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Abstract

Gait recognition is a critical area of research in biometric identification, which has traditionally
required complex instrumentation and systems for detection and analysis. However, wearable
devices, such as smart glasses for gait recognition, have the advantages of being less complex and
more user-friendly than traditional vision-based systems.

In this thesis an approach for gait recognition is presented using a set of smart glasses for gait
data acquisition and deep learning as universal feature extractors. Our study aims to identify
individuals based on their walking patterns using smart glasses’ accelerometer, gyroscope, and
magnetometer data.

The findings suggest that smart glasses with embedded sensors can acquire the required data
for training and testing machine learning algorithms, making detecting and recognizing gait in
different scenarios possible.
Essentially, the experimental findings also suggest that our approach leads to classification ac-

curacy formulti-class (8 individuals classification)with an average accuracy of 93% andmale/fe-
male classification with an average accuracy of 97%.

Furthermore, the study addresses the challenge of maintaining the model’s performance on
previously recognized and classified gaits after learning new ones without being retrained on
their data. This challenge was addressed by adopting rehearsal method in continual learning to
our model.

vii



viii



Sommario

Il riconoscimento dell’andatura è un’area critica della ricerca nell’identificazione biometrica,
cheha tradizionalmente richiesto strumentazione e sistemi complessi per il rilevamento e l’analisi.
Tuttavia, i dispositivi indossabili, comegli occhiali intelligenti per il riconoscimentodell’andatura,
dimostrano i vantaggi di essere meno complessi e più intuitivi rispetto ai tradizionali sistemi
basati sulla visione.

In questo documento, presentiamo il nostro approccio al riconoscimento dell’andatura, che
prevede l’utilizzodi occhiali intelligenti per l’acquisizionedei dati sull’andatura e il deep learning
come estrattori di caratteristiche universali. Il nostro studio mira a identificare gli individui in
base ai loro schemi di deambulazione utilizzando i dati dell’accelerometro, del giroscopio e del
magnetometro degli occhiali intelligenti.

I risultati suggeriscono che gli occhiali intelligenti con sensori incorporati possono acquisire
i dati richiesti per l’addestramento e il test degli algoritmi di apprendimento automatico, ren-
dendo possibile il rilevamento e il riconoscimento dell’andatura in diversi scenari.
In sostanza, i risultati sperimentali suggerisconoanche che il nostro approccioporta all’accuratezza

della classificazione permulti-classe (classificazione di 8 individui) conun’accuratezzamedia del
93% e classificazione maschio/femmina con un’accuratezza media del 91%.

Inoltre, lo studio affronta la sfida di mantenere le prestazioni del modello su andature prece-
dentemente riconosciute e classificate dopo averne apprese di nuove senza essere riqualificato
sui loro dati. Questa sfida è stata affrontata adottando il metodo di prova nell’apprendimento
continuo del nostro modello.
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1
Introduction

Smart wearable technologies, also known as smart wearable devices, such as fit-bands, smart-
watches and smart glasses have been rapidly evolving in recent years fostering improvements in
sensors and wireless technologies.

Figure 1.1: Smart Wearable Users(millions), 2019‐2026
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Figure 1.1 shows the number and percentages of the US population alone, who are smart
wearable users.It shows that the numbers of smart wearable users increased by 21.9million that
is, from 63.2 million users in 2019 to 85.1 million users in 2022. However, it also predicted to
increase to over 100 million users by the end of 2026[4]. The graph shows the exact data for
2019 to 2022, whiles it provides an estimation from 2023 to 2026. This depicts that users have
begun to adopt smart wearable devices in their daily life to get useful information about their
activities (e.g. heartbeat, speed, etc...)

As a result, smart wearable devices can be considered essential clothing accessories such as
necklaces, bracelets, watches and glasses. Additionally, they can be worn on various parts of
the body, complementing as clothing accessories without straining or making its users uncom-
fortable and usually replacing the existing clothing accessories. For example, smartwatches, fit
bands and smart glasses are often used instead of standard wristwatches, fit bands and sun-
glasses.

The most essential attribute of smart wearable devices is that they incorporate sensor tech-
nologies that gather physiological and behavioural biometric data and possess wireless tech-
nologies like Bluetooth and WiFi technologies. These wireless technologies enable connectiv-
ity with smartphones, and laptops via Bluetooth or to the internet by using WiFi. As a result,
smart wearable devices no longer require large amounts of data storage space, allowing for con-
tinuous, seamless sensor application processing and software updates.

Moreover, smart wearable devices often contain Inertial Measurement Units (IMUs) that
can be used formotion tracking. IMUs built into smart wearable devices include an accelerom-
eter, gyroscope, and magnetometer. They provide various types of sensing information which
can be used in various applications such as indoor navigation, and gesture or gait recognition.

Smartwatches are becoming more and more popular in the world of wearable technology,
and this trend is likely to continue as the technology gets better. Recent studies demonstrate
that both smartphones[5, 6] and smartwatches[7] can implement gait recognition algorithms
thanks to the information provided by their sensors.

However, smart glasses are a relatively new device and practical algorithms for their usage
still need to be developed appropriately. For this reason, we explore the gait recognition prob-
lem with these devices in this thesis. Unfortunately, the algorithms used for smartwatches and

2



Android phones can only be directly applied if they are positioned on entirely different body
parts, making this problem non-trivial. To tackle this issue, we randomly select a set of healthy
people and try to assess their identity based on the gait information, which is extrapolated from
the IMUs signals.

Additionally, in order to make the algorithmmore adaptable, we also validate it in a contin-
ual learning scenario. This allows us to increase the difficulty of the task by introducing new
users into the system without having to retrain the system.

1.1 HumanGait: The Fundamentals

Gait is simply defined as the way, pattern or style a person walks. It can also be defined as
the coordinated, cyclic combination of the movements resulting in human locomotion [8].
Moreover, the gait of a person is a periodic activity with each gait cycle covering two strides
(the left foot forward and right foot forward strides) [9].

Accordingly, Human gait is the periodic motion of body segments[10] or the pattern of
locomotion along with posture [11].
Gait analysis, is, therefore, the study and detailed examination of human gait. Hence in [5],

it is defined as the study of human locomotion. On the other hand, it is described as the study
of human motion used in assessing and treating different conditions that impair the person’s
ability to walk properly [12].

A Gait cycle is made up of two(2) human steps. To facilitate an in-depth analysis of the
human gait cycle, it is usually further divided into gait phases. These describe the complete
walking process and allow for a better understanding of the processes of periodic walking.

There are primarily two(2) main phases of a gait cycle namely the swing and stance phases.
The former corresponds to the part of the cycle where the foot is off the ground and accounts
for roughly 40 per cent of the step, while the latter refers to the part of the periodwhen the foot
is in contact with the ground which covers the remaining time. The stance and swing phases
might be further subdivided into eight segments (five Stance and three Swing), separating the
gait cycle into eight sub-phases. The five sub-phases of the stance phase are Initial contact,
Loading response, Mid Stance, Terminal Stance and pre-Swing whereas the swing phase has
three sub-phases: Initial Swing, Mid Swing and Terminal Swing.
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Figure 1.2: Gait phases of a normal gait.

In Figure 1.2, we present the normal gait cycle portraying the swing and stance phases, segre-
gated into eight sub‐phases as depicted in [11]. The right foot is shaded black and considered
the reference foot for the cycle.

1. Initial contact: It is considered as the point at which the heel of the reference foot
touches the ground and it is the beginning of the loading response.

2. Loading response: It begins with the initial contact of the reference foot and continues
until the other foot is lifted for swing. The reference foot comes in full contact with the
floor and body weight is fully transferred onto the stance limb.

3. Mid-stance: It begins with the toe opposite the reference foot’s toe lifted off the ground
and ends when the body’s weight aligns on the reference foot.

4. Mid-stance: It begins with the toe opposite the reference foot’s toe lifted off the ground
and ends when the body’s weight aligns on the reference foot.

5. Terminal stance: this phase begins with the heel rise of the reference foot and remains
until the opposite foot hits the ground and the body’s weight shifts ahead of the refer-
ence foot.

6. Pre-swing: is the second double stance interval of the gait. It begins with the initial
contact of the opposite limb and ends with the toe-off. This positions the limbs for
swing.

7. Initial swing: it begins with lifting the foot from the floor and ends when the stance
foot is opposite the swinging foot.

8. Terminal swing: This is the phase when the tibia is perpendicular to the ground and
ends with the strike of the foot on the floor.

4



Themain challengewith the recognition and studies of the gait of a person is that it tradition-
ally involves the use of complex instrumentation, systems and methods for gait recognition or
detection. Some of these systems require several accessories to be attached to the people whose
gait is being detected and analyzed. As such thesemethods and processes have to be undertaken
in a confined space such as a laboratory. This is because these setups are very hard to deploy in
outside environments since they are often hard to carry around. This makes it difficult to ac-
quire gait data under different natural scenarios such as walking outdoors, indoors or walking
down and up the stairs. However, the advancement in technology in recent years has made it
possible to develop anduse less complex gait recognition systems such as smartwearable devices,
to easily detect and recognize the gait of a person.

Smart wearable devices such as smartwatches and smart glasses can be identified as the least
complex andmost user-friendly sensor-based systems for gait recognition. They aremuchmore
flexible than traditional vision-based systems. For this reason, the development and usage of
wearable device-based gait recognition have simplified the process of data acquisition for this.

As we discussed earlier in this chapter, wearable devices are often designed with embedded
inertial sensors (accelerometer, gyroscope andmagnetometer). This allows them to detect and
acquire amounts of data, required to train and test machine learning algorithms, which can be
flexibly applied to different scenarios.
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1.2 Motivations and Contributions

There is little research, on the usage of smart glasses-based gait recognition for motion tracking
in humans, in spite of the numerous prior studies conducted on smart wearable devices-based
gait recognition. As a result of this gap, this thesis focuses on the possibility of analyzing raw
inertial signals extracted from a set of built-in inertial sensors of smart glasses, to extrapolate
the gait characteristics of a few people. Meaningful data is further extracted from the inertial
signals, to identify, distinguish and classify each person by their walking style as well as assessing
their biological gender.

Additionally, a vital goal of this study is to create a model, that can continue to performwell
on all previously recognised and classified gaits after learning new ones, without having to be
retrained on their data.

1.3 Structure of Thesis

In this section, wewill provide an overviewof the thesis outline. Chapter 2will focus on review-
ing the state-of-the-art (SotA) in gait recognition and continual learning. The smart glasses,
which are the focus of this study, will be presented in Chapter 3. Chapter 4 will discuss the
proposed methodology. In Chapter 5, we will examine the continual learning strategies ap-
plied to gait analysis. The experimental results obtainedwill be explained inChapter 6. Finally,
Chapter 7 will present the conclusions drawn from the study and potential opportunities for
further improvement.
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2
State-of-the-Arts

2.1 state-of-the-art on gait recognition

Numerous research projects, studies, and analyses have been conducted on gait recognition.
Some of these studies and investigations dating back to 1994, nearly two decades ago. In this
chapter, we will discuss themain state-of-the-art (SotA) approaches for gait recognition. How-
ever, firstly we provide a summary of some traditional techniques to lay some foundations use-
ful for understanding main works discussed later in the chapter.
Gait recognition is an effective human identification method that exploits an individual’s

walking style to recognize a person. In Sarkar’s 2009 Evaluation, ”gait recognition” is defined
as automated vision methods that use video of human gait to recognize or identify a person.

Gait recognition is a difficult problem that has been tackled in many different ways using
different types of data structures (e.g., silhouettes, 3D models, and wearable sensor signals)
processed with standard and learned techniques. However, the resolve to tackle this problem
has led to a significant increase in gait recognition research, resulting in several SotA approaches
in recent years. Eachof these approaches have their ownpeculiarities depending on the purpose
and goal that the technique wants to tackle.
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The two most common frameworks that try to address this problem are model based and
feature based methods. In the case of the former a 3Dmodel and an animation of the person’s
gait are obtained either thanks to a motion capture system or by analyzing the video or sensor
signals. The latter directly extract the silhouette or the movement of different body parts from
the video or the sensor data so it skips the 3Dmodel generation step.

Related works on these SoTA approaches are further discussed as follows:

2.1.1 silhouette-based gait Recognition

The majority of the early approaches to human gait detection are based on reference videos or
images and one of themost effective ways to gather useful information from this type of signals
is to extract and analyze the silhouette of the individual.

Figure 2.1: Examples of extracted, silhouette frames in different human walking sequences.

Silhouette-based gait recognition is a computer vision-based technique that involves extract-
ing the shape of a person’s body from a video sequence from which it is possible to identify
the individual’s walking pattern. Most algorithms implementing it involve three main steps i.e.
background subtraction, silhouette extraction and features calculation.
Background subtraction is the process of separating the foreground (the moving object)

from the background. This step is necessary for extracting a silhouette image of a person’s
walking motion.

Silhouette extraction entails separating the foreground object from the background using
segmentation techniques such as thresholding, edge detection, or model-based segmentation.
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The silhouette image is then shown as a binary image, with pixels in the foreground set to 1 and
pixels in the background set to 0.
Feature extraction entails representing a silhouette image as a set of features that capture

an individual’s walking pattern. Various methods, such as Fourier descriptors, wavelets, and
Gabor filters, can be used to extract the features.

The approach described in [1] is a gait recognition method that uses silhouette template
matching to identify individuals from their walking patterns. The method has been evaluated
on a moderately large set of subjects (122) under controlled lighting and camera conditions.

Figure 2.2: The bottom row ((f)‐(j)) shows sample silhouette frames with a variety of segmentation errors. The raw image
corresponding to each silhouette is shown on the top row ((a)‐(e)[1].

The authors developed a four-part algorithm that involves defining bounding boxes around
themovingperson, extracting the silhouettes, computing the gait period, andperforming spatial-
temporal correlation to compare the gait sequences.
The algorithm splits each video frame into two parts to extract the silhouettes. Mahalanobis

facing distance between each pixel and the background pixel is used to compute the area of the
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silhouette. Then expectation maximization (EM) algorithm estimates the posterior of each
pixel based on its Mahalanobis distance.

For gait period detection, the authors counted the number of foreground pixels in the sil-
houette in each frame over time to estimate gait periodicity. They computed themedian of the
distances betweenminima, skipping every other minimum to acquire two estimates of the gait
cycle. Finally, the gait period was estimated by the average of these two medians.
The authors also highlighted the challenges and limitations of their methods, such as varia-

tions in gait due to clothing, carrying objects, changes in surface and shoes, and variations in
walking speed.

In another silhouette-based gait recognition study [13], the authors made use of wavelet de-
scriptors (WD) as a feature extractionmethod. Featureswere derived by computing thewavelet
transform of a silhouette contour at multiple resolutions. This enabled the authors to obtain
features that are well-suited for representing digitized silhouettes. They also pointed out that
wavelet descriptors are a significantly better shape representation for silhouettes than a com-
plete Fourier descriptor set of the same dimensionality.

The authors applied this method to the Large Gait Database, compiled at the University of
South Florida (NIST/USF) and found that the wavelet descriptors obtained for each person
appeared to be unique, enabling reliable and successful gait recognition with recognition rates
above 90 percent with a the k-nearest neighbour classifier.

2.1.2 3D-based gait recognition

One of the popular approaches for gait recognition analysis is based on the 3Dmodelling of a
person’s gait. It is also a computer vision-based technique that involves reconstructing the 3D
model of a person’s walking motion. The technique involves several steps, including camera
calibration, 3D reconstruction, and feature extraction;
Camera calibration is the process of determining the intrinsic and extrinsic parameters of

a camera. The intrinsic parameters include the focal length, principal point, and distortion co-
efficients. The extrinsic parameters include the position and orientation of the camera relative
to the world coordinate system.
3D reconstruction involves using multiple calibrated cameras to reconstruct the 3Dmodel

of a person’s walking motion. The 3Dmodel can be reconstructed using different techniques,
including stereo vision, structured light, and time-of-flight cameras.
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Feature extraction involves representing the 3D model as a set of features that capture the
walking pattern of an individual. The features can be extracted using different techniques, in-
cluding Fourier descriptors, shape context, and shape distribution.

The study done in [14], describes a 3D tracking of humanmotion for gait analysis, utilizing
a two-camera OpenPose-based markerless system.

(a) Laboratory setup, schematic (left) and pictorial (right) view[14].

(b) Stick diagrams as returned by the marker‐based optical system (top, left) and OpenPose model (top, right); correspond‐
ing 3D reconstruction of the skeletal structures during walking (bottom)[14]
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It involved, two healthy volunteers who performed a walking test at a comfortable walking
speed within an instrumented gait analysis laboratory. The two participants were both male
adults of the same age, with similar physical features such as height and body mass. They also
wore minimal, close-fitting clothes.

In the experimental design, the authors considered three factors to attain the proper accu-
racy, namely the relative distance of the cameras, gait direction, and video resolution. It also
involved procedures such as calibration of the stereoscopic system; acquisition of video record-
ings simultaneously with the reference marker-based system; video processing within Open-
Pose to extract the subject’s skeleton; videos synchronization; triangulation of the skeletons in
the two videos to obtain the 3D coordinates of the joints.

Finally, the authors in this study showed that themaximization of camera distance and video
resolution allowed them to achieve the highest overall performances in tracking the kinemat-
ics and gait parameters of a single subject in a 3D space using two low-cost cameras and the
OpenPose engine.
Additionally, they observed that the accuracy of markerless motion tracking depends on

three factors that are the occlusions between body parts, the camera’s position/orientation and
video resolution. They consider the best combination of the considered factors being, a camera
distance of 1.8m, maximum resolution, and no occlusions due to straight walking. The lowest
error in 3D trajectory reconstruction was about 20mm, the lowest error in swing/stance time
was 0.03 s and 1.23 cm in step length.

In another study[2], the authors use a multi-camera system consisting of eight cameras and
necessary software tools to capture images. They assemble the captured images to develop a 3D
model with full motion of the human gait pattern. Additionally, a group of 23 markers was
connected to the different specified parts of the lower body to get the exact kinematics of six
joints (hips, knees and ankles) of the subject.

The authors then obtained the markers’ static position and dynamic movement and ini-
tialised a 3D model. They also used a force plate placed in the walking platform to procure
kinetics data formovement and locomotion. They then tracked the six joints of the lower limb.
A inverse kinematics and inverse dynamics library for human gait was developed and validated
with analytical geometrical results.
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Figure 2.4: block diagram depicting the steps taken to develop the library for the human gait in[2].

They observed using the open-source sotware OpenSim3.3, that all the analytically calcu-
lated values of the jointmoments closely resemble theopticalmarker vision-based system. Hence,
the study concluded that the optical marker-based multi-camera system efficiently and accu-
rately finds appropriate human gait patterns for biomechanics and biomedical studies.

2.1.3 deep learning-based gait recognition

Deep learning-based methods have become popular in gait recognition research, due to their
ability to learn complex features from raw data. These approaches can typically be broken
down into three main steps: data preprocessing, feature extraction, and classification. In data
preprocessing, the gait sequences are normalized and segmented to extract the individual steps.
In feature extraction, deep neural networks, such as convolutional neural networks (CNNs)
or recurrent neural networks (RNNs), are used to learn discriminative features from the gait
sequences. Finally, the learned features are used to classify the gait sequences into different
classes.

In the paper[15], the authors developed a specialized deep CNN architecture, four con-
volutional and subsampling layers. The model was then trained on the CASIA-B large gait
database.Each convolutional layer has 8 filters leading to feature maps with eight channels.
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The experimental results showed that the deep CNN model that was developed outper-
formed the other state-of-the-art gait recognition techniques in several cases. However, their
CNNmodel could not learn very well under the scenario where the size of the gallery sets were
very small and did not contain sufficient data.

In amore recent deep learning based-gait recognition, the authors[16] adopted an attention-
based Recurrent Neural Network (RNN) encoder-decoder and created a cycle-independent

(a)Multipath effect of Wi‐Fi signals in indoor environment.[16].

(b) Architecture of attention‐based RNN encoder‐decoder[16].

human gait recognition and walking direction estimation system, termed AGait, Using a Wifi
system as a radar. AGait consists of four essential modules: CSI(Channel State Information)
Collection, RawCSI Processing, Walking Profile Generation, and Gait and Direction Sensing.
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The wireless setup was made of two receivers and one transmitter placed in different positions,
which were used to get more information about how people walk.

The research sought to understand how human walking activity exerts impact onWi-Fi sig-
nals, and the multipath effect of wireless signals. Therefore, the attention scheme was used to
allow AGait to learn to adaptively align with different critical clips of the CSI data. The ap-
proach was implemented in order to try to solve two different problems: identifying human
gait appended with walking direction and estimating the speed of walking. This enabled the
authors to designmuchmore practical and interesting applications that could indicatewhether
an individual was approaching and going to access a service.

In AGait the CSI measurements from the two receivers are gathered together and refined
to form an integrated walking profile. Then, the RNN encoder reads the walking profile and
turns it into a hidden state sequence, which canbe thought of as a representationof the profile’s
primary features. Then, given a specific (gait or direction) sensing task, the decoder computes
a corresponding attention vector, which is a weighted sum of the hidden states with different
attentions, and uses the vector to predict the target.

They implemented AGait on commercial Wi-Fi devices and evaluated its performance by
conducting the walking experiment in three indoor scenarios, where 22 subjects were required
towalk on 12 different paths in 8 different directions. Their experimental results demonstrated
that AGait achieved average F1 scores of 97.32 to 89.77 percent for gait recognition from a
group of 4 to 10 subjects, and an average F1 score of 97.41 percent for direction estimation
among 8 directions.

2.1.4 wearable sensor-based gait recognition

In this section, we will discuss some of the recent studies in wearable sensor-based gait recog-
nition. Wearable sensor-based gait recognition has gained attention in recent years due to the
widespread use of wearable devices and their potential in healthcare, rehabilitation, and sports.
These methods typically involve four main steps: data acquisition, data preprocessing, feature
extraction, and classification. In data acquisition, wearable sensors, such as accelerometers,
gyroscopes, and magnetometers, are used to collect gait data from the subject. In data pre-
processing, the raw sensor data is processed to remove noise and artifacts and to segment the
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gait cycle. In feature extraction, statistical and time-frequency features are extracted from the
segmented gait data. Finally, the learned features are used to classify the gait patterns.

In this paper[17], the authors presents a gait-based authentication method that relies on ac-
celerometric information collected at the user’s wrist using a smartwatch. They decided not
to use other sensors commonly available in smartwatches, such as gyroscopes or magnetic sen-
sors, because their power consumption is significantly larger than the one of an accelerometer
(in some cases by an order of magnitude). The proposed method distinguished the genuine
user (i.e., the owner) from unauthorized users. The typical gait pattern of the genuine user
was learned during an initial period of use; subsequently, anomalies in gait were automatically
detected and used to infer if the current user was an impostor.

The approachuses genuine instances fromunauthorizedusers’ data basedon semi-supervised
anomaly detection. It considers a set of the genuine user’s instances available to form a training
set. Euclidean distance and Nearest-Neighbor (NN) analysis assign an anomaly score to each
gait instance. This anomaly score, in turn, is compared against a threshold to classify a gait
instance as normal (genuine user) or abnormal (unauthorized user). In particular, normaliza-
tion exploits the average and standard deviation of the NN distances among instances in the
training set, to produce the anomaly score (AS).

For example, if the average distance in the training set is 0.8 and the standard deviation is 0.2,
then a gait instance with NN distance equal to 1.2 will have AS = 2. Higher anomaly score val-
ues indicate that the instance is more distant from the user’s training data, thus, more likely to
belong to an unauthorized user. The threshold to distinguish normal and abnormal instances
(ASth) is selected by evaluating the trade-off between detecting anomalies and generating false
positives. An experimental evaluation of the method was carried out with the help of 15 vol-
unteers.Results show that the method can achieve an Equal Error Rate (EER) as low as 2.9

Also, they compared their study to a similar method executed on a pocket-worn device
(POCKETmhv). They realized that hands are subjected to a much more significant amount
of acceleration when compared to parts of the body that are near the center of mass. Thus,
a smartphone in a user’s pocket is generally exposed to significantly fewer movements than a
smartwatch. However, the problems introduced by spurious hand movements were signifi-
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cantly reduced by adopting autocorrelation-based filters in the walking detection technique.
In particular, they found that such filters reduce the EER by 7.8%.

The authors deliberately used information produced by a single sensor, the accelerometer.
The results further confirmed thatwhen the local reference frame is used, thewrist-worn device
achieves similar results to a pocket-worn device. The average result obtained by POCKETmhv
(97.3%) andWRISTxyz (97.4%) is almost identical.

In another study [3], the authors developed a shoe that analyzed the gait shape using a strain
sensor. Whenwalkingwearing the developed shoes, the signal of the three sensorsmounted on
the shoes appeared differently. The authors included a Bluetooth-based communication sys-
tem allowing gait to be automatically saved wirelessly based on the application. Users received
feedback on variouswalking information in real-time, such as gait status and posture distortion
through the recorded information.

The developedwearable device (shoe)measured thewrong gait using the pressure sensor and
a 3-axis acceleration sensor so that users could walk correctly. As a result, the correct order was
checked when the sole with the pressure sensor touched the ground, and the gait shape was
checked using the 3-axis acceleration sensor.

The authors distinguished a normal gait from an out-toeing or in-toeing gait by analyzing
the user’s gait status. The change value of the acceleration sensor was monitored through a
waveform. It was confirmed as an output value of 1 and 0 by converting the analog value of
the pressure sensor into a digital value. Users checked whether the soles of their feet correctly
touched the ground via the designated color of neopixel through programming. This feature
enabled the users to determinewhen they had taken the right step andwhen the pressure sensor
was pressed, thereby increasing the accuracy of gait correction.
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(a) Distribution of Load on the Floor. (b) Pressure sensor arrangement.

(c) System Connection
(d) Neo‐pixel Strip & operation of indicating out‐toeing,
normal stance, in‐toeing.

Figure 2.6: System design & Operation of IoT‐based sensor shoe [3].

The authors experimented by setting the normal gait at a 15 to 20-degree angle using the 3-
axis acceleration sensor. When a user’s gait angle was more significant than the standard angle,
it was deemed out-toeing gait and deemed as in-toeing gait when narrower than the standard
angle. The authors achieved a distinguishing recognition rate through the experiment with
in-toeing gait at 56.25% and out-toeing gait at 81.25%.
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2.2 state-of-the-art on continual learning

Continual learning, also known as lifelong learning or incremental learning, is a research area in
machine learning that focuses on developing models that can continually learn from a stream
of data, adapting to new tasks and changes in the environment over time without forgetting
previously learned knowledge.

Themain aim of continual learning is to buildmachine learningmodels that can learn incre-
mentally, updating their parameters as they receive new data while retaining knowledge from
previous tasks and minimizing the harmful effects of catastrophic forgetting i.e. models tend
to forget how to solve old tasks when trained on new ones. Hence, it enables models created to
continue to perform well on all previously seen tasks without being explicitly trained on them
again, even after learning new tasks.

In addition, current research has addressed continual learning with longer task sequences
and more examples, resulting in the proposal of methods for continual learning. Thus we will
now examine significantworks related to the proposedmethods. In general, thesemethods can
be categorized as follows[18]: 

1. Replay methods

2. Regularization-based methods

3. Parameter isolation methods

2.2.1 Replay methods

This approach eithermaintains samples in raw format or produces pseudo-samples using a gen-
erative model. To prevent forgetting, these past task samples are replayed while learning a new
task. These are either reused asmodel inputs for rehearsal or utilized to restrict the optimization
of the current task loss to prevent interference from the prior task.

Replay methods have limited scalability over the number of classes, necessitating extra com-
putation and storage of raw input samples. While restoring memory reduces memory use, it
diminishes exemplar sets’ ability to represent the original distribution. Also, keeping these un-
processed input samples may raise privacy concerns.
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In this study[19], the authors formalized the scenario of continual learning by defining train-
ing and evaluation protocols to assess the quality ofmodels in terms of their accuracy, as well as
their ability to transfer knowledge forward and backward between tasks. Their aim is to tackle
the problem of continual learning, where the model observes, once and one by one, examples
concerning a sequence of tasks. They also introduced a model for continual learning, called
Gradient Episodic Memory (GEM) that leverages episodic memory to avoid forgetting and fa-
vor positive backward transfer. Their experiments demonstrated the competitive performance
of GEM against the state-of-the-art. GEM however misses three key features.

Firstly, GEMdoes not leverage structured task descriptors, whichmay be exploited to obtain
positive forward transfer (zero-shot learning). Second, advanced memory management was
not investigated (such as building core sets of tasks). Third, each GEM iteration requires one
backward pass per task, increasing computation time.

In another work utilizing replay method, the authors[20] introduced iCaRL (incremental
classifier and representation learning), a practical strategy for simultaneously learning classifiers
and a feature representation in the class-incremental setting as a result of the shortcomings of
existing approaches. iCaRL’s three main components are:

1. a nearest-mean-of-exemplars classifier that is robust against changes in the data represen-
tation while needing to store only a small number of exemplars per class,

2. a herding-based step for prioritized exemplar selection, and

3. a representation learning step that uses the exemplars in combination with distillation
to avoid catastrophic forgetting.

Their experiments on CIFAR-100 and ImageNet ILSVRC2012 data showed that iCaRL is
able to learn incrementally over a long period of time whereas other methods fail quickly.

Themain reason for iCaRL’s strong classification results was its use of exemplar images. The
authors hypothesized that also other architectures will benefit from using a combination of
network parameters and exemplars, especially given the fact thatmany thousands of images can
be stored (in compressed form) with memory requirements comparable to the sizes of current
deep networks.
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2.2.2 Regularization-based methods

The line of work employing this method avoids keeping raw inputs, prioritizes privacy, and
reduces memory needs. Instead, an additional regularization term is added to the loss func-
tion, consolidating prior knowledge while learning new data. These methods can be further
classified as data-focused and prior-focused methods.

In this prior-focused study, the authors [21] proved that task-specific synaptic consolidation
provides a novel answer to the challenge of artificial intelligence’s ongoing learning. They cre-
ated a method similar to synaptic consolidation for artificial neural networks, known as elastic
weight consolidation (EWC). This approach slows down learning on specific weights based on
how significant they are to previously observed tasks. In stark contrast to earlier deep-learning
algorithms, their work demonstrated how EWC may be utilized in supervised learning and
reinforcement learning problems to teach several tasks sequentially without forgetting older
ones.

In addition, their research underlined that the consolidation of high-precision weights per-
mits continuous learning over extended periods. At each synapse, EWC requires the storage of
three values: the weight, its variance, and its mean. Surprisingly, synapses in the brain also hold
many pieces of information. They suggested that, for instance, the state of short-term plastic-
ity may contain information about the variance. The weight associated with the early phase of
plasticity would encode the present synaptic strength, whereas the weight associated with the
late phase or the consolidated phase could convey the average weight.

In another paper utilizing data-focused approach[22], the authors expounded on their pre-
vious work, Learning without Forgetting (LwF). Using only examples for the new task, they
optimized both to obtain high accuracy on the new task and to preserve the response on the
existing tasks. The main advantages of LwF are:
Classification performance: Learning without Forgetting outperforms feature extraction

and, more surprisingly, fine-tuning on the new task while doing better thanmodels fine-tuned
on the old task.
Computational efficiency: The training time for the proposed approach is faster than the

joint training approach. Moreover, the test time for a single sample across all tasks is consider-
ably faster when compared to using multiple fine-tuned networks for individual tasks.
Simplicity in deployment: Once a task is learned, the training data does not need to be

retained or reapplied to preserve performance in the adapting network.
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They further discussed in their research that: LwF operates on distinct tasks. Like many
multitask learning methods, it cannot properly deal with domains that are continually chang-
ing on a spectrum (e.g., old tasks being classified from a top-down view, and the new task being
classified from views of unknown angles); the tasks must be enumerated. In addition, LwF re-
quires each sample to be accompanied by information about which task it belongs to, and this
information is needed for both training and testing.
Secondly, in contrast to methods such as Never Ending Learning[23], LwF requires all new

task training data to be present before computing their old task responses. This can’t be applied
if the data comes in a stream or if the model needs to be trained incrementally.

Thirdly, the ability of LwF to incrementally learn new tasks is limited, as the performance of
old tasks gradually drops.

2.2.3 Parameter isolation methods

This category assigns distinct model parameters to each task to prevent forgetting. Since the
architecture has no size limits, one can create new branches for the new task while freezing
existing task parameters.

The authors of the research article[24] developed an approach that employs weight-based
pruning approaches to free up redundant parameters across all layers of a deep network after
it has been trained for a task, with minimal loss in accuracy. Consequently, the freed-up pa-
rameters are updated to learn a new task while the remaining parameters remain unchanged.
Utilizing the task-specific parameter masks created by pruning, their models retained the same
level of accuracy even after adding several tasks. They had very little storage expense per addi-
tional task.

They proved the effectiveness of their strategy on numerous tasks for which high-level fea-
ture transfer performs poorly, suggesting the necessity to change network parameters at all lay-
ers. It exceeds previouswork in robustness against catastrophic forgetting and the quantity and
complexity of the new task. It was effective for the comparatively ”roomy” VGG-16 architec-
ture and more compact, parameter-efficient networks such as ResNets and DenseNets.
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Subsequently, the authors of the research paper[25] introduced HAT, a task-based hard at-
tention mechanism that, by focusing on task embedding, can protect the information of pre-
vious tasks while learning new tasks. The hard attention mechanism is lightweight because it
adds a small fraction of weights to the base network. It was trained with the primary model,
with negligible overhead backpropagation and minibatch stochastic gradient descent (SGD).

They demonstrated the approach’s effectiveness in controlling catastrophic forgetting in the
image classification context by running a series of experiments withmultiple data sets and state-
of-the-art approaches. Thus they evaluated HAT in the context of image classification, using
a high-standard evaluation protocol by considering random sequences of 8 publicly-available
data sets. They demonstrated favorable results in 4 different experimental setups, cutting cur-
rent rates by 45 to 80%. They also showed robustness concerning hyperparameters and illus-
trated several monitoring capabilities.
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3
Smart Glasses

This chapter discusses our approach to gait analysis using smart glasses and the preprocessing
mechanisms used to obtain primary data. Chapter 5 will cover the experimental data acqui-
sition and results. While previous studies have used a multi-modal approach that combines
inertial data from sensors and image data from cameras, we only used inertial sensor data from
smart glasses for gait analysis.

3.1 Smart Glasses

To begin, we provide a detailed description of the smart glasses we used in our study. The
smart glasses have inertial and other embedded sensors andBluetooth capability for gait activity
detection and data acquisition. Unlike other devices, this glasses did not have built-in storage
for data acquisition. Therefore, we paired the smart glasses with a PC via Bluetooth to collect
and recorddata ondetected gait activity. Figure 2.1illustrates the smart glasses and their features
relevant to this study, which we will further discuss.
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Figure 3.1: Labeled component of the Smart Glasses.

The smart glasses used has specific operational features that were prevalent during the re-
search. These features include:

1. Battery - when fully charged, the battery lasts approximately one hour.

2. LED - The LED was color-coded and signaled other features’ activation.

3. Switch Button - The on/off switch button activates or deactivates the smart glasses.

4. Bluetooth - connect smart glasses to other smart devices, such as PCs, to collect data.
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FEATURE EVENT TRIGGER LED SIGNAL
Battery charging (not full) charger plugged RED, continuous

charging (full) charger plugged GREEN, continuous

full 100% level GREEN, continuous long blink
running low < 20% RED, continuous long blink for 3 secs

dead 0% RED, short blink
Switch Button turned ON long pressed RED, for few secs then turns GREEN

turned OFF long pressed RED, for few secs then OFF
Bluetooth connected device paired BLUE continuous long blink

disconnected device unpaired GREEN or RED, depending battery’s level

Table 3.1: Features functionality & LED Behavior.

Additionally, table 3.1, displays the LED behavior when these features are in operation:

The LED blinks red when the smart glasses are turned on or off. It then blinks green when
it has a full battery level after being turned on. When Bluetooth is connected to a smart device,
the LED blinks blue. During gait activity detection and data transfer, the LED blinks blue.

3.2 Data Gathering

This section describes the data-gathering process for gait analysis in this study. The smart
glasses used in this study is equipped with inertial and other embedded sensors, allowing au-
tomated gait data collection during walking activity sessions. Thus we introduce this part with
discussions on embedded sensors for gait detection and data acquisition.

3.2.1 Embedded Sensors

Embedded sensors are devices integrated into a system or object to detect, measure, and trans-
mit data. In the context of gait analysis, embedded sensors can detect and collect data on
the body’s movements during walking. These sensors usually include accelerometers, gyro-
scopes, and magnetometers, which can measure acceleration, angular velocity, and magnetic
field strength. Themeasurements from these sensors can provide information on the kinemat-
ics and kinetics of human motion for gait analysis.
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Figure 3.2: Roll, pitch, and yaw angles

Accelerometers present in inertial sensors for gait identificationmeasure the correct acceler-
ation, or g-force, which is the acceleration relative to freefall. Individuals and objects undergo
acceleration. The piezoelectric effect is the most common form of accelerometer and uses mi-
croscopic crystal structures that become stressed due to accelerative forces. These crystals create
a voltage from the stress, and the accelerometer interprets the voltage to determine velocity and
orientation.

At a particular moment, data consists of the acceleration values recorded for the x, y, and z
axes. Like themajority of sensors, accelerometers are susceptible to calibration issues. Linearity
is one of the primary features of an accelerometer, which means that its response is precisely
proportionate to the actual acceleration being measured. This trait may be utilized in various
ways, including data normalization, which is explored in further detail in the following part of
this chapter.

Gyroscopes monitor the triplet of rotation angles along three axes, making them another
class of inertial sensors. Accelerometers and gyroscopes are the most often utilized sensors for
gait detection due to their integration into a single micro electro-mechanical systems (MEMS)
component.
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Magnetometers are sometimes included with MEMS. This sensor monitors the magnetic
field strength. It is not utilized in gait identification since it can only detect the walk’s direction.
This sensor is often employed for geolocation instead.

Barometer is a type of pressure sensor that measures atmospheric pressure. In wearable
sensor-based gait recognition, a barometer sensor is used to measure changes in altitude as a
person walks or runs. By detecting changes in atmospheric pressure, the barometer provides
information about the vertical displacement of the body during movement.

The data from the barometer can be combined with data from other sensors, such as ac-
celerometers and gyroscopes, to build a more comprehensive picture of a person’s gait and is
useful for applications such as health monitoring, fitness tracking, and security systems.

For example, when a person takes a step, their body moves up and down as they transfer
their weight from one foot to another. This movement causes a change in atmospheric pres-
sure, which the barometer sensor can detect. By analyzing these pressure changes over time,
algorithms can be developed to recognize a person’s gait pattern and identify them based on
their unique walking style.

In addition to the sensors discussed above, several other types of sensors can be used in gait
analysis and recognition. These sensors can be integrated into wearable devices or implanted
in shoes or other body parts.

Force sensors like capacitive, resistive piezoelectric and piezoresistive sensors are other types
of sensors thatmeasure the ground reaction force under the foot and return a current or voltage
proportional to thepressuremeasured. They canbeused todeterminehowapersondistributes
their weight while walking or running, which can be an important indicator of the gait pattern.

Pressure sensors are another type of sensor that measures the force applied to the sensor
without considering its spatial components. They can be used to measure the pressure distri-
bution on foot during movement, which can be useful for detecting abnormal gait patterns or
identifying individuals based on their unique pressure patterns.

Goniometersmeasure joint angles for ankles, knees, hips, andmetatarsals. They can be used
to track the movement of joints during gait and can provide valuable information about gait
patterns.

29



Ultrasonic sensors analyze short steps, stride lengths, and the distance between the feet.
They can detect changes in gait patterns, such as those associated with certain injuries or con-
ditions.

Finally, electromyography (EMG)measures the electrical manifestation of muscle contrac-
tion. EMG signals can be obtained either non-invasively with surface electrodes or invasively
with wire/needle electrodes. EMG can measure different gait features, such as kinematic plots
of joint angular motion, and has recently been used for gait recognition.

Using embedded sensors in gait analysis offers several advantages over traditional methods,
such asmotion capture systems requiring a laboratory setting and specialized equipment. They
utilizedmeasurements innatural environments, allowing formore realistic data collection. They
are also lightweight, portable, and non-invasive, making them suitable for long-term monitor-
ing of gait patterns in real-world settings.

In this study, the smart glasses’ inertial and other embedded sensors automatically collect
gait data during walking activity sessions. Using these sensors allows for continuous data col-
lection without needing a laboratory setting or specialized equipment, making it easier and
more convenient for subjects to participate in the study. This study combines raw data from
the accelerometer, gyroscope, and barometer to recognize subjects’ gait patterns accurately.

3.2.2 RawDataset

The study includes data from eight healthy subjects, four males and four females aged between
25 and 29. The heights of male subjects ranged from 1.72 to 1.87 meters, and female subjects
ranged from 1.50 to 1.73meters. Unlike other gait recognition studies that collect data in a lab
or confined environment,we recorded the IMUdata of each subjectwearing smart glasseswhile
walking around the city center of Padova for a minimum of 30 minutes. This approach was
intentionally taken to acquire data that reflect the subjects’ daily normal walking patterns. The
IMU data from the smart glasses’ inertial sensor was transmitted in real-time to a Bluetooth-
paired PC, where the raw (unprocessed) data was stored in CSV file format at the end of each
walking session with each subject.

A sample of raw data acquired with the smart glasses from a subject is presented in Table 3.2.
Based on the data provided, we can see that the smart glasses sensors measured different aspects
of the wearer’s movements, orientation, and environment. Specifically, the measurements in-
clude:
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ACCx ACCy ACCz GYRx GYRy GYRz ROLL PITCH YAW PRESSURE
-141 -954 -3 23.9 -23.8 -62.0 4.5 15.5 144.0 101819
-155 -920 -36 21.2 -26.3 -70.4 3.7 14.1 143.6 101816
-165 -885 -79 18.0 -29.1 -77.3 3.2 12.9 143.2 101818

Table 3.2: Sample data of raw gait signal from a subject.

1. Acceleration in the X, Y, and Z axes (accx, accy, accz), where acceleration is the rate of
velocity change with respect to time.

2. Angular velocity around the X, Y, and Z axes (gyrx, gyry, gyrz), where angular velocity is
the rate of change of angular displacement with respect to time.

3. Rotation around the X, Y, and Z axes (roll, pitch, yaw) are measures of the orientation
of the sensor.

4. Atmospheric pressure (pressure), where atmospheric pressure is the force exerted by the
weight of the air in the Earth’s atmosphere.

Correct, preprocessing is necessary to clean and filter the raw data to remove noise and ar-
tifacts and prepare it for further analysis. It can include filtering, normalization, resampling,
segmentation, and feature extraction. Preprocessing helps to improve the accuracy and relia-
bility of the subsequent analysis and modeling tasks.

31



32



4
Methods

In this chapter, we discuss the preprocessing methods for processing the raw gait signals and
extracting their gait features. More also, in order to identify each subject based on the extracted
features, we trained a machine learning classifier to this effect.

4.1 Data Preprocessing

Data preprocessing is essential in any gait recognition system since it eliminates noise and nor-
malizes the data for precise feature extraction and analysis. This partwill present the data prepa-
ration techniques generally used as good practice for sensor-based gait detection, including
smart glasses.

Data filtering. The initial step in data preparation is to filter the raw data to eliminate noise.
The filtering method utilized will depend on the sensor type and noise characteristics. For
instance, a low-pass filter can eliminate the high-frequency components if the data is impacted
by high-frequency noise.

Segmentation. Segmentation is the process of breaking down gait data into distinct steps.
Each step requires the calculation of gait characteristics such as step length and stride time.
Many segmentation techniques exist, including peak detection and thresholding. This tech-
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nique may use the threshold-based method to specify an acceleration or gyroscope data thresh-
old. A step is detected when the acceleration or gyroscope data passes the threshold.

Feature extraction. Following segmentation, the gait characteristics are extracted from the
preprocessed data. These characteristics encompass both temporal and spatial domain charac-
teristics. The formal include step length, stride length, and rhythm, whereas the latter include
joint angles and foot contact locations.

Normalization. Normalization is utilized to eliminate the impacts of inter-participant vari-
ation in gait data. Individual changes inwalking stylemight impair the categorization accuracy,
making this step necessary. Min-max normalization and z-score normalization are two typical
normalizing techniques. Min-max normalization scales the data to a specific range, often [0,1],
whereas Z-score normalization scales the data to a distribution with zero mean and unit vari-
ance.

Feature selection. Feature selection is the process of choosing a subset of the most informa-
tive characteristics for classification. This step can increase classification accuracy by reducing
the dimension of the feature space. Various approaches can be used to select features, including
mutual information, correlation-based feature selection, and sequential forward/backward se-
lection. Practically, these operations are performed by exploiting the powerful API scikit-learn.

4.2 Processing Structure

The above-discussed preprocessing methods are the general process raw inertial signal under-
goes. However, the preprocessing performed for this study includes (1) filtering to remove un-
wanted motion artifacts, (2) Walking cycle extraction, and (3) Normalization of the walking
cycle (accelerometer and gyroscope data).

4.2.1 Filtering

As discussed in the previous chapter, we considered only the accelerometer and gyroscope sig-
nals to preprocess the gait signal. Most signal strength is centered at low frequencies, primarily
below 40Hz. The raw inertial signals were acquired at a 100 to 200Hz sampling rate, sufficient
for capturing most of the walking signal. We use a cubic Spline interpolation to represent the
input data with evenly spaced points (200 points/second) due to the non-uniform sampling
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of raw inertial signals. Hence, a low-pass Finite Impulse Response (FIR) filter with a cutoff
frequency of 40 Hz is applied for de-noising and minimizing motion artifacts that may appear
at undesired frequencies. Thus, the filter removes only noise while retaining the user’s move-
ment (discriminative) information. We represent the filtered and interpolated acceleration and
gyroscope time series along axis x, as ax(i) and, gx(i) respectively, where i = 1, 2, . . . is the
sample number. This notation also holds for axes y and z in further discussions. In Figure 4.1,
we shown a sample of the gait signal before and after de-noising during data preprocessing

(a) Raw gait signal with noise.

(b) Signal after denoising.

Figure 4.1: Raw gait before and after preprocessing.
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4.2.2 Walking cycle extraction

Here, we adopt a template-based and iterative algorithm that extracts walking cycles using only
the accelerometer’s magnitude signal. The computation for each sample’s acceleration magni-
tude is

amag(i) = (ax(i)2 + ay(i)2 + az(i)2)1/2 (4.1)

A reference point must be located in amag(i), therefore we begin by passing amag(i) through
a low-pass filter with a cutoff frequency of 3 Hz to determine a gait template, in accordance
to [26]. Consequently, we detect the initial minimum of this filtered signal, corresponding to
the heel strike [27], and we refer to the related index as i. Then, this minimum is refined by
examining the original signal„ amag(i) an interval centered on i covering one second of data,
and picking the minimum value of amag(i) in this interval. This determines a new index i for
which amag(i) is the local minimum. This minimum is shown by a red vertical (dashed-dotted)
line. As a second step, we select a one-second frame centered on i, depicted 4.2, symbolized by
two blue (dashed) vertical lines. Now, the samples of amag(i) falling between the two blue lines
create the first gait template (T), where |T| = Ns samples, whereNs is the number of samples
measured in one second.

The retrieved template is refined repeatedly andutilized concurrently to identify the subjects’
subsequent walking cycles. In [26], the template is kept unaltered until minima can no longer
be identified, at which point a new template is obtained. As this is required by the subsequent
feature extraction and classification algorithms, a normalization phase is necessary to represent
all cycles through the same number of points N.

4.2.3 Normalization

Each gait cycle varies depending on walking speed and stride length, resulting in variable-sized
acceleration and gyroscope vectors in the orientation-invariant coordinate system. However,
to perform feature extraction and classification, these vectors need to be of a fixed size, denoted
by N. We use Spline interpolation to represent all walking cycles as N = 200-sample vectors.
This value of N was chosen to avoid aliasing, assuming a maximum cycle period of 2 seconds
and a signal bandwidth of 40 Hz. Amplitude normalization ensures that the resulting vectors
have a mean of zero and a variance of one, improving training and classification performance.
This yields eight N-dimensional vectors for each walking cycle, which are then used in the sub-
sequent feature extraction and classification methods.
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Figure 4.2: Template extraction using the accelerometer magnitude amag(i).

Finally, the preprocessed data is fed into a machine-learning algorithm for training and clas-
sification. The classification’s accuracy depends on the quality of the preprocessed data and
the effectiveness of the feature extraction process.

4.3 Convolutional neural network

Convolutional neural networks (CNNs) are deep neural networks that are designed for feed-
forward processing. CNNs contain one or more convolutional layers, each of which has a
number of kernels. These kernels consist of weights that are convolved with the input data,
and the same set of weights is applied to all input data, with the convolution process being
shifted throughout the input span. The connectivity structure of CNNs is sparse, with shared
weights being used repeatedly and each kernel operating on a small amount of the input signal.
This significantly reduces computing complexity compared to fully linked feed-forward neural
networks.

4.3.1 Dataset

The data for this study was collected using smart glasses sensors worn by eight subjects. The
gait data acquired after preprocessing for training and testing are shown in Table 4.1
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MALE FEMALE
Subject A-Number of steps: 3709 Subject B-Number of steps: 1013
Subject C-Number of steps: 3605 Subject D-Number of steps: 4904
Subject E-Number of steps: 2135 Subject F-Number of steps: 4154
Subject G-Number of steps: 3732 Subject H-Number of steps: 3650

Table 4.1: Preprocessed Gait data from Subjects.

Though all subjects walked for 30 minutes, some had several noise in their collected IMU
signal data. This resulted from several breaks or pauses during the 30-minute walking period.
Hence, after cleaning the data during the preprocessing stage, Subject C acquired the least gait
cycle (steps), followed by Subject E.

Therefore, our dataset is composed of a large number of standard gait cycles. The dataset
comprises eight acquisitions divided into a training and validation set and a testing set, amount-
ing to about 26,900 cycles. Thedivisionof the samples between the training andvalidationdata
set and test data set is performed by selecting the acquisitions with a (75%/25%) split.

4.3.2 CNN architecture

CNNs have been demonstrated to be good image feature extractors. Here we discuss their
efficacy for motion data. The convolutional layers of CNN are responsible for dimensionality
reduction (or feature extraction), whereas the fully connected layer serves as a classifier. Each
walking cycle’s accelerometer and gyroscope data is handled using the techniques described in
the previous section. All vectors are normalized to N samples, the input matrix for a generic
walking cycle.

In our study, we deployed a multi-class CNN for training to classify and identify the eight
individuals based on their extracted gait features. We also separately trained the network to
classify the individuals into male and female.
Our CNN architecture consists of multiple one-dimensional (1D) convolutional layers. It

has explicitly six layers: four 1D convolutional layers, a Flatten layer, a fully connected (FC)
layer, and an instance variable LRelu which is the LeakyReLU activation function. We ran-
domly initialized four convolutional filters in every convolutional layer. The output of each
convolutional layer is passed through a dropout layer before being fed to the next layer.

38



This 1DCNNarchitecture is usually used for various types of 1-D signals, such as time series
(e.g., inertial signals), audio, and speech signals. It uses the 1-D convolutional layers, decreases
kernel size, and strides through the layers, which can help extract more complex features and
reduce the spatial dimensions of the data.
The implementation of this network is performed by exploiting the Pytorch, a machine

learning framework based on the Torch library, used for applications such as computer vision
and natural language processing and Python programming language.

Training

Some additional parameters must be established prior to the training phase. One of these
hyper-parameters is initializing every neuron’sweights andbiases. For this goal, weused twodis-
tinct approaches. We initialized the biases in each convolutional layer and the fully connected
layer with different values. In contrast, initial weights are generated by randomly selecting sam-
ples from a truncated normal distribution with zero-mean standard deviation.This decision is
made to preserve the variance of network activations, hence accelerating the convergence of the
weights to the optimum value that minimizes the loss function.

The Adam optimizer is the training procedure optimizer [28], which provides the best per-
formance. The batch size and the number of training epochs are the last parameters specified,
with batch size = 500 samples and epochs = 30, respectively.

Classification

After training, themodel is used to classify the test set. The trainedmodelwas used to classify
the gaits from the eight individuals. The gaits of these individuals were registered and labeled
during the training phase. Furthermore, we labeled the gait data as either 0 or 1 for binary
classification. The gaits of the individuals were classified as 0 for female gaits and 1 for male
gaits. The predicted labels are compared to the true labels to compute the confusion matrix
and other performancemetrics. The accuracy of the classification prediction performed by the
model is investigated for a complete analysis. The results are discussed in Chapter 6.
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5
Continual Learning on Gait Recognition

In this chapter, we will explore the use of rehearsal strategies for incremental task learning in
gait analysis, using gait data extracted from smart glasses’ inertial sensors. Continual learning
techniques such rehearsal method can be applied to gait analysis to develop models that can
learn incrementally and adapt to changes in the environment over time. It enables the learning
model to adapt to new data and tasks without forgetting the previously learned knowledge.

5.1 RehearsalMethod

The rehearsal method is a continual learning technique that mitigates the catastrophic forget-
ting problem, which occurs when a learning model is trained on new data and forgets the pre-
viously learned knowledge. The rehearsal method involves storing a small subset of previously
learned data and retraining the model on this data alongside new data to help retain the past
knowledge as seen in 5.1.
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Figure 5.1: The Rehearsal Method: Continual learning Process

5.1.1 Rehearsal Process

The essential part of implementing rehearsal method is the memory buffer that stores a small
subset of the previously learned data. When new data is collected, a portion of it replaces the
oldest data in the buffer, ensuring that the buffer always contains a representative sample of the
most recent data. The buffer’s size is a crucial factor, as it should be large enough to contain a
diverse set of samples, but not too large to cause storage and computational overheads.

There are several strategies for managing the rehearsal buffer, such as:

1. Random sampling. Selecting random samples from the new data to replace the oldest
samples in the buffer.

2. Importance sampling. Selecting samples based on their importance, such as the predic-
tion error, ensuring that the most informative samples are retained in the buffer.

3. Curriculum sampling. Organizing the data in a curriculum, where the model is initially
trained on easier samples and gradually exposed to more challenging samples

In our study, we used importance sampling, in that we selected samples from training data
and labels of these data after training each task training. The first task contained data samples
of 3 subjects and each of these subject data had different labels(0,1,2). The first task data is used
to the train the learning model, which in our case is 1D CNNmodel.
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When design the memory buffer to select a percentage of trained data and it labels and keep
in memory. To enable easy and effective computational process we saved the few samples.
This memory is then loaded and then added the new task containing new dataset with new

labels. Thus aside the old labels this new task data has labels(0,1,2,3,4,5). Before training of the
task data the memory data of the previous task is then added to current task data this enables
model to learning and classify the new data as learning remember the labels or features of the
old data for better classification.
The same process done for the final task that data which contained to new classes, hence the

final task contained data with label (0,1,2,3,4,5,6,7).

5.1.2 Evaluation

In our study, we utilized memory buffer library ,continnum by [29] in implementing the re-
hearsal process discussed in this chapter. Evaluation is essential to measure the model’s perfor-
mance after its training process. Therefore, we evaluated the performance as new gait data is
added by adjusting the buffer size between 10 to 20% during the training process to test the
model’s recognition accuracy.

The result of rehearsal method employed in our study is discussed in the next chapter 6.
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6
Results

In this chapter, the gait recognition results, both in the standard and continual setups, will be
presented. These include the analysis of the algorithms, evaluation of results, and the visualiza-
tion of the networks’ outputs.

6.1 Gait Recognition

The preprocessed gait data was then used for training and testing the CNN model for recog-
nition and classification. The gait recognition and classification results using the CNNmodel
were evaluated using the accuracy and confusion matrix.

To evaluate the classification prediction performance of the deep learning algorithm, we
trained and tested the CNNmodel in two different classification modes:

1. Person Identification: Training, test, and validation sets are composed of individual la-
beling of each subject.Thus we assigned different labels (0 - 7) to each of the eight sub-
jects. In other words, data from all subjects are represented in amulti-classification train-
ing and test phase.

2. Sex Identification: Training, test, and validation sets are composed of either 0 or 1 labels
assigned to each subject, in a binary classification. Male subjects were assigned 0 as their
label and female subjects were assigned 1.
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Figure 6.1: Training and Validation Accuracy Person Identification

The results of the classification prediction performed by themodel are presented in the next
paragraphs. Due to dropout techniques in the training phase and the lownumber of validation
samples, we see in Person Identification (Figure 6.1) that the validation accuracy is higher than
the training accuracy. This behavior can also be seen in Sex Identification (Figure 6.2).
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Figure 6.2: Training and Validation Accuracy for Sex Identification

MALE FEMALE
Subject A (Label 0): 0.98 Subject B (Label 2): 0.88
Subject C (Label 1): 0.98 Subject D (Label 3): 0.93
Subject E (Label 4): 0.82 Subject F (Label 5): 0.95
Subject G (Label 6): 0.97 Subject B (Label 7): 0.95

Table 6.1: Tabular Representation of Person Identification.

The model achieved an overall average accuracy of 93% in classifying the gait data of the
8 subjects (class mode A). The confusion matrix showed that the model performed well in
classifying the gait data for each subject, with only a few misclassifications. This is illustrated
in Figure 6.3 and better outlined, showing the individual classification accuracies in Table 6.1.
More also, the model achieved an overall average accuracy of 91% in classifying the gait data of
the subjects as male and female (class mode B). This is also illustrated in Figure 6.4 and better
outlined, showing the individual classification accuracies in Table 6.2.

MALE(0) FEMALE(1)
0.97 0.97

Table 6.2: Tabular Representation of Sex Identification.
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Figure 6.3: Classification Accuracies for Person Identification

Figure 6.4: Classification Accuracies for Sex Identification
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6.2 Continual Learning

To evaluate the performance of the CNNmodel in a continual learning setting, the study used
the rehearsal strategy in an incremental task method. The CNN model was first trained on
the gait data from the first 3 subjects, then incrementally trained on the data from the next 3
subjects, and finally, the remaining 2 subjects. Themodel was trained on each incremental task
for 30 epochs.

The results showed that the CNN model could learn and adapt to the new gait data from
the remaining sets of 3 subjects and the last 2 subjects using rehearsal method precise memory
buffer process. The model’s accuracy increased and also decreased as it was trained on each
incremental task.
The accuracy decreased in the senario where memory data did not contain samples or even

sample of particular subject hence the model suffered forgetting.
However accuracy increased in the scenario where memory data samples contain previous

data of the subject. The confusion matrix showed that the model could correctly classify the
gait data for each subject where memory had enough previous data of the subject, even after
being trained on new data. This seen in figures 6.5, 6.6 and 6.7 below.
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Figure 6.5: Accuracies for first task

Figure 6.6: Accuracies for incremental second task
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Figure 6.7: Accuracies for incremental third task
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7
Conclusion

In this study, we presented an analysis of gait recognition using smart glasses sensor data. We
trained a CNN model on gait data collected from eight subjects and evaluated the model’s
performance using two different classificationmodes: multi-class and binary classification. We
also investigated the use of continual learning in an incremental task method to improve the
model’s performance.

Our results showed that the CNN model achieved an overall average accuracy of 93% in
classifying the gait data of the eight subjects in multi-class classification mode and 97% in bi-
nary classification mode. The confusion matrix indicated that the model performed well in
classifying the gait data for each subject, with only a few misclassifications.
Furthermore, after adapting the model to learn new data in a continual learning setting, the

confusionmatrices showed that the continual setting hadworse performance than the standard
setting with an overall accuracy of 89.88%.
Our study demonstrates the effectiveness of using sensor data from smart glasses for gait

recognition and classification. The results also highlight the challenge of correctly applying
the rehearsal method to improve the adaptation of CNNmodels for continual learning in gait
analysis.

Our study provides a foundation for future gait recognition analysis using smart glasses sen-
sor data. Therefore, we recommend subsequent research on using other deep learning archi-
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tectures, such as RNN and LSTM, to improve gait recognition and classification performance.
We also suggest using transfer learning techniques[30] to improve the model’s accuracy, partic-
ularly when working with limited data. Other continual learning methods should be utilized
in gait recognition studies, and their performance should be compared with the method used
in our study.

Future work could investigate the potential of using smart glasses-based gait recognition as
a biometric authentication system, particularly for people withmobility impairments, to mon-
itor their progress. This approach could also be useful for investigating fall detection in elderly
people. Although, the magnetometer is usually not leveraged in wearable sensor-based gait
analysis, further research could investigate using the magnetometer’s geolocalization capabili-
ties in tracking and improving gait patterns in patients with Parkinson’s or Alzheimer’s since
they may suffer from dementia and memory loss.

In conclusion, our study demonstrates the effectiveness of using smart glasses sensor data
and theCNNmodel for gait recognition. Additionally, the study shows that continual learning
using rehearsal strategies in the incremental task method could be a viable approach. However
further research is needed to better understand the implementation of the rehearsal method
for improving the model’s performance in a dynamic setting.
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