

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

 CORSO DI LAUREA MAGISTRALE
 IN COMPUTER ENGINEERING

“Machine Learning-based Approaches
for Advanced Monitoring of Smart Glasses”

 Relatore: Prof. / Dott. Susto Gian Antonio

Laureando: Corsetti Rocco

ANNO ACCADEMICO 2022 - 2023

27 Febbraio 2023

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

1

Abstract

With today’s growing demand on productivity, product quality and e↵ective-

ness, the importance of Machine Learning-based functionalities and services

has dramatically increased. Such paradigm shift can be mainly associated

with the increasing availability of Internet of Things (IoT) sensors and de-

vices, the increase of data collected in the IoT scenario and the increasing

popularity and availability of machine learning approaches. One of the most

appealing applications of ML-based solutions is for sure Predictive Mainte-

nance, which aims at improving maintenance management by exploiting the

estimation of the health status of a piece of equipment. One of the main

formalizations of the PdM problem is the prediction of the Remaining Useful

Life (RUL), that is defined as the time/process iterations remaining for a

device component to perform its task before it loses functionality. This work

investigates a possible application of predictive maintenance techniques for

the monitoring of the battery of Smart Glasses. The work starts with the

description of the considered devices, the modalities of data collection and

the Exploratory Data Analysis for better understanding the task. The first

experimental part consists in the application of an unsupervised anomaly

detection technique, useful to initially deal with the partial and unlabeled

data. The last part of the work contains the results of the application of

both classical machine learning and deep learning approaches for the estima-

tion of the RUL of the devices battery. A section for the interpretation of

the machine-learning models is included for both the anomaly detection and

RUL estimation approaches.

2

3

Contents

1 Introduction 8

2 Dataset 12

2.1 ISee Dataset . 12

2.1.1 Data Recording . 12

2.1.2 Data Preprocessing . 18

2.2 Second Platform . 19

3 Exploratory Data Analysis 22

3.1 ISee Preliminary Analysis . 22

3.2 Second Platform Preliminary Analysis 25

4 Machine Learning Background 28

4.1 Formal Definitions . 29

4.1.1 Empirical Risk Minimization 29

4.1.2 Probably Approximated Correct Learning 30

4.1.3 The No Free Launch Theorem 33

4.1.4 Regularization . 35

4.2 Learning Approaches and Tasks 36

4.3 A simple task: Linear Regression 37

4.4 Gradient Based Optimization Techniques 39

4.4.1 Gradient Descent . 39

4.4.2 Gradient Descent Approximations 40

4.5 Neural Networks and Deep Learning 43

4.5.1 Basics of Neural Networks 45

4.5.2 Deep Learning . 48

4.6 Sequential Learning . 51

4.6.1 Gated Units . 53

4.6.2 Convolution . 55

5 Unsupervised Anomaly Detection 58

5.1 Isolation Forest . 58

4

5.1.1 Isolation Forest Application 58

5.2 Anomaly Interpretation . 61

5.2.1 SHAP: SHapley Additive exPlanations 61

5.2.2 DIFFI: Depth-based Isolation Forest Feature Importance 64

5.3 Conclusions on Anomaly Detection 67

6 Remaining Useful Life Prediction: Machine Learning exper-

iments 68

6.1 Introduction to RUL prediction 68

6.2 Setup: Software and Limitations 69

6.2.1 CeRULEo . 69

6.3 Algorithms and Results . 70

6.3.1 Evaluation Metrics . 72

6.3.2 Random Forest . 73

6.3.3 Gradient Tree Boosting 75

6.4 Model Interpretation and Feature Selection 77

6.4.1 Permutation Feature Importance 83

6.5 Final Considerations . 85

7 Advanced Experiments 86

7.1 ISee and Deep Learning . 86

7.1.1 Custom Architectures 87

7.1.2 Well-Known Architectures 88

7.1.3 Final Considerations Isee 89

7.2 Second Platform Advanced Experiments 92

7.2.1 Polynomial-based Predictor 92

7.2.2 Deep Learning Experiments 95

8 Related Works 98

9 Conclusions 104

5

6

7

1 Introduction

With today’s growing demand on productivity, product quality and e↵ective-

ness, the importance of Machine Learning-based functionalities and services

has dramatically increased. Such a paradigm shift can be mainly associated

with the increasing availability of Internet of Things (IoT) sensors and de-

vices, the increase of data collected in the IoT scenario and the increasing

popularity and availability of ML approaches. One of the most appealing

applications of ML-based solutions is for sure Predictive Maintenance, which

aim at improving maintenance management.

Approaches to maintenance management can be grouped into three main

categories which, in order of increasing complexity and efficiency, are as fol-

lows.

• Run-to-failure (R2F) — where maintenance interventions are per-

formed only after the occurrence of failures. This is obviously the

simplest approach dealing with maintenance (and for this reason, it is

frequently adopted), but it is also the least e↵ective one, as the cost of

interventions and associated downtime after failure are usually much

more substantial than those associated with planned corrective actions

taken in advance.

• Preventive Maintenance (PvM) — where maintenance actions are

carried out according to a planned schedule based on time or process

iterations. With this approach, also known as scheduled maintenance,

failures are usually prevented, but unnecessary corrective actions are

often taken, leading to inefficient use of resources and increased oper-

ating costs.

• Predictive Maintenance (PdM) — where maintenance is performed

based on an estimate of the health status of a piece of equipment.

PdM systems allow for advance detection of pending failures and en-

able timely pre-failure interventions, thanks to prediction tools based

on historical data, ad-hoc defined health factors, statistical inference

methods, and engineering approaches.

8

By enabling PdM technologies, many advantages can be envisioned: (1)

PdM minimizes equipment downtime and costs of repairs; (2) PdM can ex-

tend the life of the machine’s component and defers new purchases; (3) PdM

can maximize usage/productivity of a device/system. Moreover, for Origi-

nal Equipment Manufacturers, new services can be enabled thanks to PdM,

leading to a new stream of revenues, more satisfied customers and/or more

efficient service operations. Considering the costs of repair, for example, in

survey [19] it is reported that: ”[...] depending on the industry between 15

and 70 percent of total production costs originate from maintenance activ-

ities” and that: ”[...] about 33 cents of every dollar spent on maintenance

in the US is wasted because of unnecessary maintenance activities”. IBM,

in its report [34], summarized the advantages of maintenance management

systems: ”[...] companies that used computerized maintenance management

systems exhibited an average of:

• 28.3% increase in the productivity of maintenance

• 20.1% reduction in equipment downtime

• 19.4% savings in the cost of materials

• 17.8% decrease in inventory maintenance and repair

• 14.5 months payback time [...]”

Applications of PdM technologies can be found in very di↵erent fields; in

report [34] of IBM, for instance, three examples of real implementations are

presented:

• ”British designer and manufacturer of intelligent lighting and intelli-

gent building solutions, PhotonStar Technology, develops systems that

collect facilities and equipment metrics such as energy use and build-

ing occupancy, encrypts the information and consolidates it for analysis

on the cloud. There, its customers use dashboards to track efficiency,

create predictive maintenance plans and remotely monitor real-time

status.”

9

• ”A Japanese automobile manufacturer uses IoT to model the behavior

of their welding process. It wanted to identify causal factors of failures

and faults and find top predictors of equipment failure. The system

delivers 90 percent prediction of faults with no false positives; 50 per-

cent of the faults are predicted over 2 hours in advance. The company

saved 1.5 hours per fault thanks to advanced prediction.”

• ”A major aircraft manufacturer is using IoT to maintain calibration of

precision assembly tools and improve manufacturing quality. Data from

shop floor tools along with equipment failure data is used in predictive

quality analytics to generate models that identify tools likely to need

servicing. Faulty tools are proactively removed from the shop floor to

be maintained and recalibrated, leading to significant improvements in

manufacturing quality. The solution has enabled a 100 percent payback

within one year — avoiding millions of dollars of rework and months of

production delays by preventing out-of-alignment tools from remaining

in the aircraft production workflow.”

One of the main formalization of the PdM problem is the prediction of

the Remaining Useful Life (RUL). RUL is defined as the time/process

iterations remaining for a device component to perform its tasks before it

loses functionality. RUL can also be defined as the duration (which can be,

for example, in minutes, hours, days of usage or process iterations) from the

current time to the end of the useful life of a component. This estimation

could be exploited to optimize a trade-o↵ between reducing the risk of un-

expected failure risks and increasing the exploited lifetime of a component.

For example, in the event of failure, there is a high cost to repair damaged

parts. For this reason, companies try to prevent failure events before they

happen by performing regular checks on the equipment.

Unfortunately, RUL formalization can be challenging when the available

data is unlabeled or when there are few examples of failures. Indeed, la-

belling is often done manually by human experts and, consequently, requires

e↵orts to obtain the labelled training dataset. Moreover, many devices are,

of course, designed to not fail, making the problem, from a machine learning

10

perspective, difficult to be tackled in some cases. For such reasons, Unsu-

pervised Anomaly Detection can in some cases work better than RUL

prediction because it does not need labeled data and it can still provide

useful information related to the device behavior, by providing a so-called

Anomaly Score that is a quantitative index characterizing if the collected

data are anomalous or not. In this work, some preliminary solutions are

provided to monitor the health of two di↵erent smart glasses platforms, with

a particular focus on the RUL prediction for the battery. First, the data sets

are introduced along the data collection strategies, and an exploratory data

analysis is performed. Then some preliminary analyses are conducted, start-

ing with Anomaly Detection and ending with application of classic machine

learning models; both these parts include a section on machine learning in-

terpretability. The final part of the work consists of advanced experiments,

focusing mainly on deep learning, in which an expanded data set is consid-

ered for the RUL prediction task. The thesis ends with a brief comparison

with the literature and a conclusion on the experiments performed and their

limitations.

11

2 Dataset

In this work, two di↵erent datasets were created and used. The first one

was collected from the ISee platform, the second one, obtained in a second

moment, is based on a di↵erent platform.

2.1 ISee Dataset

Data from the ISee platforms were acquired in real-time, recorded every

minute. Table 1 shows the fields taken into account, most of the features are

acquired through sensors available on the device. At the beginning of the

work, the platforms available for the data recording were five, but unfortu-

nately, during the data collection, three of them ceased to work. After three

months of data collection, it was possible to use other devices for the dataset

creation, for a total of eight working smart glasses. Table 2 reports the num-

ber of cycles collected for each smart glasses: the entries are identified by the

MAC address of the device.

2.1.1 Data Recording

ISee sensors are equipped with a Bluetooth Low Energy (BLE) communi-

cation module that publishes all sensors readings. To create a dataset that

could be used for this task, all the charging and discharging cycles of each

battery were recorded: a charging cycle consists of a complete charge of the

battery, from 0% to 100%, a discharging cycle is the inverse. To record the

data and manage the entire communication between the smart glasses and

the computers, a Python class, called ISee manager, was designed with the

following key functionalities:

• Scan and connection: methods for the scan and discovery of BLE de-

vices; it can automatically filter out all the non-ISee devices. It can

connect to the first ISee found or to a specific sensor if its address is

specified in input

12

Feature Description

address address of smart glasses

acc accelerometer along the x,y and z axes

gyr gyroscope along the x, y and z axes

mag magnetometer along the x, y and z axes

roll longitudinal axis of smart glasses

pitch transverse axis of smart glasses

yaw normal axis of smart glasses

rh relative humidity

temp temperature

uva UVA sensor

uvb UVB sensor

x horizontal position

y vertical position

blueg blue good

blueb blue bad

pressure barometer

worn adherence sensor

battery lvl level of battery (%)

Table 1: Data variables and description

13

Address Number of battery cycles Recording strted

D5:B8:15:AD:01:0D 114 July

F0:53:52:26:FD:2F 117 July

F9:F1:B2:25:B1:B0 7 September

E3:90:78:A9:6F:BA 7 September

E5:FC:6A:55:5E:83 4 September

ED:F2:0E:AF:7C:4C 50 December

E8:22:97:31:0D:4A 50 December

E7:D7:43:C8:22:1E 49 December

E3:38:BA:9F:0F:B0 46 December

E5:2A:C4:7E:F2:F6 39 December

EC:3B:5C:4D:BA:B6 40 December

Table 2: Number of battery cycles collected for each smart glasses.

• Notification management: methods that can start and stop the notifi-

cation flow; they also store the raw data in a bu↵er

• Data decoding: methods for decoding the raw data, formatting it and

saving / returning it

All low-level functionalities are managed with the Python library Bleak.

Since there are two groups of sensors with di↵erent frequencies, the data

readings were aggregated by considering the average, maximum and mini-

mum of each feature and combining them in a single reading. The scripts

used for the data recording have a similar structure: they connect to the

sensor and every minute read the data for a few seconds, then aggregate the

reading in a unique sample and wait for the next reading. The first script is

summarized in Algorithm 1

The Algorithm 1 works really well, the connection is stable and the data

recording is flawless, but the fact that the connection is established at the be-

ginning of the script and continued until the end results in a slow discharge:

the sensors take about 9 hours for a discharging cycle. It was noticed that

keeping connecting and disconnecting the sensors results in a battery dura-

14

Input: reading time 10, sample time 60, address: optional

isee Isee manager(address)

to save List()

// Connect to device

isee.find and connect()

while isee.is connected() and isee.is not charged() do

start reading time.time()

isee.start notification()

data isee.read data(reading time)

isee.stop notification()

// Aggregate data

agg data aggregate data(data)

to save.append(agg data)

sleep(sample time− (time.time()− start time))

end

// If charged, disconnect

if isee.is charged() then

isee.disconnect()

end

return to save.as dataset()
Algorithm 1: First ISee record script

15

tion that is almost half with respect the normal one, so, in order to collect

data faster, the script was modified accordingly. However, the modification

brought great connectivity instability: the sensors wrongly disconnected dur-

ing data recording and sometimes it was impossible to reconnect back to

them. To deal with these issues two scripts were created, one that does a

single data reading and one that just calls in loop the first program; in this

way unexpected interruptions of connection do not result in the impossibility

of connecting again to the devices. Algorithm 3 describes the final version of

the scripts.

Input: address, index, device name, reading time 10

isee Isee manager(address)

// Connect to device and read data

isee.find and connect()

isee.start notification()

data isee.read data(reading time)

isee.stop notifications()

// Disconnect and save data

isee.disconnect()

agg data aggregate data(data)

agg data.to csv(”Partials {device name}/partials {index}.csv”)
Algorithm 2: Script for single reading

16

Input: address, device name, charging False, timeout 180

index 0

timeout res False

while timeout res is False do

// Call the single recording script

cmd single reading(address, index, device name)

timeout res subprocess(cmd, timeout)

// If charging stop after some cycles

index index+ 1

if charging & index ≥ K then

break

end

end

// Process partial readings

partial list get partials(”Partials {device name}”)
return aggregate(partial list).as dataset()

Algorithm 3: Final script for data recording

17

2.1.2 Data Preprocessing

The recorded data were organized in a typical machine learning matrix, in

which each row is a sample and each column is a feature. The raw features

extracted from the sensors, reported in the table 1, have been enriched with

additional data:

• cycle id is the ID of the battery charge/discharge cycle.

• last 3 cycles is a binary variable that takes a value equal to 1 in the

last three cycles before the smart glasses stop sending data, 0 otherwise.

• profile time is the time required in a specific cycle for the charge/discharge

of the battery.

• RUL is the target variable of the data set, calculated according to

some assumptions that are better described later.

The above features have been designed under the hypothesis that, in or-

der to detect a degradation of the battery, sequences of charging/discharging

cycles could be particularly informative; in particular, a decrease of the du-

ration of the battery over time was expected.

18

2.2 Second Platform

In addition to ISee, a second platform was built, designed specifically for the

predictive maintenance task applied on the batteries. The di↵erences with

respect to the ISee are:

1. A higher battery capacity (80 mAh versus 47 mAh of ISee).

2. The possibility of choosing the discharge load attached to the batteries

to simulate di↵erent usage conditions.

3. Di↵erent sensors, designed for battery monitoring.

The data set is composed of the features reported in Table 3.

Feature Description

V batt battery voltage

V cc circuit voltage supply

T soc temperature of recording board

T imu temperature of the IMU

T ntc temperature of the battery

Flag flag that states if the battery is charging or discharging

I discharge discharging current

acc accelerometer along x,y,z axis

LED to tune the discharge load

Battery ID Id of each battery

Table 3: Features of the second platform

The data of the second platform have been recorded from December.

The data recording is done automatically by dedicated hardware; when the

storage of the recording board is full, the data can be read and used. Given

the automatic data recording process, it was possible to collect way more

battery cycles than the one collected for the ISee in much less time; table 4

contains the recorded cycle for each battery.

19

Battery ID Number of battery cycles

E597 311

D4CC 318

D2E9 255

BD7A 286

667D 311

593A 224

511A 245

4A71 310

Table 4: Number of cycles collected for the second platform

The preprocessing step for these data consists of the separation and in-

dexing of the charge and discharge cycles, a step implemented with a custom

algorithm, described with Algorithm 4, which identifies the di↵erent cycles

considering the peaks in battery voltage. After the separation, for each cycle,

a couple of additional measures were computed:

• Profile time: time for charging or discharging, obtained considering

a sample time of 60 seconds.

• Capacity: capacity of the battery in the cycle, obtained by integrating

the discharging current measured in the specific cycle.

Both variables added were expected to show signs of degradation over time.

20

Input: data, tolerance 0.1, max distance 10,

min cycle len 5

// Take points close to the peaks

max points List()

min points List()

for d 2 data do

if d[”V ”] > data[”V ”].max() ⇤ (1− tolerance) then

max points.append(d)

end

if d[”V ”] < data[”V ”].min() ⇤ (1 + tolerance) then
min points.append(d)

end

end

// Clusterize according to max distance between indices

max centers cluster(max points,max distance)

min centers cluster(min points,max distance)

// Divide cycles: a cycle is between 2 peaks

cycles divide cycle(max centers,min centers)

// Label cycle as charging or discharging

for c 2 cycles do

if c[”V ”].begin() < c[”V ”].end() then

c.label ”charging”

end

else

c.label ”discharging”

end

end

// Add index according to cycle label

add index(cycles)

return cycles.as dataset()
Algorithm 4: Cycle separator

21

3 Exploratory Data Analysis

This section focuses on presenting the results of the Exploratory Data Anal-

ysis (EDA) of the data set, considering, in particular, the relationships be-

tween the various device sensors. Simple EDA approaches, such as data

visualization and correlation analysis, are typically e↵ective to make simple,

but important choices, such as feature selection, and to gain useful insights

on the problem at hand.

3.1 ISee Preliminary Analysis

As initial analysis, it is interesting to evaluate the correlations between dif-

ferent sensors; it can be particularly useful to perform an initial selection of

features: the correlation highlights those features that behave similarly and

are somehow repetitive, and those measures that seem linked to the feature

to predict. In Figure 1 the pairwise Pearson’s correlations between the aver-

age aggregations of di↵erent features are reported. It’s worth noticing that

there is a negative relationship between the battery level and relative hu-

midity, while the coefficient value between temperature and battery level is

positive and, consequently, an increase of battery level leads to the increase

of temperature.

Another aspect that has been deepened is the fact that the duration of

the battery should decrease with time, as is possible to see in Figure 2: the

discharge times, in Figure 2a seem to have a stable decreasing tendency, while

the charging times, in Figure 2b, seem to have a less defined behavior.

To complete the exploratory analysis, it is usually useful to plot the sam-

ples in a 2D environment; this could highlight some patterns of the data

and could give an initial idea about the complexity of the task. There are

di↵erent ways to reduce a data set from R
n to R

2, a common one being

Principal Component Analysis (PCA). PCA is a dimensionality reduction

technique that can be useful for providing a better overview of a multidi-

mensional dataset; PCA is a way to summarize a large number of features

into a smaller set of dimensions, called principal components. The obtained

22

Figure 1: Heat map of Pearson’s correlation coefficient between the aggre-

gated features.

principal components are linear combination of the features that should pre-

serve the data variability as much as possible. In Figure 3 an example of 2D

PCA applied to a single ISee device is reported. The di↵erent colors highlight

the distribution of the cycles in the PCA space.

Figure 3: 2D PCA plot of a single ISee device

23

(a) Duration of discharge cycles within the time

(b) Duration of charge cycles within the time

Figure 2: Analysis of the relationship between duration of battery and time.

24

3.2 Second Platform Preliminary Analysis

For the second platform, an EDA similar to the one implemented for ISee

is performed. The correlation analysis, shown in Figure 4, does not high-

light any strong correlation between the sensors, except for the temperatures,

which are quite correlated. In Figure 5 it is possible to see a 2D PCA plot of

all the batteries of the second platform; it is clear that the batteries behave

in similar ways and it can also be noticed that the distribution of the cycles

seems to have a well-defined pattern.

Figure 4: Pearson’s correlation between features

To better evaluate the degradation pattern, battery capacity and dis-

charge time are considered. In Figure 6a the discharge time of a couple of

batteries is plotted; it is possible to see that it tends to decrease as the cycles

increase. In Figure 6b, instead, the plotted value is the capacity, that clearly

decreases over time.

25

(a) PCA of all batteries, each color is a di↵erent battery

(b) PCA of all batteries, each color is a cycle

(c) PCA of a single battery, each color is a cycle

Figure 5: PCA plots of second platform

26

(a) Discharge time of a couple of second platforms

(b) Capacity of a couple of second platforms

Figure 6: Relationship between duration of battery, capacity and time

27

4 Machine Learning Background

Machine Learning (ML) is the branch of Artificial Intelligence that studies

how to teach a computer to learn from its experience. The process of learn-

ing consists of the transformation of experience into new knowledge. When

considering a machine, the goal of ML is to extract from the input data, rep-

resenting the experience, some kind of knowledge that can be used to create

a program capable of performing a specific task. 1. Machine learning is very

useful in a lot of di↵erent scenarios; it is quite e↵ective, in particular, when

the task to be solved is very complex or when adaptability is needed:

• Task too complex to code:

– Tasks performed by humans : for example driving or walking, so

tasks that are quite common for living entities, but still are very

difficult to be mathematically described or implemented in a com-

puter program.

– Task too complex for humans : for example, tasks that involve the

analysis of large amounts of complex data, in which the capabili-

ties of a machine clearly outperform those of a human one.

• Adaptability: one of the main drawbacks of classical coding is that

the program, once written and installed, will remain unchanged. In

practice, however, there are a lot of fields that evolve over time. Ma-

chine learning can be built to adapt to those changes autonomously.

1An extensive treatment on Machine Learning theory can be found in the book ”Un-

derstanding Machine Learning” [6]

28

4.1 Formal Definitions

In this section, some formal models for learning are presented and briefly

analyzed; the discussion starts with simpler and restricted models, then it

concludes with a formal definition that most correctly describes the learning

task.

4.1.1 Empirical Risk Minimization

An initial definition of a learning task would be the Statistical Learning

model; it consists of 6 ingredients:

1. Domain set X: set of all possible objects to make predictions about.

Usually, a point ~x 2 X is represented as a vector of features.

2. Label set Y: set of all possible labels.

3. Training data: S = {(~x1, y1), ..., (~xm, ym)|(~xi, yi) 2 X ⇥ Y }

4. Learner’s output h: also called predictor, it is the function h : X 7!
Y .

5. Data-generation model: all data are generated according to a prob-

ability distributionD and labeled according to the function f : X 7! Y .

Both D and f are not known by the learner.

6. Measure of success: probability that the predictor does not predict

the correct label on a random data point generated by the distribution

D. Usually, to measure the performances, a measure of failure, called

loss, is used.

Given these ingredients, the Empirical Risk Minimization (ERM) frame-

work aims to find the predictor h
⇤ that minimizes the loss over the entire

distribution D, i.e. the predictor that returns the least possible number of

bad predictions. Since that D is not known, ERM tries to achieve its goal

by minimizing the training loss, that is the measure of the errors of the pre-

dictor on the training set S. Even if this approach seems quite e↵ective, in

29

practice it will probably fail: by minimizing the training loss it is likely that

the found predictor will perform incredibly well over the training data, but

quite bad on other unseen data. This phenomenon is called Overfitting.

A common approach to deal with overfitting is to reduce the possible

choices of the predictor h to a specific set H of finite dimension: the fact that

the set is finite reduces the possibility of finding a predictor that perfectly

represents the training data, but, on the other hand, it also reduces the

possibilities of finding the best general predictor. Given the restriction on

H, there are now two assumptions that are needed to make learning possible:

• Realizability: there exists h
⇤ 2 H such that the loss of h⇤ given D

and f is 0.

• Independently and Identical Distributed (i.i.d): all samples in

the training set are i.i.d according to D.

In the next section it will be explained if it is now possible to learn h
⇤ 2 H.

4.1.2 Probably Approximated Correct Learning

The Probably Approximated Correct (PAC) learning derives from the follow-

ing considerations: since the training set derived from D can only capture a

part of the distribution, the predictor can only be:

• approximately correct

• probably correct

A simplified version of the PAC learning theorem is the following:

Theorem (Simplified PAC Learning) Let H be a finite hypothesis class.

Let δ 2]0, 1[, ✏ 2]0, 1[and m 2 N such that m ≥ log(|H|/δ)
✏

. Then for any

f and any D for which the realizability assumption holds, with probability

≥ 1− δ we have that for every ERM hypothesis hs it holds that LD,f (hs)  ✏,

where LD,f is the loss according to D and f.

30

This simplified PAC learning theorem states that, if there are enough

samples given a hypotheses class H, it is possible to find a predictor that is

probably (according to δ) a good approximation (according to ✏). In practice,

however, the assumptions on which this theorem is based are too strong:

• The realizability assumption usually does not hold.

• It is more realistic to consider the labeling function as non-deterministic.

The non-deterministic labeling function can be formalized as follows: con-

sider D a probability distribution over X ⇥ Y . D is a joint distribution over

the sets of points and labels; it can be seen as a composition of 2 distributions:

• D~x is the marginal distribution over data points.

• D((~x, y)|~x) is the conditional distribution over labels for each data

point.

Given this relaxation, now the label y of point ~x is obtained according to the

conditional probability P [y|~x].
The second component of the statistical learning that needs to be deep-

ened to better apply the PAC learning in practice is the concept of loss

function:

Definition (Loss Definitions) Given any hypotheses set H and some do-

main Z, a loss function is any function l : H⇥Z 7! R+. From this definition,

we can formalize:

• Risk function: expected loss of hypotheses h 2 H with respect to D

over Z. LD(h) = Ez⇠D[l(h, z)]

• Empirical risk: empirical loss on a given sample S = {z1, ..., zm} 2
Z

m. Ls(h) =
1
m

P
m

i=1 l(h, zi)

Finally, the Agnostic PAC Learning theorem for generalized losses can be

defined:

31

Theorem (Agnostic PAC Learning for Generalized Losses) A hypoth-

esis class H is agnostic PAC learnable with respect to a set Z and a loss

function l : H ⇥ Z 7! R+ if there exist a function mH : (0, 1)2 7! N

and a learning algorithm such that for every ✏, δ 2]0, 1[, for every distri-

bution D over Z, when running the learning algorithm on m ≥ mH(✏, δ)

i.i.d examples generated by D the algorithm returns a hypothesis h such

that, with probability ≥ 1 − δ over the choice of the m training examples:

LD(h)  min
h
02H LD(h

0
) + ✏, where LD(h) = Ez⇠D[l(h, z)]

It is worth noticing that the formalization of the PAC learning by Leslie

Valiant was met with a Touring award in 2010.

The function mH : (0, 1)2 7! N determines the sample complexity of

learning H, i.e., it determines the minimum dimension of the training set

needed for a PAC solution. mH is a function of ✏ and δ, the accuracy and

confidence parameters, but it also takes into account H. Given that there

are multiple functions that satisfies the definitions of PAC learning, mH is

to be considered the minimum function that satisfies the requirements.

Corollary Every finite hypothesis class H is learnable with sample complex-

ity mH  d log(|H|/δ)
✏
e

32

4.1.3 The No Free Launch Theorem

Given the formalization of PAC learning a question might arise: is it possible

to implement an algorithm A that, given the training set S, always returns

the best predictor h
⇤ for any possible distribution D? The No Free Launch

Theorem answers this question:

Theorem (No Free Launch Theorem) Let A be any learning algorithm

for the task of binary classification with respect to the 0-1 loss over a domain

X. Let m be any number smaller than |X|
2 , representing the size of the training

set. Then, there exists a distribution D over X ⇥ {0, 1} such that:

• There exists a function f : X 7! {0, 1} with LD(f) = 0.

• With probability of at least 1
7 over the choice of S ⇠ D

m we have that

LD(A(S)) ≥ 1
8 .

Note that there are similar results for other learning tasks.

The No Free Launch Theorem proves that it cannot exists a learner that

always succeed on every task, which means that, considering a learner, there

will always be a task in which it returns a predictor that performs worse than

another predictor found by another learner.

A corollary of the No Free Launch theorem states that:

Corollary Let X be an infinite domain set and let H be the set of all func-

tions X 7! {0, 1}, then H is not PAC learnable.

This corollary, in combination with PAC learning, highlights a trade-o↵:

• The cardinality of H should be large enough to include the predictor

with the least achievable loss.

• H cannot be the set of all functions in a given domain, otherwise learn-

ing will fail.

So it is important to choose a hypothesis set big enough in order to find

a good model, but small enough in order to prevent overfitting. A better

33

Figure 7: Complexity trade-o↵

analysis of this trade-o↵ can be performed by decomposing the loss. When

considering the predictor hs and its loss LD(hs), it is possible to rewrite

the loss as the sum of two terms: Ld(hs) = minh2HLD(h⇤) + LD(hs) −
minh2HLD(h⇤) = ✏app + ✏est

• ✏app = minh2HLD(h⇤) is the approximation error, the best achiev-

able error considering H: it is unavoidable and derives from the choice

of H. Increasing H is the only way to reduce it. A large approximation

error means that the chosen hypothesis set is not powerful enough to

approximate D, this is called underfitting.

• ✏est = LD(hs) −minh2HLD(h⇤) is the estimation error, the error of

the current hypothesis considering the best possible predictor in H: it

comes from the inability to find the best model in H; decreasing the

cardinality of H is the only way for reducing it. A large estimation

error means that the model is too powerful, fits the training data too

well, but cannot generalize, producing overfitting.

A visual representation of this trade-o↵ is reported in Figure 7

34

4.1.4 Regularization

In practice, control over the choice of H may not be sufficient to correctly

manage the overfitting problem, so other learning paradigms, such as Reg-

ularized Loss Minimization (RLM), were proposed.

The idea of this di↵erent learning paradigm is to better manage the trade-

o↵ between approximation error and estimation error; to do this, a regular-

ization function is used as penalty for models that are too complex: by setting

a good regularization function it is possible to force the learner to choose a

simpler predictor with respect to the one that ERM would chose; it will have

a worse empirical loss, but it should generalize better.

Definition (Regularized Loss Minimization) Assume that h 2 H can

be defined by a vector of parameters h = (w1, ...wd) 2 R
d and consider a

regularization function R : Rd 7! R, the Regularized Minimization Loss con-

sists in choosing h such that h = argminw(Ls(w) + R(w)), where R(w) is a

measure of the complexity of predictor h.

Two common regularization functions are:

• l1 regularization: R(w) = λ||w||1, where ||w||1 =
P

d

i=1 |wi| is the l1

norm.

• l2 regularization: R(w) = λ||w||2, where ||w||2 =
P

d

i=1 w
2
i
is the l2

norm.

In both these functions, it is possible to balance the trade-o↵ between

approximation and complexity by choosing a good parameter λ: a huge λ

means that the complexity is highly penalized, thus the paradigm will return

a quite simple model; on the other hand, a λ close to 0 means that the

regularization is ”disabled” and the RLM will behave similarly to the ERM.

Figure 8 reports a simple example of regularized vs. non-regularized

learning.

35

Figure 8: Non-regularized (left) vs. Regularized (right) learning

4.2 Learning Approaches and Tasks

Machine learning tasks can be of di↵erent natures and with di↵erent goals,

but it is possible to divide them into some subfields; the relevant classes for

this work are:

• Supervised Learning: it is the most classical way of learning, each

sample of the training set is correctly labeled. The learning algorithm

will return a predictor that approximates the unknown labeling func-

tion. Two classical supervised tasks are:

1. Regression: the labels are in R.

2. Classification: the labels are in a discrete set and represent pos-

sible classes.

Di↵erent losses are used for the di↵erent supervised tasks.

• Semi-supervised learning: It is similar to supervised learning, but

in this case only a portion of the training set is labeled. In practice,

labeling is an expensive operation, so semi-supervised learning can be

quite interesting. A way of dealing with this learning approach is to

train a model with the available labeled data, then use this model

36

to pseudo-label the unlabeled training samples. The pseudo-labeling

should be done according to a threshold on the confidence of the model;

if the threshold is too low the learning will fail.

• Unsupervised learning: In this learning approach no label is avail-

able, the goal of the model is to capture underlying patterns and con-

nections between the data points. The tasks achievable with unsuper-

vised learning are quite di↵erent from the supervised ones, for example:

1. Clustering : group data in clusters such that similar samples are in

the same cluster and dissimilar samples are in di↵erent clusters.

2. Anomaly Detection: find samples in the training set that do not

conform well to other data points.

• Self-supervised learning: it is a type of learning that lies between

supervised and unsupervised; it aims to learn from a data set without

labels (unsupervised learning) while trying to solve a supervised task,

such as classification or regression. It is also useful as pre-training step

for classical supervised tasks, in which case the self-supervision is used

to learn, in an unsupervised way, a good feature representation that

can then be used as input of the supervised model.

4.3 A simple task: Linear Regression

Linear Regression is a very good and basic example of machine learning task;

it is a supervised learning approach in which the hypothesis class H is limited

to the linear models. Mathematically, H is defined as: H = {h~w,b|~w 2 R
d
, b 2

R}. A model of the linear class is: h~w,b(~x) = (
P

d

i=1 wixi) + b, where ~w is the

vector of weights, b is the bias and ~x 2 X ✓ R
d is an input sample. Given ~x,

~w and b, it is convenient to represent the samples in a homogeneous space:

• ~x
0
= (1, x1, ..., xd) 2 R

d+1

• ~w
0
= (b, w1, ..., wd) 2 R

d+1

37

To complete the definition of the learning task it is important to define

the loss that will be minimized according to the ERM framework; a common

choice in regression tasks is the squared loss:

• Loss: l(h, (~x, y)) = (h(~x)− y)2

• Empirical risk function: LS(h) =
1
|S|

P|S|
i=1(h(~x)− y)2

According to ERM, the solution of this task is the learner that better fit

the training set, that is: h⇤ = argmin~wLS(h~w) = argmin~w
1
|S|

P|S|
i=1(h~w(~x)−

y)2. Given the simplicity of the task, the Least Squares Algorithm is able to

solve in a closed form the problem: it considers the gradient of the Resid-

ual Sum of Squared (RSS) derived from the ERM formulation of the task,

then, by forcing the gradient to be equal to 0, the algorithm returns the

best possible predictor. It is an efficient and well defined algorithm, whose

only drawback is the inversion of a matrix coming from the gradient for-

mulation, but this can be solved by considering the pseudo-inverse or other

mathematical tricks.

There also exist algorithms that can solve the regularized version of

the Linear Regression, for example the Ridge Regression Algorithm. Given

the definition of the linear regression task, the ridge regression algorithm

goal is to find the predictor that better fit the training data according

to the regularization function, that in this case is the l2 regularization:

h
⇤ = argmin~w(RSS(~w) + λ||~w||2), where RSS(~w) is the same formulation

of the ERM problem. Even in this case, the predictor can be found in a

closed-form solution, similarly to the Least Squares algorithm. It is worth

noticing that, in this second case, the problem of the inversion of the matrix

does not exist, in fact it can be proven that the regularization factor makes

the matrix always invertible. There are also algorithms that support the l1

regularization, like the LASSO regression.

38

4.4 Gradient Based Optimization Techniques

When considering more advanced hypothesis sets and models, the existence of

a closed-form solution is not guaranteed. Optimization algorithms implement

di↵erent methods for minimizing a complex function; they can be based on

di↵erent mathematical concepts and can be able to find local, and in some

case even global, minima for very di↵erent functions. The most famous

optimizators in machine learning are based on the gradient.

4.4.1 Gradient Descent

The Gradient Descent algorithm (GD) is a general optimization technique

useful for minimizing di↵erentiable functions. It is a rather simple algorithm,

but it works very well and provides some theoretical guarantees that makes it

one of the fundamental block of learning. The GD is based on the definition

of Gradient:

Definition (Gradient) Let f : Rd 7! R be a di↵erentiable function. The

gradient rf(~w) of f at ~w = (w1, ..., wd) is defined as the vector of the partial

derivatives of f , that is: rf(~w) = (@f(~w)
w1

, ...,
@f(~w)
wd

)

The intuition behind the definition is that the gradient is a vector that

points in the direction of the greatest rate of increase of f(~w) according to ~w;

the GD algorithm is exactly based on this intuition and the idea is to move

in the opposite direction of the one pointed by the gradient: the greatest rate

of decrease. The algorithm is reported here 5

Input: ⌘ 2 R+, T 2 N

~w
(0) ~0

for t 0 to T − 1 do

~w
(t+1) ~w

(t) − ⌘rf(~w(t))

end

return ~w
0
= 1

T

P
T

t=1 ~w
(t)

Algorithm 5: Gradient Descent

39

Notes:

• The initialization of ~w(0) is usually a random initialization.

• In Machine learning the function f(~w) is the empirical risk.

• The output can be the mean of the vectors ~w, useful in case of non-

di↵erentiable functions (subgradient), but also the last vector ~w
(T) or

other options.

• The parameter ⌘ is called learning rate, it is used to calibrate the

rapidity of the convergence of the algorithm: a learning rate that is

too small will result in a very slow convergence (the algorithm will

require too much time to fit), but a learning rate that is too high will

result in no convergence at all (the weights will jump between local

minima without been able to reach one). ⌘ can vary according to some

strategies during iterations.

The main drawback of the GD algorithm is its time complexity: the

computation of the gradient considers all samples in the training set, resulting

in an inefficient algorithm when dealing with large datasets. In these case it

is better to rely on approximations of the gradient.

4.4.2 Gradient Descent Approximations

A famous alternative to the GD algorithm is Stochastic Gradient De-

scent, an algorithm that relies on an approximation of the gradient instead

of considering its exact formulation. This allows to obtain a much faster

optimizer that can still be applied in machine learning. It is also possible to

prove that the approximation considered by SGD allows to directly minimize

the true loss LD without the need to consider its estimation, the empirical

loss LS. To minimize the unknown true loss, all that is needed is an esti-

mate of the gradient, so a vector whose expected value is equal to rLD(~w):

rLD(~w(t)) = rEz⇠D[l(~w(t)
, z)] = Ez⇠D[rl(~w(t)

, z)] = E[~vt|~w(t)], where ~vt is

defined as the gradient of the loss with respect to ~w in point ~w
(t). It turns

40

out that the gradient of the loss function in ~w
(t) is an estimation of the gra-

dient of the true loss LD(~w(t)) that can be efficiently computed by sampling

a random point z ⇠ D at each iteration t; since the training set S is, by

assumption, generated by the same distribution D, the sampling can be per-

formed by picking a random point in the training set S. The Algorithm of

SGD is reported here 6

Input: ⌘ 2 R+, T 2 N

~w
(0) ~0

for t 0 to T − 1 do

sample a single data point i 2 S

// Compute gradient of the loss in i

~vt = rl(~w(t)
, (~xi, yi))

// Update weights

~w
(t+1) = ~w

(t) − ⌘~vt

end

return ~w
0
= 1

T

P
T

t=1 ~w
(t)

Algorithm 6: Stochastic Gradient Descent

The SGD is hence much faster than GD, shares similar theoretical guaran-

tees with it and allows for a direct optimization of the true loss. In practice,

though, the approximation of the gradient considering a single data point of

the training set often results in a bad and very noisy estimation, making the

convergence of the algorithm more difficult and the performances of the SGD

not as good as should be in theory. To obtain a better estimation of the gra-

dient, but still in an efficient way, it is possible to use theMini-Batch SGD:

instead of sampling only one point from S, sample a subset of specific size,

the mini-batch, and compute the gradient of the loss for all the points in the

mini-batch; the final gradient is the average of all the computed gradients.

This approach leads to a much better estimation, to a faster convergence and

to the possibility of using greater learning-rates, while remaining efficient to

41

be used in practice. The dimension of the mini-batch can be adjusted con-

sidering the dimension of the dataset. It is worth noticing that this approach

can be easily parallelized, making the algorithm very convenient to be used

with GPUs. This algorithm, described in Algorithm 7, is the base for all the

optimizers used in Deep Learning.

Input: ⌘ 2 R+, T 2 N

~w
(0) ~0

for t 0 to T − 1 do

sample a batch of B data-points from S

// Compute gradient of the loss in the batch

~vt =
1
B

P
B

k=1rl(~w(t)
, (~xk, yk))

// Update weights

~w
(t+1) = ~w

(t) − ⌘~vt

end

return ~w
0
= 1

T

P
T

t=1 ~w
(t)

Algorithm 7: Stochastic Gradient Descent with mini-batches

SGD is still a fundamental optimizer, but it is worth noticing that there

exist more advanced approaches based on mini-batch SGD that exploit other

types of mathematical estimation in order to improve the convergence prop-

erties of the algorithms. The most used optimizer in Deep Learning, for

example, is Adam, a method that implements a quite robust update rule.

Figure 9 shows di↵erent optimization techniques.

42

Figure 9: Comparison of di↵erent optimization techniques

4.5 Neural Networks and Deep Learning

Neural networks (NNs) are currently the most promising machine learning

models in several fields, in particular in Computer Vision and Natural Lan-

guage Processing. Even if the interest for this type of model is rather recent,

neural networks were conceived between 1940 and 1970, but, at that time,

technology was not ready for such advanced predictors. There are mainly

four reasons why NNs are a very good choice in machine learning:

• Performances: NNs can be extremely powerful models that can achieve

very low losses in a lot of tasks.

• End-to-end learning: the classical ML pipeline expects at least an

initial step of feature extraction that should produce informative vec-

torized inputs for the model; this step is usually engineered and super-

vised by humans. With NNs, in Deep Learning in particular, it is the

model itself that learns how to extract the features it needs, without

any type of human supervision. Figure 10.

• Community interest: the research community is very active in this

field and that brings many new ideas, new libraries and new concepts

that keep improving NNs.

43

Figure 10: End to end learning

• Flexibility: thanks to advanced architectures, especially in deep learn-

ing, NNs are very flexible and can easily adapt to very di↵erent kinds

of data, while remaining very powerful predictors.

Along with all these nice properties, there are also some drawbacks that

actually explain why it took so long for NNs to become the famous models

that are now:

• Very complex models: NNs can be very complex models, difficult

to train, difficult to interpret and often not fair.

• Need of huge datasets: NNs need a lot of data to be trained (even if

transfer-learning reduces this problem), this is one of the reasons why

in the past this type of model didn’t work well.

• Need of powerful hardware: the complexity of the model and the

need of huge datasets result in the need for powerful hardware for the

train, such as GPUs. This was another bottleneck in the past.

44

4.5.1 Basics of Neural Networks

The basic block of the NNs is the Neuron, formalized in 1958 by Rosenblatt.

Inspired by human neurons, its formulation resembles what was known about

the brain: a neuron takes in input di↵erent signals, if the signals are strong

enough, the neuron fires an output signal to its connections. The mathemat-

ical formulation of Rosenblatt, the Perceptron is defined as follow:

Definition (Perceptron) n(~x) = σ(
P

n

i=1 wixi) = σ(z), where σ, called

activation function, is the threshold function σ(z) = {1 if z > threshold,

0 otherwise} and ~w is the vector of weights, the learnable parameters that

characterize the input connections.

The problem of the perceptron formulation is the linearity of the activa-

tion function: regardless of the complexity of the model, if all its activation

functions are linear, it will only be able to produce linear decisions (as shown

in the Figure 11). So, in the currently used perceptron formulation, the ac-

tivation function is usually replaced by nonlinear functions, such as ReLU,

Sigmoid, Tanh... Figure 12 shows the structure of the artificial neuron.

Figure 11: Linearity versus non-linearity

45

Figure 12: Artificial Neuron

A Neural Network is just a connection of multiple neurons; in its basic

form, the feedforward neural network, it is a direct acyclic graph organized

in layers: the first layer is the input one, its dimension is equal to the length

of the input vector, the last layer is the output one, its dimension depends

on the task. The middle layers are called hidden layers and, intuitively,

their goal is to perform feature extraction: more hidden layers means more

complex features extracted. Figure 13 shows a feedforward neural network

with 5 layers.

46

Figure 13: Feedforward neural network

A geometrical interpretation on the hidden layer could be the following:

a NN with only the input and output layers (no hidden layers) can express

a space that is an intersection of half-spaces; a NN with an hidden layer,

instead, can express union of intersections of half-spaces. To train a NN,

that is, to learn the weights of its connections, usually GD approximations,

like SGD and Adam, are used; the computation of the gradient is done with

the Backpropagation algorithm, proposed in 1986. It can be proven that a

vanilla NN, one that has only 1 hidden layer, can approximate any contin-

uous function to any desired precision: a NN with 3 layers is an universal

approximators. The fact that a NN can be an universal approximator, how-

ever, does not give any type of guarantee about the feasibility of finding such

approximator: to approximate a specific function, an exponential number of

neurons of the hidden layer could be required. Luckily it has been observed

that the same function can be compactly approximated by a network with

multiple hidden layers: this observation leads to the Deep Learning field.

47

4.5.2 Deep Learning

Deep Learning (DL) not only studies all those networks that have multi-

ple hidden layers, but it also studies particular architectures that implement

mathematical operations that are particularly suitable for some tasks. Nowa-

days DL is almost a synonymous of NNs. Classical deep NNs have usually a

large amount of parameters, due to the full connectivity of the neurons, and

do not exploit well all the information that an input structured in a certain

way could bring in it; for example, when considering images, it is better to

consider a pixel alongside its neighbors than consider it alone: the structure

of the input provides very good additional information that can be exploited

for better predictions. Among the specialized architectures, the most famous

are:

• Convolutional: very suitable for images; the convolution operation

considers a neighborhood of pixel in an image instead of considering

one pixel at the time; moreover, it is implemented with fewer param-

eters than fully-connected layers, but still produces better predictions.

Figure 14 shows an example of 2D convolution.

• Recurrent: very useful when dealing with sequential data; the recur-

rent connection allows the layer to create its output considering not

only the input in the instant t, but also the previous inputs in the

sequence. Figure 15 shows the structure of a recurrent neural network.

In addition to these layers, others were proposed and are currently used,

some good examples are:

• Pooling layer: Useful to reduce the input size by aggregating the

values in a tensor of reduced dimension.

• Dropout layer: Useful to reduce overfitting; deactivates di↵erent ran-

dom nodes at each iteration of the training, forcing the model to be

not too dependent on a specific feature.

• Normalization layer: Useful to normalize the hidden output of the

network. It can bring stability during training.

48

Figure 14: 2D Convolution Operation

Figure 15: Recurrent structure

49

(a) Dropout layer

(b) Max pool layer

Figure 16: Advanced deep learning layers

50

4.6 Sequential Learning

Sequential learning is the subfield of machine learning that studies how to

learn from sequential data, that is, from all these types of data that are

composed of a series of single data points from a multidimensional space.

Sequential data can be found in very di↵erent fields, like Natural Language

Processing (NLP), finance, biology (for example, in DNA sequence analysis),

predictive maintenance and much more. Given the sequential nature of the

data, some additional challenges arise when learning:

• Variable length of sequences: Sequences can have di↵erent sizes,

the model must be able to deal with variable length inputs.

• Long-term dependencies: To analyze a sequence, it is important to

consider the observation at instant t given the previous observations

(t− 1, t− 2...). The model needs memory.

• Maintain information about order: a sequence makes sense only

in its order.

• Parameters sharing: The parameters of the model must be shared

for each sample in the sequence.

Given these additional difficulties, a classical Feed Forward Neural Network

(FFNN) is not suitable for the task: the FFNN cannot deal with di↵erent

length inputs, does not have the possibility of sharing parameters and is

not made to deal with long-term dependencies. The macro-architecture that

was designed to deal with sequences is called Recurrent Neural Network

(RNN), the idea is to process time step t of the sequence by considering what

has happened before by mean of a recurrent relation. The recurrent relation

can be expressed as follows:

Definition (Recurrent Relation) Consider ~xt as the input vector at time

step t and fW a learnable function, the recurrent relation is: ht = fW (ht−1, ~xt),

where ht−1 is the old state of the relation and ht is the current state.

51

In modern DL frameworks, an RNN accepts variable-length inputs in

multiple ways:

• Process one time step at time. E↵ective, but very slow.

• Accept sequences that are reshaped to a unique length.

• Define padding and masking for the sequences to virtually shape them

as unique length input. The padded and masked input will not be

considered by the networks.

Given the recurrent relation, that gives memory to the model, and the

sharing of function fW of the recurrent relation for each sample in the se-

quence, all the requisites for sequential learning are respected. While RNNs

seem promising, there are new problems that arise from the recurrent rela-

tion, in particular related to the training of the model:

• Exploding Gradient: the recurrent structure could lead to very large

values of the gradient; this would compromise learning.

• Vanishing Gradient: the opposite of the exploding gradient, but

much worse. The gradient becomes close to 0 and the model loses its

ability to learn.

The vanishing gradient problem, in particular, makes it really hard for RNNs

to be trained; even if it is possible to alleviate this e↵ect by choosing the right

weights initialization or good activation functions, in practice there was the

need of creating specific architectures that could better manage the long-term

dependencies tracking. The most famous are the gated and convolutional

units.

52

4.6.1 Gated Units

The gated units are particular neurons that implement a modified version of

the recurrent relation designed explicitly for handling long-term dependen-

cies. The more complex recurrent relation is based on gates, that are logical

operators that control how the information flows between the cell states: the

gates decide which part of information to track for long time, for a short

time or to discard. The most famous gated units are the Gated Recurrent

Unit (GRU), represented in Figure 17a, and the Long Short Term Memory

(LSTM), represented in Figure 17b. Both types of cells have auxiliary mem-

ory that is managed by the gates. Given a sample point of the sequence at

instant t, x<t>, and the memory of the cell at instant t− 1, c<t−1>, the GRU

manages the sequence in the following way:

1. Compute the current state of the cell: c̃<t> : f(c<t−1>
, x

<t>)

• c̃
<t> = tanh(Wc[Γr ⇤ c<t−1>

, x
<t>] + bc)

• Γr is the reset gate: it decides how much of the old memory to for-

get in the generation of the new state. Γr = σ(Wr[c<t−1>
, x

<t>] +

br)

2. Compute the final state at time t, c<t>, by combining the current and

previous memory

• c
<t> = Γu ⇤ c<t> + (1− Γu) ⇤ c<t−1>

• Γu is the update gate: it decides the percentage of old and new

memory that will contribute to the final state of the cell. Γu =

σ(Wu[c<t−1>
, x

<t>] + bu)

3. Finally compute the output of the cell y<t> by using the activation

function on a
<t>; in this case a

<t> = c
<t>

The LSTM cell increases the complexity respect the GRU by using three

gates instead of two; this results in an overall more flexible architecture that

has been widely used for the past years. Given in input a sample point at

53

instant t, x<t>, the old cell memory, c<t−1>, and the old cell output before

activation, a<t−1>, the LSTM performs in this way:

1. Compute the current state c̃
<t> = tanh(Wc[a<t−1>

, x
<t>] + bc)

2. Set the gates as functions of a<t−1> and x
<t>

• Γu is the update gate: it manages the percentage of current state

that will be used to update the memory of the cell.

Γu = σ(Wu[a<t−1>
, x

<t>] + bu)

• Γf is the forget gate: it decides the percentage of old memory that

will be forgotten. Γf = σ(Wf [a<t−1>
, x

<t>] + bf)

• Γo is the output gate: it tunes the strength of the cell output.

Γo = σ(Wo[a<t−1>
, x

<t>] + bo)

3. Compute the output state of the cell c<t> = Γu ⇤ c̃<t> + Γf ⇤ c<t−1>

4. Compute the new activation a
<t> = Γo ⇤ tanh(c<t>)

5. Compute the cell output y<t> applying the activation function to a
<t>

In both layers, the gates output values in range [0; 1], thanks to the Sig-

moid function σ, so they behave similarly to logical gates. The idea is that

the units, being capable of deciding what to remember and what to forget,

will be able to better capture long-term dependencies in the sequence. The

possibility of keeping old memory can also contribute to gradient computa-

tion, alleviating the problem of the vanishing gradient.

54

(a) GRU cell

(b) LSTM cell

Figure 17: Gated Cells

4.6.2 Convolution

Another way of dealing with sequences is to use convolution: the convolution

operation naturally considers a point in a sequence alongside its neighbors,

resulting in an output that does not depend on the single sample alone. It

is a type of layer widely used with images, but its 1-dimensional version

can be easily implemented with sequences. Since a greater kernel size of the

convolution results in a greater receptive field in the sequence, it is easy to

capture long-term dependencies with this type of architecture. A special type

of convolution for time series is Temporal Convolution (TCN), pictured in

55

Figure 18, a causal convolution that takes advantage of dilation to perceive

a large receptive field without the need to use too many parameters. It is a

very good architecture, very useful for dealing with sensors data, particularly

interesting for these reasons:

• TCN can manage long-term dependencies easily by increasing the ker-

nel size or dilation, resulting in better memory than even LSTM.

• TCN does not su↵er from vanishing gradient.

• TCN can be trained in parallel, better exploiting GPUs, and requires

less memory than recurrent units.

Figure 18 shows the building blocks of temporal convolution.

(a) Dilated causal convolution (b) Temporal convolution block

Figure 18: Temporal Convolution Cell

56

57

5 Unsupervised Anomaly Detection

Anomaly Detection, also known as Outlier Detection, is a task in Machine

Learning whose goal is to separate a core of regular observations, the so-called

inliers, from those that do not appear to conform well with the standard

behavior. These di↵erent data points are called outliers.

In the next sections, the results obtained by applying the popular Isolation

Forest algorithm [4] to the data set collected from a defective device are

presented; the goal was to highlight possible signs of imminent breakage of

the glasses considering the values of the equipped sensors.

To better analyze the results obtained, the application of two interpreta-

tion techniques used to better understand the correlation between features

and anomalies is presented.

5.1 Isolation Forest

Isolation Forest [4] is an unsupervised algorithm for anomaly detection. It is

an ensemble approach that aims at isolating each observation by randomly

selecting a feature and then randomly splitting those feature values accord-

ing to their distribution. The partitions obtained by this procedure can be

represented by a tree structure; the idea of the algorithm is to classify as

anomalies those data points that are easy to isolate, i.e. those points that re-

quire few partitions to be separated: considering the tree representation, the

anomalies are the observations that appear in the trees at shallower depths.

The algorithm does not try to define a profile for the normal observations

before the classification, instead it explicitly identifies the anomalous points,

resulting in a time and memory efficient approach.

5.1.1 Isolation Forest Application

To better describe the application of the Isolation Forest algorithm, a single

ISee device is considered. Figure 19a shows the 2D plot, obtained with PCA,

of the data samples. It is worth noticing that the last cycle shows the highest

variability and it has a di↵erent behavior compared to the previous ones. The

58

results of the application of the Isolation Forest are shown in Figure 19b; with

the 2D representation, it is possible to visualize both inliers and outliers in

a unique plot. The colors of the first plot represent the predicted values of

the isolation forest:

• Blue color indicates an anomalous observation.

• Yellow color indicates a normal observation.

The PCA highlights that the most distant data points compared to the

rest of the data are classified as anomalous from Isolation Forest. Moreover,

we can observe that the anomalies correspond to the last cycles, as can be

seen in the second PCA representation in Figure 19c.

To better understand the distribution of anomalies, an additional binary

variable, called last 3 cycles, is introduced: the variable is one when consid-

ering the last three cycles of a battery, zero otherwise. The confusion matrix,

shown in Figure 20, clearly highlights the distribution of the anomalies: 30

over 33 anomalous points are grouped in the last three cycles.

Figure 20: Confusion matrix that compares the last 3 cycles variable with

the predictions of isolation forest.

59

(a) 2D plot obtained with PCA, each color represents a cycle

(b) 2D PCA plot colored by predicted label of isolation forest.

(c) 2D PCA plot colored by cycle id, where the cross markers represent the anomalous

cycles predicted by IF.

Figure 19: Isolation Forest results with a single smart glasses.

60

5.2 Anomaly Interpretation

In Machine Learning, often the more complex predictors are quite difficult to

interpret, this means that the model may perform very well, but its decisions

cannot be understand by humans.

In the case of Anomaly Detection, for example, it could be possible to

find a way to e↵ectively identify anomalies, but humans could not understand

why outliers are classified as such.

The interpretation techniques that are presented in the next sections are

algorithms explicitly created to make the results of machine learning mod-

els easier to understand for a human reader; two approaches will be used

to better understand the features that seem the most important in anomaly

detection, both locally, for a single outlier, and globally, considering all ob-

servations.2.

5.2.1 SHAP: SHapley Additive exPlanations

The Shapley value [1] is a solution concept introduced by the economist Lloyd

Shapley in 1951; it is based on game theory, the setup is the following: ”A

group of di↵erently skilled players is cooperating in a game to gain a prize.

How to divide the prize fairly among the players?”.

Considering a Machine Learning environment, the prize is the outcome

of the predictive model, the players are the features: which are the features

that contribute the most to the model prediction?

The Shapley value has solid theoretical foundations and it is model-

agnostic (can be used with any type of predictive model), but the algorithm

has a very high computational complexity, so, in practice, there is the need

to rely on approximations.

SHAP is a more recent method based on the Shapley value, the nice

things of this method are:

• Efficient implementation.

2An extensive treatment on Machine Learning interpretability can be found in the book

”Interpretable Machine Learning” [26]

61

• Efficient model-dependent implementation (for example, for decision

trees).

• Addition of aggregation-based methods for global interpretation.

All technical details can be found in the original papers: [8], [10], [21].

For this analysis, the standard method implemented in the SHAP library

was applied to the fitted Isolation Forest; an example of local interpretation

can be seen in Figure 21.

The limitations encountered using this approach are related to the high

time required by the algorithm and, more importantly, to the less expressive

global interpretations. To overcome these problems, another approach, called

DIFFI, was used, described in the next section.

62

Figure 21: Example of SHAP Local interpretation: the blue arrows ”move”

the prediction towards -1 (anomaly)

63

5.2.2 DIFFI: Depth-based Isolation Forest Feature Importance

DIFFI is an interpretation technique proposed in Paper [17]; it is designed

specifically for the Isolation Forest algorithm. The main advantages of using

this approach are as follows:

• Global interpretation method.

• Local interpretation method (Local-DIFFI).

• An unsupervised feature-selection technique based on DIFFI.

• Designed for Isolation Forest.

• Fast and efficient implementation.

DIFFI exploits two hypotheses to assess the importance of the features.

A split-test associated to an important feature should:

1. induce the isolation of anomalous observations at small depths of the

trees, while relegating the regular data at greater depths.

2. produce higher imbalance on anomalous observations, while being quite

useless on the other data points.

The feature importance is based on the combination and normalization

of the Cumulative Feature Importances (CFI) defined for both inliers and

outliers; the CFIs are updated following an update rule that takes into ac-

count the depth of the node that contains the considered observation (first

hypothesis) and the Induced Imbalance Coefficient (IIC) (second hypothesis).

Picture 22 shows the structure of the algorithm.

Using DIFFI, it was possible to have a second local interpretation of the

anomalies, as well as a global analysis. Table 5 contains the results for the

local interpretations, while Table 6 the global ones.

Given the efficiency of the algorithm, the procedure was applied even to

working glasses, with the idea of better understanding which features produce

the greatest number of anomalies. In table 7 the results obtained with the

global interpretation are presented.

64

Figure 22: Structure of DIFFI algorithm

Rank 1 Rank 2 Rank 3

Feature Count. Feature Count. Feature Count.

gyrx mean 0.15 x mean 0.09 accx mean 0.09

accx mean 0.12 accy mean 0.09 roll mean 0.09

uva mean 0.12 magx mean 0.06 uva mean 0.06

roll mean 0.09 uvb mean 0.06 x mean 0.06

blueg max 0.06 accz mean 0.06 accz mean 0.06

Table 5: Local DIFFI interpretation: Count. is a normalized counter.

For example magx mean is the second most important feature (rank 2) for

0.06*anomalies, considering all features of rank 2 it’s the third that appears

the most.

65

Position Feature Feature Importance

1 worn min 5

2 worn max 4.18

3 worn mean 3.7

4 uva mean 3.31

5 gyry mean 2.51

6 gyrz mean 2.46

7 accx mean 2.46

8 roll mean 2.39

9 accy mean 2.39

10 accz mean 2.22

Table 6: Globlal DIFFI interpretation

Position Feature Feature Importance

1 worn max 3.5

2 worn mean 3.35

3 gyrx mean 2.75

4 gyrx max 2.44

5 y mean 2.23

6 uva mean 2.18

7 blueb mean 2.18

8 blueb max 2.13

9 gyry min 2.05

10 gyry max 1.99

Table 7: Globlal DIFFI interpretation on working glasses

66

5.3 Conclusions on Anomaly Detection

This section presents the result of the application of Anomaly Detection

algorithms to understand if the faults of the defective glasses could have

been noticed before the actual break. First, the Isolation Forest algorithm

was applied to highlight the recorded outliers; then a qualitative analysis was

performed to better understand the correlation between the last discharging

cycles before the fault and the anomalous points.

After the qualitative analysis, it was decided to go deeper into the inter-

pretation of the results, with the idea of selecting a subset of features that

could be really important for anomaly detection. The identification of such

a subset would be very important for the study of the anomalies, for better

exploring the problem that caused the break of the smart glasses, but also

for a better evaluation of the importance of the outliers: by comparing the

environment in which the observations were recorded and the features that

contribute the most to the anomalies, it could be possible to better highlight

the separation of those outliers that were caused by a modification of the

environmental condition, from those anomalies that were actually warning

signs for the imminent fault of the devices.

67

6 Remaining Useful Life Prediction: Machine

Learning experiments

In this section, preliminary studies on the Remaining Useful Life (RUL) pre-

diction are presented. The experiments presented in this section were per-

formed considering only the two out of five working smart glasses of the first

set; due to the limited availability of data, it was chosen to focus on classic

machine learning approaches instead of advanced deep learning technologies;

the second, in fact, typically requires large datasets to be trained.

6.1 Introduction to RUL prediction

As said in the introductive section, the goal of Predictive Maintenance is to

estimate the best moment in which to perform the maintenance of a product.

Predictive Maintenance is not based on a statistical mean estimation of the

possible life of the considered entity, instead, it usually relies on machine

learning models based on the sensor measurements available, focusing on the

actual condition of the subject.

As stated before, one of the most important formalizations of the PdM

problem is the RUL estimation: the idea is to quantify, at a given moment,

the time remaining for the subject before it loses its operational ability.

The definition of RUL depends on the considered device; in this case,

RUL consists of the number of discharge cycles left to the battery before

its failure. It is important to distinguish between the remaining life and

the remaining useful life: in some environments the two measures do not

coincide; in Paper [22], for example, it is said: ”According to the provisions

of the standard, the battery has reached the failure condition, has been aging,

and cannot be used when its capacity value drops to 70%–80%.”

68

6.2 Setup: Software and Limitations

Before presenting the pipeline, it is better to highlight the two main encoun-

tered limitations:

1. Few data: A sample, in predictive maintenance, is the entire life cycle

of a specific subject; only two batteries were available, so only two

samples. For this reason, it was not possible to apply cross validation,

so, for this section, a final assessment of the model with a test set is

missing.

2. RUL choice is arbitrary: The actual failure of the batteries was not

encountered and it was not possible to evaluate their capacity. The

RUL was set forcing an hypothetical break in the last available cycle.

Given the limitations presented, the numerical results presented in this

section are not to be considered statistically reliable; the interesting part

refers to the adopted approach.

6.2.1 CeRULEo

It is the backbone of the pipeline. CeRULEo (Cool utilitiEs for Remaining

Useful Life Estimation methOds) is an open-source and publicly available

library designed specifically to make predictive maintenance tasks both easy

and intuitive. It is developed by Luciano Lorenti, a research fellow in the

University of Padua.

The library is written in Python 3 and is compatible with the most used

machine learning libraries, like Scikit-learn [5], Pandas and Keras [7].

CeRULEo provides support through all the classic PdM pipeline; the

main features are the following:

• Dataset: it’s an abstract class that handles the dataset, it’s the ac-

cepted input of the predictive models. The constitutive units are run-

to-failure cycles, stored as Pandas.DataFrame.

• Sensor Validation and Analysis: a set of measurements useful to as-

sess the quality of the collected data, for example: standard deviation,

69

correlation, autocorrelation, entropy and much more. Very interesting

is the ”pairwise correlation” function, which was used to get an idea of

the feature most correlated to the RUL.

• Iterators: support for ”rolling window” iterator, very useful when

dealing with time-series data.

• Transformers: an object that generates the pipelines for the model,

very useful for preprocessing, transforming and selecting the data to

feed to the model.

• Models: wrapper for the well-known libraries for Machine Learning,

like Scikit-learn [5] and Keras [7]; it also contains some pre-compiled

models that are important in literature.

• Results: a set of tools useful for evaluating and plotting trained mod-

els.

Here are the links to the source code [29] and the documentation [28].

6.3 Algorithms and Results

The first thing done after implementing the CeRULEo Dataset was to com-

pute the pairwise correlation of the features; the focus was on the correlation

between the RUL and the other variables, that is a useful initial guess on

the features that could contribute the most to the prediction. In Table 8

a portion of the correlation analysis is reported; the variables are sorted by

absolute mean correlation.

As first approach, it was decided to keep all numerical features except

for cycle and worn min, for the first is like keeping the target variable in the

train set and the second contained some NaN values.

At this point, a Ceruleo Transformer was created to automatically select

the train and target features and apply the chosen preprocessing strategy

that, in these experiments, is a MinMaxScaler. The devices were divided

into a train set that was used to fit the transformer and the models, and a

validation set; the division is reported in Table 9.

70

Feature Abs Mean Corr Max Corr Min Corr

magx mean 0.66 0.69 0.64

magx max 0.66 0.68 0.63

magx min 0.65 0.67 0.62

rh max 0.49 -0.43 -0.55

rh mean 0.49 -0.43 -0.55

rh min 0.47 -0.40 -0.52

magz max 0.33 0.18 -0.48

magz mean 0.33 0.17 -0.49

magz min 0.31 0.14 -0.49

magy mean 0.26 0.42 -0.11

magy min 0.25 0.40 -0.11

magy max 0.25 0.43 -0.07

gyrz mean 0.22 0.25 0.19

pressure min 0.19 -0.19 -0.20

Table 8: Pairwise Correlation

Set MAC address Number of cycles

Train set D5:B8:15:AD:01:0D 53

Validation set F0:53:52:26:FD:2F 54

Table 9: Division of the ISee devices

71

The main models tested for the experiments are:

• LinearRegression / RidgeRegression / SGDRegression.

• SVM for regression, with all standard kernels.

• RandomForestRegression.

• AdaBoost with linear models.

• GradientBoostingRegressor.

• MLP Neural Networks.

The results were quite bad with the linear models, a little bit better with

an SVM with RBF kernel and quite bad, due to overfitting, with Neural

Networks; the most promising models were RandomForestRegressor and

GradientBoostingRegressor

6.3.1 Evaluation Metrics

To evaluate the models, four di↵erent metrics were considered:

• Mean Squared Error (MSE): MSE = 1
n

P
n

i=1(yi − h(~xi))2

• Root Mean Squared Error (RMSE): RMSE =
p
MSE

• Mean Absolute Error (MAE): MAE = 1
n

P
n

i=1 |yi − h(~xi)|

• Coefficient of Determination (R2)

Particularly interesting is the R
2 coefficient, which, instead of giving a

direct measure of the error, produces a score that compares the performance

of the chosen model with respect to a Dummy Predictor that always returns

the average of the target variable. This is quite useful because the coefficient

value gives a very intuitive measure of the performance of the model (i.e., that

does not need additional knowledge on the specific task to be understood),

while also taking into account, at least in part, the complexity of the data.

The score is computed as follows:

72

• Consider an observation (~xi; yi), where yi is the target variable.

• Considering the chosen model h, it is possible to compute the Residual

Sum of Squares (RSS) as follows: RSS =
P

i
(yi − h(~xi))2

• Considering the Dummy Predictor, it always returns the mean of the

target variables, which is called ȳ. The Total Sum of Squares TSS is

defined as follows: TSS =
P

i
(yi − ȳ)2

Finally, the R
2 score is defined as:

R
2 = 1− RSS

TSS
= 1−

P
i(yi−h(~xi))2P

i(yi−ȳ)2

From the definition of the coefficient, it is easy to see that:

• R
2
< 0 means that the error of the chosen model is larger than that of

the Dummy predictor, so the model performs badly.

• R
2 = 0 means that the chosen model and the Dummy one perform

equally.

• 0 < R
2  1 means that the chosen model performs better than the

Dummy predictor; the closer R2 is to 1 the better the model.

6.3.2 Random Forest

Random Forest [3] is an ensemble model based on Decision Trees. A Decision

Tree is a model that try to predict a value by learning simple decision rules

inferred from the data; it can be seen as a piecewise constant approximation

of the target function. The nodes of the tree are the decision functions; the

observation starts from the root, the result of the decision function identifies

the next node to choose among the children of the current one; when the

observation reaches a leaf, the prediction is obtained. The greater the depth

of the tree, the more complex the model.

A Random Forest is just a set of decision trees; each tree has random

components and it is usually trained considering, to identify each decision

73

Figure 23: Structure of Random Forest for classification

function (or split), a random subset of the available features: in this way it

is possible to obtain a set of models that are not highly correlated. The final

prediction of the model is obtained by aggregating the results of all the trees,

the idea being that the error that a tree could make will not be relevant due

to the output of all the other decision trees. Figure 23 shows the structure

of the Regression Forest for classification.

This model was embedded inside a CeRULEo regressor; the dimension

of the rolling window was defined and, after some tuning, the model with

hyperparameters specified in Table 10 was obtained. Table 11 contains the

evaluation of the model.

Hyperparamter Value

window size 32

n estimators 300

max depth 6

max features log2

Table 10: RandomForestRegressor hyperparameters

74

Set MSE RMSE MAE R2

Train 4.23 2.06 1.47 0.98

Validation 130.05 11.40 8.69 0.44

Table 11: Random Forest Evaluation on Validation Battery

The algorithm is implemented in the Scikit-learn library; all the non-

mentioned parameters were used with their default values. Here is the link

to the algorithm: [33]

6.3.3 Gradient Tree Boosting

Gradient Tree Boosting is a boosting method that uses Decision Trees as

weak learners. To explain the Boosting idea, the AdaBoost algorithm [2]

steps are summarized: to get a prediction, the AdaBoost algorithm try to

fit a sequence of weak learners, that are learners that perform slightly better

than random guessing, on repeatedly modified versions of the data. The out-

puts of all weak learners are then aggregated to obtain the final prediction.

After the data are passed through a weak learner, they are modified accord-

ing to some weights (one for each training sample); these weights are then

tuned by the model by increasing the weights associated to miss-interpret

observations while decreasing the others, in this way the next weak learner

should focus more on the wrongly predicted data-point instead of the cor-

rectly predicted ones. The Gradient Tree Boosting algorithm uses decision

trees as weak learners, but it also generalizes the boosting strategy by allow-

ing the optimization of any di↵erentiable loss function. Figure 24 shows the

structure of a Gradient Tree Boosting algorithm.

This model was embedded in the CeRULEo pipeline, achieving, after

some tuning, the best predictor found in this section; the hyperparameters

are reported in Table 12, while in Table 13 the evaluation metrics are written.

The algorithm is implemented in the Scikit-learn library; all the non-

mentioned parameters were used with their default values. Here is the link

to the algorithm: [30]

75

Figure 24: Structure of Gradient Tree Boosting

Hyperparamter Value

window size 48

loss huber

n estimators 1500

subsample 0.8

max depth 3

max features log2

alpha 0.8

Table 12: GradientTreeBoosting Hyperparameters

Set MSE RMSE MAE R2

Train 0.21 0.45 0.28 0.99

Validation 113.8 10.67 8.38 0.51

Table 13: GradientTreeBoosting Evaluation

76

6.4 Model Interpretation and Feature Selection

After the identification of a couple of promising models, it was important

to identify the subset of features that contributed the most to the RUL

prediction; this has been proven useful as a metric for a feature selection

step, but it is also very important to better understand how smart glasses

react to the aging of the battery and which sensors better show this decline.

As briefly introduced in Section 5.2, the interpretation of a model is par-

ticularly important when dealing with complex predictors: the expressivity

that powerful models can achieve makes it very difficult for a human to un-

derstand how the algorithm acts in order to obtain its output. A learner

could perform very well on a specific task, but without interpretation all its

analysis cannot be used to increase and improve the human knowledge on

the subject, resulting in a definitely useful tool, but not completely exploited.

As described in the book [26], there are also ethical and legal considerations

related to the interpretability of the model.

To better interpret the predictions, it was necessary to define a variation

of the GradientTreeBoosting model described in Section 6.3.3, in particular:

• The window size is fixed to 1, to have a clearer relation between the

feature and its score.

• The init model needs to be the default one to have compatibility with

SHAP.

All computations were performed on the Validation Set.

For this task, to have a comparison between di↵erently computed impor-

tance scores, two di↵erent procedures were applied:

• SHAP, described in section 5.2.1.

• Permutation Feature Importance (PFI), that will be described later in

section 6.4.1.

This time the focus was only on global interpretations. Firstly, SHAP

was applied in its Tree Version, which is quite fast, to obtain two plots: one

77

Figure 25: Partial SHAP global interpretation considering all the features

that only represents the most important features 25 and the other that also

describes how the value of a feature changes the importance scores 26.

Then Permutation Feature Importance was applied and the plot 27 was

obtained.

From the plot of the PFI 27 it is clear that there are some features that are

actually important for the model, some that are ignored and even some that

mislead the predictions; so it was decided to select only the positive features,

discarding the ignored and misleading ones, and retrain the algorithm of

section 6.3.3; the results are reported in Table 14.

As can be seen in Table 14, the performance of the algorithm has improved

slightly, validating the feature selection approach.

One of the problems of PFI, by the way, is the presence of highly corre-

78

Figure 26: Partial SHAP global interpretation considering all the features

Figure 27: Permutation Feature Importance with all the features

79

Set MSE RMSE MAE R2

Train 0.13 0.36 0.20 0.99

Validation 106.60 10.32 7.56 0.54

Table 14: GradientTreeBoosting Evaluation after feature selection

lated variables in the dataset, as explained in Section 6.4.1. In the dataset

there are features that are produced by the same sensor, but aggregated dif-

ferently according to mean, maximum and minimum, so, excluding strange

cases, there is a high correlation between all the aggregated variables. This

is the reason why it was decided to propose again the training and interpre-

tation of models 6.3.2 and 6.3.3, but considering only the mean as form of

aggregation for the sensors: this should result in a lighter model that should

almost maintain its previous expressivity.

The results of the training considering all the ” mean” features are re-

ported in Tables 15 and 16.

Set MSE RMSE MAE R2

Train 4.15 2.04 1.44 0.98

Validation 147.59 12.15 9.57 0.37

Table 15: RandomForestRegressor Evaluation with Only Mean Features

Set MSE RMSE MAE R2

Train 0.13 0.36 0.20 0.99

Validation 124.36 11.15 8.69 0.47

Table 16: GradientTreeBoosting Evaluation with Only Mean Features

At this point, the same interpretation techniques described above (Figures

28, 29, 30) were applied and, for the second time, the subset of the most

important features was selected: not only did the model improve its accuracy

(as reported in Table 17), but it also achieved the best results exploiting fewer

features.

80

Figure 28: Global SHAP interpretation with only mean features

Set MSE RMSE MAE R2

Train 0.22 0.47 0.18 0.99

Validation 102.00 10.10 7.57 0.56

Table 17: GradientTreeBoosting Evaluation with only mean features after

feature selection

81

Figure 29: Global SHAP interpretation with only mean features

Figure 30: PFI with only mean features

82

The subset of the most important features (sorted according to PFI) is

reported in Table 18.

Rank Sensor Rank Sensor

1 Pressure 10 Gyrz

2 Magx 11 Y

3 Pitch 12 Blueg

4 Magz 13 Magy

5 RH 14 Temperature

6 Profile Time 15 Battery Level

7 Accx 16 Blueb

8 Accy 17 Uvb

9 Accz 18 X

19 Yaw

Table 18: Most Important Features

6.4.1 Permutation Feature Importance

Permutation Feature Importance is a technique introduced by Breiman [3]

and then generalized into a model-agnostic version by Fischer, Rudin and

Dominici [9].

The idea of the algorithm consists in evaluating the loss of the model

after the permutation of a feature values, breaking the relations with the true

outcome: if the error increases, then the feature is important for the model, if

the error remains constant, the feature is ignored, and if the error decreases,

the feature is actually misleading for the model. The feature importance

scores are computed using the di↵erence between the original loss and the

loss after the permutation of the feature.

This approach is valid due to its ability to produce a nice and simple in-

terpretation without the need of retraining the model (so it is a fast technique

to apply), but it has two main disadvantages:

83

• PFI is linked to the error of the model: a feature considered not im-

portant by a bad model could be very important for a good predictor.

• Random approach: it needs more than one permutation to obtain stable

importance scores.

• It is not reliable in the presence of highly correlated features: the model,

even after the permutation, could retrieve the information using the

correlated variable, resulting in a decrease of the importance of both

features; on the other hand, it can be possible to evaluate the model

over data that cannot be find in reality (for example, when considering

the height and weight of a person, after a permutation it would be pos-

sible to find a person 2 meters tall that weighs 30kg, a very unrealistic

tuple).

The algorithm used in the experiments is the one implemented in Scikit-

learn [32], additional information can be found in this book [26].

84

6.5 Final Considerations

In this section the RUL prediction task, applied to a couple of smart glasses,

was explored; as stated at the beginning of the section, there are some lim-

itations that prevent one from considering the numerical results stable, but

on the other hand, the approaches and the software used remain quite inter-

esting given the considered information. In particular, the identification of a

couple of models that perform way better than others is quite promising.

Particularly relevant is also Section 6.4, dedicated to the interpretation of

the model and feature selection, in which was identified the subset of sensors

that contribute the most to the predictions, hence the subset of sensors that

seems to be quite informative about the decline of the battery. The compar-

ison between these results and the pairwise correlation matrix 8 highlights

that some sensors that seemed to be quite relevant a priori are indeed impor-

tant even for the model, but there are also some features that did not seem

to be too correlated with the RUL that are still considered important by the

predictor.

85

7 Advanced Experiments

During the second period of the work, it was possible to collect data from

more devices, hence, given the expanded dataset, it was also possible to apply

Deep Learning models for solving the RUL prediction task.

7.1 ISee and Deep Learning

During these experiments, eight ISee smart glasses were available and used

for data collection. All available discharge cycles were considered, as reported

in Table 2. Even in this part of the work, Ceruleo was the backbone of all

experiments: it was used to split the batteries in train (5 batteries), validation

(2 batteries) and test (1 battery) sets, as reported in Table 19, to select the

features and the target variable and to create the windowed samples. A

windowed sample corresponds to a sequence of data points, each point is a

reading. The selected window size was 64, the selected features, at least at

the beginning, were 24, resulting in a dataset of shape: (n samples, 64, 24).

All values were normalized in a range (−1; 1) using a Min-Max scaler robust

to outliers.

Set MAC Address Number of cycles

Train

E3:38:BA:9F:0F:B0 46

ED:F2:0E:AF:7C:4C 50

E7:D7:43:C8:22:1E 49

E8:22:97:31:0D:4A 50

D5:B8:15:AD:01:0D 114

Validation
E5:2A:C4:7E:F2:F6 39

F0:53:52:26:FD:2F 117

Test EC:3B:5C:4D:BA:B6 40

Table 19: Division of the ISee devices

86

7.1.1 Custom Architectures

The first experiments were carried out using the classical Keras layers, such

as GRU, LSTM and Conv1D. The structure of the networks remained quite

similar:

• A feature extractor composed of multiple layers, convolutive, gated or

both, interspersed with dropout or normalization layers. Sometimes,

pooling layers were added.

• A layer to flatten the data, usually a global pooling one.

• A regression head composed of a sequence of fully connected layers

interspersed with dropout or normalization layers. The last layer is

composed of a unique neuron with a linear activation function.

The Rectified Linear Unit (ReLU) activation function was used for all

layers but the gated one, in which the Hyperbolic Tangent (tanh) was cho-

sen in order to better exploit GPU computation. Table 20 contains some

examples of results obtained with the custom model; the performance of all

networks is not as good as expected, the models tend to overfit and have

difficulty generalizing on the validation set. To try to improve the results, it

was decided to test some advanced architectures found in the literature.

Base Layers RMSE MAE % Error R2

GRU 17.20 13.72 18% 0.75

LSTM 21.75 17.24 23% 0.60

Conv1D 24.38 20.16 26% 0.49

Table 20: Custom architectures results (Validation set only)

87

7.1.2 Well-Known Architectures

Ceruelo implements a few famous architectures described in literature to solve

the RUL prediction problem; here a brief summary of the tested networks:

• CNLSTM: Proposed in paper [13], it is a network that aims to learn

both long and short temporal dependencies for RUL estimation by com-

bining Temporal Convolution and LSTM layers. Figure 31 represents

the structure of the proposed network.

• MSWRLRCN: Proposed in paper [27], it is a network that combines

convolutional blocks, LSTM units and Attention mechanism for the

task of RUL prediction applied to Rolling Bearings. The architecture

is summarized in the picture 32.

• XiangQiangJianQiaoModel: Proposed in paper [11], it is a deep

convolutional network that operates with convolution in both one- and

two dimensions. It should require very basic data preprocessing, which

makes the architecture very convenient for real applications. The struc-

ture of the network is summarized in Figure 33.

• XCM: A modified version of the network proposed in [18], in which

the classification head was replaced with a regression head. It is an

architecture for general classification of multivariate time-series built

to be interpretable. It is a convolutional structure, as can be seen in

Figure 34.

Even if some of these architectures worked better than others, the results

obtained, reported in Table 21, are still not so good: the models had diffi-

culties in generalization and the overall error on the validation set remains

quite high.

88

Figure 31: CNLSTM

Network RMSE MAE % Error R2

CNLSTM 27.16 21.68 28% 0.37

MSWRLRCN 21.12 15.22 20% 0.62

XiangQiangJianQiaoModel 16.85 13.50 18% 0.76

XCM 19.52 16.53 22% 0.67

Table 21: Well-Known Architectures

7.1.3 Final Considerations Isee

After all the experiments performed, both with custom and well-known ar-

chitectures, it is clear that the problem is not related to the choice of the

model, but more likely it depends on the dataset. No model can generalize

well and the performance in the test set is much worse than the one on vali-

dation. This can be caused by the feature of the dataset, which sure does not

represent directly any measure about the battery, but also by the following

considerations:

1. The initial part of the degradation curve is typically flat. It was possible

to gather only a few cycles for each battery, so it is likely that the

data represent that flat part and the models struggle to distinguish the

samples.

2. The labels are assigned by considering the last available cycle and not

the real breaking point, that was not encountered. Furthermore, 6 of

89

Figure 32: MSWRLRCN

Figure 33: XiangQiangJianQiaoModel

90

Figure 34: XCM

the 8 batteries had an unknown history before data recording, so the

labels are based only on their known history, without considering what

happened before. Labels can be misleading.

To improve the results, it was first decided to try to augment the sets by

using a GAN to generate additional synthetic data. Two architectures were

tested, DoppelGANger [20] and TimeGAN [16]; the latter seemed to work

quite well, but the contribution for the RUL prediction task was not enough

to really improve the results. Moreover, GAN training is very difficult, slow

and requires a lot of hardware resources. On the other hand, to try to reduce

the labeling problem, it was decided to test an additional self-supervised pre-

training step inspired by article [25]. An autoencoder network was designed

and trained in an unsupervised way to learn a good feature extractor, the

encoder; the encoder was then used in a transfer-learning and fine-tuning

pipeline in order to be adapted for the regression task. Unfortunately, even

with this approach, the results did not seem to improve. It is likely that, to

really find a good model for the task, a better data collection is needed.

91

7.2 Second Platform Advanced Experiments

The division of the second platform data set is similar to the one done for the

ISee devices, as shown in Table 22. The initial experiments are based on more

classical machine learning approaches to better understand the complexity

of the task and the data set. Then, the experiments focused on deep learning

models, which could be used given the automatic data recording table that

allowed for a more proficient data collection.

Set Battery ID Number of cycles

Train

511A 245

4A71 310

D2E9 255

D4CC 318

593A 224

Validation
E597 311

667D 311

Test BD7A 286

Table 22: Division of the second platform devices

7.2.1 Polynomial-based Predictor

For these experiments, instead of considering a windowed dataset as done

for the ISee, each cycle was considered as unique sample. The idea was to

use directly the measures relative to the cycle to predict the RUL. It was

noticed that only some signals had a significant shape considering a single

cycle, so, it was decided to perform a feature selection step and include only

those meaningful features. The selected features are reported in Table 23.

To create an input feature vector that was descriptive of the whole cycle,

it was decided to preprocess the raw data: instead of considering the values

of the selected features directly, each signal was represented considering the

coefficient of the polynomial fitted to the signal itself, as shown in Figure

35. The coefficients obtained from di↵erent signals were then concatenated

92

Type Feature

Signals

V

V cc

T imu

I discharge

Cycle-descriptive
Capacity

Profile time

Table 23: Selected Features

in a unique feature vector. Some descriptive measures of the cycles, such as

profile time and capacity, were also concatenated in the input vector. This

approach has some advantages:

1. Each cycle is considered as a whole, without overlapping windowed

samples.

2. The polynomial fit results in:

• A fixed-length feature vector.

• A less noisy signal.

3. The possibility of including cycle-descriptive features just once.

4. A much smaller dataset with respect to the windowed one.

The approach is briefly described in algorithm 8

Since the data set obtained after the preprocessing is rather small, only

classic machine learning approaches were tested. The results obtained with

a simple and light-weight model, such as Linear Regression, are actually

interesting: the model seems to generalize, at least on validation set, and the

prediction accuracy is promising. Sadly, when using more complex regressors,

the models can reach very high accuracy on the training set, but cannot

generalize.

93

Input: set, signals, attributes, target, poly degree 10

X []

Y []

poly regressor PolynomialRegressor(degree poly degree)

// Consider each battery in the set

for battery 2 set do

// Consider each cycle

for cycle 2 battery do

// Fit each signal

temp x = []

for feature 2 signals do

poly regressor.fit(cycle[feature])

temp x.append(poly regressor.coefficients)

end

temp x horizontal concatenation(temp x)

// Add cycle-descriptive features

for feature 2 attributes do

temp x.append(cycle[feature])

end

// Update dataset

X.append(temp x)

Y.append(cycle[target])

end

end

// Shape dataset as matrix

X vertical concatenation(X)

Y vertical concatenation(Y)

return X, Y
Algorithm 8: Polynomial Fit Preprocessing

94

Figure 35: Example of polynomial fit

Set RMSE MAE % Error R2

Train 48.90 39.40 15% 0.64

Validation 48.74 40.57 13% 0.70

Test 66.64 52.58 19% 0.34

Table 24: Polynomial Fit Results

Table 24 shows the results obtained with this approach; unfortunately,

the performance obtained on the test set is not as good as that obtained in

the validation.

7.2.2 Deep Learning Experiments

For deep learning-based experiments, all cycles were divided in windowed

time series of length 64 and the data points were normalized with a robust

Min-Max scaler. The features considered are those reported in Table 23, the

same as those considered for the previous approach. As for the ISee, both

custom and well-known architectures were tested. At the beginning of the

experiments, it was noticed that there were two batteries that did not well

conform with the others, probably because those devices had a problematic

95

Set Battery ID Number of Cycles

Train

D2E9 255

4A71 310

D4CC 318

Validation
511A 245

E597 311

Test 667D 311

Table 25: Devices Considered for Deep Learning

data collection or because they behave di↵erently with respect to the other

devices. Therefore, the data set used for these experiments was modified as

shown in Table 25.

Table 26 contains some example of the results obtained with the best

models; even if there are some predictors that show promising results, it

is clear that, even with this second platform, the models have difficulties

in generalization: the networks tend to overfit too much. An interesting

characteristic of this platform is the fact that the models actually work very

well with only a few cycles, but the performance drops if the number of

battery cycles increases. This behavior is probably related to the fact that,

typically, degradation is not visible at early stages: it is likely that, given

the limited dataset, the available points are actually quite similar, so the

models struggle to distinguish between data samples, and the addition of

other similar data is only an obstacle. With more battery cycles, the points

will probably start to show the degradation pattern better. Table 27 shows

the results of the best model, the LSTM-based one, on the test set; the

network consists of:

• Three LSTM layers with 64 units each and Tanh as activation function.

• Two dropout layers between the LSTM with probability 0.25.

• A global average pooling layer to flatten the data.

• Two fully-connected layers with 64 and 32 units, respectively, and

96

ReLU as activation function.

• A dropout layer between the fully-connected ones, with probability

0.25.

• An output layer of dimension 1 and linear activation function.

Network RMSE MAE % Error R2

GRU-based 49.44 35.49 13% 0.69

LSTM-based 39.88 30.25 11% 0.80

Conv1D-based 48.33 37.93 14% 0.70

CNLSTM 42.88 31.65 12% 0.77

MSWRLRCN 47.78 35.60 13% 0.71

XCM 47.36 35.11 13% 0.72

Table 26: Architectures tested with the second platform (Validation set only)

Model RMSE MAE % Error R2

LSTM-based 54.73 41.08 14% 0.66

Table 27: Results of the best models with the test set

97

8 Related Works

There are a lot of works in literature regarding the monitoring of batteries;

from more classical model-based approaches to advanced data-based meth-

ods.

In reports such as [15] or [31], the PdM approaches are classified into

di↵erent classes:

• Knowledge-Based: an approach that leverages prior knowledge of

the system. It requires the use of expert knowledge as a basis for the

task. It can be divided into 3 subclasses:

– Ontology-based : it formally describes the context-knowledge of a

specific domain and produces a model that is easy to use and

integrate, but it usually needs to be integrated with other types

of models.

– Rule-based : based on rules defined by experts; it can be used

when there is enough expertise, but the model is difficult to be

well defined. It can well leverage human expertise, but usually it

cannot deal with new types of fault and its difficult to implement.

– Model-based : it is based on the physical model that describes the

application field. It can be very accurate and e↵ective, but it

is difficult to design, implement and adapt to real systems that

are often too complex and too variable to be well captured by a

physical model. Furthermore, accuracy is often compromised by

small changes in the experimental setup.

Usually, when dealing with batteries, knowledge-based approaches fo-

cus on the physical or chemical model of the battery.

• AI-based: given the di↵usion of IoT, there is an availability of new

datasets that can be widely used for this task. Data-based approaches

are convincing because they require less knowledge of the field and

can automatically extract good predictors. They can be very e↵ective,

98

accurate and simple to obtain, but require a lot of aging data to be

trained. It is possible to distinguish two macro-area of ML applications

to PdM:

– Classic machine learning models : they can achieve good accuracy

even with limited datasets, but data preprocessing still requires

some kind of human expertise in order to obtain a good feature

representation.

– Deep learning based : approaches based on DL to implement auto-

matic feature engineering and extract very accurate models. From

the classical DL architectures, like GRU, LSTM and Convolution,

to more advanced techniques, like GAN, Autoencoders, Transfer-

learning, and more. The main limitation of DL is the need for

large data sets: the models are very powerful and tend to overfit

if not enough data is provided. Usually, it is difficult to gather

data for PdM.

• Statistical-based: used to analyze and perform observational studies

on the collected data. Generally, the prediction is based on the previous

data recorded on the same system. It is suitable for non-linear systems

and supports uncertainty representation, but it is difficult to compute.

• Hybrid models: combines di↵erent kinds of approach with the goal

of overcoming the drawbacks of the single ones. They can be very

accurate, e↵ective and stable, but are difficult to obtain and require

some high-level expertise to be well defined.

Usually, in the literature, the proposed approaches are validated on public

datasets; the most famous ones are reported in Table 28:

There are many papers related to the application of PdM to batteries,

spanning all of the techniques reported before. Some examples of articles

that were relevant for this work are briefly described:

• ”Long Short-Term Memory Recurrent Neural Network for Remaining

Useful Life Prediction of Lithium-Ion Batteries” [12]. In this article,

99

Provider Description Source

TOYOTA re-

search institute

124 commercial batteries

cycled down to breaking

point

Experimental

Mendeley
Panasonic 18650PF Li-ion

battery data
Experimental

IEEE Data port
Automotive Li-ion battery

data
Simulated

US goverment’s

open data

Data of commercially usable

Li-ion batteries
Experimental

Science Direct
2 datasets of Li-ion batter-

ies degradation
Experimental

CALCE battery

research group

Data from di↵erent batter-

ies

Experimental

and Simulating

NASA Data

repository

Two datasets of di↵erent

batteries
Experimental

Table 28: Most common datasets for PdM on batteries. Source paper: [31]

100

the authors study the direct application of a LSTM-based recurrent

neural network for RUL prediction. They show how to train the net-

work, how to use Dropout layers to control overfitting and finally they

compare their results with more classical prediction methods, like SVM,

proving the superiority of LSTM-RNN for the task, in particular for

what concern the long-term dependencies tracking. Figure 36 shows

the high-level structure of the proposed approach.

• ”A Neural-Network-Based Method for RUL Prediction and SOH Mon-

itoring of Lithium-Ion Battery” [14]. In this article an approach based

on LSTM-RNN combined with an Attention layer is proposed for the

RUL prediction based on the SOH monitoring. The architecture is

optimized with a Particle Swarm optimization and the data are pre-

processed using a CEEMDAN. Finally, PA-LSTM, the proposed archi-

tecture, has been shown to perform better both in SOH monitoring and

RUL prediction compared to other RNN models. Figure 37 shows the

PA-LSTM framework.

• ”Combining empirical mode decomposition and deep recurrent neural

networks for predictive maintenance of lithium-ion battery” [23]. In

this article, a hybrid approach is developed and tested. The hybrid

model uses Empirical Mode Decomposition and Grey Relational Anal-

ysis for data preprocessing and feature extraction, then some RNNs are

compared for the SOH estimation, metric that is then used for predic-

tion of the RUL. They show that the proposed method can achieve a

high accuracy.

• ”Improving Semi-Supervised Learning for Remaining Useful Lifetime

Estimation Through Self-Supervision” [24]. In this article, the authors

propose a novel self-supervised pre-training step for RUL prediction

when the labeled dataset is limited. It is an important aspect to con-

sider in the PdM field because of the difficulties of collecting complete

degrading trajectories. The authors compare existing semi-supervised

and self-supervised methods, obtaining an approach that can outper-

101

Figure 36: Method proposed in paper [12]

form existing technologies even when considering more realistic condi-

tions with respect to the assumption made in other works.

• ”Masked Self-Supervision for Remaining Useful Lifetime Prediction in

Machine Tools” [25]. In this article, the self-supervised pre-training

for RUL prediction is deepened. The proposed method is based on a

masked transformer-based autoencoder, which is trained both to learn

a good feature representation of a sequence and to reconstruct the

masked patch of it. The encoder is then used as feature extractor for

the regression step. The authors implemented and compared the pro-

posed approach considering di↵erent masking ratios, concluding that

the proposed architecture performs better than fully supervised meth-

ods. Figure 38 shows the proposed approach.

102

Figure 37: Method proposed in paper [14]

Figure 38: Method proposed in paper [25]

103

9 Conclusions

The smart monitoring of a device is a very active field of research: being able

to predict a fault of a machinery before the actual break allows to avoid crit-

ical situation in which the failure can be both expensive and dangerous. For

this task machine learning technologies have been proven very e↵ective, since

they allow one to define very accurate predictor without requiring too much

expertise on the field, making ML one of the most promising approaches for

predictive maintenance. This work mainly focused on applications of machine

learning techniques for the monitoring of smart glasses battery; a real-world

problem that was faced, along with all its challenges, from the data collec-

tion to the actual experiments. Data collection, in particular, was the main

bottleneck of all the work, considering that it took a long time to be done, it

was impossible to collect a complete dataset and there were also difficulties

with the connection between devices and computers. The initial part of the

thesis describes the application of unsupervised anomaly detection and its

interpretation to defective devices. It was interesting the presence of a lot

of anomalies in the last battery cycles preceding the break, but it was also

interesting the interpretation part, which highlighted the sensors that could

be better exploited for monitoring. In the second part the application of

classic ML approaches to the two working device available was deepened; the

preliminary analysis on RUL prediction performed, along its interpretation,

better highlighted the challenges related to this work, in particular regarding

the dataset. The interpretation of the models and the feature selection based

on such interpretation is an approach that showed promising results. Even

if some decent results were obtained, the inability of the models to well gen-

eralize made clear that the lack of data and the lack of features that directly

describe the battery were really a problem for this task. A second platform

was built to collect samples with more descriptive features of the battery.

In addition, six other Isee devices were made available for data collection.

In the last part of the work, advanced experiments were performed, with a

particular focus on deep learning. Even if a lot of di↵erent approaches were

tested, it seems that, with the available datasets, the performance of the

104

predictive models cannot improve, highlighting once again the limitations

imposed by the available data. The not recorded break of the battery, the

discontinue data collection and the partial samples collected are the main

bottlenecks of the work and the obtained results, while valid as preliminary

analysis for the task, could not be improved more. Still, from what was pos-

sible to be seen from these experiments and even considering the literature,

future works that address the data collection problem may find an e↵ective

and numerically stable predictor that could be actually applied to the task.

105

Acknowledgments

I would like to thank my supervisor Professor Gian Antonio Susto, who

assisted and guided me through this project. I would also like to thank

Professor Susto’s team for the help they gave me in finalizing this project, in

particular Dr. Eugenia Anello, Dr. Jacopo Andreoli and Dr. Davide Dalle

Pezze. Lastly, I would like to express my gratitude to Luxottica and its sta↵,

especially to Dr. Paolo Giavarini, Dr. Dino Michelon and Dr. Massimo

Reineri.

106

107

References

[1] The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge

University Press, 1988. doi: 10.1017/CBO9780511528446.

[2] Yoav Freund and Robert E. Schapire. “A desicion-theoretic generaliza-

tion of on-line learning and an application to boosting”. In: Computa-

tional Learning Theory. Ed. by Paul Vitányi. Springer Berlin Heidel-

berg, 1995.

[3] Leo Breiman. “Random Forests”. In: Machine Learning (2001). url:

http://dx.doi.org/10.1023/A%5C%3A1010933404324.

[4] Fei Tony Liu, Kai Ting, and Zhi-Hua Zhou. “Isolation Forest”. In:

(2009). doi: 10.1109/ICDM.2008.17.

[5] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:

Journal of Machine Learning Research (2011).

[6] Shai Shalev-Shwartz and Shai Ben-David.Understanding Machine Learn-

ing: From Theory to Algorithms. Cambridge University Press, 2014.

doi: 10.1017/CBO9781107298019.

[7] Francois Chollet et al. Keras. https://keras.io. 2015.

[8] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting

Model Predictions”. In: Advances in Neural Information Processing

Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017. url:

http://papers.nips.cc/paper/7062-a-unified-approach-to-

interpreting-model-predictions.pdf.

[9] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. “All Models

are Wrong, but Many are Useful: Learning a Variable’s Importance by

Studying an Entire Class of Prediction Models Simultaneously”. In:

(2018). url: https://arxiv.org/abs/1801.01489.

[10] Scott M Lundberg et al. “Explainable machine-learning predictions for

the prevention of hypoxaemia during surgery”. In: Nature Biomedical

Engineering (2018).

108

https://doi.org/10.1017/CBO9780511528446
http://dx.doi.org/10.1023/A%5C%3A1010933404324
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1017/CBO9781107298019
https://keras.io
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://arxiv.org/abs/1801.01489

[11] “Remaining useful life estimation in prognostics using deep convolution

neural networks”. In: Reliability Engineering and System Safety (2018).

doi: https://doi.org/10.1016/j.ress.2017.11.021.

[12] Yongzhi Zhang et al. “Long Short-Term Memory Recurrent Neural

Network for Remaining Useful Life Prediction of Lithium-Ion Bat-

teries”. In: IEEE Transactions on Vehicular Technology (2018). doi:

10.1109/TVT.2018.2805189.

[13] Lahiru Jayasinghe et al. “Temporal Convolutional Memory Networks

for Remaining Useful Life Estimation of Industrial Machinery”. In:

2019 IEEE International Conference on Industrial Technology (ICIT).

2019. doi: 10.1109/ICIT.2019.8754956.

[14] Jiantao Qu et al. “A Neural-Network-Based Method for RUL Predic-

tion and SOH Monitoring of Lithium-Ion Battery”. In: IEEE Access

(2019). doi: 10.1109/ACCESS.2019.2925468.

[15] Yongyi Ran et al. A Survey of Predictive Maintenance: Systems, Pur-

poses and Approaches. 2019. doi: 10.48550/ARXIV.1912.07383.

[16] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. “Time-

series Generative Adversarial Networks”. In: Advances in Neural In-

formation Processing Systems. Ed. by H. Wallach et al. Curran Asso-

ciates, Inc., 2019. url: https://proceedings.neurips.cc/paper/

2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

[17] Mattia Carletti, M. Terzi, and Gian Antonio Susto. “Interpretable

Anomaly Detection with DIFFI: Depth-based Feature Importance for

the Isolation Forest”. In: ArXiv abs/2007.11117 (2020).

[18] Kevin Fauvel et al. “XCM: An Explainable Convolutional Neural Net-

work for Multivariate Time Series Classification”. In: CoRR (2020).

url: https://arxiv.org/abs/2009.04796.

[19] Christian Krupitzer et al. “A Survey on Predictive Maintenance for

Industry 4.0”. In: CoRR (2020). url: https://arxiv.org/abs/

2002.08224.

109

https://doi.org/https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1109/ICIT.2019.8754956
https://doi.org/10.1109/ACCESS.2019.2925468
https://doi.org/10.48550/ARXIV.1912.07383
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://arxiv.org/abs/2009.04796
https://arxiv.org/abs/2002.08224
https://arxiv.org/abs/2002.08224

[20] Zinan Lin et al. “Using GANs for Sharing Networked Time Series

Data”. In: Proceedings of the ACM Internet Measurement Conference.

2020. doi: 10.1145/3419394.3423643.

[21] Scott M. Lundberg et al. “From local explanations to global under-

standing with explainable AI for trees”. In: Nature Machine Intelli-

gence (2020).

[22] James C. Chen et al. “Combining empirical mode decomposition and

deep recurrent neural networks for predictive maintenance of lithium-

ion battery”. In:Advanced Engineering Informatics (2021). doi: https:

//doi.org/10.1016/j.aei.2021.101405.

[23] James C. Chen et al. “Combining empirical mode decomposition and

deep recurrent neural networks for predictive maintenance of lithium-

ion battery”. In:Advanced Engineering Informatics (2021). doi: https:

//doi.org/10.1016/j.aei.2021.101405.

[24] Tilman Krokotsch, Mirko Knaak, and Clemens Gühmann. “Improving

Semi-Supervised Learning for Remaining Useful Lifetime Estimation

Through Self-Supervision”. In: CoRR (2021). url: https://arxiv.

org/abs/2108.08721.

[25] Haoren Guo et al. Masked Self-Supervision for Remaining Useful Life-

time Prediction in Machine Tools. 2022. doi: 10.48550/ARXIV.2207.

01219.

[26] Christoph Molnar. Interpretable Machine Learning. A Guide for Mak-

ing Black Box Models Explainable. 2nd ed. 2022. url: https://christophm.

github.io/interpretable-ml-book.

[27] “MSWR-LRCN: A new deep learning approach to remaining useful life

estimation of bearings”. In: Control Engineering Practice (2022). doi:

https://doi.org/10.1016/j.conengprac.2021.104969.

[28] Ceruleo Documentation. https://lucianolorenti.github.io/ceruleo/.

[29] Ceruleo Github. https://github.com/lucianolorenti/ceruleo.

110

https://doi.org/10.1145/3419394.3423643
https://doi.org/https://doi.org/10.1016/j.aei.2021.101405
https://doi.org/https://doi.org/10.1016/j.aei.2021.101405
https://doi.org/https://doi.org/10.1016/j.aei.2021.101405
https://doi.org/https://doi.org/10.1016/j.aei.2021.101405
https://arxiv.org/abs/2108.08721
https://arxiv.org/abs/2108.08721
https://doi.org/10.48550/ARXIV.2207.01219
https://doi.org/10.48550/ARXIV.2207.01219
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.104969
https://lucianolorenti.github.io/ceruleo/
https://github.com/lucianolorenti/ceruleo

[30] GradientBoostingRegressor. https://scikit- learn.org/stable/

modules/generated/sklearn.ensemble.GradientBoostingRegressor.

html#sklearn.ensemble.GradientBoostingRegressor.

[31] Shahid A. Hasib et al. “A Comprehensive Review of Available Battery

Datasets, RUL Prediction Approaches, and Advanced Battery Man-

agement”. In: IEEE Access (). doi: 10.1109/ACCESS.2021.3089032.

[32] permutation importance. https://scikit-learn.org/stable/modules/

generated/sklearn.inspection.permutation_importance.html#

sklearn.inspection.permutation_importance.

[33] RandomForestRegressor. https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.

ensemble.RandomForestRegressor.

[34] What is predictive maintenance? https://www.ibm.com/uk- en/

services / technology - support / multivendor - it / predictive -

maintenance.

111

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://doi.org/10.1109/ACCESS.2021.3089032
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://www.ibm.com/uk-en/services/technology-support/multivendor-it/predictive-maintenance
https://www.ibm.com/uk-en/services/technology-support/multivendor-it/predictive-maintenance
https://www.ibm.com/uk-en/services/technology-support/multivendor-it/predictive-maintenance

	Introduction
	Dataset
	ISee Dataset
	Data Recording
	Data Preprocessing

	Second Platform

	Exploratory Data Analysis
	ISee Preliminary Analysis
	Second Platform Preliminary Analysis

	Machine Learning Background
	Formal Definitions
	Empirical Risk Minimization
	Probably Approximated Correct Learning
	The No Free Launch Theorem
	Regularization

	Learning Approaches and Tasks
	A simple task: Linear Regression
	Gradient Based Optimization Techniques
	Gradient Descent
	Gradient Descent Approximations

	Neural Networks and Deep Learning
	Basics of Neural Networks
	Deep Learning

	Sequential Learning
	Gated Units
	Convolution

	Unsupervised Anomaly Detection
	Isolation Forest
	Isolation Forest Application

	Anomaly Interpretation
	SHAP: SHapley Additive exPlanations
	DIFFI: Depth-based Isolation Forest Feature Importance

	Conclusions on Anomaly Detection

	Remaining Useful Life Prediction: Machine Learning experiments
	Introduction to RUL prediction
	Setup: Software and Limitations
	CeRULEo

	Algorithms and Results
	Evaluation Metrics
	Random Forest
	Gradient Tree Boosting

	Model Interpretation and Feature Selection
	Permutation Feature Importance

	Final Considerations

	Advanced Experiments
	ISee and Deep Learning
	Custom Architectures
	Well-Known Architectures
	Final Considerations Isee

	Second Platform Advanced Experiments
	Polynomial-based Predictor
	Deep Learning Experiments

	Related Works
	Conclusions

