which turn out to be

G̃UA ≡− e−2(A+U)|W0|2

|W0|2 + 1
4 e4UJ 2

, G̃UU ≡ e−2(A+U)|W0|2

|W0|2 − 1
4 e4UJ 2

, G̃U f ≡− |W0|
|W0|2 + 1

4 e4UJ 2
.

(4.116)

For the A warp factor we still have the simple equation

A′ =e−2(A+U)|W0| , (4.117)

which is unmodified since no derivatives of |W0| appear. In order to express the equations
for the scalar fields in terms of |W0| we have to first calculate

∂āeiα =∂ā

(︃
W

|W0|− i
2 e2UJ

)︃
=

∂āW
|W0|− i

2 e2UJ
− W

(|W0|− i
2 e2UJ )2

∂ā|W0|

=eiα
(︃

1
2

∂āK− ∂ā|W0|
|W0|− i

2 e2UJ

)︃
, (4.118)

where we used the fact that DāW = ∂āW − 1
2 ∂āKW = 0. From this we can take the

conjugate equation and find

i∂aα +
1
2

∂aK =
∂a|W0|

|W0|+ i
2 e2UJ

. (4.119)

It is now trivial to use this to show that

eiαDaW =eiα
(︃

∂bW +
1
2

∂aKW
)︃∗

=
2|W0|

|W0|− i
2 e2UJ

∂ā|W0| , (4.120)

which allows us to write the equations for the scalar fields as

za ′ =−G̃ab̄
∂b̄|W0|=−Gab̄e−2(A+U) 2|W0|

|W0|− i
2 e2UJ

∂b̄|W0| , (4.121)

which, as expected, is still driven by the real function |W0|.

4.5.3 The phase equations

The remaining point is to show that the equation for the phase (4.101d) is an identity once
all of the other flow equations are in place. This is needed because now we cannot treat the
phase as independent, but it must be viewed as a function α = α(A,U, f ,z, z̄). This means
that its derivative in r is given by the chain rule

α
′ = za ′

∂aα + z̄ā ′
∂āα +A′

∂Aα +U ′
∂U α + f ′∂ f α . (4.122)

73



4.5 - Attractor mechanism

In order to evaluate it, let us first consider the contribution from the scalar fields, we know
from (4.119) that

za ′
∂aα = za ′

[︃
i
2

∂aK − i
∂a|W0|

|W0|+ i
2 e2UJ

]︃
=

i
2

∂aKza ′+ i
2Gab̄∂a|W0|∂b̄|W0|
|W0|2 − 1

4 e4UJ 2
, (4.123)

where in the second step we used the equation for the scalar fields. This means that the first
two contributions to α ′ are

za ′
∂aα + z̄ā ′

∂āα =−Ar . (4.124)

The three remaining contributions can be computed by taking derivatives of (4.113):

∂Aα =− ie−iα
∂A

(︃
W

|W0|− i
2 e2UJ

)︃
=− 1

|W0|
[︁
2e2A+U Re(e−iαL)

]︁
, (4.125a)

∂U α =− ie−iα
∂U

(︃
W

|W0|− i
2 e2UJ

)︃
=

1
|W0|

(︃
1
2

e2UJ
)︃
, (4.125b)

∂ f α =− ie−iα
∂ f

(︃
W

|W0|− i
2 e2UJ

)︃
=− 1

|W0|
eUJ Im(e−iαL) , (4.125c)

where we made use of the derivatives of |W0| reported in (4.114) At this point we insert
these results and the explicit flow equations for A,U and f in (4.122) and we find that

α
′+Ar =A′

∂Aα +U ′
∂U α + f ′∂ f α =−2e−U Re(e−iαL)− 1

2
e−2AJ , (4.126)

which corresponds with the equation for the phase (4.101d). This means that α can be
consistently treated as a dependent degree of freedom.

4.5.4 Summary of attractor behaviour and "near-horizon" limit

Summarising the results, we have found that in our simplified solutions the flow of the warp
factors and the scalar fields from the boundary to the horizon is driven by a superpotential
W0, given by

W0 = eU(︁Z− fJ L− ie2AL
)︁
+

i
2

e2U+iαJ , (4.127)

provided that we fix the phase α by asking that

W0 = eiα |W0| , (4.128)

which means that the phase is given by

eiα ≡
eU
(︁
Z− fJ L− ie2AL

)︁
|W0|− i

2 e2UJ
. (4.129)
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The constraint for the phase is recovered from the fact that

|W0| ∈ R ⇒ Im(e−iαW0) = 0 . (4.130)

The real function |W0| is given by

|W0|=
√︃
|eU
(︁
Z− fJ L− ie2AL

)︁
|2 − 1

4
e4UJ 2 = eU Re(e−iα Z̃)+ eU+2AIm(e−iαL) ,

(4.131)

which drives the flow equations for the warp factors and the scalar fields as:

A′ =e−2(A+U)|W0| , (4.132a)

U ′ =− G̃UA
∂A|W0|− G̃UU

∂U |W0|− G̃U f
∂ f |W0| , (4.132b)

za ′ =− G̃ab̄
∂b̄|W0| , (4.132c)

f ′ =1 , (4.132d)

where the hermitian metric G̃ of our moduli space has coefficients:

G̃UA ≡− e−2(A+U)|W0|2

|W0|2 + 1
4 e4UJ 2

, G̃UU ≡ e−2(A+U)|W0|2

|W0|2 − 1
4 e4UJ 2

, (4.133a)

G̃U f ≡− 1
|W0|2 + 1

4 e4UJ 2
, G̃ab̄ ≡ 2e−2(A+U)|W0|

|W0|− i
2 e2UJ

Gab̄ . (4.133b)

Notice that in the static limit J → 0 the superpotential |W0| reduces to the one in equa-
tion (2.47) of [30] and the flow equations reduce to the ones in (2.48) of [30]. With these,
the equation for the phase can be recovered by making use of (4.129). Despite these nice
properties we have not found a consistent choice of the metric G̃ that allows us to write all
of the flow equations in a gradient flow form. We will comment on these results in the last
chapter of this work.

Despite the fact that our simplified solutions are not asymptotically AdS4, we can still
work out the near–horizon limit and the attractor conditions. Regularity of the solutions
still requires the scalar fields to approach the horizon with vanishing derivatives, i.e. we
need to ask that

za ′ = 0 ⇒ ∂a|W0|= 0 (4.134)

at the horizon. The other request is that the angular sector of our metric should approach
an S2 form. This means that the contribution e2A should reduce to R2

S, which is the radius
squared of the S2 part of the near-horizon metric, which in turn means that

A′ = 0 ⇒ |W0|= 0 (4.135)
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at the horizon. The two horizon conditions can, then, be written as{︄
|W0|2 = 0
∂a|W0|= 0

or

{︄
|W |2 = e4U

4 J 2

DaW = 0 .
(4.136)

The condition DaW = 0 leads to

Q− fJ G+ e2A
ΩMG =−2Im(Z−2 fJ LV)+2e2ARe(LV) , (4.137)

which is a direct generalisation of the similar condition for the static case that we reported
in (3.40). It is obtained by either making use of special Kähler identities or by making use
of the flow equations in the vanishing combination E .
The condition |W0|2 = 0 lead to a second order equation for R2

S

|L|2(R 2
S )

2 +2Im(ZL)R 2
S + |Z− fJ L|2 − e2U

4
J 2 = 0 . (4.138)

This means that we have two possible values for R 2
S , given by

R 2
S =

1
|L|2

[︃
−Im(ZL)±

√︄
Im(ZL)2 −|L|2

(︃
|Z− fJ L|2 − e2U

4
J 2

)︃]︃
. (4.139)

In the static case this reduces to

R 2
S =

{︄
+iZL
−iZL

, (4.140)

which, once we ask R 2
S to be real, correspond both to the result found in (3.41).
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Summary and Outlook

The main goal of this thesis was to analyse BPS, charged and rotating black hole solutions
of U(1) Fayet–Iliopoulos gauged N = 2 supergravity in d = 4 dimensions. The overall
objectives of this kind of analysis are to find:

• a first order reduction of the equations of motion that would be consistent with the
already known results of [31];

• a rewriting of the flow equations in terms of a superpotential, which indicates the
existence of an attractor mechanism;

• a BPS rewriting of the action, analogously to the one found for the static case in [30].

Although this program was quite ambitious and not all of the initial objectives were reached,
we were still able to provide some, hopefully useful, results with regards to the second and
third objectives in the case in which some simplifying assumptions are in place.

We used as a starting point an ansatz for that metric that is stationary and has an extra
spatial isometry related to the rotation of the vector fields. The equations describing BPS
solutions found in [38] have been specialised to our ansatz, resulting in a set of first and
second order equations for the sections, the vector fields and the warp factors. We have
been able, by making use of the symplectic invariance of the vector sector, to reduce to first
order the Meessen and Ortín equations. The resulting set of first order equations is the one
reported in (4.81). It is remarkable that the reduction to first order has the effect of intro-
ducing a new warp factor f , which is governed by a first order equation. This warp factor
should obviously disappear in the static limit as it is not found in the solutions of [30].
Although we have not proved it explicitly, the equations in (4.81) should be equivalent to
the equations in section 5 of [34]. Our formulation, however, differs from the one provided
by Hristov, Katmadas and Toldo by the fact that we removed to contribution of the electric
and magnetic potentials in favour of the charges. This formulations is the first step in the
procedure to find the characteristics of the attractor mechanism, based on the similar steps
followed in the asymptotically flat and static AdS4 cases. We still lack, however, a clear
relation between the components Ψ of the vector fields and the actual charges Q of the
solution as well as a relation between the non-static contribution ω and the angular mo-
mentum of the solution J .
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4.5 - Attractor mechanism

In order to, hopefully, provide some insights on the role of the various quantities at
play, we focused on a simplified case obtained by making the assumptions reported in
(4.82). With these assumptions the equations (4.81) reduced to the flow equations in (4.92)
and (4.94). Among these we found two different equations for α ′, from which we derived
the constraint (4.96). Both the flow equations and the constraint can be seen as a general-
isations of the ones in the static case [30], in the sense that they reduce to them once we
send to zero the parameter J which controls the flow of the non-static contribution ω . The
equation for ω does, however, make it clear that no AdS4 vacuum can be reproduced at
spatial infinity by this kind of solutions, as our metric turns out to be

ds2 =−e2U(︁dr+J cosθ dφ)2 + e−2U(︁dr2 + e2AdΩ
2) ,

when considering the closed horizon case with ⟨G,Q⟩ = −1. This is to be attributed to
our simplifying assumptions, from which it turns out that ω does not depend on the radial
coordinate and hence cannot vanish at spatial infinity. It seems plausible that in the full
solution this could be cured by an appropriate dependence of ω on the radial coordinate.
Despite this issue, we persevered in the analysis of this simplified case and showed that
there exist a superpotential W0(z, z̄,U,A, f ), reported in (4.109), such that:

• once we impose that W0 = eiα |W0| the constraint (4.96) is identically satisfied.
Equation (4.129) can then be taken to be a definition of the phase as a dependent
degrees of freedom.

• the flow equations for the warp factors and scalar fields can be all written in terms of
the real combination |W0| and its derivatives in the scalar fields and warp factors.

• the phase equation is identically satisfied once we ask that α(z, z̄,U,A, f ) is a de-
pendent degree of freedom of the theory and the other flow equations are satisfied.

• both the superpotential and the flow equations reduce to the ones of the static case,
found in section 2 of [30].

The flow of the scalar fields and warp factors is, then, clearly driven by the real superpo-
tential |W0|. Despite this, we did not achieve a full rewriting of the equations in a gradient
flow form

ϕ
α ′ =−∇

α |W0| ,

which was only possible for the equations for the scalar fields and the U warp factor. The
cause of this difficulty could be attributed to the fact that we are working in a simplified
setting, where we integrated out the non-static contribution ω . It could be that the super-
potential for the full solution has a dependency of ω which contributes to the gradient flow
equations. Another point upon which we need to comment is that it may be that the newly
introduced warp factor f is not a good choice and should be replaced with a different com-
bination of the warp factors.
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4.5 - Attractor mechanism

Our simplified solutions are not a true black holes as they do not describe a flow from
AdS4 to AdS2×S2. Despite this, we still tried to look at the the near-horizon limit of the
angular sector and used our rewriting of the flow equations in terms of the superpotential.
We are interested in the behaviour of the superpotential in the near–horizon because, as
already seen in the asymptotically flat case and in the static AdS4 case, its value at the ho-
rizon is closely related to the entropy of the black hole. We ask that the angular part of our
metric approaches S2 in the near-horizon and find the two conditions reported in (4.136).
These lead to two horizon conditions which seem to generalise the ones found in the static
case [30], which are (4.137) and (4.138). The latter condition gives us that the possible val-
ues for R 2

S , from which we would find the entropy of the black hole. It is remarkable that
these are found as solution of a second order equation, which means that we have to make
a choice of sign. This is reminiscent of the properties of the entropy functional proposed
by Hosseini, Hristov and Zaffaroni in [37].

The analysis developed in this work shows that rotating black hole solutions have, at
least in the simplified case considered, promising properties. The direction upon which to
expand these results in the future is to work out the explicit flow equations in the general
case, starting from the equations in (4.81). The main obstacle to this kind of development is
the difficulty of finding the relation between the components Ψ̃ of the vector fields and the
charges Q of the black hole and between the contribution ω and the angular momentum J .
If this is addressed then we would be able to find explicit first order equations describing
the flow of the scalars and the warp factors in two dimensions. At this point a further
question arises, the radial and angular flow can be factorised? The hope is that this could
be done, for example, by making use of a first integral along the flow, possibly related to
the angular momentum, which would allow us to decouple the flow in the radial direction
from the one in the angular one. In this case we would recover a simple radial flow that
could lead to an attractor mechanism. One could, then, use this to explain and generalise
the result for the entropy functional of Hosseini, Hristov and Zaffaroni.
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