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Introduction

Due to the growing avalanche of data in today's biological and biomedical research

statistics has become key for enabling further research progress. The current high-

throughput platforms can capture variation in genomic sequence, gene expression

and genome-protein interactions at an increasing resolution. This enabled re-

searchers to consider genomic pro�les as a function along the genomic coordinate

.From a statistical perspective, this opens perspectives for functional data analysis

approaches where gene expression and copy number variation (CNV), for instance,

can be considered as a non-parametric regression problem. Before implementing

traditional functional data analysis approaches within the genomics realm, the

methods have to be tuned towards the speci�c application. The choice of the

method has to be driven by biological knowledge and the speci�c research ques-

tions.

In the context of copy number variation, for instance, biologists and biomedical

researchers consider the underlying copy number pro�le for an individual patient

to be a piecewise constant function along the chromosome. Hence, a piecewise

constant representation seems favorable and also will allow a straightforward seg-

mentation of the copy number pro�le in duplicated, normal and deleted regions. In

this speci�c context, biologists are thus not interested in a smooth representation

of CNV pro�les, but, in methods that allow for abrupt changes at the boundaries

of deleted (duplicated) regions and which can impose sparsity. Wavelets appear

to be very useful for this purpose. A wavelet transform has a decorrelating prop-

erties and concentrates most of the structure of the signal in relatively few large

wavelet coe�cients while distributing white noise equally over all wavelet coe�-

cients. Denoising can thus be done by thresholding the smallest wavelet coe�cients

or shrinking them towards zero.
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The compact support of the wavelet basis functions allows for a discontinuity-

preserving denoising and leads to a sparse representation of the pro�le. In this

thesis, we develop new methods for modeling CNV using a case study on Gas-

trointestinal Stromal Tumors. We �rst adopt existing wavelet approach within

the genomic context and extend them into a mixed model framework in order to

model group pro�les and subject speci�c CNV pro�les, simultaneously.

The goal of the thesis is to assess the use of wavelet based functional data analysis

approaches for modeling copy number variation and can be considered as a �rst

step in a developing novel framework in this context.
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Chapter 1

Background

The genetic information of most organism's is stored using the macromolecule de-

oxyribonucleic acid (DNA). The DNA is located in a cell's nucleus and encodes for

all cellular processes and structures. The DNA �rst needs to be interpreted before

it can be translated into actions. The central dogma of biology states that DNA

is �rst transcribed in ribonucleic acid (RNA), which is biologically active. RNA

can travel from the nucleus to the cytoplasm where it can be further translated

into proteins. The DNA is a polynucleotide, a long chain of nucleotides (molecules

with three functional groups) with the ability of catalyze reactions helpful to pro-

duction of molecules of the same catalyzer. Moreover, polynucleotides can drive

directly the formation of exact copies of their sequence.

Usually DNA is identi�ed with a chain of nitrogenous basis, that represent one of

the three functional groups (the other two are deoxyribose sugar and phosphate

group). DNA could be seen as a language of 4 nitrogenous basis: Adenine (A),

Guanine (G), Citosine (C) and Timine (T). DNA has a double helix structure

with single helix paired. It is known that Guanine pairs only with Citosine while

Adenine pairs with Timine, since Adenine and Guanine di�ers in the atomic form

from Citosine and Timine. A and G are called Purines, and their atom looks like

a pair of rings fused together, while C and T are Pyrimidines, composed by only

one ring.

DNA replicates itself through the separation of the double helix. On the two �la-

ments the complementary helix is syntesized by DNA-polymerase enzyme.
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DNA of eukaryote cells is compacted in series of Chromosomes, inside the cell

nucleus.

As mentioned above, DNA could be seen as a language. Nitrogenous basis are

read three at time and each triplet (codon) corresponds to a known aminoacid. A

chain of aminoacids is a Protein, the fundamental costituent of every animal or

plant cell. The information for the protein synthesis is contained in the mRNA,

a polynucleotide created during the process of transcription. RNA has slight dif-

ferences from DNA, e.g. the presence of the nitrogenous basis Uracil (U) in spite

of Timine.

1.1 'Omics' in Biomedical Research

The term 'Omics' refers to �leds of study in biology such as genomics, transcrip-

tomics, proteomics and metabolomics. It is used to address research on the genome

(the entire collection of the genetic information stored in DNA), gene transcrip-

tion (transcriptome or the entire RNA landscape), proteome (the collection of all

proteins).

In the last decades, there is a growing consensus that many diseases are driven

by aberrations in the genome, transcriptome and/or proteome. In the dissertation

we focus on copy number variation, which can be considered to be a structural

variation in the genome. Hence, we will focus on genomics.

Genomics refers to the studies of the genomes of organisms. Genome indi-

cates the totality of the genetic material in an organism, and spans coding (Exons)

and noncoding (Introns) regions. A Gene is a unit of the genomic code that con-

tains all the informations necessary to synthesize a protein.

Genomics are studied through Sequencing. Genomic Sequencing is the starting

point for a better understanding of the functioning and the evolution of organ-

isms. Sequencing drives to the knowledge of the genomic structure, identifying

genes and gene families. But also to genomic aberrations such as point mutations,

translocations, copy number variations.

The study on the speci�c DNA code and aberrations is also referred to as struc-

tural genomics or genotyping. Genotyping is well established in biomedical re-
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search for increasing the understanding of the genomic basis of disease, for �nding

biomarkers and it has an increasing use in diagnostic testing. Functional genomics

is another branch, that focuses on gene function, gene interactions and also gene

expression patterns under varying conditions. Both, structural and functional vari-

ation are known to be associated with diseases.

In the latter of the thesis, we focus on CNV genotyping.

1.2 Copy Number Variation

Genomewide studies have uncovered a considerable number of variants throughout

the human genome. Some studies have con�rmed that these alterations are often

correlated with disease [1].

These alterations can be classi�ed in four di�erent types:

• Deletion: during the replication a genomic area is not copied;

• Duplication: during the replication a genomic area is duplicated;

• Inversion: during the replication a genomic area is replicated with the basis

inverted in order;

• Translocation: during the replication a segment or a whole chromosome is

interchanged with another one.

During the process of replication DNA could be a�ected by an alteration of the

number of copies. Deletions and Duplications are located as copy number vari-

ations (CNV). The considerable number of genes that fall within these variable

regions make CNV very likely to have functional consequences.

An alteration of the number of copies could be caused by a disease. I.e. Copy

Number Variation (CNV) is often observed in tumor states: consequently, studying

if the copy number variation is signi�cant could be a considerable indicator of the

genes activated when a tumor a�ects cells. Few cytogenetic techniques1 have been

1Cytogenetic is a branch of genetics that studies morphology of chromosomes and karyotype,
i.e. the set of chromosomes in a cell. Cytogenetic Techniques were developed in the late 1960s.
They are able to di�erentially stain chromosomes, in order to di�erentiate chromosomes of equal
size and consequentially locate breakpoints and better understood deletions within the chromo-
some.
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developed to give a measurement of the copy number variation, such as:

• Fluorescent in Situ Hybridization (FISH) : identi�es the presence/ab-

sence of some speci�c DNA sequences. Fluorescent probes are bended to

speci�c chromosome regions, via �uorescence microscopy.

• Chromosome-Based Comparative Genomic Hybridization (CGH) :

analysis of copy number changes in the DNA content of a given subject's

DNA.

• Array-Based Comparative Genomic Hybridization (aCGH): detects

changes at a higher resolution level than Chromosome-based technique.

• Virtual Karyotiping: Virtual Karyotiping is the digital information re-

�ecting a karyotipe, detecting CNV at a high resolution level. Virtual Kary-

opting could be furnished using aCGH or SNP (Single Nucleotide Polymor-

�sm) Arrays.2

• CNV-seq: It is a method for detecting CNV using high-throughput se-

quencing. The method is based on a robust statistical model that describes

the complete analysis procedure and allows the computation of essential

con�dence values for detection of CNV. CNV-seq favors the next-generation

sequencing methods that rapidly produce large amount of short reads [2].

1.3 The Array-CGH Platform

Microarrays allow for the quantitative measurement of thousands of biochemical

reactions in parallel. They are commonly used for detecting genomic mutations

and for analyzing RNA levels or gene transcription. The technology is based on

complementary base-paring of DNA or hybridization.

Microarrays consist of thousands of short pieces of DNA, probes that are immo-

bilized on a support. Each of the probes is complementary to a speci�c DNA

2SNP arrays, due to their nature, are used to detect minor changes between whole genomes.
That skill of this particular type of DNA Microarray �nds its application in studies of genetic
abnormalities in cancer, e.g. Loss of Heterozygosity, that occurs when one allele is damaged by
the mutation and it cannot develop tumor suppressors [3].

10



sequence in the genome and can probe for the presence of speci�c DNA sequences

in a sample. The samples are �rst processed and labeled using �uorescent markers.

Next, the labeled DNA library is hybridized on the microarray. DNA in the library

that is complementary to the probes will hybridize. After an incubation period,

the array surface is washed to remove the remaining unhybridized and labeled

molecules. Finally, a microarray readout is made by measuring the �uorescence

intensity of the labeled molecules that are hybridized to the array. Higher concen-

trations in the sample, typically will lead to more hybridization and thus a higher

intensity signal.

Array-CGH (aCGH) is an evolution of the CGH Platform. The probes are

BACs (genomic DNA sequences) that are mapped on the genome. The signal has

a spatial coherence that can be handled by speci�c statistical tools. Array-CGH

pro�le can be viewed as a succession of segments that represent homogeneous re-

gions in the genome whose BACs share the same relative copy number on average.

The di�erences between subject and reference are analyzed by �uorescence. The

�uorescence intensity of the subject sample and reference sample is then measured

in order to calculate the ratio between them.

the CGH platform is a two-channel array.A test and a reference sample are hy-

bridized to the same slide.Both samples are labeled with a di�erent dye. The

di�erences between subject and reference are analyzed by measuring the �uores-

cence. The �uorescence intensity between the dyes is measured and the ratio

between them can be calculated.

CGH experiments su�er a loss of precision: it is possible to detect copy loss for

regions' length of 5-10 Mb 3, while the detection of ampli�cation is known to be

sensitive down to less than 1 Mb. This imbalance can be overcome with the use

of array CGH.

In aCGH, equal amounts of labeled genomic DNA from a test and a reference

sample are co-hybridized to an array containing the DNA targets. The higher

3Mega Base pairs. A Base Pair is a couple of complementary nucleotides in an hybridized
probe. Bp have a measurement system equivalent to the digital information, where a Base Pair
corresponds to a byte.
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resolution and throughput are the most signi�cant advantages of aCGH over all

cytogenetic methods except CNV-seq. In addition, there is no need for cell culture,

making the turn around time shorter than cytogenetic methods. Most clinical

aCGH platforms require only a few micrograms of genomic DNA, and whole-

genome ampli�cation procedures enable further reduction of the amount needed

for analysis. Summarizing, aCGH has revealed in the last years clinically unsus-

pected genomic unbalances, leading researchers to focus more in whole-genome

approach than locus-speci�c methods.

Even aCGH technology su�ers some limitations. There are still the problems

related with platforms that cover sequentially the entire genome with high reso-

lution: these technologies are expensive and they are more likely to detect imbal-

ances without a clear meaning [4]. At last aCGH pro�les contain a wave bias. The

hybridization potential of some probes is higher than others and some genomic

regions will be preferentially ampli�ed in the library preparation step. This bias

can obscure the interpretation of the pro�le and induces additional challenges for

the data analysis.

1.4 Data Analysis Methods

In an Array-CGH experiment, a CNV pro�le is measured at speci�c genomic lo-

cations that are spanned by Clones. For each pro�le, an intensity is measured by

each clone and data can thus be structured in a data array. An example of CNV

data can be found in Table 1.1. A considerable number of techniques to extract

information from aCGH data have already been suggested. Few problems have

been considered and discussed, starting with preprocessing on data and �nishing

with testing signi�cant results.
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Table 1.1: Example of CNV data

ID Obser-

vation

ID pro�le Chromosome Clone

Name

CNV Clone Po-

sition

1 25 13 RP-11 0.845 10

2 36 13 RP-122 -0.45 23

3 31 13 RP-122 1.32 23

4 17 17 RP-982 0.88 23

5 . . . . . . . . . . . . . . .

1.4.1 Preprocessing, Normalization and Calling

In aCGH studies, intensities are typically measured for test and a reference sample.

They are commonly transformed into a log2 ratio of the test and reference intensity,

which re�ect the relative copy number in the test sample compared to the reference

sample.

Usually a normalization is done. Normalization corrects for experimental

artifacts in order to make di�erent hybridizations comparable. For normalization

mode subtraction is the favourite method, but other methods have been proposed,

e.g. �tting Lowess curve or a Ridge regression to calibrate the two-channel inten-

sity density plot. All the methods mentioned above are within-array normalization,

but in some cases also between-array normalization is carried out, in order to give

the potentially large proportion of aberrations in a DNA sample [3].

Another correction has been often imposed for GC Content.

GC Content is the percentage of GC nitrogenous basis on a DNA molecule on

the total. It is known that there is a relation between the measure of the GC

content and the bias of the response, so this measurement is used in preprocessing

to correct bias on data.

Picard et al. [5] proposed a quadratic regression scheme as GC Correction:

Yj(t) = µjs + b(t) + α1GCt + α2GC
2
t + Ej(t),∀t ∈]tjs+1, t

j
s] (1.1)
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Where Y is the processed signal, µ denotes the original signal, j the pro�le, s

the segments (segmentation will be explained in 1.4.2), t the clone position , b is

the probe e�ect, E a Gaussian white noise, GC is expressed as percentage.

We only have a relative measure at our disposal. Hence the log ratio between

test and reference sample has to be transformed in a estimate of the CNV status,

i.e. in Table 1.2.

Table 1.2: Conversion of the number of copies into an absolute measure and cor-

responding log2 values of expression

Loss 0-1 copies log2 y < 0

Normal 2 copies log2y = 0

Gain 3-4 copies 0 < log2 y ≤ 2

Amplification more than 4 copies log2 y > 2

The detection of an absolute measure is called Calling [6].

1.4.2 Calling and Segmentation Models

There are two main frameworks of approaches to deal with CNV in aCGH technol-

ogy. Calling models the state of each probe using calling, i.e. giving an absolute

measure to each probe. These methods can make use of the dependence between

neighboring clones with Hidden Markov Models, where the true copy number val-

ues are the latent states in the HMM design. Van de Wiel et al. [6] performed

an accurate algorithm, named CGHcall, where they counteract �uctuations of

loss/normal/gain levels and combined a mixture model with six states (l indicates

the states)

Ytsj v N(µsj, σ
2
j ) (1.2)

with

µsj v
6∑
l=1

plN(γl, τ
2
l ) (1.3)
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Hence, in this model the signal depends on a mixed proportion of the states

(indicated by pl for each l state).

Magi et. al [7] simulated the shifts in the mean with an algorithm, called Shifting

Level Model, that simulates a noisy sequential process based on a Hidden Markov

Model procedure. Parameters are then simulated using an EM algorithm.

The second approach exploits the use of segmentation models. Segmentation mod-

els are based on the need of identifying segments with common means, separated

by breakpoints between neighboring clones, and estimate the mean of these re-

gions. Picard et al. [8] suggested that CGH pro�le is supposed to be a gaussian

signal and two types of changes can be considered: changes in mean and variance

and changes only in mean. Hence, two di�erent segmentation models based on

these changes could be provided. Later, Picard et al. [5] proposed a model to

extend segmentation to all pro�les simultaneously (Joint Segmentation). Nobody

said Calling and Segmentation can not be crossed. van Wieringen, Van de Wiel et

Ylstra [13] showed calling consequentially to segmentation in preprocessing.

Some Models related to segmentation could solve one of the greatest problems of

the aCGH data, the presence of �wave bias" [10] technical artifacts in the pro�les.

Some researchers began to consider aCGH data with di�erent approaches. In 2005

Lai et al. [9] tried to perform eleven di�erent algorithms on aCGH data, obtaining

the best results with Quantile Regression, Lowess and Maximum Overlap Discrete

Wavelet Transform (MODWT). In 2009 also van de Wiel and al. [10] began to

study aCGH data in the continuous domain, purposing to shrink data applying

a ridge regression on the signal smoothed with loess curve. Novak et al. [11]

proposed the Fused Lasso Latent Feature Model (FLLat) to provide a statistical

framework for modeling multi-sample aCGH data and identifying regions of CNV.

The procedure involves modeling each sample of aCGH data as a weighted sum

of a �xed number of features, then identi�es regions through FLLat applied to

each feature. Baladandayuthapani et al. [12] proposed a hierarchical Bayesian

random segmentation approach for modeling aCGH data that uses information

across pro�les from common population to discover segments of shared copy num-

ber changes. These changes allow comparing di�erent population aCGH pro�les.

The Posteriori simulation is done via MCMC.

Van de Wiel and van Wieringen [14] showed the need of reducing the dimensional-

15



ity for aCGH optimizing the information loss. Dimensionality is reduced creating

regions of clones, using a threshold for the di�erences between neighboring clones.

The distance function must express a value under the threshold within all the

possible couples of clones in the region and over the threshold between clones

neighboring in the breakpoints. The number of regions selected will depend on

the threshold selected. With Ylstra [15] was proposed also a clustering algorithm

for called aCGH, introducing weights for regions and clones by prior informations

about chromosomes and the speci�c disease studied.

1.4.3 Multiple Testing

Since a segmentation model is developed, testing is necessary to verify if there

are signi�cant copy gains/losses between sample and reference. In the context

of segmentation testing could be straightforward if the scienti�c question is only

about copy gain or loss, because under the null hypothesis we have a straight

line on the horizontal axis (CNV = 0). Hence, simple linear hypothesis tests

could be provided with an estimation of mean and variance of the segments. The

real problems are the number of simultaneous tests involved and the correlation

between neighboring clones. It is often necessary resort to techniques of multiple

testing, as FDR and Local FDR or correction of Holm-Sidak for p-values.

In testing di�erences between groups, one can prefer to perform tests on regions

using aberration calls (i.e. a loss of a gain of one chromosome al least) rather

than log2 ratios, as Van de Wiel et van Wieringen do [14] using a Wilcoxon two-

sample test. This is to simplify the interpretation, because in the aberration case

rejecting the null hypothesis one can conclude that the aberration levels di�er. In

the segmentation case, one can say there are signi�cant di�erences between mean

log2-ratios, but this statement does not bring to a clear interpretation.

However, literature is very poor about testing, especially in the case of multiple

pro�les. For multiple pro�les the Van de Wiel, Van Weringen et Ylstra[15] used

clustering and a model-based classi�cation approach, as mentioned above, but

there are not formal procedures for testing.

16



Chapter 2

Case Study and Objectives

2.1 Background

Gastrointestinal Stromal Tumors (GIST) are tumors that a�ect mesenchyme, a

loose connective tissue that is derived from the mesoderm, one of the three primary

germ layers in the embryo for the gastrointestinal tract. The majority (60 %) of

these tumors is located in the stomach, 25% in the small intestine. the remaining

15% a�ects the large intestine or the esophagus. The presence of a GIST is usually

associated with the mutation of the Mast/stem cell growth factor receptor, well

known as KIT gene. GIST family has been identi�ed only after the discovery of

the link between KIT antigen and tumors. Prior they were recognized as muscular

tissue tumors. In some cases where KIT mutation is not identi�ed alpha-type

platelet-derived growth factor receptor (a protein encoded by the PDGFRA gene)

is mutated. KIT and PDGFRA mutations are mutually exclusive.

GIST tumors identi�cation is not straightforward, since the lack of symptoms.

Beside the di�cult identi�cation, they are also dangerous due to the emergence of

metastasis, which happens in half of the cases. Moreover, these tumors cannot be

treated with chemotherapy or radiotherapy. The opportunities to save a patient

are surgery or the use of Imantinib, an inhibitor for KIT and PDGFRA[16].
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2.2 Data Description

The researchers have used two-channel aCGH microarrays to assess the copy num-

ber variation for the chromosome 13 under three di�erent GIST types:

1. PDGFRA Mutations ;

2. Gastric KIT Mutations;

3. Non-Gastric KIT Mutations.

60 pro�les have been collected, using the dye-�ip technique. Dye �ip is per-

formed for avoiding bias due to di�erences in �uorescence in the di�erent channels.

Some pro�les consist of samples that are labeled with Cy3 and where Cy5 1 is used

for the reference, for other pro�les the dyes are reversed. Pro�les for chromosome

13 have 97 contiguous clone positions. All pro�les read the same clones in the

same order, hence they are comparable.

For every observation in the dataset the following features are recorded:

• Clone: the name of the clone used for hybridization. The pre�x "RP11"

indicates that all clones come from the human male BAC2 library. Except a

few small ones, clones are extended in order to 130-225 Kb.

• Response value : To built the response value four measurements were

collected: the intensities of the sample and the reference and the background

intensities of the sample and the reference. The background intensities of

the spot are used for a background correction. Response value is given

subtracting the logarithm of the reference intensity to the sample intensity,

both corrected with the background intensity. In other words, it is the log2

ratio between sample and reference intensities.

1Cy3 and Cy5 are the most popular Cyanine dyes used, providing respectively green and red
�uorescence. Cyanine is the synthetic dye family used in biotechnology.

2BAC stands for Bacterial Arti�cial Chromosome. It is an arti�cial DNA vector able to
transport regions up to 300 kb. The resulting protocol "BAC by BAC" has been used to sequence
the human genome, alternatively to "shotgun" approach. BAC has been used for the Human
Genome Project.
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• ID: a number between 1 and 60 to indicate the source pro�le.

• Group a number between 1 and 3 to indicate the treatment group. The

corresponding treatments are those mentioned above in this section

• Starting Position : indicates the start position of the clone in the chromo-

some.

• Ending Position : indicates the ending position of the clone in the chro-

mosome.

• GC Content: GC content for the probe, it is used in section 2.3 for pre-

processing.

We show below the CNV data of this dataset are presented in R.

CLONE CHROMOSOME response1 Id_array Group START

1 RP11-76K19 13 0.41150354 1 1 20238604

2 RP11-187L3 13 -0.20778623 1 1 20841155

3 RP11-110K8 13 0.99019630 1 1 22085693

4 RP11-26A3 13 0.18916734 1 1 23210664

5 RP11-760M1 13 -0.19574522 1 1 23990527

6 RP11-556N21 13 -0.03875384 1 1 25025512

END GC_content

1 20239297 0.4273188

2 21021905 0.4635838

3 22262824 0.3885880

4 23211399 0.3742748

5 24166746 0.4217345

6 25204118 0.4207925
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2.3 Preprocessing

Giving a quick glance to data we can notice that the design is not balanced. There

are 16 pro�les for PDGFRA Group, 21 for Gastric-KIT and 23 for Non-Gastric

KIT. Moreover, pro�les are often a�ected by missingness and some probes and

pro�les are more a�ected than others. The reason why some data are missing stays

in a technical artifact: it could happen that background intensity is bigger than

spot intensity and negative values are obtained. Hence, it is impossible transform

to log-intensity. Some preprocessing is needed to obtain clean data.

Furthermore, response has not been retained as it was, but It has been corrected

by the median value of the autosomal3 chromosomes. The reason is because these

data were used in the past for other studies with di�erent chromosomes analyzed.

2.3.1 Balanced Design

We want to have a balanced design and exclude pro�les that are too much a�ected

by missingness. Balanced design is needed to calculate further a Mean Absolute

Deviation (MAD) that is balanced between groups. We can mix these two opera-

tions excluding pro�les that have at least more than 3 observations missing. Since

missingness a�ects more the second and third, we have already balanced a little

bit the groups. In order to obtain 14 pro�les for each group, we have selected at

random a few pro�les in second and third group between pro�les with exactly 3

missing values.

It is necessary for the wavelet transform to have entire pro�les, without missing

values. With this preprocessing we are going to impute 3 observation per pro�le

at least, hence eventual bias in imputation will not a�ect too much estimates.

We had the raw data not at our disposal. Because the scope of the thesis is

a �rst evaluation of the use of wavelet based functional mixed models to CNV

applications, we consider a simple work-around. In real applications, the data

could be extracted again and other strategies could be considered to circumvent

the log intensity problem, e.g. the use of the generalized logarithm. For estima-

tion purposes, we will also work with a balanced design. Because the methods

3Chromosomes that are not sex chromosomes.
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are regression based, they can easily deal with non-balanced designs in practical

applications.

2.3.2 GC Content Normalization

The response is �rst normalized by GC content. The response is also a�ected by

the potential group e�ect. We therefore propose a model with a smoother for the

group e�ect and for the GC content:

Y = β0 +

p∑
j=1

fj(uj) (2.1)

The response is corrected subtracting the prediction obtained with a General-

ized Additive Model with p basis function fj(x) that represent the smooth e�ect

for GC content and group e�ect.

Figure 2.1: Decomposition of the signal in GC Content and Group E�ects by

GAM for Chromosome 13. The upper plots represent the groups' response while

the lower are the response conditioned for groups and the unconditional response.
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2.3.3 Imputation of Missing Values

To impute missing observations we use the algorithm MI, that stands forMultiple

Imputation. The concept behind Multiple Imputation refers to impute each

missing value more than once in order to complete data. Hence, suppose there

is a matrix Y with yo observed data and ym missing values. Through Multiple

Imputation we obtainM (the number of cycles of imputation) completed data set.

A vector θ̂ of parameters is estimated for each dataset and the parameter vector

�nal estimation is given by the arithmetic mean of the estimates.

Summarizing [17]:

1 Draw each Y m∗
i from f(ymi |yoi );

2 Using completed data Y c = (Y o, Y m∗) estimate the parameter of interest

θ̂ = θ̂(Y c).

3 repeat steps 1 and 2 for M times and calculate θ̂∗ = 1
M

∑M
j=1 θ̂

(j) .

Hence, The imputation of missing data will be conducted hand in hand with

estimates.

2.4 Data Overdispersion

It appears that some pro�les between the 42 selected su�er some problems of

overdispersion. The reasons of these cases of overdispersion are unknown, as we

can see in �gure 2.2 where the most serious cases of overdispersion are collected.

Both pro�les similar and non-similar to their corresponding group mean pro�le

(group mean pro�les are shown in Chapter 4) could su�er problems of overdisper-

sion, hence it is not straightforward comprehend which is the reason. Overdisper-

sion could be due to technical artifacts, or to data speci�c irregularities, but one

explanation does not exclude the other. Overdispersed pro�le in Figure 2.2 are

compared with pro�les with regular dispersion in Figure 2.3.
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Figure 2.2: Overdispersed Raw Data Pro�les 4,9,12 and 22.

Figure 2.3: Raw Data Pro�les 2,11 ,21 and 39.
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2.5 Objectives and Outline

A �rst analysis of array-CGH in GIST was conducted by Wozniak et al. [18]. That

work aimed to identify with aCGH technology copy number gains and losses in

the chromosomes. Chromosome 13 was one of the chromosomes that showed more

genomic losses, equal to 29 % of chromosomal array. Two minimal overlapping

regions of deletion where found, at 13q14.11-q14.2 and 13q32.3-q33.1. The former

includes a tumor suppressor gene, RB-1, while the latter has not be assigned to

anything.

In this thesis we will provide a functional representation of these data in chap-

ter 3. Data are very noisy and a sparse representation is needed for inferring on

the underlying copy number status. But some problems arise in the choice of a

credible technique of thresholding before backtransforming. Smoothing needs to

be strong in order to obtain few big regions of clones that can be interpreted as

linked to known genes in an enrichment analysis.

Further, in chapter 4,wavelet coe�cients will be processed with a functional

model and thresholded with two di�erent empirical Bayes approaches : the �rst

uses a Je�reys' Noninformative Prior to provide MAP (Maximum a Posteriori)

Thresholding. The second one selects coe�cients of interest calculating their

LFDR (Local False Discovery Rate) and selecting an appropriate threshold for

p-values.

Looking to pro�les, other problems arise when there are pro�les completely

di�erent from the other pro�les of the same group. Making inference only on

group mean pro�les could provide incomplete results and shows good di�erences

between groups, but does not show di�erences within groups. Moreover, in the

context of personalized medicine it is very useful for the clinicians to dispose of

a method for interpreting both group mean pro�les as well as individual pro�les,

simultaneously. A mixed model approach is considered in chapter 5 for modeling

the group mean pro�le as well as individual pro�les.
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Wavelet based methods have been developed for genomic applications, e.g.

Clement et al. [19]. Their method was developed for gene expression studies

with tiling arrays. Tiling arrays are a microarray platform. Tiling Arrays are

a subtype of microarray chips for the measurement of di�erential expression that

di�er from the usual microarrays in the nature of the clones: tiling arrays clone

for sequences that are known to exist in a contiguous region, in order to char-

acterize regions. Hence, Tiling Arrays allows to functional analysis. Clement

adopted a wavelet-based functional model to this context with a fast empirical

bayes method to provide adaptive regularization of the functional e�ects. The func-

tions elaborated for that work were included in the package WaveTiling developed

by De Beuf, Pipelers and Clement for Tiling Array transcriptome analysis. This

work exploits the package WaveTiling using the functions wavebacktransformK,

MapMarImpEstJ and WaveMarEstVarJ.
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Chapter 3

Data exploration using Wavelets

3.1 Introduction

aCGH data are particularly noisy. The noise is assumed to be normally distributed.

Regularization is not performed in the original domain but in the wavelet domain,

which has advantageous properties for denoising.

However, smoothing is not straightforward. Many techniques have been tested

in order to obtain correct smoothness. It is necessary to combine models with

piecewise representation to proceed with a segmentation model that could answer

to scienti�c questions in genomics context.

A Sparse representation meets some of these requirements. A sparse parame-

terization allows to represent the data with a relative few coe�cients and reduces

the dimensionality. Here, we exploit a sparse representation in the wavelet do-

main. One can use thresholding for this purpose, i.e. we �rst transform the data

to the wavelet space and use a threshold to set some of the coe�cients to zero.

In Chapter 4 we will show advanced thresholding techniques based on empirical

Bayes methods. Another way is to perform a decomposition which allows to re-

duce the dimensionality by de�ning recombining the wavelet coe�cients in a more

e�cient basis, such by adopting a sparse principal component analysis (PCA) on

the wavelet coe�cients. The aCGH pro�les will then be represented by a limited

number of PCs. Upon regularization in the wavelet domain, we will evaluate the

di�erent approaches by backtransforming the denoised pro�les to the original do-
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main. Finally, we will show how clustering helps the identi�cation of di�erences

between pro�les and its properties linked with wavelets.

3.2 Wavelet-based Smoothing

A Wavelet is a wave-like oscillation with a de�nite amplitude around zero. The

Wavelet is a kind of representation that can be usually found in time frequency

representation for continuous time. This kind of representation is related with

harmonic analysis. But, it is possible to use a wavelet decomposition in any func-

tional context. In practice we never dispose of continuous in�nite observation of

the function, but, we observe a discrete realization of it. Within a wavelet context,

it is computationally e�cient to use a discrete representation.

Mathematically, Wavelets use complete orthonormal basis to represent func-

tions in an alternative way. The Wavelet representation allows to show a phe-

nomenon with his time (or position, in a FDA1 context) and frequency localization

[20]. The wavelet decomposition is a linear projection of the data with as many

coe�cients as observations and it does not lead to an information loss. Therefore,

the wavelet coe�cients have to be further manipulated for obtaining a sparse rep-

resentation. In summary, aWavelet- Based smoothing procedure follows three

steps:

1) compute the coe�cients of the signal (Y = DW T );

2) alter the coe�cients D and obtain B∗

3) backtransform modi�ed coe�cients for obtaining [Y ∗ = (W TB∗)−1].

Wavelet transformation could be done in a continuous domain (Continuous

Wavelet Transform) or based on the grid that is spanned by the observations

(Discrete Wavelet Transform). For many reasons, we adopt DWT:

• DWT is computationally simpler and easier to understand than CWT;

1Functional Data Analysis
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• DWT appears as a piecewise-constant representation, that is more familiar

for our purpose, because it identi�es chromosomal regions and breakpoints

of a segmentation model;

• DWT coe�cients tend to be less correlated than original data [22].

3.2.1 Computation of Wavelet Coe�cients

The CNV on clone positions can be taught as realizations of a function f along

genomic coordinates. If we indicate these coordinates with ti = i/T ,

Yi = f(ti) + εi i = 1, . . . , T. (3.1)

With the error terms εi normally distributed random variables with zero mean

and variance σ2. The Wavelet basis are generated by translations and dilations

of one or more scaling function known as Wavelet Father. We adopt the Haar

basis, which produces a piecewise-constant representation. The father wavelet is

a constant and denoted by φ(t) and it is an identity function:

φ(t) = I(t ∈ [0, 1]) (3.2)

A wavelet father space is called reference space [20] and it is usually indicated

with V0 . The index l indicates the width of dilations. l is equal to 0 for the

reference space because there is no dilation for the reference space. If l increases,

the shape of the corresponding space is tighter.

Hence, we can impose l dilatations to the reference space that form orthonormal

basis Vl ⊃ Vl−1 ⊃ · · · ⊃ V0 and each Vl is spanned by:

φl,m(t) = 2l/2φ(2lt−m) (3.3)

and m is an integer that represents the translations of the dilations. There is

clearly a dependence between l and m:

m ∈ [0, 2l − 1] (3.4)

The Haar Wavelet Mother function splits its support in two intervals:
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ψ(t) =


1 0 < t ≤ 1/2

−1 1/2 < t ≤ 1

0 otherwise

(3.5)

To reach a function for further dilations, we can consider Wl as the orthogonal

complement of Vl to Vl+1. Then it is Vl+1 = Vl ⊕Wl, calling Wl as detail. The

orthonormal basis Wl are generated by the Wavelet Mother :

ψl,m(t) = 2l/2ψ(2lt−m) (3.6)

It is straightforward notice that an orthonormal basis for W0 is calculated as

ψ(t) = ψ(2t)− ψ(2t− 1).
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Figure 3.1: Wavelet basis functions obtained for a vector of dimension N=8. φ0(t)

represents the wavelet father, while ψl,m are the wavelet mothers.

The wavelet transformation is a linear projection which can be denoted using

the Haar Transform Matrix (W ). The Haar Transform Matrix is presented as

an N × N matrix, and N must be divisible by 2L. The ratio N/2L = r indicates

the number of wavelet father involved. If there is more than one wavelet father,

the matrix W will be a block diagonal matrix with 2L × 2L blocks, T = 2L, one

Wavelet father presented as:

φ0(t) =
1√
2L

0 < t ≤ 1 (3.7)

And 2L − 1 wavelet mothers de�ned as:
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ψl,m(t) =
1√
2L


2l/2 m

2l
< t ≤ m+0.5

2l

−2l/2 m+0.5
2l

< t ≤ m+1
2l

0 otherwise

(3.8)

Hence a new matrix D is obtained that contains the empirical wavelet coe�-

cients, i.e. the projections of the data on the space spanned by the wavelet basis

functions.

Y = DW T (3.9)

The construction of the orthonormal basis and the estimation of the matrix D

are done simultaneously in R following an algorithm called Fast Wavelet Trans-

form. In the next section we are going through the algorithm and show which

elements are involved to understand how a Wavelet Transform works.

Fast Wavelet Transform

FWT is a recursive algorithm designed by Mallat in 1989 to decompose a waveform

into a sequence of coe�cients based on orthonormal basis and reconstruct after

processing.

First, an Haar Matrix 2 × 2 is created. We will call this matrix the �lter W and

the �rst row will be the Low-Pass Filter, as the second row will be the High-Pass

Filter.

W =
1√
2

(
1 −1

1 1

)
(3.10)

This Haar Matrix, used in combination with a vector y of N elements, could

come up with the contrast (Low-Pass) and the grand mean (High-Pass) of each

couple of adjacent values. The results of the �rst iteration are twoN/2-dimensional

vectors of means and contrasts. The vector of means is allocated in the �rst

N/2 positions of the resulting vector d, while the vector of contrasts is used for

the second iteration. The vector of means resulting from the second iteration is

allocated in queue to the resulting vector, while the vector of contrasts is iterated
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another time, and so on.

The new vector d will be composed by
∑L

l=1N/2
l Wavelet Mother coe�cients,

while the remaining N/2L contrasts will be allocated in queue to the vector d as

Wavelet Father coe�cients.

After processing on Wavelet Coe�cients, data will be reconstructed following the

inverse procedure.

3.2.2 Advantages and Disvantages in the use of Wavelets

Wavelets di�er from other functions that support smoothing in that they do not

impose regularisation by smoothness but by signal sparsity for capturing discon-

tinuities and isolated spikes[20].

In the context of DWT, Nyguen et Al. [21] objected that DWT creates artifacts

around the discontinuities of the input signal. Moreover, Wavelet Fathers and

Mothers are located depending on where the series start, hence starting only one

clone further in the series could change the locations of the breakpoints. Nyguen

et al. preferred in their work the use of Maximum Overlap DWT (MODWT). The

Maximum Overlap DWT has NJ coe�cients, with a redundant ratio of (J+1):1 .

The MODWT has good properties, but the wavelet coe�cients become dependent

from each other, that is disadvantageous for testing. DWT is also shift-variant,

i.e. if wavelet father is shifted brings to di�erent results, while MODWT is shift-

invariant, because it uses a father wavelet for each position.

It should be recalled that wavelet transform needs complete data, without missing-

ness, and a array of data with dimensionality proportional to 2J to be performed.

Note, however, that the detailed wavelet coe�cients will also compensate an im-

proper of the large wavelet functions and partially alleviate the problems reported

by Nuyguen et al.
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3.3 Wavelet Based Denoising

3.3.1 Wavelet Thresholding

Computed the DWT Coe�cients, the next step is to process coe�cients in order

to shrink data. Many ways could be covered, mostly because the decorrelation

property suggests processing the coe�cients independently of each other [22]; Now

we will focus on the classical choices for shrinkage, based on thresholding, proposed

by Donoho and Johnstone [23] . Since typically the structure of the signal is

concentrated in few large coe�cients, and the remaining coe�cients only capture

noise, The Hard Thresholding simply sets all the coe�cients under an arbitrary

threshold λ to zero:

δhardλ (ω) =

0 |ω| ≤ λ

ω |ω| > λ
(3.11)

While the Soft Thresholding sets the coe�cients below the threshold λ to zero

and shrinks the remaining coe�cients towards zero by subtracting the thresholds:

δsoftλ (ω) =

0 |ω| ≤ λ

sgn(ω)(|ω| − λ) |ω| > λ
(3.12)

In Figure 3.2 the di�erence between hard and soft thresholding is clearer.
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Figure 3.2: Representation of Hard and Soft Thresholding shrinking ω with λ

=1. Blue line is the soft thresholding representation, while red line is the hard

tresholding.

An important aspect to keep in mind is that thresholding is applied only on

wavelet mother coe�cients. Threshold the wavelet father coe�cients creates bias

because they are the reference space for the wavelet mother coe�cients.

3.3.2 Sparse Principal Component Analysis

Functional Principal Component Analysis

Ordinary Principal Component Analysis (PCA) is a well-known technique used

in the �eld of multivariate statistics to reduce the dimensionality of data. The

mathematical procedure behind PCA uses an orthogonal transformation to con-

vert a set of multivariate observations into a set of values of linearly uncorrelated

variables. The transformation is de�ned in such a way that the �rst component

has the largest possible variance under the constraints mentioned above. The re-

duction of dimensionality is obtained selecting a limited number of components

(the principals, indeed), less than the original number of variables.
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This concept could be generalized to functions, operating on a set of continuous

curves rather than discrete vectors.

Deeper through, we have a set of functional curves ft(x), t = 1, . . . , n and through

an orthogonal transformation we want to obtain a set of k ≤ n principal compo-

nents denoted by ϕk(x).

The �rst FPCA ϕ1(x) is given as:

βt,1 =

∫
ϕ1(x)ft(x)dx (3.13)

Where βt,1 is the Score vector, the new coordinates for each t basis function,

maximizing
∑

t β
2
t,k subject to∫

ϕ1(x)2dx = ||ϕ1(x)|| = 1 (3.14)

The second component has the Score vector βt,2 with the additional constraint∫
ϕ1(x)ϕ2(x)dx = 0 (3.15)

Hence, each component k is given as βt,k =
∫
ϕk(x)ft(x)dx subject to

∫
ϕk(x)2dx =

1 and
∏k

n=1

∫
ϕn(x)dx = 0 .

Zou, Hastie and Tibshirani [24] discussed a regression approach to PCA. Hence,

they demonstrate that Sparse PCA could be performed as an elastic-net regression

problem and they built an algorithm to obtain a numerical solution for the Load-

ings, the measurement of the contribute of each basis to the principal components.

PCA Regression Approach

Suppose we are performing a functional PCA on p basis and we need to obtain

k ≤ p principal components. The data matrix X is decomposed using Singular

Value Decomposition.

X = UΣVT (3.16)

Where U is the matrix of eigenvectors of the covariance matrix XXT , Σ is a
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rectangular diagonal p×k matrix and V is the matrix of eigenvectors of the matrix

XTX. Then Z = UΣ are the principal components, while V are the loadings.

Hence PCA could be seen as a regression problem, where scores are estimated

by least squares criterion.

β̂ = arg min
β
||Z −Xβ||2 (3.17)

Sparse Principal Components based on the SPCA criterion

Zou, Hastie and Tibshirani [24] use a naive elastic net to obtain a Sparse Represen-

tation for PCA. It requires a positive parameter λ for ridge penalty and a positive

parameter λ1 for LASSO penalty. Then we consider the following optimization

problem:

β̂ = arg min
β
||Zi −Xβ||2 + λ||β||2 + λ1||β||1 (3.18)

Where ||β||1 =
∑p

j=1 |βj| is the 1-norm of β. Then V̂i = β̂

||β̂|| is the approxi-

mation of the ith loadings and XV̂i is the ith approximated principal component.

Clearly, large enough penalties give a sparse representation.

But 3.18 depends on the results of PCA. Hence,Zou, Hastie and Tibshirani [24]

presented a "self-contained" regression criterion to derive Principal Components.

Let xi be the ith vector of the data matrix X, then we can derive the whole

sequence of principal components:

(Â, B̂) = arg min
A,B

n∑
i=1

||xi −ABTxi||2 + λ
k∑
j=1

||βj||2 +
k∑
j=1

λ1,j||βj||1 (3.19)

subject to ATA = Ik×k

Then, β̂j ∝ Vj for j = 1, 2 . . . , k.
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General SPCA Algorithm

The next step is to solve the optimization problem 3.19. Since there are two matri-

ces, Â and B̂ to estimate, Zou, Hastie and Tibshirani [24] proposed an alternating

algorithm. Before running the algorithm, we will show that

n∑
i=1

||xi −ABTxi||2 = ||X−XBAT ||2 (3.20)

Since A is orthonormal, there exist an orthonormal matrix A⊥ such that

[A; A⊥] is p × p orthonormal. Then:

||X−XBAT ||2 = ||XA⊥||2 + ||XA−XB||2

= ||XA⊥||2 +
k∑
j=1

||Xαj −Xβj||2
(3.21)

1. To get B given A we should minimize:

arg min
B

k∑
j=1

{
||Xαj −Xβj||2 + λ||βj||2 + λ1,j||βj||1

}
(3.22)

A is initialized with the loadings V[, 1 : k] calculated from the SVD of X.

2. To getA given B the penalized part is not necessary and we should minimize

only 3.21. The solution is obtained computing SVD for (XTX)B and set

Â = UV
T
.

3. repeat steps 1 and 2 until convergence.

4. Normalize V̂j =
βj
||βj || , j = 1, . . . , k.

Reconstruction of Pro�les

SPCA algorithm estimates loadings, our goal is to provide a sparse representation

of pro�les. Now we will show how to get a representation centered by column

means (means of the response values for each clone).

1. Calculate the scores on the sparse PCA: B̂ = DV̂
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2. Backtrasform loadings for i = 1, . . . , k Principal Components: V̂i = W−1V ∗i

3. Calculate sparse pro�les:
∑k

i=1 V
∗
i B̂i

3.3.3 Cluster Analysis

The objective of a cluster analysis is to group the observations into a limited num-

ber of groups (clusters) so that the observations in the same cluster are similar,

and observations in di�erent clusters are dissimilar. From this description it may

become clear that the de�nitions of similar and dissimilar are very important. In

our thesis we will use a hierarchical clustering to group pro�les, based on their

wavelet coe�cients. A distance matrix based on euclidean distances will be cre-

ated, and we will present a dendrogram using Complete Linkage Clustering (the

maximum of coe�cients' distances) as distance function.

The Cluster Analysis in this context is useful to detect possible categories of pro-

�les, and helps us to show that Wavelet Transform is invariant: it translates all

the pro�les in a di�erent domain without changing relationships between pro�les.

3.4 Results

In this section we will illustrate the performance of the wavelet denoising method

introduced in section 3.3 with plots. We use three randomly chosen pro�les from

each group.The PDGFRA Group is represented in red, Gastric KIT in green and

Non-Gastric KIT with a blue color. In Figure 3.3 we can see pro�les 12, 22 and 39

as they appear after preprocessing and normalization. Note that the preprocessed

data are very noisy, which makes it extremely di�cult to interpret the pro�les and

con�rms the strong need for denoising the pro�les, �rst.
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Figure 3.3: Pro�les 12 (left), 22 (center) and 39 (right) represented after prepro-

cessing and normalization

As introduced in Section 3.2.1 the discrete wavelet transform needs a dyadic

data series. In our dataset we have N = 97 clones per pro�le, hence from now

on we will suppress the last clone, RP11-245B11 to obtain our Wavelet Trans-

form. It is an a�ordable trade-o� for the analysis, since that clone is a�ected by

missingness in the 20 % of the pro�les. Hereupon there are 96 coe�cients and L=5.

First we will show Hard Thresholding In Figure 3.4 and Soft Thresholding in

Figure 3.5.
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Figure 3.4: Pro�les 12 (red line), 22(green line), 39 (blue line) represented with

Hard Thresholding . Lines are the obtained pro�les, dots the raw data points. 6

di�erent values of λ are selected and compared.
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Figure 3.5: Pro�les 12 (red line), 22(green line), 39 (blue line) represented with

Soft Thresholding . Lines are the obtained pro�les, dots the raw data points. 6

di�erent values of λ are selected and compared.

Obviously a larger λ gives rise to a more sparse representation. In this setting

di�erences between hard and soft thresholding are minimal.

The SPCA representation has another advantage in addition to the sparse repre-

sentation of pro�les. Biplots can be constructed which can be used to �ag abnormal

pro�les. We produced a biplot using the �rst two sparse principal components. In

Figure 3.6 it can be observed that the majority of abnormal pro�les are belonging

to the Non-Gastric Kit Group.
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Figure 3.6: Scores of Principal Components for Wavelet Coe�cients. Scores are red

dots for PDGFRA pro�les, green dots for Gastric KIT, blue dots for Non-Gastric

KIT. PC1 expresses the 50.2 % of the variance, PC2 the 7.7%.

We will use an e�ective SPCA representation up to six principal components,

with λ = 10−6, while λ1 = 1 for each PC. The SPCA function are a linear com-

bination of wavelets and form a novel orthogonal basis. We will reconstruct the

signal in the original space starting using the �rst principal component function

and by expanding the basis with one additional PC function until we use all six

PCs. Obviously, the precision of representation will increase with the number of

PCs because they explained a larger part of the variance.
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Figure 3.7: SPCA Representation for centered CNV expression for Pro�les 12 (red

line), 22(green line), 39 (blue line) with a variable number of principal components,

from 1 up to 6.

We conclude the Section on wavelet denoising with a Cluster Analysis using

a distance matrix based on Complete Linkage between Wavelet Coe�cients. The

cluster analysis also shows evidence on linked abnormalities in Non-Gastric KIT

Group, and gives us the opportunity to show another important property of wavelet

coe�cients: if we carry out the analysis on Raw Data, we will obtain exactly the

same results. This could be expected because the wavelet transform is a variance

preserving rotation of the data.
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Figure 3.8: Cluster Analysis on Empirical Wavelet Coe�cients of pro�les.
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Chapter 4

Wavelet Based Functional Models

4.1 False Discovery Rate

When the signi�cance level is set to α = 0.05 for N independent tests, the con-

sequence is a probability of 0.05 to declare a test signi�cant by chance under the

null hypothesis.

Hence, the probability to declare at least one test signi�cant for N independent

tests is 1− (1−α)N . This leads us to deal with a problem: if N is large, there will

be for sure a huge number of false positive tests.

This problem usually arises in genomics, when thousands of simultaneous tests are

carried out. Since the development of bioinformatics, many techniques have been

provided to solve this problem. First the focus has been on methods of correction

of the signi�cance levels, controlling a quantity called Family Wise Error Rate

(FWER) : FWER is de�ned as the probability to have at least one false positive

test between the N tests. But, the FWER method has the disadvantage to be too

conservative in the context of genomics. Benjamini and Hochberg introduced the

false discovery approach in 1995. [26]. This approach controls the expected ratio

of false discoveries on the total number of discoveries. In case of a considerable

fraction of positive feature, the Benjamini-Hochberg FDR procedure provides a

conservative estimate of the FDR. We �rst consider the di�erent outcomes in the

situation of multiple testing. Next we introduce the BH-FDR and the improved

procedure of Storey and Tibshirani [25].
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De�nition

Table 4.1 gives the confusion table for a multiple testing problem with m simulta-

neous tests. Let V be the number of false positives, S the number of true positives

and R = V + S the total number of signi�cant features. Then m0 corresponds to

the true-null or negative features and m1 to the positive features.

#declared non-signi�cant #declared signi�cant Total

#true null U V m0

#non-true null T S m1

Total m−R R m

Table 4.1: Table of confusion for m tests

The p-values guarantee that the expected number of false positives E[V ] ≤ 0.05m,

that is an expectation which is large in a typical genomics experiment with a vast

amount of features m. In a large scale testing problem controlling the FWER

will lead to conservative procedure. For biologists, a list of positive features that

contains a small number of false positives is very useful to setup validation experi-

ments. This rational has lead to controlling a measure which is related to the false

positive rate:

#false positive features

#significant features
=

V

V + S
=
V

R
(4.1)

The False Discovery Rate (FDR) is basically the expected value of this quan-

tity.

The FDR analogue for the p-value is the q-value, which is the the minimum

false discovery rate at which a particular test can be called signi�cant.
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Benjamini-Hochberg procedure

To get more insight in the Benjamini-Hochberg procedure we �rst order the p-

values from small to large, with (i) indicating the rank of the p-value. Hence,

FDR is that proportion of signi�cant features whose p-value is less or equal than

some threshold t, with 0 < t ≤ 1. Denote the ordered p-values by p1, . . . , pm,

hence:

V (t) = #{null p(i) ≤ t; i = 1 . . .m} R(t) = #{p(i) ≤ t; i = 1 . . .m}. (4.2)

and we want to estimate:

FDR(t) = E

[
V (t)

R(t)

]
(4.3)

If the observed R(t) (the number of observed p-values ≤ t) is an easy estimate

for R(t), estimating V (t) requires also the estimate of the number of truly null

features m0. But it is more interpretable the estimate of the proportion of the

truly null features, that we indicate with π̂0 = m0

m
.

In their seminal method Benjamini and Hochberg proposed to control the FDR

at the α-level by setting π0 = 1. Their approach proceeds as follows:

1. order p-values: p(1) 6 p(2) 6 . . . 6 p(m)

2. �nd the value t̂ that t̂ = max{t : p(t) 6 tα
m
}

3. If t̂ exists, reject all null hypotheses corresponding to p(1), . . . , p(t).

4. If no such t̂ exists, accept all null hypotheses.

5. p̃(i) = min
j=i,...,m

(m
j
p(j), 1)

Their method is a �step-up procedure� because it moves from small (less signif-

icant) to larger test statistics. Note, that BH-FDR assumes mutually independent

tests. If the assumptions hold, it guarantees

FDR 6
m0

m
α 6 α (4.4)
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FDR estimation

If m0 is known, a less conservative methods can be used by applying BH and

controlling it on the level αm0/m. Note, that π0 = m0/m. Storey and Tibshirani,

REF, developed an improved procedure by estimating the proportion of true null

features π0.

Under the hypothesis that p-values are uniformly distributed, we can form a

reasonable estimate, that involves the use of a tuning parameter λ.

π̂0(λ) =
#{pi > λ; i = 1, . . . ,m}

m(1− λ)
(4.5)

Setting the parameter λ we select how many features are involved in the esti-

mate of π̂0. The rational behind this estimating procedure is that the p-values of

the null features are uniformly distributed in [0, 1]. Taking λ too large results in a

conservative estimate for π̂0, and for small λ one runs the risk to include positive

features in the estimate for π0. Storey and Tibshirani [25] proposed to calculate

π̂(λ) at many di�erent values for λ and to smooth π̂(λ) in function of λ. Then

they proposed to use the smoothed estimate π̂(0.5).

Going back to 4.3, we replace the estimates in the formula:

ˆFDR(t) =
π̂0m · t

#{pi ≤ t}
(4.6)

Hence, the q-value is the minimum FDR that can be obtained when calling the

feature i signi�cant [25].

q̂(pi) = min
t≥pi

( ˆFDR)(t) (4.7)

4.1.1 Bayesian FDR

The FDR can also be obtained from a Bayesian perspective. Efron [27] consid-

ered a mixture model (two-groups model) for the m hypothesis test: F (z) =

p0F0(z) + (1−p0)F1(z), with p0 the marginal probability that a feature is negative

and 1− p0 the marginal probability that a feature is positive and the cumulative

distributions of the corresponding z-value of the tests are F0(z) and F1(z) under
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the null and the alternative hypothesis, respectively. The Bayes' rule yields the

posteriori probability of a feature being in the null group given its z-value smaller

then a threshold as:

Fdr(z) ≡ Pr {null|Z ≤ z} =
p0F0(z)

F (z)
(4.8)

The researcher select a proper control level and �nds the maximum z-value

that satis�es the rule. First,The joint cumulative density F(z) can be estimated as

F̄ (z) = #{zi ≤ z}/N , while the theoretical null distribution N(0, 1) can be used

for F0(z) . Hence, Fdr(z0) is the maximum value of z satisfying:

Fdr(z0) ≤ q (4.9)

Where q is the level to control the posterior probability. Note, that by setting

p0 to 1, a conservative estimate is obtained for the Bayesian FDR and that the

Bayesian FDR becomes equivalent to the Benjamini-Hochberg approach.

4.1.2 Local False Discovery Rate

It is also possible to perform a similar derivation using densities. Hence the Bayes

rule gives:

fdr(z) ≡ Pr {null|Z = z} =
p0f0(z)

f(z)
(4.10)

Which is also referred to as the bayesian Local False Discovery Rate (LFDR).There

is a straightforward connection between FDR and Local FDR. FDR is the mixture

average of fdr(Z) for Z ≤ z:

Fdr(z) = Ef{fdr(Z)|Z < z} (4.11)

The estimate of LFDR comes from an empirical Bayes approach. f0(z) could

be assumed as the theoretical null , or better for simultaneous testing situations

empirical null N(δ0, σ
2
0). These parameters are estimated in combination with p0,

using the zero assumption, stating that most of the z-values near 0 come from null

tests for f0, the theoretical null distribution can be used. However, the massive
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parallel structure of the large scale testing problem, also allows to estimate f0

by the empirical null N(m̂u, σ̂). These parameters are estimated in combination

with p0, using the assumption that most of the z-values near 0 come from null

distribution. . Two di�erent estimation methods are proposed by Efron [27],

analytical and geometrical, but we will focus only on the analytical one, even if

the locfdr algorithm developed in R shows both.

The analytic method assumes that the nonnull density f1(z) is supported outside

a given interval [a, b] containing zero. De�ne the Poisson P0:

P0(δ0, σ0) = Φ

(
b− δ0
σ0

)
− Φ

(
a− δ0
σ0

)
(4.12)

and

θ = p0P0 (4.13)

Then we get the desired estimates through the likelihood function of z0, the

vector of N0 z-values in [a, b]. (f0(z) = ϕ(z)).

fδ0,σ0,p0(z0) = [θN0(1− θ)N−N0 ] ·

[∏
zi∈z0

ϕδ0,σ0(zi)

P0(δ0, σ0)

]
(4.14)

The convolution of the two distributions belonging to the exponential family

provides the following maximum likelihood estimates (δ̂0, θ̂0, p̂0). Thus, To estimate

fdr we only need to estimate f(z) in 4.10

Now to estimate LFDR we need only f(z) in 4.10. In the locfdr algorithm

f(z) is estimated by means of a standard Poisson GLM. The z-values are binned,

giving counts yk = #{zi in bin k} with k = 1, . . . , K.Hence the yk are de�ned

independent Poisson:

yk ∼ P0(vk), k = 1, . . . , K. (4.15)

with vk proportional to density f(z) at midpoint xk of the kth bin.

Hence, f(z) could be modeled by an exponential family of j parameters:

f(z) = exp

{
n∑
j=0

βjz
j

}
(4.16)
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While the yk counts are used for power diagnostic:

y
(1)
k = [1− ˆfdr(xk)]yk (4.17)

That indicates the nonnull counts, hence

E( ˆfdr
(1)

) =

∑K
k=1 y

(1)
k

ˆfdrk∑K
k=1 ŷ

(1)
k

(4.18)

is the expected nonnull LFDR.

4.2 Functional Models

We will construct a wavelet functional model for inferring on the group mean pro-

�les. The models allow for assessing and calling individual group mean pro�les

as well as on contrasts between the group pro�les. There are two questions of

scienti�c interest:

1) What are the signi�cant aberrations for the groups?

2) Do the groups have signi�cant di�erent mean pro�les?

Similar to Clement et al. [19], we estimate a linear model in the wavelet space:

D = XB∗ + E∗, (4.19)

with D the matrix of empirical wavelet coe�cients, X a matrix with dummy vari-

ables for the group means, B∗ the group mean pro�les in the wavelet space and E∗

the errors in the wavelet space, which are assumed to be i.i.d. normally distributed

within each wavelet scale. The coe�cients are regularised in the wavelet space and

upon estimation, the estimated pro�les are backtransformed to the original space.

To infer on contrasts, two di�erent methods are evaluated. On one hand, the

contrasts are calculated in the wavelet space, and the wavelet coe�cients of the

contrasts are denoised and backtransformed. On the other hand, a similar regu-

larization is imposed on the group mean pro�les and contrasts are calculated after
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backtransformation. Each procedure will lead to similar estimates, but they will

di�er in smoothness.

As mentioned in section 3.1, di�erent thresholding techniques could be used. We

will describe LFDR-based in 4.2.1, and MAP-based in 4.2.2.

4.2.1 LFDR-Based Thresholding

The linear model on the j = 42 pro�les return estimates of the coe�cients B∗

and their standard error SE(B∗). These estimates could be used to provide a

simple t-test ti,k =
B∗i,k

SE(B∗i,k)
i = 1, . . . , 96, k = 1, 2, 3. and j− k degrees of freedom.

Hereupon the degrees of freedom are 42-3=39. These ti,k tests are converted to

z-values, hence LFDR is calculated as described in 4.1.2. We will use the LFDR

values to retain few coe�cients, and wavelet father coe�cients will not be consid-

ered but automatically retained for the reasons mentioned in 3.3.1.

There is not a general rule for the selection of the cuto� point for retaining co-

e�cients or shrink them to zero, and it depends on the level of smoothing the

researcher wants to obtain. For CNV data, a reasonable cuto� point is obtained

at q = 0.5. Hence:

δ0.5(B
∗) =

B∗i,k fdr(zi,k) ≤ 0.5

0 fdr(zi,k) > 0.5
(4.20)

Once selected the estimated coe�cients of interest, it is possible to backtrans-

form in the original domain with the inverse wavelet function and obtain the group

mean estimates.

Ŷ ∗ = (W TB∗)−1 (4.21)

where Ŷ ∗ is an i × k matrix. k group mean pro�les will be obtained and the

retained group coe�cients in the wavelet space will drive to a piecewise constant

representation where joined �pieces" are mentioned as Segments.
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4.2.2 MAP Thresholding

One of the drawbacks of the thresholding methods is the presence of tuning pa-

rameters. Figueiredo [22] proposes an alternative approach, using empirical Bayes

estimation imposing a Je�reys' noninformative prior on the variance parameter.

Returning to the 3 steps described in 3.2, in the second step it will be obtained a

Bayes Estimate of B̂∗.

B̂∗ is interpreted as the minimizer of the a posteriori expected loss, then:

Ŷ ∗ = W−1arg min
B̃∗

∫
L(B∗, B̃∗)p(B∗|D)dB∗ (4.22)

Where L(.) is a loss function that minimize the discrepancy between the param-

eter and any possible estimate. It is proved [22] that the estimate of Ŷ ∗ correspond

to a Bayesian criterion in the signal domain and the loss adopted corresponds to

L(Y ∗, Ỹ ∗) under orthogonal transformations as the Wavelet.

The 0/1 loss leads to the MAP (Maximum a Posteriori, the mode of the posterior

distribution) criterion:

L0/1(B
∗, B̃∗) = L0/1(WY ∗,W Ỹ ∗) = L0/1(Y

∗, Ỹ ∗) (4.23)

because this loss function is invariant under orthogonal transformations.

Thus, the inverse DWT estimate of the coe�cients is the MAP estimate of the

signal domain.

For the decorrelation property, we model the coe�cients as mutually independent.

We approximate decorrelation to independence [22] to state that also a posteriori

coe�cients are mutually independent. Hence, under the MAP criterion, coe�cient

can be computed separately:

B̂∗MAP = arg max
D

p(B∗|D) =

[
arg max

D1

p(B∗1 |D1), . . . , arg min
DN

p(B∗N |DN)

]
(4.24)

where N = IK.

The estimate comes from a hierarchical bayesian model, where coe�cients are

zero-mean gaussian (B∗|φ2 ∼ N(0, φ2)) and the improper Je�reys' prior p(φ2) ∝
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1/φ2 express amplitude scale invariance, that means that the inference procedure

is invariant under changes of amplitude scale.

The hierarchical bayesian model allows the use of an empirical Bayes technique

for the estimation of B∗ and φ2. Consider D|B∗ ∼ N(B∗, σ2):

φ̂2 =

(
D2

3
− σ2

)
+

(4.25)

With estimates to zero when (.) ≤0, Thus:

B̂∗ =
φ̂2

φ̂2 + σ2
D (4.26)

Notice there is any tuning parameter, as mentioned above.

4.3 Results

In this section we will �rst explain the practical solution to the missingness prob-

lem. We will calculate wavelet coe�cients of the matrix D using multiple impu-

tation. Missingness does not a�ects heavily estimations, for the following regions:

1) Missingness a�ects only 12 Clone positions of 4032;

2) Wavelet Coe�cients are not directly used for �nal inference but preprocessed

with a strong smoothing and backtransforming in all models. Thus, �nal

estimates of Y ∗ will not be in�uenced by the technique of imputation used.

3) Moreover, missingness is mainly introduced by an improper preprocessing

and can be avoided in practice.

However, the Y o
ik clone vectors are assumed as normally distributed, with mean

τik and variance$ik. Hence we will simulate Y
m
ik from a random normal forM = 10

times and proceed with the algorithm, obtaining the matrix D.

Then, we will estimate the group mean model following LFDR-Thresholding

procedure. Following the multiple imputation procedure in 2.3.3, we obtain a

matrix D of Empirical Wavelet Coe�cients. We can use this matrix for the group
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mean model, using the R function lmFit. With the 96× 3 estimates of coe�cients

and standard error we can obtain the z-values necessary for LFDR thresholding.

Figure 4.1: Histogram of LFDR for the group mean model. Green line is the

estimated d(z), while blue line is the empirical null. Pink bars are the estimated

nonnull counts. The horizontal axis is labeled by z-values.

The Figure 4.1 shows the estimate of f(z) cited in equation 4.16 with the green

line, while the blue dotted line is The empirical null. The estimate of f(z) is done

with 10 parameters for the exponential family and space is binned in k=30 bins.

The locfdr algorithm has estimated δ̂0= 0.052 and σ̂0= 1.501, giving an empirical

null f0 similar to the theoretical in mean but larger in variance. p̂0 = 0.987

indicates a strong infuence on fdr(z) of the empirical null. Pink bars are the

estimated quantities of nonnull counts (ŷ
(1)
k ). The measure of E( ˆfdr

(1)
) could be

used as comparison between di�erent thresholding. The bigger is this expected

value, the more pro�les will result smoothed. In this case E( ˆfdr
(1)

) = 0.513 .
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Using the threhsold discussed in 4.2.1 we can backtransform group mean esti-

mates and their standard errors and obtain the plot of group mean pro�les. As

we see in plot 4.2 and 4.3 in this model does not seem group mean estimates will

result signi�cantly di�erent and it could be that there are not signi�cant CNV

aberrations in all the group pro�les. In Figure 4.3 same sparsity has been imposed

as additional constraint, shrinking B∗i,k to 0 if mini[fdr(zi,k)] > 0.5. The same

sparsity imposed with the minimum LFDR for the i-th position increases the total

number of segments considered. Indeed, in Figure 4.2 there are 24 segments among

the groups, while 48 are the segments identi�ed in Figure 4.3.

Figure 4.2: Group Pro�les estimated with LFDR thresholding. Red is PDGFRA

estimate, green is the gastric KIT, blue is the non-gastric KIT. Dotted lines are

the con�dence intervals.
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Figure 4.3: Group Pro�les estimated with LFDR thresholding imposing the same

sparsity.

The Model based on MAR algorithm needs an estimate of σ2. In these study

we propose MAD (Mean Absolute Deviation) as contribute. Mean absolute

deviation is a robust measurement for the variability. Indeed, compared to stan-

dard deviation, it is less sensible to outliers. Given a sample X with J values,

MAD is:

MAD = median[Xj −median(X)] (4.27)

MAD for a matrix of coe�cients in the wavelet domain is calculated among the

coe�cients of the wavelet space representing the means of adjacent observations.

MAP Thresholding seems not su�ciently able to remove wave bias, as we see in

Figure 4.4.
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Figure 4.4: Group Pro�les estimated with MAP thresholding. Red is PDGFRA

estimate, green is the gastric KIT, blue is the non-gastric KIT. Dotted lines are

the con�dence intervals.

Two approaches based on contrasts between pro�les will be discussed. A con-

trast matrix could be applied on backtransformed matrix Y ∗ with the same spar-

sity imposed or the same matrix could be imposed to the group mean estimates

in the wavelet space and then the obtained contrasts between estimates in the

wavelet space could be thresholded using LFDR technique and then backtrans-

formed. it is possible to obtain three contrasts' combinations, to which a �contrast

pro�le" will correspond. From now on dots and lines in cyan will be for contrasts

between PDGFRA and Gastric KIT, in pink for contrasts between Gastric and

Non-Gastric KIT, and in yellow for contrasts between PDGFRA and Non-Gastric

Kit. In Figure 4.5 we see the pro�les deriving from the �rst approach used with

LFDR Thresholding and in Figure 4.6 with MAP thresholding, while Figure 4.7

shows the results of the second approach. Contrasts pro�les where smoothed using

LFDR Thresholding in Figure 4.8. Looking to plots we can notice that PDGFRA

and Gastric KIT balance themselves on the whole pro�le, while they show con-

trasts with Non-Gastric KIT. Moreover, after the 30th clone position the contrast
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between KIT and Non-Gastric KIT turns similar to PDGRA and Gastric KIT,

while the contrast of PDGFRA and Non-Gastric KIT appears larger. MAP still

catches noisy pro�les.

Figure 4.5: Contrast Pro�les with their con�dence intervals calculated in data

domain after LFDR thresholding. Cyan indicates PDGFRA vs. gastric KIT, pink

is gastric KIT vs. non-gastric KIT, yellow is PDGFRA vs. non-gastric KIT. Dots

are the raw data contrasts.
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Figure 4.6: Contrast Pro�les with their con�dence intervals calculated in data

domain after MAP thresholding.
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Figure 4.7: Contrast Pro�les with contrasts calculated in wavelet domain and

backtransformed with LFDR thresholding.
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Figure 4.8: Histogram of LFDR for wavelet contrast coe�cients z-values. Green

line is the estimated f(z), blue line is the empirical null, pink bars are the estimated

nonnull counts.

In Figure 4.7 we see stronger smoothing than in Figure 4.5 (same number of

parameters for f(z) and bins have been imposed). The reason is clear in Figure

4.8: a limited number of nonnull counts is identi�ed, hence a limited number of

coe�cients is retained imposing strong smoothness also E( ˆfdr
(1)

) = 0.552, greater

than the previous case.

4.4 Multiple Testing

We are in the �eld of the multiple testing, but selecting which technique is the

more appropriate for testing is not straightforward, since the limited and variable

number of tests done. In the functional model, group case or contrasts case,

theoretically we could have 96×3 = 288 di�erent tests. These mentioned above are

segmentation models and since we have segmented pro�le, it makes sense testing

segments rather than clones. Hence, we have a variable and relatively small number

of tests for models with LFDR tresholding: in the functional model we have 24
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segments, that turn to 48 if we impose the same sparsity, while for the contrast

models turn to 57 in the �rst case and down to 17 in the second case. Even if the

number of tests depend of the kind of test done (in group mean functional model

testing on di�erences between pro�les involves automatically more tests than the

case with same sparsity) FDR seems a suitable approach for all the functional

models used.

We will not provide tests for MAP. The level of sparsity reached was not enough

to obtain segments, thus we do not have segments in practice and testing will

be not useful for biological applications. Referring to questions mentioned at the

beginning of section 4.2, we will answer to them model per model, when it is

possible. Complete results will be shown in the appendix.

CNV Aberrations

CNV= 0 indicates that sample intensity balances the reference, hence it is straight-

forward to test the presence of signi�cant copy number gains/losses as indicated

in 4.28. H0 : Y ∗ik = 0

H1 : Y ∗ik 6= 0
(4.28)

This hypothesis test is considered for the following cases.

• Group Pro�les with LFDR tresholding imposing di�erent sparsity : a simple

z-test converted to FDR is applied to segments. It results almost the whole

Non-Gastric KIT group su�ering Copy Number Loss. Only FDR values in

Y ∗15,3 and Y
∗
61−64,3 result non-signi�cant, while the other two pro�les does not

present signi�cant aberrations.

• Group Pro�les with LFDR tresholding imposing same sparsity: The number

of tests is doubled but the results are not that di�erent. The only di�erence

is the presence of an additional non-signi�cant test in Y ∗50,3.
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Di�erences between groups

The di�erences between groups are tested with two similar approaches based on

a contrast matrix. One can test if the segment estimate of a clone position in a

speci�c group a is signi�cantly di�erent to the corresponding clone positions on

the other groups, hence the hypothesis tested is:H0 = Y ∗ia −
∑

k/∈a Y
∗
ik

k−1 = 0

H1 = Y ∗ia −
∑

k/∈a Y
∗
ik

k−1 6= 0
(4.29)

Similarly, one could be interested in di�erences between two groups a and b in

the i-th clone position. H0 = Y ∗ia − Y ∗ib = 0

H1 = Y ∗ia − Y ∗ib 6= 0
(4.30)

In both cases a row of the appropriate contrast matrix Lk×k designed to reduce

test to linear hypothesis is considered. Σ indicates the matrix of the errors of the

estimates Y ∗.

ti,k =
LkY

∗
i

LkΣiLTk
∼ χ2

1 (4.31)

Then, we consider the �rst hypothesis for the estimates of the group mean

pro�les and the second hypothesis for the estimates of the contrasts pro�les.

• Group mean Pro�les with LFDR Thresholding imposing di�erent sparsity :

Any test resulted signi�cant already in the χ2 domain. Hence FDR is not

necessary.

• Group mean Pro�les with LFDR thresholding imposing the same sparsity :

Same situation of the previous case.

• Contrast Pro�les in original domain with LFDR thresholding : Even in this

case, FDR will not be necessary because all test are already not signi�cant

in the χ2 domain.
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• Wavelet Contrasts Pro�les : Here the contrast were applied to coe�cients

estimated in the wavelet domain, hence thresholding is provided. But tests

results still non-signi�cant and that is what we expected, since the only

di�erence between these pro�les and the pro�les calculated applying a con-

trast matrix to �nal estimates is the level of smoothing reached and wavelet

contrast pro�les are more smoothed.

67



68



Chapter 5

Wavelet Based Mixed Models

5.1 Mixed Model

Among the extensions of the linear models, mixed models allow to incorporate

random e�ects. Mixed models are useful in presence of pro�les, e.g. for LDA1

and FDA: with mixed models it is possible to decompose the signal of one speci�c

pro�le in �xed e�ect for all the pro�les (or for one subset) and subject-speci�c

random e�ect.

Indicating with j the j-th pro�le, the general linear mixed model is described

as:

Yj = Xjβ + Zjbj + εj

Basically, it is the combination of a two-stage model:Yj = Zjβj + εj

βj = Kjβ + bj

Where the �rst stage describes a linear regression model for each pro�le, while the

second stage explains variabilty of the regression coe�cients in the �rst stage.

These are the notations used:

1Longitudinal Data Analysis
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• Yj = (Yj1 . . . Yjni
): Response for the jth subject with ni covariates

• Zj: matrix (ni × q) of known covariates

• Kj: matrix (q × p) of known covariates

• Xj: product of the matrices Z and K

• βj : q-dimensional vector of the subject regression parameters

• β : p-dimensional vector of the unknown regression parameters

• bj : vector of the random e�ects, normally distributed with mean 0 and

covariance matix G

• εj : error term

Mixed models have the interesting property that they allow for conditional

inference and marginal inference. The conditional model has a hierarchical inter-

pretation.

Yj|bj ∼ N(Xjβj + Zjbj,Σj)

Marginally, Yj is distributed as:

Yj ∼ N(Xjβj, ZGZ
T
j + Σj)

Hence, it is possible to distinguish two components of the variance. The �rst

component describes the variance between pro�les; the second one is the variance

within. A large variance between pro�les compared to the variance within pro�les

indicates that there is a considerable variation between the individual pro�les that

belong to a certain treatment group, indicating the need for the incorporation of

the random e�ects.

5.2 Functional Mixed Model

It is clear that three di�erent kind of tumors could have a di�erent trend in copy

number variations, but there can also be important deviations from the group
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mean pro�les in individual pro�les. Hence, a study of single pro�les might be very

interesting in the light of personalized medicine. We build a mixed model with a

�xed group e�ect and a random subject speci�c e�ect for each pro�le.

5.2.1 Marginal Model

The mixed model has a great advantage in his structure. Indeed, the signal coming

from each pro�le is decomposed in group e�ect and subject-speci�c e�ect using

appropriate design matrices. Data will be modeled in the wavelet domain and

sparsity will be imposed using LFDR thresholding as criterion for the coe�cients

:

Dj(i,k) = XjB
∗
(i,k) + Zjbj + εj(i,k) (5.1)

Where X is the design matrix for groups and Z is a N × N identity matrix.

Marginally, Dj(i,k) is distributed as

D(j,k) ∼ N(XjB
∗, ZjGZ

T
j + Σj(i,k)) (5.2)

Hence, the functional mixed model shares the same mean with the linear model.

In this case it is more interesting to observe the di�erences within the groups: the

variance of each subject is decomposed in error term (Σ) and subject-speci�c ef-

fect (ZGZT , or just G since Z is an identity matrix). The matrix G is a diagonal

matrix, since it is made the strong assumption that there is no correlation between

the copy number variation of the coe�cients.

5.2.2 Prediction

BLUP Estimator

Best Linear Unbiased Prediction (BLUP) estimation is provided for this model.

The BLUP minimizes the expected prediction error, with a least squares criterion

for B∗ that provides the same estimates of the functional model in 4.2. But this

model furnish also en estimate of the random e�ect. It is possible to estimate all
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the parameters together [28]:

θ̂ =

[
B̂∗

b̂

]
= (CTC + σ2

εT )−1CTD (5.3)

With

C = [XZ] (5.4)

and

T =

[
0 0

0 G−1

]
(5.5)

Estimation of Covariance Matrix

Covariance matrix estimates are:

Σ̂θ̂ = (CTC
1

σ2
ε

+ T̂ )−1 (5.6)

Variance Components estimates

The variance estimation is not straightforward. As there are no replicate pro�les

available we only dispense of one wavelet coe�cient per sample. We can however

borrow strength among the observations within the same pro�le to check a relevant

presence of the within pro�le variance, e.g. MAD estimator in the functional mixed

model can be used for that scope, as constraint to select clone position estimates

with the presence of within variance. One estimator of the within variance is the

di�erence between the total variance and the error term.

MAD is estimated at the most detailed wavelet space of D (hence, the �rst N/2

columns of the matrix) as the error term σε, while σ
2
i is the variance estimator

obtained in the functional model of the chapter 4.

Hence, to every i is imposed the following constraint

∣∣σ̂2
i − σ̂2

ε

∣∣
+

σ̂ε = MAD(D[1:N/2]) (5.7)

If σ2
i is greater than σ2

ε , random e�ects exist and will be estimated as in 5.3

and 5.2.2. Otherwise, there is no random e�ect for the i-th clone and the common

least squares estimates will be calculated.
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B̂∗ = (XTX)−1XTD (5.8)

σ̂2 = (XTX)−1σ2
ε (5.9)

LFDR Thresholding

LFDR Thresholding imposed to Wavelet Mixed Model to alter coe�cients will be

similar to the thresholding discussed in 4.2.1. Some slight di�erences need to be

discussed.

We will provide separated thresholds for estimates of the group coe�cients and es-

timates of the random e�ects. Estimates of the group coe�cients are theoretically

the same as in 4.3, but minor changes are produced by the constraint commented

above, hence the resulting group estimates could appear slightly di�erent (or not).

One can think to sum the estimates of group mean and random e�ects in the

wavelet domain and then threshold coe�cients and represent pro�les, but this op-

eration could erase the advantages of the mixed model, since it will not be possible

to make inference on random e�ects anymore. Hence, we preferred to threshold

separately group mean estimates and mixed e�ects estimates, obtaining respec-

tively Y ∗ and y∗, then reconstruct pro�les summarizing.

5.3 Results

We will show how the group mean pro�les estimates change in the mixed model,

hence how we can represent pro�le in a more intriguing way. We can see that

LFDR histogram in Figure 5.1 for group mean estimates is di�erent from �gure

4.1 and the estimate of σ̂0 = 1.339. E( ˆfdr
(1)

) = 0.528 indicates a slightly stronger

thresholding than the functional model.
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Figure 5.1: LFDR for group e�ect estimates calculated with a mixed model on

wavelet coe�cients. z-values dispersion is represented by the histogram, green line

is the estimated f(z), blue dotted line is the empirical null, pink bars are the

estimated nonnull counts.

Figure 5.2 shows that Non-gastric KIT pro�le has some slight di�erences com-

pared to Figure 4.2, more than the other pro�les. This is an indication of what

will be clearer with the representation of the random e�ects, i.e. the non-gastric

KIT group bene�ts more than the other groups of the mixed model and the repre-

sentation of his pro�les wil be more in�uenced by the presence of random e�ects.
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Figure 5.2: Group Pro�les of PFDGRA (green), gastric-KIT (red), non-gastric

KIT (blue). The dotted lines are the con�dence intervals.

The second step consists of calculating the LFDR for the random e�ects in the

wavelet space. Subsequently the random e�ects can be denoised using the LFDR, .

We can notice in Figure 5.3 that LFDR increases the number of simultaneous tests

results more similar to FDR: The histogram of z-values tends to be distributed

as a normal and p̂0 = 0.851.We will not use LFDR for inference, since results of

LFDR are valid when the number of tests is in the order of thousands.
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Figure 5.3: HLFDR for random e�ect estimates calculated with a mixed model on

wavelet coe�cients.

Now we can show how to deal with pro�les using a mixed model. We will

show the estimated pro�les �rst, and the decomposition of pro�les in group e�ect

and mixed e�ect in a second time. The group e�ect will be more clear now. For

our purpose we will take pro�les already used in chapter 3.4, to compare results

obtained in that section with these results.

In contrast with Figure 3.3 of raw data, the modeled Pro�les 12, 22 and 39 in

Figure 5.4 now provide an estimate of the subject-speci�c e�ect without capturing

too much noisy details. In Figure 5.5 we depict the group e�ects and the captured

deviations from the group mean pro�le.
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Figure 5.4: Pro�les 12 (left), 22 (center), 39 (right) after processing of wavelet

coe�cients with a mixed model. Dots are the Raw Data Points

.
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Figure 5.5: Pro�les 12 (top), 22 (center), 39 (bottom) after processing of wavelet

coe�cients with a mixed model. At left, we see the group mean estimates in the

domain of raw data, at right the mixed e�ect in the domain of the deviation of

pro�les from the group mean.
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5.4 Testing

In this chapter we still conduct tests on CNV aberrations for group mean pro�les:

results are the same of the section 4.4. More interesting is to provide tests for

random e�ects and see where they signi�cantly deviate their pro�le from the group

mean.

Hence, z-tests for random e�ects where calculated and signi�cant clone-positions

where identi�ed under the following hypothesis test:

H0 : ŷ∗ij = 0

H1 : ŷ∗ij 6= 0
(5.10)

with the FDR correction for multiple testing. The results show us that the �rst two

groups have more or less regular pro�les, almost ever similar to the corresponding

group pro�le. On the other side, the non-gastric KIT has more then one irregular

path. In the plots 5.6, 5.7, 5.8 we will show pro�les with their signi�cant mixed

e�ects indicated with red dots.
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Figure 5.6: PDGFRA pro�les. The red dots are the clone positions signi�cantly

di�erent from the group mean.
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Figure 5.7: Gastric KIT pro�les. The red dots are the clone positions signi�cantly

di�erent from the group mean.

81



Figure 5.8: Non-Gastric KIT pro�les. The red dots are the clone positions signif-

icantly di�erent from the group mean.
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Chapter 6

Conclusion and Discussion

We have seen in the previous chapters that denoising in the wavelet domain can

serve di�erent purposes. If a researcher aims at representing the smoothed in-

dividual pro�les graphically, each pro�le can be denoised in the wavelet domain,

individually. When inference in needed on the level of the individual group mean

pro�les, the mean model is estimated and denoised in the wavelet domain, and

the inference is performed on the backtransformed denoised group mean pro�les.

If the interest is in getting subject-speci�c e�ects and group mean e�ects for each

clone position, simultaneously, a mixed model can be used for assessing the re-

search question.

The thresholding methods have been shown to be useful for developing piece-

wise constant models, but they su�er from the presence of a tuning parameter

for thresholding. Even in LFDR thresholding, the cuto� λ = 0.5 was selected

by empirical considerations. But, as Efron indicated [27], the new generation of

high-throughput devices forces us to rethink basic topics in statistical theory E.g.

we have used the LFDR technique that is a technique for multiple testing that

follows empirical Bayes consideration, but not for testing a signi�cant hypothesis

in the original domain. The pro�les were too smooth and we did not had enough

segments for estimating the empirical mixture and null distribution. The LFDR

tests, with an appropriate cuto�, however, provide an intriguing way to smooth

pro�les.

MAP thresholding did not involve tuning parameters, but it revealed to break
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down in this context. The sparsity imposed was too limited leading to noise pre-

diction, and an underestimation of the variance. This was probably due to the

MAD estimator that was used for calculating the threshold. The MAD only cap-

tures variability within pro�les when smoothing the wavelet coe�cients. Hence,

the variability between the pro�les was ignored. Leading to a considerable under-

estimation of the total variance that is needed for a proper denoising of the group

mean pro�les. Note, however, that a denoising based on the total variance is pro-

vided within the waveTiling package and can be further explored in the future.

The LFDR approach, however, used the total variance estimate for regularization,

which leads to a more e�cient denoising.

The representation under SPCA analysis also has given interesting results,but it

seems that a large number of PC are needed to provide an unbiased �t. In this

speci�c case study the �rst PC explained a large part of variance (around 50%)

and other components only explained a small fraction of the variability. More-

over, It has been observed that the Spca algorithm does not calculates subsequent

PCs that explain a decreasing percentage of the variance. Hence, the algorithm

su�ers some convergence problems when a considerable number (say, K = 10) of

components is required. Finally, the method also needs careful tuning of the reg-

ularization parameters.

The mixed model has o�ered advantages by providing inference of random e�ects

as well as by providing good estimates of the group mean coe�cients. The es-

timate of the variance for the wavelet estimates with MAD changed the LFDR

thresholding of the group mean pro�les. It imposes additional smoothness be-

cause the maximum of the MAD and the total variance is used for denoising of the

group pro�les. The mixed model further allowed us to draw conclusions about the

nature of the mutation. It has been shown that pro�les in the Non-Gastric KIT

have a larger variability in the CNV pro�les, indicating that the identi�cation of

these tumors is more di�cult than for the other cases. The group mean pro�le

for this group is also less representative. The functional model has showed that

Non-Gastric KIT has a tendency to copy number losses, as already prospected

in the Wozniak study discussed in 2.5. Since it is a segmentation model, these

losses have not a straightforward interpretation in terms of exact copy number

gains/losses as in a Calling Model, as mentioned in 1.4.3.
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In chapter 4 we showed some di�erent approaches for assessing contrasts between

pro�les, calculating the contrasts based on denoised pro�les in the data domain

�rst and calculating the contrasts in the wavelet domain based on the raw coe�-

cients, denoising the contrasts before transforming them back to the original space.

As we expected the estimates of the contrasts are similar, but the level of smooth-

ing changes. In this speci�c case, since contrasts are never signi�cant, the level

of smoothing reached after applying contrasts in the wavelet domain is stronger.

There is not a particular rule to decide which level of smoothing is better, and

some techniques usually used in other contexts get into trouble in genetics. E.g.,

the complexity of a functional model is driven by the covariates considered: with

low complexity, bias are larger but variance is limited; the situation reverses with

the increase of complexity. Hence, the choice of the number of covariates is a trade-

o� between bias and variance [29]. Similarly, if two or more procedures return a

di�erent level of thresholding the mean squared error could measure and compare

the goodness of �t. But in the context of genetics the mechanism of generation of

data is often complicated and we cannot create arti�cial benchmarks simulating

data, neither trust in a control group if we come across circumstances as the non-

gastric KIT group. An alternative way could be considering CNV benchmarks of

copy number gains/losses and conduct a classi�cation analysis on them.
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Appendix A

R-code

A.1 Data Exploration

Preprocessing

library(waveslim)

library(mgcv)

library(locfdr)

library(limma)

library(multtest)

library(elasticnet)

library(waveTiling)

#read data

alldatachr13updatebis <- read.delim("D:/statistica/Thesis/Practise/data/

alldatachr13updatebis.txt")

cnv13<- alldatachr13updatebis

#removing profiles too much affected by missingness.

#select profiles with at least 94 observation is a good optimum.

#Groups are not balanced. We can select al least 14 profiles par group.
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full <- NULL

for(i in 1:60)

{

full[i] <-sum(cnv13$Id_array==i) > 93

}

for(i in which(full==FALSE))

{

cnv13 <- cnv13[-which(cnv13$Id_array==i),]

}

#we can retain at least 14 profiles par group

# remove profiles in surplus to get balanced data (preferring where

#there are more missing values)

set.seed(456)

sample(17:36,2)

#18,20

cnv13 <- cnv13[-which(cnv13$Id_array==17),]

cnv13 <- cnv13[-which(cnv13$Id_array==18),]

cnv13 <- cnv13[-which(cnv13$Id_array==20),]

cnv13 <- cnv13[-which(cnv13$Id_array==41),]

cnv13 <- cnv13[-which(cnv13$Id_array==48),]

# remove last observation to obtain a multiple of 2^n

cnv13 <- cnv13[-which(cnv13$STARTNEW==114753356)]
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#GC content without considering groups

gamtestN<-gam(response1~s(GC_content),data=cnv13)

plot(gamtestN,ylab="General Response")

#GC content normalization considering groups

group=as.factor(cnv13$Group)

gamtest<-gam(response1~s(STARTNEW,by=group,k=96)+s(GC_content),data=cnv13)

hlp <-predict(gamtest,type="terms")

#estimated GC

#hlp[,4]

#correction

cnv13$response2 <- cnv13$response1 - hlp[,4]

#building a matrix of data (rawdata13)

cnv13$start2 <- as.factor(cnv13$STARTNEW)

lev <- levels(cnv13$start2)

rawdata13 <- matrix(NA,nrow=42,ncol=96)

conste <-cbind(as.numeric(levels(as.factor(cnv13$Id_array))),1:42)

for(j in 1:96)

{

for(i in conste[,2])

{

if(any(cnv13$start2==lev[j] & cnv13$Id_array==conste[i,1]))

{

rawdata13[i,j] = cnv13$response2[which( (cnv13$start2)==lev[j] &

cnv13$Id_array==conste[i,1])]

}

else{rawdata13[i,j]=NA
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}

}

Multiple Imputation

## Multiple Imputation : estimating the distribution of observed data

meanimputation <- matrix(NA,nrow=3,ncol=96)

sdimputation <- matrix(NA,nrow=3,ncol=96)

meanimputation[1,] <- colMeans(rawdata13[1:14,],na.rm=T)

sdimputation[1,] <- apply(rawdata13[1:14,],2,sd,na.rm=T)

meanimputation[2,] <- colMeans(rawdata13[15:28,],na.rm=T)

sdimputation[2,] <- apply(rawdata13[15:28,],2,sd,na.rm=T)

meanimputation[3,] <- colMeans(rawdata13[29:42,],na.rm=T)

sdimputation[3,] <- apply(rawdata13[29:42,],2,sd,na.rm=T)

#multiple imputation of Y and multiple estimate of D

D <- list()

Y <- list()

for(k in 1:10)

{

Y[[k]] <- rawdata13

for(i in 1:42)

{

for(j in 1:96)
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{

if(is.na(Y[[k]][i,j])) {Y[[k]][i,j] <- rnorm(1,

meanimputation[ceiling(i/14),j],sdimputation[ceiling(i/14),j])}

}

}

D[[k]] <- matrix(NA,42,96)

Y[[k]] <- cbind(Y[[k]])

J=5

D[[k]] <- t(apply(Y[[k]],1,wave.transform,n.levels=J))

}

#final estimation of D

D<-(D[[1]]+D[[2]]+D[[3]]+D[[4]]+D[[5]]+D[[6]]

+D[[7]]+D[[8]]+D[[9]]+D[[10]])

D <-D/10

#since the effect of missingness on Y is irrelevant, we will use

# the imputed Y[[1]] from now on as dataset.

Data Exploration Using Wavelets

#HARD THRESHOLDING

selected <- Y[[1]][c(12,22,39),]

J=5

Ybeta <- list(matrix(NA,3,96),matrix(NA,3,96),matrix(NA,3,96),
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matrix(NA,3,96),matrix(NA,3,96),matrix(NA,3,96))

Draw <- t(apply(selected,1,wave.transform,n.levels=J))

vectlambda <- c(0,0.05,0.1,0.2,0.5,0.9)

Wv <- matrix(1,3,96)

Wv[,94:96] <- 10 #trick to retain wavelet father coefficients

for(i in 1:3)

{

for(j in 1:length(vectlambda))

{

Ybeta[[j]][i,]<- wave.backtransformK(Draw[i,]*

(abs(Draw[i,]*Wv[i,])>vectlambda[j]), J,order=1)

}

}

#SOFT THRESHOLDING

Ybeta2 <- list(matrix(NA,3,96),matrix(NA,3,96),matrix(NA,3,96),

matrix(NA,3,96),matrix(NA,3,96),matrix(NA,3,96))

for(i in 1:3)

{

for(j in 1:length(vectlambda))

{

Ybeta2[[j]][i,]<- wave.backtransformK(sign(Draw[i,])*abs(Draw[i,]

-vectlambda[i])*(abs(Draw[i,]*Wv[i,])>vectlambda[j]), J,order=1)

}

}
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#FUNCTIONAL PCA

#calculating CA

ca <- spca(D,K=6,c(rep(1,6)))

#calculating and representing scores

scores <- D%*%ca$loadings

proc0 <- rep(0,96)

proc1 <-wave.backtransformK(ca$loadings[,1],J,order=1)

proc2 <- wave.backtransformK(ca$loadings[,2],J,order=1)

proc3 <-wave.backtransformK(ca$loadings[,3],J,order=1)

proc4 <- wave.backtransformK(ca$loadings[,4],J,order=1)

proc5 <-wave.backtransformK(ca$loadings[,5],J,order=1)

proc6 <- wave.backtransformK(ca$loadings[,6],J,order=1)

proc <- data.frame(proc0,proc1,proc2,proc3,proc4,proc5,proc6)

scoresel <- scores[c(12,22,39),]

coef <- matrix(0,96,7)

par(mfrow=c(3,2))

# reconstruction of profiles with a growing number of PC components

for(j in 1:6)

{

matplot(t(selected)-colMeans(Y[[1]]),ylim=c(-2,2),col=c(2,3,4),

pch=1,main= paste(j,"Principal Components",sep=" "),

xlab="Clone Position",ylab="Centered CNV Expression")

for(i in 1:(dim(selected)[1]))

{

for(k in 2:7)

{

coef[,k]<- proc[,k]*scoresel[i,k-1]
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}

lines(apply(coef[,1:(j+1)],1,sum),col=i+1,lwd=3)

}

}

#CLUSTER ANALYSIS

names <- as.character(c("PDGFRA","Gastric KIT","Non-Gastric KIT"))

rownames(D) <- c(rep(names[1],14),rep(names[2],14),rep(names[3],14))

plot(hclust(dist(D)),main="Cluster Dendogram for Profiles",xlab=

"Profiles",ylab="Distance")

plot(hclust(dist(Y[[1]])),main="Cluster Dendogram for Profiles",xlab=

"Profiles",ylab="Distance")

#same plot

A.2 Wavelet Based Functional Model

Models and Thresholding

#FUNCTIONAL MODEL

Xgroup <- matrix(0,nrow=42,ncol=3)

Xgroup[1:14,1]<- 1

Xgroup[15:28,2]<- 1

Xgroup[29:42,3] <-1

lmRaw <- lmFit(t(D),design=Xgroup)

RawCoef <- lmRaw$coefficients

seRaw<-matrix(lmRaw$sigma,ncol=1)%*%sqrt(diag(lmRaw$cov.coefficients))
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#LFDR thresholding

#calculating t-tests

Rawpt <-RawCoef/seRaw

Rawdf <-lmRaw$df.residual

tdistRaw <- pt(-abs(Rawpt),Rawdf) #-abs solves some problems of boundary

# that often occur. The sign is corrected in the next operation

#in the z-domain

zdistRaw <- qnorm(tdistRaw)*sign(Rawpt)

#LFDR

Rawfdr <- locfdr(zdistRaw[1:93,],df=10,bre=30)

#LFDR matrix

RawfdrMat <- matrix(Rawfdr$fdr,nrow=96,ncol=3,byrow=FALSE)

RawfdrMat[94:96,] <- 1e-10 #thresholding is only on mother wavelet

#coefficients. We ever retain the wavelet father

betagroup <- matrix(NA,96,3)

varbetagroup <- matrix(NA,96,3)

for(i in 1:3)

{betagroup[,i]<- wave.backtransformK(RawCoef[,i]*(RawfdrMat[,i]<0.5),

J,order=1)

varbetagroup[,i]<- wave.backtransformK(seRaw[,i]^2*(RawfdrMat[,i]<0.5),

J,order=2)

}

#LFDR imposing the same sparsity

unionfdr <- apply(RawfdrMat,1,min)

betagroup1 <-matrix(NA,96,3)

varbetagroup1 <- matrix(NA,96,3)
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for(i in 1:3)

{betagroup1[,i]<- wave.backtransformK(RawCoef[,i]*(unionfdr<0.5),

J,order=1)

varbetagroup1[,i]<- wave.backtransformK(seRaw[,i]^2*(unionfdr<0.5),

J,order=2)

}

#MAP model and thresholding

fit <-WaveMarEstVarJ(Y=Y[[1]],X=Xgroup,n.levels=5,wave.filt="haar",

D=D,var.eps="mad",prior="improper",tol=1e-6,saveall=TRUE,trace=T)

betaMAP <- matrix(NA,3,96)

varbetaMAP <- matrix(NA,3,96)

for(i in 1:3)

{betaMAP[i,]<- wave.backtransformK(fit$beta_MAP[i,],fit$n.levels ,

filt=fit$wave.filt,order=1)

varbetaMAP[i,] <- wave.backtransformK(fit$varbeta_MAP[i,],\\

n.levels=fit$n.levels, filt=fit$wave.filt,order=2)

}

#CONTRAST PROFILES

###1. Contrasts calculated on backtransformed data (after LFDR

# thresholding and same sparsity imposed)

xcont <- matrix(c(1,-1,0,0,1,-1,-1,0,1),3,3)

xvarcont <- matrix(c(1,1,0,0,1,1,1,0,1),3,3)
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contra1 <- betagroup1%*%xcont

sdcontra1 <- sqrt(varbetagroup1%*%xvarcont)

###2. Contrasts calculated on backtransformed data (after MAP thresholding)

beta2MAP <- t(betaMAP)%*%xcont

varbeta2MAP <- t(varbetaMAP)%*%xvarcont

#3. Contrast calculated in the wavelet domain,

#hence LFDR thresholding of contrasts

contcoef <- RawCoef%*%xcont

contsigma <- (seRaw^2)%*%xvarcont

contbeta <- matrix(nrow=96,ncol=3)

sigmacontbeta <- matrix(nrow=96,ncol=3)

Contpt <- contcoef/sqrt(contsigma)

Contdist <- pt(-abs(Contpt),Rawdf)

zContdist <-qnorm(Contdist)*sign(Contpt)

Contfdr <- locfdr(zContdist[1:93,],df=10,bre=30)

ContfdrMat<-matrix(Contfdr$fdr,nrow=96,ncol=3,byrow=FALSE)

ContfdrMat[94:96,]<-.01

for(i in 1:3)

{contbeta[,i]<- wave.backtransformK(contcoef[,i]*(ContfdrMat[,i]<0.5),J)

sigmacontbeta[,i]<- sqrt(wave.backtransformK(contsigma[,i]*

(ContfdrMat[,i]<0.5), J,order=2))
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}

Tests

####1. CNV ABERRATIONS

##a.model with LFDR thresholding

testgroup <- betagroup/sqrt(varbetagroup)

#some tests are repeated due to thresholding, we consider once

#at time making some operations on the test matrix

for(j in 1:dim(testgroup)[2])

{

for(i in 2 : dim(testgroup)[1]-1)

{

if(testgroup[i,j]==testgroup[i+1,j]) {testgroup[i,j] =NA}

}

}

pdistgroup <- 2*(1-pnorm(abs(testgroup)))

pgroup <- pdistgroup[is.na(pdistgroup)==FALSE &

(pdistgroup==1)==FALSE]

correctgroup <-p.adjust(pgroup,method="fdr")

#rebuliding the whole test matrix

groupselect <- which(is.na(testgroup)==FALSE)

groupfdrMat <- c(rep(NA,288))

for (i in groupselect)
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{

groupfdrMat[i] <- correctgroup[which(groupselect==i)]

}

for (i in length(groupfdrMat):1)

{

if(is.na(groupfdrMat[i]))

{

groupfdrMat[i] <-groupfdrMat[i+1]

}

}

groupfdrMat<-matrix(groupfdrMat,nrow=96,ncol=3,byrow=FALSE)

##b. model with LFDR thresholding (same sparsity imposed)

testgroup1 <- betagroup1/sqrt(varbetagroup1)

for(j in 1:dim(testgroup1)[2])

{

for(i in 2 : dim(testgroup1)[1]-1)

{

if(testgroup1[i,j]==testgroup1[i+1,j]) {testgroup1[i,j] =NA}

}

}

pdistgroup1 <- 2*(1-pnorm(abs(testgroup1)))

pgroup1 <- pdistgroup1[is.na(pdistgroup1)==FALSE &
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(pdistgroup1==1)==FALSE]

correctgroup1 <-p.adjust(pgroup1,method="fdr")

groupselect1 <- which(is.na(testgroup1)==FALSE)

groupfdrMat1 <- c(rep(NA,288))

for (i in groupselect1)

{

groupfdrMat1[i] <- correctgroup1[which(groupselect1==i)]

}

for (i in length(groupfdrMat1):1)

{

if(is.na(groupfdrMat1[i]))

{

groupfdrMat1[i] <-groupfdrMat1[i+1]

}

}

groupfdrMat1<-matrix(groupfdrMat1,nrow=96,ncol=3,byrow=FALSE)

####2. TESTING DIFFERENCES BETWEEN GROUPS

##a. model with LFDR thresholding

betacallL <- matrix(NA,nrow=96,ncol=3)

sigmabetaL <- matrix(NA,nrow=96,ncol=3)

for(i in 1:3)

{

L <- c(rep(-1/3,3))
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L <-t(L)

L[,i] <- 2/3

Lp <- matrix(L,nrow=96,ncol=3,byrow=TRUE)

betacallL[,i] <- (L%*%t(betagroup))

sigmabetaL[,i] <- sqrt((Lp*varbetagroup)%*%t(L))

}

testgroupL <- betacallL/sigmabetaL

for(j in 1:dim(testgroupL)[2])

{

for(i in 2 : dim(testgroupL)[1]-1)

{

if(testgroupL[i,j]==testgroupL[i+1,j]) {testgroupL[i,j] =NA}

}

}

pdistgroupL <- 1-pchisq(abs(testgroupL),1)

pgroupL <- pdistgroupL[is.na(pdistgroupL)==FALSE &

(pdistgroupL==1)==FALSE]

#any test is significant already in the chisq domain.

##b. model with LFDR thresholding and same sparsity imposed

betacall1bis <- matrix(NA,nrow=96,ncol=3)

sigmabeta1bis <- matrix(NA,nrow=96,ncol=3)
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for(i in 1:3)

{

L <- c(rep(-1/3,3))

L <-t(L)

L[,i] <- 2/3

Lp <- matrix(L,nrow=96,ncol=3,byrow=TRUE)

betacall1bis[,i] <- (L%*%t(betagroup1))

sigmabeta1bis[,i] <- sqrt((Lp*varbetagroup1)%*%t(L))

}

testgroup1bis <- betacall1bis/sigmabeta1bis

for(j in 1:dim(testgroup1bis)[2])

{

for(i in 2 : dim(testgroup1bis)[1]-1)

{

if(testgroup1bis[i,j]==testgroup1bis[i+1,j])

{testgroup1bis[i,j] =NA}

}

}

pdistgroup1bis <- 1-pchisq(abs(testgroup1bis),1)

pgroup1bis <- pdistgroup1bis[is.na(pdistgroup1bis)==FALSE &

(pdistgroup1bis==1)==FALSE]
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##TESTS ON CONTRASTS PROFILES

##a. contrasts in the data domain, after LFDR thresholding

testcontra <-contra1/sdcontra1

for(j in 1:dim(testcontra)[2])

{

for(i in 2 : dim(testcontra)[1]-1)

{

if(testcontra[i,j]==testcontra[i+1,j]) {testcontra[i,j] =NA}

}

}

pdisttestcontra <- 1-pchisq(abs(testcontra),1)

ptestcontra <- pdisttestcontra[is.na(pdisttestcontra)==FALSE &

(pdisttestcontra==1)==FALSE]

##b. Contrast calculated in the wavelet domain,

# hence LFDR thresholding of contrasts

testcont <- contbeta/sigmacontbeta

for(j in 1:dim(testcont)[2])

{

for(i in 2 : dim(testcont)[1]-1)

{

if(testcont[i,j]==testcont[i+1,j]) {testcont[i,j] =NA}

}

}
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pdisttestcont <- 1-pchisq(abs(testcont),1)

ptestcont <- pdisttestcont[is.na(pdisttestcont)==FALSE

& (pdisttestcont==1)==FALSE]

A.3 Wavelet Based Mixed Model

Model

N <- 42

NGROUP <- 3

madWav <- mad(D[,1:48])

X <- diag(42)

C <-cbind(Xgroup,X)

B <- matrix(0,N+NGROUP,N+NGROUP)

B[-(1:NGROUP),-(1:NGROUP)] <- diag(N)

sigma <- lmRaw$sigma

#blup

blupFun<-function(x)

{

if (sigma[x]>madWav)

solve(t(C)%*%C + madWav^2/(sigma[x]^2-madWav^2)*B) %*%t(C)

%*%matrix(D[,x],ncol=1)

else c(solve(t(Xgroup)%*%Xgroup)%*%t(Xgroup)%*%

matrix(D[,x],ncol=1),rep(0,N))

}

estimates <-t(sapply(1:96,blupFun))
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#standard error

varblupFun <- function(x)

{

if(sigma[x]>madWav)

diag(solve(t(C)%*%C/madWav^2 + B/(sigma[x]^2-madWav^2)))

else c(diag(solve(t(Xgroup)%*%Xgroup)*madWav^2),rep(0,N))

}

standarderr <- sqrt(t(sapply(1:96,varblupFun)))

ttest2 <- estimates/standarderr

#LFDR for group mean estimates

tdistRaw2 <- pt(-abs(ttest2[,1:3]),N-NGROUP)

zdistRaw2 <-qnorm(tdistRaw2)*sign(ttest2[,1:3])

Rawfdr1 <- locfdr(zdistRaw2[1:93,],bre=30)

RawfdrMat1<-matrix(Rawfdr$fdr,nrow=96,ncol=3,byrow=FALSE)

RawfdrMat1[94:96,]<-.01

#representation of group mean profiles

Gmat <- matrix(NA,nrow=3,ncol=96)

Gmatvar <- matrix(NA,nrow=3,ncol=96)

Bmat <- matrix(NA,nrow=42,ncol=96)

Bmatvar <- matrix(NA,nrow=42,ncol=96)

for(i in 1:3)

{

Gmat[i,] <- wave.backtransformK(estimates[,i]*(RawfdrMat1[,i]<0.5),

J,order=1)
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Gmatvar[i,] <- wave.backtransformK((standarderr[,i]^2)*

(RawfdrMat1[,i]<0.5),J,order=2)

}

Gmatvar[Gmatvar==0] = 1e-12

#LDFR for random effects

selectrand <- ttest2[,4:45]

constraint <- which(sigma>madWav)

randomdist <- pnorm(-abs(selectrand))

zrandom <- qnorm(randomdist)*sign(selectrand)

randomfdr <- locfdr(zrandom[is.na(zrandom)==FALSE],df=20)

helpmat <-matrix(randomfdr$fdr,nrow=length(constraint),

ncol=42,byrow=FALSE)

randomfdrmat<- matrix(1,nrow=96,ncol=42)

randomfdrmat[constraint,] <- helpmat

randomfdrmat[94:96,]<-.01

#vectorize mixed effects

for(i in 1:42)

{

Bmat[i,] <-wave.backtransformK(estimates[,i+3]*

(randomfdrmat[,i]<0.5),J,order=1)

Bmatvar[i,] <- wave.backtransformK((standarderr[,i+3]^2)*

(randomfdrmat[,i]<0.5),J,order=2)

}

Bmatvar[Bmatvar==0] =1e-12 #to avoid problems in calculating tests when

#random effect do not exist

##representation of completed profiles

profiles <- matrix(NA,nrow=42,ncol=96)
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varprofiles <- matrix(NA,nrow=42,ncol=96)

for(i in 1:42)

{

profiles[i,] <- Gmat[ceiling(i/14),]+Bmat[i,]

varprofiles[i,] <- Gmatvar[ceiling(i/14),] + Bmatvar[i,]

}

Tests

#1. Test on CNV aberrations for group mean

testgroupR <- t(Gmat/sqrt(Gmatvar))

for(j in 1:dim(testgroupR)[2])

{

for(i in 2: dim(testgroupR)[1]-1)

{

if(testgroupR[i,j]==testgroupR[i+1,j]) {testgroupR[i,j] =NA}

}

}

pdistgroupR <- 2*(1-pnorm(abs(testgroupR)))

pgroupR <- pdistgroupR[is.na(pdistgroupR)==FALSE &

(pdistgroupR==1)==FALSE]

correctgroupR <-p.adjust(pgroupR,method="fdr")

selectR <- which(is.na(testgroupR)==FALSE)
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groupfdrmatR<- c(rep(NA,288))

for (i in selectR)

{

groupfdrmatR[i] <- correctgroupR[which(selectR==i)]

}

for (i in length(groupfdrmatR):1)

{

if(is.na(groupfdrmatR[i]))

{

groupfdrmatR[i] <-groupfdrmatR[i+1]

}

}

groupfdrmatR <- matrix(groupfdrmatR,nrow=96,ncol=3,byrow=FALSE)

groupfdrmatR

##2. test on random effects

randomtest <-Bmat/sqrt(Bmatvar)

for(j in 1:dim(randomtest)[1])

{

for(i in 2: dim(randomtest)[2]-1)

{

if(randomtest[j,i]==randomtest[j,i+1]) {randomtest[j,i] =NA}

}

}

prandomtest <- 2*(1-pnorm(abs(randomtest)))
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prandomtest <- prandomtest[is.na(randomtest)==FALSE]

correctrandom <-p.adjust(prandomtest,method="fdr")

selectrandom <- which(is.na(randomtest)==FALSE)

groupfdrandom <- c(rep(NA,4032))

for (i in selectrandom)

{

groupfdrandom[i] <- correctrandom[which(selectrandom==i)]

}

groupfdrandom <- matrix(groupfdrandom,nrow=42,ncol=96,byrow=FALSE)

for (i in 1:nrow(groupfdrandom))

{

for(j in ncol(groupfdrandom):1)

{

if(is.na(groupfdrandom[i,j]))

{

groupfdrandom[i,j] =groupfdrandom[i,j+1]

}

}

}
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