
UNIVERSITY OF PADUA

MASTER THESIS IN CYBERSECURITY

Social honeypots on Instagram:
A study on technologies and

methodologies to automate them

Author:
Sara Bardi
Student ID 2015137

Supervisor:
Prof. Mauro Conti

Co-supervisors:
Luca Pajola

Pier Paolo Tricomi

SPRITZ - Security and Privacy Research Group
Department of Mathematics “Tullio Levi-Civita”

September 12, 2022

iii

“In the middle of every difficulty lies opportunity.”

Albert Einstein

v

Abstract

Online Social Networks (OSNs) have gained increasing popularity in recent years
leading to very fast growth in terms of registered users. While OSNs are widely
used for legitimate content sharing, their rapid growth has also led to the emer-
gence of illegal activities (e.g. spamming, profile cloning, profile hijacking) that take
advantage of their popularity. One tool used to detect these malicious activities is
the social honeypot. In principle, social honeypots consist in honeypot profiles, for
instance Facebook pages or Twitter accounts, which are able to attract users for fur-
ther analysis. However, we are convinced that social honeypots can be seen not only
as a cybersecurity countermeasure, but also as a flexible system that can be adopted
for many different purposes. For instance, for customers profiling and products ad-
vertising, or for understanding social trends among people.

This thesis aims to make a first attempt toward better understanding of the
methodologies and technologies to build automated social honeypots on Instagram.
This approach has never been exploited before, in fact there is no previous work
that proposed social honeypots on this social network and, furthermore, all the so-
cial honeypots presented in the literature are not automated. Hence, our experiment
consists in 21 social honeypots, deployed on Instagram, whose management is com-
pletely automatic. To this end, we have implemented two post generation strategies:
one involves simpler methods such as using stock images, the second is based on
more complex processes by using the latest Machine Learning technologies. Each
honeypot is equipped with an engagement plan that identify how it generates en-
gagement with other users.

Our results show that automatic social honeypots on Instagram are possible and
that they can be customized according to our needs. We have demonstrated that the
post generation strategy based on Machine Learning is not the best choice yet and
that a simple interaction with other users, by just liking or commenting their posts,
is the option to be preferred. Thanks to these results, we are convinced that the work
presented in this thesis can pave the way to further researches and solutions.

vii

Acknowledgements
I would like to express my deepest gratitude to my professor and supervisor who
gave me the opportunity to work on this project. His feedback and his advice
have been extremely helpful in developing this thesis. Special thanks to my co-
supervisors who really supported me from the beginning, I think we did a great job
together.

I would like to dedicate this thesis to my mom who has always been by my side,
believing in me and in my abilities. Thank you mom, for being the main point of
reference in my life. I would like also to extend my sincere thanks to Riccardo, for
teaching me to be strong in this world, and to Licia, for always telling me "you can
do it" when I needed it most. I also thank Gabriele, with the hope of being able to
have more exchanges of views in the near future.

Last but not least, I would like to mention the person who has always been my
moral support, Cri. Thank you for the patience shown over these long years, for
understanding me without needing to say a single word, for being the best part
of me. Without you, this arduous journey would have been even more difficult to
travel.

ix

Contents

Acknowledgements vii

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 3

2 Background 5
2.1 Honeypot . 5
2.2 Social Honeypot . 7
2.3 Machine Learning . 10

2.3.1 Computer Vision . 10
Inception Network . 12

2.3.2 Natural Language Processing . 15
Transformers . 16
GPT-3 . 19

2.3.3 Image Generation . 21
Dall-E 2 . 22

2.4 Discussion . 24

3 Methodology 27
3.1 Motivation . 27
3.2 Proposed approach . 27

3.2.1 Topic . 28
3.2.2 Post generation strategy . 28

InstaModel . 28
ArtModel . 30
UnsplashModel . 31
QuotesModel . 31

3.2.3 Engagement Plan . 31
3.3 Experiment . 33
3.4 Ethical considerations . 34

4 Implementation 41
4.1 Prerequisites . 41
4.2 Instagram Graph API . 41
4.3 Models Implementation . 44
4.4 Spamming . 47

5 Results 49
5.1 Quantitative results . 49
5.2 Qualitative results . 57
5.3 Discussion . 59

x

6 Conclusions 61

Bibliography 63

xi

List of Figures

2.1 Honeypot Deployment. 6
2.2 An example of convolution (Goodfellow, Bengio, and Courville, 2016) 11
2.3 Inception module, naïve version (Szegedy et al., 2015). 13
2.4 Inception module with dimension reduction (Szegedy et al., 2015). . . 13
2.5 Mini network replacing the 5 × 5 convolution block (Szegedy et al.,

2016). 14
2.6 InceptionV2: making the inception module wider. 15
2.7 Recurrent Neural Network (Goodfellow, Bengio, and Courville, 2016). 17
2.8 Transformers architecture. 18
2.9 Directed graphical model of diffusion models 22
2.10 Diffusion models training. [source] . 22
2.11 Dall-2 architecture (Ramesh et al., 2022) 23
2.12 Results for "a hedgehog using a calculator" Ramesh et al., 2022 24
2.13 Some images generated by DALL-E 2 (Ramesh et al., 2022). 26

3.1 InstaModel overview. 29
3.2 InstaModel - caption generation. 29
3.3 ArtModel overview. 30
3.4 UnsplashModel overview. 31
3.5 QuotesModel overview. 32
3.6 Poll and quiz examples. 33
3.7 InstaModel samples. 36
3.8 ArtModel samples. 37
3.9 UnsplashModel samples. 38
3.10 QuotesModel samples. 39

5.1 Followers, likes and comments for each honeypot. 50
5.2 Amount of likes gained by each honeypot in each week. 52
5.3 Cumulative followers per week. 54
5.4 Followers trend per engagement plan. 55
5.5 Distributions of likes and comments earned by each model. 58

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

xiii

List of Tables

2.1 GoogLeNet Detection perfomance in ILSVRC14 Detection Challenge. . 12
2.2 Ensemble evaluation results comparing multi-model, multi-crop re-

ported results (Szegedy et al., 2016). 15
2.3 Size, architecture and number of parameters of different GPT versions. 20
2.4 Performance on LAMBADA dataset. 20
2.5 Comparison of FID on MS-COCO 256 × 256. 24

3.1 Honeypots deployed . 34

5.1 Anova test with three factors: topic, model, plan. If the P-Value is less than
the significance level (0,05) than the factor influences the data samples. 57

5.2 Tukey test with three factors: topic, model, plan. Means that do not share a
letter are significant different. 57

5.3 Maximum number of likes and comments, together with the corre-
sponding model, obtained by each honeypot, per week. 58

xv

Dedicated to "Mimmi"
and my beloved D&D gamers.

1

Chapter 1

Introduction

Over the past few years, Online Social Networks (OSNs) have experienced an ex-
ponential growth, both in terms of size and popularity (Alexa, 2022). In fact, ma-
jor OSNs, such as Facebook and Instagram, now have billions users and the rapid
growth does not seem to want to stop (Karl, 2022, Richter, 2022). The purpose of
social networking is to allow individuals to meet people with similar interests, keep
in touch with them and even to reconnect with lost people (Nisrine et al., 2016).
Moreover, users are able to directly share and publish pictures and video in an ex-
tremely fast and efficient way. However, there are also several threats and risks that
we need to take into consideration when using social networks. Indeed, due to the
significant amount of people that use OSN, more and more cyber criminals are de-
veloping a particular interest in using social networks as a basis for carrying out
other malicious activities (Sheikhi, 2020).

When we think about OSN, the first problem that can be identified is the spread-
ing of personal information without the awareness of users. In fact, personal data
can be targeted by cyber criminals to perform illegal actions such as personal data
theft, identity impersonation, illegal distribution of content, canvassing, damage of
image and reputation (Nisrine et al., 2016). Among the types of attacks that are based
on OSNs, we find (Joshi and Kuo, 2011): plain impersonation, profile cloning, profile
hijacking, profile porting, secondary data collection, crawling and harvesting, etc.

One of the most studied malicious activity performed on OSNs is spamming
(Hu, Tang, and Liu, 2014, Zhu et al., 2012, Murugan and Devi, 2018). Spamming
can be defined as all those messages, which we may receive, that try to advertise
some product or sharing pornographic or undesired content or even for phishing
purposes. There is a widely used tool to detect spamming activity that is Social
Honeypot (De Cristofaro et al., 2014, Yang, Zhang, and Gu, 2014,Zhang, Zhang, and
Yuan, 2019). Social honeypots consist in honeypot profiles, for instance Facebook
pages or Twitter accounts, that try to lure users and "trap" them for further analysis
or actions. All the proposed solutions in literature use social honeypot to gather
information about spammers and their activities for developing countermeasures
capable of reducing the presence of these fake profiles.

However, we believe that social honeypots are not strictly linked to malicious
activity, in particular with spammers, but that they could also be used for other
purposes such as marketing strategies or social studies. For instance, they could be
useful when a company or a brand needs to profile their audience to understand
which needs their possible customers have. From a social perspective, they could
help in understanding how society is evolving and which are the new trends among
people. Hence, we aim to demonstrate that they should not only be considered as a
cybersecurity countermeasure, but also as a versatile strategy that can be adopted in
different sectors.

2 Chapter 1. Introduction

Furthermore, the main idea on which this thesis is based is that, not only social
honeypots should be considered as a flexible tool, and thus not limiting their use to
be spamming detectors, but they could be even more worthwhile if their function-
ing is totally automatic. Besides, making a social honeypots automatic may involve
also Machine Learning techniques. Nowadays, Machine Learning and Artificial In-
telligence in general, are widely adopted in a large number of sectors due to the
improvements achieved during the last few years. They are able to automate most
of the tasks that were usually performed by humans, making their use a natural
choice in modern technologies.

In the case of social honeypot, until now Machine Learning has been used to
develop a kind of observation system that observes the users’ activity with the hon-
eypot and tries to classify this activity as legitimate or malicious (Zhang, Zhang,
and Yuan, 2019,Yang, Zhang, and Gu, 2014). However, the latest Machine Learning
studies carried out in fields such as Computer Vision, Natural Language Processing
and image generation, have shown that the results that can be obtained, not only in
standard classification tasks, are truly encouraging (Ramesh et al., 2022, Brown et
al., 2020). Hence, this work aims to propose a new approach for building social hon-
eypots that automates all those activities that usually require human intervention,
thanks also to the support of the latest Machine Learning technologies.

For the experiments of this work we have decided to use Instagram, rather than
Tweeter or Facebook. Instagram is a social network particularly used for sharing
photos and videos. However, this platform is becoming more and more exploited
for other purposes, not only to simply sharing content. Currently, it is used also
as a platform for marketing in which people who reach a considerable number of
followers have used their accounts as a place for advertising (Sheikhi, 2020). Despite
its popularity, we were not able to find researches that deployed social honeypots on
Instagram. For this reason, another purpose of this work is to discover how much
this unexplored platform is suitable for further investigations.

1.1 Contributions

The main contributions of this thesis are:

• We define a novel concept of social honeypot. In our opinion, it is a flexible tool
that can be used in many different scenarios and sectors. One of the advantages
of our social honeypots is that they can be adapted to any need without having
to change their internal implementation.

• We propose two strategies to generate automatically Instagram posts and three
engagement plans which identify how the social honeypot interact with other
users. The post generation strategies involve both simplest methods, such as
using stock images, and more complex methods based on Machine Learning
technologies.

• We have created 21 social honeypots on Instagram, equipped with different
post generation strategies and engagement plans, to understand the best ap-
proach for their management and provide guidelines on how to build effective
social honeypots.

1.2. Outline 3

1.2 Outline

What a social honeypot is and the related works that have used this tool as a cyberse-
curity mechanism, is explained deeply in chapter 2. Moreover, in this chapter, it can
be found a description of the latest Machine Learning technologies with particularly
emphasis on object detection, text generation and image generation tasks which are
essentially in this project. This background is needed to understand the method-
ology, explained in chapter 3, which characterizes this thesis. Besides, since social
honeypots may deals with private personal information and deception mechanisms,
some ethical considerations are made in chapter 3. The practical implementation is
shown instead in chapter 4. The purpose of this chapter is to give an insight of
how our social honeypots have been developed and allow other research teams to
conduct further experiments in order to improve our results described in chapter 5.
The last chapter of this thesis, chapter 6, makes some considerations on our new ap-
proach and highlights some future works that can bring considerable improvements
to our solution.

5

Chapter 2

Background

Before presenting the methodology and the subsequent implementation of this work,
it is useful to highlight some basic notions to better understand our choices. What
a honeypot is, in the field of cybersecurity, and what is meant by social honeypot, are
concepts that will be explained in this chapter, in section 2.1 and section 2.2 respec-
tively. Furthermore, as a last consideration, we would like to highlight some features
of the machine learning technologies used in this project, with the aim of giving an
overview of the entire process.

2.1 Honeypot

A significant security problem for networked systems is trespass of unauthorized
user or software, also known as intruders. User trespass can take the form of unau-
thorized logon to a machine or acquisition of privileges or even performance of ac-
tions beyond those that have been authorized (Stallings et al., 2012). A security ser-
vice that monitors and analyzes system events, in real-time or near real-time, with
the purpose of protecting against unauthorized access attempts is called Intrusion
Detection. Intrusion detection can be implemented with different tools such as Intru-
sion Detection System (IDS) or Intrusion Prevention System (IPS). Both of them are
based on the assumption that the behavior of the intruder is different from that of a
legitimate user and thus it can be quantified.

A further tool useful to detect unauthorized access is the honeypot. Honeypots
are decoy systems that are designed to lure potential attackers away from critical
systems (Stallings et al., 2012). The idea is to divert attackers from accessing the sen-
sitive part of the network and encourage them to stay in the honeypot long enough
so that we have time to gather information about their activities and to respond ap-
propriately to the attack. In fact, the attacker is made to think that the attack to the
honeypot is successful so that administrators have time to take action and log events
without exposing critical systems. The reason why honeypots work is that there is
no valid motivation for outsiders to interact with them and therefore any attempt to
communicate with the honeypot is most likely an attack.

Honeypots are typically classified as follows:

• Low interaction honeypot consists of a software that emulates specific services
or systems well enough to seem realistic but do not execute a full version of
those services or systems.

• High interaction honeypot is a real system that implements a full operating
system with its applications and services that are deployed when an attack is
taking place, allowing the attacker to access them. It requires more resources
with respect to the low interaction honeypot, but it is more realistic.

6 Chapter 2. Background

Internet

1

2

3 LAN switch
or router

LAN switch
or router

External
Firewall

Service network
(Web, mail, VoiP, etc...)

FIGURE 2.1: Honeypot Deployment.

Honeypots can be deployed in different locations and Figure 2.1 illustrates some
possibilities. The location may depend on specific factors, such as the type of in-
formation we are interested in or the level of risk that can be tolerate. A honeypot
outside the external firewall 1 is useful to track attempts to connect to IP addresses
within the network boundaries. It does not increase the risk for internal network
and it reduces the amount of traffic to the firewall thanks to its position. One disad-
vantage of this type of honeypot is that it has little or no capability to trap internal
attackers. Another possibility is to place the honeypot in demilitarized zones (DMZ)
2 . DMZs are separated subnets useful to connect hosts that provide services such

as mail, Voice over Internet Protocol (VoIP) and web servers, while keeping the in-
ternal network isolated and safe from the external network. However, a honeypot
at this location may not be able to catch relevant attacks because the DMZ zone is
typically not fully accessible. That is, in addition to well-defined public services, no
one else service should be available in this part of the network. This means that if
an attacker tries to access the honeypot through a service that is not one of those
well-defined, the firewall is going to block the traffic. We might think about let-
ting the firewall allow traffic to the honeypot, but that would mean we are opening
the firewall to a significant security risk. Finally, as last possible location, there is
fully internal honeypot 3 . In this case the honeypot can trap internal attackers and
even misconfigured firewall. On the other hand, it must be carefully designed to
completely trap the attacker because, if compromised, the honeypot could attack the
other internal systems. Also, to continue trapping the attacker, we need to allow his
attack traffic from the Internet to the honeypot and, as before, the firewall would be
exposed to a high risk.

While there are advantages and disadvantages, the strategic use of honeypots
may enhance the security of systems leaving them less vulnerable to cyber threats
and exploits.

2.2. Social Honeypot 7

2.2 Social Honeypot

Today honeypots are not only used as security countermeasures to protect against
network attacks, but also in various scenarios such as in Online Social Networks
(OSNs). In this case, we can define them as social honeypots. Similarly to what a tra-
ditional honeypot does, social honeypots target online activities on social networks,
typically through the deployment of honeypot profile (e.g., a Facebook page or Twit-
ter account) to lure possible users and "trap" them. There might be several reasons
why we want to lure users on social honeypots: for example to automatically col-
lect evidence of illegal activity or, in a broader perspective, for marketing purposes.
However, in most of the research that has been conducted so far, they are used to au-
tomatically detect spamming activity. Spam can be defined as all those unsolicited
messages sent over a social network with specific purposes such that advertising,
phishing, sharing undesired or pornographic content etc.

The first social honeypot on MySpace (Webb, Caverlee, and Pu, 2008) The first re-
search work was proposed in 2008, where 51 honeypots were deployed on MySpace
to provide the first characterization of social spammers and their behavior. All of
these honeypot profiles were identical except for their geographic information: each
of them had the same name, gender and birthday, they shared the same relationship
status (single), body type and ethnicity. Bots constantly checked these profiles and,
after receiving a new friend request, they collected the spam profile and stored a
copy of it before rejecting the friend request. After four months, the results were
analyzed and reported: the behavior of social spammers shows several recognizable
temporal and geographic patterns that have specific characteristics. Thanks to these
results, the authors were able to defines five categories of spam profiles. One of
the most interesting features of these spam profiles is that the majority of them had
an external link in the "About me" section. Following these links and after several
redirection techniques, it was found out that all the URLs were pointing to a limited
number of web pages, usually pornographic pages.

Social Honeypot on MySpace and Twitter (Lee, Caverlee, and Webb, 2010) After
few years, the same authors proposed a new research study in 2010. Even in this
case social honeypots were used to trap spammer, but they were deployed not only
on MySpace but also on Twitter. Out of the five spam categories already defined on
MySpace, five other categories of Twitter spammers have been identified. Moreover,
in addition to the previous work, several other analysis were conducted to under-
stand whether there were discernible spam signals in the harvest spam profiles that
can be used to automatically differentiate spam profiles from legitimate profiles. As
first step, machine learning classifiers were trained upon a dataset which contained
both the collected spam profiles and randomly sampled legitimate profiles. The per-
formance results of all the classifiers were successful, that is each classifier reached
an accuracy greater than 98.4% for MySpace and greater than 82.7% for Twitter. Since
these optimistic results, the authors tried other tests to find out if the classifiers can
be effectively deployed over large collections of unknown profiles. While the accu-
racy decreased with an external MySpace dataset (Caverlee, 2008), the results ob-
tained by using an already existing Twitter dataset were quite close to the previous
reported performance.

8 Chapter 2. Background

Longer experiments and collaboration with Twitter (Stringhini, Kruegel, and Vi-
gna, 2010) These two works have shown that social honeypots can be an effective
strategy for detecting spammers on social networks, paving the way for new re-
search activities. A useful research for the discussion of this thesis is the one that
was presented a few months later, in December 2010. In this work, honeypots were
distributed not only on Twitter and MySpace, but also on Facebook. Moreover, the
research went on for a longer period, namely 12 months for honeypots on Facebook
and 11 months for the ones on Twitter and MySpace. In this period, the authors
collaborated with Twitter and correctly detected and deleted 15,857 spam profiles.
The honeypot design was quite the same as the previous works: fake accounts were
created and ran while scripts periodically connected to those accounts and checked
their activities. Even in this case, honeypots were kind of passive in the sense that
they do not send any friend requests or have any other activities but accepting re-
ceived friend requests. To be precise, they received not only requests from spam
profiles but also from legitimate profiles and, to discriminate between them, authors
started to manually check all of them. During this analysis, it was found out that,
as the previous works, spam bots share some common traits. An interesting result
to be highlighted is that there are two kinds of spam bots: stealthy and greedy bots.
Greedy ones include spam content in each message they send, while the stealthy bots
send messages that look legitimate, and only once in a while inject a malicious mes-
sage. This implies that greedy bots are easier to be detected than the stealthy ones.
In addition to this analysis, new tests were performed to classify unseen users into
spammers or legitimate users. The study was conducted by using machine learning
techniques with datasets based on both the already trapped spammed profiles and
randomly selected legitimate profiles. The tests produced an estimated false posi-
tive ratio of 2% and a false negative ratio of 1% on Facebook while an estimated false
positive ratio of 2.5% and a false negative ratio of 3% on Twitter.

Understanding Facebook Like Fraud using social honeypots (De Cristofaro et al.,
2014) A research which used social honeypots only on Facebook rather than Twit-
ter is the one presented in 2014 . In this case, a comparative measurement study
of the likes on Facebook pages was conducted to understand which are the differ-
ent characteristics between likes obtained through popular like farms and the ones
obtained through Facebook advertising campaigns. 13 honeypot pages were pro-
moted using both methods and intentionally kept empty, thus they were passive
honeypots. To be precisely, 5 of them were promoted by using Facebook ad cam-
paigns and the remaining 8 were promoted by using popular like farms. After a
month, garnered likes were analyzed based on likers’ demographic, temporal and
social characteristics to find out which are the differences between the two methods.
As we can see, the aim of this research is slightly different from previous works: the
authors are not interested in spamming in a general perspective but in identifying
differences and similarities between two methods of obtaining likes, one legal and
one illegal. Moreover, authors figured out that like farms have mainly two differ-
ent behaviors: some farms seem to operate by bots and do not really try to hide the
nature of their operations while other farms follow a much stealthier approach, aim-
ing to mimic regular users’ behavior. This finding resembles what has already been
reported in previous works, further validating those results.

Long-Term study of spammers on Twitter with active social honeypots (Lee, Eoff,
and Caverlee, 2011) As it is possible to notice, all the researches presented up to

2.2. Social Honeypot 9

now are based on "passive" social honeypots. They are static, fake accounts de-
ployed mainly on MySpace and Twitter that do not do anything but receiving friend
requests. Some of them even rejected these requests after saving the spam profile’s
information. However, if they have been able to get promising results with these
passive honeypots, there is a chance that more active honeypots will perform bet-
ter. In fact, one of the most cited work is the one proposed in 2011 in which active
honeypots were used for tempting, profiling and filtering content polluters in social
media. 60 honeypots were deployed on Twitter that resulted in the harvesting of
36,000 candidate content polluters. Honeypots differed from each other based on
how often they post, the content and the type of their postings and their social net-
work structure. Nevertheless, the social honeypots were intentionally designed to
avoid interfering with activities of legitimate users. They only sent replay messages
to each other and only followed other social honeypots accounts. Once a Twitter
user contacted one of the social honeypot, information is passed to an Observation
system that collects all information about the user’s account and all the user’s past
tweets. A further analysis brought to identify four categories of content polluters,
quite similar to the ones already identifies, along with other common characteris-
tics among all the spam profiles. As the previous works, a classification framework
was trained to discriminate between content polluters and legitimate profiles. The
results was quite surprising: with Random Forest classifier they achieved 98.37% of
accuracy.

Social honeypots and reversing engineering techniques (Yang, Zhang, and Gu,
2014) In 2014, active social honeypots on Twitter and reversing engineering tech-
niques were adopted to provide guidelines for building more effective social hon-
eypots. The idea was to first perform a measurement study by deploying "bench-
mark" social honeypots with different social behaviors to trap spammers. After five
months of data collection, an in-depth analysis was conducted on how spammers
find their targets. Based on this analysis, new guidelines were provided for making
"advanced" social honeypots able to trap spammers around 26 times faster than "tra-
ditional" honeypots. Some of these new guidelines were: (1) post tweets related with
specific topics; (2) post tweets containing special keywords such as Trending topics;
(3) follow famous account related with specific areas. To evaluate the effectiveness
of these guideline, the new "advanced" honeypots were deployed on Twitter and it
was found out that indeed they were able to trap more spammers.

Pseudo-Honeypots (Zhang, Zhang, and Yuan, 2019) One may argue that all the
existing solutions presented up to now are time-consuming and low efficient in the
sense that they filter spams from a large set of blindly collected accounts (Zhang,
Zhang, and Yuan, 2019). For this reason, in 2019, an innovative approach named
pseudo-honeypot, were proposed for efficient spammers gathering. The general
idea is to take advantage of the diversity of Twitter users and select accounts with
attributes that are highly attractive to spammers. By constructing pseudo-honeypots
on the top of these users, it is possible to collect tweets that have higher probability
of including spammers’ activities. The key challenge in building pseudo-honeypots
is to select the effective attributes that have the high probability to attract spammers.
At an early stage, the attributes selected to build the first pseudo-honeypots were
those extensively studied in previous works. After a period of time, the list of at-
tributes used was refined by making a choice from those that have been shown to

10 Chapter 2. Background

have the highest probability of trapping spammers. In this second stage, pseudo-
honeypots were also equipped with Random Forest classifier to perform classifi-
cation in the all 500-hour collected tweets. In the last part of the research, a new
refinement of the attributes was carried out using the latest results obtained from
the "advanced" pseudo-honey. Therefore, new pseudo-honeypot were built again
and the system ran for about 50 hours. As final result, the efficiency of spammers
gathering was 0.92 spammers per honeypot per hour.

Discussion It is clear that all of these solutions share common traits such as the
fact that social honeypots have been used specifically to detect spammers or bot
activity in general. Furthermore, they were mainly implemented on Twitter, and
only a few research teams have used other social networks such as Facebook. We
can identify several reasons for this trend. First of all, spamming is one of the most
widespread malicious activities on social networks because it can be used as a basis
for carrying out other more dangerous illegal activities. Additionally, Twitter has
APIs and policies that facilitate data collection. Not to mention, there are widely
adopted Twitter datasets that can be used to train machine learning classifiers. As
far as we know, there are no solutions that use social honeypots on Instagram. This
may be due to the fact that it is not easy to distribute, maintain and record honeypots’
activities on this social network.

2.3 Machine Learning

Machine Learning is a field of Artificial Intelligence (AI) that studies how making
computers perform tasks that usually could be performed by humans (Zhang and
Lu, 2021). The term "Artificial Intelligence" was first proposed by John McCarthy at
the Dartmouth Conference in the 1956 and since then AI has achieved milestone re-
sults that seem do no want to stop (Moor, 2006). AI is a wide discipline that interests
a large number of sectors, starting from Computer Vision (CV), Natural Language
Processing (NLP) and Image Generation. Each of them has its own peculiarities and
specific characteristics, as well as its own purposes and algorithms. We will try to
depict the state-of-the-art of some of them, in a general manner, with the aim of giv-
ing tools to understand our reasoning behind this project. In fact, this work makes
massive use of AI, focusing not only on a single branch of it, but bringing together
the most innovative solutions implemented in recent years, with the aim of propos-
ing a new advanced approach for the implementation of social honeypots.

2.3.1 Computer Vision

The goal of computer vision is to enable computers to recognize and to understand
the world through vision, as humans do (Zhang and Lu, 2021). CV embraces all
those tasks typical of biological vision systems such as "seeing" or capturing visual
stimulus to understand the surrounding environment and extract complex informa-
tion. Classical applications can be facial recognition or object detection but even
more complex tasks in Autonomous Vehicles or in the robotics sector.

CNN The building block of computer vision is Convolutional Neural Network
(CNN). CNNs are specialized kind of deep neural network for processing data, usu-
ally images, with a grid-like topology (Goodfellow, Bengio, and Courville, 2016). As
the name suggests, the network employs the convolution mathematical operation:

2.3. Machine Learning 11

FIGURE 2.2: An example of convolution (Goodfellow, Bengio, and
Courville, 2016)

s(t) = (x ∗ w)(t) =
∞

∑
a=−∞

x(a)w(t − a) da, (2.1)

where x is the input and w is the kernel, in the convolution network terminology.
The output is sometimes referred to as the feature map. The input x is organized in
three dimensions: height, width and depth, where the depth represents the channel
number. Kernels, or filters, have also three dimensions as the input image, but height
and width are smaller than the input’s.

During the forward pass, the kernel slides across the image computing the image
representation of that receptive region. The feature map is a two-dimensional repre-
sentation of the image that represents the output of the kernel at each spatial position
of the image. The sliding size of the kernel is called stride. The three main ideas on
which CNNs are based are sparse interaction, parameter sharing and equivariant
representation.

• sparse interaction: in traditional neural network layers each input unit is con-
nected with each output unit. This means every output unit interacts with ev-
ery input unit. On the contrary, CNN typically have sparse interactions since
the kernel smaller than the input.

• parameter sharing: refers to using the same parameter for more than one func-
tion in a model.

• equivalent representation: the particular form of parameter sharing causes
that if the input changes, the output changes in the same way:

f (g(x)) = g(f (x)). (2.2)

Usually, CNNs can be represented as a stack of convolutional layers interspersed
with a pooling layer and a fully connected layer. The pooling layer helps reducing
the spatial size of the representation, which decreases the required of weights re-
quired and thus the computational resources needed. The fully connected layer is
required to map the representation between the input and the output.

12 Chapter 2. Background

Team Year Place mAP

UvA-Euvision 2013 1st 22.6%
Deep Insight 2014 3rd 40.5%
CUHK DeepID-Net 2014 2nd 40.7%
GoogLeNet 2014 1st 43.9%

TABLE 2.1: GoogLeNet Detection perfomance in ILSVRC14 Detection
Challenge.

Inception Network

CNNs are a powerful tool that has a big problem: performance. As said before, CNN
models most of the time just stack convolution layers one after another, going deeper
and deeper, hoping to obtain better results. However, larger sizes typically mean
a greater number of parameters which increase the use of computation resources.
Besides, the chance of the model suffering from overfitting increased as well. For
these reasons, (Szegedy et al., 2015) proposed a new architecture, called Inception, to
improve the utilization of the computing resources inside the network. The general
idea is to move from fully connected to sparsely connected architectures, even inside
the convolution layers. Thus, instead of having deep layers, we have parallel layers
which makes the model wider rather than deeper.

The first simple version of the Inception module which has been proposed is de-
picted in Figure 2.3. This module performs convolution on an input with 3 different
filters of sizes 1 × 1, 3 × 3, 5 × 5. Additionally, max pooling is also added in paral-
lel. The filter’s outputs are concatenated and used as inputs to the next Inception
module. Hence, we have a stack of these Inception modules which are nothing more
than a series of convulation operations, with filters of different sizes, processed in
parallel. One drawback with this simple architecture is that even the 5 × 5 convo-
lutional block is expensive with a large number of filters. For this reason, another
version was proposed (Figure 2.4) to take under control the computational require-
ments. In this case, 1 × 1 blocks are used to compute reductions before the more
expensive ones. Recall that 1 × 1 convolutions are much more faster and cheaper
than the 5 × 5 blocks. This new architecture is known as GoogLeNet (Inception V1):
it is 22 layers deep (or 27 layers if we also count pooling) with 9 inception modules
stacked linearly.

Still, as with any very deep network, this network is subject to the vanishing gra-
dient problem1. One solution proposed by the authors was to introduce two auxil-
iary classifiers, in the middle part of the network, to encourage discrimination in the
lower stages and increase the gradient signal back-propagated. These classifiers are
just smaller convolutional networks put on top of the output of Inception modules.
During training, their loss is added to the total loss of the network with a discount
weight of 0.3. Of course, at inference time, these auxiliary networks are discarded.

This model was responsible for setting the new state-of-the-art for classifica-
tion and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14). The results, for detection challenge, are shown in Table 2.1. Notice that
the reported values are based the mean average precision (mAP) metric.

1It is a typical problem with Neural Networks whose layers use certain activation functions, like the
sigmoid function. In these cases, the gradients of the loss function approach zero, making the network
difficult to train.

2.3. Machine Learning 13

FIGURE 2.3: Inception module, naïve version (Szegedy et al., 2015).

FIGURE 2.4: Inception module with dimension reduction (Szegedy
et al., 2015).

14 Chapter 2. Background

FIGURE 2.5: Mini network replacing the 5 × 5 convolution block
(Szegedy et al., 2016).

InceptionV3 Actually, the complexity of the InceptionV1 architecture makes it more
difficult to make changes to the network as, if the network is scaled up carelessly,
much of the computational gains can be immediately lost (Szegedy et al., 2016). For
these reasons, few years later, more advanced versions of the Inception module, In-
ceptionV2 and InceptionV3, were presented by (Szegedy et al., 2016). Several design
principles were suggested to increase the performance of InceptionV1:

• Avoid representational bottlenecks, especially early in the network. The idea
is that neural networks perform better when the dimensions of the input are
reduced gradually and not in a drastic way.

• Higher dimensional representations are easier to process locally within the net-
work.

• Balance the width and depth of the network helps. The optimal improvement
can be reached if both are increased in parallel.

• More suitable factorization methods can make the convolutions more efficient.
From now on, we will focus mostly on this last principle.

Convolutions with large spatial filters such as 5 × 5 tend to be computationally
expensive but they can be factorized in a clever way (Szegedy et al., 2016). Looking
at the Figure 2.5, we can notice that each output looks like a fully-connected network
sliding over the 5 × 5 block over its input. By using translation invariance, we can
replace the fully-connected component with a two layer convolutional architecture:
the first layer is a 3× 3 block, the second is a fully connected layer on top of the 3× 3
block. By sliding this small network over the input we can replace the 5 × 5 with
two 3 × 3. In a more general fashion, any n × n convolution can be replaced by one
1 × n block followed by another n × 1 block. This insight leads to the possibility of
substituting the 3 × 3 with two blocks, one of 1 × 3 and one 3 × 1. Figure 2.6 shows
what the authors called InceptionV2 (version 2 of the original inception module) in
which the 5 × 5 has been replaced with its factorization as well as the 3 × 3. These
changes made the network extremely fast and it obtains better results in terms of
convergence.

2.3. Machine Learning 15

FIGURE 2.6: InceptionV2: making the inception module wider.

Network Models Evaluated Crops Evaluated Top-1 Error Top-5 Error

VGGNet (Simonyan and Zisserman, 2014) 2 - 23.7% 6.8%
GoogLeNet (Szegedy et al., 2015) 7 144 - 6.67%
PReLU (He et al., 2015) - - - 4.94%
BN-Inception (Ioffe and Szegedy, 2015) 6 144 20.1% 4.9%
InceptionV3 4 144 17.2% 3.58%

TABLE 2.2: Ensemble evaluation results comparing multi-model,
multi-crop reported results (Szegedy et al., 2016).

Not completely satisfied, they proposed also the InceptionV3 (version 3 of the
original inception module) which uses the same type of inception module of Incep-
tionV2 but with some additions. It adopts RMSProp Optimizer, BatchNorm in the
auxiliary classifiers and Label Smoothing technique that is a mechanism to regu-
larize the classifier layer by estimating the marginalized effect of the label-dropout
during training (Szegedy et al., 2016). The InceptionV3 is the model that obtained
the best results compared with the best published ensemble inference results on the
ILSVRC 2012 classification benchmark (see Table 2.2).

2.3.2 Natural Language Processing

Natural Language Processing (NLP) refers to the ability of computers to recognize
and understand human text language, which is an interdisciplinary subject between
computer science and human linguistics (Zhang and Lu, 2021). NLP can be di-
vided into many directions: grammatical and semantic analysis, information extrac-
tion, natural language generation, information retrieval, machine translation, senti-
ment analysis, question answering system and dialog system (Zhang, Xu, and Chen,
2020). NLP is perhaps the most talked about discipline in AI because automatic text
analysis, as for humans, requires a much deeper understanding of natural language
by machines, which is still far from reality. (Chowdhary, 2020). Before 2017, the
Recurrent Neural Networks (RNN) (Rumelhart, Hinton, and Williams, 1986), Long
Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recur-
rent neural networks (Chung et al., 2015) have been widely used in sequence mod-
elling and transduction problems.

16 Chapter 2. Background

RNN RNNs are a family of neural networks for processing sequential data. In
general, an RNN takes as input a sentence, processes it one word at time and, by
aligning the positions to steps in computation time, it generates a sequence of hidden
states (see Figure 2.7):

h(t) = f (h(t−1), x(t); θ), (2.3)

where x(t) is the input at time t, h(t−1) the previous hidden state and θ some
additional parameters.

RNNs work well with short sentences or those that do not require to remember
too much past context. However, in real use cases, we need to deal with long-term
dependencies. The drawback of RNNs is that they can not remember long term de-
pendencies due to vanishing gradient. LSTMs and gated recurrent neural networks
are explicitly designed to overcome this problem.

LSTM has feedback connections able to process the entire sequence of word that
helps in remembering the context. A common LSTM unit has three gates: an input
gate, an output gate and a forget gate, that have the ability to carefully remove or
add information to the cell state. The first step, in LSTM units, is to decide what
information are going to be threw away from the state. This decision is made by the
forget gate: it looks at h(t1) and x(t), and outputs a number between 0 and 1, where 0
represents “forget this” while a 1 represents “keep this”. The input gate deals with
the new information carried by the input. It decides what new information are going
to be stored in the cell state. The output of the LSTM cell h(t) is decided by the output
gate. First, a sigmoid layer decides which parts of the cell state will be the output
and then this value is multiplied by the tanh of the current cell state.

Transformers

Even with the help of LSTM mechanisms, it is undeniable that RNNs have another
problem to face: since they process words sequentially, they are hard to parallelize,
thus they require a lot of computational power. This makes the training procedure
on large dataset a truly challenge. It was in 2017 that a new proposal changed dras-
tically the state-of-the-art not only for NLP but for AI in general. Transformers, de-
veloped by a Google and University of Toronto research team, is a model that makes
use of an Attention mechanism to deal with global dependencies between input and
output, giving up completely to recurrence (Vaswani et al., 2017). Without so much
efforts, Transformers outperform any type of model used until that moment. As we
can see from Figure 2.8, Transformers are composed of two main parts: the left part
for encoding and the right part for decoding. At the end of the decoder, there is
an output layer that generates the final result. In the original paper, the encoder is a
stack of 6 identical layers, each of which with two sublayers: the first is a Multi-Head
Attention mechanism, which will be described in section 2.3.2, and the second is a
simple feed-forward network. After of each of these two blocks there is a normal-
ization layer. The output of the encoder will be a fixed length vector representation
for each word of the initial input that will consider the full context of the sequence.
The decoder part is quite similar but it contains an additional block which performs
Masked Multi-Head Attention that is an Attention block with some differences to
make the decoder performing better.

2.3. Machine Learning 17

FIGURE 2.7: Recurrent Neural Network (Goodfellow, Bengio, and
Courville, 2016).

Positional encoding In Transformers, each word will be processed in parallel mak-
ing it necessary to remember the position of each of them. For this purpose, Posi-
tional encoding is used. The Positional encoding block can be defined as a matrix
that contains several vectors encoding a specific position. It uses the sine and cosine
functions to compute them, but any function we wish can be adopted.

Hence, starting from the raw sentence, each word is first mapped to an integer,
called Token, by the Input Embedding block. This layer is in charged of linking each
token to a vector. Therefore, the result will be added to the Positional encoding.
The result is the representation of each word with the additional information of the
original position in the input sentence.

Attention The key point in Transformers is the use of Attention. The Attention
mechanism consists of Queries, Keys and Values. The intuition is that a query vector
will be compared with a set of key vectors to determine the correlation between
them. At the same time, to each query vector is associated a value vector. The
higher the correlation between keys and queries, the more the corresponding value
will influence the output of the Attention mechanism. Thus we have three sets:
Q, K and V that consists of all the query vectors, key vectors and value vectors,
respectively. Notice that all these three components are learned during training by
using the output of the summation between the input embedding and the positional
encoding.

Attention(Q, K, V) = so f tmax
(QKT
√

dk

)
V. (2.4)

Authors found out that the Attention mechanism seems to suffer for larger value
of dk, namely the dimension of keys. For this reason, they added this scaling factor√

dk to the computation. The Attention’s output will be a matrix with an updated
representation for each word in the corresponding position.This is the description of

18 Chapter 2. Background

FIGURE 2.8: Transformers architecture.

2.3. Machine Learning 19

the process with a single "head", or to make it simply, the computation is done only
once.

Multi-head Attention instead performs this computation multiple times because
we want to learn multiple representations of the same word at the same time, in
parallel. For h Attention heads there are h matrices that will be concatenated and
multiplied with another weight matrix to project back the output to the original
embedding dimensionality.

MultiHead(Q, K, V) = Concat(head1, head2, ..., headh)WO (2.5)

headi = Attention(QWQ
i , KWK

i , VWV
i)

In the decoder, there is also an Attention block but a mask is needed to ensure
that the temporal dependencies of the output sentence is respected. The output sen-
tence is sampled one word at a time and the prediction at position t should depend
only on the words seen up to position t − 1. This is accomplished with the use of a
sort of a mask during the Attention process. In practice, when the representation at
a given position is updated, the decoder should pay no attention to any of the words
at positions greater than t. From a mathematical point of view, the mask is a matrix
with −∞ above the main diagonal and zeros everywhere else.

One detail to be noted in the Figure 2.8 is that the input of the Multi-Head Atten-
tion block in the decoder is the output of the previous block and the final output of
the encoder. Hence, these inputs do not come from the same sequence. The queries
come from the previous layer of the decode, while the keys and values come from
the output of the encoder. This allows the decoder to attend not only to the tokens
sampled so far but also to the original input sequence.

GPT-3

As said before, Transformers completely renew the state-of-the-art of NLP making
clear that recurrence is not the only possibility to deal with sequences. Moreover,
they demonstrated that Attention mechanism can go far beyond expectations. Many
researchers started to develop new models using Transformers as architecture but
OpenAI made the difference. They proposed a new model, Generative Pre-trained
Transformer (GPT), that demonstrated even more the potentialities of Transformers
(Radford et al., 2018).

Notice that, depending on the task that we want to perform, we do not neces-
sarily need both encoder and decoder in the Transformer. For instance, if we try to
learn a rich sequence representation for a classification task we may use only the
encoder part. On the other hand, if we need to generate sequences, a decoder only
architecture can be sufficient. That is exactly what OpenAI research team has done
(Radford et al., 2018). They realized a model based on a multi-layer Transformer de-
coder (Liu et al., 2018) to generate text-to-text sequences. Besides, they divided the
training procedure into two stages: the first one is an unsupervised pre-training in
which, given an unsupervised corpus of tokens, the model will apply a multi-head
self-attention operation followed by position-wise feedforward layers to produce an
output distribution over target tokens. The second stage is a supervised fine-tuning
process in which the model is adapted to a discriminative task with labeled data.
This model was the first version of GPT: GPT-1.

Few years later, the same authors discussed the fact that many models, until
that moment, have been trained to perform single tasks separately. They resembled

https://openai.com/

20 Chapter 2. Background

Num. Parameters Num. Decoder Layers Num. Hidden Layers Batch Size

GPT-1 117 M 12 768 64

GPT-2 1.5B 48 1600 512

GPT-3 Small 125M 12 768 0.5M

GPT-3 Medium 350M 24 1024 0.5M

GPT-3 Large 760M 24 1536 0.5M

GPT-3 XL 1.3B 24 2048 1M

GPT-3 2.7B 2.7B 32 2560 1M

GPT-3 6.7B 6.7B 32 4096 2M

GPT-3 13B 13.0B 40 5140 2M

GPT-3 175B or "GTP-3" 175B 96 12288 3.2M

TABLE 2.3: Size, architecture and number of parameters of different
GPT versions.

PPL ACC

SOTA 99.8 59.23

GPT-1 35.13 45.99

GPT-2 8.63 63.24

GTP-3 3.00 76.2

TABLE 2.4: Performance on LAMBADA dataset.

"narrow experts" rather than "competent generalists" (Radford et al., 2019). That is
the reason why they proposed GPT-2, a model able to perform several different tasks
without the need of retraining it. It has the same architecture of the original GPT but
it is "bigger" than its predecessor. To be precise, it has about 1.5 billion parameters
while GPT has only 117 million. Moreover, the model was trained with a dataset that
contains a total of 40 GB of text scraped from the Internet, rather than using specific
task datasets. In practice, any type of text that we may think of is contained in it.
GPT-2 was evaluated on several other datasets for different tasks such as reading
comprehension, translation, question&answering, etc. (Radford et al., 2019) and it
did great in many of them. It showed that training on larger dataset and having
more parameters drastically improve the capabilities of the model.

At this point the question that each of us could ask would be: what if we make
it bigger? This is exactly what OpenAI has done with GPT-3 (Brown et al., 2020).
GPT-3 has the same model architecture of GPT-2 but it has 175 billion of parame-
ters. Actually, authors provided 8 different models that differ from each other on
sizes and learning parameters, and the biggest one was precisely that with 175 bil-
lion parameters, named "GPT-3". Table 2.3 lists the different versions of GPT with
information about size, architecture and number of parameters.

GPT-3 outperformed the state-of-the-art, including GPT-2, in many different tasks.
As an example, in Table 2.4, results obtained with the LAMBADA dataset (Paperno
et al., 2016) are reported. LAMBADA dataset tests the ability of systems to model
long-range dependencies in text. The task is to predict the final word of sentences
which require at least 50 tokens of context for a human to successfully predict (Rad-
ford et al., 2019). All the results described in the table are "Zero-shot" results which

2.3. Machine Learning 21

means no demonstrations are allowed and the model is only given a natural lan-
guage instruction describing the task. In some cases, it may also be difficult for
humans to understand what the task is asking for. As we can see, GPT-3 results are
better both in terms of perplexity (PPL), the human ability to detect model generated
texts, and accuracy (ACC).

2.3.3 Image Generation

Generating synthetic but realistic images is what has gained a lot of attention in the
research field lately. This can be done by using generative models which are net-
works capable of generating new content starting from real samples. From a math-
ematical point of view, we have a dataset of observations, generated according to
some probability distribution, and a generative model that tries to mimic this orig-
inal probability distribution. One of the most used generative model is Generative
Adversarial Network (GAN) (Goodfellow et al., 2014). However, recent proposals
and studies have brought to light new innovative and interesting solutions.

GAN In GAN, the model consists of two networks: the generator (G) and the dis-
criminator (D). The discriminator learns to determine whether a sample is from
the model distribution or the data distribution. GAN are based on a game theoretic
scenario in which the generator competes against the discriminator. The generator
produces samples x = g(z; θ(g)) while the discriminator attempts to distinguish be-
tween samples drawn from the training data and samples drawn by the generator.
The discriminator outputs a probability through the function d(x, θ(d)) that is the
probability that x is a real training sample rather than a fake sample.

The simplest way to model this problem is through a zero-sum game, in which
the function v(θ(g), θ(d)) determines the reward of the discriminator. The generator,
of course, will receive −v(θ(g), θ(d)) as reward. During the learning, each of the
gamers tries to maximize its own reward:

g∗ = argmingmaxdv(θ(g), θ(d)), (2.6)

where v is:

v(θ(g), θ(d)) = Ex∼pdata logd(x) + Ex∼pmodel log(1 − d(x)). (2.7)

Intuitively, this formula will drive the discriminator to distinguish between real
and fake examples, while the generator tries to fool the classifier into believing its
samples are real. At convergence, the generator’s samples are indiscernible from
real data, while the discriminator outputs 1

2 everywhere. Notice that convergence is
extremely difficult to be reached.

Diffusion Models For a long period, GANs have been considerate as the state-
of-the-art for image generation. However, they have several drawbacks that make
them extremely difficult to scale and apply to new domain (Dhariwal and Nichol,
2021). In recent years, diffusion models have been proposed as valid substitutes for
GANs as they seem capable of obtaining a higher image sampling quality (Ho, Jain,
and Abbeel, 2020, Sohl-Dickstein et al., 2015, Song and Ermon, 2019). In general,
these models generate samples by gradually removing noise from the input. On a
high level (Figure 2.9), they sample with a noise xT and produce gradually less-noisy
samples xT−1, xT−2... until reaching the final sample x0, that is the unnoised version
of the image. To be precise, each timestep T corresponds to a certain noise level

22 Chapter 2. Background

FIGURE 2.9: Directed graphical model of diffusion models

FIGURE 2.10: Diffusion models training. [source]

and the diffusion model learns to produce a slightly more "denoised" xT−1 from xT.
Figure 2.10 shows the entire training process which consists of two phases: the fixed
forward diffusion process and the generative reverse denoising process. In the first,
the noise is added to the original input image, while in the second the model tries to
reconstruct the image by removing a little more noise with each pass.

Dall-E 2

This year, on April 2022,a new model known as DALL-E 2 has been proposed for
image generation that outperformed all the solutions used until now (Ramesh et al.,
2022). DALL-E 2 is able to generate high quality and very realistic images starting
from a prompt, or caption, by using diffusion models. The Figure 2.13 shows the
impressive results we can achieve with this model. It is evident that the quality and
correspondence between text and image is beyond what has been done so far.

DALL-E 2 makes use of an already existing model called Contrastive Language-
Image Pre-training (CLIP) (Radford et al., 2021). In general, CLIP is able to learn
the correlation between a text and an image. Hence, it learns how much a given
caption is related to an image instead of predicting its best caption. To make this
possible, CLIP uses two encoders: one will turn the image into image embedding,
the other will translate the caption into a text embedding. The goal is to maximize
the similarity between the text embedding and the image embedding. The CLIP’s
ability of learning semantics is the building block of DALL-E 2.

Figure 2.11 depicts the architecture of DALL-E 2. We can identify two parts:
above the dotted line there is the CLIP training process through which we can learn
a joint representation space for text and images. Below the dotted line, there is the
text-to-image generation process. In the next part of the discussion, we will focus
mainly of this last process.

Hence we have the decoder that inverts images given their CLIP image embed-
dings, and a "Prior" block that allows us to learn a generative model of the image
embeddings themselves. Putting all together we have a generative model P(x|y) of
images x given captions y:

P(x|y) = P(x, zi|y) = P(x|zi, y)P(zi|y), (2.8)

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

2.3. Machine Learning 23

FIGURE 2.11: Dall-2 architecture (Ramesh et al., 2022)

where zi is the image embeddings of the original image x. Notice that the first
equation holds because zi is a deterministic function of x. This equality means that
we can sample from the true conditional distribution P(x|y) by first sampling zi with
the prior, and then sampling x using the decoder.

Prior In DALL-E 2, the Prior is what link the CLIP text embedding with the CLIP
image embedding. In the original paper, authors identified two methodologies to
implement the Prior:

• Autoregressive approach in which the CLIP embedding is converted into a
sequence of discrete codes and predicted autoregressively conditioned on the
caption.

• Diffusion approach in which the continuous vector zi is modelled using a dif-
fusion model conditioned on the caption. They found out that this last one
works better for DALL-E 2.

For the diffusion prior, they trained a decoder-only Transformers with a casual
attention mask on a sequence consisting of: the encoded text, the CLIP text embed-
ding, the embedding for the diffusion timestep, the noised CLIP image embedding
and a final embedding whose output from the Transformer is used to predict the
unnoised CLIP image embedding (Ramesh et al., 2022).

Looking at the architecture, one may argue that it would be better, and more
efficient, to pass directly the caption, or the text embedding, to the encoder without
passing through the Prior block. Authors tested this possibility and they figured
out that actually having the prior leads to better results (Figure 2.12). By observing
carefully, we can notice that passing the text embedding directly to the decoder gives
an acceptable result. However, it was found out that this may lead to loose the
capability to generate variations over images.

Decoder The decoder is a diffusion model as well. Even in this case they used an-
other model called GLIDE (Nichol et al., 2021). Unlike a pure diffusion model, in the
training procedure, GLIDE provides as input not only the noisy image but also the
corresponding caption or text information. In DALL-E 2, CLIP embedding is added
as input to the information already passed by GLIDE. This was done to support the
image generation. Finally, to generate high resolution images, the decoder has two

24 Chapter 2. Background

Caption to decoder. Text embedding to
decoder.

Use the Prior.

FIGURE 2.12: Results for "a hedgehog using a calculator" Ramesh
et al., 2022

Model Zero-shot FID
Dall-E (Ramesh et al., 2021) 28
LAFITE (Zhou et al., 2021) 26.94
GLIDE (Nichol et al., 2021) 12.24
Dall-E 2 10.39

TABLE 2.5: Comparison of FID on MS-COCO 256 × 256.

diffusion upsampler models: one to upsample images from 64 × 64 to 256 × 256
resolution, and another one to further upsample those to 1024 × 1024 resolution.

In the text-conditional image generation literature, it has become standard prac-
tice to evaluate Fréchet Inception Distance (FID) on the MS-COCO (Lin et al., 2014)
validation set. Frechet Distance is a measure of similarity between curves that takes
into account the location and ordering of the points along the curves. This metric
is used to assess the quality of images created by a generative model: the lower the
value, the higher quality the image created. As we can see from Table 2.5, the results
obtained with DALL-E 2 are quite impressive.

2.4 Discussion

To summarize, in literature social honeypots have already been used as spamming
detectors. They can be divided into two broad categories, that are passive or active
honeypots. The first ones did not publish any type of content, but just record and
analyze users’ activity. The latter type of honeypots used tweets differentiated by
type of tweets and frequency of publishing. All of the proposed works implemented
a machine learning classifier to identify legitimate user from spam accounts.

Regarding machine learning and Artificial Intelligence, there have been huge
advances especially in the field of Computer Vision, Natural Language Processing
and Image Generation. The latest technologies involve Inception networks, Trans-
formers and Diffusion Models. Despite these great contributions, most of them are
not available to the public. In some cases the public can interact with these mod-
els through paid APIs, but usually full model access is currently limited to only
few highly resourced labs. Furthermore, to access larger models it is necessary to
subscribe to a waiting list and the time that you have to wait, before being able to ac-
cess, could be several months. Nonetheless, there exists several open source models

2.4. Discussion 25

whose results are quite closed to the state-of-the-art. Among them, Open Pre-trained
Transformer model (Zhang et al., 2022) is a decoder-only pre-trained transformers,
ranging from 125M to 175B parameters, that is fully shared with other researches.
Authors showed that OPT-175B is compatible to GPT-3 and its performance in many
tasks, including zero-shot tasks, follow the trend of GPT-3. For image generation,
Dall-E 2 can be accessed only upon subscribing the waiting list, but there is an open
source version, Dall-E mini (Dayma et al., 2021), that is available to the public. Its
generated images are quite good even if they do not achieve the same impressive
results of Dall-E 2.

26 Chapter 2. Background

Vibrant portrait painting of Salvador
Dalì with a robotic half face.

A close up of a handplam with leaves
growing from it.

An espresso machine that makes
coffee from human souls, artstation.

A corgi's head depicted as an explosion
of a nebula.

A dolphin in an astronaut suit on
Saturn , artstation.

A teddybear on a skateboard in times
square.

FIGURE 2.13: Some images generated by DALL-E 2 (Ramesh et al.,
2022).

27

Chapter 3

Methodology

Behind this project there was an in-depth preliminary study to carefully design both
the implementation of social honeypots and the approach for achieving the goals we
have set ourselves. After a brief description of our objectives and the contributions
we want to make with this research (section 3.1), we will try to explain as clearly as
possible what our approach consists of (section 3.2) together with how the experi-
ments were launched (section 3.3). Some final considerations on the ethical aspects
of the whole project will be address and the end of this chapter (section 3.4).

3.1 Motivation

This study aims to propose an innovative and advanced approach for building social
honeypots on Instagram. From the beginning, our idea has always been to provide
a valid tool that can be a starting point to new researches in this field. Moreover,
we wanted to understand how much a social network completely unexplored in
literature, such as Instagram, could be exploited for this type of experiment, trying
to pave the way towards new developments. Two principles guided the design of
this project, that are: the proposed solution must be easily adaptable to different
contexts, for instance cybersecurity or marketing sectors, and the management of
honeypots has to be automatically.

What convinced us to pursue these objectives was that all the solutions presented
in the literature were designed with a specific target, namely spamming detection,
and therefore are not easily scalable to other sectors. On the contrary, we believe
that a solution should be as general as possible to be easily adaptable to any kind
of use. Looking more in detail, the social honeypots proposed in literature achieved
better results were those of the "active" type, showing that an approach more similar
to what a normal user would have is certainly the most promising possibility. How-
ever, it was not well specified how these honeypots generated the tweets. Starting
from the assumption that these tweets were generated manually by someone, one
of the innovative aspect of the work we are presenting is the use of the latest ma-
chine learning technologies for making honeypot management and post generation
completely automatic.

3.2 Proposed approach

Since this is the first work in literature with the aforementioned objectives, we de-
cided to focus our project on giving a comprehensive study of different possibilities
for building social honeypots with the already discussed characteristics. We have
tested them all trying to identify the best strategy, for the management of social
honeypots, on which the research should continue. In general, our honeypots are

28 Chapter 3. Methodology

Instagram accounts characterized by a topic, a post generation strategy and an en-
gagement plan.

3.2.1 Topic

A topic represents the type of content that the Instagram posts, published by a single
honeypot, will be based on. It can be an argument of interests or a specific product
that we want to advertise or a set of different arguments to capture a specific au-
dience of interest. It is important to choose this topic carefully because it will de-
termine the type of users we want to attract. To give some examples, if we want
to advertise the new product of a particular brand, a possible choice for the topic
could be the type of product we are advertising. On the contrary, if we want to de-
velop a tool for spamming detection, the chosen topic should be one of interest for
spammers so that the honeypot will post attractive content for them. We can even
go further and make honeypots with a generic topic that can be used for marketing
profiling or social studies. As we can see, the topic is essentially an argument that
can be chosen based on the final purpose of the honeypot.

Since we did not have any reference to start from, our choices were based on
hashtags: we identified three hashtags with broad, medium and specific coverage.
Coverage is a metric that counts the number of posts per hashtag or, to make it
simply, the amount of posts, in a specific day, that contain that particular hashtag in
the caption. This information can be easily retrieved from Instagram itself. Hence,
we chose:

• Food with the corresponding hashtag #food counting 493 million of posts (Broad
Coverage).

• Cat with the corresponding hashtag #cat counting 270 million of posts (Medium
Coverage).

• Car with the corresponding hashtag #car counting 93,2 million of posts (Spe-
cific Coverage).

It should be noted that these numbers are relative to the time the author is writing
this thesis.

3.2.2 Post generation strategy

We have developed four models to generate Instagram posts, each of them with
specific characteristics and algorithms. They can be divided into two categories:
those that generate a new image at the end of the process, and those that use already
existing images for creating the final post. In the next sections each of them will be
explained starting from the generative ones.

InstaModel

InstaModel is a generative model that makes use of machine learning techniques to
generate a new post. Figure 3.1 gives an overview of the process: starting from a post
among the top 25 Instagram posts for a specific hashtag, a new caption is generated
by taking into consideration both the original image and the original caption. The
new generated caption is then used to generate a new image. These two elements
will make the final post that the honeypot will use on Instagram.

3.2. Proposed approach 29

FIGURE 3.1: InstaModel overview.

Object
Detector

Object
Selector

Text
Extraction

Keywords
to text

Text
Refinement

Emoj
Addition

Afeternoon
on the couch
with tabby. 😄
Tabby cats
are adorable!
🐈🥰

Tabby
Couch
Wonderful
Afternoon

TOP 25 POSTS

KEYWORDS EXTRACTION TEXT GENERATION

FIGURE 3.2: InstaModel - caption generation.

Caption Geenration Figure 3.2 depicts the main blocks of this process, which is
composed of two steps: keywords extraction and text generation. As said before,
for generating new captions, both the original image and the original caption are
used. An object detector identifies the objects presented in the image, called classes,
along with the accuracy with which they were identified. These classes are scanned
by an object selector that decides if the specific Instagram post has to be discarded
or not. Since not all the Instagram posts have suitable images for this process, we
decided that if the highest accuracy achieved is not greater than or equal to 0.25,
the post will be discarded. This is to avoid to process images, memes for instance,
that will produce bad results or will affect the final image generation process. If the
image passes this check, the other detected classes are also scanned and only if their
accuracy is greater than 0.5 will they be considered later.

As an example, assume the original post to be the one depicted in Figure 3.2 and
let the detected classes, with the corresponding accuracy, be:

Tabby 0.52
Couch 0.34
Tiger_cat 0.05
Lynx 0.03

Since the highest score obtained is 0.52, the post is not discarded and the other
classes will be checked as well. However, only the first two, "Tabby" and "Couch",
have a precision greater than 0.05 and therefore will be taken into account in the next
steps of the generation process. This additional check is done to avoid considering
objects with a low precision which may affect the quality of the caption generation.
While the original image is processed in the way just explained, the original caption

30 Chapter 3. Methodology

is scanned by a text extraction block to extract nouns and adjectives. Hence, at the
end of these parallel procedures, the result will be a list of keywords which will
become the input of the text generation block.

The text generation block uses these keywords to generate a new caption. The
first step is to combine these keywords with each other in order to make a prelim-
inary sentence. Considering the example described above, the first generated sen-
tence will be:

"Afternoon on the couch with tabby"

This sentence is then refined to make a more complex sentence and, as last step,
emojis are added to give the classical Instagram caption style.

Image Generation The final caption generated after the caption generation block
is then used, as a prompt, to generate the new corresponding image. Once we have
both the new caption and the new image, the Instagram post is completed and ready
to be published.

One detail that we want to highlight is that this model makes a massive use of
machine learning algorithms. Indeed, the state-of-the-art of computer vision, NLP
and image generation models is used for object detection, text generation and image
generation, respectively.

Further examples generated with this model are presented at the end of this
chapter in Figure 3.7.

ArtModel

ArtModel is the second generative model and Figure 3.3 shows its overall structure.
As the name suggests, the images generated through it are of the artistic type. This
model differs from the previous one because the input for the text generation block
is processed in a completely different way: it does not came from Instagram but
it is computed automatically by giving a keyword and random style and medium.
By selecting randomly the style we will set the style of the artistic picture while the
medium will define the artistic support of the picture which can be, for instance, a
painting, a sketch or an ink drawing. Once we have this caption, the image gener-
ation block works exactly the same as the one in the InstaModel. Several examples
generated with this model are presented at the end of this chapter in Figure 3.8.

FIGURE 3.3: ArtModel overview.

3.2. Proposed approach 31

FIGURE 3.4: UnsplashModel overview.

UnsplashModel

UnsplashModel does not belong to the generative group and it uses already existing
images. It takes its name from a popular website of stock images, Unsplash. In
our case, we chose Unsplash because the stock images uploaded on its website are
accompanied with a free to use caption. Actually any type of stock images website
can be used and we chose this one as a general example. Looking at the generic
representation of its structure (Figure 3.4), we can see that, in this case, we do not
have an image generation block since stock images can be used without copyrights
issues. Each image is selected by using a specific keyword, that can be for instance
the topic of the honeypot, and published directly on Instagram. For the caption, the
text generation phase has been substituted with a caption rephrase block that is in
charged of rephrasing the original caption that can be found on the website. This
phase makes use of machine learning model for text summarization and rephrasing.
Several examples generated with this model are presented at the end of this chapter
in Figure 3.9.

QuotesModel

QuotesModel is the last model that we have developed and it is not a generative
one. Even in this case, as the UnsplashModel, it borrows stock images from popular
websites to make the Instagram posts. Looking at the general model in Figure 3.5,
it shares some common trait with the previous model: there is no image generation
process since the image is chosen from a pool of stock images by using a keyword.
However, the difference is that a random quote, from a citation dataset, will be used
as caption for the Instagram post. Several examples generated with this model are
presented at the end of this chapter in Figure 3.10.

3.2.3 Engagement Plan

Once we have chosen the topic of the honeypot and which post generation strategy it
will use, we need a plan to develop and increase the engagement with the users. As
mentioned before, our idea is to make active honeypots that not only publish posts
on Instagram but are able to generate engagement and therefore attract more users.

https://unsplash.com/

32 Chapter 3. Methodology

FIGURE 3.5: QuotesModel overview.

For this reason, we have identified three main engagement plans. They go from the
simplest to the most complex, both in terms of costs and the amount of engagement
that should be generated. Our purpose is to understand which one is more effective
combined with different post generation strategies.

PLAN 0 - CTA/Poll/Quiz PLAN 0 adds call-to-actions (CTA) to the generated cap-
tion trying to encourage users to make actions such as liking the post or sharing it
with their friends. Besides, poll or quiz may be added to the generated caption to
involve users in answering some questions in the comment or to leave their opinions
about a topic. An example of poll and quiz is shown in Figure 3.6.

PLAN 1 - CTA/Poll/Quiz/Spamming In addition to the techniques of PLAN 0,
PLAN 1 makes use also of spamming. Our honeypots, equipped with this engage-
ment plan, leave likes and comments automatically on the top 25 posts for a specific
hashtag. In this context, spamming activity is not intended as the classical spam
that we may encounter on a social network. The comments that they post automat-
ically are comments that resemble the ones of a regular Instagram user and there is
no intention of harming other account with annoying spamming requests. They are
supposed to generate engagement with the owner of most appreciated posts in that
moment, hoping to redirect this stream on our accounts.

PLAN 2 - CTA/Poll/Quiz/Spamming/Buy Follower/ Sponsored Content This plan
combines all the strategies described in PLAN 1, but adds two more paid strategies.
One of this, Buy Follower, is not allowed by Instagram, thus we need to lean on ex-
ternal sites. The idea is to boost the honeypots equipped with this engagement plan
with initial 100 followers that will be then discarded in the analysis phase. This is
because usually users are more prone to generate engagement if the other user has
already some followers. We know that, actually, this strategy does not follow the
Instagram policy and that most of the time is used for malicious purposes. Never-
theless, we want to test even this possibility to understand if it will have some effects
and of which type. The last option is to used the content sponsoring technique pro-
posed by Instagram. It allows specific post to be sponsored for a certain amount of
time, targeting a specific group of users based on gender, age, location and interests.

3.3. Experiment 33

FIGURE 3.6: Poll and quiz examples.

3.3 Experiment

The experiment consists of the deployment of 21 honeypots for at least two months.
The 21 honeypots are grouped in this way: seven of them will be based on the topic
"FOOD", seven are based on the topic "CAT", and finally the last seven honeypots
will use the topic "CAR". For each block of honeypots, there is an internal divi-
sion that takes into consideration which post generation strategy will be used: for
each group, three honeypots will use only generative models (InstaModel and Art-
Model), three honeypots will use only the no generative models (UnsplashModel
and QuotesModel) and one honeypot will use all of the developed models. Further-
more, there is a second internal division among the honeypot belonging to each topic
and to each post generation strategy group, that is which engagement plan they use:
one of the three honeypots will use PLAN 0, one honeypot will be equipped with
PLAN 1 and the last one with PLAN 2. For the honeypot that uses all the models, we
have only PLAN 2. What we obtain is a tree structure in which each leaf represents
a honeypot typology that has different behavior both in terms of post generation
and how to bring engagement. Table 3.1 lists all the honeypots currently running on
Instagram.

The reasoning behind these choices is that we want to understand which combi-
nation is able to obtain the best results. In particular:

• we want to figure out if models based on machine learning techniques perform
better than the ones that do not use them. Or, on the contrary, if a mixed
strategy is more effective.

• we want to find out which combination of engagement plans and post gener-
ation strategies is the one to be preferred over the others.

• we want to understand the audience that each honeypot is able to capture.

All of these considerations made clear that we need both quantitative and qualitative
data. Thus the data collected, for each honeypot, consist of:

• Total number of followers per day;

• Total number of likes per week;

• Total number of comments per week;

• The post with the most number of likes and comments per week;

• Cities and countries of followers for whom we have demographic data;

• The gender and age distribution of followers for whom we have demographic
data.

34 Chapter 3. Methodology

TABLE 3.1: Honeypots deployed

Name Topic Post Generation Strategy Engagement Plan

h1_cat_ai_0 cat InstaModel + ArtModel PLAN 0
h2_cat_ai_1 cat InstaModel + ArtModel PLAN 1
h3_cat_ai_2 cat InstaModel + ArtModel PLAN 2
h4_cat_no_ai_0 cat UnsplashModel + QuotesModel PLAN 0
h5_cat_no_ai_1 cat UnsplashModel + QuotesModel PLAN 1
h6_cat_no_ai_2 cat UnsplashModel + QuotesModel PLAN 2
h7_cat_mixed_2 cat All Models PLAN 2

h8_food_ai_0 food InstaModel + ArtModel PLAN 0
h9_food_ai_1 food InstaModel + ArtModel PLAN 1
h10_food_ai_2 food InstaModel + ArtModel PLAN 2
h11_food_no_ai_0 food UnsplashModel + QuotesModel PLAN 0
h12_food_no_ai_1 food UnsplashModel + QuotesModel PLAN 1
h13_food_no_ai_2 food UnsplashModel + QuotesModel PLAN 2
h14_food_mixed_2 food All Models PLAN 2

h15_car_ai_0 car InstaModel + ArtModel PLAN 0
h16_car_ai_1 car InstaModel + ArtModel PLAN 1
h17_car_ai_2 car InstaModel + ArtModel PLAN 2
h18_car_no_ai_0 car UnsplashModel + QuotesModel PLAN 0
h19_car_no_ai_1 car UnsplashModel + QuotesModel PLAN 1
h20_car_no_ai_2 car UnsplashModel + QuotesModel PLAN 2
h21_car_mixed_2 car All Models PLAN 2

3.4 Ethical considerations

Classical honeypot, by definition, has no real "user", and thus contains no personal
communications or Personally Identifiable Information (PII) (Dittrich, 2015). On the
contrary, social honeypots may be filled with personal information and potentially
private communications. Unfortunately, this relevant aspect is often not considered
in related researches. For instance, among all the reviewed solutions, just few of
them paid attention to this research aspect (Lee, Eoff, and Caverlee, 2011, Yang,
Zhang, and Gu, 2014, De Cristofaro et al., 2014). Nevertheless, authors of some of the
them made just an assumption relaying on the fact that since their honeypots do not
interact with users, there is no reason for a legitimate user to be tempted (Lee, Eoff,
and Caverlee, 2011,Yang, Zhang, and Gu, 2014). Only one study (De Cristofaro et al.,
2014) focused on this aspect claiming that they only collected openly available data,
thus no personal information was extracted, and only aggregated statistics were an-
alyzed.

Before starting this work, we decided to carefully analyze this side of social hon-
eypots and take all necessary precautions. Following the approach of (De Cristofaro
et al., 2014), to protect the privacy of every user who interacts with the honeypots,
we are only collecting openly available statistical data with the Instagram APIs, thus
no user can be identified by them. Furthermore, to increase the security of the pro-
cess, only a small number of people have access to the data and all information are
kept confidential and no-redistributed. Upon completion of this study, all collected
data will be deleted. This approach complies with the General Data Protection Reg-
ulation (GDPR).

https://gdpr-info.eu/

3.4. Ethical considerations 35

In addition to the issue of data collection, there is another issue that usually
comes along with social honeypots: the use of deception. At the beginning, users
were not informed that they are interacting with no real accounts for research pur-
poses. This was necessary to understand how users would behave and the effective-
ness of the honeypot itself. Similar to previous works (Quercia et al., 2011; Hanson
et al., 2013), we could not request informed consent to prevent participants from
(in)voluntarily changing their behavior, causing the Hawthorne effect (Franke and
Kaul, 1978). For this reason we will do our best to inform the deceived people at
the end, perhaps by publishing an informative post about the study that has been
carried out.

36 Chapter 3. Methodology

sneaky sneaky 😆 a sneaky tabby cat in a zoo🐈 🥰

ORIGINAL POST GENERATED POST

Up close with a slice
of Cheese Pizza! ❤

A slice of pizza with cheese
 on it 🍕 🙂

I'm not sure if I'm hungry or not 😄

Get ready for the upcoming reveal of the
new Lamborghini Urus! 👀
All we know is that it will feature a new
headlights design, carbon fiber fenders
and hood, with a couple air vents for
better cooling.
Stay tuned for more! 💪

a couple of sports cars with
carbon fiber hoods and air vents
stay cool during the upcoming
season 😄

FIGURE 3.7: InstaModel samples.

3.4. Ethical considerations 37

GENERATED POST

a pencil drawing of a realistic
sushi ✏ 🍣 😀

 a watercolor painting of a funk art
cat 🐈 😃

 a matte painting of a ancient car 🙂

FIGURE 3.8: ArtModel samples.

38 Chapter 3. Methodology

GENERATED POST

 Home made pasta and risotto. 😁❤

 The cat is sleepy. 🐈 😀

There is a big 4x4 car and a beautiful landscape in
the picture, but I don't remember where it was
taken. 🥰

FIGURE 3.9: UnsplashModel samples.

3.4. Ethical considerations 39

GENERATED POST

"If you lose something, do not
worry."

Lailah Gifty Akita

"When one door of happiness closes, another
opens; but often we look so long at the closed
door that we do not see the one which has been
opened for us."
 Helen Keller

"It is in your moments of decision that your
destiny is shaped."
 Tony Robbins

FIGURE 3.10: QuotesModel samples.

41

Chapter 4

Implementation

In this chapter, the project implementation will be addressed in detail in order to un-
derstand the technological dynamics behind the results that will be shown in chap-
ter 5. After an initial brief description in section 4.1 of the technical features needed
for the implementation, section 4.2 will explain the Instagram API chosen, while the
models’ implementation is address in section 4.3. Finally, section 4.4 will delineate
some implementation aspects of the spamming activity.

4.1 Prerequisites

This project is implemented in python 3.7, on a Windows machine with Windows
10 operating system. It makes use of Instagram Graph API to retrieve information
about the honeypot itself and to publish new posts. Moreover, since the four models
are based on machine learning techniques that normally involves a lot of computa-
tional resources, Google Colab with the GPU was used to implement and run all of
them. In the following sections, each aspect of the implementation will be described
in detail.

4.2 Instagram Graph API

There are two types of Instagram API that are Instagram Basic Display API and
Instagram Graph API. The difference between them is that Instagram Basic Display
API allows to get basic profile information together with information about photos
and videos in our Instagram account. Hence, the API only provides read-access
to basic data. On the contrary, as we can read from the official documentation: the
Instagram Graph API allows Instagram Businesses and Creators accounts to manage
their presence on Instagram. The API can be used to get and publish their media,
manage and reply to comments on their media, identify media where they have
been @mentioned by other Instagram users, find hashtagged media, and get basic
metadata and metrics about other Instagram Businesses and Creators accounts. The
API is intended for Instagram Businesses and Creators who need insight into, and
full control over, all of their social media interactions. For this project, therefore, we
have used the latter type of Instagram API.

Long-access Token A Token is needed in order to use this APIs and the procedure
to retrieve it involves Instagram, Facebook and Facebook for Developers platforms.
To be precise, we need to get access to an Instagram Business Account, a Facebook
page connected to that account, a Facebook Developer account that can perform
tasks on that page and a registered Facebook App.

https://developers.facebook.com/docs/instagram-basic-display-api?locale=en_US
https://developers.facebook.com/docs/instagram-api?locale=en_US
https://developers.facebook.com/docs/instagram-api?locale=en_US

42 Chapter 4. Implementation

Obtaining the token requires many steps and several procedures that must be
followed carefully. Since this token is the building block for the development of
all other parts of the project, we will try to be as precise as possible in explaining
how to recover it. Therefore, the first thing to do is to register on Instagram, create
a regular account and then switch it to a Business account. Note that there are two
possibilities we can choose from: Business Account or Creator Account. For the kind
of experiments we will be doing, Business is the one that needs to be chosen. Once
we have the Instagram Business account, we need to register on Facebook, create
a new page and, in the settings, link this page with the newly created Instagram
Business account.

At this point, we can login in Facebook for Developers platform and register a
new Facebook App. In the settings of this new App, two components has to be
added: Facebook login and Instagram Graph API. We can add these products from
the App Dashboard. After all these steps, the User Access Token can be obtained
through the exploration tool for API graph that can be found among the tools pro-
vided by Facebook for Developers. Notice that, to perform the tasks implemented
in this project, the Facebook App needs these permissions:

• read_insights;

• pages_show_list;

• instagram_basic;

• instagram_manage_comments;

• instagram_manage_insights;

• instagram_content_publish;

• groups_access_member_info;

• instagram_manage_messages;

• pages_read_engagement;

The last step before being able of using the Instagram Graph API is to retrieve
the id of the Instagram Business account. For this purpose, the id of the Facebook
page linked to the Instagram Business account is needed and can be found in the
settings of the Facebook page itself. The API for recovering the Instagram account
id is:

https://graph.facebook.com/{graph-api-version}/{facebook-page-id}?
access_token={your-access-token}&fields=instagram_business_account

in which the graph api version, for instance v13.0, the Facebook page id and the
user access token has to be inserted.

Once we have the Instagram account id, we can start to use all the Instagram
Graph APIs. Actually, to be as precise as possible, the access token that we have
obtained with this procedure has an expiration date. For this reason, we suggest to
request the long-term access token:

https://graph.facebook.com/{graph-api-version}/oauth/access_token?
grant_type=fb_exchange_token&client_id={app-id}&client_secret={app-secret}
&fb_exchange_token={your-access-token},

4.2. Instagram Graph API 43

where the parameter needed are the client id of the Facebook App, the secret key
of the Facebook App, and the access token that we have up to now. The client id and
the client secret can be found in the App Dashboard, on Facebook for Developers
platform.

At the end of all this procedure, the Instagram Business account id and the long-
term access token will be the two values that will be used in the subsequent API
calls implemented in this project. The last thing to note is that, from now on, we will
refer to the Instagram Business account created as "honeypot" to be consistent with
the terminology used so far.

GET APIs Several GET APIs are used in this project, for instance to get basic infor-
mation about the honeypot, a specific published media, or about hashtags.

Among all the basic honeypot information that can be retrieved, there are the
follows count and the followers count. These values are used to understand if the
number of follows and followers increases daily, remains stable or decreases. At the
same time, there is a variety of information that can be recovered from a specific
published media, but what we are most interested in is the count of likes and the
count of comments. These values are used to understand the weekly honeypot trend
in terms of the total amount of likes and comments.

Finally, as a last useful information for the implementation of the project, we
have also collected some statistics on hashtags. In general, the Instagram Graph API
allows us to search for the 25 most popular media and the 25 most recent media for a
specific hashtag. We used these two API calls to understand which hashtags, for the
corresponding topic of the honeypot, are the most used on Instagram and to study
the hashtag trend for the 5 most used hashtags in general.

POST APIs Besides the GET APIs, this project makes use also of POST APIs since a
honeypot should be able to publish content automatically on Instagram. The official
documentation provides some limitations for using these POST APIs:

• Instagram Creator accounts cannot use them. This is the reason why a Business
account is needed.

• Accounts are limited to 25 API-published posts within a 24 hour period.

• JPEG is the only image format supported.

• Stories are not supported.

These limitations make clear why we made some implementative choices such as
our honeypot only makes posts and not stories and, additionally, all the images gen-
erated by our models are converted into JPEG. Actually, there is another limitation
with this procedure: images have to be hosted somewhere. More precisely, the im-
age cannot be stored in a local computer and then used as parameter but needs to be
reachable by an URL. Publishing a post on Instagram requires two steps: first create
a container for the post, and second use the container id to publish. The container is
created in this way:

https://graph.facebook.com/v5.0/{ig-user-id}/media?image_url={image-url}
&caption={caption}&access_token={access-token}

As we can see, it requires two parameters besides the access token and the In-
stagram account id, which are the URL of the image and the caption. To overcome

44 Chapter 4. Implementation

this problem, we relied on Discord. Discord is a VoIP social and instant messaging
platform where a User can create what is called a "server". A server is a collection
of persistent chat rooms and voice channels that can be accessed through invitation
links. What convinced us to incorporate Discord into the project is that, firstly, it has
a Python library and API that can be easily integrated, and secondly, every time an
image is uploaded to a server, the return value will be precisely its URL. For these
reasons, we have created a Discord server and implemented a Discord bot which is
in charge of uploading photos to this server. Once the bot is done, the returned URL
will be used for posting to Instagram.

Given the image URL and the caption generated by our models, we can use the
aforementioned POST API for obtaining the container id (also known as creation id)
and then use it to publish:

https://graph.facebook.com/v13.0/{ig-user-id}/media_publish?creation_id=
{creation-id}&access_token={access-token}

As a final consideration, to avoid overloading Instagram with too many posts,
we have decided that each honeypot will publish two posts per day, one in the morn-
ing and one in the evening. Since this project has to manage 21 honeypots, which
means 42 posts each day, we have implemented also a python scheduling script that
automatically assigns each post to be published, for each time slot, to each honey-
pot. Then, a second python script is used to publish all posts, for all honeypots, as
needed.

Insights Insights are Instagram Graph APIs to get social interaction metrics for an
Instagram user or an Instagram media like an image, a video or a carousel.

As for the information for an Instagram user, the user must be a Business or Cre-
ator account in order of being able to use insights on it. In fact, they cannot be used
to retrieve information on regular users. For this reason, we have implemented these
API calls on our own honeypots to retrieve information about the cities, countries,
gender and age of the audience for which demographic data are available. Notice
that for having demographic data, at least 100 followers are needed.

For the media insights, they represents social interactions on a specific media
object. In particular, it is possible to have information about the engagement that
is the sum of likes, comments and saved on a specific photo or the total number of
unique Instagram accounts that have seen the specific media object.

4.3 Models Implementation

Once the Instagram APIs have been set, the next step of the project was to imple-
ment the four models for generating posts: InstaModel, ArtModel, UnsplashModel
and QuotesModel. All of them have different characteristics but, at the same time,
share some common functionalities such as adding emojis to the generated caption,
append CTA/poll/quiz when needed and selecting the hashtag to be used in the
post. For this reason, these shared functionalities will be explained before of the
actual implementation of the four models.

Shared functionalities As said before, one of the shared functionalities is adding
emojis to the generated text. This python script scans the generated caption trying
to find out if there are words that can be translated with the corresponding emoji. If

https://discord.com/

4.3. Models Implementation 45

this is the case, then the corresponding emoji is added at the end of the correspond-
ing sentence. To make this script more effective, it looks also for synonyms of nouns
and adjectives found in the text to figure out if any of them can be correlated to a
particular emoji. As last operation, the script chooses randomly, from a pool of emo-
jis representing the "joy" sentiment, one emoji for each sentence that will be append
at the end of each of them. This pool of emojis has been filled for this project man-
ually by identifying emojis that may represents the sentiment joy like the grinning
face with smiling eyes emoji or the smiling face with heart-eyes. To implement this
script we suggest to use nltk and emoji python libraries(link).

CTA are simple texts that may encourage a user to do actions. These CTA are
sampled randomly from a manually compiled list and then added at the end of the
generated caption. For quiz and poll the idea is to engage with users hoping that
they will give their opinion to the proposed questions. The options in poll and quiz
are chosen randomly from other three lists which contain types of cats, food and
cars, corresponding to the topic of the honeypot.

The last shared feature is the selection of hashtags. As said before, through the
Instagram Graph API we are able to get the first 25 posts for a specific hashtag and
usually the honeypot topic is chosen as the hashtag to search for. From these 25
posts all the hashtags contained in the caption are extracted. This hashtag list is
used to update the csv file which contains all hashtags found up to that day for the
specific topic. As a final result, we have three csv files, one for each topic, which
contain all the hashtags found along with the corresponding number of posts that
have entered that particular hashtag in the caption. All these hashtags are sorted by
the corresponding post number and so each csv file shows all the hashtags related to
the topic, from the most used to the least used. From a high-level perspective, they
show us which are the most popular hashtags for a specific topic and which are, on
the contrary, the most specific hashtags.

Instagram allows to insert at most 30 hashtags in each posts but we think that
this number is too high with respect to the normal user’s behavior. For this reason,
we decided to choose 15 hashtags that are chosen with this criteria: 8 hashtags are
sampled randomly from the first half of the list in the csv file, giving more weight
to the top ones, while the other 7 are sampled randomly from the second half of the
list, giving more weight to the bottom part of the list. The intuition is that we are
selecting the most popular hashtags together with more specific hashtags.

InstaModel Starting from the caption generation, InstaModel uses the Instagram
Graph API to retrieve the top 25 posts for a specific hashtag. In practice, the chosen
hashtag will be the topic on which the corresponding honeypot is based. Once we
have all the 25 posts, they are checked to save only those that have an English caption
before being passed to the object detector block. The object detector is implemented
by using the InceptionV3 model for object detection tasks. The reasoning follows
what has been explained in chapter 3: InceptionV3 detects, in the original image,
the object classes with the corresponding accuracy and if the first’s class score is not
greater than or equal to 0.25, the post will be discarded. Otherwise, the other classes
are checked as well and only if their scores are greater than 0.05 will be considered as
keywords for the next step. Regarding the original caption, nouns and adjectives are
extracted by using nltk python library. Notice that words such as "DM" or "credits"
and adjectives such as "double" or similar, are not considered. This is because they
usually belong to part of the caption that is not useful for this process. We want to
capture the real caption and not sentences like "credits to the owner" or "double tap
if you like this post".

46 Chapter 4. Implementation

Keyword2text is the NLP model that transforms a list of keywords in a prelimi-
nary sentence. This preliminary sentence is then used by OPT model to generate the
complete text. Considering the computational resources available to us, the model
used is OPT with 1.3 billion parameters. Indeed, our project has been implemented
on a free-to-use version of Google Colab that does not allow to have access to faster
GPU/TPU and more RAM, thus preventing us to use larger models.

We suggest to save the text generated by OPT in a file text because it will be
used subsequently to generate the corresponding image. Once we have the complete
generated text, emojis are added by using the python script described above together
with a CTA sentence that is standard in any post. Up to this point, a poll or a quiz
can be added as well. The last step for caption generation is to append hashtags:
they will be chosen by sampling from the corresponding csv file with the reasoning
mentioned above. As last remark for this caption generation phase, the posts are
processed altogether and at the end a summary is made to report all the ones that
has been used successfully.

The last step of InstaModel is image generation and for this purpose Dall-E Mini
(Dayma et al., 2021) is used. The prompt will be the text generated after the OPT
stage, the one that has been save separately. Dall-E Mini first generates four images
that should correspond to the prompt and, from the one that we choose, a better
version of it will be generated subsequently. The better version consists in some
detail refinement or object’s border smoothing or color adjustments. It is relevant
to highlight that the process with Dall-E Mini is not completely automatic. There
should be a person that choose the most suitable image for the giving caption. We
did not have alternatives other than Dall-E Mini for image generation. As explained
in chapter 2, when we have developed these models there were no free use options
of Dall-E 2 or Imagen. The only possibility that gave us acceptable results was Dall-E
mini.

ArtModel ArtModel starts from a prompt generated with a python script and uses
Dall-E mini, like InstaModel, to generate the corresponding image. The style and
the medium are chosen randomly from two lists. Example of styles can be "cyber-
punk", "psychedelic", "realistic" or "abstract" while examples of medium are "paint-
ing", "drawing", "sketch" or "graffiti". The topic of the honeypot is used as sub-
ject of the artistic picture generated by Dall-E Mini. Since Dall-E Mini works well
when the descriptions provided are as precise as possible, we have decided to use
dishes or anything that could represent "food" in more detail rather than the generic
word "food". Even in this case all this type of food are chosen randomly from a list.
On the other hand, for cat and car, we did not make any changes and topics have
been used as they are. Once the image is generated, the prompt, added of emojis,
CTA/poll/quiz and the corresponding hashtags, will be used as Instagram caption.

UnsplashModel UnslashModel does not generate images but uses stock images
retrieved from the Unsplash websites. Unsplash has been chosen not only because
it gives the opportunity to find images together with the relative captions, but also
because it offers API for developers that can be used easily. The only requirement is
to register on the websites and create an App to obtain the corresponding token.

To search for a photo, the GET API requires a query tag, meaning what we are
looking for, and UnsplashModel uses the topic of the honeypot for it. There are
other optional parameters that can be set such as how to sort the photos or which
photos we want based on their orientation (landscape, portrait, squarish). To avoid

https://huggingface.co/gagan3012/k2t

4.4. Spamming 47

reusing the same images more than once, each image’s id is saved in a text file which
will be checked at each iteration. For the caption generation, the original caption is
processed by Pegasus model (Zhang et al., 2019) which is an NLP model quite good
in the rephrase task. As always, emojis, CTA/poll/quiz and hashtags are added to
the final result.

QuotesModel QuotesModel makes use of Pixabay(link) stock images website to
avoid reusing Unsplash even for this model. Pixabay gives the possibility to use
APIs to retrieve images and the only parameter required is the API key that can
be obtained once registered on the website. Even in this case, we use the topic of
the specific honeypot as query tag. There are optional parameters which can be set
such as image type (photo, illustration, vector), orientation, minimum width and
minimum height, etc. As for UnsplashModel, to avoid reusing the same image for
different posts, once we have downloaded the image, its id is saved in a text file
which will be checked every time needed. For the caption generation, a quote is
sampled randomly from a citation dataset(link/cit). In this case, the model does
not add emojis to the text because we think that the quote, by itself, can be a valid
Instagram caption. On the contrary, as always, CTA/poll/quiz and hashtags are
added to the text.

4.4 Spamming

In chapter 3 we have already defined what we mean by spamming: honeypots with
PLAN 1 or PLAN 2 engagement plans will automatically interact with the posts
of other users. The idea is to retrieve the top 25 Instagram posts for the hashtag
corresponding to the specific topic of the honeypot and like and comment each of
them. In practice, the spamming task is performed by a Bot, implemented in python.

For the Bot implementation we used Selenium which is a tool to automates
browsers and it can be easily installed with pip command. Selenium requires a
driver to interface with the chosen browser and in our case, since we chose Fire-
fox, we have downloaded the geckodriver (it can be found here (link)). The Bot is
nothing more than a python class which has four main methods: login, like_post,
comment_post and exit.

The login method is invoked when the honeypot accesses to Instagram. It inserts
username and password and close all the popups that show up when you login,
such has the cookies popup or remember credentials popup. The like_post method
searches, in the DOM, for the button corresponding to the like action and then it
clicks it. The comment_post method searches in the DOM for the corresponding
comment button and then clicks it. Afterwards, it searches for the dedicated textarea
and write a random sampled comment. Finally, it clicks the button to send the com-
ment. The exit method allows the Bot to close the browser and terminate the session.

After describing the general functioning of the Bot, there are several considera-
tions that we want to highlight. First of all each operation needs to be interspersed
with a random amount of time by using for instance a sleep function. This is done
for two reasons: the first one is to give time to the DOM to render each element of
the webpage, second to avoid being detected by Instagram. In fact, Instagram tries
its best to block any kind of spamming activities. Another detail that should be re-
membered is that, when dealing with DOM and more specifically with Instagram
pages, do not use object css classes to identify elements. This classes are often ran-
dom string that may change in a month or two. For this reason, we identified each

48 Chapter 4. Implementation

HTML element thanks to text attribute, such as "Add a comment...", or placeholder
attributes in the HTML div.

49

Chapter 5

Results

The main objective of this thesis is to understand which methodologies and tech-
nologies should be used for developing and managing social honeypots on Insta-
gram. For this purpose, the collected data will be analyzed in this chapter in order
to understand if our initial assumptions were correct or incorrect. To be precise, the
initial hypothesis that we have made are: there will be at least one honeypot whose
strategy will work better than the others, the employed machine learning technolo-
gies can increase the performance of honeypots and, finally, PLAN 2 should be the
preferred engagement plan. These considerations have been done by taking into
account some factors. First, machine learning technologies nowadays have reached
high level results and even if we cannot use the largest models, due to the compu-
tational resources required, the overall generated images are quite good especially
with inanimate objects and artistic pictures. Furthermore, as PLAN 2 also includes
paid strategies, we are convinced that the results with this engagement plan could
be better. About the topic, we do not have any clue on which will be the best one
since it is the first time that an experiment like that is conducted on Instagram.

Hence, this discussion will first describe the results obtained in three weeks from
a general overview and then move on to a deeper analysis to understand exactly
how the experiment is going on. To summarize, the questions that we will try to
answer in this chapter are:

• Are we able to generate engagement with our honeypots?

• After three weeks, is there a difference between all the proposed strategies or
are they all achieving the same results?

• If there is a difference, are we able to identify the best strategy for building
social honeypots on Instagram?

• Is there a significant difference among the four generation models that we have
developed?

• Which type of users our social honeypots are able to attract?

5.1 Quantitative results

1 Are we able to generate engagement with our honeypots?

A general overview of the results obtained by honeypots, after three weeks, is
shown in Figure 5.1. Precisely, these three graphs report the total amount of likes,
comments and followers that honeypots, divided by topic, have earned in three

50 Chapter 5. Results

Generative Models No Generative Models Mixed

Plan 0
Plan 1
Plan 2

Likes
Comments

Followers

Followers+Likes+Comments

(A) Followers, likes and comments for honeypots with topic "FOOD".

Generative Models No Generative Models Mixed

Plan 0
Plan 1
Plan 2

Likes
Comments

Followers

Followers+Likes+Comments

(B) Followers, likes and comments for honeypots with topic "CAT".

Generative Models No Generative Models Mixed

Plan 0
Plan 1
Plan 2

Likes
Comments

Followers

Followers+Likes+Comments

(C) Followers, likes and comments for honeypots with topic "CAR".

FIGURE 5.1: Followers, likes and comments for each honeypot.

5.1. Quantitative results 51

weeks. Just by looking at them, it is clear that our honeypots are capable of gen-
erating engagement, but we need to understand if they have all behaved the same
way or not.

2 After three weeks, is there a difference between all the proposed strategies or
are they all achieving the same results?

By looking at the same graphs in Figure 5.1 we can see that not all of them per-
formed at the same level. There are some honeypots that achieved good results while
others that were not able to reached considerable values especially for the followers
count. For instance, honeypots with PLAN 0 were not able to earned a considerable
amount of followers, while those with PLAN 1 achieved higher numbers. Addition-
ally, there are differences in the total amount of engagement generated depending
on the topic the honeypots are based on. From just this preliminary overview, we
can say that there is a difference among all the strategies implemented and a deeper
analysis is required.

3 If there is a difference, are we able to identify the best strategy for social hon-
eypots on Instagram?

Considering again the same graphs shown previously (Figure 5.1), the general
aspect that is in common to all the three graphs is that the amount of likes is higher
than the amount of comments and followers. An interpretation for this particular
behavior is that for a regular user is easier to give a like to a post, while leaving a
comment or starting following a page involve some more efforts. To be clear, likes
and comments demonstrate that a specific user likes that specific post or wants to
engage with that specific content. Besides, liking requires just a "tap" while com-
menting involves writing something under the picture. On the contrary, if a user
starts following a page, it means that he/she likes the content published by that ac-
count and wants to see more of them, not just one post. If we assign a weight to
these three actions, obtaining a like is less relevant than gaining a new follower and
so we can understand why there was this behavior.

Besides this general aspect, Figure 5.1a reports that, for topic "FOOD", honey-
pots with no generative models performed better than the others. However, if we
consider each honeypot group, PLAN 1 is the engagement plan that has brought
the most engagement, both for honeypots with generative models and no genera-
tive models. The same study has been conducted for honeypots with topic "CAT"
(Figure 5.1b). The first thing that should be noted in this graph is that the amount
of total engagement reached by honeypots with topic "CAT" is higher than the total
engagement reached by honeypots with a broader topic such as "FOOD". However,
this engagement is due mainly to the likes gained during these three weeks, rather
than the number of followers. Indeed, honeypots with "FOOD" gained more fol-
lowers than the ones with "CAT". Furthermore, even in this case honeypots with no
generative models achieved the highest values, with the best result from the honey-
pot with PLAN 1. The last graph in Figure 5.1c shows the engagement generated
by honeypots with topic "CAR". The highest values are reached by honeypots with
no generative models, with the best results for PLAN 1, that is the same trend as the
two previous graphs. The last detail to be highlighted is that even in this case the to-
tal amount of engagement is higher with respect to that reached by honeypots with
"FOOD". Nevertheless, it is less than that reached by honeypots with topic "CAT".

52 Chapter 5. Results

Plan 0
Plan 1
Plan 2

Generative Models
No Generative Models
Mixed

(A) Amount of likes per week for honeypot with topic "FOOD".

Plan 0
Plan 1
Plan 2

Generative Models
No Generative Models
Mixed

(B) Amount of likes per week for honeypot with topic "CAT".

Plan 0
Plan 1
Plan 2

Generative Models
No Generative Models
Mixed

(C) Amount of likes per week for honeypot with topic "CAR".

FIGURE 5.2: Amount of likes gained by each honeypot in each week.

5.1. Quantitative results 53

The results shown in these graphs represent the final total engagement achieved,
after three weeks, by each honeypot. However, we want to estimate how the en-
gagement has changed in this period of time, not only the final result. The idea is
to understand how honeypots, with different strategies, performed in this period of
time by looking at the three weeks separately. In particular, we only consider likes
and followers because they are the two actions that we believe have very different
weights. Starting from likes, Figure 5.2 show the amount of likes gained by each
honeypot, in each week. In particular, Figure 5.2a reports the amount of likes that
each honeypot with topic "FOOD" has earned in these three weeks. The first thing to
notice is that there were more likes in the second week, followed by a slight decrease
in the third week. However, if we look in detail, there is no general trend that allows
us to identify a specific strategy that worked better than others. In general, honey-
pots with PLAN 1 and PLAN 2 achieved higher values without major differences
between generative and no generative models. For honeypots with the topic "CAT"
(Figure 5.2b), it is more evident that those with no generative models and PLAN 1
performed a little better. Even in this case there is no general trend, but the highest
number of likes was gained in the second week while in the third week a general
slight decrease happened. For "CAR" (Figure 5.2c), the difference between the first
week and the subsequent weeks is quite evident. In fact, the amount of likes gained
in the first week is less than in the other two periods. Moreover, if we look at the
general behavior, we can notice that also here honeypots with no generative models
and PLAN 1 performed better than the others.

As said before, we want to understand also how the trends for followers changed
in this period of time and, for this purpose, Figure 5.3 shows the cumulative follow-
ers earned by each honeypot per week. From Figure 5.3a, we can see that honeypots
with "FOOD" have experienced a general increment during the three weeks. This
graph supports the results obtained up to now, namely honeypots with PLAN 1
achieved the best results. Furthermore, the increment is faster than the honeypots
with PLAN 0 and PLAN 2. To be precise, the honeypot with generative model and
PLAN 1 has experienced a very fast increment, ending up to outperform even the
honeypot with no generative model in the third week. Actually, this honeypot is
the one, among all the 21, that earned the highest amount of followers. For "CAT",
Figure 5.3b reports a general increment for honeypots with PLAN 0 and PLAN 1.
Looking only at honeypots with PLAN 1, the no generative ones obtained higher
values than the generative ones. Notice that the honeypot with generative models
and PLAN 2, despite reaching a very high number in the first week, was subject to a
slight decrease during the other two weeks. As last case, Figure 5.3c shows the num-
ber of followers gained in three weeks by honeypots with "CAR" as topic. While in
the previous results, there was a clear trend definition, in this case is not possible to
find a general behavior. Some honeypots decreased the number of followers dur-
ing these three weeks, while other increased. Nevertheless, it should be noted that
honeypots with PLAN 1 and no generative models achieved quite good results.

It seems that PLAN 1 works especially well with no generative models but to
have a deeper insight about each engagement plan, the graphs in Figure 5.4 show
the follower trend for each plan separately. Looking in details, PLAN 0 (Figure 5.4a)
reports a general increment for honeypots with "CAT" and an almost constant behav-
ior for honeypots with "FOOD" and "CAR" as topic. In addition, from these trends
it is clear that honeypots with no generative models performed a little better than
the ones with generative models. Different results can be observed in Figure 5.4b in
which honeypots with PLAN 1 and topics "FOOD" and "CAT" experienced a very
fast increment. On the other hand, honeypots with "CAR" do not seem to report a

54 Chapter 5. Results

Plan 0
Plan 1
Plan 2

Generative Models
No Generative Models
Mixed

(A) Cumulative followers per week for honeypot with topic "FOOD".

Plan 0
Plan 1
Plan 2

Generative Models
No Generative Models
Mixed

(B) Cumulative followers per week for honeypot with topic "CAT".

Plan 0
Plan 1
Plan 2

Generative Models
No Generative Models
Mixed

(C) Cumulative followers per week for honeypot with topic "CAR".

FIGURE 5.3: Cumulative followers per week.

5.1. Quantitative results 55

Food
Cat
Car

Generative Models
No Generative Models

(A) Honeypots with PLAN 0.

Food
Cat
Car

Generative Models
No Generative Models

(B) Honeypots with PLAN 1.

Food
Cat
Car

Generative Models
No Generative Models
Mixed

(C) Honeypots with PLAN 2.

FIGURE 5.4: Followers trend per engagement plan.

56 Chapter 5. Results

relevant behavior. In addition, no generative models achieved better results than the
generative models as in the previous graph.The only exception is for "FOOD" where
the results are reversed. This honeypot seems to contradict the idea that honeypots
with no generative models and PLAN 1 are preferred over generative ones. Looking
at Figure 5.4c, while honeypots with PLAN 1 have seen a general increment, honey-
pots with PLAN 2 seem to remain constant and do not show any type of increment
or decrement as for PLAN 0. There is one honeypot that outperformed the others
that is the one with "CAT" and generative models. However, even in this case its
trend is quite constant.

After this study, it is clear that honeypots with no generative models and PLAN
1, in particular for medium or specific topics, should be preferred over the others.
Still, there is this exception for topic "FOOD" that we cannot define precisely. For
this reason, we performed some statistical analysis in order to have a clear answer
to the main question on which is based this experiment. In particular, we performed
two tests, Three-Way Anova and Tukey. The Three-Way ANOVA test is used to de-
termine whether there is a relationship among variables on an outcome. It is often
used for gaining knowledge of complex interactions where more than one variable
may influence the results. More specifically, it is able to determine whether the vari-
ability of the outcomes is due to chance or to the factors in the analysis. On the other
hand, Tukey test can be used to find means that are significantly different from each
other. It is a pairwise comparison that is able to identify if there is a significant dif-
ference between groups of data. After checking the normality of our samples, we
used these two tests to understand if one factor, among topic, post generation strat-
egy and engagement plan, can influence the results obtained with the 21 honeypots
and in which way. Hence, Table 5.1 shows us the results for the Three-Way Anova
test and it tells us that all the three factors influence the data collected in these three
weeks. Moreover, Table 5.2 reports the results obtained with the Tukey test and it is
now evident how these factors influence the outcome. This last test confirms what
we have seen up to now, namely honeypots with no generative models, PLAN 1
and a medium/specific topic are able to achieved the best results. This also demon-
strates that the honeypot with topic "FOOD", which seemed to contradict the general
results, can be classified as an outlier value that does not change the general conclu-
sions we have reached.

4 Is there a significant difference among the four generation models that we have
developed?

Up to now we have understood that no generative models should be preferred
over generative models. However, these two categories have models that work dif-
ferently from each other. We are interested not only in understanding which strategy
should be preferred over the other but also to identify which model, at Instagram
post level, is able to develop more engagement considering all the 21 honeypots.
If our assumption is correct, one among QuotesModel and UnsplashModel should
result as the best one or, better, the one that is able to gain more engagement in
general. For this reason we have recorded which post obtained more likes and com-
ments in the first, second and third week together with which model has been used
to generate that specific post, for all the 21 honeypots.

Table 5.3 shows the results and, from a preliminary analysis, we can observe that
the highest values were indeed achieved by QuotesModel, followed by Unsplash-
Model. This is perfectly inline with the results obtained in the previous analysis.

5.2. Qualitative results 57

TABLE 5.1: Anova test with three factors: topic, model, plan.
If the P-Value is less than the significance level (0,05) than the factor influences the

data samples.

Source DF Adj SS Adj MS F-Value P-Value
Topic 2 15723 7861,6 7,85 0,001
Model 1 10031 10031,4 10,01 0,003
Plan 2 11582 5791,2 5,78 0,006

TABLE 5.2: Tukey test with three factors: topic, model, plan.
Means that do not share a letter are significant different.

Models N Mean Grouping
No Generative 27 142,667 A
Generative 27 115,407 B

Plan N Mean Grouping
1 18 149,556 A
2 18 121,222 B
0 18 116,333 B

Topic N Mean Grouping
Cat 18 149,556 A
Car 18 129,778 A B
Food 18 107,778 B

However, by observing carefully Table 5.3, we can also understand that, if we con-
sider only honeypots with generative models, InstaModel gained more engagement
with respect to ArtModel. Actually, the values obtained by InstaModel are quite
close with the ones obtained with UnsplashModel. This is an unexpected behavior
that has led us to investigate this aspect in order to understand what is happening.
Thus, to have a better insight, we plotted the four distributions in Figure 5.5 which
shows another relevant result: QuotesModel, UnsplashModel and InstaModel have
quite similar median and shape, in contrast with ArtModel. Furthermore, Quotes-
Model has several higher values that stretch the shape even more. From this graph
we cannot clearly identify which model is the best, perhaps QuotesModel due to its
shape, but we can certainly say that ArtModel is the one that has earned the least
likes and comments and consequently the least appreciated one.

5.2 Qualitative results

5 Which type of users our social honeypots are able to attract?

The Instagram Graph API that we have used in this project allows us to obtain
insight and qualitative results about our honeypots. However, these statistics can be
obtained only if the honeypot has at least 100 followers. This means that we cannot
show now these insights since none of ours honeypots achieved 100 followers in
three weeks. However, we can give some descriptive feature that we have noticed
during this period of time. One of the most interesting and unexpected result is
that, without the premeditate intention of building spammer detectors, the majority

58 Chapter 5. Results

TABLE 5.3: Maximum number of likes and comments, together with
the corresponding model, obtained by each honeypot, per week.

Week 1 Week 2 Week 3

Likes + Comments Model Likes + Comments Model Likes + Comments Model

h1_cat_ai_0 9 ArtModel 9 InstaModel 14 InstaModel
h2_cat_ai_1 13 InstaModel 11 ArtModel 13 InstaModel
h3_cat_ai_2 9 ArtModel 7 InstaModel 9 InstaModel
h4_cat_no_ai_0 10 QuotesModel 16 QuotesModel 11 QuotesModel
h5_cat_no_ai_1 19 QuoteModel 22 QuotesModel 13 UnsplashModel
h6_cat_no_ai_2 13 UnsplahModel 12 QuotesModel 14 UnsplashModel
h7_cat_mixed_2 7 UnsplashModel 9 InstaModel 8 QuotesModel

h8_food_ai_0 7 InstaModel 6 ArtModel 9 InstaModel
h9_food_ai_1 8 ArtModel 11 InstaModel 10 InstaModel
h10_food_ai_2 10 InstaModel 12 InstaModel 16 ArtModel
h11_food_no_ai_0 8 UnsplashModel 10 UnsplashModel 10 QuotesModel
h12_food_no_ai_1 9 QuotesModel 12 UnsplashModel 11 QuotesModel
h13_food_no_ai_2 11 QuotesModel 8 UnsplashModel 10 QuotesModel
h14_food_mixed_2 6 InstaModel 10 UnsplashModel 8 QuotesModel

h15_car_ai_0 7 ArtModel 10 InstaModel 8 InstaModel
h16_car_ai_1 12 InstaModel 10 InstaModel 6 ArtModel
h17_car_ai_2 6 ArtModel 9 ArtModel 12 ArtModel
h18_car_no_ai_0 7 QuotesModel 15 QuotesModel 9 UnsplashModel
h19_car_no_ai_1 7 UnsplashModel 12 QuotesModel 10 QuotesModel
h20_car_no_ai_2 12 QuotesModel 11 UnsplashModel 13 UnsplashModel
h21_food_mixed_2 7 QuotesModel 14 QuotesModel 6 QuotesModel

FIGURE 5.5: Distributions of likes and comments earned by each
model.

5.3. Discussion 59

of comments and requests that we have received were from spammers. All these
spammer accounts shared similar behavior, namely they used specific words such
as "send pic" or "DM me" and were, most of the time, the first comments that we
received after publishing a new post. This may indicate that these bots target the
most recent published posts, perhaps searching by specific hashtags. This side effect
tells us that our honeypots may already be used as spammer detectors.

Due to the lack of information about our followers, we cannot understand com-
pletely which accounts we have attracted and their characteristics. Nevertheless, we
investigated manually the followers earned by the three honeypots with no genera-
tive models and PLAN 1 in order to have an high level overview. In general, about
50% of followers are Instagram pages that has the same topic as ours. For exam-
ple, the followers of the honeypot "CAT" are mostly Instagram pages whose content
consists of cat images/videos. The same has been observed for the other two top-
ics. Despite this trend, there are also some personal accounts, about 40% of the total
amount of followers, that resemble real person having a real interest in cats, cars or
food. As side effect, there are also accounts with an high probability of being fake
accounts/bots but they are fewer with respect to the others two categories, around
10% of the total count.

5.3 Discussion

Contrary to what we expected, these results showed that some of our initial assump-
tions were incorrect. For instance, we thought that machine learning technologies
could make a difference and that paid engagement plans would have generated
more engagement than other plans. However, these assumptions have been con-
tradicted by the results reported in this chapter and, thinking about a possible ex-
planation, we can find several reasons why they were wrong. First of all, perhaps
machine learning techniques are not ready for this type of experiments on Instagram
or maybe the fact that we were forced to use smaller models has affected the final
results. Regarding the engagement plan, perhaps we are losing fake accounts while
acquiring new real followers and this process did not allow these honeypots to rank
up in Instagram algorithms since there is a no clear trend.

we now summarize the outcomes from the different research questions:

1 Are we able to generate engagement with our honeypots?

Yes, our honeypot are able to generate engagement.

2 After three weeks, is there a difference between all the proposed strategies or
are they all achieving the same results?

There is a difference since not all the honeypots performed at the same level in
terms of likes, comments and followers earned.

3 If there is a difference, are we able to identify the best strategy for building
social honeypots on Instagram?

To be effective, a social honeypot on Instagram should:

• Social honeypots’ performance are impacted by the topic chosen.

60 Chapter 5. Results

• simple generative process should be preferred to advanced ones such as gen-
erative models.

• behave as similar as possible to what a regular account would do without the
necessary use of paid strategies.

4 Is there a significant difference among the four generation models that we have
developed?

Yes, using quotes as captions seems to be the best option while artistic pictures
are the less appreciated.

5 Which type of users our social honeypots are able to attract?

From a preliminary study, honeypots were able to attract spammers, other pages
with similar content, and a smaller percentage of real users.

61

Chapter 6

Conclusions

This thesis aims to demonstrate how social honeypots can be used on Instagram and
how to automate them. Social honeypots are intended in this work as Instagram ac-
counts able to lure other users for many different motivations. One of these is to fight
against malicious activities that use Instagram to carried out other more dangerous
attacks. However, it is not so difficult to imagine social honeypots for purposes
that do not belong explicitly to cybersecurity. For instance, they can also be used
to understand how the society is evolving and which are nowadays the interests of
people, or to profile the audience of a company to promote a new product.

The fact that social honeypots have a wide usage options, makes them extremely
flexible and efficient for any needs. However, most of the time they require human
intervention to be managed or to record users’ activities. The research that we have
carried out in this thesis proposes a new way to see at this powerful tool by mak-
ing it completely automatic. In addition, the latest state-of-the-art Machine Learning
techniques were also used in the implementation of these honeypots to understand
whether their use helps in improving their performance or not. To be precise, the
best achieved in Computer Vision, Natural Language Processing and Image gen-
eration techniques has been used to develop content generation strategies able to
generate both the image and the caption needed for the classical Instagram post.

Since it is a totally unexplored way of intending social honeypots, the idea that
led this project from the beginning was to get some answers to many of the ques-
tions that we may ask for. For instance, we wanted to know how a social honeypot
behaves on a Online Social Networks as Instagram and which are the characteristics
that it should have to perform well. We wanted to understand if our assumption
that machine learning could be a plus in this kind of tasks was correct or it is too
premature to use it in this type of scenario. For all these reasons we have developed
21 social honeypots, deployed on Instagram, that are differentiated by the topic on
which they are based, the post generation strategy and the engagement plan.

Three different topics, based on their coverage on Instagram, have been chosen
and four post generation models have been implemented. Two of them are of the
generative type, in the sense that they generate the caption and the final image in an
automatic manner by using machine learning techniques. The other two make use
of already existing images, such as stock images, and modified caption or quotes
to make the classical Instagram post. Three engagement plans have been identify,
starting from the simplest one, which includes standard call-to-actions, to the more
complex one that involves the use of paid strategies such as buying followers or con-
tent promotion. Two of these engagement plans involve also spamming techniques,
meaning that social honeypots are able to leave likes and comments to the other
users’ post in a totally automatic way without the need to spend time on searching
related post or thinking to which comment to leave.

62 Chapter 6. Conclusions

In only three weeks we were able to demonstrate that indeed social honeypots
on Instagram are possible and they can be customized by choosing the appropriate
topic for the specific purpose. Our results have shown that social honeypots with no
generative models and a behavior that resemble that of a normal user, thus posting
content and a simple engagement activity without the help of pay strategies, are
more effective than the others. We also have noticed that these social honeypots
could already be used as spammer detectors.

One detail we want to clarify is that honeypots with PLAN 2 have not yet used
sponsored content. This is because they have only been online for three weeks and
we believe it is too early to implement this strategy. However, this method will be
certainly employed, in the subsequent weeks, to analyse its impact. Furthermore,
as future work, it will be interesting to implement social honeypots equipped with
bigger machine learning models and to try them in different scenarios, maybe with
more complex topics. We would like also to implement additional features and capa-
bilities such as being able to respond to comments automatically or to share stories.

As last consideration, this study was thought to be a long-term study, thus the
21 social honeypots should be active for at least two or three months to have solid
results. This means that the experiments are still going on, during the writing of
this thesis, and will continue even after the official graduation date. This is because
we want to keep analysing the behavior of the different social honeypots as a whole
and understand deeply which factors will influence the final results. With all this in
mind, we just have to conclude by saying that the efforts put in this work have led
to important results, even if still preliminary, which will certainly open up to new
researches and solutions.

63

Bibliography

Alexa (2022). Alexa Top Websites. https://www.expireddomains.net/alexa-top-
websites/. Accessed: 2022-08-30.

Brown, Tom et al. (2020). “Language models are few-shot learners”. In: Advances in
neural information processing systems 33, pp. 1877–1901.

Caverlee, James (2008). “A large-scale study of MySpace: Observations and implica-
tions for online social networks”. In: Proceedings of the International AAAI Confer-
ence on Web and Social Media. Vol. 2. 1, pp. 36–44.

Chowdhary, K. R. (2020). “Natural Language Processing”. In: Fundamentals of Artifi-
cial Intelligence. New Delhi: Springer India, pp. 603–649. ISBN: 978-81-322-3972-7.
DOI: 10.1007/978-81-322-3972-7_19. URL: https://doi.org/10.1007/978-
81-322-3972-7_19.

Chung, Junyoung et al. (2015). “Gated feedback recurrent neural networks”. In: In-
ternational conference on machine learning. PMLR, pp. 2067–2075.

Dayma, Boris et al. (July 2021). DALL·E Mini. DOI: 10.5281/zenodo.5146400. URL:
https://github.com/borisdayma/dalle-mini.

De Cristofaro, Emiliano et al. (2014). “Paying for likes? understanding facebook like
fraud using honeypots”. In: Proceedings of the 2014 Conference on Internet Measure-
ment Conference, pp. 129–136.

Dhariwal, Prafulla and Alexander Nichol (2021). “Diffusion models beat gans on im-
age synthesis”. In: Advances in Neural Information Processing Systems 34, pp. 8780–
8794.

Dittrich, David (2015). “The ethics of social honeypots”. In: Research Ethics 11.4,
pp. 192–210.

Franke, Richard Herbert and James D Kaul (1978). “The Hawthorne experiments:
First statistical interpretation”. In: American sociological review, pp. 623–643.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural
information processing systems 27.

Hanson, Carl L et al. (2013). “Tweaking and tweeting: exploring Twitter for non-
medical use of a psychostimulant drug (Adderall) among college students”. In:
Journal of medical Internet research 15.4, e2503.

He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE international con-
ference on computer vision, pp. 1026–1034.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising diffusion probabilistic
models”. In: Advances in Neural Information Processing Systems 33, pp. 6840–6851.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735–1780.

Hu, Xia, Jiliang Tang, and Huan Liu (2014). “Online social spammer detection”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 28. 1.

https://www.expireddomains.net/alexa-top-websites/
https://www.expireddomains.net/alexa-top-websites/
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.5281/zenodo.5146400
https://github.com/borisdayma/dalle-mini
http://www.deeplearningbook.org
http://www.deeplearningbook.org

64 Bibliography

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning. PMLR, pp. 448–456.

Joshi, Prateek and C-C Jay Kuo (2011). “Security and privacy in online social net-
works: A survey”. In: 2011 IEEE international conference on multimedia and Expo.
IEEE, pp. 1–6.

Karl (2022). The 15 Biggest Social Media Sites and Apps. https://www.dreamgrow.com/
top-15-most-popular-social-networking-sites/. Accessed: 2022-09-11.

Lee, Kyumin, James Caverlee, and Steve Webb (2010). “Uncovering social spam-
mers: social honeypots+ machine learning”. In: Proceedings of the 33rd interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pp. 435–442.

Lee, Kyumin, Brian Eoff, and James Caverlee (2011). “Seven months with the devils:
A long-term study of content polluters on twitter”. In: Proceedings of the interna-
tional AAAI conference on web and social media. Vol. 5. 1, pp. 185–192.

Lin, Tsung-Yi et al. (2014). “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer, pp. 740–755.

Liu, Peter J et al. (2018). “Generating wikipedia by summarizing long sequences”.
In: arXiv preprint arXiv:1801.10198.

Moor, James (2006). “The Dartmouth College artificial intelligence conference: The
next fifty years”. In: Ai Magazine 27.4, pp. 87–87.

Murugan, N Senthil and G Usha Devi (2018). “Detecting spams in social networks
using ML algorithms-a review”. In: International Journal of Environment and Waste
Management 21.1, pp. 22–36.

Nichol, Alex et al. (2021). “Glide: Towards photorealistic image generation and edit-
ing with text-guided diffusion models”. In: arXiv preprint arXiv:2112.10741.

Nisrine, Maqrane et al. (2016). “A security approach for social networks based on
honeypots”. In: 2016 4th IEEE International Colloquium on Information Science and
Technology (CiSt). IEEE, pp. 638–643.

Paperno, Denis et al. (2016). “The LAMBADA dataset: Word prediction requiring a
broad discourse context”. In: arXiv preprint arXiv:1606.06031.

Quercia, Daniele et al. (2011). “In the mood for being influential on twitter”. In: 2011
IEEE third international conference on privacy, security, risk and trust and 2011 IEEE
third international conference on social computing. IEEE, pp. 307–314.

Radford, Alec et al. (2018). “Improving language understanding by generative pre-
training”. In.

Radford, Alec et al. (2019). “Language models are unsupervised multitask learners”.
In: OpenAI blog 1.8, p. 9.

Radford, Alec et al. (2021). “Learning transferable visual models from natural lan-
guage supervision”. In: International Conference on Machine Learning. PMLR, pp. 8748–
8763.

Ramesh, Aditya et al. (2021). “Zero-shot text-to-image generation”. In: International
Conference on Machine Learning. PMLR, pp. 8821–8831.

Ramesh, Aditya et al. (2022). “Hierarchical text-conditional image generation with
clip latents”. In: arXiv preprint arXiv:2204.06125.

Richter, Felix (2022). Social Networking Is the No. 1 Online Activity in the U.S. https:
//www.statista.com/chart/1238/digital-media-use-in-the-us/. Accessed:
2022-09-11.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors”. In: nature 323.6088, pp. 533–536.

https://www.dreamgrow.com/top-15-most-popular-social-networking-sites/
https://www.dreamgrow.com/top-15-most-popular-social-networking-sites/
https://www.statista.com/chart/1238/digital-media-use-in-the-us/
https://www.statista.com/chart/1238/digital-media-use-in-the-us/

Bibliography 65

Sheikhi, Saeid (2020). “An Efficient Method for Detection of Fake Accounts on the
Instagram Platform.” In: Rev. d’Intelligence Artif. 34.4, pp. 429–436.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Sohl-Dickstein, Jascha et al. (2015). “Deep unsupervised learning using nonequilib-
rium thermodynamics”. In: International Conference on Machine Learning. PMLR,
pp. 2256–2265.

Song, Yang and Stefano Ermon (2019). “Generative modeling by estimating gradi-
ents of the data distribution”. In: Advances in Neural Information Processing Sys-
tems 32.

Stallings, William et al. (2012). Computer security: principles and practice. Vol. 2. Pear-
son Upper Saddle River.

Stringhini, Gianluca, Christopher Kruegel, and Giovanni Vigna (2010). “Detecting
spammers on social networks”. In: Proceedings of the 26th annual computer security
applications conference, pp. 1–9.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1–9.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 2818–2826.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural in-
formation processing systems 30.

Webb, Steve, James Caverlee, and Calton Pu (2008). “Social Honeypots: Making
Friends With A Spammer Near You.” In: CEAS. San Francisco, CA, pp. 1–10.

Yang, Chao, Jialong Zhang, and Guofei Gu (2014). “A taste of tweets: Reverse en-
gineering twitter spammers”. In: Proceedings of the 30th annual computer security
applications conference, pp. 86–95.

Zhang, Caiming and Yang Lu (2021). “Study on artificial intelligence: The state of
the art and future prospects”. In: Journal of Industrial Information Integration 23,
p. 100224.

Zhang, Caiming, Xiaojun Xu, and Hong Chen (2020). “Theoretical foundations and
applications of cyber-physical systems: a literature review”. In: Library Hi Tech.

Zhang, Jingqing et al. (2019). PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization. arXiv: 1912.08777 [cs.CL].

Zhang, Susan et al. (2022). “Opt: Open pre-trained transformer language models”.
In: arXiv preprint arXiv:2205.01068.

Zhang, Yihe, Hao Zhang, and Xu Yuan (2019). “Toward Efficient Spammers Gather-
ing in Twitter Social Networks”. In: Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, pp. 157–159.

Zhou, Yufan et al. (2021). “Lafite: Towards language-free training for text-to-image
generation”. In: arXiv preprint arXiv:2111.13792.

Zhu, Yin et al. (2012). “Discovering spammers in social networks”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 26. 1, pp. 171–177.

https://arxiv.org/abs/1912.08777

	Acknowledgements
	Introduction
	Contributions
	Outline

	Background
	Honeypot
	Social Honeypot
	Machine Learning
	Computer Vision
	Inception Network

	Natural Language Processing
	Transformers
	GPT-3

	Image Generation
	Dall-E 2

	Discussion

	Methodology
	Motivation
	Proposed approach
	Topic
	Post generation strategy
	InstaModel
	ArtModel
	UnsplashModel
	QuotesModel

	Engagement Plan

	Experiment
	Ethical considerations

	Implementation
	Prerequisites
	Instagram Graph API
	Models Implementation
	Spamming

	Results
	Quantitative results
	Qualitative results
	Discussion

	Conclusions
	Bibliography

