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Introduction

Redshift space distortions distort the observed distribution of galaxies. These effects
are caused by the inhomogeneous distribution of matter in the Universe that sources
the galaxies’ peculiar velocity and the underlying gravitational potential őeld. Both
of these phenomena stretch or compress the wavelength of the upcoming observed
radiation, and add up to the cosmological redshift sourced by the Hubble ŕow, chang-
ing the measured redshift [1]. As a consequence, since we use a galaxy’s redshift to
infer its distance by assuming a non-perturbed FLRW universe, the mapping from
redshift space to real space distorts the galaxy maps we build, shifting their positions.

These distortions can be observed in the galaxy power spectrum and the higher-
order statistics. The őrst work addressing this topic was done by Kaiser in [2].
In that work he shows that assuming the distant observer approximation, at linear
order in density and velocity perturbations, the galaxies’ peculiar velocities boost the
monopole of the power spectrum. Kaiser’s approximation breaks down at the largest
scales, where we predict different contributions acting on the galaxy distribution [3,4].
This happens for multiple reasons.

First, the distant observer approximation is only valid in the regime in which the
subtended angle from the observer to the region of the sky considered is small, which
is not true when considering the largest scales. We refer to these large scale velocity
effects as wide angle and Doppler effects [3], and they provide additional distortions
to the galaxy distribution and source magniőcation effects onto the galaxies, altering
the counts near the ŕux cut of a ŕux-limited sample [5].

Second, at those scales general relativistic effects become non negligible, and they
generate further redshift distortions, magniőcation effects, and displacements in the
angular positions of the galaxies. These effects depend also on integrals of the large
scale potential along the line of sight, and we predict that their contribution will
increase when studying large scales structures in the deep universe (z > 1) [6ś11].

General relativity has withstood numerous observational tests on smaller scales,
but its implications on cosmological scales remain an area of ongoing research and
debate [12], thus to observe its effects in the őeld of redshift space distortions would
be an important test of Einstein’s theory of gravity in a cosmological framework.

Regarding the detection of GR effects, future redshift surveys will probe galaxy
clustering in the distant Universe on unprecedentedly large scales. For example the
Euclid mission [13], will measure in the optical and infrared the redshift of H-alpha
emitters in a range of 0.9 < z < 1.9, over a 15 000 deg2 portion of the sky. DESI (Dark
Energy Spectroscopic Instrument) [14] will measure galaxy redshifts from different
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emission lines, in a range of 0.1 < z < 3.5. SKAO (Square Kilometre Array) [15] in
its őnal conőguration, will probe radio emissions of galaxies up to z = 3.

It is still unclear whether GR effects will be observable in these next-generation
surveys, and so it is useful to develop analysis tools that will allow to fully exploit
the potential of the upcoming data. This translates in the necessity of creating mock
galaxy catalogues of what a deep-Universe survey will observe.

With this purpose, the LIGER code (Light Cones using GEneral Relativity)
was developed [16,17]. It is a post-processing tool that allows to imprint a posteriori

general relativistic effects on a Newtonian N-body simulation, producing a light-cone
that accounts for redshift space distortions corrections and magniőcation effects at
őrst order in the perturbations. This is a valid approach to follow because at őrst
order in the perturbation, the mathematical description of a pressureless ŕuid can
be formulated so that its general relativistic approximation is in agreement with the
Newtonian counterpart [18].

The corrections that LIGER implements are obtained by studying the linear
perturbations of the photon geodesics that reach us from distant sources [8, 19, 20],
which include both local and integrated contributions along the line of sight.

The code has been previously used to forecast the detectability of large-scales
effects on deep surveys, for redshift bins z > 1. Since the transverse size of a lightcone
rapidly increases with redshift, a very large simulation box (of the order of 10Gpc/h)
is required to cover wide opening angles. However, running simulations with sufficient
spatial and mass resolution to follow galaxy formation would be computationally
prohibitive. For this reason, up until now LIGER has been used onto large, low-
resolution dark matter only simulations, shifting the matter particles and creating at

posteriori the galaxy distribution. This was done by implementing a biasing relation
which involved the assumption of a set of survey functions (e.g. magniőcation and
evolution biases [21]) that describe the large-scale tracer considered.

While this method allows for a fast production of many galaxy catalogues, there
are some limits in this approach. First, the biasing procedure builds the tracer
catalog on a cubic grid, losing any information regarding clustering on scales smaller
than the cell size. This biasing procedure forces us to increase the cell size as the
linear bias grows, decreasing the number of cells per side of the grid and reducing
the resolution. This limit can be a issue when computing Fourier-based statistics
of highly biased tracers, as aliasing effects might arise at larger scales due to a low
number of cells per side. Second, this procedure makes it difficult to model selection
criteria such as shape selection or ŕux selections that are more complex than a ŕux
cut. Last, Poisson shot-noise is artiőcially implemented by sampling the number of
tracers in each cell of the produced grid, and this procedure gives rise to spurious
effects as we probe smaller scales.

In my master thesis, we update the LIGER code to build lightcones of trac-
ers by mapping them onto redshift space directly, without recurring to the biasing
procedure. This approach solves the issues mentioned above, allowing to produce a
more realistic galaxy catalogue, which does not suffer from the limitations mentioned
above.

This thesis is organized as follows: in the őrst chapter we review the theory
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of structure formation and of redshift space distortions, considering also relativistic
effects. In the second chapter we describe LIGER’s functioning and the details
related to our new implementation. We will also give a quick overview of the FKP
estimator for the galaxy power spectrum, which we will use in our tests of the code.
In the third and fourth chapters we will show the results of our tests done to validate
the new code and our conclusions.
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Chapter 1

Theory

The Standard Model of Cosmology is the currently accepted cosmological model
that explains the structure, components, and evolution of the Universe It describes a
universe constituted of three main components: radiation, matter and dark energy.

We refer as "radiation" to all the particles that approach relativistic speeds, i.e.
for which special relativistic effects are not negligible, such as photons or neutrinos
in the early phases of the Universe [31].

The matter component is divided in two categories: baryonic matter and dark
matter. Baryonic matter can interact with the radiation őeld through different pro-
cesses, and ultimately constitutes the "light-interacting" part of galaxies, such as
stars or dust. Dark matter, that is yet to be directly observed [32], interacts weakly
or not at all with the radiation őeld, and was introduced independently in the de-
scription of different astrophysical and cosmological processes, to match observations
with the currently accepted theory of gravity [33].

Lastly, dark energy was theorized to explain the late accelerating expansion of
the Universe, which is not compatible with the behaviour of any of the previously
listed components. For this reason the Standard Model of Cosmology is also called
the ΛCDM model ( [34, 35]), where Λ is the cosmological constant and is related to
the density of this dark energy component.

The ΛCDM model describes a universe that in its earliest stages was subjected
to a rapid expansion called Inŕation, in which any region of space would grow in size
by many orders of magnitudes during a small period of time [36]. This expansion is
driven by the inŕaton őeld. This quantum őeld after inŕation starts to decay, giving
ultimately origin to the particles that make up our current Universe [37], in the so-
called reheating phase. During inŕation, the quantum ŕuctuations of the őeld are
stretched on scales comparable with the regime of classical physics, thus going from
a quantum stage to a classical one [38]. These perturbations leave an imprint on the
matter and radiation contents of the Universe, generating density perturbations.

After the reheating phase, the Universe is dominated by radiation, which sup-
presses the growth of perturbations due to its pressure [39], until the matter compo-
nent starts to dominate. We refer to the epoch in which matter starts dominating
over radiation as matter-radiation equality. After the Universe becomes matter dom-
inated, the radiation pressure becomes negligible, and the density perturbations in
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the matter component can start to grow under the inŕuence of gravity, generating
the LSS of the Universe.

In the most overdense regions of the Universe, dark matter haloes can form: these
are gravitationally bound regions of the universe which overcame the cosmological
expansion and collapsed into a virialized structures [40]. A dark matter halo can be
host of substructures, called sub-haloes, which consist in smaller haloes that orbit
the main halo’s gravitational well. Baryonic matter clusters at the center of each
halo or sub-halo, following the gravitational well that they generate. In time, these
structures grow, attracting matter from the surrounding underdense regions [41].
Under certain conditions, the radiative processes that allow for the formation of
stars can trigger, and galaxies form at the center of haloes and sub-haloes, forming
a galaxy cluster.

The result of this description is a universe populated by dark matter haloes, which
host galaxies that cluster together due to their mutual gravitational interactions [42].

In this framework, we see how studying the clustering of matter in the large
scales of the Universe could give us insights about the primordial ŕuctuations of the
inŕaton őeld.

There is one main limitation to this approach: the main source of information
about the large scale structure of the Universe is the light emitted from the galaxies.
However, within our current theories, baryonic matter constitutes a small fraction
of the matter content, leaving most of it undetectable. Still, due to its link with the
underlying density őeld, the study of galaxy clustering is one of the most promising
ways to infer information about the late Universe matter distribution.

1.1 Homogeneous and isotropic Universe

In order to study the Universe as a whole, we need to make some assumptions about
its largest scales structure: we introduce the cosmological principle, which states
that the Universe is homogeneous and isotropic around any point. This is does
not hold at any scale: for example, the Local Group of galaxies spans ≈ 3Mpc
in diameter, while the typical size of a supercluster is ∼ 100Mpc, so at least for
scales smaller than 100Mpc we know that the Universe presents inhomogeneities
and anysotropies. Since surveys of the Universe haven’t found structures larger than
superclusters, we can say that the cosmological principle holds for scales larger than
100Mpc (see e.g. [43]).

This principle admits an expanding Universe, which is consistent with our current
observations [22,44]. In order to account for this expansion we deőne fundamental
observers, who are comoving with the cosmic ŕuid. In their frame of reference we
use the comoving position x, which is related to the physical position r through [30]

r(t) = a(t)x , (1.1)

where a(t) is the scale factor, that describes how the Universe expands in time. We
set a0 ≡ a(t0) = 1, where we deőne t0 as our instant of time in the Universe’s
evolution, such that r(t0) = x.
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Figure 1.1: Velocity-Distance Relation among Extra-Galactic Nebulae. Radial ve-
locities, corrected for solar motion, are plotted against distances estimated from
involved stars and mean luminosities of nebulae in a cluster. The black discs and
full line represent the solution for solar motion using the nebulae individually; the
circles and broken line represent the solution combining the nebulae into groups; the
cross represents the mean velocity corresponding to the mean distance of 22 nebulae
whose distances could not be estimated individually. Reference for the data: [22].

If we consider a steady point in comoving space (x = constant), and take the
derivative of equation (1.1) we retrieve its physical velocity

vphys ≡ ṙ = ȧx = H(t) r , (1.2)

where we deőned the Hubble parameter H(t) ≡ (ȧ/a). This equation relates
the position of a steady object located at x to its velocity sourced by the Universe
expansion. We refer to the motion due to the cosmological expansion as the Hubble
ŕow. The value of H at t = t0 is known as Hubble’s constant H0, from which we
deőne Hubble’s law [22]

vphys = H0 r , (1.3)

where r is the physical distance of a steady object from us and vphys is its velocity.
This equation is an approximation of equation (1.2), valid only in the local Universe,
where we observe objects at a time t ≈ t0. In őgure (1.1) we show Hubble’s diagram,
which prompted the discovery of an expanding Universe.

In the context of general relativity, we can describe the most general metric
that satisőes the cosmological principle, the Friedmann-Lemaître-Robertson-Walker
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(FLRW) metric, which allows for an expanding, curved spacetime, with a line element

ds2 = −c2 a(t)2 dt2 + a(t)2
{︁

dχ2 + fk(χ)
[︁

dθ2 + sin2(θ) dϕ2
]︁}︁

, (1.4)

where c is the speed of light, (χ, θ, ϕ) are the spherical coordinates in the comoving
frame of reference, and k is the curvature parameter, which states if the Universe is
cosmologically open (k > 0), ŕat (k = 0) or closed (k < 0) [45]. The function fk gets
a different form depending on the curvature:

f2k (χ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1√
k
sin
(︂

χ
√
k
)︂

(k > 0)

χ (k = 0)
1√
−k

sinh
(︁

χ
√
−k
)︁

(k < 0)

. (1.5)

This function is closely related to the distance of two objects in the sky, and we will
return to it in the following section.

1.1.1 Distances in cosmology

In a FLRW spacetime, there are different ways in which we can deőne the distance
of an object, depending on the method of measurement used. In this subsection we
will breaŕy list all the different distance deőnitions, and we will be referring to [46].

Redshift

Analogously to the propagation of sound waves, the velocity of a source can shift the
wavelength of the emitted light. We deőne the redshift of a source as the relative
Doppler shift of its emitted light resulting from radial motion

z ≡ λ0 − λe
λe

, (1.6)

where λe is the emitted wavelength and λ0 is the one observed.
If we consider only the radial velocities sourced by the Hubble ŕow we obtain

1 + z =
1

a
, (1.7)

where the scale factor a is evaluated at the time of emission. Due to this relation, it
is common practise to refer to epochs of the Universe with their redshift z, evaluated
from the scale factor of that epoch. For this reason, the redshift sourced only by the
Hubble ŕow is often referred to as cosmological redshift.

Comoving distance (radial)

Since light travels only null geodesics, i.e. ds = 0, looking at an object at a given
distance means observing it as it was in the past. If we consider the radial path of a
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photon that starts from the source at a time t and reaches us at a time t0, knowing
that it travels on null geodesics we obtain the comoving distance

χ(t) =

∫︂ t0

t

c

a(t′)
dt′ , (1.8)

which is the distance, in the comoving frame of reference, from the emitter to us (the
observer).

Comoving distance (transverse)

If we consider instead two objects located at the same redshift from us, but sepa-
rated on the sky, their distance in the comoving frame is given by the comoving
transverse distance, given by the function fk(χ) in equation (1.5). As we can see
from its form, this distance differs from the radial one due to the curvature of the
Universe: for a ŕat Universe (k = 0), the two forms coincide.

Luminosity distance

If we measure the ŕux F received from a source and we know its luminosity L, we
can infer the luminosity distance

DL(z) ≡
L

4πF
, (1.9)

which scales with the ŕux in the way we would expect χ to scale in the nearby
Universe, where we would have a ≈ a0 = 1 and χ → 0. Due to the curvature
and cosmological expansion of the Universe, the comoving and luminosity distances
differ, as they are related by

DL =
fk(χ)

a
, (1.10)

which reduces to DL = χ/a in a ŕat Universe. Objects with a known luminosity L
can be used to measure the distance of their portion of the Universe, and for this
reason they are called standard candles.

Angular distance

Similarly as in the luminosity case, measuring the angular extension θ of an object
in the sky for which we know its intrinsic size R, we can infer the angular distance

DA =
R

θ
, (1.11)

which scales with the size in the way we would expect χ to scale in the nearby
Universe. The comoving and angular distances are related as

DA = a fk(χ) , (1.12)

which, again, reduces to DA = aχ in a ŕat Universe. Objects with known intrinsic
size are called standard rulers, as they can be used to infer the distance of their
portion of the Universe.
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1.1.2 Energy content of the Universe

We want to study how the matter and energy content of the Universe interact and
shape the metric. To do so, we make use of the Einstein equations (EE), which relate
the Einstein tensor Gµν = Rµν − 1/2gµνR, that describes the spacetime geometry,
and the energy-momentum tensor Tµν that describes the Universe energy content:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.13)

where we see that Gµν is linked to the Ricci curvature tensor Rµν and scalar R. In
order to solve these equations we need to plug in into the left-hand side the FLRW
metric and in the right-hand side the energy-momentum tensor, for which we need
to make some assumptions. We consider a perfect isotropic ŕuid, comoving with the
Universe [30], for which

Tµν =

⎛

⎜

⎜

⎝

−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞

⎟

⎟

⎠

, (1.14)

where ρ is the density and p is the pressure, which is isotropic due to the perfect
ŕuid assumption.

From the different components of the equations (1.13), we get the Friedmann
equations

H2 =
8πG

3
ρ− k

a2
, (1.15)

ä

a
= −4π

3

(︃

ρ+ 3
P

c2

)︃

, (1.16)

ρ̇ = −3H

(︃

ρ+
P

c2

)︃

, (1.17)

where G is the gravitational constant. These equations are not independent from
each other, given two of them, the third one can always be derived.

Since only two of them are independent, in order to fully solve the Friedmann
equations we need to specify the equation of state of the cosmological ŕuid, which
in most cases [30], can be written as

p = ωρc2 , (1.18)

where ω can be constant for simpler ŕuid models, or vary in time. Solving equation
(1.17) with this equation of state we get

ρ(a) = ρ(a0)

(︃

a

a0

)︃−3 (1+ω)

, (1.19)
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that tells us how the cosmic ŕuid density changes with the cosmological expansion.
As we said, in the ΛCDM model we consider three main components that make

up the Universe. It can be shown that their equation of states are [30]

• ωm = 0 → ρm ∝ a−3 in the case of matter;

• ωγ = 1
3 → ργ ∝ a−4 in the case of radiation;

• ωΛ = −1 → ρΛ = const. in the case of dark energy.

The total energy of the Universe will be given by

ρ = ρm + ρr + ρΛ , (1.20)

and for each component, we deőne the density parameters

Ωi =
ρi,0
ρc

, (1.21)

where ρc ≡ 3H2
0/(8πG) is called critical density, and it is deőned as the energy

density that would source a ŕat Universe. We can then write equation (1.15) as

H2 = H2
0 [Ωra

−4 +Ωma
−3 +ΩΛ + (1− Ωk)a

−2] , (1.22)

where we deőned the curvature density parameter as

Ωk = 1− c2k

H2
0

. (1.23)

1.2 The formation of large-scales structures

Starting from this section, we will set the speed of light to c = 1 and we will measure
distances in Mpc/h, where h is an adimensional that accounts for the uncertainties
regarding the Hubble’s constant measurement. We write Hubble’s constant as

H0 = 100h km s−1Mpc−1, (1.24)

where given the current measurements, the value of h is subjected to tensions from
different experiments, varying in the range [0.65, 0.75] (see e.g. [47]).

Until now we described a smooth universe, in the sense that all of its components
are homogeneous perfect ŕuids with the same density at any point of space, consistent
with the Cosmological principle. However, this principle does not hold for scales
smaller than 100Mpch−1, at which the Universe presents structures such as galaxy
clusters, őlaments and voids [48, 49], as it can be seen in őgure (1.2), where the
distribution of galaxies observed by the Sloan Digital Sky Survey [23] is shown. To
describe the Universe at these scales, we thus have to generalize from a smooth
description, allowing the local density of a ŕuid ρ(x) to deviate from its mean value
ρ̄. Since we expect that at the largest scales the cosmological principle will still hold,
we will describe these density deviations with perturbation theory, perturbing over
the smooth background we described in the previous section.
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Figure 1.2: Distribution of galaxies according to the Sloan Digital Sky Survey
(SDSS). This őgure shows galaxies that are within 2° of the equator and closer
than 858Mpc (assuming H0 = 71 km s−1Mpc−1). Picture taken from [23].
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In particular, since in this work we use dark matter only simulations to describe
large scales structures formation, we will focus on the behaviour of non-relativistic,
collisionless particles under the inŕuence of gravity and of the Hubble expansion.
Furthermore, since we are interested in regions of the Universe which will be probed
by next-gen galaxy surveys (z ≲ 2) we will consider a matter and Λ dominated
Universe.

1.2.1 Linear perturbation theory

In this work we are interested in the clustering of matter on large scales, where the
density deviations from the background value are small [30,48]. More speciőcally we
will study scales where

δ ≡ ρ(x)− ρ̄

ρ̄
≪ 1 , (1.25)

where ρ(x) is the matter density evaluated at the comoving position x, ρ̄ is its mean
value, and we deőned δ as the density contrast, or overdensity. Since we treat
small density ŕuctuations, we will work with linear perturbation theory.

It can be shown that at large enough scales, where the motion of matter particles
can be described by a bulk velocity and we can neglect multi-stream effects, the
behaviour of non relativistic, collisionless matter can be modelled after a pressureless
ŕuid [48ś50]. This approximation breaks down at smaller scales, where multi-stream
regions form and we can not deőne a unique velocity őeld (i.e. in virialized regions
such as dark matter haloes).

For this section we will work in the Newtonian regime for gravity, and thus we will
be limited in considering scales smaller than the Hubble radius dH ≡ 1/H(t), since
at those scales the gravitational potential would generate non-negligible curvature
effects [9, 11, 51].

The equations for a pressureless ŕuid in a FLRW metric under Newtonian gravity
are [30, 48,50]

∂ρ

∂t
+∇r · (ρu) = 0 Continuity equation, (1.26)

∂u

∂t
+ (u · ∇r)u = −∇rΦ Euler equation, (1.27)

∇2
rΦ = 4πGρ− Λ Poisson equation, (1.28)

where ρ is the density of the pressureless ŕuid, u is its bulk velocity, and Φ is the
gravitational potential, which as we can see from equation (1.28), is both sourced by
the ŕuid density and the cosmological constant.

In order to proceed with perturbation theory we will separate the quantities
ρ, u and Φ from their background value, moving also from proper to comoving



1.2. THE FORMATION OF LARGE-SCALES STRUCTURES 10

coordinates, writing:

ρ(r, t) = ρ̄(t) (1 + δ(x, t)) ,

u(r, t) = ȧx+ v(x, t) ,

Φ(r, t) = Φ̄(t) + ϕ(x, t) ,

(1.29)

where, solving for the background values, it can be shown that [48,49]

Φ̄(t) =
äȧ

2
|x|2 . (1.30)

Assuming small peculiar velocity perturbations v and a small density contrast δ, it
can be shown that the linearized ŕuid equations are [48, 50]

∂δ

∂t
+

1

a
∇x · v = 0 , (1.31)

∂v

∂t
+H v = −1

a
∇xϕ , (1.32)

∇2
xϕ = 4πGa2ρ̄ δ . (1.33)

We can combine this set of equations to retrieve a second order differential equation
for δ

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGaρ̄ δ . (1.34)

Since equation (1.34) presents only temporal derivatives, we can can separate time
and space dependence in δ(x, t): it admits a superimposition of two solutions, a
growing one D(+)(t)A(x) and a decaying one D(−)(t)B(x), where A(x) and B(x)
are two functions describing the initial overdensity conőguration:

δ(x, t) = D(+)(t)A(x) +D(−)(t)B(x) . (1.35)

D(+)(t), D(−)(t) are called growing and decaying modes, and in general we have
[48,50]:

D(+)(t) ∝ H(t)

∫︂ t

0

dt′

a2(t′)H2(t′)
, (1.36)

D(−)(t) ∝ H(t) . (1.37)

It’s not necessarily true that D(−) decays with time, while D(+) grows: for example,
as we will see next, in a Λ dominated universe both D(−) and D(+) freeze over time,
approaching a constant value [50]. We will still assume that D(+) dominates over
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D(−) unless stated otherwise, since it is true for a matter-dominated universe, as we
will see next. In conclusion, when talking about the growth of structures, we will
refer only to the growing mode, also called growth factor.

Using this result and equation (1.33), we can see that the gravitational potential
ϕ will evolve in time as

ϕ ∝ D(+)

a
. (1.38)

Lastly, we deőne the linear growth rate as the logarithmic derivative of the growth
factor over the scale factor

f ≡ d lnD(+)

d ln a
, (1.39)

which as we will see in the next section, appears when linking the density perturba-
tions to the velocity streams it sources.

Structures growth in an EdS universe

We will őrst solve equation (1.34) for a simpliőed situation: a ŕat, matter dominated
universe, also called Einstein-de Sitter universe (Eds). In this universe we have
Ωm = 1, while all the other densities are set to zero. Using this condition we őnd
a(t) ∝ t2/3, H = 2/(3t) and ρ̄ =

(︁

6πGt2
)︁

. From equations (1.36) and (1.37) we then
get:

D(+) ∝ t2/3, D(−) ∝ t−1 , (1.40)

which leads to:

v(+) ∝ t1/3, v(−) ∝ t−4/3 , (1.41)

ϕ(+) ∝ t0, ϕ(−) ∝ t−5/3 . (1.42)

As anticipated, we see that in this case the growing mode dominates over the decaying
mode, and also that the potential őeld stays constant in time.

Structures growth in an Universe with matter and dark energy

Now we will consider a more realistic setting for the late Universe, in which both mat-
ter and dark energy are present. Current observations state that the Λ component
started dominating over the matter one in the recent Universe, around z∗ ≈ 0.55 [52],
so it is useful to check how the growth factor behaves in this case. In [50] it is shown
that in this case the solution for D(+) and D(−) is

D(+) ∝ Bx

(︃

5

6
,
2

3

)︃(︃

Ωm

ΩΛ

)︃1/3 [︃

1 +
Ωm

a3ΩΛ

]︃

, (1.43)
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D(−) ∝ a−3/2

(︃

1 +
ΩΛ

Ωm
a3
)︃3/2

, (1.44)

where

x =
ΩΛ

Ωm + a3ΩΛ
, (1.45)

and Bx(α, β) is the incomplete Beta function. We see that as Ωm/ΩΛ becomes
smaller the growing mode D(+) slows down, approaching a constant value. In the
later times, when z < z∗ = (ΩΛ/Ωm)1/3 − 1, the growth of structures slows down in
respect to a(t), due to the expansion of the Universe.

1.2.2 Peculiar velocity őeld

We will now see how the peculiar velocity őeld v is linked to the density perturbation
δ, since it will important for the rest of the work. To do so, we start by showing
that at large scales, the bulk motion of the pressureless ŕuid is purely irrotational.
If we write v = vcurl+virr, the sum of a divergenceless (vcurl) and irrotational (virr)
component, from equation (1.32) we can see that:

v̇curl +H vcurl = 0 , (1.46)

that implies vcurl ∝ 1/a: the divergenceless component of the velocity will be
smoothed out with the expansion of the universe. We remind that this hold as
long as the pressureless ŕuid model holds: when probing smaller scales this will not
valid anymore.

Now that we know that δ evolves in time as D(+)(t) we plug it in equation (1.31),
which can now be written as [30,48,50]

∇ · v = −aHf δ . (1.47)

Since we are working with a purely irrotational velocity őeld we can write it in terms
of a potential őeld:

v = ∇ψv , (1.48)

which means

∇2ψv = −aHf δ . (1.49)

Solving for ψv and deriving we get:

v(x) = −aHf ∇∇−2δ =
aHf

4π

∫︂

d3x′ δ(x′, a)
x′ − x

|x′ − x|
3

. (1.50)

This equation relates the velocity őeld to the surrounding matter distribution and
it can be applied to use a galaxy peculiar velocity (since it is expected to follow the
matter ŕow) to probe the underlying matter density őeld.
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1.3 Spatial statistics of the density őeld

Following the deőnition of δ in equation (1.25) we see that by design its average
value is expected to be δ̄ = 0. To study the spatial properties of the density őeld
it is then useful to recur to 2-point statistics. In this section we will study the auto
correlation of the density contrast δ (either of matter or any of its tracers) in a
equal-time hyper-surface: the quantity deőned in this way does not represent a true
observable because what we measure in a survey lies on the lightcone hypersurface
instead, but we will see in section (1.4) an analog treatment for that case.

Before starting, we will have to introduce the density contrast for a tracer, such
as galaxies or haloes. Calling the comoving number density of a tracer ng(x), we
deőne its density contrast as

δg(x) =
ng(x)− n̄g

n̄g
, (1.51)

in which n̄g is its mean, background value.

1.3.1 Discrete őelds

Before studying the properties of δ we want to be more detailed about the deőnition
of the tracer density őeld ng(x). Looking back at equation (1.51) we see that we
treated ng as a continuous őeld, in a similar way as the matter one. Tracers are
discrete objects, and thus a proper density description would be

ndg(x) =
∑︂

xi

δD(xi − x) , (1.52)

where the sum is over the tracers positions and the label "d" speciőes that the density
is computed from a discrete set of objects.

The way we treat this issue is by considering the discrete tracer distribution as
one realization of the sampling of the underlying continuous őeld (see e.g. [49]). The
most common way to do so is by Poisson sampling: suppose to divide the space
in cells of volume ∆V , then the expected number of particles in each cell is

Ni =

∫︂

Vi

dx3 ng(x), (1.53)

where we integrated in the i-th cell’s volume. At each cell then, the number of tracers
present Ni will follow the distribution

Pr{Ni =M} =
NM

i

M !
e−Ni . (1.54)

The Poisson sampling we considered is local, in the sense that the probability
of őnding N tracers in a given cell is independent on the conőguration of the őeld
in the surrounding space. In principle this is not a given truth: the probability of
őnding N particles in a region of space could depend on the conőguration of the
density őeld in the surroundings, or also in the sampling of particles in the same of
surrounding regions, calling for more complex models.
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1.3.2 Correlation function

For simplicity in the rest of this section we will refer to both matter and tracer
density perturbations with a general density őeld δ(x), unless speciőed otherwise.
We can use the overdensity δ to construct the correlation function, deőned as its
covariance. Considering two comoving positions x1 and x2:

ξ(x12) = ⟨δ(x1)δ(x2)⟩, (1.55)

where x12 ≡ |x1−x2|. The dependence on only the distance between the two points
is granted by the assumption that the Universe is isotropic and homogeneous. In the
next section we will see that this is not true when dealing with the observed density
őeld, which is projected upon the lightcone [53] and subjected to various distortions
due to the redshift-distance mapping.

By our deőnition in equation (1.25) the density contrast has average ⟨δ⟩ = 0,
then its variance is then given by

σ2 = ⟨δ(x)2⟩ = ξ(0). (1.56)

When instead of using a continuous őeld we need to study the correlation of a
discrete set of particles, we need to account for the noise generated by the sampling
process, known as Poisson shot noise. This results in an extra signal generated
by the spurious self-correlation the particles. Computing the covariance of the over-
densities measured from a discrete set of points δd one can show (see e.g. [49])

⟨δd(x1)δ
d(x2)⟩ = ξ(x12) +

1

n̄
δD(x1 − x2), (1.57)

where n̄ is the mean number density of the particles. We can see that the term that
adds up to the correlation function is nonzero and singular only if x1 = x2, so for
x1 ̸= x2 the covariance of δd provides an estimate for the correlation function.

Meaning of the correlation function

Considering the number density of a given tracer n we have:

n(x) = n̄ [1 + δ(x)]. (1.58)

If we then compute the correlation of the number density at two different locations
we get:

⟨n(x1)n(x2)⟩ = n̄2 [1 + ξ(x12)], (1.59)

where we have made use of (1.55) and of the fact that ⟨δ(r)⟩ = 0. Considering an
uniformly distributed tracer then n(r) = n̄ and we describe the actual distribution of
discrete tracers as a result of a Poisson-like process with probability n̄. In general the
tracer won’t be distributed uniformly and equation (1.59) shows how the correlation
function describes the excess probability of őnding two tracers at a distance r12
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with respect to a Poisson process. For small separations r12 we expect galaxies to
be strongly clustered due to gravity, so ξ is positive. As the distances get bigger
we expect galaxies to be less correlated and so ξ dies off to zero, eventually going
negative, due to the presence of regions devoid of galaxies between clusters. At even
larger scales where we expect the cosmological principle to hold, ξ will grow back
to 0, since the galaxy distribution will appear uniform, following a properly random
process.

In őgure (1.3) we show the correlation function measured from the 2dF Galaxy
Redshift Survey [24], with its best őt with a power law function, which is often used
to model the correlation of galaxies at scales smaller than 10Mpc/h:

ξfit(x) =

(︃

x

r0

)︃−γ

, (1.60)

where γ and r0 are the őt parameters.

1.3.3 Power spectrum

We deőne the Fourier modes of the density őeld δ̃(k) as the Fourier transform of
δ(r):

δ̃(k) ≡
∫︂

eikx δ(x) d3x , δ(x) ≡
∫︂

e−ikx δ̃(k) d3k/(2π)3 , (1.61)

We then deőne the power spectrum P (k) as the covariance of the Fourier modes:

(2π)3 δD(k1 + k2)P (k1) ≡ ⟨δ̃(k1)δ̃(k2)⟩ , (1.62)

where δD is the Dirac Delta, which appears due to the homogeneity assumption that
grants translational invariance, while the fact that P (k) depends only of the module
of the wave vector is granted by the isotropy assumption.

It can be shown that the power spectrum is the Fourier transform of the correla-
tion function [30,48,50]:

P (k) =

∫︂

eikx ξ(x) d3x = 2π

∫︂ ∞

0
dx x2sinc(kx)ξ(x) . (1.63)

Similarly to the case of the correlation function, computing the power spectrum
from a discrete set of points also generates a spurious noise due to the sampling.
Fourier transforming equation (1.57) we obtain that the shot noise contribution to
the power spectrum consists in a constant additive term (see e.g. [49])

⟨δ̃d(k1)δ̃
d
(k2)⟩ = P (k1) +

1

n̄
, (1.64)

which needs to be subtracted to correctly estimate the power spectrum.
In őgure (1.4) we show the power spectrum measured from the Sloan Digital Sky

Survey III [54], with its best őt from the ΛCDM model.
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Figure 1.3: Real-space correlation function of the 2dF Galaxy Redshift Survey [24],
with error bars from the rms spread between mock catalogues. The data is compared
with the best-őt power law described in equation (1.60). Figure taken from [25].
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Figure 1.4: Galaxy power spectrum measured from the Baryon Oscillation Spec-
troscopic Survey (BOSS), part of the Sloan Digital Sky Survey III. The galaxies
considered are in the redshift bin [0.4, 0.6] and follow a speciőc target selection cri-
terion. Reference for the data: [26].
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Position-dependent power spectrum

Projection effects and, as we will see, redshift space distortions break the translational
symmetry of the observed galaxy distribution. This complicates the treating of
Fourier-based statistics such as the power spectrum. For instance, the covariance of
two modes of δg is not diagonal anymore, i.e. [55, 56]

⟨δ̃g(k1)δ̃g(k2)⟩ = (2π)3C(k1,k2) . (1.65)

To treat this issue we can deőne a position-dependent power spectrum [57]:

Ploc(x,k) ≡
∫︂

⟨δg
(︂

x− y

2

)︂

δg

(︂

x+
y

2

)︂

⟩ e−ik·y d3y

=

∫︂

C
(︂

−k+
q

2
,k+

q

2

)︂

eiq·x d3y ,
(1.66)

where the second equality was obtained by expressing the overdensity in terms of its
Fourier transform.

To extrapolate position-indipendent information from this quantity we can ex-
pand it in Legendre polynomials Ll over x, writing

Pl(k) = (2l + 1)

∫︂

Vk

dΩk

4π

∫︂

d3x

(2π)3
Ploc(x,k)Ll(k̂ · x̂) , (1.67)

where we computed the angular average over a thin shell in Fourier space centered
in k of volume Vk.

Of particular interest is the l = 0 expansion of Ploc, the power spectrum
monopole, which has the same form as the traditional power spectrum when trans-
lational symmetry is preserved, as it can be hinted by integrating over space the
position-depedent power spectrum

∫︂

Ploc(x,k) dx
3 =

∫︂ [︃∫︂

C
(︂

−k+
q

2
,k+

q

2

)︂

eiq·x d3y
]︃

d3x

= (2π)3C(k,−k) .

(1.68)

In conclusion, given an overdensity őeld δ(x), the operative deőnition of comput-
ing its power spectrum monopole is the same as the traditional power spectrum.

1.3.4 Gaussian random őelds

The correlation function and power spectrum give an equivalent statistical descrip-
tion of the δ őeld. In general, they don’t uniquely characterize the őeld in question,
beside speciőc cases. One example are the Gaussian random őelds, which are
characterized by the fact that at each point the probability distribution of the den-
sity ŕuctuation δ(x) is Gaussian. These őelds are particularly important in cosmol-
ogy because it is often assumed that for very early epochs, the density őeld obeyed
Gaussian statistics. This is predicted at large scales by many inŕationary models
which generate the primordial density ŕuctuations in the Universe [58]. For this rea-
son, the observation of non-gaussianities in the primordial perturbations would allow
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to discriminate from different candidate models for inŕation. Furthermore, there is
observational evidence of this in the study of the anisotropies of the cosmic wave
background radiation [59], which strongly constrain this model.

1.3.5 Linear bias

The complexity of the physics of galaxy formation makes it difficult to assess the
relation between galaxies’ and the underlying dark matter’s distributions. One pos-
sible solution is to parametrize the way in which dark matter and galaxy clustering
are correlated, by introducing the linear galaxy bias. As we already mentioned, we
deőne the galaxy overdensity as

δg(x) =
ng(x)− n̄g

n̄g
, (1.69)

where ng is the galaxies’ number density and n̄g its average value.
We will refer instead to δ for the dark matter overdensity. At a given epoch the

galaxy linear bias b is introduced as:

δb(x) = b δ(x) , (1.70)

which also implies:

ng(x) = n̄g [1 + b δ(x)] . (1.71)

This deőnition assumes a non-local and linear relation between galaxies and the
underlying matter őeld. Equation (1.70) will be applicable only on large scales,
where |δ| ≪ 1, otherwise in underdense regions with δ = −1 it could imply a negative
galaxy density ng(x).

Under this assumption it is easily shown that the galaxy correlation function and
power spectrum are related to the matter ones by:

ξg(r) = b2 ξ(r) , Pg(k) = b2 P (k) . (1.72)

These relations are not accurate in scales in which equation (1.70) is not valid.

Justiőcation for equation (1.70)

The assumptions of equation (1.70) can be explained with different approaches. In
this subsection we will look into the threshold bias approach [60].

This approach starts from the assumption that gravitationally bound structures
form in regions where the linear density őeld, when coarse-grained on a scale R, lays
above some threshold.

Consider a zero-mean stationary Gaussian random őeld δ(x), with correlation
function ξ(r) and variance σ2 = ξ(0). We want to study the distribution of regions
in which δ > νσ, where ν parameterizes the said threshold. These regions have an
overdensity δ>ν = Θ[δ(x) − νσ], where Θ is the Heaviside step distribution. Then,
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the correlation function of the distribution of these points can be written as [61,62]:

1 + ξ>ν(r) =
⟨Θ[δ(x)− νσ]Θ[δ(x+ r)− νσ]⟩

⟨Θ[δ(x)− νσ]⟩2

=

∫︁∞
ν

∫︁∞
ν G(y1, y2) dy1 dy2
[︁

1
2erfc

(︁

ν
2

)︁]︁2 ,

(1.73)

where G(y1, y2) is the joint probability function for the normalized őeld y = δ/σ at
the locations x and x+ r:

G(y1, y2) =
exp

[︂

−y12+y2
2
−2w(r)y1y2

2[1−w2(r)]

]︂

2π[1− w2(r)]
1

2

, (1.74)

with w(r) = ξ(r)/σ2.
If we expand equation (1.73) to őrst order in w(r) and we take the limit ν ≫ 1

we őnd:

ξ>ν(r) ≈
ν2

σ2
ξ(r) , (1.75)

which is consistent with the result obtained by assuming a linear bias relation, as-
signing b = ν/σ.

1.4 Projection effects on the galaxy distribution

The main source of information regarding the galaxy distribution in the Universe
is given by redshift surveys, which measure the angular positions and redshift of
galaxies in the sky.

A survey is mainly characterized by its shape and selection criteria. Regarding
the shape, in general only a region of the sky is probed: this can be due to the
physical positioning of the measuring instrument, such as in the case of ground
based telescopes, or to avoid speciőc regions, such as the Galactic plane. Selection
criteria to the sources are often applied due to practical reasons, such as choosing
only targets bright enough to have a precise redshift measurement (i.e. applying a
ŕux cut), or selecting based of the target size, to avoid including stars.

From the data provided from the survey we can construct the spatial distribution
of galaxies by retrieving the distance of the source making use of the measured
redshift and of its relation with the comoving distance, mapping (z, θ, ψ) → (χ, θ, ψ).

Tainting this prescription is the fact that the galaxies’ peculiar velocities add up
to the Hubble ŕow, altering the emitted radiation and shifting the observed redshift
with respect of the cosmological one, thus shifting the inferred distance with respect
to the true, comoving one. This effect was őrst studied by Kaiser in [2], where he
showed that at large scales the galaxies’ peculiar velocities boost the power spectrum
monopole by a factor that depends on the linear bias and on the linear growth rate.
In a similar way, also the observer’s peculiar velocity distorts the measured redshift,
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creating a dipolar patter in the galaxy distribution [1,63,64]. Lastly, the path that a
photon follows in reaching us from a galaxy is curved by the underlying gravitational
potential, which shifts both the observed radial and angular position of the galaxy,
causing also a time delay to the observed signal [8ś11].

Beside affecting the spatial distribution of the galaxies, both the peculiar veloc-
ities and the gravitational potential also distort the apparent ŕux measured from a
source, and this can change the galaxy distribution properties near the survey’s ŕux
cut. We will refer to this effect as magniőcation [8, 65].

It is a known fact that the perturbations due to the peculiar velocities dominate
over the terms generated by the gravitational potential [8ś11], but the next genera-
tion of galaxy surveys (see e.g. Euclid [13], DESI [14], SKA [15]) will probe scales
comparable with the Hubble radius, at which we expect to observe these contribu-
tions.

In this section we will review these effects, starting by considering only the ones
sourced by the peculiar velocities, following the treatments presented in [1, 30, 45].
We will then incorporate the complete general-relativistic prescription, accounting
in this way also for the gravitational potential contributions and for the light-cone
projection effects we mentioned in section (1.3), following [8ś11].

1.4.1 Redshift space distortions

In this subsection we will start by describing the őrst treatment of velocity distortions
to the measured redshift, labelled as redshift space distortions (RSD).

As we have anticipated, the velocity of a light source stretches or compresses the
emitted wavelength generating the doppler redshift, which for a peculiar velocity
much smaller that the speed of light |v| ≪ 1 can be linearized to

zdoppler = v · x̂ , (1.76)

where x is the source’s comoving position, and x̂ is the associated versor. Despite the
nomenclature, this effect can either stretch or compress the emitted light, allowing
also for blueshifting effects. In general, also the velocity of the observer will distort
the observed redshift in a similar way: we will account for this effect later in this
section, while for now we will consider the case of a stationary observer with respect
of the CMB.

The doppler redshift then adds up to the cosmological one zcosmo, leading to the
relation [30,49,66]

zs = zcosmo + zdoppler = zcosmo + v · x̂r , (1.77)

where the subscript "s" denotes that a quantity is observed or inferred by the obser-
vations while "r" denotes the real one. We will then deőne the space built from the
redshift measurements as redshift space.

Around the time of the introduction of this őeld, most redshift surveys probed
only the z ≲ 0.1 region of the Universe (e.g. the CfA and Cfa2 surveys [67]), so the
redshift-comoving distance relation was used in its linearized form in z, that consists
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in a different formulation of Hubble’s law [22]

χ(z) ≈ z

H0
, (1.78)

which becomes progressively less accurate as z grows, and holds only if z is the
cosmological redshift. Plugging equation (1.77) in equation (1.78) we obtain the
mapping

|xs| = |xr|+
v · x̂r

H0
, (1.79)

which in three dimensions becomes

xs = xr +
v · x̂r

H0
x̂r . (1.80)

From equation (1.80) we see how the velocity effect to the inferred position is
purely radial, with a contribution that depends only on its component along the Line
of Sight (LOS). More speciőcally, an object moving towards us will have v · x̂r < 0,
which means it will appear closer to us, while in the opposite case v · x̂r > 0 it
will appear farther away. Lastly, for a motion purely perpendicular to the LOS the
contribution will be null, since v · x̂r = 0.

In őgure (1.5) we show the cumulative effect of these distortions when considering
the clustering of a spherical distribution of galaxies at different scales, by comparing
their positions in real and redshift space, positioning us as an observer from below
the image.

As we expect, the angular size of these structures projected on the sky is left
unchanged, while for their LOS component the effect depends on the scale and on the
phase of the collapse. In the őrst panel we consider large scales, where the v · x̂r/H0

term is small compared to the size of the structure, and the cumulative effect consists
in a squashing along the LOS. This is because galaxies from the farther side of the
sphere will be moving towards us, appearing closer, while the opposite happens from
the galaxies in the closer side of the sphere. In the second panel we consider the
turnaround phase, in which the distortions from the two sides of the sphere cancel
out with the radius of the sphere, generating a straight line conőguration. In the last
panel we are considering an already virialized structure, in which the velocity effects
can be larger that the actual size of the sphere, turning "inside out" the shape and
elongating it along the LOS. These effects are referred to as "Fingers of God".

1.4.2 Observed density őeld

As we already mentioned, in a redshift survey we only probe a region of the Universe
and we only measure the redshift of a restricted sample of all the galaxies present in
that region.

The selection function n̄g,s(xs) describes the expected number of galaxies that
a given survey will observe at a position xs. Since n̄g,s is evaluated in redshift space
it can be estimated from the observed data [1].
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Figure 1.5: Detail of how peculiar velocities lead to the redshift distortions. The dots
are ‘galaxies’ undergoing infall towards a spherical overdensity, and the arrows repre-
sent their peculiar velocities. At large scales, the peculiar velocity of an infalling shell
is small compared to its radius, and the shell appears squashed. At smaller scales,
not only is the radius of a shell smaller, but also its peculiar infall velocity tends to
be larger. The shell that is just at turnaround, its peculiar velocity just cancelling
the general Hubble expansion, appears collapsed to a single velocity in redshift space.
At yet smaller scales, shells that are collapsing in proper coordinates appear inside
out in redshift space. The combination of collapsing shells with previously collapsed,
virialized shells, gives rise to Fingers-of-God. Picture and description taken from [1].
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If at a position xs we measure a number density ng(xs), we can deőne the observed
galaxy overdensity as

δg,ss(xs) ≡
ng,s(xs)− n̄g,s(xs)

n̄g,s(xs)
, (1.81)

which is an observable, since it is evaluated in redshift space.
The situation is more complex when we deőne the overdensity in real space

δg,r(xr) ≡
ng,r(xr)− n̄g,r(xr)

n̄g,r(xr)
. (1.82)

In this case the selection function n̄g,r is not only evaluated at a different position with
respect to the redshift space counterpart, it is a completely different function, and
in general can not be estimated from the data, since we would need to measure the
real space galaxy distribution. Many works mistakenly stated that the two functions
agree at linear order, but this is not true, as it was shown by Hamilton in [1].

In conclusion, the two selection functions are different, but since the standard
approach to model the redshift distortions relied on their equivalence, we will proceed
by re-deőning the redshift space overdensity as

δg,s(xs) ≡
ng,s(xs)− n̄g,r(xs)

n̄g,r(xs)
, (1.83)

in which we used the real space selection function.

1.4.3 Two-point statistics

Starting from the redshift space overdensity δg,s we can compute its covariance, the
redshift space correlation function

ξs(xs,12, xs,1, xs,2) ≡ ⟨δg,s(xs,1)δg,s(xs,2)⟩ , (1.84)

where xs,12 = |xs,2 − xs,1|.
One thing to notice here is that redshift-space distortions destroy the translational

symmetry of the observed Universe, but they keep the rotational symmetry about the
position of the observer (as long as the selection function is spherically symmetric) [1].

As a consequence, the correlation function depends also on the distance of the two
points from the observer. This is because, in a general case without any symmetry,
the correlation function would depend on both the points x1,s, x2,s. Introducing
a spherical symmetry around the observer means that we only have to keep őxed
their relative position and their distance from us, meaning that the only information
needed are xs,12, xs,1 and xs,2.

We can also deőne the redshift space power spectrum

⟨δ̃g,s(k1)δ̃g,s(k2)⟩ =
∫︂

eik1s1+ik2s2ξs(xs,12, xs,1, xs,2) d
3xs,1 d

3xs,2 , (1.85)

where δg,s˜ (k) are the Fourier modes of the redshift space overdensity. Notice how we
cannot write the power spectrum as a diagonal matrix since translational symmetry
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is broken. We can still make use of the rotational symmetry around the observer to
write it only in function of the modulus of the combination of the modes, and not in
function of their orientation

⟨δ̃g,s(k1)δ̃g,s(k2)⟩ = ξ̃
s
(|k1 + k2|, k1, k2) . (1.86)

1.4.4 Linear redshift distortion operator

In order to quantify how RSDs inŕuence the measured summary statistics we őrst
have to study how they affect the observed galaxy overdensity őeld δg. We will show
that the the overdensity measured in redshift space δg,s is related to the one in real
space δg,r via a linear operator S, called the linear redshift distortion operator

δg,s = S δg,r . (1.87)

The starting point of the derivation of this relation is the conservation equation,
which states that peculiar velocities displace galaxies along the line-of-sight, but they
do not make them appear or disappear (we will see later that taking into account
selection and projection effects will contradict this statement)

ng,s(xs) d
3xs = ng,r(xr) d

3xr . (1.88)

Writing the equation in terms of the overdensities we get

n̄g,r(xs)[1 + δg,s(xs)]xs
2 dxs = n̄g,r(xr)[1 + δg,r(xr)]xr

2 dxr , (1.89)

where we remind that we are using δg,s and not δg,ss. Using equation (1.80) and
deőning v∥ = v · x̂ we get we can rewrite it as [1, 30]:

1+ δg,s(xs) =
xr

2 n̄g,r(xr)

(xr + v∥/H0)2n̄g,r(xr + v∥/H0x̂r)

(︃

1 +
1

H0

∂v∥
∂xr

)︃−1

[1+ δg,r(xr)] ,

(1.90)

which is an exact solution, valid both in linear and nonlinear regimes up to shell
crossing, where multiple streams overlap and we cannot assign a unique velocity
őeld to each point.

We now want to linearize the equation. The assumption |δ| ≪ 1 also implies
|∂v∥/∂xr|/H0 ≪ 1 for a irrotational velocity őeld in linear theory (see equations
(1.48) and (1.49)). We will also assume that the peculiar velocities in units of H0

of the galaxies are small compared to their distances from the observer |v/H0| ≪ r.
Then at linear order:

δg,s(xr) = δg,r(xr)−
1

H0

(︃

∂

∂xr
+
α(xr)

xr

)︃

v∥(xr) , (1.91)

where

α(xr) ≡
∂ lnxr

2n̄(xr)

∂ lnxr
(1.92)
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describes the change with distance of the selection function.
Inverting the linearized continuity equation (1.50) and assuming a bias relation

δg,r = b δmatter we obtain:

v∥ = −aHβ ∂
∂r

∇−2δg,r , (1.93)

where

β =
f

b
(1.94)

is the linear redshift distortion parameter, given by the fraction of the linear
growth rate and galaxy linear bias. Since we are working under the z ≪ 1 assumption
we evaluate all the parameters at z = 0, which means setting a = 1, H = H0 and
β = β0 = β(z = 0).

Plugging equation (1.93) into (1.91) we őnally get the form of the operator

S = 1 + β0

(︃

∂2

∂xr2
+
α(xr)∂

xr∂xr

)︃

∇−2 , (1.95)

which we remind is valid for a stationary observer and a selection function estimated
in real space n̄(xr).

1.4.5 Plane-parallel limit

We want to study S in the plane-parallel limit, which is obtained by asking that the
galaxies observed are far enough that we can approximate their light rays reaching
us to be parallel. More precisely, we are asking that the separation angle of two
given galaxies is θ ≪ 1 (see e.g. őgure (1.6)).

Within these assumptions it can be shown that the redshift space correlation
functions depends only on the components of xs,12 parallel (xs,∥) and perpendicular
(xs,⊥) to the LOS [1,30]

ξs(xs,12, xs,1, xs,2) ≈ ξs(xs,∥, xs,⊥) . (1.96)

An example of a measured correlation function in redshift space is shown in őgure
(1.7). For the same simmetry reasons, in this limit the power spectrum becomes a
diagonal matrix [1, 30],

⟨δ̂g,s(k1)δ̂g,s(k2)⟩ = (2π)3 δD(k1 + k2)P
s(k1∥, k1⊥) , (1.97)

where k∥ and k⊥ are the k1 components parallel and perpendicular to the line-of-
sight. Regarding the linear redshift distortion operator, this approximation allows
us to write it as [30,66]:

Sp = 1 + β0
∂2

∂z2LOS

∇−2 , (1.98)
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where zLOS is the distance along the line of sight. Writing the operator in Fourier
space we őnd out that it is diagonal

Sp = 1 + β0 µ
2
k , (1.99)

with µk ≡ ẑLOS · k̂ is the cosine of the angle of the k wavevector with the line of
sight. Then we can write the redshift space power spectrum in a diagonal form

P s(k) = (1 + β0 µ
2
k)

2P (k) . (1.100)

The reason why we retrieved a diagonal power spectrum is to be found into the fact
that in the plane-parallel approximation redshift space distortions preserve trans-
lation invariance: the translation operator −i∇ commutes with the plane-parallel
operator and thus they share eigenmodes [1]. We can retrieve the monopole of the
power spectrum simply by performing an angular average, since Ps(k) is translation-
ally invariant [1, 2]

P0,s(k) ≡
∫︂

dΩk

4π
(1 + β0 µ

2
k)

2P (k) = FP (k) , (1.101)

where

F = 1 +
2

3
β0 +

1

5
β20 (1.102)

is the Kaiser factor. In conclusion, in the plane-parallel approximation at large
scales, the galaxies’ peculiar velocities boost the power spectrum monopole by a
factor that depends on the linear bias and on the linear growth factor.

1.4.6 Velocity of the observer

The mapping we deőned in equation (1.80) is valid for a stationary observer, but in
order to take into account a moving observer with velocity vobs we will generalize it
to (see e.g. [1, 63, 64]):

xs = xr +
v · x̂r

H0
x̂r −

vobs · x̂r

H0
x̂r . (1.103)

One can show that following a similar approach as in the previous case the over-
density maps as:

δobsg,s (xr) = δs(xr) + α(xr)
x̂r · vobs(xr)

xr
. (1.104)

The result is a dipole contribution directed along the observer’s motion direction.
The dipole sourced by the peculiar motion of the observer is known as rocket effect,
and it calls for a delicate approach: the Local Group motion induces a spurious
overdensity in the direction of motion, which may then be wrongly identiőed as the
cause of the motion if not correctly accounted for [63, 64]. In fact, this effect could
affect the estimation of the observer’s peculiar velocity via clustering measurements,
as it acts on the observed overdensity in equation (1.50), and could also bias the
estimation of cosmological parameters, due to its contribution on summary statistics
(see e.g. [63]). We will see how this effect affects the galaxy power spectrum in
subsection (1.4.13), where we will consider a full relativistic treatment.
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Figure 1.6: A spherical overdensity appears distorted by peculiar velocities when
observed in redshift space. On the left plot, the overdensity is far from the observer
(who is looking upward from somewhere way below the bottom of the diagram), and
the distortions are effectively plane-parallel. On the right plot, the overdensity is
near the observer (large dot), and the large scale distortions appear kidney-shaped.
The observer shares the infall motion towards the overdensity. Picture taken from [1].

Figure 1.7: Contour plots of the redshift space two-point correlation function ξs as a
function of separations s∥ and s⊥ parallel and perpendicular to the line of sight in:
(left) the IRAS QDOT [27] and 1.2 Jy [28] redshift surveys, merged over the angular
region of the sky common to both surveys; and (right) the optical Stromlo-APM [29]
survey. Picture and description taken from [1]
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1.4.7 Doppler effect

The term proportional to α that we neglected in the previous treatment is referred
to as Doppler term [3,4] and it is proportional to α(xr) v∥/xr. This approximation
has been shown to be accurate for past surveys, such as the SDSS-II [4], but it stops
holding when considering wide angular separations. In őgure (1.8) we see how the
introduction of varying line of sights modiőes the directions along we shift galaxies
from real to redshift-space. Consider a spherical distribution in real-space: in the
plane-parallel approximation (left plots) the Kaiser effect will ŕatten it at large scales,
producing the Pancakes of God, while at small scales we see the Fingers of God.
Without the plane parallel approximation (right plots) the different line-of-sights
will deform the spherical distribution in Croissants of God. These contributions
will be correctly implemented in the next subsection, where we consider also other
relativistic corrections that should be taken into account at large angular separations.

1.4.8 Relativistic projection effects

Now we will include general relativistic effects in the study of redshift space dis-
tortions, which will allow us to consider scales comparable with the horizon scale.
We can show why we expect these effects to become important at large scales by
considering a ŕat Universe and combining the Poisson equation (1.33) and the őrst
Friedmann equation (1.15)

∇2
xϕ = 4πGρ̄a2 δ , H2 =

8πG

3
ρ̄ . (1.105)

We obtain

∇2
xϕ =

3

2
a2H2 δ , (1.106)

which in Fourier space is

k2ϕ̃k =
3

2
a2H2 δ̃k , (1.107)

Considering this equation in terms of physical scales we obtain

ϕ̃k ≈
(︃

λphys
λH

)︃2

δ̃k , (1.108)

where the scale related to the wave vector k is λphys = a/k, while λH = 1/H is the
Hubble radius. We see that, at large scales, where δ < 1, we have ϕ ∼ 1 only when
λphys ≈ λH : at scales comparable with the Hubble radius we must account for effects
sourced by the gravitational potential. Beside terms sourced by the potential, we will
also account for the fact that we are observing galaxies on the lightcone hypersurface
and we will use the true redshift-comoving distance relation χ(z), so that the results
will be valid also in the z ≳ 1 domain.
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Figure 1.8: Upper panels: Translation from real to redshift-space of a galaxy pair
in the transverse and non-transverse case, in the wide-angle case. Note that, even
in the case of |v1| = |v2|, the presence of the observer changes the apparent scale
s in the transverse case, and both the apparent scale and the apparent angle w.r.t.
the line of sight in the non-transverse case. Bottom panels: Large scale apparent
modiőcation of a spherical overdensity region. In the plane-parallel approximation
(left panel), the Kaiser effect induces the so-called łPancakes of Godž, so a spherical
distribution of galaxies in real space will appear ŕattened in the radial direction in
redshift space. In the wide-angle case (right panel), the introduction of an observer
modiőes the shape into a curved croissant-like shape that depends on the angular
separation. Picture and description taken from [3].
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To do so, we study the null geodesic followed by a photon reaching us from a
galaxy. In an unperturbed universe, we refer to this geodesic xµr as in real space,
and we describe it in conformal units [9, 11,51] :

xµr = (ηr,xr) = (η0 − χr, χrnr) , (1.109)

where η0 is the present conformal time, χr is the comoving distance from the observer
along the trajectory and nr = xr/χr is a unit vector pointing towards the emitting
galaxy. From now up to the rest of this section we will refer to ∂µ as the partial
derivatives over the conformal units (η,x). We investigate how this geodesic changes
in a metric perturbed at őrst order. We refer to these trajectories xµs as in redshift
space, and we will write them as:

xµs = (ηs,xs) = (η0 − χs, χsns) , (1.110)

where χs = |xs| is the observed comoving distance and ns = xs/χs. The observed
redshift zs is related to the comoving distance via the relation χs = χ(zs). We deőne
a mapping between the two positions as:

xµr (χr) = xµs (χs) + ∆xµ(χs) . (1.111)

Deőning also δxµ(χ) = xµs (χ)− xµr (χ) and δχ = χs − χr at linear order we get

xµr (χr) = xµs (χs) + δxµ(χr) = xµs (χs) +
dxµs
dχs

δχ+ δxµ(χs) , (1.112)

where we use χ as the affine parameter d/dχs = −∂/∂η + nis∂/∂x
i
s. We can then

write the linear redshift-space distortions as:

∆x0(χs) = −δχ+ δx0(χs) , (1.113)

∆xi(χs) = nisδχ+ δxi(χs) . (1.114)

The functions δx0, δχ and δxi will depend on the characteristics of the perturbed
space, i.e. the metric perturbations and the velocities of the source and observer.

1.4.9 Metric perturbations

We describe the perturbations of the FLRW metric in the conformal-Newtonian
gauge [30,68]:

ds2 = a2(η)
[︁

(1 + 2Ψ) dη2 − (1− 2Φ)δij dx
i dxj

]︁

, (1.115)

where Ψ and Φ are the Bardeen potentials [68]. This gauge is particularly useful for
the purpose of this project because, as we will see later in section (2.1.1), allows to
write the Poisson equation for the potential of the simulation in a simple formalism.



1.4. PROJECTION EFFECTS ON THE GALAXY DISTRIBUTION 32

By solving the geodesic equations one can work out the formulas for the shifts
[8ś11]:

δχ =−
(︃

χs +
1

H

)︃

[︁

Ψo − (nisvi)o
]︁

+
1

H
[︁

Ψe − (nisvi)e
]︁

+

∫︂ χs

0
[2Ψ + (χs − χ)∂0(Φ + Ψ)] dχ

+
1

H

∫︂ χs

0
∂0(Φ + Ψ) dχ ,

(1.116)

δx0 =− χs

[︁

Ψo − (nisvi)o
]︁

+ 2

∫︂ χs

0
Ψ dχ

+

∫︂ χs

0
(χs − χ)∂0(Φ + Ψ)] dχ ,

(1.117)

δxi =−
(︁

vio +Φon
i
s

)︁

χs + 2nis

∫︂ χs

0
Φ dχ

+

∫︂ χs

0
(χs − χ)δij∂j(Φ + Ψ)] dχ ,

(1.118)

δ ln a = − δz

1 + z
= −Φo + (njsvj)o +Φe − (njsvj)e +

∫︂ χs

0
∂0(Φ + Ψ) dχ , (1.119)

where H = ∂ lnH/∂ ln a, and the suffix "o" denotes quantities evaluated at the
observer space-time position, while "e" denotes the ones evaluated at the emitter
space-time position. We can recognize different types of contributions:

• The velocity shifts, which are the terms proportional to the velocities of the
observer vo and of the emitter ve and are a local contribution.

• The Sachs-Wolfe effects (SW) [69], which are the terms proportional to the
potentials outside the integrals, measured at the observer’s location (Φo, Ψo)
and at the emitter’s location (Φe, Ψe). They can be explained as the variation
in the photon’s energy as it starts and őnishes at two different potential wells.
These effects represent a local correction too.

• The integrated Sachs-Wolfe effects (ISW) [69], which are the integrals along the
geodesic of the time derivative of the potentials. They can explained similarly
to the non-integrated case: along the geodesic, when a photon enters a potential
well, the said potential evolves in time, and by the time the photon exits the
well the energy needed to climb it may be different than the one gained while
entering.

• The Shapiro time delay, which are the integrals along the geodesic of the Ψ
potential and describe the delay caused by the space-time dilation in presence
of a gravitational potential [70].
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Figure 1.9: Real and redshift-space perspectives. A galaxy with real-space position
xir (top left), located at distance χr from the observer (bottom), is assigned an
apparent position xis in redshift space (top right) at distance χs. Since the photon
path to the observer in real space is not straight, the observed position of the galaxy
on the sky, ns does not coincide with its actual one, nr. Picture and description
taken from [17].

• The gravitational lensing effects, which are the integrals along the geodesic of
the gradient of the potentials. They describe the deviation of the photon path
due to the gravitational potential between the source and the observer [71].

1.4.10 Density perturbation

Now we want to see how the galaxy overdensity changes under the xµr → xµs mapping.
The observed number of galaxies contained within a volume V s deőned in terms of
the redshift space coordinates is given by a gauge-invariant integral [8ś11]

N =

∫︂

V s

√−g ng(xα)ϵµνρσuµ(xα)
∂xν

∂xs,1
∂xρ

∂xs,2
∂xσ

∂xs,3
d3xs , (1.120)
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where ϵ is the Levi-Civita tensor and ng is the number density of galaxies in comoving
coordinates, which depends on both position and conformal time. We can describe
the same quantity in function of the redshift-space number density ng,s, by writing:

N =

∫︂

V s

a3(zs)ng,s(x
s, zs) d3xs . (1.121)

By comparing these two quantities we can retrieve the relation between the density
in real and redshift space [9]. Up to linear order in the perturbations the galaxy
density contrast is written as [8ś11]

δg,ss = δg,r + δRSD
g , (1.122)

where

δRSD
g =

(︄

∂0H
H2 + 2

χsH

)︄

δ ln a+Ψe − 2Φe +
(∂0Φ)e

H + 3Hψv

− 1

H
[︁

nis∂i
(︁

njsvj
)︁]︁

e
+

2

χs

∫︂ χs

0
(Φ + Ψ) dχ+ 2

(︁

nisvi
)︁

o
− 2κ

(1.123)

is the perturbation to the overdensity, and κ is the convergence őeld

κ =
1

2

∫︂ χs

0
(χs − χ)

χ

χs
∇2

⊥(Φ + Ψ) dχ , (1.124)

which is related to the weak gravitational lensing effect, as we will brieŕy show in
1.4.10. The operator ∇2

⊥ is deőned as:

∇2
⊥ = ∇2 −

(︁

nis∂i
)︁2 − 2

χ
nis∂i . (1.125)

The ψv term that appears in equation (1.123) is the velocity potential deőned in
equation (1.48) and appears because the derivation of the overdensity was done in
the syncronous-comoving gauge, and then transformed in the conformal-Newtonian
gauge.

We can also apply equation (1.122) for the dark matter component, and then, by
following a biasing approach, it can be shown that [8ś11]:

δssg = (b− 1) δr + δss , (1.126)

where b is the linear bias parameter and δr, δs are the matter overdensity őelds in real
and redshift-space. Note that there are further effects that need to be accounted for
in this equation, related to the fact that in the case of selection effects, the number
counts of the tracer are not conserved in the mapping from real to redshift space:
this is explored further in section (1.4.12).
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Figure 1.10: (a) Circular galaxy, the source, sits behind a foreground mass distribu-
tion represented by points at bottom. The observer is out of the page so that the
foreground mass is between the observer and the source, (b) Light rays from source
are deŕected as they pass by mass distribution. Rays traveling closest to mass get
deŕected the most, (c) Resulting image is an arc. Picture and description taken
from [30].

Weak lensing convergence

We will now investigate on the origin of the convergence term κ that contributes to
redshift-space distortions and how it is linked to weak gravitational lensing, following
the approach presented in [30]. Gravitational lensing distorts the galaxy shapes
due to the foreground mass clustering, which bends the space curve the photons’
trajectories. In őgure (1.10) we see how a foreground mass distribution bends a
circular image: the rays closer to the distribution will be bent more than the ones
in the opposite direction causing a distortion in the circular shape, which will now
appear as an arc. We use the term weak lensing to describe the situation in which
the distortions are small and can be treated perturbatively.

To link these distortions to the underlying gravitational őelds we study the photon
geodesics at 1st order in perturbations. We describe the position of a photon reaching
us from a galaxy with the set of spherical coordinates {χ, θ}, where θ represents
the angular position in the sky. We will use the conformal Newtonian gauge as in
equation (1.115) and we will neglect anisotropic stresses, so that Φ = Ψ. Furthermore
we will assume small angles θi, which will limit our study to small angular scales.
The geodesic equation then reads [30]:

d2

dχ2

(︁

χθi
)︁

= 2∂iΦ . (1.127)

We can see that for a constant potential this equation implies that d(χθi)/dχ =
const., which means that the angular direction remains constant along the geodesic.
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For ∂iΦ ̸= 0 we notice that the equation states that the photon geodesic deviates
towards the direction in which Φ grows, which means that light will be curved towards
a matter overdensity. By integrating two times, and őxing the constant terms to
account for boundary conditions on the geodesic, we get [30]

θis = θir + 2

∫︂ χ

0
∂iΦ

(︁

x(χ′)
)︁

(︃

1− χ′

χ

)︃

dχ′ . (1.128)

We recognize this equation in the third term of the right-hand-side of equation
(1.118), which is in fact, the lensing term of redshift-space distortions.

To study the magniőcation effects due to these distortions we deőne the trans-
formation matrix

Ai,j ≡
∂θis

∂θjr
≡
(︃

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)︃

= δi,j + 2

∫︂ χ

0
∂i,jΦ

(︁

x(χ′)
)︁

χ′
(︃

1− χ′

χ

)︃

dχ′ ,

(1.129)

where κ in the already mentioned convergence, which describes how a source is
magniőed, while γ1 and γ2 are the two components of the shear, which describe the
distortions in the shape of the galaxies. From equation (1.129) we retrieve

κ =− A1,1 +A2,2

2
+ 1

= −
∫︂ χ

0

[︁

∂21Φ
(︁

x(χ′)
)︁

+ ∂22Φ
(︁

x(χ′)
)︁]︁ χ′

χ

(︁

χ− χ′)︁ dχ′ .
(1.130)

Comparing this with the deőnition in equation (1.124) we notice that the differential
operator is different: this is due to the fact that we limited ourselves in the study
of small angular scales, where ∇2

⊥ ≈ ∇2, while the full relativistic treatment of
redshift-space distortions does not depend of such assumptions. We will see in the
next subsection that the total magniőcation of a source takes contributions also from
other effects beside lensing.

1.4.11 Magniőcation

Since redshift space distortions alter the distance of a galaxy, we have to treat care-
fully the ŕux we measure [72,73]. Suppose we measure a ŕux F from a given galaxy
at an observed redshift zs: if the true redshift zr is bigger than zs, it means that the
galaxy is actually brighter that we inferred, while if zr < zs it is fainter.

In general, lensing effects can distort the solid angle of the galaxy we measure,
changing the observed ŕux also if no radial shift were present. One example of this
is the convergence term we mentioned in section (1.4.10).

In conclusion, velocity and general relativistic effects alter the apparent ŕux from
a source. In a ŕux limited survey these effects can bring a galaxy above or below the
ŕux cut, changing the measured clustering signal. We can model this in terms of the
luminosity distance (see equation (1.9))

dL(z) = (1 + z)χ(z) . (1.131)
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Relativistic effects can distort this quantity, with the consequence that within a
ŕux-limited survey some sources may appear/disappear due to redshift-space distor-
tions. We deőne the magniőcation as

M ≡
(︃

dL
d̄L(zs)

)︃2

, (1.132)

where d̄L(zs) is the luminosity distance we infer by assuming an unperturbed space
and using the observed (distorted) redshift zs, while dL is the actual luminosity
distance of the source.

From linear perturbation theory the resulting magniőcation is [8ś11]

M =1− 2

(︃

1− 1

Hχs

)︃

[︁

Ψo −
(︁

niovi
)︁

o

]︁

+ 2

(︃

1− 1

Hχs

)︃[︃∫︂ χs

0
(χs − χ)∂0(Φ + Ψ)] dχ+Ψe −

(︁

nisvi
)︁

e

]︃

+ 2Ψe − 2
(︁

nisvi
)︁

o
− 2

χs

∫︂ χs

0
(Φ + Ψ) dχ+ 2κ .

(1.133)

We see that with the full general-relativistic treatment, further corrections beside
the convergence term arise to the magniőcation of an image. We recognize the
contribution from the peculiar velocities, the SW and ISW effects and the Shapiro
time delay.

1.4.12 Population biases

In equation (1.120) we assumed the conservation of the number of galaxies in the
mapping between real and redshift space. In a realistic survey there will be selection
effects that will decrease the number of observed galaxies: for example this can be
due to a lower ŕux limit Fcut under which the survey’s instrument won’t detect any
galaxy or similarly due to a shape limit. Taking into account only ŕux selection
effects we deőne ng(> L) as the number density of galaxies with luminosity greater
than L, and we also deőne

Lmin = 4πd2L(z)Fcut , (1.134)

which is the minimum luminosity that a galaxy at a cosmological redshift z needs to
have to appear over the ŕux cut for an observer at z = 0.

Furthermore, the number of tracers above certain luminosity can change in red-
shift, both due to their formation/merging and of the evolution of their emitters.

These properties, when combined with the perturbations in redshift and magni-
őcation, can change the number counts of the tracer under study. Taking that into
account we őnally update equation (1.126)

δg,ss = (b− 1) δr + δs +Q (M− 1) + E (δ ln a−Hψv) , (1.135)

where

Q = −∂ ln n̄g(> L)

∂ lnL
|L=Llim

(1.136)
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is the magniőcation bias and describes the change in tracers’ density with the
luminosity cut, while

E = −∂ ln n̄g(> L)

∂ ln (1 + z)
(1.137)

is the evolution bias and describes the change in number density with redshift,
without accounting for the ŕux cut evolution. It can be shown that the relation
between Q and E is [16, 65]

− d ln n̄g(z)

d ln (1 + z)
= 2Q(z)

[︃

1 +
c (1 + z)

H(z)χ(z)

]︃

+ E(z) , (1.138)

where c is the speed of light and χ(z) is the comoving distance at redshift z. We
see that the total derivative of the number counts in redshift depends on both the
biases, since they capture different contributions to the number counts.

1.4.13 Observer effects

In this subsection we model the observer’s contribution to the power spectrum. We
will consider only the velocity term in this contribution, since it dominates over the
potential term. The shift caused by the observer’s velocity is [1, 63,64]

∆x = − 1

a(z)H(z)
(vobs · x̂r) x̂r . (1.139)

This term generates a dipole contribution in the redshift-space overdensity [16,63,64]

δobs = δcmb +
αobs[z(χ)]

χ

vobs · x̂r

a[z(χ)]H[z(χ)]
, (1.140)

where δcmb is the overdensity in the CMB frame of reference and we refer to the
second term as δdip. The αs function that appears is a generalization of the one
presented in equation (1.92), that accounts for general relativistic effects [74]

αobs(z) = 2(1−Q)− χH

c(1 + z)
E +

χH

c(1 + z)

[︃

3− 1 + z

H

dH

dz

]︃

, (1.141)

in which we see a contribution from the evolution and magniőcation biases. We
cross-correlate the dipole term with itself

D(k) =

∫︁

A1A2(vobs · ux1
)(vobs · ux1

)eik·(x2−x1) d3x1 d
3x2

∫︁

n̄2(x) d3x
, (1.142)

with Ai = n̄iαobs,i/(xiaiHi). The reason why we weight the overdensity with n̄ in the
integral is related with the FKP estimator, described on section (2.4). Expanding
the angular part of the integral in spherical Bessel functions we obtain [16]

D(k, v̂obs · k̂) = 16π2
(vobs · k̂)2

H2
0

I2(k)
∫︁

n̄2(x) d3x
, (1.143)
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where

I(k) =

∫︂

xn̄αobsH0

aH
j1(kx) dx , (1.144)

and j1 is the n = 1 spherical bessel function. Averaging over all the directions of k
we get

Diso(k) =
16π2

3

v2obs
H2

0

I2(k)
∫︁

n̄2(x) d3x
, (1.145)

which is a decaying oscillating function in k, as it will be shown in section (3.6).
We assume that the auto-correlation of δdip dominates over the cross-correlation

between δcmb and δdip (as it was tested in [63]), implying that the contribution of
the observer’s velocity on the power spectrum monopole is

∆P0(k) = P
(obs)
0 (k)− P

(cmb)
0 (k) ≈ Diso(k) . (1.146)

In conclusion, the observer’s effect on the monopole of the galaxy power spectrum
follows a decaying oscillating function that depends on the selection function of the
galaxy population, on their magniőcation and evolution biases, and on the expansion
history of the Universe.
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Chapter 2

Methods

In this chapter we will start by reviewing the current version of the LIGER code in
section (2.1), used to generate mock galaxy catalogues that account for relativistic
projection effects on the past lightcone of the observer. In sections (2.2,2.3) we will
introduce the main topic of this project: the implementation of a new update on the
LIGER code. We will see that, beside other minor improvements, this implementa-
tion creates catalogues that allow to probe smaller scales with respect to the current
approach, and to avoid assuming a description at priori of the tracers under study.
In general, the result of this method will be a more realistic catalogue, which allows
to emulate better what a survey observes and how it selects the targets. Next, in
section (2.4) we will give a brief overview of the power spectrum estimators for a
galaxy dataset, which we will use in our analysis to test our implementation.

2.1 LIGER method

A mock galaxy catalogue that accounts for relativistic projection effects can be
created in two ways: one way is to simulate structure formation using equations
derived from general relativity, solving the geodesics equations and relativistic po-
tentials [75, 76]; the other is to run a Newtonian cosmological N-body simulation
and then apply the corrections a posteriori. The latter is the method implemented
in the LIGER code [16, 17], currently available at https://astro.uni-bonn.de/

~porciani/LIGER/, which:

• Takes as input a Newtonian N-body simulation.

• Selects an observer, characterized by its comoving position and velocity.

• Shifts all the galaxy positions in the simulation in redshift space, accounting for
all the relativistic projection effects at 1st order in the perturbations, following
the equations (1.116-1.119).

• Applies the correct magniőcation to each galaxy following equation (1.133).

• Gives as an output the distribution of the galaxies as they would be observed
in the observer’s perturbed past light-cone.

41
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The code produces different light-cones that account for different contributions to
the distortions described in equations (1.113-1.119, 1.133), labelled as:

• realspace: real space output, obtained by setting M = 1 and ∆x = 0.

• vRSD: obtained by setting M = 1 and by considering only the (nisvi)e terms
in the position shifts. This mock emulates the non-relativistic treatment of
redshift space distortions presented in section (1.4.1).

• vRSD_obs: obtained by setting M = 1 and by considering only the (nisvi)e
and (nisvi)o terms in the position shifts. This mock is the extension of vRSD
for the case of a moving observer.

• GRRSD: considers all the contributions beside Φo = Ψo = vio = 0, thus non
accounting for the observer velocity and potential.

• GRRSD_obs: full redshift space output, all the contributions are considered.

In this section we will discuss the code implementation, i.e. how the equations
that describe the shifts are applied on the Newtonian simulation. The product of a
cosmological simulation is divided into snapshots of different comoving time instants,
for which particle data such as positions and velocities is available. The code will
use these snapshots as an input to compute both the underlying potential and the
particle distribution.

2.1.1 Simulation Gauge

To evaluate the quantities in equations (1.116-1.119) we need to compute the under-
lying gravitational potential. Since the equations are applied to a simulation, we have
to derive the potential from the particle distribution, which corresponds to using the
matter density contrast in the synchronous comoving gauge, i.e. δsim ≡ δsyn.

To linear order in the perturbations of a universe with a ΛCDM background,
it can be shown that for a pressureless ŕuid, the source equation in the conformal-
Newtonian gauge can be re-written in terms of δsyn = δsim as the standard Poisson
equation (1.33) [18]

∇2ϕ = 4πGa2ρ̄mδsim, (2.1)

with the mapping

ϕ = Φ = Ψ, ri = risim, vi = visim. (2.2)

This means that if we treat our corrections in the Newtonian gauge we can directly
use the simulation positions and velocities, without having to recur to any gauge
transformation.
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2.1.2 Implementation

In this subsection we will discuss how the shifts of equations (1.116-1.119) are im-
plemented and applied to the particles.

The particle velocity contributions can be applied in a straightforward way, since
the particle data is already available. We shift each particle’s radial position using
the velocity evaluated at its snapshot’s redshift. In a similar way, having chosen an
observer, its velocity contributions are also easy to implement. The terms depending
on the potential require more work due to the non-local quantities.

From equations (2.1) we see that to solve the Poisson equation with a numerical
approach we need to compute the particle overdensity from the simulation data. We
do so by implementing the particle-mesh with the cloud-in-cell method (CIC) [77]
for a three-dimensional grid with Ngrid cells per side. Then, by using a Fast Fourier
Transform (FFT) library [78] we obtain the potential evaluated on the said grid, with
its spatial derivatives. Currently the code utilizes the FFTW [79] library for all its
Fourier transform-related computations. Finally, by using the data for the same cell
at different snapshots, we can also compute its time derivative. The local potential
terms are then retrieved by assigning to the particle the potential value of the cell
in which resides, repeating the same with the observer.

To compute the integrals of the potential for the non-local contributions we need
to integrate along the line of sight, which should be performed in redshift space.
Since we are working at linear order, we can use the real-space coordinates instead,
integrating from the observer’s position to the particle’s redshift space position. One
problem related to this approach is that to get the redshift-space position of the par-
ticles we need also the non-local terms, which cannot be computed without knowing
it at prior. Practically, the main contributions to the redshift space position are given
by the velocity shift, so we limit ourselves to integrate up to the position obtained
by applying just velocity contributions. To őnd the grid cells along crossed by the
light ray, LIGER makes use of the fast voxel transversal algorithm by [80].

To avoid shifting all the galaxies at all times, which would only slow down the
code, for each particle we select a few snapshots around the time in which it would
intersect the lightcone of the observer, without considering any metric perturbation.
Then, we compute the redshift displacement at each one of these selected snapshots.
Finally, we use these shifted positions to interpolate the position of the particle
around the crossing of the lightcone.

The magniőcation M and redshift perturbation δ ln a are computed for each
particle by implementing the equations (1.119,1.133), using the same procedures
just presented to compute the integrated quantities.

In őgure (2.1) we show a schematic of the shifting procedure.

2.1.3 Field approach

The transverse size of a lightcone rapidly increases with redshift, requiring large
simulations to cover the wide opening angle. This creates a problem in building
deep lightcones from high-resolution simulations, that would require drastically more
computational time. To solve this problem the BUILDCONE code was implemented



2.1. LIGER METHOD 44

Figure 2.1: Schematic summarising how galaxies or N-body particles are shifted
to build the lightcones. We őrst apply the correction due to local terms (dashed
arrow) and then compute the shift produced by the non-local contributions (dotted
arrow). In runs with low mass resolution, each particle ‘contains’ wg galaxies. The
linear bias coefficient b and wg are calculated at the real-space position xir while
the magniőcation bias Q is computed at the redshift-space position xis. Picture and
description taken from [17].
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in [16].
The code takes as an input the output of LIGER applied on a low-resolution dark

matter only simulation, to then compute the matter density őeld in redshift space
δs on a cubic grid via a CIC scheme. Similarly, it computes the M and δlna őelds
on the same grid, using the same CIC scheme.

Finally, it implements the biasing relation in equation (1.135) to construct the
tracer number density in each grid cell δg,s. This method does not account for the
velocity őeld ψv that multiplies the evolution bias, assuming to be working on scales
where |Hψv| ≪ |δ ln a|, such that the implemented formula is

δg,ss = (b− 1) δr + δss +Q (M− 1) + E δ ln a. (2.3)

Additionally, one can estimate the effect of Poissonian shot-noise by applying a
Poisson sampling on the number counts of tracers in each cell Ng(x) = n̄g(z)[1 +
δg(x)]Vcell, where Vcell is the cell’s volume. This procedure ensures that, according
to the number density, in each cell an integer number of tracers is present.

To use this method one needs to know the survey functions that describe the
evolution in redshift of the tracer under study, i.e. the linear bias b(z), the radial
mean density n̄(z), and the magniőcation and evolution biases Q(z), E(z). As we
will show later, these functions can be estimated directly from a simulated galaxy
catalog, but also estimates from analytical models or observation are possible (see
e.g. the work done in [16], starting from [81]).

The product of the code is then a density mesh of the tracer described by the
survey functions, that includes all the relativistic projection effects at linear order.

Limits of the őeld approach

While it allows for a fast production of many galaxy catalogues, there are some limits
in this approach.

First of all, we lose any clustering information regarding scales smaller than the
cells of the mesh used by BUILDCONE. In many cases this is not a problem, since
the code is used to investigate large scales effects, but the size of the cells we can use
strongly depends on the characteristics of the survey function chosen. For example,
suppose we want to apply the biasing procedure in real-space, so that we account
only for the density n̄g and linear bias b. Then, the painted density in a given cell
would be

ng = n̄g (1 + b δ), (2.4)

where δ is the underlying matter overdensity őeld. Suppose now to have a (realistic)
linear bias value of b = 2: if in an under-dense region we have δ < −0.5 we would
get ng < 0, which is not physical. We are thus forced to consider scales for which
b δ ≥ −1, which puts a limit in the maximum number of cells per side Nbc that we
can use. This can cause problems when computing Fourier-based statistics of highly
biased tracers, where spurious effects may arise at larger scales due to the coarse
meshing of the density
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Second, the way we add shot-noise to the produced sample is not realistic and can
generate a spurious signal as we probe smaller scales, as we will see in our analysis.

Third, with this procedure we can not model complex selection effects such as
shape selection or more complicated ŕux cuts such as the one described in [82].

Last, we need to input the survey functions that describe the tracer, which means
knowing at prior the tracer linear bias b(z) and luminosity function ϕ(L, z).

2.2 Liger direct approach

In this work, I adapt LIGER to work directly on the tracers in a simulation, i.e. it
shifts them in redshift space without recurring to the biasing relations as in the őeld
approach does. We can use this version on an Newtonian N-body simulation with a
high enough resolution such that it is possible to identify haloes or galaxies and for
which the underlying gravitational potential is available.

One of the main differences in the implementation of this approach is to take into
account the "broken" trajectories of the tracers and their mergers. We consider as an
example the case of a halo: it will be formed at a given snapshot, possibly different
than the earliest one given to the code, and will possibly merge (or be disrupted) at a
snapshot different than the last one, slightly complicating the trajectory’s light-cone
interpolation. This was not an issue in the őeld approach because all dark matter
particles exist at any given snapshot of the simulation.

This problem is approached by making use of the merger tree to account correctly
for the halo (or galaxy) trajectories. As for now, to allow compatibility with different
halo-őnders and semi-analytical galaxy codes, we implement a pre-processing to the
catalogues, to write them in a form which can be easily treated by the code. Details
regarding this procedure will be explained in section (2.2.1).

The code then produces the tracer lightcone directly, by returning also the ob-
served ŕuxes in case of a galaxy. With this approach, by making use of the mag-
niőcation of each tracer and its luminosity, the evolution and magniőcation biases
can already accounted for by applying a ŕux cut in post-processing, following what
happens with a real survey. We will show that the code correctly captures these
effects in the results.

Beneőts of the direct approach

There are several beneőts in the implementation of a direct approach. First of all,
we are not limited by the meshing procedure of the őeld approach: we can build a
mesh with a number of cells per side that őts our needs to avoid aliasing effects, or to
őnely sample the boundary of the surveyed region. Second, selection effects can be
applied directly on the tracers, without having to recur to biasing models, allowing
to consider also more realistic and complicated selection criteria . Third, we are not
limited by the size of the bias of the tracer under study, since we do not recur in
the "painting" procedure that limits our mesh size. Fourth, the Poisson shot noise is
already captured by the catalogue and does not have to be added artiőcially on the
density őeld. Last, we do not have to model at priori the linear bias and luminosity
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function of the tracer, because their effects are already encoded in the simulation’s
structure formation history and semi-analytical code that produces the catalogues.

2.2.1 Trajectory deőnition

Different halo őnders (e.g. ROCKSTAR [83], AHF [84]) produce different catalogues,
with merger trees that use different formalisms. In order to allow compatibility with
any halo őnder, LIGER takes as input a pre-processed catalogue, in which we deőne
the trajectories in a certain way. To do so we make use of two common halo catalogue
entries: "ismmp" and "descID" (or analogue acronyms), which state if the halo is
a most massive progenitor (MMP) and contain the ID of its descendant (for more
details, see e.g. [83]). The procedure we follow for a halo catalogue is the following:

• For each halo we build a main trajectory considering the most massive progen-
itor (MMP), and we assign a unique ID to the halo for all the snapshots.

• At the end of each MMP "life", we check if the halo is still a MMP: in the
negative case, we still check if it merges with another halo in the next snapshot,
saving the descendant’s ID.

• After the trajectories and mergers are deőned, we order the haloes based on
their ID. This procedure greatly speeds up the procedure of looking for a halo
in each snapshot in the loading phase of LIGER.

This new catalogue is then used by the code to properly deőne the tracer trajectories
and mergers, needed for a correct interpolation of the positions (and other quantities,
such as masses and luminosities) on the intersection with the lightcone.

This process we showed was dedicated for the building of trajectories of a halo
catalogue, but in a possible future usage on a semi-analytic galaxy catalogue (e.g.
the Galacticus catalogue at [85, 86]) a similar procedure could be followed, e.g. by
making use of the "hostID" entry that links a galaxy to the host halo ID of the
associated halo catalog.

2.2.2 Magniőcation of sources

Treating directly the tracers allows to apply magniőcation and selection effects in a
more realistic way. While we apply an eventual ŕux cut in a post-processing phase,
we implement magniőcation directly in the code.

As we mentioned, the computation of the magniőcation M and redshift distortion
d ln a of each particle were already implemented in the code, they just were not used
directly on the particles, but instead they were used to build a őeld. With this
approach we use these already available quantities to compute the observed ŕux of a
given input tracer, making use of its position on the lightcone and input luminosity.
In order, for a given tracer we:

• Compute the luminosity L(z) interpolated on the lightcone using the unshifted
realspace positions to get the crossing redshift z.
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• Compute the observed redshift zs by making use of the realspace redshift z
and of the δ ln a via zs = z − (1 + z) δ ln a.

• Retrieve the inferred unperturbed luminosity distance d̄L(zs), using the back-
ground relation of equation (1.9) and the observed redshift zs. This is the
luminosity distance infer if we do not account for magniőcation effects.

• Get the correctly magniőed observed ŕux via Fs = ML/
[︁

4πd̄L(zs)
2
]︁

.

There are some details regarding this approach that are worth mentioning. First,
we stress that we used the realspace positions to interpolate the luminosity, not the
redshift space one. This is correct, since redshift space distortions do not interfere
with the time t at which a source crosses the lightcone, but only deviate the path
that the light emitted at that instant t follows.

Second, we also stress that we need to strictly follow this procedure to correctly
account for every contribution: one might think that using directly the luminosity
distance evaluated at the realspace redshift z, without then multiplying by M, would
be enough to account for magniőcation, but this is not true. Besides the magniőca-
tion sourced by the redshift distortion δ ln a, we also have to account for other terms,
such as the convergence magniőcation, which would act on the observed ŕux even
without redshift space distortions.

2.3 Other updates

In this section we list further minor updates done to the code during this work.

2.3.1 Potential optimization

A further modiőcation to the code was done to optimize the storing of the potential
during a run. Before the update, the code used to keep loaded in the run memory the
full cubic mesh of the potential for each snapshot, and then to select the cells that
the photon path crossed to compute the integrals. Since we consider only particles
close to the snapshots around the past lightcone of the observer, we only need to
know the potential in the cells near that region.

With this update we discard the potential data from all the cells that are far
from the lightcone intersection, reducing noticeably the memory consumption, but
without losing any information that is going to get actually used. We show in őgure
(2.2) the heap memory consumption of a test run with a potential mesh of Ngrid = 28

cells per side and 16 snapshots. The increasing oscillating pattern at the őrst part
of the run is caused by the potential computation phase, in which the code loads all
the dark matter particles from one snapshot, it computes the potential and it frees
the particle data. This is the same procedure for both the runs, and takes up the
same memory. In the case in which the potential is already computed and stored
somewhere, the code will load that directly, without looking for the dark matter
particles, and thus the oscillating feature will not appear.

After the potential loading phase we notice that the heap memory of the op-
timized run drops: this happens because it frees the unused cells, which does not
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happen in the standard procedure. With these settings the optimization saves around
0.8GiB, over the 2.4GiB used by the potential storage, keeping only 2/3 of the total
memory. This value can change based on the total number of snapshots and on their
"coarseness" in the time sampling, but in general allows to save a substantial fraction
of memory, making the code less computationally costing.
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Figure 2.2: LIGER heap memory consumption comparison. The x-axis represents
the number of instructions executed by the code. Orange dashed line: memory
consumption of a test run without the potential optimization. Blue line: memory
consumption of a test run with the potential optimization.

2.3.2 Non-fullsky lightcones

As we already mentioned, one of the main issues regarding the construction of light-
cones from a cosmological simulation is the fact that, the deeper the redshift we want
to reach, the bigger the simulation box must be. For example, if we want to build a
fullsky lightcone up to a redshift z, the box size must be at least 2× dc(z).

Up until now LIGER has worked by producing a fullsky lightcone centered on the
input position of the observer. It makes use of periodic boundary positions to shift
the box center to the lightcone center, so that the cone region would not intersect
the box edges. More speciőcally, for an observer at a x coordinate xobs in the box,
and a particle at x, the code would map the particle to

x′ =

{︄

x |x− xobs| ≤ L
2

x− L |x− xobs| > L
2

, (2.5)
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Figure 2.3: Sketch that shows how from the same simulation box we can reach larger
distances using a non-fullsky lightcone shape.

where L is the simulation box size. With this procedure the lightcone produced can
reach redshifts up to zlim, such that dc(zlim) < L/2.

In this work we implemented a new option, which avoids using periodic conditions
and simply keeps the coordinate as the same. This means that if we position the
observer at the center of one side of the box we would be able to study a conical sky
region with an opening angle α ∈ [0, π/2], but with a depth that, depending on α
could reach redshifts up to zmax, such that dc(zmax) < L. This set up is sketched in
őgure (2.3).

2.4 Power spectrum estimation

One way to study the effects of redshift space distortions on the galaxy distribution is
to look at summary statistics such as the power spectrum monopole. In this section
we will give a brief overwiev on how to estimate it from a simulation snapshot or
a galaxy catalogue. As we showed in section (1.3.3), the operative deőnition of the
power spectrum monopole and of the traditional power spectrum coincide, so in this
section we will refer both of them as "power spectrum".

To compute the power spectrum from a set of particles we make use of the
discrete Fourier transform (DFT): this means that from a particle distribution we
need to estimate the density őeld n(x) on a 3-d mesh, in order to correctly follow the
procedure. We thus implement an interpolation scheme to go from the true particle
number density in a simulation

n0(x) =

Np
∑︂

i=1

δD(x− xi), (2.6)

where xi is the i-th particle position, to the one computed on a mesh. The interpola-
tion scheme is determined by the mass assignment scheme (MAS), which deőnes
how a particle will contribute to the density of the surrounding grid cells. In this
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work we utilize the Cloud in Cell (CIC) [78] method, in which the particle’s mass is
distributed uniformly in a cubic shape of the same size as the grid size, but centered
at its position. With this choice mass assignment the interpolated density evaluated
on a grid point centered in xp is expressed in terms of a convolution

nCIC(xp) =

∫︂

V
d3x′n0(x′)WCIC(xp − x′), (2.7)

where the convolving function WCIC(x) is called window function, and quantiőes
how much a particle contributes to the density in a grid point separated by x. The
one dimensional CIC window function is given by

WCIC(x) =

{︄

1− |x|/H if|x| ≤ H

0 if|x| > H
, (2.8)

where H is the grid size. The three dimensional window function is simply given by
the product of three one dimensional window functions

WCIC(x) =WCIC(x1)WCIC(x2)WCIC(x3). (2.9)

From the interpolated density we can then compute the interpolated overdensity
as

δCIC(xp) =
nCIC(xp)− n̄(xp)

n̄(xp)
, (2.10)

where n̄ is the background number density, which for example can be either estimated
from the whole grid in case of a simulation snapshot, or from a series of radial bins
as it is in the case of data from a lightcone.

Having deőned a method to interpolate the particle density on the grid, we can
compute the Fourier transform, and using the convolution theorem we see that

δ̃CIC(k) = δ̃0(k)W̃CIC(k), (2.11)

i.e. the actual transform of the particle overdensity is obtained by deconvolving the
interpolated overdensity őeld

δ̃0(k) =
δ̃CIC(k)

W̃CIC(k)
. (2.12)

The transform of the CIC window function is given by [87]

W̃ (k) =

[︃

sinc

(︃

πk1
2kN

)︃

sinc

(︃

πk2
2kN

)︃

sinc

(︃

πk3
2kN

)︃]︃2

, (2.13)

where ki the components of the wave vector k and kN = π/H is called the Nyquist
frequency.

Now that we know how to estimate the density őeld on a cubic grid we can
compute the power spectrum, and to do so we use the FFTW library [79] to calculate
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the DFT of the overdensity őeld δFFT(nk). Here, the discrete array nk describes the
cell position on the grid and it is associated to a wave mode with k = kFnk, where
kF = 2π/L is the fundamental frequency. kF , given a box size L, deőnes the
smallest frequency interval that can be sampled by the FFT. Taking into account
the normalization introduced by the algorithm and the deconvolution of the window
function, the resulting estimate of the power spectrum will be evaluated on a series
of k-bins multiples of the fundamental frequency [88]:

P̂ n(kFn1) =
L3

N6

⟨︄⃓

⃓

⃓

⃓

⃓

δ̃
FFT

W̃

⃓

⃓

⃓

⃓

⃓

2⟩︄

=
L3

N6

⎛

⎝

1

Nk

∑︂

|nk−n1|<1/2

⃓

⃓

⃓

⃓

⃓

δ̃
FFT

(nk)

W̃ (kFnk)

⃓

⃓

⃓

⃓

⃓

2
⎞

⎠ , (2.14)

where n1 in a discrete number that deőnes the k-binning, and the average is computed
over all the grid cells associated to frequencies belonging to the n1-th bin. The choice
of binning is not limited to the fundamental frequency, and one is able to use a őner
or coarser binning, depending on the purpose of use.

As we stated in section (1.3.2), when we estimate the 2-point correlation function
from a discrete set of objects, we account also for the self-correlation of the particles,
which generates an additive term +δD(r − r′)/n̄(r), called Poisson shot-noise,
singular for r = r′, that needs to be accounted for when moving to Fourier space to
get the power spectrum

We consider now the case of a snapshot from an N-body simulation. In this
situation n̄ is a constant, and the shot noise translates into a contribute to the power
spectrum equal to

P̂ SN =
1

n̄
. (2.15)

The correct estimation of the power spectrum would then be

P̂ (kFn1) = P̂ n(kFn1)− P̂ SN. (2.16)

We can also compute the error on the estimator of P̂ . If we assume that the
overdensity őeld is a Gaussian random variable, which as mentioned in section (1.3.4)
is a fair assumption at large scales, it can be shown that the standard deviation of
the estimation is given by [88]

σP (k) ≡ ⟨[P̂ (k)− P (k)]2⟩1/2 =
√︃

1

Nk
P (k), (2.17)

where P (k) is the true power spectrum and Nk is the number of modes in the k-
bin. We notice how the error decreases with Nk, the number of modes over which
we compute the average: as a result, our estimates for the largest scales, the ones
comparable to the grid box size L, will be less precise, due to the smaller number
of k-modes we can average over. This effect is known as sample variance, and it
limits the information we can extract from a single sample of data.
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2.4.1 FKP estimator

As we mentioned, LIGER reproduces the galaxy distribution that a redshift survey
would observe, and this allows us to study its output in the same way we would do
with a real survey dataset.

When considering a survey’s data, differently from a simulation snapshot, the
galaxy mean number density n̄(x) will not be constant, but a function of the posi-
tion. This is due to multiple reasons. First, the mean number density of a given
tracer evolves with time, and thus with the distance from the observer, causing a
dependence of n̄ on the radius |x|. Second, a redshift survey could be considering
only a fraction of the sky, for example in a pencil-shaped beam or in a full-sky sur-
vey that excludes the galactic plane, and this introduces a dependence of n̄ on the
position in the light-cone x.

The spatial dependence of the mean density contributes to the variance of the
power spectrum estimator [89]. For this reason it is common practice to weight
galaxies differently depending of the mean number density at their location, in order
to give an optimal estimation of the power spectrum P̂ , i.e. minimize its variance.

In this work, we use the FKP estimator [89, 90], which provides an optimal
weighting scheme for estimating the power spectrum P (k) under the assumptions
that:

• The wavelenght 2π/k is small compared to the scale of the survey.

• The density ŕuctuations are Gaussian.

In this framework, instead of working with the overdensity we will work with the
effective őeld

F (x) =
IS(x)w(x) [ng(x)− n̂(x)]
[︁∫︁

S w
2(x)n̂2(x) d3x

]︁1/2
, (2.18)

where IS is the indicator function of the region of space S covered by the survey,
n̂(x) is an estimate of the mean galaxy density based on the survey data, and w(x)
is a weighting function which we will specify later. We can reshape this in terms of
the estimated density contrast δ̂(x) = [ng(x)− n̂(x)]/n̂(x) and the window function

W (x) =
IS(x)w(x)n̂(x)

[︁∫︁

S w
2(x)n̂2(x) d3x

]︁1/2
, (2.19)

by writing

F (x) =W (x)δ̂(x). (2.20)

The weighting function introduced in the FKP paper is

w(x) =
1

1 + n̂(x)P , (2.21)

where P is the typical value of the power spectrum in the scales we are interested in.
At a őxed k, in regions where n̂P ≫ 1, i.e. where we are not limited by shot-noise, w
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provides equal weighting per volume, while in regions in which shot noise dominates
(n̂P ≪ 1) it provides equal weighting per galaxy.

To evaluate the galaxy power spectrum monopole via FTT, we follow the proce-
dure shown at the beginning of this section in equation (2.14), with a few changes.
First, we use the weighted őeld F instead of the overdensity δg, and this, due to
the W normalization, introduces a multiplying renormalization factor on the power
spectrum monopole of L3

FFT, where LFFT is the FFT box size. Second, we estimate
the radial density n̂(x) by measuring the mean density of galaxies in radial shells
with a őxed width ∆x and by interpolating the results with a cubic spline. Third,
due to the weighting and to the non-constant radial density, we will use the correct
shot noise estimation for this implementation, given by [89]

PSN =

∫︁

n̂(x)w2(x) d3x
∫︁

n̂2(x)w2(x) d3x
, (2.22)

where we estimate the integrals with discrete sums over the grid cells. Furthermore,
it can be shown that using a selection function n̂(x) estimated from the data itself
introduces another contribution, called integral constraint [91], that accounts for
the fact that this estimation does not coincide with the actual radial density n̂ ̸= n̄.
This contribution affects density ŕuctuations on scales comparable to and larger than
the survey size, leading to a biased estimate of the power spectrum monopole. Since
in this work we are interested in a comparison between two catalogs, and not with
a theoretical prediction, we avoid to correct for this effect, given that it would raise
the same contribution in both cases anyway.

We will now look at the effects of the FKP weighting on the actual power spec-
trum of the overdensity. We will do that in a simpliőed case, where the translation
symmetry of the density őeld is preserved, such as in the plane-parallel approxima-
tion. We consider the power spectra of the continuous underlying density őelds δ(x)
and F (x), which we call respectively P (k) and P̃ (k). Then, it can be shown that
they are linked via [16,88]

P̃ (k) =

∫︂

d3p

(2π)3
|W̃ (q− p)|2P (p). (2.23)

From equation (2.23) we can see that the weighting scheme acts on the power spec-
trum as a convolution with the square of the transform of the window function. This
convolution operates as a weighted average that mixes the Fourier modes. For a
typical survey |W̃ (k)|2 mixes the large scales modes together, smoothing the signal.
This smoothing can be an issue when trying to study large scale effects, which would
be smoothed out and more difficult to detect.

Under the assumptions of Gaussian density ŕuctuations and a wide k-binning ∆k
(see e.g. [89, 92]), the covariance matrix of the FKP estimator monopole is diagonal
with variance

σ2G(k)

P 2
0 (k)

≈ 2(2π)3

Veff(k)Vk
, (2.24)
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Figure 2.4: Top: True and gaussian errors (in the green and red lines) compared with
the shot noise (brown line) and integral constraint (purple line). Bottom: Ratio of
the scatter over the Gaussian assumption. Picture taken from [16].

where P0(k) is the monopole of the true unconvoluted power spectrum P (k) and

Veff(k) =

∫︂

S

[︃

n̄(x)P0(k)

1 + n̄(x)P0(k)

]︃2

d3x, (2.25)

denotes the effective volume probed, while Vk denotes the volume of the k-shell
centered around k with witdh ∆k.

In [16] it was shown that the approximation for the FKP variance of equation
(2.24) is not accurate at large scales when compared to the actual scatter, but it
overestimates it instead. This is due to the fact that the equation is obtained by
assuming Gaussian density ŕuctuations, which due to the FKP weighting is not
necessarily true for F (r). We show in őgure (2.4) the comparison of the estimator
with the actual scatter computed in [16]. We can see how the true scatter σ (obtained
with Liger) is just a fraction of the Gaussian prediction.
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Chapter 3

Results

In this chapter we show the results of our analysis. We start in section (3.1) by
describing schematically the code produced and its main differences with the previous
implementation. In section (3.2) we show how we use the HugeMDPL simulation
[85, 86] to test the new code, by comparing it with the previous version. In section
(3.3) we will describe instead the MUSIC [66] runs we use to generate multiple mocks
of the previous implementation. Then, in section (3.4) we describe the methods
implemented to estimate the tracer’s survey functions from the dataset.

To test our implementation we produce tracer catalogues in two different redshift
bins, a close one in z ∈ [0.2, 0.3] and a deeper one in z ∈ [0.6, 0.7]. We compare the
power spectrum monopole in both bins, for each one of the LIGER output modes
listed in section (2.1). The results are shown in section (3.5).

We do one last test in section (3.6) for the z ∈ [0.2, 0.3] bin, where we study the
observer’s velocity contribution to the power spectrum monopole, comparing it with
the theoretical prediction, to further validate the new code.

3.1 Code update

Here we present schematically the code produced in this work, for which a detailed
explanation is given in sections (2.1 and 2.3). We show in őgure (3.1) a schematic
of the prescription of the new direct implementation (right) compared to the old
őeld-based one (left). Both the prescriptions use the same coordinate transform
described by equations (1.116-1.119), and the main difference in the approaches lies
in the input particle to which the transform is applied and in the őnal product: the
őeld approach starts from a low resolution N-body simulation that does not resolve
structure formation, and produces a cubic grid of the tracer density őeld. The direct
approach instead starts from an N-body simulation that resolves structure formation
and an associated galaxy/halo catalogue, to then produce a catalogue of the same
tracers as they would be observed by a redshift survey. We list the main beneőts of
the implemented direct approach:

• We are not limited by the meshing procedure of the őeld approach: we can
build a mesh with a number of cells per side that őts our needs to avoid

57
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aliasing effects, or to őnely sample the boundaries of the surveyed region.

• Selection effects can be applied directly on the tracers, without having to recur
to biasing models, allowing to consider also more realistic and complicated
selection criteria.

• We are not limited by the size of the bias of the tracer under study, since we
don not recur in the "painting" procedure that limits out mesh size.

• The Poisson shot noise is already captured by the catalogue and doesn’t have
to be added artiőcially.

• We don not have to model at priori the linear bias and luminosity function of the
tracer, because their effects are already encoded in the simulation’s structure
formation history and semi-analytical code that produces the catalogues.

• Allows the possibility of building cone-shaped lightcones, which allow to reach
up to double the distance of a full sky survey for a given simulation box size,
probing higher redshifts.

Figure 3.1: Left: Field approach schematic of LIGER. Right: Direct approach im-
plemented in this work.

3.2 HugeMDPL simulation

In order to compare the two LIGER implementations, we need to use a cosmological
N-body simulation with a high enough resolution to follow galaxy formation (needed
for the direct approach), and with a large enough volume to probe the largest scales
(needed for the őeld approach, and in general to observe large-scale effects). There
are not many available runs with these characteristics, since the computational cost
of high-resolution simulations increases greatly with the simulated volume.

We opt for the HugeMDPL simulation [85,86], a dark matter-only simulation of
size 4Gpc/h with 40963 particles of mass m = 7.9 × 1010M⊙/h and a Planck 2014
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cosmology [93] with (Ω0,Ωb,ΩΛ, σ8, ns, h) = (0.307, 0.048, 0.693, 0.829, 0.96, 0.678).
This simulation data is hosted on the CosmoSim [85] database, and it has two avail-
able "raw" particle snapshots at the redshifts z = 0.49 and z = 0.00, and ROCK-
STAR [83] halo catalogues for a series of snapshots, roughly uniformly distributed in
values of the scale factor a from ai = 0.10 to af = 1.00, meaning from zi = 8.58 to
zf = 0.00. In őgure (3.2a) we show a slice of the matter overdensity őeld, obtained
from the particle data implementing the CIC scheme in a cubic grid with Ngrid = 28

cells per side, with size Lgrid = 15.625Mpc/h. In őgure (3.2b) we show a slice of
the large scale potential őeld generated from the particle distribution, obtained by
solving the Poisson equation in Fourier space. Finally, in őgure (3.3) we show the
matter power spectrum compared with the linear theory prediction obtained with
the CAMB code [94]. The error bars are estimated by equation (2.17) and we can see
that the data correctly follows the shape of the linear prediction up to the smallest
scales shown.
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(a) Slice of the matter overdensity őeld
computed from the z = 0 snapshot of the
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terpolated on the grid via the cloud-in-
cell mass assignment scheme.

0.0 1.0 2.0 3.0 4.0
x [Gpch 1]

0.0

1.0

2.0

3.0

4.0

y
[G

pc
h

1 ]
Gravitational potential [km2 s 2]

6

4

2

0

2

4

1e6

(b) Slice of the gravitational potential
őeld computed from the z = 0 snapshot
of the HugeMDPL simulation. The őeld
was obtained by numerically solving in
Fourier space the Poisson equation, start-
ing from the overdensity őeld.

Figure 3.2: Slice of the matter overdensity őeld and the of gravitational potential
őeld it sources.

3.2.1 Potential interpolation

Regarding the gravitational potential, LIGER takes as an input the simulation’s large
scale potential őeld evaluated at each galaxy snapshot, interpolated on a cubic grid
with an Ngrid speciőed as a parameter. Since there are only two available particle
snapshots to compute the potential from, we assume a linear evolution in the quantity
D(+)(t)/a(t), hinted by the fact that at őrst order in density perturbations, the large
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Figure 3.3: Matter power spectrum evaluated from the z = 0 snapshot of the
HugeMDPL simulation (black dots), with the linear prediction from the CAMB
code (red line). The error bars on the estimator are obtained by assuming Gaussian
density ŕuctuations.
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scale potential follows a law of the type

ϕ(t) ∝ D(+)(t)

a(t)
, (3.1)

as derived in equation (1.38).
We test this assumption with the simulation data by computing the potential

for the two available particle snapshots on a grid with Ngrid = 28, and compare the
average of their ratio with the prediction obtained from equtation (3.1). The mean
ratio, estimated from all the grid cells in which neither of the two potentials is equal
to 0 is

r̂ ≡
⟨︃

ϕ(z1)

ϕ(z2)

⟩︃ ⃓

⃓

⃓

⃓

φ(z1),φ(z2) ̸=0

= 1.15496, (3.2)

while the theoretical prediction reads

r =≡ D(+)[t(z1)]a[t(z2)]

D(+)[t(z2)]a[t(z1)]
= 1.15477, (3.3)

which means that the relative difference of the ratios is

r̂ − r

r
= 0.016%. (3.4)

We conclude that, at least regarding its large-scale behaviour, the gravitational po-
tential closely follows the linear evolution: we then extrapolate it for each redshift
used in the code by utilizing the z = 0 value and equation (3.1).

3.2.2 Mock catalogue

Since in this project we are mostly interested in testing the new direct LIGER im-
plementation, and this simulation does not have any semi-analytic galaxy catalogues
attached to it, we decide to build a mock set of tracers from the halo data avail-
able in the ROCKSTAR catalogue. Each tracer is constructed by taking the halo’s
comoving position and peculiar velocity, its mass, and its unique and descendant
IDs, necessary for the construction of trajectories across different snapshots. We
also assign a luminosity to each halo, making use of a mock mass-luminosity relation
derived from the low-mass tail of the halo mass-galaxy luminosity relation presented
in [95]:

L(M) = A
(M/m′)b

[c+ 1]1/k
, (3.5)

with A = 5.7× 109 L⊙/h2, m′ = 0.77× 1011M⊙/h, b = 4, c = 0.57, k = 0.230. We
show the plot of this relation in őgure (3.4). Note that this is not a realistic model,
since for the large halo masses considered, we would expect them to host multiple
sub-haloes with multiple galaxies [95].

The trajectories of the mock tracers are constructed from the merger tree available
in the catalogue, following the pre-processing shown in section (2.2.1).
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In őgure (3.5a) we show the differential halo abundance in function of the mass
compared with the Shirasaki mass distribution őt [96]. We observe a discrepancy
at large masses M ≳ 1014M⊙. However, the calibration of the high-mass range is
sensible to the size of the cosmological simulation used (see e.g. section 5.2 of [96]),
and in fact the HugeMDPL run has a box size almost four times the size of the
biggest simulation used in that work.

In őgure (3.5b) we instead plot the luminosity function of the mock tracers, built
by applying the mass-luminosity relation in equation (3.5) to the ROCKSTAR cata-
logue. We also plot the luminosity function derived by combining the Shirasaki mass
distribution with the mock mass-luminosity relation of equation (3.5). The discrep-
ancy at a large luminosity is expected, since it is encoded in the mass distribution we
used to derive it. Nonetheless, this shows consistency in this luminosity assignment.

We will only treat the haloes with masses larger than Mcut = 1013M⊙/h, in order
to consider only the ones made up by at least ≈ 120 particles. This correspond to
luminosities of at least Lcut ≈ 2.3×1017 L⊙/h. However we will set a lower mass cut
Mselect = 1012M⊙ for the input catalogue. This is done for multiple reasons. First
of all, we can only treat haloes that appear at least in two snapshots, due to the
interpolating process: applying a mass cut too near to the actual cut we consider,
would inevitably lead to the exclusion of some haloes that might rise above the cut
at the lightcone intersection. Second, the luminosity we use is directly linked to the
mass, and we need to make sure we correctly capture the magniőcation bias. If we
exclude all the galaxies just below the ŕux cut, we would risk to not account for the
ones that would rise above it when magniőed, which contribute to Q.

In the bottom plot of őgure (3.6) we show in grey the power spectrum of the
tracers overdensity őeld, obtained using a grid with Ngrid = 28 cells per side and
the CIC scheme.

3.2.3 Bias relation test

In order to implement the őeld approach, we have to ensure that at large enough
scales, the tracer we want to reproduce obeys a linear bias relation with a scale-
independent linear bias b:

δg = b× δ, (3.6)

where δg is the tracer overdensity and δ is the matter one. We check this for the z = 0
snapshot, for which we have both particle and tracer data, and following equation
(1.72), we do so by estimating b(k) from the ratio of the power spectra

b̂(k) =

√︄

P̂ g(k)

P̂ (k)
where k ≤ k0, (3.7)

where P̂ g(k) and P̂ (k) are the tracer and matter power spectra estimates, while k0
is an upper limit for k that we choose so that the bias relation holds. We then
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Figure 3.4: Mass-luminosity relation used for the construction of mock tracers. Note
that this is not a realistic relation, since at the masses considered the haloes generally
host multiple galaxies in its sub-haloes.

compute the weighted average of b̂ over k with a weight given by 1/σ2b , which using
error propagation on equation (3.7) reads

σb(k) =
1

2b̂(k)

⌜

⃓

⃓

⃓

⎷

⎡

⎣

(︄

1

P̂ (k)

)︄2

σP̂ g
(k)2 +

(︄

− P̂ g(k)

P̂ (k)2

)︄2

σP (k)2

⎤

⎦, (3.8)

where the error on the power spectrum estimator is given in equation (2.17), assuming
Gaussian density ŕuctuations. In conclusion, the estimate of the linear bias is

b̂ =
∑︂

ki≤k0

b̂(ki)
1

σb(ki)2
, (3.9)

where the sum is intended over the scales k ≤ k0.
In the top plot of őgure (3.6) we show the values of b̂(k) estimated with k0 =

0.1h/Mpc: we can see that taking into account the error bars, the curve is compatible
with a constant value of b̂ = 1.42, therefore we will consider the biasing relation valid
for values of k smaller than k0. We conclude by comparing in the bottom part of
őgure (3.6) the tracer power spectrum with the biased linear prediction

P̂ b(k) = b̂
2 × P (k), (3.10)

where P (k) is the linear prediction of the power spectrum. We can see once again
that at the scales considered the data is compatible with the assumption of equation
(3.6).
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Figure 3.5: Mass and luminosity functions of the set of mock tracers built for this
work.
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Figure 3.6: Top: Tracer linear bias estimated from z = 0 snapshot (red dashed line).
The black points show the estimated value for each wavemode k considered, and the
error bars are given by equation (3.8). Bottom: Tracer power spectrum evaluated
from the z = 0 snapshot of the HugeMDPL simulation (grey dots), with the linear
prediction from the CAMB code ampliőed by the linear bias b (black line). The error
bars on the estimator are obtained by assuming Gaussian density ŕuctuations.
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3.3 MUSIC runs

In this project the low-resolution dark matter-only simulations, necessary for the
implementation of the őeld approach, were computed via the MUSIC code [66],
which implements Lagrangian 2-nd order perturbation theory (2LPT) to simulate
the large scale structure of the Universe. This approximation scheme allows to
produce many different realizations for a lower computational cost, compared to an
N-body simulation.

We run 16 simulations, all with the same cosmological parameters as the
HugeMDPL run, using 28 particles per side of mass mdm = 32 512 × 1010M⊙/h,
within a box size of 4000Mpc/h. From each run, we save the snapshots at the same
redshifts as the ones of the HugeMDPL simulation.

In őgure (3.9) we compare the power spectrum estimated from one of the MUSIC
simulations with the linear theory prediction obtained with the CAMB code. We
can see how on wave-modes larger than k ≈ 0.02h/Mpc the MUSIC power spectrum
becomes noticeably lower than the linear prediction. This is an expected issue of
the 2LPT approximation, which is known to start underestimating the true power
spectrum after a certain frequency k, which depends weakly the target resolution (i.e.
the number of particles used per simulation box size) and becomes larger with redshift
(see e.g. section 3 of [97]). This means that the approximation scheme will become
worse as z → 0, since it will start underestimating the power at increasingly larger
scales. Regarding other possible causes to the discrepancy as k → 0.1h/Mpc, we do
not expect further deviations from the CAMB spectrum caused by the fact that it is
a linear prediction, because as we saw in őgure (3.3), it őts well with the HugeMDPL
N-body spectrum even up to k = 0.1hMpc. Finally, we notice that the MUSIC signal
grows again close to the CAMB spectrum near k ≈ 0.1h/Mpc. We can attribute
this to a spurious gain of power due to aliasing effects near the Nyquist frequency,
which due to our large box and coarse grid is quite small: kN ≈ 0.20h/Mpc.

We will take all these effects into account in doing our comparisons, as they will
only act on the őeld approach mocks.

3.4 Survey functions estimation

In order to implement the őeld approach, one needs a set of survey functions that
describe the tracer to "paint" the correct density őeld over the matter one. For this
work, since we use the őeld approach to test the direct approach, we estimate the
survey functions from the simulation itself.

In the mock galaxy catalogue we created starting from the ROCKSTAR haloes,
we have information about positions, velocities and luminosities. A set of survey
functions changes with the chosen ŕux cut fcut, which selects only the galaxies that
have an apparent ŕux f ≥ fcut. For a snapshot at a redshift z the ŕux cut will select
all the galaxies with a luminosity L ≥ Lcut(z) ≡ 4πfcutdL(z)

2, following equation
(1.134). Given a luminosity function ϕ(L, z) = dN(L′ > L)/dLdV , deőned such that
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Figure 3.7: Comparison of the matter power spectrum computed from one of the
MUSIC runs (black dots) with the prediction from the CAMB code at z = 0. The
error bars on the estimator are computed assuming Gaussian density ŕuctuations.
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the comoving number density of galaxies brighter than L is

ng(L, z) =

∫︂ ∞

L
ϕ(L′, z)dL, (3.11)

the number density of galaxies visible above the ŕux cut fcut is

n̄g(z) = n(Lcut(z), z) =

∫︂ ∞

Lcut(z)
ϕ(L′, z)dL. (3.12)

From the deőnitions in equations (1.136, 1.137) it follows that [16]

Q = − L

n(L, z)

∂n(L, z)

∂L

⃓

⃓

⃓

⃓

L=Lcut(z)

=
Lcut(z)ϕ(Lcut(z), z)

n̄g(z)
, (3.13)

and

E = −
∂ ln

∫︁∞
Lcut(z)

ϕ(L′, z)dL

∂ ln(1 + z)
= − 1

n̄g(z)

∫︂ ∞

Lcut(z)

∂ϕ(L′, z)
∂ ln(1 + z)

dL. (3.14)

These equations link the luminosity function with the two biases. We will now
present the method of estimation used for each one of the survey functions.

For a given snapshot at a redshift z̃, we compute on a grid the matter overdensity
and the overdensity of the tracers with L ≥ Lcut(z̃). Then, by implementing the
approach described in section (3.2.3), we estimate the linear bias using the power
spectra ratio. Since we have only two particle snapshots available, we interpolate
the matter overdensity őeld δ assuming a linear evolution, analogously to what we
did for the potential, following the growing mode in equation (1.35)

δ(t,x) = D(+)(t) δ(0,x). (3.15)

After evaluating the bias at each snapshot available, we estimate b(z) by interpolating
the values with a cubic spline.

For the galaxy number density n̄g(z) the process is straightforward: for each
snapshot with redshift z̃ we compute n(Lcut(z̃), z̃) counting the galaxies with L ≥
Lcut(z̃), and then we interpolate with a cubic spline over the z values.

For the magniőcation bias Q , we őrst calculate the luminosity function ϕ(L, z).
We then evaluate Q it via equation (3.13). We proceed in this way:

• At a given redshift z̃ we construct several luminosity bins Li around the value
Llim(z̃). We use 50 luminosity bins, evenly spaced on a logarithmic scale be-
tween the largest and smallest tracer luminosities, with a logarithmic separation
of ≈ 0.20.

• We compute the number density ni of galaxies with L ≥ Li for each bin.

• We őt the values of ni with a 3-rd order polynomial in log-log space (this
is done to avoid including stochastic ŕuctuations of the sample, which could
generate relevant noise in the computation of a numerical derivative).
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• We compute ϕ(L, z̃) by taking the derivative of (3.12) with respect of L, which
results in computing the analytical derivative of the polynomial őt obtained in
the previous step.

• We retrieve Q(z̃) using equation (3.13) evaluated at Llim(z̃).

• We repeat the process for each value of z we are considering.

In őgure (3.8a) we show the tracer number density in function of the luminosity
cut at z = 0.3. The error bars due to counting statistics are smaller than the
points, nevertheless we see that the őtting function chosen closely follows the density
evolution without any outlier data point.

Finally, the evolution bias E is estimated similarly to the magniőcation bias:

• At a given redshift z̃ we consider the redshift bins around it zi.

• We compute the number density ni of galaxies with L > Lmin(z̃) for each bin.

• We őt the values of ni with a 2-nd order polynomial.

• We retrieve E(z̃) using equation (1.137) evaluated at z̃. Even in this case we
compute an analytical derivative of the őt estimated in the previous step.

• We repeat the process for each value of z we are considering.

In őgure (3.8b) we show the tracer number density in function of the redshift for a
luminosity cut of L = Lcut(z = 0.3). The error bars due to counting statistics are
smaller than the points, nevertheless we see that the őtting function chosen closely
follows the density evolution without any outlier data point.

As we mentioned, we will test our code in two redshift bins, a closer one of
z ∈ [0.2, 0.3] and a deeper one of z ∈ [0.6, 0.7]. We will choose two different ŕux cuts
in the two bins, selecting two different tracer populations. The reason we do this lies
in the fact that in order to be able to make our tests, we are limited in the choice
of ŕux cut by two conditions. First, since the tracer luminosity is directly linked to
the mass via the relation L(M) of equation (3.4), and since we performed a mass
cut Mcut on the input catalogue, depending of the typical luminosity distance of the
bin dL we must not choose a ŕux cut fcut too low, such that

L(Mcut) ≳ 4π fcut d
2
L. (3.16)

This is because we need to avoid being too close to the ŕux cut imposed by Mcut

to correctly estimate the magniőcation bias, since it involves the computation of
n(> L) on a number of bins around Lcut(z). Second, we have an upper limit on fcut
set by the linear bias of the tracers, which grows with the ŕux cut. As we already
mentioned, the grid size of the őeld approach mesh has to increase with the bias
in order to correctly describe the őeld, but a too coarse mesh could cause aliasing
effects at large scales in the monopole estimator.

Keeping in mind these two limits, we choose a value of fcut = 4.0×10−5 erg/cm2/s2

for the closer bin, and fcut = 1.4 × 10−6 erg/cm2/s2 for the deeper bin. We apply
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bars from counting statistics are smaller than the markers. The black line is the best őt
with a 3-rd order polynomial in log-log space.
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(b) Tracer number density for a luminosity cut of L = Lcut(z = 0.3) in function of redshift.
The red points are estimated from the data following the procedure listed in section (3.4),
where the error bars from counting statistics are smaller than the markers. The black line
is the best őt with a 2-nd order polynomial.
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these ŕux cuts in the direct approach catalogues and we use them in the survey
function estimation, which we show in őgure (3.9).

Looking at the radial density n̄(z) we see that the number of tracers decreases
with redshift. There are multiple effects contributing to this quantity. First of all,
the ŕux cut boosts the number of objects detected at a lower redshift, since for a
given luminosity they will present a higher ŕux than the ones farther away. Second,
the fact that the haloes grow in mass with time, and thus their luminosity increases
as the redshift decreases, further boosts the effects of the ŕux cut. Last, there is also
a balancing between the halo formation and mergers, which would in turn increase
and decrease the total number counts as the redshift decreases. For similar reasons
we also expect the linear bias to grow with redshift: looking farther away we only
see the most massive haloes, which we expect to occupy the highest density peaks
regions of the matter őeld (see e.g. [45]) and thus appear more clustered. If instead
we look at the evolution bias, we can get more information regarding the tracer
density. Since it is positive we can say that, for a őxed luminosity cut Lcut, the
number of haloes that rise above it increases over time, at least for the mass range
considered. Finally, we notice that the magniőcation bias is approximately constant.
This result strictly depends on the halo population and the mock mass-luminosity
relation we chose. Even if this is not a realistic galaxy catalog, we mention that
a constant magniőcation bias is consistent with the case of a ŕux cut applied near
the faint-end region of the Schecter luminosity function [98]. In fact, in that region
ϕ ∝ L−γ with γ > 1, and thus Q ≈ γ − 1.

All these effects listed above are implicitly captured by the direct approach,
without requiring any modelling, since they are already accounted for in the input
N-body simulation.

To test the self-consistency of the survey functions estimated from the simulation,
we make use of the relation of equation (1.138): we compute the left side by taking the
total logarithmic derivative of the estimated number density, and the right side using
the estimated evolution and magniőcation bias. We plot the comparison in őgure
(3.10). The comparison is made at the z values of the HugeMDPL snapshots, where
the survey functions are actually estimated from the catalogue and not interpolated.
In the upper part we plot the theoretical prediction via Q and E , following equation
(1.138) (blue continuous line), and the direct estimation via the numerical derivative
of the radial density n̄(z) (orange dashed line). In the lower part we plot the relative
difference between the two. The redshift bin that we use for the analysis is delimited
by the red vertical lines.

We notice that in the closer bin the comparison holds with a 1% error, while the
deeper bin has a 3% error. We do not expect to get particularly small errors for the
following numerical reasons: the direct estimate consists in the numerical derivative
of a cubic spline obtained without any őtting procedure. Then, we can expect n̄(z)
to be subject to stochastic ŕuctuations due to its estimation. Moreover, we argue
that the discrepancy at the redshift limits is sourced by the cubic spline interpolation
scheme, which assigns artiőcial boundary conditions to the derivatives of the function
at its domain limits. In any case we took this into account by estimating the survey
functions on a bin larger than the one we will actually be using.
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Figure 3.9: Survey functions estimated for the z ∈ [0.2, 0.3] bin with fcut = 4.0 ×
10−5 erg/cm2/s2 (set 1), and for the z ∈ [0.6, 0.7] bin fcut = 1.4 × 10−6 erg/cm2/s2

(set 2). Top: Linear bias (black line), the magniőcation bias (red line) and evolution
bias (blue line). Bottom: Tracer radial mean density.
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vertical lines. Top: Total logarithmic derivative comparison, obtained directly from the
radial mean density (orange dashed line) and from the magniőcation and evolution biases
(blue line). Bottom: Relative discrepancy of the two estimates. The large discrepancy at
the functions’ deőnition boundaries are caused by the artiőcial boundary conditions set on
the derivatives by the cubic spline interpolation scheme.
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3.5 Monopole comparison

After having estimated the survey functions we show the power spectrum monopole
of our realizations, for both the redshift bins considered and for all the different
mocks produced by LIGER.

3.5.1 Deep bin

We start by analyzing the deep z ∈ [0.6, 0.7] bin. Since we have one realization of
the HugeMDPL simulation available, we can use it to build only one mock catalog of
the direct approach. Instead, for the őeld approach we use the 16 MUSIC outputs of
the runs we made for this work, producing 16 independent realization of the tracer
catalog. As we already mentioned in section (2.4.1), the "Gaussian" covariance
estimator for the FKP monopole is not accurate at large scales, so we will not use it
for the deep HugeMDPL realization. Luckily, regarding the őeld approach, we can
use the scatter of the 16 realizations, so that a comparison with error bars can still
be done.

In őgure (3.11) we compare the redshift space power spectra (in red) and the
realspace ones (in black) for each one of the mocks produced by LIGER listed in
section (2.1). The points are computed from the direct catalogue (HugeMDPL),
while the shaded areas are the 1 − σ and 2 − σ regions of the 16 őeld realizations
scatter from the mean value, denoted with a full line. We estimate the radial mean
density n̂(x) from each catalogue via concentric shells of δr = 15Mpc/h around the
observer, to then use it in the FKP computation. The FFT for the power spectrum
monopole estimator is computed on a box of size LFFT = 4Gpc/h, which implies a
fundamental frequency of kfund ≈ 1.6×10−3 h/Mpc. We use two different NFFT cells
per side values for the two methods. For the őeld approach we use NFFT = 27, which
equals to a grid size of 31.25Mpc/h. We can’t use a őner mesh because the őeld
approach realizations cannot produce a őner grid, due to the biasing issues listed
in section (2.1.3). This is not a limit of the direct approach, and for this reason
we decide to use NFFT = 29. In the őeld approach we add shot noise "artiőcially"
following the cell sampling procedure mentioned in section (2.1.3) (FieldSN). We
then correct for the shot noise in the power spectrum estimate for both the samples.
We also show the same őeld approach density realization without the shot noise
introduction (Field), and we plot it with a dashed line. For the catalogues with
an observer contribution we set vobs = 1000 km/s. As we will see later in section
(3.6), we choose this value because it generates a signature on the power spectrum
monopole comparable with the scatter of the realizations, which will be useful for
the rest of the analysis.

Looking at the comparison in őgure (3.17), we see that the conőgurations are
consistent for k < 0.03h/Mpc, in all the mocks, since most of the HugeMDPL points
lie in the 1 − σ region, and a few of them in the 2 − σ region. We also notice that
for all the mocks, the relative position of the HugeMDPL points with the respect of
the őeld approach average is consistent going from real to redshift space. There is a
large scatter at large scales, comparable with the magnitude of the signal. This is to
be expected due to the sample variance of the box, which limits our knowledge at the
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Figure 3.11: Power spectrum monopole test in the z ∈ [0.6, 0.7] bin, for the real
space (black) and redshift space mocks (red), accounting for different contributions.
We compare the direct approach result for one realization (points) with the őeld
approach 1 and 2−σ scatter of 16 realizations (shaded areas) around the mean value
(full line). We also plot with a dashed line the average value of the őeld mocks
without the inclusion of shot-noise.
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smallest k values, and due to the window function convolution, which ŕattens the
signal. This is unfortunate since the effects we want to test (e.g. the GR contribution
or magniőcation effects) contribute at those scales. We will present an alternative
approach to overcome this problem in the next section.

As we probe larger k values, we notice that the approaches start deviating, becom-
ing incompatible. First of all, looking at the FieldSN sample, the comparison stops
holding around k ≈ 0.04h/Mpc, where it starts deviating from both the HugeMDPL
and Field mocks. Due to this lack of self consistency we conclude that the shot-noise
is not correctly captured by the őeld approach as we get to smaller scales. We can
expect this discrepancy to appear at different scales based on the reőnement of the
BUILDCONE mesh, possibly producing a better estimate as the grid cell shrinks.

If we compare the HugeMDPL mocks with the Field mocks we notice that after
k ≈ 0.04h/Mpc the signal of the former becomes higher than the latter, to then
converge again near k = 0.1h/Mpc. This signature is expected due to the nature of
the MUSIC mocks used: if we look at the power spectrum of one MUSIC snapshot
at z = 0 in őgure (3.9), we notice that the signal showed there follows a similar trend
compared to the linear prediction, so we conclude that the discrepancy are caused by
the fact that MUSIC fails to capture the correct power spectrum at smaller scales.

To show that the direct approach gives instead the correct (or better) results at
larger k-s we test the accuracy of the Kaiser boost on the power spectrum monopole,
as described in section (1.4.5). We know that this effect is valid only in the plane-
parallel limit, where we can consider small separation angles between galaxies. Dif-
ferently from the derivation made in the z → 0 limit, which also implied ∆z < 1, in
our case we have to take into account the Kaiser factor F evolution on the redshift
bin considered. This was implemented in [16] by taking a weighted average of F over
the redshift bin [zi, zf ], resulting in a factor

F̄ =

∫︁ zf
zi

F n̄2gD2
(+)

dVS

dz dz
∫︁ zf
zi
n̄2gD

2
(+)

dVS

dz dz
, (3.17)

where D(+) is the linear growing mode of density perturbations, n̄g is the tracer
mean radial density and VS is the comoving volume withing the past lightcone of the
observer.

We compare this value with the ratio between the redshift and real space power
spectrum monopoles P̂

s
0(k)/P̂ 0(k), for all the mocks produced by LIGER. We do

not expect this to hold at very large scales, where wide angle effects take place and
further boost the redshift space signal, but instead at intermediate scales, at which
we can still work in linear approximation and consider small angular separations.

In the top plot of őgure (3.12) we show the result of the comparison: the red line is
the theoretical prediction F̄ , the black dots are the estimation from the HugeMDPL
mock, and the shaded areas indicate the 1 − σ and 2 − σ scatter of the FieldSN
estimates around the mean value (full line). We also show the not-noised Field
mocks as a dashed line. At large scales k < 0.02h/Mpc we see that both the őeld
and direct estimations do not retrieve the correct Kaiser factor, but this is expected
due to the wide-angle effects that act at large scales. Regarding the GRRSD_obs
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and vRSD_obs mocks, at the largest scale probed, we recognize a further boost due
to the observer’s velocity, as it was described in section (1.145).

On smaller, but still large, scales we notice two things: the direct approach
seems to be capturing the Kaiser factor better than the FieldSN approach, and this
becomes more noticeable starting from k ≈ 0.04h/Mpc. We partially attribute this
large discrepancy to the artiőcial shot noise issue mentioned above: as we can see
looking back to őgure (3.11), the Poisson sampled mock starts deviating from the
direct approach around k ≈ 0.04h/Mpc, which is the same scale in which we see
it deviate from the plane parallel approximation. However, this is not the only
cause: the Field mocks deviate too from the Kaiser prediction, even if less than the
"shot-noised" counterpart.

In the bottom plots of őgure (3.12) we plot the discrepancy between the estimates
and the theoretical value in units of the 1−σ scatter estimated through the FieldSN
mocks. Besides the expected incompatibility with F̄ at small k values, we note that
also here the FieldSN mocks quickly deviate from the plane parallel prediction, while
the HugeMDPL mocks keep capturing the effect better, up to smaller scales. In this
plot we can identify better the scale in which the "not-noised" Field mocks start to
deviate, which is around k ≈ 0.04h/Mpc, the same scale in which the discrepancies
with the HugeMDPL mocks started.

We still notice that the HugeMDPL signal underestimates the effect as k grows,
but there are a few factors to take into account when considering this. First, F
depends on the linear bias b, which we estimated from a power spectra ratio. Spurious
effects like the shot noise removal in the power spectrum can affect this estimate,
and consequently the F factor. Second, F̄ is a weighted average over the redshift
bin considered, so we can expect this to only approximate the effect of redshift space
distortions. Third, as we reach non-linear scales, the F̄ factor should be computed
differently (see e.g. [99]).

3.5.2 Closer bin

As we mentioned, we only have a single realization for the HugeMDPL simulation,
and this limits the possibility of estimating the scatter of the power spectrum. One
solution to this issue is to subdivide the original 4Gpc/h box in a set of contiguous
sub-boxes, and treat those as separate realizations. There is one caveat to this
approach: by subdividing the box we must consider a closer redshift bin, depending
on the number of subdivision. Taking this into account we decide to divide the
simulation in 8 equal parts with sides of 2Gpc/h, which allow us to reach z = 0.3
and still have a rough scatter estimate.

We thus repeat the monopole comparison for a z ∈ [0.2− 0.3] redshift bin, where
this time we also show the 1−σ scatter of the direct approach over the 8 sub-mocks
and do not show the 2 − σ scatters to avoid a confusing plot. The comparison is
plotted in őgure (3.13), with the same color-labeling as the previous case, but with
the addition of an estimate of the 1− σ scatter for the direct approach.

From the comparison we can make the same observations as the previous bin,
but we notice that the HugeMDPL scatter has smaller error bars with respect to
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Figure 3.12: Kaiser factor estimation in the z ∈ [0.6, 0.7] bin (in black), accounting
for different contributions, and its theoretical prediction from equation (3.17) (red
dashed line). We compare the direct approach result for one realization (points) and
the őeld approach 1 and 2− σ scatter of 16 realizations (shaded areas and full line).
We also plot the average value of the őeld mocks without accounting for shot-noise
(dashed black line).
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Figure 3.13: Power spectrum monopole test in the z ∈ [0.2, 0.3] bin, for the real
space (black) and redshift space mocks (red), accounting for different contributions.
We compare the direct approach result from the 8 sub boxes with their 1−σ scatter
(barred points) and the őeld approach 1−σ scatter of 16 realizations (shaded areas).
We We also show with a dashed line the average value of the őeld mocks without the
inclusion of shot-noise. We argue that the 1 − σ bars of the direct approach show
a reduced variance with respect to the őeld approach because the sub-boxes from
which we extracted the mocks started from the same seeds for the initial conditions,
and are thus correlated.
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the FieldSN mocks. However, since this happens both in real and redshift space,
we expect it to be unrelated to the effects implementation. One of the possible
reasons for the smaller scatter of these 8 mocks could be related to the way we built
them: since they were all obtained by subdividing the same simulation box, they
share the same seeds for the initial conditions (IC) generation. Depending on the
algorithm for IC generation we used, we could expect a correlation between the wave
modes sampled from different regions of the box, that could reduce the variance of
the produced mocks. Regarding the observer’s velocity signature in the vRSD_obs
and GRRSD_obs mocks, we notice that, on average, the signal in this bin is higher
than in the deeper bin. Looking back at equation (1.144) we can attribute this to
the behaviour of the Bessel function j0(kr), which peaks when k ∼ 1/r: for a closer
radial bin then the value of k at the peak is larger, and we can probe it more closely.

Now we repeat the Kaiser effect test for this bin and we show the result in őgure
(3.14). Due to the correlation of the sub mocks in the őrst example we still use the
őeld approach error bars to compute relative discrepancy. We notice overall the same
behaviours as the previous bin, with less noticeable wide-angle effects at large scales,
consistent with the fact that we are probing a smaller comoving volume. Even in
this plot we can notice how the error bars of the HugeMDPL mocks are smaller than
the FieldSN ones.

3.6 Observer effect

To conclude our tests we estimate the observer’s velocity contribution on the power
spectrum monopole ∆Pobs, and we compare it with the theoretical prediction of equa-
tion (1.145). We know that Diso depends on both the magniőcation and evolution
biases, so with this comparison we can test if their effects are correctly captured by
the direct approach. Moreover, since Diso ∝ v2obs, we can control the signal-to-noise
ratio (SNR) by setting an observer velocity sufficiently large. We őnd that a speed
of vobs = 1000 km/s grants us a good SNR, so we assign that value for the observer’s
velocity in every mock.

We follow the procedure described in [16]: we estimate the monopole P̂ 0,obs

from the GRRSD_obs mocks and P̂ 0,cmb from the GRRSD mocks, were the
"cmb" label denotes that the observer is steady with respect to the CMB. Then
we estimate D̂iso = P̂ 0,obs − P̂ 0,cmb. To better characterize the oscillatory features
of Diso we decide to use a őner k binning with respect of the previous case. We
do so by using a very large FFT box of LFFT = 16Gpc/h, which leads to a k-
binning of ∆k = 3.9 × 10−3 h/Mpc. We will do this analysis in the z ∈ [0.2, 0.3]
redshift bin. We estimate Diso for both the őeld and direct approach, for all the
realizations available. Since equation (1.145) does not contain any stochastic term
we expect that averaging over many realization the Diso estimator would converge
to the theoretical prediction. For this reason we plot the standard error of the mean,
obtained by diving the 1 − σ scatter by the square root of the number of mocks.
The comparison is shown in őgure (3.15), where we plot in black the theoretical
prediction, in red the estimation from the őeld approach mocks, and in blue the direct
approach estimate from the 8 HugeMDPL sub-boxes. We see that the two estimates
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Figure 3.14: Kaiser factor estimation in the z ∈ [0.2, 0.3] bin (in black), accounting
for different contributions, and its theoretical prediction from equation (3.17) (red
dashed line). We compare the direct approach result from the 8 sub boxes with their
1− σ scatter (barred points) and the őeld approach 1− σ scatter of 16 realizations
(shaded areas and full line). We also plot the average value of the őeld mocks without
accounting for shot-noise (dashed black line).
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match the theoretical prediction at large scales, up to k = 5× 10−3 h/Mpc, starting
to deviate from it for larger k values. This is expected: the estimated oscillating
pattern strongly depends on the binning of the radial mean density n̂(x), which
can either affect the largest scales signal for a binning too coarse, or the smaller
scales for a binning too őne. We also notice that as k grows the two approaches’
estimates start to deviate from each other: we can attribute this to the fact that the
15Mpc/h binning used to compute n̂(x) is smaller than the őeld approach mesh size
of 31.25Mpc/h, and this affects the number counts in each shell, acting on the small
scales behaviour of n̂. Moreover, the survey functions used are estimated from a data
set, and are subjected to noise due to the number counts and numerical derivatives
implemented, so we can expect small deviations between the modelled vobs effect
Diso and the actual one. Furthermore, the shot noise of this tracer is approximately
3000Mpc3/h3, which is comparable with the signal at the minima of Diso. Lastly, as
we said, the HugeMDPL mocks are generated by the same seeds for initial conditions,
so we can expect the signal to not converge at the same points as the őeld approach,
since it is not a "true" average over many realizations. Related to this issue, we also
notice that the HugeMDPL error bars are smaller that the őeld approach one, which
is still consistent with the correlated mocks explanation.

In conclusion, the Diso estimators are consistent with each other at large scales,
and with the theoretical prediction, which means that the direct approach correctly
captures the survey functions’ effects. The observer’s effect could be used in the
future to study the expansion history of the Universe, or to measure the observer’s
peculiar velocity [16]: with the approach implemented in this work we are able to
account for more complex selection effects and systematics, which would allow to
consider more realistic surveys.
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Figure 3.15: Observer’s velocity contribution to the power spectrum monopole. In
black we plot the theoretical prediction Diso of equation (1.145), while in red and
blue we respectively plot the estimations from the őeld and direct approaches, with
error bars given by the error on the mean.
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Chapter 4

Conclusions and prospectives

The next generation of galaxy redshift surveys will probe scales comparable to the
Hubble radius. At these scales we expect to observe distortions in the measured
galaxy distribution sourced by relativistic effects, which add up to the ones sourced
by peculiar velocities.

The LIGER code implements a method to produce galaxy lightcone catalogues
that account for these relativistic effects at őrst order. It operates by taking as input
an N-body simulation and building upon it the catalogue, by shifting the particles
in redshift space, accounting for both velocity, relativistic and magniőcation effects
at linear order in the perturbations.

Up until this work, LIGER was used in a "őeld" conőguration, that consists in
shifting the matter particles on a low-resolution dark matter simulation, to then fol-
low a biasing prescription to "paint" the galaxy distribution . This requires previous
knowledge of the luminosity function and linear bias of the tracer we want to study,
but allows to produce very large lightcones for a low computational cost, which in
turn allows to produce many mock catalogues useful for covariance estimation.

However this approach presents a series of caveats that limit its range of appli-
cability. First, as we said, it requires the previous knowledge regarding the tracer’s
evolution. Second, it implements basic selection effects based on a constant ŕux cut,
without accounting for size selection and other more complicated selection criteria.
Third, the painting procedure requires to build the galaxy distribution on a cubic
mesh, losing all the clustering information for scales smaller than the mesh cell size.
Fourth, the mesh cell size grows with the input linear bias, making Fourier-based
analysis difficult for strongly biased tracers. Fifth, it implements an artiőcial shot-
noise effect that fails as we probe smaller scales. Last, it can resolve clustering only
on scales where the linear biasing relation holds.

In this project we implement and test a direct conőguration for the code, in
we start from a high-resolution N-body simulation and shift directly the tracers in
redshift space, applying also the correct magniőcation. This approach solves all the
issues mentioned above for the previous version, allowing to produce a realistic galaxy
catalogue, to which we can apply realistic selection effects just as a real survey would
do. Our work can be summarized as follows:

• We update the LIGER code by adding the option to shift directly the tracers
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from a simulated catalogue. In particular this requires to implement a lookup
plugin that allows to trace the tracer trajectories and their mergers, in order to
correctly account for the Observer’s past lightcone intersection. Moreover, this
calls for a generalization of the internal routines of the code to account for the
fact that the tracer trajectories can exist only for a fraction of the simulation,
as opposed to dark matter particles.

• We implement an optimization in the gravitational potential storage that allows
to reduce the memory occupation.

• We implement the possibility to produce cone-shaped lightcones, which for a
given simulation box, allows to probe higher redshifts than in the full-sky case.

• We use the publicly available HugeMDPL simulation to build a set of mock
tracers, starting from the ROCKSTAR halo catalogue attached to it and as-
signing a L ∝M4 luminosity-mass relation.

• Since the simulation contains raw particle data only for two snapshots, we
compute the large scale gravitational potential for z = 0 and then extrapolate
it for higher redshifts by applying the evolution scheme given by the linear
treatment of density perturbations.

• We use the newly implemented code to produce one deep tracer catalogue up
to redshift z = 0.7 and 8 smaller catalogues up to z = 0.3, obtained by dividing
the original HugeMDPL box in 8 equal parts.

• We run 16 dark matter-only low-resolution simulations using the MUSIC code.

• We estimate the survey functions that describe the mock catalogue from the
snapshot data. In particular, we choose two different ŕux cuts for the deep and
small catalogues, producing two sets of functions.

• Using the low-resolution runs and the survey functions we apply the őeld ap-
proach to produce 16 mock galaxy catalogues.

• We estimate the monopole of the power spectrum from the direct and őeld
catalogues, comparing all the mocks with different contributions as listed in
section (2.1). We compute this in a z ∈ [0.2, 0.3] bin for the smaller catalogues
and in a z ∈ [0.6− 0.7] bin for the larger one.

• We use the observer’s velocity vobs contribution on the power spectrum monopole
to further test if the survey functions are correctly captured. Due to the ∝ v2obs
dependence of the generate signal, by setting vobs = 1000 km/s we obtain a
good signal-to-noise ratio. We compare the estimated quantities with the the-
oretical prediction, which depends on the magniőcation and evolution biases.

We őnd agreement in the large scale power spectrum monopole from the two
different implementations for all the different contributions considered. In particular,
the comparison holds up to k ≈ 0.5h/Mpc for the close bin and k ≈ 0.4h/Mpc for the



87

deep bin, For smaller scales, we notice that the artiőcial shot-noise implementation
of the őeld approach generates a spurious boost in power that grows with k, while
the direct implementation does not present this effect. In any case, using a őeld
approach mock that does not account for shot-noise we get a better comparison with
the direct implementation, but still with a suppressed power for large k-s, which is
characteristic of the low-resolution simulations used, due to the 2LPT approximation
scheme implemented by MUSIC.

We test the two implementations’ accuracy in recovering the Kaiser boost factor
F̄ to the power spectrum monopole in the plane-parallel approximation. We do so by
computing the power spectra ratio between the redshift space and realspace mocks.
First of all, we observe in both redshift bins the expected signature of wide-angle
effects at very large scales, which deviates the ratio from the Kaiser boost factor.
Then, we see that as k grows to 0.1h/Mpc, the őeld approach quickly drops from
the theoretical value F̄ . We attribute this discrepancy to the artiőcial shot-noise
effect mentioned before, as it arises at the same scales. If we look at the direct
approach instead, we see a constant trend in the powers spectra ratio, consistent at
one σ with F̄ . From this comparison we also assert further the consistency of the
distortions implementation at very large scales, as the power spectra ratios of the
direct approach mocks lie roughly within the 1−σ scatter area of the őeld realizations
for k < 0.02h/Mpc.

Looking at the observer’s velocity signature on the power spectrum, we őnd
a good agreement between the two approaches and the theoretical prediction up to
k ≈ 0.004h/Mpc. Then the two estimations deviate from it but remain in agreement
up to k ≈ 0.006h/Mpc.

With these test we conclude that the newly implemented approach produces
consistent results with the previous implementations of LIGER, but does not suffer
from the same limitations. We plan to include this code in a new version of LIGER,
integrating it with the previous approach 1. Further tests regarding the covariance
of the scatter consistency could be performed by making use of a large set of high-
resolution simulations, such as the Quijote suite [100].

Regarding future implementations of this now tested method, we mention a pos-
sible combination with a Halo Occupation Distribution model (HOD), or a more
complex model. An HOD characterizes how galaxies populate dark matter haloes,
including their spatial distribution and velocity distribution within these haloes. For
a given halo one can then use an HOD to populate it with a central galaxy and satel-
lites. This approach could be combined with the code in the following way. Starting
from a simulation that resolves dark matter haloes, we can use LIGER to produce
the halo catalogue in redshift space. Next, via an HOD we can populate the haloes
with galaxies. Then we can correct the galaxies’ redshift space distribution by adding
the contributions of their peculiar velocities to their position and magniőcation. In
conclusion, this process would generate a catalogue that:

• Accounts for relativistic effects at scales larger than the largest haloes size, i.e.
in a given halo all the galaxies get the same relativistic contributions to the

1The code is currently available at https://astro.uni-bonn.de/~porciani/LIGER/
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shift and magniőcation;

• Accounts for the peculiar velocities of the single galaxies, that contribute to
both the position and magniőcation.

The advantage of this approach lies in the fact that using an HOD (or a more complex
model) to generate the galaxy catalogue allows us to start from lower resolution N-
body simulations, which are faster to run, and to shift only the haloes, which is faster
to do in LIGER with respect of shifting every single galaxy.



Acknowledgements

I would like to thank Dr. Daniele Bertacca for the opportunity of working on this
project and for supervising it. I extend the thanks to Prof. Cristiano Porciani for the
really important insights given during this work. Finally, I thank Mohamed Yousry
Elkhashab for the great help given to me throughout the whole project.

89



Bibliography

[1] A. J. S. Hamilton. Linear redshift distortions: A review. In Astrophysics and

Space Science Library, pp. 185ś275. Springer Netherlands, 1998.

[2] N. Kaiser. Clustering in real space and in redshift space. , 227:1ś21, July 1987.

[3] A. Raccanelli et al. Doppler term in the galaxy two-point correlation function:
wide-angle, velocity, doppler lensing and cosmic acceleration effects, 2016.

[4] L. Samushia et al. Interpreting large-scale redshift-space distortion measure-
ments. Monthly Notices of the Royal Astronomical Society, 420(3):2102ś2119,
jan 2012.

[5] S. Andrianomena et al. Testing general relativity with the doppler magniőca-
tion effect. Monthly Notices of the Royal Astronomical Society, 488(3):3759ś
3771, jul 2019.

[6] D. Bertacca et al. Beyond the plane-parallel and newtonian approach: wide-
angle redshift distortions and convergence in general relativity. Journal of

Cosmology and Astroparticle Physics, 2012(10):025ś025, oct 2012.

[7] P. McDonald. Gravitational redshift and other redshift-space distortions of the
imaginary part of the power spectrum. Journal of Cosmology and Astroparticle

Physics, 2009(11):026ś026, nov 2009.

[8] A. Challinor and A. Lewis. Linear power spectrum of observed source number
counts. Physical Review D, 84(4), aug 2011.

[9] D. Jeong et al. Large-scale clustering of galaxies in general relativity. Physical

Review D, 85(2), jan 2012.

[10] J. Yoo. General relativistic description of the observed galaxy power spectrum:
Do we understand what we measure? Physical Review D, 82(8), oct 2010.

[11] J. Yoo et al. New perspective on galaxy clustering as a cosmological probe:
General relativistic effects. Physical Review D, 80(8), oct 2009.

[12] Y. Zhang et al. Testing general relativity on cosmological scales at redshift z
1.5 with quasar and CMB lensing. Monthly Notices of the Royal Astronomical

Society, 501(1):1013ś1027, 11 2020.

90



BIBLIOGRAPHY 91

[13] J. Amiaux et al. Euclidmission: building of a reference survey. SPIE Proceed-

ings, Aug 2012.

[14] M. E. Levi et al. The dark energy spectroscopic instrument (desi), 2019.

[15] R. Maartens et al. Cosmology with the ska ś overview, 2015.

[16] M. Y. Elkhashab et al. The large-scale monopole of the power spectrum in
a euclid-like survey: wide-angle effects, lensing, and the ‘őnger of the ob-
server’. Monthly Notices of the Royal Astronomical Society, 509(2):1626ś1645,
oct 2021.

[17] M. Borzyszkowski et al. liger: mock relativistic light cones from newtonian
simulations. Monthly Notices of the Royal Astronomical Society, 471(4):3899ś
3914, jun 2017.

[18] N. E. Chisari and M. Zaldarriaga. Connection between newtonian simulations
and general relativity. Phys. Rev. D, 83:123505, Jun 2011.

[19] C. Bonvin and R. Durrer. What galaxy surveys really measure. Phys. Rev. D,
84:063505, Sep 2011.

[20] J. Yoo. Complete treatment of galaxy two-point statistics: Gravitational lens-
ing effects and redshift-space distortions. Phys. Rev. D, 79:023517, Jan 2009.

[21] R. Maartens et al. Magniőcation and evolution biases in large-scale structure
surveys. Journal of Cosmology and Astroparticle Physics, 2021(12):009, dec
2021.

[22] E. Hubble. A Relation between Distance and Radial Velocity among Extra-
Galactic Nebulae. Proceedings of the National Academy of Science, 15(3):168ś
173, March 1929.

[23] J. R. G. III et al. A map of the universe. The Astrophysical Journal, 624(2):463ś
484, may 2005.

[24] M. Colless. First results from the 2dF Galaxy Redshift Survey. In G. Efstathiou
and et al., editors, Large-Scale Structure in the Universe, volume 357, pp. 105,
January 1999.

[25] E. Hawkins et al. The 2dF Galaxy Redshift Survey: correlation functions,
peculiar velocities and the matter density of the Universe. , 346(1):78ś96,
November 2003.

[26] F. Beutler et al. The clustering of galaxies in the completed SDSS-III Baryon
Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier
space. , 464(3):3409ś3430, January 2017.

[27] A. Lawrence et al. The QDOT all-sky IRAS galaxy redshift survey. ,
308(4):897ś927, October 1999.



BIBLIOGRAPHY 92

[28] M. A. Strauss et al. A Redshift Survey of IRAS Galaxies. VII. The Infrared
and Redshift Data for the 1.936 Jansky Sample. , 83:29, November 1992.

[29] J. Loveday et al. The stromlo-APM redshift survey. III. redshift space distor-
tions, omega, and bias. The Astrophysical Journal, 468:1, sep 1996.

[30] S. Dodelson. Modern Cosmology. Academic Press, Amsterdam, 2003.

[31] D. Green et al. Messengers from the early universe: Cosmic neutrinos and
other light relics, 2019.

[32] A. H. G. Peter. Dark matter: A brief review, 2012.

[33] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Phys-

ica Acta, 6:110ś127, January 1933.

[34] S. Perlmutter et al. Measurements of and from 42 high-redshift supernovae.
The Astrophysical Journal, 517(2):565, jun 1999.

[35] B. P. Schmidt et al. The high-z supernova search: Measuring cosmic decel-
eration and global curvature of the universe using type ia supernovae. The

Astrophysical Journal, 507(1):46ś63, nov 1998.

[36] A. Achúcarro et al. Inŕation: Theory and observations, 2022.

[37] L. Kofman et al. Towards the theory of reheating after inŕation. Physical

Review D, 56(6):3258ś3295, sep 1997.

[38] J. A. Vazquez Gonzalez et al. Inŕationary cosmology: from theory to observa-
tions. Revista Mexicana de Física E, 17(1 Jan-Jun):73ś91, Jan. 2020.

[39] S. Dodelson. Modern Cosmology. 2003.

[40] R. H. Wechsler and J. L. Tinker. The Connection Between Galaxies and Their
Dark Matter Halos. , 56:435ś487, September 2018.

[41] A. V. Kravtsov and S. Borgani. Formation of galaxy clusters. Annual Review

of Astronomy and Astrophysics, 50(1):353ś409, sep 2012.

[42] S. Walker et al. The physics of galaxy cluster outskirts. Space Science Reviews,
215(1), jan 2019.

[43] B. Ryden. Introduction to Cosmology. Cambridge University Press, 2 edition,
2016.

[44] G. Goldhaber and D. B. Cline. The acceleration of the expansion of the uni-
verse: A brief early history of the supernova cosmology project (SCP). In AIP

Conference Proceedings. AIP, 2009.

[45] J. A. Peacock. Cosmological Physics. Cambridge University Press, 1998.

[46] D. W. Hogg. Distance measures in cosmology, 2000.



BIBLIOGRAPHY 93

[47] M. Dainotti et al. The hubble constant tension: current status and future
perspectives through new cosmological probes, 2023.

[48] P. Schneider. Extragalactic Astronomy and Cosmology. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2006.

[49] H. Mo et al. Galaxy Formation and Evolution. Cambridge University Press,
2010.

[50] V. Sahni. Approximation methods for non-linear gravitational clustering.
Physics Reports, 262(1-2):1ś135, nov 1995.

[51] J. Yoo et al. Going beyond the kaiser redshift-space distortion formula: A
full general relativistic account of the effects and their detectability in galaxy
clustering. Phys. Rev. D, 86:063514, Sep 2012.

[52] H. E. S. Velten et al. Aspects of the cosmological łcoincidence problemž. The

European Physical Journal C, 74(11), nov 2014.

[53] K. Yamamoto et al. The cosmological light-cone effect on the power spectrum of
galaxies and quasars in wide-őeld redshift surveys. The Astrophysical Journal,
527(2):488, dec 1999.

[54] Abdurro’uf et al. The seventeenth data release of the sloan digital sky surveys:
Complete release of manga, mastar, and apogee-2 data. The Astrophysical

Journal Supplement Series, 259(2):35, mar 2022.

[55] A. S. Szalay et al. Redshift-space distortions of the correlation function in
wide-angle galaxy surveys. The Astrophysical Journal, 498(1):L1, apr 1998.

[56] S. Zaroubi and Y. Hoffman. Clustering in Redshift Space: Linear Theory. ,
462:25, May 1996.

[57] R. Scoccimarro. Fast estimators for redshift-space clustering. Physical Review

D, 92(8), oct 2015.

[58] N. Bartolo et al. Non-gaussianity from inŕation: theory and observations.
Physics Reports, 402(3-4):103ś266, nov 2004.

[59] and Y. Akrami et al. iplanck/i2018 results. Astronomy &amp Astrophysics,
641:A7, sep 2020.

[60] J. A. Peacock and A. F. Heavens. The statistics of maxima in primordial
density perturbations. , 217:805ś820, December 1985.

[61] N. Kaiser. On the spatial correlations of Abell clusters. , 284:L9śL12, Septem-
ber 1984.

[62] H. D. Politzer and M. B. Wise. Relations between spatial correlations of rich
clusters of galaxies. , 285:L1śL3, October 1984.



BIBLIOGRAPHY 94

[63] B. Bahr-Kalus et al. The kaiser-rocket effect: three decades and counting.
Journal of Cosmology and Astroparticle Physics, 2021(11):027, nov 2021.

[64] D. Bertacca. Generalization of the kaiser rocket effect in general relativity in
the wide-angle galaxy 2-point correlation function. International Journal of

Modern Physics D, 29(12):2050085, sep 2020.

[65] D. Bertacca. Observed galaxy number counts on the light cone up to second
order: III. magniőcation bias. Classical and Quantum Gravity, 32(19):195011,
sep 2015.

[66] O. Hahn and T. Abel. Multi-scale initial conditions for cosmological simula-
tions. Monthly Notices of the Royal Astronomical Society, 415(3):2101ś2121,
jul 2011.

[67] J. Huchra et al. A survey of galaxy redshifts. IV - The data. , 52:89ś119, June
1983.

[68] J. M. Bardeen. Gauge-invariant cosmological perturbations. Phys. Rev. D,
22:1882ś1905, Oct 1980.

[69] R. K. Sachs and A. M. Wolfe. Perturbations of a Cosmological Model and
Angular Variations of the Microwave Background. , 147:73, January 1967.

[70] I. I. Shapiro. Fourth test of general relativity. Phys. Rev. Lett., 13:789ś791,
Dec 1964.

[71] M. Bartelmann. Gravitational lensing. Classical and Quantum Gravity,
27(23):233001, nov 2010.

[72] L. Hui et al. Anisotropic magniőcation distortion of the 3d galaxy correlation.
II. fourier and redshift space. Physical Review D, 77(6), mar 2008.

[73] M.-A. Breton et al. Impact of lensing magniőcation on the analysis of galaxy
clustering in redshift space. , 661:A154, May 2022.

[74] R. Maartens et al. The kinematic dipole in galaxy redshift surveys. Journal of

Cosmology and Astroparticle Physics, 2018(01):013, jan 2018.

[75] J. Adamek et al. General relativistic<mml:math
xmlns:mml="http://www.w3.org/1998/math/mathml"
display="inline"><mml:mi>n</mml:mi></mml:math>-body simulations
in the weak őeld limit. Physical Review D, 88(10), November 2013.

[76] E. Bentivegna and M. Bruni. Effects of nonlinear inhomogeneity on the cosmic
expansion with numerical relativity. Physical Review Letters, 116(25), June
2016.

[77] R. W. Hockney and J. W. Eastwood. Computer simulation using particles.
1988.



BIBLIOGRAPHY 95

[78] M. Heideman et al. Gauss and the history of the fast fourier transform. IEEE

ASSP Magazine, 1(4):14ś21, 1984.

[79] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216ś231, 2005. Special issue on łProgram Gen-
eration, Optimization, and Platform Adaptationž.

[80] J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray Tracing.
In EG 1987-Technical Papers. Eurographics Association, 1987.

[81] L. Pozzetti et al. Modelling the number density of hi/iemitters for future
spectroscopic near-IR space missions. Astronomy &amp Astrophysics, 590:A3,
apr 2016.

[82] L. Wenzl et al. Magniőcation bias estimators for realistic surveys: an applica-
tion to the boss survey, 2023.

[83] P. S. Behroozi et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO
FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES. The

Astrophysical Journal, 762(2):109, dec 2012.

[84] S. R. Knollmann and A. Knebe. AHF: AMIGA's HALO FINDER. The As-

trophysical Journal Supplement Series, 182(2):608ś624, may 2009.

[85] K. Riebe et al. The MultiDark Database: Release of the Bolshoi and MultiDark
cosmological simulations. Astronomische Nachrichten, 334(7):691ś708, August
2013.

[86] F. Prada et al. Halo concentrations in the standard Λ cold dark matter cos-
mology. , 423(4):3018ś3030, July 2012.

[87] Y. P. Jing. Correcting for the alias effect when measuring the power spectrum
using a fast fourier transform. The Astrophysical Journal, 620(2):559ś563, feb
2005.

[88] D. Jeong. Cosmology with high (z1) redshift galaxy surveys. phd, University
of Texas at Austin, djeong@astro.as.utexas.edu, 2010.

[89] H. A. Feldman et al. Power-Spectrum Analysis of Three-dimensional Redshift
Surveys. , 426:23, May 1994.

[90] A. J. S. Hamilton. Power spectrum estimation i. basics, 2005.

[91] J. A. Peacock and D. Nicholson. The large-scale clustering of radio galaxies.
Monthly Notices of the Royal Astronomical Society, 253(2):307ś319, 11 1991.

[92] M. Tegmark et al. Measuring the galaxy power spectrum with future redshift
surveys. The Astrophysical Journal, 499(2):555, jun 1998.

[93] and P. A. R. Ade et al. iplanck/i2013 results. XVI. cosmological parameters.
Astronomy &amp Astrophysics, 571:A16, oct 2014.



BIBLIOGRAPHY 96

[94] A. Lewis. Efficient sampling of fast and slow cosmological parameters. ,
87:103529, 2013.

[95] A. Vale and J. P. Ostriker. Linking halo mass to galaxy luminosity. Monthly

Notices of the Royal Astronomical Society, 353(1):189ś200, 09 2004.

[96] M. Shirasaki et al. Virial halo mass function in the planck cosmology. The

Astrophysical Journal, 922(1):89, nov 2021.

[97] F. Leclercq et al. One-point remapping of lagrangian perturbation theory in the
mildly non-linear regime of cosmic structure formation. Journal of Cosmology

and Astroparticle Physics, 2013(11):048ś048, nov 2013.

[98] P. Schechter. An analytic expression for the luminosity function for galaxies. ,
203:297ś306, January 1976.

[99] D. Pryer et al. The galaxy power spectrum on the lightcone: deep, wide-angle
redshift surveys and the turnover scale. Journal of Cosmology and Astroparticle

Physics, 2022(08):019, August 2022.

[100] F. Villaescusa-Navarro et al. The quijote simulations. The Astrophysical Jour-

nal Supplement Series, 250(1):2, aug 2020.


	Introduction
	List of Figures
	Theory
	Homogeneous and isotropic Universe
	Distances in cosmology
	Energy content of the Universe

	The formation of large-scales structures
	Linear perturbation theory
	Peculiar velocity field

	Spatial statistics of the density field
	Discrete fields
	Correlation function
	Power spectrum
	Gaussian random fields
	Linear bias

	Projection effects on the galaxy distribution
	Redshift space distortions
	Observed density field
	Two-point statistics
	Linear redshift distortion operator
	Plane-parallel limit
	Velocity of the observer
	Doppler effect
	Relativistic projection effects
	Metric perturbations
	Density perturbation
	Magnification
	Population biases
	Observer effects


	Methods
	LIGER method
	Simulation Gauge
	Implementation
	Field approach

	Liger direct approach
	Trajectory definition
	Magnification of sources

	Other updates
	Potential optimization
	Non-fullsky lightcones

	Power spectrum estimation
	FKP estimator


	Results
	Code update
	HugeMDPL simulation
	Potential interpolation
	Mock catalogue
	Bias relation test

	MUSIC runs
	Survey functions estimation
	Monopole comparison
	Deep bin
	Closer bin

	Observer effect

	Conclusions and prospectives
	Bibliography

