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Abstract

Data structures that are divided into multiple levels of aggregations are known as Hierarchical data. These struc-
tures are very common in the Big Data world we live in and forecasting methods that generate coherent forecasts
for all levels are still being developed. This thesis contributes to the Hierarchical Data Forecasting studies, with
an emphasis on the Supply ChainManagement implementation of thesemethods. This study dives deep into the
End-to-Endmethodology proposed by Ragnapuram et al. 2021 which presents a novel approach for hierarchical
time series forecasting that produces coherent, probabilistic forecasts across all hierarchical levels. The method
outperforms state-of-the-art models in accuracy and fit by learning from all the time series data and incorporating
reconciliation in a single trainable model.

Further, the method’s adaptability is tested in Supply Chain Management demand forecasting, where it man-
ages hierarchical data to create probabilistic projections for strategic and operational planning. Next, the thesis
acknowledges the methodology’s advantages and limitations especially in model explainability issues for the busi-
ness sector, in light of the EU’s AI Act of 2023. It suggests improving model explainability or modifying the
procedure by proposing the replacement of the main model with simpler multivariate alternative models. It also
describes the difficulties of switching from point predictions to probabilistic forecasts, which require extensive
recoding and the integration of multiple coding systems.

In summary, this thesis contributes to forecasting theory and gives realistic insights and tactics for utilizing
End-to-Endhierarchical forecasting in SupplyChainManagement, balancing accuracy, coherence, and regulatory
compliance.
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1
Introduction

Forecasting, the art of predicting or estimating future events or trends, is a crucial part of most professions in
today’s world including economics, meteorology, healthcare, finance, business, social, and many more. It is the
process of utilizing past data to create a model that can accurately anticipate future results. Starting from the
premise that there is no fully accurate forecast, then one must acknowledge that the precision, dependability,
and interpretability of forecasts are of utmost importance, as they shape decisions that might have substantial
consequences. It allows organizations tomake well-informed strategic decisions, optimize operations, and reduce
risks.

Duringmy internship atAmazon’s SupplyChainDepartment (EU), Iwas lucky enough towitness how ahuge
company handles its forecasts and more importantly how all these forecasts come together to serve the decision-
making process. I contributed to an innovative platform that automatesweekly supply chain plans on awarehouse
level. These plans were highly complex as they had to consider a wide range of aspects like demand, sales, trans-
portation, human resources, facility, and machine capacities, potential hiring changes, etc. but also, they needed
to comply with linear constraints that were implied by higher level forecasts as cluster (all the warehouses within
a regional boarder) and network (all the clusters within a continent) forecasts.

Each week, different teams in the department utilized the historical data, statistical techniques, and expert
knowledge to forecast their respective variables in order tomake these predictions available for the planners which
would produce the final product. The forecasts that happened following a top-down approach would lead to
teams waiting for other teams’ forecasts and spending a lot of time aligning their results manually. In the end, the
company used the platform that my team built to bring everything in one place and give an automated version of
how the supply chain plan would look. These plans were revised weekly.

As I followed these processes amazed by all the work that goes into them, I could not help noticing the bottle-
necks, but more importantly, I got to see the difficult task that hierarchical data forecasting presents. This poten-
tial inspired me to learn more about how these processes could be improved by utilizing an end-to-end approach
to this problem.
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Data often reflects inherent relationships and structures that are commonly found in numerous real-life situa-
tions. Many systems and concepts have nested or layered structures like natural language, biological and ecological
systems, spatial organizations, etc. These structures arrange data in a hierarchical manner, usually in a fashion re-
sembling a tree, where each level reflects a distinct aggregation or level of detail of the data[37]. Also known asHi-
erarchical Data Structures, this type of data is common and presents real-world phenomena. In my case, demand
data was structured hierarchically, starting from the network level, and descending to clusters, and warehouses.
In general, there is no limitation on the number of levels or disaggregation nodes per level.

In the past, themain emphasis in forecasting has primarily focused on point forecasting, which entails forecast-
ing a singular value for each forthcoming data item, even though [52] describes the transition from point estima-
tion to distribution estimation in the nineteenth century. Although it is the most used, especially in the business
sector, and enables us to get to measurable and tangible plans, we often overlook the inherent uncertainty in fu-
ture occurrences, resulting in excessive confidence in projections and potentially unsafe decision-making. Today,
we are witnessing a paradigm shift, shown by a transdisciplinary transition from single-valued or point forecasts
to distributional or probabilistic forecasts [28].

Moreover, conventional methodologies employed for predicting hierarchical data, such as bottom-up, top-
down, and middle-out, have often disregarded the intrinsic organization of the data and therefore they do not
make the best use of those data. These models frequently fail to consider the interconnections between various
levels of the hierarchy, addressing each level separately [34]. The act of reconciling forecasts, which involves assur-
ing coherence across several levels of hierarchy, is frequently regarded as an independent stage [47] which in a big
setting such as Amazon is a very time-consuming process and prone to errors. This strategy may compromise the
accuracy of the forecasts, as it fails to properly exploit the information contained in the hierarchical linkages, but
instead, it gives priority to a certain level.

Frommy experience, there is an immense need to centralize the work done by different forecasting teams, into
one big model for the entire hierarchy. This would save a lot of time in terms of technical work and manual
alignment, optimize the storage and transfer of the results, and increase accuracy by utilizing the data interdepen-
dencies, which will lead to lowering operational costs and naturally increase profit. Lastly, for planners to have
full visibility of their possible plans, it is very important to acquire probabilistic forecasts which will allow better
risk management of different scenarios and a more complete interpretation of them.

An extensive literature review gave me an overview of the latest developments in this field and showed that
these issues that I found will likely get more attention in the near future. Discussions with my professor also
led me to find the innovative work of Rangapuram, S. S., Werner, L. D., Benidis, K., Mercado, P., Gasthaus, J.,
and Januschowski, T. (2021, July) on “End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchi-
cal Time Series ” [47], which is a direct extension of the exact models that are developed and used by Amazon
(DeepAR)[6]. This paper represents a notable transformation in the field of hierarchical data forecasting by re-
solving the limitations of conventional models on incorporating the full forecasting process, which includes con-
sidering the hierarchical structure of the data and reconciling projections across different levels, under a cohesive
framework. This approach exploits the interdependence of many levels in a hierarchy and provides a probabilistic
forecast.

This thesis examines this End-to-End strategy, thoroughly analyzing its intricacies, benefits, and possible limita-
tions. More precisely, this thesis will utilize the End-to-End approach in the context of predicting the demand for
a supply chain, which is especially suitable for implementing such a strategy, considering the hierarchical struc-
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ture of supply chains and the crucial significance of precise demand prediction in guaranteeing operational ef-
fectiveness and consumer contentment. Further, the thesis will investigate possible approaches to enhance the
End-to-End technique. The primary objective is to support a foundation work for enhanced, dependable, and
all-encompassing prediction methodologies that may effectively guide decision-making in diverse fields.

Chapter 2 lays the theoretical prerequisites to understand Hierarchical data forecasting, while Chapter 3 is
dedicated to the details of the End-to-End approach by examining all themodel components and phases. Next, in
Chapter 4, the implementation of this model to forecast Supply Chain Demand is shown. Finally, in Chapter 5,
youmayfind the discussion on the advantages and the limitations of this approach but also the proposed solutions
to overcome these limitations.
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2
Hierarchical Data Forecasting Literature

Review

2.1 Time Series Forecasting
A forecast is a statement of what is judged likely to happen in the future, especially in connectionwith a particular
situation. This futuristic way of thinking implies paramount importance to the time and the series of events in a
defined time window. In this case, the aim is to estimate how the sequence will continue into the future.

Anything that is observed sequentially over time is a time series. It is a common technique in many fields, and
it is used to anticipate future events or behaviors. The predictability of an event or a quantity depends on several
factors including:

1. How well we understand the factors that contribute to it;

2. Howmuch data is available; and

3. Whether the forecasts can affect the thing we are trying to forecast [32].

Even though some things are easier to forecast than others, as some great forecasters say, there is no fully accu-
rate forecast. Nonetheless, a forecasting model is intended to capture the way things move, not just where things
are, and a good forecasting model can capture these patterns that appear. Especially in the business sector, there
are Short-term, Medium-term, and Long-term forecasts that are used for different purposes, mainly differentiat-
ing between operational and strategic planning. In today’s world, an organization needs to develop a forecasting
system that involves several approaches to predicting uncertain events, such as problem definition, gathering in-
formation, preliminary (exploratory) analysis, choosing and fittingmodels, and using and evaluating a forecasting
model [32].
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Time series data can exhibit a variety of patterns, and it is often helpful to split a time series into several com-
ponents, each representing an underlying pattern category. Understanding this structure is crucial for effective
analysis and forecasting. Typically, a time series can be broken down into the following components:

• Trend: This represents the long-term progression of the series. Trends can be upward, downward, or flat.
For example, a steady increase in a company’s sales over several years would reflect an upward trend.

• Seasonality: These are patterns that repeat at regular intervals. Seasonality is often observed in data with
a fixed and known period, like daily temperature changes, monthly sales affected by holidays, or weekly
traffic patterns.

• Cyclic: Cyclic patterns occur when data exhibits rises and falls that are not of a fixed frequency. These
cycles are often influenced by economic conditions and are usually observed over longer time horizons
than seasonal patterns. For instance, business cycles that span several years [32].

• Irregular or Random Component (Noise): This is the unpredictable, random fluctuation that is always
present in a time series. Noise is the residual part of the time series after the other components are re-
moved. It represents the randomness or unforeseen events that cannot be attributed to seasonal or cyclic
components.

• Level: This refers to the baseline value for the series if it were a flat line, essentially the series’ mean [13].

In practice, time-series data may contain some, all, or none of these components, depending on the nature of
the data and the context. For instance, financial time series might have trends and noise, but not seasonality. The
challenge in time series analysis is to identify these components and adjust for them to make accurate forecasts or
derive insights [36].

A fundamental concept in time-series analysis is stationarity sincemany statistical forecastingmethods assume
or require it. A stationary time series is one whose properties do not depend on the time at which the series is
observed. Thus, time series with trends, or with seasonality, are not stationary — the trend and seasonality will
affect the value of the time series at different times. Stationary data is easier to model and results in more accurate
results. A time series is said to be stationary if its statistical properties, such asmean, variance, and autocorrelation,
are all constant over time. Mathematically stated, a time series is stationary if the following properties hold [32]:

E[Xt] = μ ∀t ∈ T (2.1a)

E[X2
t ] < ∞ ∀t ∈ T (2.1b)

Cov(Xt1 ,Xt2) = Cov(Xt1+h,Xt2+h) ∀t ∈ N, ∀h ∈ Z (2.1c)

Various techniques exist to test for stationarity, starting from visual inspection where you look for changes
in mean, variance, or the presence of trends and seasonality, to statistical tests like the Dickey-Fuller (ADF) test,
Phillip-Perron test, etc. If a time series is non-stationary, it can often be transformed into a stationary one through
techniques like differencing, detrending, or transforming (e.g., taking the logarithm of the series)[40].
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Just as correlationmeasures the extent of a linear relationship between two variables, autocorrelationmeasures
the linear relationship between lagged values of a time series. There are several autocorrelation coefficients, corre-
sponding to each panel in the lag plot. It can be expressed as in equation 2.2:

ρj = corr(Xj,Xj−k) =
cov(Xj,Xj−k)√
V(Xj)

√
V(Xj−k)

(2.2)

The autocorrelation coefficient ρ ranges between −1 and 1, where a positive value indicates a positive relation-
ship between the data point and its past value while a negative coefficient suggests a negative relationship. A value
of 0 implies no autocorrelation. To evaluate the autocorrelation in a time series the autocorrelation function
(ACF) is usually used. This is a plot that shows the autocorrelation coefficient at different lags and can reveal
information about seasonality and/or trend [54].

Further, the partial autocorrelation concept complements that of the autocorrelation. It measures the degree
of association between observations in a time series separated by various time lags, but, crucially, it does this while
controlling for the influence of other time lags. For instance, the PACF at lag 3 wouldmeasure the direct relation-
ship between observations three time periods apart, after removing the effect of their correlations at lags 1 and
2. There is also a partial autocorrelation function (PACF) plot that plays an important role in time series model
selection and as a diagnostic tool that evaluates the residuals to assess the adequacy of the model. Time series that
show no autocorrelation are called white noise [46].

Temporal and cross-temporal aggregations refer to methods of summarizing or combining time series data
over time intervals (temporal) and across different time series (cross-temporal). Both aggregations are essential
techniques for preprocessing time series data, making it suitable for analysis, modeling, and forecasting[51]. The
choice of aggregation method and level depends on the specific goals of the analysis and the nature of the data.
Temporal aggregation involves combining data points within a single time series at successive intervals to reduce
the frequency of the data. They can alter the properties of a time series by smoothing out noise and revealing
underlying trends or cycles, resulting in information loss, especially if higher-frequencyfluctuations are significant,
or it can affect stationarity. Cross-temporal aggregation involves combining data points across different time series
at the same time intervals. This is often done to analyze relationships or to consolidate information [12].

2.2 Probabilistic Forecasting
Point forecasting refers to the process of predicting a single, specific value as a forecast for a future period in a
time series. This type of forecasting is widely used in various fields such as finance, economics, weather prediction,
inventory management, etc [2]. The conventional interpretation of this value is that it shows what to expect on
average if the situation repeats itself many times. In the case of a pure additive model (such as linear regression),
the point forecasts correspond to the conditional expectation (mean) from the model.

Taking a historical perspective, [52] describes the transition from point estimation to distribution estimation
in the nineteenth century. Today, we are witnessing a paradigm shift, shown by a transdisciplinary transition
from single-valued or point forecasts to distributional or probabilistic forecasts [28]. In a nutshell, probabilistic
forecasts serve to quantify the uncertainty in a prediction, and they are an essential ingredient of optimal decision-
making.
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Although probability forecasts for binary events (e.g., an 80% chance of rain today, a 10% chance of a finan-
cial meltdown by the end of the year) have been commonly issued for the past several decades attention has been
shifting toward probabilistic forecasts for more general types of variables and events. Critical problems of science
and society have been driving this development; these problems includeweather and climate prediction, flood risk
assessment, seismic hazard prediction, predictions about the availability of renewable energy resources, economic
andfinancial riskmanagement, electionoutcomeprediction, demographic and epidemiological projection, health
care management, and predictive and preventative medicine. The need for advancement in the theory, method-
ology, and application of probabilistic forecasting is pronounced, and challenges and opportunities for statistical
scientists to become involved and contribute abound [25].

2.2.1 Probabilistic Forecast Properties
A prediction space is a kind of mathematical framework that’s used when we want to create and evaluate predic-
tions that come with a measure of uncertainty. These predictions are not just single outcomes, but rather a whole
range of possibilities each with its likelihood [27]. Instead of saying “It will rain,” which is very certain and may
not happen, you provide a range of outcomes with probabilities like “50% chance of rain, 30% chance of cloudy
skies, and 20% chance of sunshine.”[23].

There are two main components: The actual variable we observe or try to predict, like the weather, which is
denoted by Y; and the probabilistic forecast, denoted byF , which is our best guess of whatY will be, given all the
information known at the time. This forecast is expressed as a cumulative distribution function (CDF), which
shows all the probabilities of different outcomes (like the percentages of rain, clouds, etc.). The ”prediction space”
then looks at bothF andY together. It’s like comparing your forecast (F ) to what the actual data ends up being
(Y). In more general terms, there might be multiple forecasts (F1, F2, ..., F\) and we are interested in how all
of these relate to what actually happens (Y). The prediction space keeps track of all these forecasts and the actual
outcome together [25].

Calibration concerns the statistical compatibility between the probabilistic forecasts and the realizations - refers
to the degree to which a model’s predicted probabilities or values align with the actual outcomes. Essentially, the
observations should be indistinguishable from random draws from the predictive distributions. On the other
side, dispersion refers to the spread or variability in a set of values or predictions. It’s a concept that helps in
understanding how much uncertainty or variability is inherent in the predictions made by a model. Dispersion
can be relevant in both the outcomes of the model (the predictions) and in the model’s performance. Calibration
and dispersion thus concern facets of the joint law of the probabilistic forecast and the observation. Since this is a
crucial aspect of forecasting, it is critical to check if a forecast is well-calibrated[53].

One of the measures that are frequently utilized to check calibration is The Probability Integral Transform
(PIT) [1], which is a statistical concept used to transform a random variable into a uniform distribution. It repre-
sents the value that the predictive CDF attains at the observation, with suitable adaptions at any points of discon-
tinuity [20]. While with PIT we can check if there is good model calibration (or under/over-dispersion), it does
not provide complete information about other aspects of forecast quality, such as sharpness.

Sharpness refers to the concentration of the predictive distributions. In the case of density forecasts for a real-
valued variable, sharpness can be assessed in terms of the associated prediction intervals . The mean widths of
these intervals should be as short as possible, subject to the empirical coverage being at the nominal level[25]. A
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forecast with high sharpness has a narrow distribution, indicating a high level of confidence or precision in the
prediction. Conversely, a less sharp forecast has a wider distribution, reflecting greater uncertainty. However, the
value of sharpness must be weighed against the risk of being wrong; highly precise but inaccurate forecasts can
lead to misguided decisions [22].

2.2.2 Proper Scoring Rules

Proper scoring rules provide summary measures of the predictive performance that allow for the joint assessment
of calibration and sharpness. Generally, we take scores to be negatively oriented penalties that forecasters wish to
minimize [28]. The role of scoring rules is to encourage the assessor to make careful assessments and to be honest.
We consider a generic convex class F of probability distributions on R, which we identify with their respective
CDFs. A scoring rule assigns a numerical score S(F , y) to each pair (F , y), whereF ∈ F is a probabilistic forecast
and y ∈ R is the realized value.

Proper scoring rules encourage forecasters to provide honest and careful quotes [26]. To give a formal defini-
tion of proper scoring rules, we write

S(F ,G) = EG [S(F ,Y)] (2.3)

for the expected score under G when the probabilistic forecast is F , for F ,G ∈ F , assuming tacitly that the
expectation is well defined. The extended real line is denoted byR = R ∪ {−∞,∞}.

Definition: The scoring rule S : F × R → R is proper relative to the classF if

S(G,G) ≤ S(F ,G) (2.4)

For allF ,G ∈ F . It is strictly proper if Equation 2.3 holds with equality only ifF = G.

Thus, a proper scoring rule is designed such that quoting the true distribution as the forecast distribution is
an optimal strategy in expectation. This property is critically important, as the use of improper scoring rules can
lead to grossly misguided inferences about predictive performance [24] [26].

In this work, an important score to mention is the Continuous ranked probability score (CRPS), defined by
(Epstein 1969, Matheson and Winkler 1976)[53], which is used by the author of the End-to-End methodology
to evaluate the accuracy of the forecasts but also compare point forecasts and probabilistic forecasts. CRPS is a
strictly proper scoring rule [24],meaning a sample scores better (lower)when it is drawn fromthe truedistribution.
Following [41], given a univariate predictive CDF F̂t,i for time series i, and a ground-truth observation yt,i, CRPS
can be defined as

CRPS(F̂t,i, yt,i) :=
∑
i

∫ 1

0
Qq
S

(
F̂
−1
t,i (q), yt,i

)
dq, (2.5)

whereQq
S is the quantile score (or pin-ball loss) for the q-th quantile:

Qq
S = 2

(
I
{
yt,i ≤ F̂

−1
t,i (q)

}
− q

)(
F̂
−1
t,i (q)− y

)
(2.6)
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2.3 Hierarchical and Grouped Time Series

Time series data can often be broken down by various attributes of interest. Consider, for instance, the total
revenue generated by a software company. The revenue can be disaggregated by product types, such as desktop
software, mobile apps, cloud services, and enterprise solutions. Each of these categories can be further divided; for
example, cloud services can be split into storage, computing, and database services. These subcategories are part
of the larger category groups, forming a hierarchical aggregation structure in the time series data. Such a structure
is known as hierarchical time series.

These hierarchical structures are also commonly observed in sales data segmented by geographic location [32].
The total revenue of the software company could be broken down by continent, then within each continent by
country, within each country by state or province, and so forth, down to individual cities or sales outlets.

A hierarchical time series is a multivariate time series that satisfies linear aggregation constraints. Such aggrega-
tion constraints encode a tree hierarchy as we can notice in Figure 2.1:

Figure 2.1: Example of hierarchical time series structure for n = 8 time series with m = 5 bottom and r = 3 aggregated time
series. Source: Rangapuram et Al. 2021 [47]

To get to a formal definition of the structure, following the notation proposed in Hyndman et al. 2022 [33],
we consider a time horizon t = 1, . . . ,T. Let yt ∈ Rn denote the values of a hierarchical time series at time t,
with yt,i ∈ R the value of the i-th (out of n) univariate time series. Assume that the index i of the individual
time series is given by the level-order traversal of the hierarchical tree going from left to right at each level. Further,
let xt,i ∈ Rk be time-varying covariate vectors associated with each univariate time series at time t, and xt :=

[xt,1, . . . , xt,n] ∈ Rk×n. The shorthand is used y1:T to denote the sequence {y1, y2, . . . , yT}[47].
Referring to the time series at the leaf nodes of the hierarchy as bottom-level series and those of the remaining

nodes as aggregated series. Also, let’s call a given set of forecasts for all time series in the hierarchy that are gen-
erated without heeding the aggregation constraint as base forecasts (not to be confused with bottom-level). For
notational convenience we split the vector of all series yt intom bottom entries and r aggregated entries such that:

yt =

[
at
bt

]
with at ∈ Rr and bt ∈ Rm. (2.7)
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Clearly n = r+m. For an individual hierarchy or grouping, an aggregation matrix S ∈ {0, 1}n×m is defined and
the yt, bt, and S satisfy:

yt = Sbt ⇔

[
at
bt

]
=

[
Ssum
Im

]
bt (2.8)

for every t. Ssum ∈ {0, 1}r×m is a summation matrix and Im is them × m identity matrix. It is also useful to
equivalently represent as:

Ayt = 0 (2.9)

whereA := [Ir|− Ssum] ∈ {0, 1}r×n, 0 is an r-vector of zeros, and Ir is the r× r identity. The last formulation
allows for a natural definition of forecast error[11].

We can illustrate our notation with the example in Figure 2.2. For this hierarchy,

at =

 yt
y1,t
y2,t

 ∈ R3 and bt =


b1,t
b2,t
b3,t
b4,t
b5,t

 ∈ R5.

The aggregation matrix S is:

S =

[
Ssum
I5

]
=


1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I5


In hierarchical time series forecasting, one is typically interested in producing forecasts for all the time series

in the hierarchy for a given number τ of future time steps after the present time T. Here τ is the length of the
prediction or forecast horizon. Since the forecasts are either point predictions or probabilistic in nature, in which
case they can be represented as a set of Monte Carlo samples drawn from the forecast distribution. For h ≤ τwe
denote an h-period-ahead forecast sample by ŷT+h, with the entire set of samples that comprises the probabilistic
forecast written as {ŷT+h} [47].

Grouped time series reflect a complex aggregation structure, which expands and goes beyond the straightfor-
ward hierarchical layers. In such time series, the categorization does not follow a singular, top-down hierarchical
division but rather involves a blend of factors that are both nested within each other and intersecting [32].

For instance, considering the same example of the software company, we could break down this data not only
by geographical location, such as by continent, country, and city, but also by cloud services like storage, computing,
and database services, so it does not have to be one or the other. Moreover, each of these categories can be cross-
segmented; for instance, computing sales can be analyzed for each city within each country. In this case, the cloud
categories are ”crossed” with the geographic segmentation.

This crossed structure allows for a multidimensional analysis of time series data, where one could investigate a
certain product’s sales trends in each specific region or any combination of the subcategories. The complexity of
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grouped time series lies in the fact that the disaggregation can occur alongmultiple dimensions that are not strictly
hierarchical but interrelated. In figure 2.2 there is a visual example of these structures:

Figure 2.2: Alternative representations of a two level grouped structure. Source: [32]

2.4 Reconciliation
Reconciliation is the process of ensuring that forecasts at different levels of the hierarchy are coherent with each
other. Coherence is a principle that ensures the predictions made at different levels of a hierarchy or grouped
series add up correctly and are compliant with the forecasts of the other levels. In other terms, is the requirement
that the forecasts generated respect the aggregation constraints implied by the structure. Coherence in forecasting
is crucial for ensuring that all parts of a hierarchical structure are working together effectively and that strategic
decisions are based on a reliable and consistent view of the future [11].

Before the development of forecast reconciliation, the focus was on forecasting a subset of variables at some
selected level of aggregation and subsequently aggregating or disaggregating these to generate coherent forecasts
for all series. So rather than generating forecasts for all the time series and then implying coherence, the forecasts
that were generated were coherent by construction, these methods are known as Single Level Approaches.

A simplemethod for generating coherent forecasts is thebottom-up approach [9]. This approach involves first
generating forecasts for each series at the bottom level, and then summing these to produce forecasts for all the
series in the structure. An advantage of this approach is that we are forecasting at the bottom level of a structure,
and therefore no information is lost due to aggregation. On the other hand, bottom-level data can be quite noisy
and more challenging to model and forecast.
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Top-down approaches onlyworkwith strictly hierarchical aggregation structures, and notwith grouped struc-
tures. They involve first generating forecasts for the Total series yt, and then disaggregating these down the hier-
archy. We let (p1, p2, . . . , pm) be a set of disaggregation proportions that dictate how the forecasts of the Total
series are to be distributed to obtain forecasts for each series at the bottom level of the structure. The two most
common top-down approaches specify disaggregationproportions based on the historical proportions of the data;
they involve Average historical proportions, Proportions of the historical averages, and Forecast proportions [29].

Themiddle-out approach combines bottom-up and top-down approaches. First, a “middle level” is chosen
and forecasts are generated for all the series at this level. For the series above themiddle level, coherent forecasts are
generated using the bottom-up approachby aggregating the “middle-level” forecasts upwards. For the series below
the “middle level”, coherent forecasts are generated using a top-down approach by disaggregating the “middle
level” forecasts downwards[32].

An alternative approach emerged with [9] and [34] who recommended producing forecasts of all series (re-
ferred to as ‘base’ forecasts) and then adjusting, or ‘reconciling’, these forecasts to be coherent. These papers
formulated reconciliation as a regressionmodel, reconciling the base forecasts by projecting them onto a subspace
for which aggregation constraints hold. Subsequent work has formulated reconciliation as an optimization prob-
lemwhereweights are chosen tominimize a loss, such as a weighted squared error [55], a penalized version thereof
[15], or the trace of the forecast error covariance [57]. Other availablemethods in the literature either follow a pro-
jection matrix-based approach or an empirical copula-based reordering approach to revise the incoherent future
sample paths to obtain reconciled probabilistic forecasts [32].

The popularity of forecast reconciliationmethods can be attributed to several factors. Forecasts across different
aggregation levels may be generated by different departments or ‘silos’ within an organization, as in the case of
Amazon, using different sets of predictors,modeling approaches, or expert judgment. Potentially, these are viewed
as optimal within these divisions. Reconciliation represents a way to combine information via the sharing of
forecasts, thus breaking down these silos. Although itmay be difficult to share forecasting processes and associated
information across different parts of a large organization, the forecasts themselves are much easier to share and
reconcile.

2.4.1 MappingMatrices

Suppose we forecast all series independently ignoring the aggregation constraints and get the base forecasts, which
we denote by ŷh where h is the forecast horizon. They are stacked in the same order as the data yt. Then all
forecasting approaches for either hierarchical or grouped structures can be represented as

ỹh = SGŷh (2.10)

whereG is a matrix that maps the base forecasts into the bottom-level, and the summing matrix S sums these
up using the aggregation structure to produce a set of coherent forecasts ỹh [32].

The Gmatrix is defined according to the approach implemented. For example, if the bottom-up approach is
used to forecast the hierarchy of Figure 2.1, then
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G =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


G contains two partitions, the first three columns zero out the base forecasts of the series above the bottom-

level, while the m-dimensional identity matrix picks only the base forecasts of the bottom-level. These are then
summed by the Smatrix which is constructed based on the structure of the hierarchy[32].

We can rewrite the previous equation as:

ỹh = Pŷh (2.11)

where P = SG is a “projection” or a “reconciliation matrix”. That is, it takes the incoherent base forecasts ŷh,
and reconciles them to produce coherent forecasts ỹh [31].

Thus far, the methods outlined did not involved reconciliation of multiple time series, since up to now the
methods relied on forecasts from only one level of the aggregation structure, which are then either aggregated
or disaggregated to provide forecasts at all subsequent levels. However, it is possible to utilize other G matrices,
whereby P will combine and reconcile the underlying forecasts to generate consistent forecasts. Indeed, it is pos-
sible to determine the idealGmatrix that yields the most precise reconciled forecasts.

2.4.2 The Optimal Reconciliation Approach
Optimal forecast reconciliationwill occur if we can find theGmatrix whichminimises the forecast error of the set
of coherent forecasts. First, it is checked if the forecasts obtained are unbiased . If the base forecasts ŷh are unbiased,
then the coherent forecasts ỹh will be unbiased provided SGS = S [30]. This provides a constraint on the matrix
G. Interestingly, no top-downmethod satisfies this constraint, so all top-downmethods are biased [31].

MinT
Nextwefind the error in our forecasts. Wickramasuriya et al. (2019) [57] show that the variance-covariancematrix
of the h-step-ahead coherent forecast errors is given by:

Vh = Var[yT+h − ỹh] = SGWhG′S′ (2.12)

whereWh = Var[(yT+h− ŷh)] is the variance-covariancematrix of the corresponding base forecast errors. The
objective is to find a matrix G that minimises the error variances of the coherent forecasts. These error variances
are on the diagonal of thematrixVh, and so the sum of all the error variances is given by the trace of thematrixVh.
Wickramasuriya et al. (2019) [57] show that the matrixGwhich minimises the trace ofVh such that SGS = S, is
given by

G = (S′W−1
h S)−1S′W−1

h
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Therefore, the optimal reconciled forecasts are given by:

ỹh = S(S′W−1
h S)−1S′W−1

h ŷh (2.13)

which is referred to as the MinT orMinimum Trace estimator.

OLS
SetWh = khI for all h, where kh > 0. This is the most simplifying assumption to make, and means that G is
independent of the data, providing substantial computational savings. The disadvantage, however, is that this
specification does not account for the differences in scale between the levels of the structure, or for relationships
between series. The weights here are referred to as OLS (ordinary least squares) because settingWh = khI in 2.13
gives the least squares estimator [32].

WLS

SetWh = khdiag(Ŵ1) for all h, where kh > 0

Ŵ1 =
1
T

T∑
t=1

ete′t

and et is an n-dimensional vector of residuals of the models that generated the base forecasts stacked in the same
order as the data. This specification scales the base forecasts using the variance of the residuals and it is therefore
referred to as the WLS (weighted least squares) estimator using variance scaling [32].

Shrinkage estimator
SetWh = khW1 for all h, where kh > 0. Here we only assume that the error covariance matrices are proportional
to each other, and we directly estimate the full one-step covariance matrixW1. The most simple way would be
to use the sample covariance. However, for cases where the number of bottom-level seriesm is large compared to
the length of the series T, this is not a good estimator. Instead, a shrinkage estimator is used, which shrinks the
sample covariance to a diagonal matrix [32].
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3
The End-to-EndMethodology

The End-to-End methodology is a novel approach to probabilistic forecasting of hierarchical time series that in-
corporates both learning and reconciliation into a single end-to-end model. Model parameters are learned simul-
taneously from all the time series in the hierarchy. The probabilistic forecasts from the model are guaranteed to
be coherent without requiring any post-processing step. Two primary components comprise the approach:

1. A forecasting model that produces a multivariate forecast distribution over the prediction horizon; and

2. A sampling and projection step where samples are drawn from the forecast distribution, and are then
projected onto the coherent subspace [47].

Figure 3.1: Model architecture. Hierarchical time series data is used to train a multivariate forecaster. Learned distribution
parameters along with the reparameterization trick allow this distribution to be sampled during training. Optionally, a nonlin‐
ear transformation of the samples (e.g., normalizing flow) can account for data in a non‐Gaussian domain. Samples are then
projected to enforce coherency. From the empirical distribution represented by the samples, sufficient statistics Θct can be
computed and used to define an appropriate loss. Source: Rangapuram et Al. 2021 [47]
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The structural representation of this methodology can be found in Figure 3.1. The main insight behind the
proposed method is the fact that when these components are amenable to autodifferentiation, they constitute a
single globalmodelwhose parameters are learned end-to-endbyminimizing a loss on the coherent samples directly.
First, the differentiability of the sampling operation, thanks to the reparametrization trick (Kingma & Welling,
2013) [38], and second, the implementation of the reconciliation (projection) step on samples can be formed as a
convex optimization layer (DCL) (Amos&Kolter, 2017; Agrawal et al., 2019a;b) [8]. In the setting of hierarchical
and grouped time series, the optimization problem has a closed-form solution requiring only amatrix-vector mul-
tiplication (with a pre-computable matrix) and hence is trivially differentiable. However, the proposed approach
can handle more sophisticated constraints than those imposed by hierarchical settings via DCL [47]. This allows
one to combine typically independent components (generation of base forecasts, sampling, and reconciliation)
into a single trainable model.

This methodology referred to as DeepVARHierarchical uses DeepVAR model as the base multivariate fore-
caster because of its proven performance and compatibility with the problems of this nature. This is a schematic
representation of the DeepVARHierarchical and the way the data is handled in the methodology;

Figure 3.2: Specific instantiation of the approach with DeepVAR (Salinas et al., 2019) multivariate forecasting model (red
boundary). Sampling and projection steps are highlighted by the blue boundary [50]. Source: Rangapuram et Al. 2021 [47]

In Figure 3.2 the red dashed line represents the multivariate forecasting model DeepVAR (described below)
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and the blue dashed line highlights the sampling and projection steps. Once trained, themodel produces coherent
forecasts by construction [50] [47].

3.1 DeepVAR
DeepVAR is a multivariate, nonlinear generalization of classical autoregressive models (Salinas et al., 2019; 2020;
Alexandrov et al., 2019)[50] [5]. It uses a recurrent neural network (RNN) to exploit relationships across the
entire history of the multivariate time series and is trained to learn the parameters of the forecast distribution.
More precisely, given a feature vector xt and the multivariate lags yt−1 ∈ Rn as inputs, DeepVAR assumes the
predictive distribution at time step t is parameterized by Θt, which are the outputs of the RNN, also known as
“Learned parameters”:

Θt = Ψ(xt, yt−1, ht−1;Φ) (3.1)

where Ψ is a recurrent function of the RNNwhose global shared parameters are given by Φ and hidden state
by ht−1 [47]. Typically, DeepVAR assumes that the forecast distribution is Gaussian in which case Θt = {μt,Σt},
where μt ∈ Rn andΣt ∈ S+n , although it can be extended to handle other distributions. The unknownparameters
Φ are then learned by themaximum likelihood principle given the training data [47]. Note that for simplicity only
one lag yt−1 is specified as the input to the recurrent function but in the implementation, lags are chosen from a
lag set determined by the frequency of the time series [5].

In the hierarchical setting, the covariancematrix Σt captures the correlations imposed by the hierarchy aswell as
the relationships among the bottom-level time series. It is often found in industrial applications that the bottom-
level time series are too sparse to learn any covariance structure let alonemore complicated nonlinear relationships
between them [47]. Given this, it is proposed by (Rangapuram et al. 2021) to learn a diagonal covariance matrix
Σtwhenproducing the initial base forecasts; also ifmore flexibility is needed to capture the nonlinear relationships
then one could transform base forecasts using normalizing flows. The linear relationships between the aggregated
and bottom-level time series are enforced via projection. Althoughwe assume Σt is diagonal, this is not equivalent
to learning independentmodels for each of then time series in the hierarchy. In fact, themean μt,i and the variance
Σt,(i,i) of the forecast distribution for each time series are predicted by combining the lags of all time series yt−1

and features xt in a nonlinear way using shared parameters Φ [47].

3.2 Sampling and Projection
In broader terms, probabilistic coherence is defined as any forecast that assigns zero probability to events that
do not meet the coherence condition [44]. In the same way that point forecast reconciliation begins with an
incoherent forecast, in the probabilistic setting we begin with an incoherent probabilistic forecast. In the point
forecasting setting, we can consider a (usually linear) function that takes an incoherent point and maps it to a
coherent point. In the probabilistic setting, we consider the same types of functions but think about them as
mapping sets of incoherent points to sets of coherent points. The probabilities assigned to these two sets are
the same, giving us a general definition of the probabilistic forecast reconciliation coherence condition. The key
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implication of this definition is that any existing point reconciliationmethod (e.g., OLS orMinT) can be extended
to the probabilistic setting [44].

To generate coherent forecasts given distribution parameters Θt = {μt,Σt} from the RNN, the method
initially includes generating a set of N Monte Carlo samples from the predicted distribution, {ȳt ∈ Rn} ∼
N (μt,Σt). As mentioned, the sampling step is differentiable with a simple reparameterization ofN (μt,Σt):

ȳ = μ+ Σ1/2z, with z ∼ N (0, I). (3.2)

[47]
That is, given the samples from the standard multivariate normal distribution, which are independent of the

network parameters, the actual forecast samples are deterministic functions of μt and Σt.
Coherence is enforced on the transformed samples {ȳt} obtained from the forecast distribution by solving the

following optimization problem:

ŷt = arg min
y∈Rn

||y− ȳt||
2 s.t. Ay = 0. (3.3)

[47]
Note that this is essentially a projection onto the null space of A which can be computed with a closed-form

projection operator:

M := I− A⊤(AA⊤)−1A. (3.4)

In other words, we have:
ŷt = Mȳt ∈ S. (3.5)

[47]
It should be noted thatAA⊤ is invertible for the hierarchical setting. M, which is time-invariant, can be com-

puted offline once, prior to the start of training. In principle, the projection problem (3.5) can accommodate
additional convex constraints. Although this precludes the possibility of a closed-form solution, the projection
can be implemented with a differentiable layer within the DCL framework [4].

3.3 Training and Prediction

The training of the hierarchical forecastingmodel is similar to DeepVAR except that the loss is directly computed
on the coherent predicted samples [47]. Given a batch of training series Y := {y1, y2, . . . , yT}, where yt ∈ Rn,
and associated time series featuresX := {x1, x2, . . . , xT}, the likelihood of the shared parameters Φ is given by

l(θ) = p(Y;X, θ) =
T∏
t=1

p(yt|yt−1; θ), (3.6)

[47]
where Θt are the distribution parameters 3.1 predicted by the DeepVARmodel.
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In the hierarchical setting, the learnable parameters are still given by Φ but themodel outputs coherentMonte
Carlo samples {ŷt} at each time step t. We are then able to compute sufficient statistics Θc,t on {ŷt} and define
the following likelihood model:

lc(θ) =
T∏
t=1

p(yt;Θc,t). (3.7)

[47]
The exact distribution p(yt;Θc,t) can be chosen according to the data. One can then maximize the likelihood

of estimating the parameters Φ. More importantly, it has the flexibility to estimate the parameters Φ by optimiz-
ing any other loss function such as quantile loss, continuous ranked probability, or any of the metrics typically
preferred in the forecasting community. This is possible because any quantile of interest can be computed given
sufficiently many samples (N large enough)[47].

Prediction is performed by unrolling the RNN step-by-step over the prediction horizon as shown in Figure
3.3 [50].

Figure 3.3: DeepVARHierarchical training and prediction.Source: Rangapuram et Al. 2021 [47]

Given an observed hierarchical time series {y1, y2, . . . , yT}, there is the need to predict its values for τ subse-
quent periods. Starting with t = T+ 1, we obtain forecast distribution parameters ΘT+1 by unrolling the RNN
for one time step using the last hidden state from training hT, time series features x1:T+1 and the observed lag values
yt−1, t = 2, 3, . . . ,T+ 1. Then generate a set of sample predictions {ŷT+1} by first taking Monte Carlo samples
from parameters ΘT+1 and then projecting them with the same matrixM used in training. For each t > T+ 1, a
sample predicted in the previous step ŷt−1 is used as the lag input, shown as the dotted line in Figure 3.3, to gener-
ate prediction ŷt. We repeat this procedure for each of theN samples generated at the beginning of the prediction
horizon T + 1. This way, a set of sample paths was obtained {ŷT+1, . . . , ŷT+τ} that is coherent when the end
of the prediction horizon is reached. These samples may then be used to generate point (mean) or probabilistic
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forecasts by computing appropriate sample statistics (e.g., quantiles) [47].
The continuous ranked probability score (CRPS) is used to evaluate the accuracy of our forecast distributions,

details of which can be found in Chapter 2.

22



4
End-to-End methodology in forecasting
Demand for Supply ChainManagement

Forecasting is an essential process in many fields but its importance is highlighted in the context of business, eco-
nomics, and finance. Market research, expansion plans, revenue projections, cash flow management, inventory,
sales, and risk management, are only a few departments in which forecasting is utilized frequently. It is difficult
to find any department in big companies that do not use, generate, or leverage the forecasting results. One of the
key business units that allow a business to run smoothly is Supply ChainManagement, and accurately forecasting
SC flows as Demand, Arrivals, or Transfer-In has a cardinal impact on the overall performance of a company.

In particular,Demand forecasting is a crucial process in supply chainmanagement that predicts future demand
for a product, enabling supply chain operations to be planned in order to reduce delivery times, stock levels, and
operating costs. SCM needs to offer the right product at the right place, time, and price to satisfy customers’
expectations. Accurate forecasting minimizes uncertainty, stabilizes the supply chain, increases financial savings,
and enhances competitiveness.

On the other side, incorrect predictions can lead to excessive expenditures on procurement, shipping, human
resources, service level, and inventories. However, demand forecasting is complex due to customer behavior fluc-
tuations, economic growth, and advances in technology, making it difficult for organizations and predictors to
conduct scientific forecasts [14]. Many firms know their predictions are unrealistic but lack the knowledge to fix
them, leading to ignoring the issue and hoping to solve it later. Thus, improving demand forecasting accuracy
and methodologies is critical for companies and supply chains [17].
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4.1 The Problem

Demand Planning and Forecasting was one of the primary processes that were utilized in the process of devel-
oping Supply Chain Plans while I was doing my internship at Amazon. As far as the remainder of the SC plan
was concerned, this section was the basis of the rest of the process. For example, it was responsible for defining
transportation, employment, capacity utilization, warehouse placements, and everything else in the middle up to
deliver a package to the final customer.

In Amazon, the forecast was developed using a hierarchical framework that was constructed with four tiers.
On the highest level, which was the most aggregated, there was the so-called ”network demand,” which might
encompass the demand for either Europe, the United Kingdom, North America, or any number of other terri-
tories. In the following step, each of these networks was broken down into ”clusters,” which included countries
such as France, Italy, Spain, and others. These clusters showed geographically distinct groups of warehouses or
”fulfillment centers” (FC), which were used to construct the third level. All of the product forecasts were located
at the leaf nodes, which were the lowest level.

Our team’s primary objective was to automate supply chain activities, but even for us, the results of demand
forecasts were a core result in most of our products. However, there was a vast amount of time and work that was
required frommany different teams and assessments to arrive at the final demand projection, which proved to be
a significant impediment in SCM.During that time, efforts weremade to devise strategies that would improve the
effectiveness of this process, since it was acknowledged that this stage had a substantial impact. Therefore, it was
essential to make certain that accurate forecasts were made but also to lower costs significantly in terms of both
time and labor.

In light of these considerations, it is apparent that there is a strong necessity for the implementation of an
End-to-Endmethod that is capable of generating these forecasts at all levels without the requirement of a separate
reconciliation procedure. With the target of demand forecasting in supply chain management, this Chapter is
going to demonstrate how the ’End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time
Series’ methodology may be put into practice.

4.2 Dataset andMethodology

The methodology implementation followed the setup details outlined by the authors of the End-to-End paper
[47]. However, due to data sensitivity considerations, it was not feasible to use Amazon-specific data in this in-
stance. Instead, in collaborationwithmymanager atAmazon, themethodologywas applied to a publicly available
dataset exhibiting behavior similar to real demand data.

The dataset, curated by Syama Sundar Rangapuram in 2022, is accessible at the following link: https://
gist.github.com/rshyamsundar/39e57075743537c4100a716a7b7ec047/.

The summationmatrix associatedwith the dataset can be foundhere: https://gist.githubusercontent.
com/rshyamsundar/17084fd1f28021867bcf6f2d69d9b73a/raw/. Notably, the values in the dataset are nor-
malized, likely as a result of anonymization and privacy standards.
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The summation matrix S of this dataset is:

S =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The dataset comprises 336 data points, recorded on two weeks, in hourly frequency. The dataset is formed

into a format ofGluonTS by using the bottom level series and the summation matrix, which shows how the data
should be aggregated into the higher levels. Check Figure 4.1 for an overview of the dataset.

Figure 4.1: The dataset that was used to test the adaptability of the DeepVARHierarchical on forecasting demand in the SC
context.

Thedata is structured in a three-level hierarchical structure, with twonodes on the second and four nodes at the
bottom level, which accounts for seven time series in total (EU, Italy, Spain,Node1,Node2,Node3,Node4). The
top node represents New Workable Demand (NWD) within the European Union’s network. In this simplified
reality version, the demand of the EU will be further broken down into two clusters, Italy and Spain, which
constitute the second tier of the hierarchy. Each of these national segments is then divided into two additional sub-
segments, forming the third tier, which represents the FCs (warehouses). A visual representation of this structure
can be found in Figure 4.2.

The general code base for the method is found in the GluonTS library [5]. The hyperparameters are also left
at the default values set by the authors[47]. The details of the process that the End-to-End methodology follows
may be found in Chapter 3.
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In the experimental setup, the following hyperparameters are used:

• Prediction length: 24 hours

• Number of epochs: 10

• Learning rate: 1× 10−3

• Batch size: 32

Figure 4.2: Hierarchy of the NewWorkable Demand from an Amazon example.

4.3 Exploratory Data Analysis

An initial exploratory data analysis was performed on the data to get a better comprehension of the dataset at hand.
InTable 4.1, count,mean, standard deviation, andquantiles of the time series can be found. The analysis confirms
that all the time series have the same count. Keeping in mind that the values are normalized the minimum value
on the leaf node is 0 while the maximum is 1, with a similar mean and standard deviation.

The relationship between the time series was checked through the correlation matrix found in Figure 4.3. A
mask is used to hide the upper triangle of the heatmap to avoid duplicating information since the correlation
matrix is symmetrical.
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count mean std 25% 50% 75%

EU 336.0 1.986023 0.613545 1.554246 2.000046 2.408383
Italy 336.0 1.000742 0.416350 0.685174 0.998668 1.289633
Spain 336.0 0.985281 0.422882 0.645015 0.976069 1.292093
Node1 336.0 0.522583 0.295102 0.246390 0.529223 0.798044
Node2 336.0 0.478159 0.281454 0.251101 0.463864 0.730812
Node3 336.0 0.509392 0.301991 0.236183 0.524774 0.765462
Node4 336.0 0.475889 0.284407 0.235621 0.456849 0.721892

Table 4.1: Statistical summary of the time series.

Figure 4.3: Correlation matrix of the Hierarchical Dataset
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In the correlationmatrix, the hierarchical structure is shown again, as we see the high correlation on the parent-
node connected time series. While the leaf nodes have little to no correlation between them, Node 1 and Node 2
have a strong correlation to Italy, while Node 3 and Node 4 correlate with Spain. As expected, each of the other
time series is correlated to the EU, but this correlation falls moving down the hierarchy. Showing that hierarchy
levels that are not subsequent are less correlated.

Next, the distributions of the time series were graphed. From the distributional graphs in Figure 4.4, it is
noticeable that the bottom level graphs do not show a clear distribution, with Nodes 1 and 3 appearing to be a
somewhat bimodal shape and Nodes 2 and 4 slightly skewed to the right and left respectively. As it is known in
a business context the leaf nodes usually do not contain a lot of clear behavior and their forecasts are used more
for operational decision making. As we can see from the graphs, moving up in the hierarchy the data goes to a
more Gaussian distribution. The higher levels of hierarchy are usually the ones that drive strategic decisions in
the company. Further, the End-to-End methodology also assumes that the forecasted data will follow a Gaussian
distribution but as we see this might not be always the case.

Figure 4.4: Distributions of the seven time series included in the dataset.

Finally, each time series were plotted to see if there was any visible behavior. In Figure 4.5 the blue line rep-
resents the actual hourly data points for the respective timeseries, the orange line depicts the 24-hour moving
average, which smooths out the short-term fluctuations and highlights longer-term trends or cycles, and lastly
the gray shaded area indicates the 24-hour moving standard deviation, which provides a sense of the variability or
dispersion of the data around the moving average.
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Figure 4.5: Line graphs of the time series.
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We can say that in all the time series the values have a consistent variability, showing no clear trend, seasonality,
or periodic patterns. No outliers were spotted even though the data contains occasional spikes. By performing
the Augmented Dickey-fuller (ADF) test it was confirmed that all the series are stationary. No autocorrelation
was found either.

4.4 Forecast Results

The forecast horizon is equal to the lead time of the decisions driven by the forecast [43]. In this case, considering
the volume and the frequency of the data, the DeepVARHierarchical model generates forecasts that predict the
range of possible outcomes for the upcoming 24 hours. These results include the mean (point) forecast as well
as a bandwidth that shows where the lower 10% and upper 90% of outcomes are expected to fall, providing a
probabilistic view of future values. It is worth remembering that the model takes into account the entirety of the
time-series data to learnnot only the patternswithin each individual series but also the relationships between them.
Another key feature of these results is that they already represent a probabilistically coherent forecast, meaning
they respect the linear constraints dictated by the hierarchical data structure.

Moreover,MeanSquaredError (MSE),AbsoluteError (AE),MeanAbsolute PercentageError (MAPE),Mean
AbsoluteQuantile Loss (MAQL), andMeanWeightedQuantile Loss (MWQL),were used to provide an overview
of the forecast performance in each level fromwhich can then compare themodel performance indifferent sections
of the hierarchy.

Top-level: EU

Figure 4.6: Forecasting result for the EU level demand.
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In Figure 4.6 the black line represents the historical data (observed values) for the EU level, while the solid
blue line is the mean forecast or point forecast. The shaded area represents the 10th-90th percentile range of the
probabilistic forecast. From the graph, we can say that the model has captured the behavior of the data, which is
also confirmed by the metrics in Table 4.2 – indicating a good fit and reliable probabilistic forecast.

Metric MSE AE MAPE MAQL MWQL

EU 0.1533 7.1950 0.1979 5.6138 0.1115

Table 4.2: Evaluation metrics for the EU model.

Second level: Italy and Spain

Figure 4.7: Forecasting result of the SC demand of the second level of the hierarchy ‐ Italy.

The same graphic representation of the results is used for the other levels also. In Figures 4.7 and 4.8 both
countries’ forecasts show a similar pattern of historical data, with variability and no clear long-term trends. Italy’s
forecasts are generally more accurate than Spain’s across all metrics provided. The probabilistic forecast ranges
visually appear to capture the variability in the historical data well, with the actual data mostly residing within
this range. Business operations in these markets would adjust their strategies accordingly, taking advantage of
the predictability where possible and guarding against uncertainty where necessary, especially for Italy where the
forecast is quite accurate, suggesting that decision-making for this region can be made with a higher degree of
confidence. The metrics for these two forecasts can be found in Table 4.3.
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Figure 4.8: Forecasting result of the SC demand of the second level of the hierarchy ‐ Spain.

Metric MSE AE MAPE MAQL MWQL

Italy 0.0669 4.8850 0.3172 3.8554 0.1632
Spain 0.1587 7.8433 0.4197 6.2931 0.2356

Table 4.3: Evaluation metrics for the models in Italy and Spain.

Third level: Nodes 1-4

Figure 4.9: Forecasting result of the SC demand of the third level of the hierarchy ‐ Node 1.

32



Figure 4.10: Forecasting result of the SC demand of the third level of the hierarchy ‐ Node 2.

Figure 4.11: Forecasting result of the SC demand of the third level of the hierarchy ‐ Node 3.

Figure 4.12: Forecasting result of the SC demand of the third level of the hierarchy ‐ Node 4.
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All nodes show a good MSE and AE which implies a good fit on the point forecast, but with a relatively high
MAPE indicating that percentage errors may be significant. Quantile losses are moderate, suggesting reasonable
distributional forecast accuracy, which is also backed up by the MAQL and MWQL values, refer to Table 4.4.
Either way, forecasts for Node 2 and Node 4 are less reliable, which may require more conservative strategies or
contingency plans. In Figures 4.9, 4.10, 4.11, and 4.12 the visual representation of these forecasts can be appreci-
ated.

Metric MSE AE MAPE MAQL MWQL

Node 1 0.0583 4.8207 0.5438 3.7794 0.2985
Node 2 0.0550 4.6742 2.4177 3.6694 0.3348
Node 3 0.0654 5.0784 0.5581 3.8584 0.2590
Node 4 0.0693 5.3299 1.0611 4.0026 0.3388

Table 4.4: Evaluation metrics for Nodes 1 to 4.

All Levels

The overall CRPS for the hierarchy is 0.2228 (Details in Chapter 2, under Proper Scoring). The model has room
for improvement which can be done by tuning the hyperparameters rather than using the autotuned parameters,
and potentially increasing training epochs. Nonetheless, for the sake of this implementation, it was aimed to
presentwhat themodel is capable of doing in its basicmode. From themetrics below,wenotice that themodel had
a goodperformanceoverall being able to catch thebehavior of the series, butnot in every level themodel performed
similarly. This was also evident in the End-to-End paper, whichmay requiremore attention in a business decision-
making context. In Table 4.5 the average (or summed) metrics for all levels are represented.

Metric MSE AE MAPE MAQL MWQL

All Levels 0.0896 39.8268 0.7879 31.0723 0.2058

Table 4.5: Evaluation metrics at all levels.
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Figure 4.13: Model Metrics Comparison Across Different Levels of the Hierarchy.

The line chart in Figure 4.13 displays themetrics of themodel across different hierarchy levels. MSE is generally
low across all levels with EU and Spain having the highest error, which also corresponds with MAQL indicating
the lower performance in these two levels of the point and probabilistic forecast when we look at each level inde-
pendently. On the other hand,MAPE andMWQL show an increasing trend going from the top of the hierarchy
to the lower levels which confirms the business experience that the lower levels will be generally sparser, and these
forecasts will contribute more in operational decision-making, rather than strategical ones.
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4.5 Comparing End-to-End and ARIMA-BUMethods

To provide a benchmark of the performance of the End-to-Endmethodology, the Autoregressive IntegratedMov-
ing Average (ARIMA) model including a Bottom-up Reconciliation (check Chapter 2 for details), was imple-
mented to the dataset [16]. This implementation is twofold. First, it starts by using ARIMA to achieve a base
forecast of the bottom level, particularly auto.arima function inRwas used, which automatically chooses the best
ARIMA configuration for the data at hand [35]. In Figure 4.14, the forecasts for Nodes 1-4 can be found. With-
out going into the metrics of these forecasts, it is visible that ARIMA could not capture properly the behaviour
of this data. An assumption that can be made is that the current dataset might be too variable for ARIMA to
capture the pattern and an increase of the data volume might be helpful.

Figure 4.14: ARIMA forecasts for Nodes 1‐4. The black lines represent the historical training data; The red lines represent
the test data; The blue lines represent the forecasts generated by ARIMA. Lastly, the purple and the gray areas show the
80% and 95% probabilistic forecast bands respectively.

Next, theARIMAforecasts and the reconciled forecastsARIMA-Bottom-upwere obtained for the second and
first levels of the hierarchy. In Figure 4.15 the forecasts of Italy, Spain, and the EU are presented. The forecasts are
better than the forecasts for the Nodes but still, the essence of the behavior and the variability of the data is not
captured.
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Figure 4.15: ARIMA forecasts for Italy, Spain, and EU. The black lines represent the historical training data; The red lines
represent the actual test data; and The blue lines represent the forecasts generated by ARIMA. The yellow lines represent
the forecasts generated by ARIMA‐Bottom‐up. Lastly, the purple and the gray areas show the 80% and 95% probabilistic
forecast bands respectively.
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To dive deeper into the metrics of these forecasts, with the intention of having an exact comparison, in Table
4.6, MSE, AE, MAPE, MAQL, and MWQL values are shown for the three methodologies. It should be noted
that since ARIMAdoes not typically produce quantile forecasts, theMAQL andMWQLvalues for ARIMA and
ARIMA-BU are not included.

Method Metric MSE AE MAPE MAQL MWQL

End-to-End EU 0.1533 7.1950 0.1979 5.6138 0.1115
End-to-End Italy 0.0669 4.8850 0.3172 3.8554 0.1632
End-to-End Spain 0.1587 7.8433 0.4197 6.2931 0.2356
End-to-End Node 1 0.0583 4.8207 0.5438 3.7794 0.2985
End-to-End Node 2 0.0550 4.6742 2.4177 3.6694 0.3348
End-to-End Node 3 0.0654 5.0784 0.5581 3.8584 0.2590
End-to-End Node 4 0.0693 5.3299 1.0611 4.0026 0.3388

ARIMA EU 0.4157 12.9327 33.0257 - -
ARIMA Italy 0.1756 8.3477 50.9420 - -
ARIMA Spain 0.2559 10.8025 57.8693 - -
ARIMA Node 1 0.0604 5.2021 62.5106 - -
ARIMA Node 2 0.0936 6.2413 300.8801 - -
ARIMA Node 3 0.0955 6.6621 70.6361 - -
ARIMA Node 4 0.0924 6.3987 136.4505 - -

ARIMA-BU EU 0.3702 12.7847 32.5035 - -
ARIMA-BU Italy 0.1597 8.0323 50.1093 - -
ARIMA-BU Spain 0.2521 10.8327 57.7579 - -

Table 4.6: Combined Evaluation Metrics for End‐to‐End, ARIMA, and ARIMA‐BU.

It is visible from the table that the End-to-End method has superior performance compared to the ARIMA
and ARIMA-BU. This is proved first from the point forecast metrics (MSE, AE, MAPE) in which the End-to-
End performs better than the other two methods in all the nodes and levels. Secondly, the End-to-End method
provides a good probabilistic forecast which is showcased in the MAQL andMWQL and is visible also from the
graphs of the results. While the ARIMA probability forecasts shown in the graphs do not seem to provide sharp
and well-calibrated forecasts. On the other hand, the ARIMA-BU that is used for obtaining reconciled forecasts
for Italy, Spain, and the EU, performs better than the independent ARIMA models. This performance can be
attributed to the inclusion of data inter-dependencies from the End-to-End and ARIMA-BUmethods.

Figure 4.16presents a direct comparisonof the averageperformanceof theEnd-to-End,ARIMA, andARIMA-
BU methods across the EU, Italy, and Spain metrics. This visualization uses an average normalized score, calcu-
lated by averaging the normalized MSE, AE, andMAPE for each method and region. The figure visualizes again
the advantages of the End-to-End method by showing the performance gap.
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Figure 4.16: Average performance comparison of the MSE, AE, and MAPE, for the three methodologies.
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5
Discussion

5.1 AdvantagesandlimitationsoftheEnd-to-Endap-
proach

The primary advantages of this novel approach, when benchmarked against current state-of-the-art methods, are
manifold and significant. Fundamentally, the method is engineered to inherently ensure the generation of coher-
ent and probabilistic forecasts. It streamlines the forecasting process by integrating the reconciliation step directly
into the model’s architecture, eliminating the need for separate post-processing. By concurrently training on all
the time series within a unified nonlinear model, it refines the accuracy for each series, resulting in superior preci-
sion. This end-to-end approach leverages the strengths of a multivariate, nonlinear autoregressive model, which
simplifies the incorporation of newer multivariate forecasting models, negating the necessity for extensive modifi-
cations. The model’s architecture is not only flexible in accommodating a variety of loss functions tailored to the
application at hand but is also adept at managingmore general structural constraints during the projection phase.
While DeepVAR traditionally operates under the assumption of a Gaussian forecast distribution, the methodol-
ogy presented here may be extended beyond this to embrace alternative distributions [47].

Despite the method’s robust performance, it is not without its limitations that warrant consideration. The ap-
proach, as currently formulated, operates within certain distributional assumptions that, while extendable, may
not fully capture the complex nature of real-world data distributions. The method’s reliance on deep learning
models, particularly Recurrent Neural Networks (RNNs), introduces a degree of opacity that can impede inter-
pretability and explainability. This limitation is consequential; it creates difficulties not only in understanding
and communicating the model’s outputs to stakeholders who rely on transparency but also in achieving the rig-
orous requirements of the EU’s AI Act, which underlines the need for clear and comprehensible AI systems. The
capacity to interpretmodel outputs is becoming increasingly important in the field, and a lack of it in this method
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could prevent greater acceptance and usage, especially in contexts where explainability is as vital as accuracy.

5.2 The Distribution Assumption
Typically, DeepVAR assumes that the forecast distribution is Gaussian in which case Θt = {μt,Σt}, where
μt ∈ Rn and Σt ∈ S+n , although it can be extended to handle other distributions [47]. The unknown param-
eters Φ are then learned by the maximum likelihood principle given the training data. In the model at hand, the
sampling step is differentiable as long as the distribution chosen allows for a suitable reparameterization where
the random “noise” component of the distribution can be separated from the deterministic values of the parame-
ters. This is the case for several distributions including Gaussian, Gamma, log-Normal, Beta, and Student-t [39]
[49] [3]. Figurnov et al. (2018) present an alternative approach to compute reparameterization gradients showing
broader applicability to Student-t, Dirichlet, and mixture distributions [21]. Although, empirically a multivari-
ate Gaussian distribution performed well on the datasets considered, as future work, it would be very beneficial
to explore the usage of nonlinear transformations like normalizing flows to better model non-Gaussian data.

5.3 Model Explainability and Interpretability
For AI methods, the terms interpretability and explainability are commonly interchangeable. It is important to
distinguish the difference between them to help organizations determine an AI approach to meet their use case.

Interpretability — If a business wants high model transparency and wants to understand exactly why and
how the model is generating predictions, it needs to observe the inner mechanics of the AI method. This leads
to interpreting the model’s weights and features to determine the given output. However, high interpretability
typically comes at the cost of performance, as seen in the following figure. If a company wants to achieve high
performance but still wants to have a general understanding of the model behavior, model explainability starts to
play a larger role [7].

Explainability — Explainability is how to take an AI model and explain the behavior in human terms. With
complex models (for example, black boxes), you cannot fully understand how and why the inner mechanics im-
pact the prediction. However, through model agnostic methods (for example, partial dependence plots, SHapley
Additive exPlanations (SHAP) dependence plots, or surrogate models) you can discover meaning between input
data attributions and model outputs, which enables you to explain the nature and behavior of the model [7].

When starting a new project, it is needed to consider whether interpretability is required or how explain-
able your model needs to be. Explainability is essential for most AI systems for achieving several goals. It aims
to establish transparency and trust in AI systems by demystifying their internal processes and decision-making
mechanisms. Ensures algorithmic accountability by allowing developers, auditors, and regulators to examine the
decision-making processes of the models, identify potential biases or errors, and assess their compliance with eth-
ical guidelines and legal requirements[42].

Human-AI collaboration is also facilitated by explainability, as it provides interpretable insights and fosters
a mutually beneficial partnership. Human experts can validate AI model decisions against their knowledge and
experience, identifying potential errors or biases. Stakeholder communications, which is a crucial part of any
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company are made smoother when the counterpart has a clear idea of what is impacting the decision or where
are the recommendations coming from. Explainability also facilitates the integration of the Human-in-the-Loop
(HITL) system, allowing humans to interact with the AI system, review and interpret its outputs, and provide
feedback to refine and improve the model [18].

Fairness and biasmitigation are also addressed by explainability, enabling the detection andmitigation of biases
in machine learning models. Certain techniques help identify and understand errors or inaccuracies in machine
learning models, allowing developers to debug the models, improve accuracy, and reduce potential risks associ-
ated with incorrect decisions [7]. In Figure 5.1, a representation of performance and interpretability trade-offs in
different models can be observed.

Figure 5.1: Representation of Performance and Interpretability trade‐off in different models. Source: Amazon Web Services
[7]

5.4 AI Act Compliance
On Friday, December 8, 2023, after months of intensive trialogue negotiations – the European Parliament and
Council reached a political agreement on the European Union’s Artificial Intelligence Act [45]. AI Act is a new
EU regulatory framework for artificial intelligence (AI), which has a top priority to make sure that AI systems
used in the EU are safe, transparent, traceable, non-discriminatory, and environmentally friendly. AI systems
should be overseen by people, rather than by automation, to prevent harmful outcomes. This groundbreaking
legislation aims to address the utilization of AI systems and their associated risks through a risk-based approach.
The act categorizes AI systems into four risk levels - unacceptable, high, limited, and minimal risk, each with
corresponding regulations and obligations. This pyramid of risks can be found in Figure 5.2. AI applications
would be regulated only as strictly necessary to address specific levels of risk [19].
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Figure 5.2: Pyramid of risks ‐ used to classify the potential risk in AI system ‐ part of the AI Act, 2023. Source: EUCommission
[19]

The proposed AI act aims to ban harmful AI practices that pose a clear threat to people’s safety, livelihoods,
and rights. It prohibits the use of AI systems that deploy harmful manipulative techniques, exploit vulnerable
groups, use by public authorities for social scoring purposes, and use ‘real-time’ remote biometric identification
systems in public spaces for law enforcement purposes [19].

High-riskAI systems are distinguishedbetween systemsused as safety components of a product or fallingunder
EU health and safety harmonization legislation. AI systems presenting ’limited risk’, such as chatbots, emotion
recognition systems, biometric categorization systems, and ’deepfakes’, will be subject to a limited set of trans-
parency obligations. All other AI systems presenting low or minimal risk can be developed and used in the EU
without conforming to additional legal obligations [19].

What would AI in Supply Chain Management be categorized to? A system that has so much impact most
likely would be categorized as a High-risk system or less likely in a Limited-risk system. Both these categories, at
the very least, would be subjected to a set of transparency obligations.

In the context of a company such as Amazon, considering the impact on operational significance, critical in-
frastructure, and wide-reaching consequences, where any mishandling in the model could lead to widespread
disruptions, affecting businesses, consumers, and potentially even safety and fundamental rights, a system that
forecasts Demand of the SC would be a High-risk system. Independently of the technology at hand, a company
would use, the risk ismeasured on the direct impact that the technologywould have on people. Nonetheless, these
systems must comply with various requirements, including risk management, testing, technical robustness, data
training and governance, transparency, human oversight, and cybersecurity.

In any case, to be able to comply with the new rules that coming up, a system’s interpretability and explainabil-
ity are crucial. TheAIAct places a strong emphasis on transparency. It requires these systems tobeunderstandable
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and interpretable by users. Thismeans the system’s sources, decisions, and the processes leading to these decisions,
should be transparent and explainable. If a system’s decision-making process is opaque, it becomes challenging to
assess its risks accurately and ensure it operates reliably and safely. To effectively oversee an AI system, operators
need to understand how it makes decisions. An interpretable and explainable AI system allows for more effective
human intervention and decision-making. An interpretable and explainable AI system simplifies the process of
demonstrating compliance with the AI Act’s requirements and addressing ethical and legal concerns.

Two ways are highlighted in this thesis, on how to tackle this problem. First, a company can work on the
explainability of the current methodology, or second, a company can choose an ‘explainability-accuracy trade-off’
by simplifying the methodology towards more explainable models.

5.5 DeepVAR - RNN Explainability

The convolutional neural networks are not the only deep learning methods that can perform time series classi-
fication. The recurrent neural networks, which are perfectly adapted to sequential data types, are also used to
accomplish forecasts of time series [48]. DeepVAR is an RNN model chosen by the End-to-End methodology
authors to predict the Learning Parameters of the probability forecasts (prior to sampling and projection). Even
though the model has been shown to work well and be superior to the state-of-the-art machine learning models
which lack explainable elements are classed as being a ”black box” and run the risk of perpetuating computer-
based discrimination and bias. There are a lot of models that can help in RNN explainability, which differ a lot
depending on whether are they ante-hoc or post-hoc, which methodology are they based on (Backpropagation,
Perturbation, Attention Mechanism, Fuzzy logic, etc.), model specific or agnostic, scope, and target audience
[48].

Post-hoc explainability refers to methods that provide insights into the model’s decisions after it has been
trained. These are applied to models that are not inherently interpretable. Post-hoc XAI techniques are essential
tools that can shed light on these models’ decisions, but they do not necessarily change the fundamental nature of
the model’s interpretability. As part of post-hoc methods, there is also the possibility to explain recurrent models
by using a model-agnostic explanation method. Kim et al. [51] use the SHapley Additive exPlanations (SHAP)
algorithm [52], a commonmodel-agnostic feature attributionmethod, to explain the output of a recurrentmodel
[48].

On the other side, Ante-hoc explainability refers to inherently interpretable methods, meaning the model’s
structure and functioning are designed to be understandable. The transparency of a model and its interpretabil-
ity are enhanced when ante-hoc methods are incorporated into the architecture, allowing for a certain level of
explanation to be built in from the start as part of the model design [48].

Attention mechanisms are Ante-Hoc explainability methods that assign values corresponding to the impor-
tance of the different parts of the time series according to the model, see example in Figure 5.3. They are embed-
ded in the structure of recurrent networks and the explicability they offer is available directly at the end of the
learning phase.

45



Figure 5.3: Utilization of Attention mechanisms in RNN’s explainability. Source: Rojat et Al., 2021 [48]
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5.6 Model Proposals

Even though the authors of the End-to-endmethodology specify that the methodology will try to take advantage
of the increasingly rich literature on neural networks, with a focus on a multivariate, probabilistic model, one
of the important claims that they make is: “One could easily replace DeepVAR with any recently proposed mul-
tivariate forecasting model without requiring major changes.”. This claim allowed to continue thinking of the
possibilities of adjusting the methodology in favor of explainability to contribute to result communications with
stakeholders and compliance with the new AI regulations.

The assumption that was made is that if one moves away from deep learning models, then the explainability
would be able to increase but sacrificing the accuracy of the model. This ‘explainability-accuracy trade-off’ would
give the companies a chance to simplify their procedures depending on the need of cases and not overshoot with
a highly complex model that they do not understand.

But how can DeepVAR be replaced in the End-to-End methodology? First, it needs to be considered that any
model to be proposed needs to deal with a multivariate forecasting problem, which means that a time series has
more than one time series variable and the model has to produce forecasts for all of them. Secondly, it needs to
be a global model which considers the relations between the different time series, so all variables affect each other.
And third, it would be a fairly explainable model.

The model on which the DeepVARHierarchical is based is the VAR model – Vector Autoregressive model,
therefore,VARwouldbe thefirst natural candidate to replaceDeepVARsince it also fulfills all the above-mentioned
conditions. The variables in this model are modeled as if they all influence each other equally. In more formal ter-
minology, all variables are now treated as “endogenous”. It generalizes the univariate autoregressive (AR) model
for forecasting a vector of time series. Despite the criticism that VARs face for being atheoretical – not built in
some economic theory that imposes a theoretical structure – they are very useful in several contexts as testing
whether one variable is useful in forecasting another, impulse response analysis, forecast error variance decompo-
sition, and as in the case of an End-to-Endmethod to forecast a collection of related variables whichwould be part
of a hierarchical structure [58].

Next, moving on the spectrum of this explainability-accuracy trade-off one can also utilizemore complexmod-
els. An extension ofVAR that is suitable to this problem isVARIMA–VectorAutoregressive IntegratingMoving
Averages, which handles non-stationary data by including the integration component and takes into account the
impact of shocks at various time lags by including alsoMoving Averages (MA) component, potentially leading to
more accurate forecasts. This increased complexity comes also with reduced explainability [56].

Furthermore, another proposal for these experimentations would be the VISTS framework – Vector Innova-
tions Structural Time Series – which encapsulates exponential smoothing methods in a multivariate setting. It
allows for the modeling of multiple time series simultaneously while accounting for structural components such
as trends, seasons, cycles, and the influence of exogenous variables. While the primary output of VAR, VARIMA,
and VISTS models may be point forecasts, they all can provide probabilistic forecasts [10].

All the proposed models would be worth pursuing in an experiment, and that is what was attempted to do
during this thesis. Even though initially the task seemed straightforward, in the deep dives and experimentations
that were conducted during this time, replacing DeepVAR with the proposed models, proved to be a complex
challenge practically.
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One of the main hurdles that were encountered was the complexity of transitioning from point forecasts to
probabilistic forecasts. Considering that the second part of the End-to-End method relies on the distribution
parameters of the probabilistic forecast as its inputs, this part of the task was crucial. Expect the conceptual and
theoretical side of the challenge, the implementation of this part required structural changes of the codebase in a
newly launched coding package asGluonTS to modify the DeepVARHierarchical andmajor changes of themod-
els themselves in other coding packages as statsmodels, where the integration of different packages was required.
Both these changes needed to match each other both conceptually and practically.
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6
Conclusions

This thesis has contributed to further studies ofHierarchicalData forecastingwithin the domain of SupplyChain
Management. Through an examination of the End-to-End methodology and its practical implementation, this
research has brought to light the significant benefits of this approach in generating coherent and probabilistic
forecasts. By employing a single nonlinear model to train all the time series simultaneously and benefiting from
the usage of their inter-dependencies, themethod has demonstrated an improved fit for each series, enhancing the
accuracy beyond the capabilities of the state-of-the-art models.

A central advantage identified in this work is themethodology’s inherent design, which eliminates the need for
independent reconciliation, ensuring the production of coherent forecasts. Moreover, the flexibility of the model
training process, facilitated by the application-dependent loss functions, and its ability to incorporate structural
constraints such as non-negativity, speaks to the robustness and adaptability of the End-to-End methodology.

The practical implementation of the End-to-End methodology within the context of demand forecasting in
SupplyChainManagement stands as one of themost impactful elements of this thesis. By applying this advanced
forecasting approach, the research successfully navigated the complex hierarchy of supply chain data, producing
probabilistic forecasts at all levels. This is particularly valuable in Supply Chain Management where decisions
at every level—from strategic to operational—rely on accurate forecasts to manage inventory, allocate resources,
and plan for future demand, where an End-to-End process would save a considerable amount of time and effort,
consequentially lowering operational cost.

However, this thesis has not shied away from a critical analysis of the limitations present. The assumption of a
Gaussian distribution, while standard, may not always encapsulate the true nature of the data. Furthermore, the
limitedmodel interpretability and the looming necessity to alignwith the newEUAIAct of 2023 pose challenges
that the industry must proactively address. To this end, the thesis proposes two paths forward: enhancing the
explainability of the current methodology or opting for an ’explainability-accuracy trade-off’ by simplifying the
methodology towards more interpretable models.

The practical challenges encountered during the implementation phase have underscored the complexity of
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transitioning from point forecasts to probabilistic forecasts. The necessity to recode and restructure the base
in GluonTS to accommodate modifications, along with integrating disparate coding packages like statsmodels,
presented a substantial obstacle. The endeavor required not only a theoretical understanding but also a significant
engineering effort to ensure conceptual and practical alignment.

This thesis stands as a new contribution to the field, offering both a methodological advancement in forecast-
ing and a candid discussion of its potential and pitfalls. The insights garnered here lay a foundation for future
research and development, guiding the pursuit of models that strike a balance between accuracy, coherence, and
compliance with regulatory frameworks. As such, this work does not merely represent an academic exercise but
a step forward in the practical application of End-to-End hierarchical forecasting in Supply Chain Management,
with implications that extend to the broader landscape of forecasting.
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