
Efficient computation of Harmonic
Centrality on large networks: theory

and practice

Master Thesis

Eugenio Angriman

Monday 10th October, 2016

Corso di Laurea Magistrale in Ingegneria Informatica

Advisors: Prof. Geppino Pucci, Prof. Andrea Pietracaprina

Università degli Studi di Padova, Scuola di Ingegneria

Anno accademico 2015-2016

Abstract

Many today’s real-world applications make use of graphs to represent
activities and relationships between entities in a network. An impor-
tant concept in this context is the so-called Centrality, that is a method
to identify the most influential vertexes of a graph. Centrality is repre-
sented through indexes such as the Closeness Centrality or the Harmonic
Centrality. These indexes can be computed for each node in the net-
work and they are both inversely proportional to the distance between
the considered vertex and all the others. A couple of popular examples
of Centrality indexes application are the recognition of the most influ-
ential people inside a social network or the identification of the most
cited web pages.
However, the rapid growth of the amount of available data forces us
to deal with extremely large networks. Consequently, the Centrality in-
dexes computation for these kind of networks is often unfeasible since
it is needed to be solved the All-Pairs-Shortest-Path problem, which
requires a time that is at least quadratic in the size of the network. Nev-
ertheless most of the applications often necessitate to find just a small
set of vertexes having the highest centrality index values or, at least, a
reliable centrality indexes estimation.
In the last few years a lot of progress has been made for the effi-
cient computation of the Closeness Centrality index. D. Eppstein and J.
Wang designed an approximation algorithm that efficiently estimates
the value of the Closeness Centrality of each vertex of a given network
while K. Okamoto, Wei C. and X proposed a fast algorithm that cal-
culates the exact top-k Closeness Centralities. On the other hand, the
Harmonic Centrality is a more recent metric and efficient algorithms for
it have not been developed yet.
In this work we propose a Harmonic Centrality redesigned version of
the efficient algorithms we cited above. We first provide the necessary
theoretical background to prove the time and error bounds and then
we present a Python implementation which makes use of graph-tool as
main support library.

i

Contents

Contents iii

1 Introduction 5

2 Preliminaries 9
2.1 Centrality definitions . 9
2.2 Description and complexity of the problem 10

3 Efficient algorithms for the computation of Closeness Centrality 13
3.1 Fast Top-k Closeness Centrality computation 13

3.1.1 Upper bound of the Closeness Centrality 14
3.1.2 Computation of r(v) . 15
3.1.3 The algorithm . 17

3.2 Fast Closeness Centrality Approximation 23
3.2.1 The algorithm . 23
3.2.2 Theoretical analysis . 24

3.3 Exact top-k Closeness centralities fast computation 26
3.3.1 The algorithm . 27
3.3.2 Theoretical analysis . 28

3.4 Conclusions . 31

4 Efficient Algorithms for the Harmonic Centrality 33
4.1 Borassi et al. strategy applied to the Harmonic Centrality . . 33

4.1.1 An upper bound for h(v) 33
4.2 Fast Harmonic Centrality Approximation 38

4.2.1 The algorithm . 38
4.2.2 Theoretical analysis . 38

4.3 Fast top-k Harmonic centralities exact computation 41
4.3.1 The algorithm . 41
4.3.2 Theoretical analysis . 42

iii

Contents

4.4 Conclusions . 45

5 Experimental Results 47
5.1 Introduction . 48

5.1.1 Performance metrics . 48
5.1.2 Constants . 49

5.2 Experimental setup . 50
5.3 RAND H: first set of experiments 52

5.3.1 Time performances . 52
5.3.2 Precision . 54
5.3.3 Top-k analysis . 60
5.3.4 Comparison with Borassi et al. 65

5.4 RAND H: second set of experiments 66
5.4.1 C = 0.5: time and precision performances 66
5.4.2 C = 0.5: top-k analysis 68
5.4.3 C = 0.25: time and precision performances 72
5.4.4 C = 0.25: top-k analysis 73

5.5 TOPRANK H . 81
5.5.1 First set of experiments: β = 1, α = 1.01 81
5.5.2 Second set of experiments: β = 0.5, α = 1.01 83
5.5.3 Third set of experiments: β = 0.5, α = 1.1 84

6 Conclusion and future work 87
6.1 Future developments . 88

A Appendix 89
A.1 Implemented algorithms code 89

Bibliography 93

iv

Dedicated to Andrea Marin, my first IT teacher. I can still remember the
lesson when I wrote ”Hello World!” for my first time. His genuine devotion

was truly inspirational to me to find my own path.

Acknowledgements

My gratitude goes to my advisors Professor Geppino Pucci and to Professor
Andrea Pietracaprina for proposing me such a challenging and interesting
problem. Working with them on this project allowed me not only to put a
great effort into a topic I am captivated by, but also to learn a lot from it.
I sincerely thank Dr. Matteo Ceccarello for his precious help and sugges-
tions. For the assistance he provided to me I could rely on an excellent
library and improve my code.
I am profoundly grateful to Michele Borassi and Elisabetta Bergamini for
the detailed clarifications about their algorithms they provided to me.
To my mother, father, brother and sister who shared their great support,
thank you.

Chapter 1

Introduction

Many of today’s real-world applications make use of graphs in order to
represent and analyze relationships between interconnected entities inside a
network. An important concept of network analysis is the so-called Central-
ity. Centrality is a method to measure the influence of a node on the other
nodes inside a network. In this context the influence of a node is intended as
how close to all the other nodes the given node is and the distance between
two nodes is represented as the length of the shortest path between them.
The problem of identifying the most central nodes in a network is extremely
important among a wide range of research areas such as biology, sociology
and, of course, computer science.
Centrality is represented by indexes such as Closeness Centrality and Har-
monic Centrality. These indexes can be computed for each vertex in the graph
that represents the network we would like to analyze. Closeness centrality
was conceived by Bavelas in the early fifties when he developed the intuition
that the vertexes which are more central should have lower distances to the
other vertexes [2]. For each vertex in a graph, Closeness Centrality was de-
fined as the inverse of the sum of the distances between the given vertex to
all the other vertexes. However, for this definition to make sense the graph
needs to be strongly connected because, without such condition, some dis-
tances would be unlimited resulting in score equal to zero for the affected
vertexes. Because of this drawback, it is more troublesome to work both with
directed graphs and with graphs with infinite distances but, probably, it was
not Bavela’s intention to use this metric with such graphs. Nevertheless it is
still possible to apply Closeness Centrality to not strongly connected graphs
just by not including unreachable vertexes into the sum of the distances.
An attempt to overhaul the definition of Closeness for not strongly con-
nected graphs was made in the seventies by Nan Lin [15]. His intuition
was to calculate the inverse average distance of a vertex v by weighting the
Closeness of v using the square of the number of reachable vertexes from

5

1. Introduction

v. By definition, he imposed isolated vertexes to have centrality equals to
1. Even though Lin’s index seems to provide a reasonable solution to the
problems related with the Bavela’s definition of Closeness, it was ignored in
the following literature.
Later in 2000 the idea underneath the concept of Harmonic Centrality was
introduced by Marchiori and Latora who were facing the problem of pro-
viding an effective notion of ”average shortest path” for the vertexes of a
generic network. In their work [16] they proposed to replace the average
distance, that was used for the Closeness centrality, with the harmonic mean
of all distances. If we assume that 1/∞ = 0 this kind of metric has the advan-
tageous property to handle cleanly infinite distances we typically encounter
in unconnected graphs. In fact the average of finite distances can be mislead-
ing, especially in large networks where a large number of pairs of nodes are
not reachable. In this cases the average distance may be relatively low just
because the graph is almost completely disconnected [3].
The formal definition of the Harmonic Centrality was introduced by Yannick
Rochat in a talk at ASNA 2009 (Application of Social Network Analysis).
He took inspiration from the work of Newman and Butts who gave a brief
definition of this centrality metric as the sum of the inverted distances a few
years before [20], [5]. The definition given by Yannick also includes a nor-
malization term equals to the inverse of the number of vertexes minus one
in order to obtain centrality index between zero and one that is cleaner and
more preferable [25].
A couple of years later Raj Kumar Pan and Jari Saramäki adopted a very
similar approach in their article on temporal networks [23] in order to deal
with Temporal Closeness Centrality. Concisely, they used the same definition
of Harmonic Centrality given by Yannick to compute the Temporal Close-
ness Centrality. The only difference is that Pan and Saramäki considered an
”average temporal distance” τij between two vertexes i, j ∈ V instead of the
shortest distance dij. As they wrote in their paper this metric allowed them
”to better account for disconnected pairs of nodes”.

In the last decades the amount of available data rose exponentially and the
Centrality computation has became as important as computationally unfea-
sible. In the 2000s researchers proposed some new and faster approaches to
compute the Closeness Centrality on large networks or a reasonable approx-
imation of it.
To begin with, in 2004 David Eppstein and Joseph Wang designed a random-
ized approximation algorithm for the computation of Closeness Centrality
in weighted graphs. Their method can estimate the centrality of all vertexes
with high probability within a (1 + ε) factor inO(logn/ε2(n log n+m)) time.
This is possible by selecting a subset S of Θ(logn/ε2) random vertexes, then
they estimate the centrality of each node using only the vertexes in S as the
target nodes instead the whole set V [7].

6

However, the majority of the applications require to calculate the top-k
most central vertexes of a graph. For this purpose Kazuya Okamoto, Wei
Chen and Xiang-Yang Li presented in 2008 a new algorithm that ranks
the exact top-k vertexes with the highest Closeness Centrality in O((k +

n2/3 log1/3 n)(n log n + m)). Their strategy makes use of the Eppstein et al.
algorithm in order to obtain an estimation of the centrality of each vertex.
Then, they create a candidate set H with the top-k + k̂ most central vertexes
of the estimated vertexes. Finally, they compute the exact Closeness Central-
ity for each element inside H [21].
Another algorithm for the fast computation of the exact top-k Closeness Cen-
tralities was published in 2015 by Michele Borassi, Pierluigi Crescenzi and
Andrea Marino. They designed a BFSCut function that is called for each
vertex v in the graph. Briefly, this function starts the Breadth First Search
using v as source and it stops as soon as an upper bound of the Closeness
Centrality of v is less than the k-th Closeness Centrality [4].

So far efficient algorithms for the approximation or the exact computation
of the Harmonic Centrality have not been designed yet, probably for the
reason that it is a more recent metric than the Closeness Centrality. Actually
the algorithm presented by Borassi et al. has already been generalized by
the same authors in order to compute also the Harmonic Centrality. The
purpose of our work is to provide high performance algorithms for both
the computation and approximation of the Harmonic Centrality on large
networks. Therefore, we re-designed the approaches described by Eppstein
et al. and Okamoto et al. in order to obtain for the Harmonic Centrality
the same results they achieved with the Closeness Centrality. Then, we will
compare these two approaches with both the basic algorithm and the with
the algorithm designed by Borassi et al. Furthermore, since neither Eppstein
et al. nor Okamoto et al. specified the exact number of random samples to
choose for their algorithms (they provided provided an asymptotic term
only), we will change the multiplicative constants in front of the asymptotic
terms in order to verify whether is it possible to reduce the running time of
the algorithms without compromising their precision.

The main results we achieved through this work are the following. First
of all we created a strong theoretical background that supports the efficient
computation of the Harmonic Centrality index. More precisely we proved
the following two statements:

• It is possible to approximate all the Harmonic centralities of a graph
within a ε error bound for each vertex in O

(
log n

ε2 (n log n + m)
)

time
through the Eppstein et al. algorithm we redesigned

• It is possible to compute the exact top-k Harmonic centralities of a
graph with high probability in O

((
k + n

2
3 log

1
3 n
)
(n log n + m)

)
time

7

1. Introduction

through our new implementation of the Okamoto et al. algorithm

Furthermore, we observed that not only both the algorithms we implemented
are considerably faster than the standard approach that solves the APSP
problem which is quite obvious, but our new version the Eppstein et al. ap-
proximation algorithm is, in some cases, even more competitive than the
Borassi et al. implementation, especially for bigger networks and higher k
values.
Another interesting aspect of our experimental results concerns the preci-
sion achieved by our approximation algorithm. In short we noticed that the
actual errors were considerably lower than the corresponding upper bound
ε and if we lower the number of random samples the error grows linearly.
This means that it is possible to save a considerable amount of time by reduc-
ing the number of random samples without compromising the algorithm’s
precision.
We applied these conclusions also on our revised version of the Okamoto
et al. algorithm and we noticed that it could still compute the exact top-k
Harmonic centralities but with a considerable reduction of its running time.

Our algorithms have been entirely implemented in Python 3.5.2 [1] and we
used the library graph-tool 2.18 [24] for network support since it can be
easily integrated into Python scripts but all its algorithms are written in
C++ for better performances.

This thesis is organized as follows. In Chapter 2 we formally introduce the
required background including notations, definitions and the terminology
that will be used in the following chapters.
Chapter 3 is dedicated to a thorough description of the Eppstein et al.,
Okamoto et al. and Borassi et al. algorithms for the computation of the
Closeness Centrality.
Chapter 4 is concerned with the description of how we adapted these algo-
rithm for the computation of the Harmonic Centrality including a complete
theoretical support.
Chapter 5 presents and comments the experimental setup and the results
in terms of time and precision we obtained by executing our algorithms on
several large social and authorship networks.
Finally, Chapter 6 summarizes the conclusions of this work and illustrates
some indications for potential future developments.

8

Chapter 2

Preliminaries

In the previous chapter we mentioned the importance of the centrality con-
cept in the large network analysis context and we illustrated two main cen-
trality indexes which are largely used in a wide range of today’s applications.
We also briefly summarized three efficient strategies for both the approxima-
tion and the fast computation of the Closeness Centrality index.
Before describing in detail these techniques, let us give some fundamental
definitions.

2.1 Centrality definitions

Let G = (V, E) be a strongly connected graph with n = |V| and m = |E|.
The Closeness Centrality index is defined as follows [22]:

Definition 2.1 Given a strongly connected graph G = (V, E), the Closeness Cen-
trality of a vertex v ∈ V is defined as:

c(v) =
|V| − 1

∑w∈V d(v, w)
(2.1)

where d(v, w) denotes the geodesic (i.e. shortest) distance from vertex v to w.

Another way to express c(v) is the following [4]:

c(v) =
|V| − 1

f (v)
, f (v) = ∑

w∈V
d(v, w) (2.2)

where f (v) is also known as the farness of v.

However, if G is not strongly connected the definition becomes more com-
plicated because d(v, w) cannot be defined for unreachable vertexes. Even if

9

2. Preliminaries

we impose d(v, w) = ∞ for each pair of unreachable vertexes, then c(v) = 0
for each v that cannot reach all the vertexes in the graph, which is not very
useful. The most common generalization that can be found in the literature
is the following:

Definition 2.2 Given a graph G = (V, E), the closeness centrality of a vertex
v ∈ V is defined as:

c(v) =
(|R(v)| − 1)2

(|V| − 1)∑w∈R(v) d(v, w)
(2.3)

where R(v) is the set of vertexes that are reachable from v.

On the other hand the Harmonic Centrality index is defined as follows:

Definition 2.3 Given a graph G = (V, E), the Harmonic Centrality of a vertex
v ∈ V is defined as:

h(v) =
1

|V| − 1 ∑
w∈V,w 6=v

1
d(v, w)

(2.4)

where d(v,w) represents the geodesic distance between v and w.

In the literature the normalization term is often omitted, consequently the
Harmonic Centrality is also defined as:

h(v) = ∑
w∈V,w 6=v

1
d(v, w)

(2.5)

Hereafter we will refer to the harmonic centrality according to the Definition
2.3 because it always takes values between 0 and 1 which can be compared
more easily.

2.2 Description and complexity of the problem

Nearly all today’s applications that exploit the concept of centrality are in-
terested in identify the k ≥ 1 most central nodes in a network i.e. the top-k
centralities. Formally, the problem is defined as follows:

Definition 2.4 (Top-k Centrality Problem) Given a graph G = (V, E), a top-k
centrality problem is to find:

argmaxṼ⊆V,|Ṽ|≥k

(
min
v∈Ṽ

c(v),
∣∣Ṽ∣∣) (2.6)

where c(v) is an arbitrary centrality index.

10

2.2. Description and complexity of the problem

Note that the set Ṽ might be greater than k for the reason that different
vertexes may have the same centrality value, so they should be included.

The easiest and most naive strategy to solve this problem is to compute the
centrality of each vertex in the graph, sort them and return the k most central
vertexes. This is equivalent to solve the All-Pairs Shortest-Path problem
(APSP) that is known to be unfeasible for large networks. Several algorithms
can solve the APSP problem in O

(
nm + n2 log n

)
time [9, 12] and others in

O
(
n3) time [8] or even up to O

(
n2 log n

)
for random graphs [6, 10, 17, 19].

However, all of them are too slow, specialized, or excessively complicated
and, for this reason, faster algorithms for the computation or approximation
of the centrality indexes are needed.

11

Chapter 3

Efficient algorithms for the
computation of Closeness Centrality

In the previous chapters we illustrated the importance of the top-k central-
ity problem and the difficulties of solving it efficiently because it is almost
equivalent to the All-Pairs Shortest-Path problem. Since it is unfeasible to
solve the APSP problem for large networks, researchers designed fast and
reliable algorithms for both the approximation and the exact computation
of the top-k Closeness Centralities of a network. In this chapter we illustrate
in detail three of these algorithms and the theory underneath them.

3.1 Fast Top-k Closeness Centrality computation

We now present the algorithm designed by M. Borassi, P. Crescenzi and A.
Marino for the efficient computation of the exact top-k Closeness centralities
of a graph. The core of their intuition is represented by the BFSCut function
they call for each vertex in the graph. This function calculates an upper
bound c̃(v) of the Closeness Centrality of the current vertex v ∈ V and it
stops as soon as c̃(v) is less than the current k-th Closeness centrality ck.
Otherwise, it completes the BFS from node v and stores its Closeness Cen-
trality value c(v). It is important to point out that, in a worst case scenario,
the complexity of this algorithm is the same as the the naive approach of
solving SSSP for each all vertexes in the graph that is O(n2 log n + nm). The
authors nonetheless noticed that the BFSCut function is far more efficient
than solving APSP for the vast majority of the real-world cases.
Their algorithm’s running time is also boosted by a degree-descending sort
of all the graph’s vertexes in order to run the BFSCut function for the highest
degree vertexes first. This is thought to minimize the probability of perform-
ing a full BFS for non-top-k most central vertexes.
Before digging into the detailed description of this algorithm let us intro-

13

3. Efficient algorithms for the computation of Closeness Centrality

duce and demonstrate the correctness of the elements we will use such as
the Closeness upper bound and other functions.

3.1.1 Upper bound of the Closeness Centrality

The BFSCut function takes as input two main parameters: the current node
v ∈ V and the current k-th Closeness centrality ck. Then, it updates the value
of c̃(v) whenever the exploration of the d-th level of the BFS starting from v
is finished (d ≥ 1). c̃(v) is then obtained from a lower bound on the farness
of v:

Lemma 3.1 (Farness lower bound)

f (v) ≥ f̃d(v, r(v)) := fd(v)− γ̃d+1(v) + (d + 2)(r(v)− nd(v))

where:

• r(v) is the number of reachable vertexes from v

• fd(v) is the farness of node v up to distance d, that is:

fd(v) = ∑
w∈Nd(v)

d(v, w)

where Nd(v) is the set of vertexes at distance at most d from v i.e.:

Nd(v) = {w ∈ V : d(v, w) ≤ d}

• γd+1 is the number of vertexes at distance exactly d + 1 from v.

• γ̃d+1 is an upper bound on γd+1 and it is defined as follows:

γ̃d+1 = ∑
w∈Γd(v)

outdeg(u) ≥ γd+1(v) = |Γd+1(v)|

where Γd+1(v) represents the set of vertexes at distance exactly d + 1 from v.

• nd+1(v) is the number of vertexes at distance at most d + 1 from v i.e.:

nd+1(v) = |Nd+1(v)| = |{w ∈ V : d(v, w) ≤ d + 1}|

Proof Clearly, for each d ≥ 1 it holds that:

f (v) ≥ fd(v) + (d + 1)γd+1(v) + (d + 2)(r(v)− nd+1(v))

Since nd+1(v) = γd+1 + nd(v) it follows that:

14

3.1. Fast Top-k Closeness Centrality computation

f (v) ≥ fd(v) + (d + 1)γd+1(v) + (d + 2)(r(v)− γd+1 − nd(v))
= fd(v)− γd+1(v) + (d + 2)(r(v)− nd(v))

Finally, since γ̃d+1 = ∑u∈Γd(v) outdeg(v) ≥ γd+1(v) we have:

f (v) ≥ fd(v)− γ̃d+1 + (d + 2)(r(v)− nd(v))

�

At this point the upper bound of the Closeness Centrality of v can be ex-
pressed as:

c̃(v) =
(r(v)− 1)2

(n− 1) f̃d(v)
≥ c(v) (3.1)

and, apart from r(v), all quantities are available as soon as all vertexes in
Nd(v) are visited by a BFS.

3.1.2 Computation of r(v)

The computation of r(v) depends on the properties of the input graph G =
(V, E). More precisely, if G is strongly connected then r(v) = n while, if G
is undirected but not necessarily connected, r(v) can be calculated in linear
time. More effort is required if G is directed and not strongly connected.

Directed and not Strongly Connected Graphs

For this particular situation we assume to know for r(v) an upper bound
α(v) > 1 and a lower bound ω(v). We will use α(v) and ω(v) to calculate a
lower bound on 1/c(v):

Lemma 3.2

1
c(v)

≥ λd(v) := (n− 1)min
(

f̃d(v, α(v))
(α(v)− 1)2 ,

f̃d(v, ω(v))
(ω(v)− 1)2

)
Proof From Lemma 3.1 it follows that:

f (v) ≥ fd(v)− γ̃d+1(v) + (d + 2)(r(v)− nd(v))

If we denote a = d + 2:

f (v) ≥ fd(v)− γ̃d+1(v) + a(r(v)− nd(v))
= a(r(v)− 1)− a(nd(v)− 1)− γ̃d+1(v) + fd(v)

15

3. Efficient algorithms for the computation of Closeness Centrality

Finally, if we denote b = γ̃d+1(v) + a(nd(v)− 1)− fd(v):

f (v) ≥ a(r(v)− 1)− b

where a > 0 (because d > 0), b > 0 (because γ̃d+1(v) ≥ 0) and nd(v) ≥ 1
(because v ∈ Nd(v)). Therefore:

fd(v) = ∑
w∈Nd(v)

d(v, w) ≤ d(nd(v)− 1) < a(nd(v)− 1)

the first inequality holds because if w = v then d(v, w) = 0, otherwise
w ∈ Nd(v)⇒ 1 ≤ d(v, w) ≤ d. The second inequality is trivial.
Considering the generalized definition of Closeness Centrality given by Equa-
tion 2.2 it follows that:

1
c(v)

= (n− 1)
f (v)

((r(v)− 1)2 ≥ (n− 1)
a(r(v)− 1)− b
(r(v)− 1)2

Let us denote x = r(v)− 1 and consider the function g(x) = ax−b
x2 in order

to study its minima. Its first order derivative g′(x) = −ax+2b
x3 is positive for

0 < x < 2b
a and negative for x > 2b

a if we consider only the positive values of
x (which is reasonable if we assume r(v) > 1). This means that 2b

a is a local
maximum and there are no local minima for x > 0. Consequently, for each
closed interval [x1, x2] where x1 ad x2 are positive, the minimum of g(x) for
x > 0 is reached in x1 or x2. Since 0 < α(v)− 1 ≤ r(v)− 1 ≤ ω(v)− 1:

g(r(v)− 1) ≥ min(g(α(v)− 1), g(ω(v)− 1)) �

Computing α(v) and ω(v) The computation of α(v) and ω(v) can be done
during the pre-processing phase of the algorithm. Let G = (V , E) be the
weighted acyclic graph made by the strongly connected components (SSCs)
corresponding to the graph G = (V, E). It is defined as follows:

• V is the set of SSCs of G.

• for any C,D ∈ V , (C,D) ∈ E if and only if ∃ v ∈ C, u ∈ D s.t. (v, u) ∈
E.

• for each SSC C ∈ V the weight w(C) = |C|, that is the number of
vertexes in the SCC C.

16

3.1. Fast Top-k Closeness Centrality computation

So, if vertexes v and u are in the same SSC C, then:

r(v) = r(u) = ∑
D∈R(C)

w(D) (3.2)

where R(C) represents the set of SSCs that are reachable from C in G. This
means that we only need to compute a lower bound α(C) and an upper
bound ω(C) once for every SSC C in G. To do so we first compute a topo-
logical sort {C1, · · · , Cl} of V (where if Ci, Cj ∈ E , then i < j) such that:

• Cl is a sink node i.e. outdeg(Cl) = 0.

• All sink nodes are placed consecutively at the end of the SSCs list.

then we use a dynamic programming approach in reverse topological order
starting from Cl :

α(C) = w(C) + max
(C,D)∈E

α(D)

ω(C) = w(C) + ∑
(C,D)∈E

ω(D)
(3.3)

Note that processing the SSCs in reverse topological order (from Cl down to
C1) ensures us that the values on the right hand side of the equation above
are available when computing the values α(C) and ω(C).
For example, at the first iteration we must compute α(Cl) and ω(Cl). We
know that outdeg(Cl) = 0 so α(C) = ω(C) = w(Cl) = |Cl |. This applies
to every other sink node in the list and provides the needed information to
compute α(Ci) and ω(Ci) for the remaining non-sink nodes.

3.1.3 The algorithm

Here we illustrate the algorithm’s pseudo-code including the BFSCut func-
tion for each combination of directed, undirected, strongly and not strongly
connected plus the dynamic programming algorithm for the computation of
the SSCs in the graph.

17

3. Efficient algorithms for the computation of Closeness Centrality

Algorithm 1 TopK Clos(G = (V, E), k)

1: Preprocessing(G)
2: xk ← 0
3: for each node v ∈ V do
4: c(v)← 0
5: end for
6: for v ∈ V in decreasing order of degree do
7: c(v)← BFSCut(v, xk)
8: if c(v) 6= 0 then
9: xk ← Kth(c)

10: end if
11: end for
12: return TopK(c)

Where:

• xk is the k-th greatest closeness computed until now

• Kth(c) is a function that returns the k-th biggest element of c

• TopK(c) is a function that returns the k biggest elements of c

The Preprocessing phase of the algorithm takes linear time and can be used
to compute α(v) and ω(v).

18

3.1. Fast Top-k Closeness Centrality computation

Algorithm 2 BFSCut(v, xk) function in the case of strongly connected graphs

1: Create queue Q
2: Q.enqueue(v)
3: Mark v as visited
4: d← 0; f ← 0; γ̃← 0; nd← 0;
5: while !Q.isEmpty do
6: u← Q.dequeue()
7: if d(v, u) > d then //all nodes at level d − 1 have been visited, c̃

must be updated
8: f̃ ← f − γ̃ + (d + 2)(n− nd)
9: c̃← n−1

f̃
10: if c̃ ≤ xk then
11: return 0
12: end if
13: end if
14: f ← f + d(u, v)
15: γ̃← γ̃+ outdeg(u)
16: nd← nd + 1
17: for w in adjacency list of u do
18: if w.visited == f alse then
19: Q.enqueue(w)
20: w.visited← true
21: end if
22: end for
23: end while
24: return n−1

f

19

3. Efficient algorithms for the computation of Closeness Centrality

Algorithm 3 BFSCut(v, xk) function in the case of undirected graphs (not
necessarily connected)

1: Create queue Q
2: Q.enqueue(v)
3: Mark v as visited
4: d← 0; f ← 0; γ̃← 0; nd← 0;
5: while !Q.isEmpty do
6: u← Q.dequeue()
7: if d(v, u) > d then
8: r ← BFSCount(u) //Returns the number of reachable nodes from

u
9: f̃ ← f − γ̃ + (d + 2)(r− nd)

10: c̃← n−1
f̃

11: if c̃ ≤ xk then
12: return 0
13: end if
14: end if
15: f ← f + d(u, v)
16: γ̃← γ̃+ outdeg(u)
17: nd← nd + 1
18: for w in adjacency list of u do
19: if w.visited == f alse then
20: Q.enqueue(w)
21: w.visited← true
22: end if
23: end for
24: end while
25: return n−1

f

20

3.1. Fast Top-k Closeness Centrality computation

Algorithm 4 BFSCut(v, xk) function in the case of directed and not strongly
connected graphs

1: Create queue Q
2: Q.enqueue(v)
3: Mark v as visited
4: d← 0; f ← 0; γ̃← 0; nd← 0;
5: while !Q.isEmpty do
6: u← Q.dequeue()
7: if d(v, u) > d then
8: (α, ω) ← GetBounds(u) //α and ω have been computed for all

SSCs in the Preprocessing
9: fα ← fd(u)− γ̃ + (d + 2)(α− nd)

10: fω ← fd(u)− γ̃ + (d + 2)(ω− nd)
11: λd ← (n− 1)min

(
fα

(α(v)−1)2 , fω

(ω(v)−1)2

)
12: if λd > 0 then
13: c̃← 1

λd
14: if c̃ ≤ xk then
15: return 0
16: end if
17: end if
18: end if
19: f ← f + d(u, v)
20: γ̃← γ̃+ outdeg(u)
21: nd← nd + 1
22: for w in adjacency list of u do
23: if w.visited == f alse then
24: Q.enqueue(w)
25: w.visited← true
26: end if
27: end for
28: end while
29: return n−1

f

21

3. Efficient algorithms for the computation of Closeness Centrality

Algorithm 5 Dynamic programming algorithm to compute for each SSC
in G the lower bound α(C) and the upper bound ω(C) to the number of
reachable vertices r(v)

1: (V , E)← graph of SSCs
2: V ′ ← topological sort of V
3: l ← |V|
4: A←~0 //|A| = l
5: Ω←~0 //|Ω| = l
6: for i = l − 1 down to 0 do
7: if V ′[i].outdeg == 0 then
8: A[i] = V [i].weight
9: Ω[i] = V [i].weight

10: else
11: O← {w ∈ V s.t. (V [i], w) ∈ E}
12: A[i]← V [i].weight + maxj∈O A[j]
13: Ω[i]← V [i].weight + ∑j∈O Ω[j]
14: end if
15: end for
16: for i = l − 1 down to 0 do
17: for v ∈ V [i] do
18: α(v) = A[i]
19: ω(v) = Ω[i]
20: end for
21: end for
22: return (A, Ω)

22

3.2. Fast Closeness Centrality Approximation

3.2 Fast Closeness Centrality Approximation

In this section we describe the Closeness Centrality approximation algo-
rithm conceived by D. Eppstein and J. Wang for undirected and weighted
graphs. They were inspired by a particular feature called small world phe-
nomenon that has been empirically observed to be typical of many social
networks [18, 28]. This kind of networks are characterized by O(log n) di-
ameters instead of O(n). The strategy we are going to illustrate provides a
near-linear time (1 + ε)-approximation to the Closeness Centrality of all the
nodes of a network of this type.
Shortly, the main intuition is the following: instead of solving the APSP
problem they compute the Single-Source Shortest-Paths (SSSP) from each
node contained in a subset S of random samples to all the other vertexes
(S ⊂ V). This technique allows them to estimate the centrality of each v ∈ V
to within an additive error of ε∆ inO

(
log n/ε2 (n log n + m)

)
time with high

probability, where ε > 0 is the upper error bound for a single vertex central-
ity and ∆ is the diameter of the graph. The approximated vertex centrality
is calculate using the average distance to the sampled vertexes.

3.2.1 The algorithm

As we can see from the pseudo-code of Algorithm 6 (RAND), this approxi-
mation algorithm takes as inputs a graph G and the number of samples k.
Then, it performs two main actions: it selects uniformly at random k sam-
ples from V and it solves the SSSP problem with each of them as source.
Finally it computes an inverse Closeness Centrality estimator 1/ĉ(v) of the
inverse Closeness Centrality 1/c(v) for each v ∈ V.

Algorithm 6 RAND(G = (V, E), k) D. Eppstein - J. Wang Closeness Cen-
trality approximation algorithm.

1: for i = 1 to k do
2: vi ← pick a vertex uniformly at random from V
3: Solve SSSP problem with vi as source
4: end for
5: for each v in V do
6: c(v)← ĉ(v)
7: end for

Let us point out that k is not arbitrary but it has been defined by the authors
as Θ

(
log n/ε2). The estimated value of the closeness centrality used for

each vertex v ∈ V (line 6 of the RAND algorithm) is defined as follows:

23

3. Efficient algorithms for the computation of Closeness Centrality

ĉ(v) =
1

∑k
i=1

nd(vi ,v)
k(n−1)

(3.4)

ĉ(v) estimates of 1/c(v) as the inverse of the average distance to the sam-
pled vertexes, which is normalized by the n

k(n−1) term.
In conclusion, if we adopt the O (n log n + m) algorithm designed by Fred-
man and Tarjan for solving the SSSP problem [9], the total running time
of this approximation algorithm is O (km) for unweighted graphs and
O(k(n log n + m)) for weighted graphs. Thus, given that k = Θ

(
log n/ε2),

we obtain an O
((

m log n/ε2)) algorithm for unweighted graphs and an
O
(
log n/ε2 (n log n + m)

)
algorithm for weighted graphs.

3.2.2 Theoretical analysis

So far we described how the algorithm operates, which conditions the in-
put graph must satisfy and how many samples we should choose. Now we
must demonstrate that the algorithm RAND computes the inverse Closeness
Centrality estimator ĉ(v) for each v ∈ V to within an upper error bound of
ξ = ε∆ with high probability. For this purpose we will refer to the errors
on the estimated Closeness centralities as independent, bounded and identi-
cally distributed random variables in order to exploit the Hoeffding lemma
on probability bounds for sums of independent random variables, that is:

Lemma 3.3 (Hoeffding [11]) If x1, x2, . . . , xk are independent random variables,
ai ≤ xi ≤ bi and µ = E

[
∑k

i=1
xi
k

]
is the expected mean, than for ξ > 0:

Pr

{∣∣∣∣∣∑k
i=i xi

k
− µ

∣∣∣∣∣ ≥ ξ

}
≤ 2e

− 2k2ξ2

∑k
i=1 (bi−ai)

2 (3.5)

In other words, we will denote xi as 1
ĉ(vi)
− 1

c(vi)
, 1 ≤ i ≤ k.

For the reason that Hoeffding’s lemma requires the empirical mean of the
x1, x2, . . . , xn random variables i.e. ∑k

i=1
xi
k to be equal to µ, we need to prove

that E
[

1
ĉ(v)

]
= 1

c(v) .

Theorem 3.4 Given that:

c(v) =
n− 1

∑n
i=i d(vi, v)

and ĉ(v) =
1

∑k
i=1

nd(vi ,v)
k(n−1)

then, E
[

1
ĉ(v)

]
= 1

c(v) .

24

3.2. Fast Closeness Centrality Approximation

Proof It is trivial that:

E
[

1
ĉ(v)

]
= E

[
k

∑
i=i

nd(vi, v)
k(n− 1)

]
=

=
n

k(n− 1)
E

[
k

∑
i=1

d(vi, v)

]

Since we can interpret the geodesic distance between d(vi, v) as a random
variable and, given X1, X2, . . . , Xk random variables, it is known that E

(
∑k

i=1 Xi

)
=

∑k
i=1 E(Xi). It follows that:

n
k(n− 1)

E

[
k

∑
i=1

d(vi, v)

]
=

n
k(n− 1)

k

∑
i=1

E [d(vi, v)]

The expected value of the geodesic distance between vi and v can be ex-
pressed as: E [d(vi, v)] = 1

n ∑n
j=1 d(vj, v). So we have that:

n
k(n− 1)

k

∑
i=1

E [d(vi, v)] =
n

k(n− 1)

k

∑
i=1

1
n

n

∑
j=1

d(vj, v)

=
1

k(n− 1)

n

∑
j=1

k

∑
i=1

d(vj, v)

=
1

k(n− 1)

n

∑
j=1

kd(vj, v)

=
1

n− 1

n

∑
j=1

d(vj, v)

=
1

c(v)

�

So far we have proven that we are operating under the hypothesis required
by the Hoeffding’s bound. Now we can use it to demonstrate the following
theorem:

Theorem 3.5 Given an undirected, connected and weighted graph G = (V, E),
with high probability the algorithm RAND computes the inverse of the Closeness
Centrality estimator ĉ(v) for each vertex v ∈ V to within an upper error bound
ξ = ε∆ using Θ

(
log n

ε2

)
samples, where ε > 0 and ∆ is the diameter of G.

25

3. Efficient algorithms for the computation of Closeness Centrality

Proof As we suggested before we can exploit the Hoeffding’s bound to cal-
culate an upper bound on the probability that the error of ĉ(v) is greater
than ξ = ε∆. This can be done by imposing:

xi =
nd(vi, v)

n− 1
, µ =

1
c(v)

, ai = 0, bi =
n∆

n− 1

Thus, given that E[1/ĉ(v)] = 1/c(v) we can re-write Equation 3.5 as follows:

Pr
{∣∣∣∣ 1

ĉ(v)
− 1

c(v)

∣∣∣∣ ≥ ξ

}
= Pr

{∣∣∣∣∣ k

∑
i=1

nd(vi, v)
k(n− 1)

− 1
c(v)

∣∣∣∣∣ ≥ ξ

}

= Pr

{∣∣∣∣∣ k

∑
i=1

xi

k
− µ

∣∣∣∣∣ ≥ ξ

}

≤ 2e
− 2k2ξ2

∑k
i=1 (bi−ai)

2

≤ 2e
− 2k2ξ2

k(n∆
n−1)

2

= 2e
−Ω

(
kξ2

∆2

)

In order to meet the required bounds we impose ξ = ε∆ and k = α
log n

ε2 ,
where α ≥ 1. It follows that:

2e
−Ω

(
kξ2

∆2

)
= e

−Ω
(

α
ε2∆2 log n

ε2∆2

)

= e−Ω(α log n)

= e−Ω(log nα)

≤ 1/nα

This implies that the probability of the error to be greater than ξ at any
vertex in the graph G is upper-bounded by 1/nα. This gives a 1/nα−1 ≤ 1/n
probability of having errors greater than ε∆ in the whole graph.

�

3.3 Exact top-k Closeness centralities fast computation

The last algorithm we are going to present in this chapter was introduced
by K. Okamoto, W. Chen and X. Li for the exact computation of the top-
k greatest Closeness centralities for undirected, connected and weighted

26

3.3. Exact top-k Closeness centralities fast computation

graphs. The main strategy is based on the combination of the approxima-
tion algorithm we described in the previous section with the exact algo-
rithm. More precisely, this algorithm executes the RAND algorithm with
l = Θ(k + n2/3 log1/3 n) samples first in order to find a candidate set E of
top-k′ vertexes, where k′ > k. To guarantee that all final top-k vertexes fall
inside the E set the authors suggest to carefully choose k′ using the bound
given in the proof of Theorem 3.5. Once the E set has been found the exact
algorithm is used to compute the average distances for each v ∈ E and, fi-
nally, the actual top-k greatest Closeness centralities can be extracted.
Briefly, under certain conditions, the algorithm we illustrate in this section
ranks all the top-k vertexes with greatest Closeness Centrality in O((k +

n2/3 log1/3 n)(n log n + m)) time with high probability.

3.3.1 The algorithm

Algorithm 7 (TOPRANK) takes as input an undirected, connected and weighted
graph G = (V, E), the number of top ranking vertexes it should extract
(k) and the number of samples (l) to be used by the approximation algo-
rithm RAND. First of all, TOPRANK uses the RAND algorithm with a set
S, |S| = l of random sampled vertexes to estimate the average distance âv
for each v ∈ V. Next, it names all the vertexes in the graph to v̂1, v̂2, . . . , v̂n
such that âv1 ≤ âv2 ≤ · · · ≤ âvn , where âvi = 1/ĉvi , and creates the E set
(|E| = k′) of top-k′ vertexes with greatest estimated Closeness Centrality. As
final step, TOPRANK computes the exact average shortest-path distances of
all vertexes in E and returns the top-k Closeness centralities.

Algorithm 7 TOPRANK(G = (V,E), k, l) K. Okamoto, W. Chen, X. Li exact
top-k Closeness centralities algorithm.

1: Use algorithm RAND with a set S of l sampled vertexes to obtain the es-
timated average distance âv ∀v ∈ V. Rename all vertexes to v̂1, v̂2, . . . , v̂n
such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n

2: Find v̂k
3: ∆̂ ← 2 minu∈S maxv∈V d(u, v) // d(u, v) has been computed for all u ∈

S, v ∈ V at step 1 and ∆̂ is determined in O(ln) time
4: Compute candidate set E as the set of vertexes whose estimated average

distances are less than or equal âv̂k + 2 f (l)∆̂
5: Calculate exact average shortest-path distances of all vertexes in E
6: Sort the exact average distances and return the top-k highest closeness

centralities

Note that the candidate set E is computed at line 4 of Algorithm 7 as ”the
set of vertexes whose estimated average distances are less than or equal to
âv̂i + 2 f (l)∆̂”. The f (l) function is defined as follows:

27

3. Efficient algorithms for the computation of Closeness Centrality

f (l) = α

√
log n

l
(3.6)

where α > 1. The authors made this choice in order to define a 1/2n2 upper
bound to the probability of the estimation error at any vertex in the graph
of being at least f (l)∆. This is based on setting ε = f (l) in the proof of
Theorem 3.5, the details are illustrated in the following theoretical analysis
section (3.3.2).

3.3.2 Theoretical analysis

In this section we formally demonstrate that, under the assumptions we
made on the sampling techniques and on the input graph, the TOPRANK
algorithm computes exactly the top-k Closeness centralities with high prob-
ability in O((k + n2/3 log1/3 n)(n log n + m)) time.
First and foremost we must prove that if we choose f (l) as in Equation 3.6
than with low probability the approximation error at any vertex in the graph
will be greater than f (l)∆:

Theorem 3.6 If the f (l) function is chosen as in Equation 3.6 then the error of
the estimation of c(v) for each v ∈ V is greater than f (l)∆ with less than 1/2n2

probability.

Proof The proof is based on setting ε = f (l) in the Hoeffding’s bound used
in Theorem 3.5:

Pr
{∣∣∣∣ 1

ĉ(v)
− 1

c(v)

∣∣∣∣ ≥ ξ

}
≤ 2e

− 2l2ξ2

k(n∆
n−1)

2

=
2

e2lξ2(n−1
n∆)

2 (As before we set ξ = ε∆)

=
2

e
log n
log n 2lε2(n−1

n)
2

=
2

n2l ε2
log n (

n−1
n)

2

(
Now we set ε = f (l) = α

√
log n

l

)

=
1

n2lβ log n
l log n

(
Where β = α2)

=
1

n2β

≤ 1
n2

28

3.3. Exact top-k Closeness centralities fast computation

Note that in the fifth line of the proof we included both the numerator (2)
and the multiplicative constant

(n−1
n

)2
inside the constant β ≥ 1.

�

Now we have the enough elements to prove the correctness of the TOPRANK
algorithm:

Theorem 3.7 Given an undirected, connected and weighted graph G = (V, E),
if the distribution of the average distances is uniform with range c∆, where c is
a constant and ∆ is the diameter of G, the TOPRANK algorithm ranks the top-k
vertexes with the greatest Closeness Centrality in O((k + n2/3 log1/3 n)(n log n +

m)) with high probability when we choose l = Θ(n2/3 log1/3 n).

We will proceed by demonstrating two main lemmas: Lemma 3.8 supports
the correctness of the algorithm’s output while Lemma 3.9 defines the time
required by the algorithm. The strategy adopted by the authors is to prove
the correctness of the TOPRANK regardless its time performances first. Then
they proved that, if a particular condition is met, the same result can also
be achieved in the required time limits. The results achieved by these two
lemmas can be summarized in Theorem 3.7.

Lemma 3.8 Algorithm TOPRANK ranks all the top-k vertexes with the highest
Closeness Centrality correctly with high probability with any parameter l configu-
ration.

Proof Given that the TOPRANK algorithm computes the exact average dis-
tances for each v ∈ E we must show that, with high probability, the set E
(line 4 of Algorithm 7) contains all the top-k vertexes with the lowest exact
average distance.
Let T = {v1, v2, . . . , vk} be the set of the exact top-k Closeness centralities
and T̂ = {v̂1, v̂2, . . . , v̂k} be the set of the estimated top-k Closeness central-
ities returned by the RAND algorithm. Since the errors in the estimation
of the average distances âv are independent and in Theorem 3.6 we proved
for any vertex v that the estimated average distance âv is greater than f (l)∆
with probability less than 1/2n2 i.e.:

Pr (¬ {av − f (l)∆ ≤ âv ≤ av + f (l)∆}) ≤ 1
2n2

it follows that, for each v ∈ V:

Pr

(
¬
{∧

v∈T

âv ≤ av + f (l)∆ ≤ avk + f (l)∆

})
≤

k

∑
i=1

Pr (¬ {avi − f (l)∆ ≤ âvi ≤ avi + f (l)∆}) ≤ k
2n2

(3.7)

29

3. Efficient algorithms for the computation of Closeness Centrality

This means that, with probability at least 1 − k/2n2, there exist at least k
vertexes in T whose estimated average distance âv is less than or equal to
avk + f (l)∆. Similarly:

Pr

¬
∧

v̂∈T̂

av̂ ≤ âv̂ + f (l)∆ ≤ âv̂k + f (l)∆


 ≤

k

∑
i=1

Pr (¬ {av̂i − f (l)∆ ≤ âv̂i ≤ av̂i + f (l)∆}) ≤ k
2n2

(3.8)

which means that there exist at least k vertexes v̂ ∈ T̂ whose real average
distance av̂ is less than or equal to âv̂k + f (l)∆ with probability greater than
1− k/2n2. Thus:

Pr (¬ {avk ≤ âv̂k + f (l)∆}) ≤ k
2n2 (3.9)

At this point from the 3.7 inequality we know that for each v ∈ T, âv ≤
avk + f (l)∆. By combining this result with the 3.9 inequality it follows that:

Pr

¬
∧

v̂∈T̂

âv ≤ avk + f (l)∆ ≤ âv̂k + 2 f (l)∆


 ≤ k

n2 (3.10)

Since at line 4 the TOPRANK algorithm includes in set E each vertex such
that âv̂ ≤ âv̂k + 2 f (l)∆̂ as the final part of this proof we have to prove that
∆ ≤ ∆̂.

For any w ∈ V we have that:

∆ = max
v,v′∈V

d(v, v′) ≤ max
v,v′∈V

(
d(w, v) + d(w, v′)

)
= max

v,v′∈V
d(w, v) + max

v,v′∈V
d(w, v′)

= 2 max
v∈V

d(w, v)

and thus:

∆ ≤ 2 min
w∈S

(
max
v∈V

d(w, v)
)
= ∆̂

Therefore for each v ∈ T, âv ≤ âv̂k + 2 f (l)∆̂ with probability at least 1−
k/n2 ≥ 1− 1/n (since k ≤ n). Hence, the TOPRANK algorithm includes

30

3.4. Conclusions

in E all the top-k vertexes with lowest average distance and it computes the
exact top-k Closeness centralities with high probability.

�

Lemma 3.9 If the distribution of the estimated average distances is uniform with
range c∆, where c is a constant number and ∆ is the diameter of the input graph G,
then TOPRANK takes O((k + n2/3 log1/3 n)(n log n + m)) time when we choose
l = Θ(n2/3 log1/3 n).

Proof At line 1 the TOPRANK algorithm executes the RAND algorithm us-
ing l samples which takes O(l(n log n + m)) time as we saw in the previous
section. Since the distribution of the estimated average distances is uniform
with range c∆, there are 2n f (l)∆̂/c∆ vertexes between âv̂k and âv̂k + 2 f (l)∆̂.
Since 2n f (l)∆̂/c∆ ∈ O(n f (l)), the number of vertexes in E is k +O(n f (l))
and therefore TOPRANK takes O((k +O(n f (l)))(n log n + m)) time at line
5. In order to lower the total running time at lines 1 and 5 as much as
possible, we should select l that minimizes l + n f (l) that is:

∂

∂l
(l + n f (l)) = 0

∂

∂l

(
l + nα

√
log n

l

)
= 0

1− nα

2

√
log n
l3/2 = 0

this leads to:

l =
(

n · α

2

) 2
3 · log

1
3 n = Θ

(
n

2
3 · log

1
3 n
)

In conclusion, if we choose l = Θ(n2/3 log1/3 n) the TOPRANK algorithm
takesO(n2/3 log1/3 n(log n+m)) time at line 1 and it takesO((k+n2/3 log1/3 n) ·
(n log n + m)) time at line 5. Consequently, since all the other operations are
asymptotically cheaper, TOPRANK takes O((k+ n2/3 log1/3 n)(n log n+m))
total running time.

�

3.4 Conclusions

In this chapter we illustrated three fast approaches for the approximation
and the exact computation of the Closeness Centrality of a graph with
high probability, we demonstrated their correctness and we calculated their
asymptotic running time. In Chapter 4 we will provide a detailed descrip-
tion of how these algorithms can be applied to the Harmonic Centrality.

31

Chapter 4

Efficient Algorithms for the Harmonic
Centrality

In the previous chapter we exposed in detail three efficient algorithms for
both the computation and the approximation of the Closeness Centrality.
In this chapter we introduce three new algorithms for the computation
of the Harmonic Centrality inspired by the BFSCut function, RAND and
TOPRANK.

4.1 Borassi et al. strategy applied to the Harmonic
Centrality

In this section we describe how the BFSCut function could be applied for the
computation of the exact top-k Harmonic centralities. The main challenge is
represented by finding and proving an upper bound for h(v).

4.1.1 An upper bound for h(v)

As Borassi et al. did in their work we would like to define an upper bound
h̃(v) to the Harmonic Centrality of node v in order to stop the BFS from
that node if h̃(v) is less than the kth greatest Harmonic Centrality computed
until now. Of course, ĥ(v) has to be updated whenever all the vertexes of
the dth level of the BFS tree have been visited, d ≥ 1.

Lemma 4.1

h(v) ≤ h̃d(v, r(v)) := hd(v) +
γ̃d+1

(d + 1)(d + 2)
+

r(v)− nd(v)
d + 2

(4.1)

where hd(v) is the Harmonic Centrality of node v up to distance d.

Proof Of course:

33

4. Efficient Algorithms for the Harmonic Centrality

h(v) ≤ hd(v) +
γd+1(v)

d + 1
+

r(v)− nd+1(v)
d + 2

Since nd+1(v) = γd+1(v) + nd(v),

h(v) ≤ hd(v) +
γd+1(v)

d + 1
+

r(v)− γd+1(v)− nd(v)
d + 2

Finally, since γ̃d+1 = ∑u∈Γd(v) outdeg(v) ≥ γd+1(v)

h(v) ≤ hd(v) +
γ̃d+1(v)

(d + 1)(d + 2)
+

r(v)− nd(v)
d + 2

�

We can exploit this property to efficiently compute the top-k Harmonic cen-
tralities using Algorithm 1 and a slightly revised version of the BFSCut func-
tion reported in Algorithm 2 for strongly connected graphs which were de-
scribed in Section 3.1.3.

Finally, for directed and not (strongly) connected graphs we know that the
Harmonic Centrality h(v) depends only on the reachable vertexes from v
since the others give no contribution. In this case r(v) is hard to compute
but, with the purpose to find an upper bound to h(v), we can try to find an
upper bound to r(v) since h(v) is directly proportional to r(v).
Borassi et. al. already provided an upper bound ω(v) to r(v) so we could
re-use part of Algorithm 5 of Section 3.1.3 to compute ω(v) for each vertex.
The resulting algorithm is reported in Algorithm 10.

34

4.1. Borassi et al. strategy applied to the Harmonic Centrality

Algorithm 8 Revised BFSCut(v, hk) function for the computation of h(v) in
the case of strongly connected graphs

1: Create queue Q
2: Q.enqueue(v)
3: Mark v as visited
4: d← 0; h← 0; γ̃← 0; nd← 0;
5: while !Q.isEmpty do
6: u← Q.dequeue()
7: if d(v, u) > d then //all nodes at level d − 1 have been visited, h̃

must be updated
8: h̃← h + γ̃

(d+1)(d+2) +
n−nd
d+2

9: if h̃
n−1 ≤ xk then

10: return 0
11: end if
12: d← d + 1
13: end if
14: if u 6= v then
15: h← h + 1

d(u,v)
16: end if
17: γ̃← γ̃+ outdeg(u)
18: nd← nd + 1
19: for w in adjacency list of u do
20: if w.visited == f alse then
21: Q.enqueue(w)
22: w.visited← true
23: end if
24: end for
25: end while
26: return h

n−1

35

4. Efficient Algorithms for the Harmonic Centrality

Algorithm 9 Revised BFSCut(v, xk) function in the case of undirected graphs
(not necessarily connected)

1: Create queue Q
2: Q.enqueue(v)
3: Mark v as visited
4: d← 0; h← 0; γ̃← 0; nd← 0;
5: while !Q.isEmpty do
6: u← Q.dequeue()
7: if d(v, u) > d then
8: r ← BFSCount(u) //Returns the number of reachable nodes from

u
9: h̃← h + γ̃

(d+1)(d+2) +
r−nd
d+2

10: if h̃
n−1 ≤ xk then

11: return 0
12: end if
13: d← d + 1
14: end if
15: if u 6= v then
16: h← h + 1

d(u,v)
17: end if
18: γ̃← γ̃+ outdeg(u)
19: nd← nd + 1
20: for w in adjacency list of u do
21: if w.visited == f alse then
22: Q.enqueue(w)
23: w.visited← true
24: end if
25: end for
26: end while
27: return h

n−1

36

4.1. Borassi et al. strategy applied to the Harmonic Centrality

Algorithm 10 BFSCut(v, xk) function in the case of directed and not strongly
connected graphs

1: Create queue Q
2: Q.enqueue(v)
3: Mark v as visited
4: d← 0; h← 0; γ̃← 0; nd← 0;
5: while !Q.isEmpty do
6: u← Q.dequeue()
7: if d(v, u) > d then
8: ω ← GetBound(u) //ω has been computed for all SSCs in the

Preprocessing
9: h̃← h + γ̃

(d+1)(d+2) +
ω−nd
d+2

10: if h ≤ xk then
11: return 0
12: end if
13: end if
14: if u 6= v then
15: h← h + 1

d(u,v)
16: end if
17: γ̃← γ̃+ outdeg(u)
18: nd← nd + 1
19: for w in adjacency list of u do
20: if w.visited == f alse then
21: Q.enqueue(w)
22: w.visited← true
23: end if
24: end for
25: end while
26: return h

n−1

37

4. Efficient Algorithms for the Harmonic Centrality

4.2 Fast Harmonic Centrality Approximation

The D. Eppstein and J. Wang strategy we presented in Section 3.2 can be
adapted to the Harmonic Centrality with little effort. The steps of the al-
gorithm are almost the same as RAND but it is necessary to provide the
Harmonic Centrality’s correct estimation of vertex v i.e. ĥ(v). In conclu-
sion we obtained an algorithm that computes with high probability a ε-
approximation of the Harmonic Centrality (ε > 0) of an undirected, con-
nected and weighted graph that takes O(log n/ε2(n log n + m) time.

4.2.1 The algorithm

Similarly to the RAND algorithm, RAND H takes as inputs a graph G and
the number of samples k. Then it extracts k random samples from V and
solves the SSSP problem for each extracted sample as source. Finally it
computes an Harmonic Centrality estimator ĥ(v) for each v ∈ V.

Algorithm 11 RAND H(G = (V,E), k) Our redesigned version of the RAND
algorithm for the computation of the Harmonic Centrality.

1: for i = 1 to k do
2: vi ← pick a vertex uniformly at random from V
3: Solve SSSP problem with vi as source
4: end for
5: for each v in V do
6: h(v)← ĥ(v)
7: end for

As in the previous chapter we want the number of random samples to be
k = Θ(log n/ε2). Thus, we define the Harmonic Centrality estimator as
follows:

h̃(v) =
n

k(n− 1)

k

∑
i=1

1
d(vi, v)

(4.2)

Similarly to Equation 3.4 we are expressing the Harmonic Centrality esti-
mator as the normalized average of the inverse distances to the sampled
vertices, with n/k as normalization term.

4.2.2 Theoretical analysis

Our purpose is now to demonstrate that the RAND H algorithm we sketched
in the previous section provides a ε-approximation of the Harmonic Central-
ity of each v ∈ V to within O(log n/ε2(n log n + m) time with high proba-
bility. Since we will make use of the Hoeffding’s bound (see Lemma 3.3)

38

4.2. Fast Harmonic Centrality Approximation

with the approximation error |ĥ(v)− h(v)| as random variable, we start by
demonstrating that the expected value of ĥ(v) is equal to h(v) as requested
by Lemma 3.3.

Theorem 4.2 Given that:

h(v) =
1

|V| − 1 ∑
w∈V,w 6=v

1
d(v, w)

and h̃(v) =
n

k(n− 1)

k

∑
i=1

1
d(vi, v)

then, E
[

ĥ(v)
]
= h(v).

Proof

E
[

ĥ(v)
]
= E

[
n

k(n− 1)

k

∑
i=1

1
d(vi, v)

]

=
n

k(n− 1)
E

[
k

∑
i=1

1
d(vi, v)

]

Again we can interpret 1/d(vi, v) as a random variable and so E
[
∑k

i=1
1

d(vi ,v)

]
=

∑k
i=1 E

[
1

d(vi ,v)

]
and it follows that:

=
n

k(n− 1)

k

∑
i=1

E
[

1
d(vi, v)

]

Since E
[

1
d(vi ,v)

]
= 1

n ∑n
j=1

1
d(vj,v)

(we impose 1
d(vj,v)

= 0 if vj = v) we have
that:

=
n

k(n− 1)

k

∑
i=1

1
n

n

∑
j=1

1
d(vj, v)

=
1

k(n− 1)

n

∑
j=1

k

∑
i=1

1
d(vj, v)

=
1

k(n− 1)

n

∑
j=1

k
d(vj, v)

=
1

n− 1

n

∑
j=1

1
d(vj, v)

= h(v)

�

39

4. Efficient Algorithms for the Harmonic Centrality

Theorem 4.2 allows us to use the Hoeffding’s bound to prove the high prob-
ability bound for the RAND H algorithm.

Theorem 4.3 Given an undirected, connected and weighted graph G = (V, E),
algorithm RAND H computes the estimator ĥ(v) of the Harmonic Centrality h(v)
to within a ε > 0 error for all vertexes v ∈ V using Θ(log n/ε2) samples with high
probability.

Proof We apply the Hoeffding’s bound with the following assumptions:

xi =
n

n− 1
1

d(vi, v)
, µ = h(v), ai = 0 andbi =

n
n− 1

.

It follows that:

Pr
{∣∣∣ĥ(v)− h(v)

∣∣∣ ≥ ε
}
= Pr

{∣∣∣∣∣ k

∑
i=1

n
k(n− 1)

1
d(vi, v)

− h(v)

∣∣∣∣∣ ≥ ε

}

= Pr

{∣∣∣∣∣ k

∑
i=1

xi

k
− µ

∣∣∣∣∣ ≥ ε

}

≤ 2e
− 2k2ε2

∑k
i=1(bi−ai)

2

≤ 2e
− 2k2ε2

k(n
n−1)

2

= 2e−Ω(kε2)

Using k = α
log n

ε2 samples with α ≥ 1 leads to:

2e−Ω(kε2) = e−Ω
(

α
log n

ε2 ε2
)

=
1

eΩ(log nα)

≤ 1
nα

This means that at any vertex v ∈ V the estimation error |ĥ(v) − h(v)| is
greater than ε with probability less than 1/nα and 1/n1−α in the whole graph.
In other words all the vertexes in the graph are affected by an error which
is less than ε with probability at least 1− 1/n.

�

Finally, since the time-expensive operations executed by algorithm RAND H
are equivalent to the operations of algorithm RAND (solving l times the
SSSP problem), we can conclude that RAND H achieves a total running

40

4.3. Fast top-k Harmonic centralities exact computation

time of O(log n/ε2(n log n + m)) and returns the correct output with high
probability.

4.3 Fast top-k Harmonic centralities exact computation

The last algorithm we worked on is the by K. Okamoto, W. Chen and X. Li
exact approach we exposed in Section 3.3. Our purpose was to modify the
TOPRANK algorithm in order to efficiently compute the exact top-k Har-
monic centralities with high probability. As the authors did, we exploited
the approximation algorithm RAND H we introduced in the previous sec-
tion in order to create a candidate set H, |H| = k′ > k. Then, we adopted
the exact approach to compute the exact Harmonic centralities for all v ∈ H.
In the end we obtained a O((k + n2/3 log1/3 n)(n log n + m)) algorithm that
calculates the exact top-K Harmonic centralities of an undirected, connected
and weighted graph with high probability.

4.3.1 The algorithm

Similarly to TOPRANK, the TOPRANK H algorithm takes as input an undi-
rected, connected and weighted graph G = (V, E), the number of top rank-
ing vertexes k and how many samples the RAND H algorithm should use
to calculate the Harmonic Centrality estimators h̃(v). Then, as we can see
from Algorithm 12 pseudo-code, all vertexes in V are named according to
their approximated Harmonic Centrality value i.e. v̂1, v̂2, . . . , v̂2 such that:
ĥv̂1 ≤ ĥv̂2 ≤ · · · ≤ ĥv̂n . Next, the candidate set H is created as the set of
vertexes whose estimated Harmonic centrality is greater than or equal to
ĥv̂k − 2 f (l). More formally:

H =
{

vi ∈ V : ĥv̂i ≥ ĥv̂k − 2 f (l)
}

(4.3)

where f (l) is defined as in Equation 3.6

We now need to demonstrate the correctness of the TOPRANK H algorithm
and its time requirements.

41

4. Efficient Algorithms for the Harmonic Centrality

Algorithm 12 TOPRANK H(G = (V, E), k, l) Our redesigned version of
the TOPRANK algorithm for the computation of the top-k exact Harmonic
centralities.

1: Use algorithm RAND H with a set S of l sampled vertices to obtain
the estimated harmonic centrality ĥv ∀v ∈ V. Rename all vertices to
v̂1, v̂2, . . . , v̂n such that ĥv̂1 ≤ ĥv̂2 ≤ · · · ≤ ĥv̂n

2: Find ĥk
3: Compute candidate set H as the set of vertices whose estimated har-

monic centralities are greater than or equal to ĥv̂k − 2 f (l)
4: Calculate exact harmonic centralities for all vertices in H
5: Sort the exact harmonic centralities and return the top-k

4.3.2 Theoretical analysis

As in the previous chapter we start by proving that the RAND H algorithm
will give us an ε-approximation of the Harmonic Centrality of each vertex
v ∈ V with high probability. Then we will use this result to demonstrate the
time performances of TOPRANK H and the correctness of its output.

Theorem 4.4 If the f (l) function is chosen as in Equation 3.6 then, if ε > 0:

∀v ∈ V, |ĥ(v)− h(v)| < ε

with high probability.

Proof The strategy is to use the Hoeffding’s bound setting ε = f (l) i.e.:

Pr
{∣∣∣ĥ(v)− h(v)

∣∣∣ ≥ ε
}
≤ 2e−2l2ε2/l(n

n−1)
2

=
2

e2lε2(n−1
n)

2

=
2

e2 log n
log n lε2(n−1

n)
2

=
2

n2 lε2
log n (

n−1
n)

2

(
We now set ε = α′

√
log n

l

)

=
1

n2β
l log n
l log n

(
Where β = α′2 ≥ 1

)
=

1
n2β

≤ 1
n2

42

4.3. Fast top-k Harmonic centralities exact computation

Note that in the fifth line we included both the numerator 2 and the factor
(n−1

n)2 inside the constant β ≥ 1.
�

At this point we are ready to demonstrate the correctness of the TOPRANK H
algorithm using the result we achieved with Theorem 4.4. Basically we have
to prove the following theorem:

Theorem 4.5 Given an undirected, connected and weighted graph G = (V, E), if
the distribution the of the estimated Harmonic centralities among the vertexes in
V is uniform in range cU, where c > 0 and U = [0, 1], with high probability the
TOPRANK H algorithm ranks the top-k vertexes with the greatest Harmonic Cen-
trality in O((k + n2/3 log1/3 n)(n log n + m)) if we choose l = Θ(n2/3 log1/3 n)
samples.

We can prove this theorem by separating it into two lemmas: Lemma 4.6
and 4.7.

Lemma 4.6 The TOPRANK H algorithm ranks all the top-k vertexes with the
greatest Harmonic Centrality correctly with high probability and with any parame-
ter l configuration.

Proof We need to prove that with high probability the candidate set H cre-
ated at the 3rd line of the TOPRANK H algorithm contains all the top-k
vertexes with the greatest Harmonic Centrality.
Let T = {v1, v2, . . . , vk} be the set of the exact top-k Harmonic centralities
and T̂ = {v̂1, v̂2, . . . , v̂k} be the set of the top-k estimated Harmonic central-
ities returned by the RAND H algorithm. Since in Lemma 4.4 we demon-
strated that |ĥ(v) − h(v)| ≥ ε for each v ∈ V with probability less than
1/2n2:

Pr
(
¬
{

hv − f (l) ≤ ĥv ≤ hv + f (l)
})
≤ 1

2n2

it follows that, for each v ∈ V:

Pr

(
¬
{∧

v∈T

ĥv ≥ hv − f (l) ≥ hvk − f (l)

})
≤

k

∑
i=1

Pr
(
¬
{

hvi − f (l) ≤ ĥvi ≤ hvi + f (l)
})
≤ k

2n2

This inequality means that, with probability at least 1− k/2n2, there are at
least k vertexes in H whose estimated Harmonic Centrality is greater than
hvk − f (l). Furthermore, we have that:

43

4. Efficient Algorithms for the Harmonic Centrality

Pr

¬
∧

v̂∈T̂

hv̂ ≥ ĥv̂ − f (l) ≥ ĥv̂k − f (l)


 ≤

k

∑
i=1

Pr
(
¬
{

hv̂i − f (l) ≤ ĥv̂i ≤ hv̂i + f (l)
})
≤ k

2n2

which shows that, with probability at least 1− k/2n2, there are at least k
vertexes in Ĥ whose exact Harmonic Centrality is greater than ĥv̂k − f (l).
Moreover, this implies that hvk ≥ ĥv̂k − f (l) with high probability. If we
combine this result with the first inequality we obtain that:

Pr

(
¬
{∧

v∈T

hv̂ ≥ hvk − f (l) ≥ ĥv̂k − 2 f (l)

})
≤ k

n2

Therefore, for each v ∈ H, ĥv ≤ âv̂k − 2 f (l) with probability at least 1− 1/n
(since k ≤ n). In conclusion, we proved that the TOPRANK H algorithm
includes all the top-k vertexes with greatest Harmonic Centrality in the can-
didate set H with high probability.

�

Now we can evaluate the complexity of the TOPRANK H algorithm which
will have a smaller additive constant than TOPRANK since it does not need
to approximate the graph diameter ∆̂.

Lemma 4.7 If the distribution of the estimated Harmonic centralities among the
vertexes in V is uniform in range cU, where c > 0 and U = [0, 1], with high
probability TOPRANK H ranks the top-k vertexes with the greatest Harmonic Cen-
trality in O((k + n2/3 log1/3 n)(n log n + m)) if we choose l = Θ(n2/3 log1/3 n)
samples.

Proof We know from Chapter 3 that solving the SSSP problem takesO(n log n+
m) time. Therefore TOPRANK H takes O(l(n log n + m)) time at its first
step.
Since the distribution of the estimated Harmonic centralities is uniform in
range cU then there are 2n f (l)/c vertexes between ĥv̂k − 2 f (l) and, obviously,
2n f (l)/c ∈ O(n f (l)). Thus, the number of vertexes in H is k+O(n f (l)) and
this implies that TOPRANK H takes O((k +O(n f (l)))(n log n+m)) time at
line 4.
Finally, as the authors did in Lemma 3.9, we choose l in order to mini-
mize the total running time at line 4 that is l = Θ(n2/3 log1/3 n). There-
fore, under the assumptions we made, the TOPRANK H algorithm takes
O((k + n2/3 log1/3 n)(n log n + m)) time. �

44

4.4. Conclusions

4.4 Conclusions

In this chapter we presented a redesigned version of the algorithms we ex-
posed in Chapter 3. Our aim was to obtain new strategies to approximate
and calculate efficiently the Harmonic Centrality of the vertexes of a graph.
Up there, we achieved our objective from a theoretical point of view. In the
next chapter we will report and comment the experimental results achieved
by the implementation of our algorithms. We will examine their perfor-
mances in terms of time and precision and provide a comparison between
them and both the naive algorithm and Borassis et al. .

45

Chapter 5

Experimental Results

This chapter is dedicated to the experiments we performed on several bench-
mark networks. We measured the performances in terms of time and pre-
cision of our Python implementation of the algorithms we exposed in the
previous chapter.

Our purpose was firstly to verify the correctness of our theoretical results
into a practical scenario. Therefore we compared the running time of our
randomized algorithms with the time requested by both solving APSP and
the Borassi’s et al. algorithm. Then we analyzed the errors made by the ap-
proximated algorithm RAND H in terms of average absolute error, average
relative error and error variance. For what concerns the TOPRANK H algo-
rithm we checked whether the top-k greatest Harmonic centralities it found
were correct or not.

Since the RAND H algorithm achieved excellent results in terms of precision
(the error was far below the high probability bound ε) we performed several
additional experiments in order to see whether it was possible to boost the
algorithm’s time performances by halving the number of random samples
without violating the error bound ε. We noticed that, with such configu-
ration, the RAND H precision was not compromised. Thus we proceeded
by applying the same modification also in the TOPRANK H algorithm and,
finally, halving again the number of random samples of the RAND H algo-
rithm.
We observed that, despite the lower number of samples, the precision of
the TOPRANK H algorithm was slightly affected but it could be adjusted
with a little more time cost. On the other hand a considerable amount of
running time was saved. Furthermore the running time of the RAND H
algorithm was reduced by almost a quarter of the time required in the first
experiments (some post-processing operations are always needed) while the
precision was reduced by about half of its original values (in other words
the error approximately doubled).

47

5. Experimental Results

5.1 Introduction

Before proceeding with the analysis of the experimental results let us in-
troduce the metrics we will use to measure the time and precision perfor-
mances of our algorithms. In this section we also define the constants we
modified in order to modify the sampling techniques.

5.1.1 Performance metrics

Since we are going to compare the time performance between two algo-
rithms, we introduce a time gain metric:

gain =
tn − ta

tn
(5.1)

where ta denotes the time needed by the tested algorithm and tn represents
the time required by the algorithm we are comparing it with. In the follow-
ing sections we will often express this metric as a percentage (i.e. gain·100).

For what concerns the precision we introduce several metrics. We denote
with error the overall absolute error made by the RAND H algorithm:

error = ∑
v∈V

∣∣∣h(v)− ĥ(v)
∣∣∣ (5.2)

where, as in Chapter 4, ĥ(v) represents the approximated value of the Har-
monic Centrality of vertex v. In order to compare the errors between two
networks we use the average error:

avg error =
1
n ∑

v∈V

∣∣∣h(v)− ĥ(v)
∣∣∣ = error

n
(5.3)

Furthermore we would like to measure the gap between the actual error and
its corresponding upper bound ε. For this reason we introduce the d bound
metric:

d bound(v) =

∣∣∣ĥ(v)− h(v)
∣∣∣

ε
(5.4)

Since we are going to compare the precision on different networks, it is more
convenient for us to consider the average value of d bound that is:

d bound =
1
nε ∑

v∈V

∣∣∣h(v)− ĥ(v)
∣∣∣ = error

nε
(5.5)

48

5.1. Introduction

such that d bound ∈ [0, 1]. d bound = 1 means that the RAND H did not do
any better than the upper-bound, in other words for each vertex in the graph
the Harmonic Centrality estimation is affected by an error of ε. Conversely,
d bound = 0 represents that RAND H computed all the exact the Harmonic
centrality.
Another aspect we took into account in our experimental analysis is the
variance of the errors. By interpreting the error at each node as a random
variables we have that:

var(error) = E
[
(error− avg error)2

]
= ∑

v∈V

(∣∣∣ĥ(v)− h(v)
∣∣∣− avg error

)2

n− 1

(5.6)

We also include the maximum error since it could show us whether there
exist some isolated but considerably high errors. These kind of errors cannot
be noticed if we average them with thousands of other much smaller errors:

max error = max
v∈V

∣∣∣ĥ(v)− h(v)
∣∣∣ (5.7)

The last metric we used is the relative error since, in some cases, the absolute
error can be misleading. For example, if there was a node v ∈ V such that
h(v) = 10−4 and RAND H calculated ĥ(v) = 2 · 10−4 the absolute error
would be 10−4 which, as we will see in the following sections, is considerably
small, but the relative error would be 2. As before we compute the average
relative error of a graph in order compare different networks:

δ = ∑
v∈V

∣∣∣ĥ(v)− h(v)
∣∣∣

h(v)
(5.8)

We will also focus on the error among the top-k Harmonic centralities, which
are often much more interesting than the remaining nodes. For this purpose
we examined the avg error and the relative error metrics with different val-
ues of k.

5.1.2 Constants

It is important to point out that our implementation needs to deal with real
numbers and not with asymptotic values. The RAND H algorithm chooses
k = Θ(log n/ε2) random samples, so we can denote k as:

49

5. Experimental Results

k =

⌈
C · log n

ε2

⌉
(5.9)

where C > 0.

On the other hand, the TOPRANK H algorithm strongly depends on the
number of samples (i.e. l) used for the execution of the RAND H algorithm
and on the constant (i.e. α) it uses to determine the candidate set H. More
precisely, l is defined as:

l = Θ
(

n
2
3 log

1
3 n
)

(5.10)

Unfortunately, the authors did not specify the exact value for l so hereafter
we will refer to l as:

l =

⌈
β · n 2

3 log
1
3 n

⌉
(5.11)

where β is a positive constant. The α constant is instead crucial for the
computation of the f (l) function we defined in Equation 3.6. f (l) determines
k̂ that is the number of additional vertexes added to the candidate set H. In
this case the authors specified that α must be > 1 but did not provided its
exact value. So, from this point forward, we will refer to f (l) as follows:

f (l) =

⌈
α ·
√

log n
ε2

⌉
(5.12)

where α > 1.

In our sets of experiments we used C and β to control the number of random
samples extracted by RAND H and α to compensate the potential lack of
precision in TOPRANK H.

5.2 Experimental setup

Our experiments are based on a 18 benchmark graphs dataset we reported
in Table 5.1. We downloaded these networks from SNAP [14], Network
Repository [26] and Konect [13]. 9 of them (see Table 5.1) represent author-
ship networks which are unweighted bibartite graphs consisting of links
between authors and their works. The remaining 9 graphs represent part of
several well-known social networks.

Each graph is given through a single text file that defines an edge list. A
single line of such file counts two to three spaced numbers where the first

50

5.2. Experimental setup

Authorship networks

Network name Nodes Edges
Wikinews (en) 159,990 901,416
Wiktionary (de) 145,301 1,229,501
DBpedia producers 138,841 207,268
Github 120,867 440,237
Wikiquote (en) 93,445 549,210
arXiv cond-mat 89,356 144,340
Wikibooks (fr) 27,754 201,727
Wikinews (fr) 25,042 193,618
Writers 22,015 58,595

Social networks

Network name Nodes Edges
Gowalla 196,591 950,327
Epinions trust 131,828 841,372
Epinions 63,947 606,512
Brightkite 56,739 212,945
Gplus 23,628 39,242
Anybeat 12,645 67,053
Wiki-elec 7,118 107,071
Advogato 6,539 51127
Facebook 4,039 88,234

Table 5.1: Benchmark networks dataset

two numbers are the couple of nodes representing the edge. The third num-
ber is optional and indicates the weight of the edge. Figure 5.1 provides
an explanatory example. Note that in some cases the order of the nodes
is used to specify the direction of the edge but, since we are working with
undirected graphs, we did not take into account this information.

Figure 5.1: On the left: a couple of line of edge list file. On the right: the
corresponding graph.

51

5. Experimental Results

We implemented our algorithms using Python together with the graph-tool
library that implements several useful graph I/O functions and algorithms.
In Appendix A we included the most relevant parts of our code. Note that
when we compute the time gain of our algorithm on solving the APSP prob-
lem we measure tn as the time required by the instruction:

closeness(G, harmonic=True, norm=True)

that is the graph-tool algorithm to compute all the normalized Harmonic
centralities of the G graph by iterating SSSP using each node of G as source.

We also point out that each experimental result we reported hereafter is an
average on four run of the algorithms.

5.3 RAND H: first set of experiments

In this section we report and analyze the performances achieved by the
modified version of the RAND H algorithm in terms of time and precision.
This was the first set of experiment we made and it was thought to confirm
the theoretical results into a practical environment. For this purpose we
imposed C = 1.

5.3.1 Time performances

In Table 5.2 we report the time performances obtained by the RAND H algo-
rithm. We performed this experiment twice in order to compare the results
between two different values of the upper bound: ε1 = 0.05 and ε2 = 0.3.
We did not choose values for ε below 0.05 because thy would have required
to extract a number of samples equal to the number of vertexes in the net-
work. Nevertheless lower ε values can be used for bigger networks than the
ones we examined.

It is easy to see from the Samples columns that the number of random sam-
ples increases as we consider networks with a higher number of nodes and
that it is proportionate to 1/ε2. This just show us that our implementation
of the random sampling technique is correct.
Moreover, if we look at the gain, we see that it increases as we augment the
size of the network. This means that, for a fixed value of ε, RAND H is
asymptotically faster than solving APSP. From the social network table it is
also evident that, for the smallest sized networks and for ε = 0.05 or lower,
RAND H obtains very little time gain. A clearer view of the gain trend is
provided by Figure 5.2, where, instead of ε2 = 0.3, we chosen ε2 = 0.1 for a
better comparison between the two curves.

52

5.3. RAND H: first set of experiments

Authorship networks

Network name ε = 0.3 ε = 0.05
Samples Gain Samples Gain

Wikinews (en) 134 99.90% 4794 96.90%
Wiktionary (de) 133 99.89% 4756 96.95%
DBpedia producers 133 99.86% 4737 96.14%
Github 131 99.87% 4682 96.12%
Wikiquote (en) 128 99.80% 4579 95.18%
arXiv cond-mat 128 99.77% 4561 93.54%
Wikibooks (fr) 115 99.39% 4093 84.03%
Wikinews (fr) 114 99.36% 4052 81.85%
Writers 112 99.05% 4001 73.34%

Social networks

Network name ε = 0.3 ε = 0.05
Samples Gain Samples Gain

Gowalla 136 99.89% 4877 97.08%
Epinions trust 132 99.87% 4717 96.45%
Epinions 124 99.76% 4427 93.73%
Brightkite 123 99.65% 4379 91.30%
Gplus 113 98.91% 4029 75.19%
Anybeat 106 98.16% 3779 55.18%
Wiki-elec 100 97.55% 3549 40.34%
Advogato 99 95.42% 3515 7.63%
Facebook 93 95.18% 3323 5,53%

Table 5.2: Time performance improvement of the RAND H algorithm on our
dataset. Samples: number of samples extracted by the algorithm. Gain: time
gain percentage as defined in Equation 5.1. ε: error upper bound that was
used for the experiment.

These observations were quite predictable from the theory underneath this
algorithm. Recall that while APSP complexity in the worst case isO(n2 log n+
nm) for weighted graphs and O(nm) for unweighted graphs, RAND H re-
quires O(log n/ε2(n log n + m)) time in the first case and O(m log n/ε2) in
the latter case. Consequently, the time gain deterioration we see from ε = 0.3
to ε = 0.05 is a straightforward consequence of lowering ε. Finally, the fact
that RAND H is asymptotically faster than solving APSP is confirmed by
the increasing values in the gain column as we consider larger networks.

53

5. Experimental Results

Authorship networks

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of vertices 1e5

0.75

0.80

0.85

0.90

0.95

1.00

G
a
in

ǫ=0. 05

ǫ=0. 1

Social networks

0.0 0.5 1.0 1.5 2.0
Number of vertices 1e5

0.0

0.2

0.4

0.6

0.8

1.0

G
a
in

ǫ=0. 05

ǫ=0. 1

Figure 5.2: Time gain of the RAND H algorithm.

5.3.2 Precision

We now focus our analysis of the RAND H algorithm on two main networks
(Wikiquote (en) and Wiktionary (de)) so it is easier for us to study the precision
through the metrics we introduced in Section 5.1.1. Data is reported in Table
5.3.

To begin with, it is trivial to observe that, as we loosen the precision bound ε,
RAND H needs to extract less samples. In particular, if we lift ε by 10 times
its value, the number of samples raises to 100 times its previous value. This
is totally in agreement with the theory and can be observed by comparing
the ε = 0.05 and the ε = 0.5 rows of Table 5.3.
The increase of the time gain for higher values of ε is a direct and obvious
consequence of the reduction of the number of samples. In Figure 5.3a we
reported the time gain trend with ε = 0.05 and ε = 0.1 so the curves are
more similar and easy to compare. From these graphs it is evident that the
time gain heavily depends on the networks size in terms of number of nodes
and on the choice of ε. We can also notice that the time gain is negligible for
graphs with less than about 1000 vertexes while it is considerably high for
graph with more than 100.000 vertexes.

A surprising and positive aspect of these results concerns the errors made
by the algorithm. If we look at the average error column we see not only
that its values are always below ε as we expected from the theory, but, for
each ε we chosen, that it also keeps a 10−3 magnitude which is a good result.
In accordance with the theory, we can see from both the table and Figure
5.3b that the average error grows linearly as we augment ε. Furthermore, it
is important to remark that the average error values have been calculated by
considering their absolute value. This means that in the worst case scenario
of our experiment (i.e. ε = 0.5) on average RAND H made errors which are

54

5.3. RAND H: first set of experiments

less than 2% the requested bound ε. The ε/avg.error ratio can be observed
more clearly from Figure 5.3g.
Next, the d bound metric we introduced in Section 5.1.1 to measure the effec-
tiveness of the estimated ĥ(v) according to the chosen ε, always takes values
below 0.016. Since d bound ∈ [0, 1] and ĥ(v) is as much good as d bound(v)
approaches to 0, this result confirms that RAND H achieved substantially
good precision performances for each ε we chosen. From Figure 5.3d we
can better see that d bound, despite some swinging, does not grow linearly
as the average error does and that the algorithm was generally more precise
for the Wiktionary (de) networks which has about 5000 less nodes but over
300.000 more edges than Wikiquote (en).

As we already mentioned in Section 5.1.1, the average error and the d bound
metrics can give us just a partial view of the overall precision of the algo-
rithm we are analyzing. For this reason we also took into account parame-
ters such as the absolute error variance, the relative error and the maximum
error.
To begin with, if we examine the variance column of Table 5.3 we can con-
clude that, even though the reported values grow proportionally faster than
the upper bound ε, all of them are located between ∼ 10−6 and ∼ 10−5,
which are considerably small values compared to their corresponding av-
erage error. A clearer view of the distribution of the error is provided by
Figures 5.4 and 5.5 where we also took into account the sign of the error. It
is easy to verify that the histograms corresponding to the lowest values of
ε, which have the lowest variance values, are also the narrowest, meaning
that the error values are closer to their average than in the other cases. From
Figure 5.3e we can also observe that the error variance sharply increases for
both the considered networks when ε ≥ 0.35 which correspond to the last
four flattest histograms of Figures 5.4 and 5.5.
Then, the average relative error column shows us that the average error
values are coherent with the actual error distribution since, in all the experi-
ment we performed, it has always been below 0.02. Similarly to the average
error, from both the values reported in the table and Figure 5.3f we can see
that the relative error is heavily influenced by ε. Finally, in accordance with
the theory, we can see that, as we augment the error upper bound, the rela-
tive error grows linearly.
From the maximum error column we can see that in the worst case it is
about 0.045 with ε = 0.45 but, when ε ≤ 0.1, it is always below 0.01. Since
typical top-k (k ≤ 1000) Harmonic Centrality values are h(v) ' 0.5, these
kind of error are not significant. We can also observe from Figure 5.3c that,
as the other metrics, the maximum error is directly proportional to ε.

55

5. Experimental Results

Wikiquote (en)

ε Samples Gain Avg err d bound Var Avg. δ Max err
0.05 4579 95.18% 0.33e-3 6.50e-3 0.20e-6 1.54e-3 2.70e-3
0.10 1146 98.75% 1.03e-3 10.29e-3 1.56e-6 4.54e-3 6.10e-3
0.15 510 99.42% 1.76e-3 11.72e-3 5.19e-6 6.36e-3 10.51e-3
0.20 287 99.65% 1.42e-3 7.10e-3 3.40e-6 6.43e-3 11.08e-3
0.25 184 99.75% 2.04e-3 8.17e-3 6.18e-6 6.61e-3 11.04e-3
0.30 128 99.80% 2.38e-3 7.92e-3 8.00e-6 7.79e-3 15.69e-3
0.35 94 99.84% 1.46e-3 4.18e-3 2.92e-6 4.86e-3 8.71e-3
0.40 73 99.86% 3.73e-3 9.33e-3 19.45e-6 11.90e-3 28.27e-3
0.45 58 99.87% 2.11e-3 4.69e-3 9.60e-6 6.87e-3 21.82e-3
0.50 47 99.88% 4.86e-3 9.72e-3 35.57e-6 15.18e-3 27.17e-3

Wiktionary (de)

ε Samples Gain Avg err d bound Var Avg. δ Max err
0.05 4756 97.08% 0.63e-3 12.60e-3 0.66e-6 1.68e-3 6.94e-3
0.10 1190 99.25% 1.17e-3 11.74e-3 1.91e-6 3.07e-3 6.11e-3
0.15 529 99.67% 1.07e-3 7.12e-3 1.83e-6 2.97e-3 8.39e-3
0.20 298 99.80% 2.46e-3 12.28e-3 9.01e-6 6.50e-3 15.91e-3
0.25 191 99.86% 3.48e-3 13.91e-3 19.52e-6 9.01e-3 27.28e-3
0.30 133 99.89% 4.15e-3 13.82e-3 28.71e-6 11.00e-3 37.25e-3
0.35 98 99.91% 2.64e-3 7.55e-3 10.96e-6 7.22e-3 20.40e-3
0.40 75 99.92% 3.68e-3 9.19e-3 20.65e-6 10.06e-3 25.70e-3
0.45 60 99.93% 5.35e-3 11.90e-3 44.46e-6 14.13e-3 44.64e-3
0.50 49 99.94% 7.72e-3 15.43e-3 81.77e-6 19.93e-3 35.41e-3

Table 5.3: ε: precision bound used for the current experiment. Samples:
number of random samples extracted by RAND H. Gain: time gain percent-
age. Avg. err: average error on the Harmonic Centrality of each vertex as
defined in Equation 5.3. Var: variance of the error as defined in Equation
5.6. Avg. δ: average of the relative error as defined in Equation 5.8. Max err:
maximum error made by RAND H as defined in Equation 5.7.

56

5.3. RAND H: first set of experiments

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.95

0.96

0.97

0.98

0.99

1.00

T
im
e
 g
a
in

Wikiquote (En)
Wiktionary (De)

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra
g
e
 a
b
so
lu
te
 e
rr
o
r

1e3

Wikiquote (En)
Wiktionary (De)

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

A
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r

1e−2

Wikiquote (En)
Wiktionary (De)

(c)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

2.5

d
_b

o
u
n
d

1e3

Wikiquote (En)
Wiktionary (De)

(d)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0

1

2

3

4

5

6

7

8

9

E
rr
o
r
v
a
ri
a
n
ce

1e−5

Wikiquote (En)
Wiktionar (De)

(e)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
a
x
im

u
m

 e
rr

o
r

1e−2

Wikiquote (En)
Wiktionary (De)

(f)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

ǫ
/

a
v
g
.
e
rr

o
r

1e2

Wikiquote (En)
Wiktionary (De)

(g)

Figure 5.3: Precision metrics for Eppstein algorithm with different choices
of the upper bound ε, represented data is referred to Table 5.3.

57

5. Experimental Results

Wiktionary (de)

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(a) ε = 0.05

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(b) ε = 0.1

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(c) ε = 0.15

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(d) ε = 0.2

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(e) ε = 0.25

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(f) ε = 0.3

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(g) ε = 0.35

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(h) ε = 0.4

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(i) ε = 0.45

−0.10 −0.05 0.00 0.05 0.10
Error

0

50

100

150

200

250

300

350

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(j) ε = 0.5

Figure 5.4: Error distribution of Eppstein algorithm for different values of ε.

58

5.3. RAND H: first set of experiments

Wikiquote (en)

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(a) ε = 0.05

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(b) ε = 0.1

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(c) ε = 0.15

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(d) ε = 0.2

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(e) ε = 0.25

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(f) ε = 0.3

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(g) ε = 0.35

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(h) ε = 0.4

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(i) ε = 0.45

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Error

0

200

400

600

800

A
ff

e
ct

e
d
 v

e
rt

ic
e
s

(j) ε = 0.5

Figure 5.5: Error distribution of Eppstein algorithm for different values of ε.

59

5. Experimental Results

5.3.3 Top-k analysis

We now focus our analysis on the precision achieved by the RAND H algo-
rithm among the top-k vertexes with greatest Harmonic Centrality value. To
begin with we will report the average error and the average relative error
among the top-k centralities. Then, we will check whether the top-K approx-
imated Harmonic centralities correspond to the exact top-k centralities or
not. If not we will count how many more vertexes should be added in order
to obtain all the exact top-k most central vertexes.

Top-k errors

As we can see from Figures 5.6a and 5.6c the average error seems to be
higher among the first top 20 centralities and then it follows a horizontal
asymptote. This means that, unfortunately, the majority of the errors are
grouped among the top-20 centralities. However, these results could be
meaningless without taking into consideration the actual values of the top
Harmonic centralities and the relative error. It is clear from Figure 5.7 that
the top-20 centralities are also substantially higher than the others and this
could explain the greater magnitude of the absolute error among the top-20
centralities. Conversely, Figures 5.6b and 5.6d show us that even the relative
error is considerably higher among the top-20 most central vertexes than in
the others.

In order to have a complete view of the precision of RAND H we also payed
attention to the absolute error and the relative error trend among the less
central vertexes. In Figure 5.8 we reported the same kind of data displayed
in Figure 5.6 but extended to k = n. A peak of both the absolute and
the relative error is still evident among the highest centralities and, for the
remaining centralities, the trend is approximately constant. We can also
notice an absolute minimum immediately after the initial error peak in all
the four graphs meaning that the RAND H maximum precision is between
about the top-50 and the top-400 centralities.

Exact top-k comparison

We now examine the precision achieved by the RAND H algorithm among
the top-k centralities from a different point of view. Instead of measuring
the approximation error we are going to study whether RAND H correctly
ranks the top-k Harmonic centralities or not. If not, we will observe how
many more approximated vertexes should be added in order to obtain the
actual top-k centralities.

In order to provide a well-comparable performance metric, let us define a
top-k precision ratio:

60

5.3. RAND H: first set of experiments

0 50 100 150
Top centralities

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
ve

ra
g

e
 e

rr
o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(a) Wikinews (en)

0 50 100 150
Top centralities

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(b) Wikinews (en)

0 50 100 150
Top centralities

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
g

e
 e

rr
o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(c) Wiktionary (de)

0 50 100 150
Top centralities

0

1

2

3

4

5

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(d) Wiktionary (de)

Figure 5.6: Average error and average relative error among the top-k central-
ities of two networks (1 ≤ k ≤ 250).

0 50 100 150 200
Top centralities

0.0

0.2

0.4

0.6

0.8

1.0

C
e
n

tr
a
li

ty
 v

a
lu

e

Wiktionary (de)

Wikinews (en)

Figure 5.7: Top-k Harmonic Centrality values, 1 ≤ k ≤ 250.

61

5. Experimental Results

0 1 2 3 4 5 6 7
Top centralities 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A

ve
ra

g
e
 e

rr
o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(a) Wikinews (en)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Top centralities 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(b) Wikinews (en)

0 1 2 3 4 5 6 7
Top centralities 1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
g

e
 e

rr
o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(c) Wiktionary (de)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Top centralities 1e5

1

2

3

4

5

A
ve

ra
g

e
 r

e
la

ti
ve

 e
rr

o
r

1e−2

ǫ=0. 05

ǫ=0. 10

ǫ=0. 25

ǫ=0. 50

(d) Wiktionary (de)

Figure 5.8: Average error and average relative error among the top-k central-
ities of two networks (1 ≤ k ≤ n).

ratio =
k + k̂

k
(5.13)

where k̂ is the number of vertexes which have been added to the approxi-
mated top-k set in order to obtain all the actual top-k most central nodes. An-
other metric that we use is the number of exact top-k vertexes the RAND H
missed in the estimation, which we denoted with ∆.

If we look at Tables 5.4 and 5.5 we can make the following observations. First
of all the first Harmonic centrality is always correctly computed in both
cases and for each value of ε. This is a considerably positive result since
it shows us that, even with a loose precision bound, the most important
centrality can be easily identified. Moreover, as we consider higher k values,

62

5.3. RAND H: first set of experiments

0 100 200 300 400 500

k

1.0

1.5

2.0

2.5

3.0

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(a) Wikinews (en)

0 100 200 300 400 500

k

1

2

3

4

5

6

7

8

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(b) Wiktionary (de)

0 100 200 300 400 500

k

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(c) Gowalla

0 100 200 300 400 500

k

1.0

1.1

1.2

1.3

1.4

1.5

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(d) Brightkite

Figure 5.9: Top-k precision ratio among four networks.

the precision drops but apparently it does not strongly depend on ε as we
could expect. More precisely we can see that k̂ values for a fixed k cannot be
interpreted as a monotonically increasing function (with ε as variable) but,
conversely, we can easily identify some peaks and nadirs. A clearer view
is provided by Figure 5.9 since it takes into account much more k values.
Unfortunately it is complicated to observe recognize a precise trend because
the graphs are very noisy. We suppose that this is due to high similarity
between consecutive centrality values, especially for greater values of k. Still
we can identify pretty clearly that the worst performance curves (yellow and
purple) are associated with the greatest ε values (0.4 and 0.5).

In conclusion we verified that, when k is small (k ∼ 10), RAND H precisely
ranks the top-k Harmonic centralities and, by examining Figure 5.9 graphs,
we also noticed the correlation between the ranking precision and ε.

63

5. Experimental Results

Wiktionary (de)

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 1

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 5

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 2 5 1.50
0.50 0 0 1.00

k = 10
ε ∆ k̂ Ratio

0.05 0 0 1.00
0.10 0 0 1.00
0.15 1 1 1.05
0.20 0 0 1.00
0.25 1 3 1.15
0.30 0 0 1.00
0.35 1 1 1.05
0.40 2 7 1.35
0.45 0 0 1.00
0.50 2 2 1.10

k = 20

ε ∆ k̂ Ratio
0.05 9 9 1.18
0.10 3 3 1.06
0.15 2 2 1.04
0.20 0 0 1.00
0.25 3 3 1.06
0.30 5 5 1.10
0.35 2 2 1.04
0.40 0 0 1.00
0.45 4 4 1.08
0.50 2 82 2.64

k = 50

ε ∆ k̂ Ratio
0.05 5 5 1.05
0.10 1 1 1.01
0.15 1 1 1.01
0.20 0 0 1.00
0.25 3 3 1.03
0.30 4 4 1.04
0.35 2 2 1.02
0.40 0 0 1.00
0.45 4 4 1.04
0.50 2 32 1.32

k = 100

Table 5.4: Precision of the RAND H algorithm among the top-k vertexes. ε:
upper bound value, ∆: number of missed correct centralities, k̂: number of
vertexes added to obtain all the exact top-k set, ratio: as defined in Equation
5.13.

64

5.3. RAND H: first set of experiments

Wikinews (en)

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 1

ε ∆ k̂ Ratio
0.05 1 3 1.60
0.10 1 3 1.60
0.15 2 13 3.60
0.20 1 3 1.60
0.25 1 3 1.60
0.30 1 3 1.60
0.35 1 3 1.60
0.40 1 3 1.60
0.45 1 3 1.60
0.50 1 3 1.60

k = 5

ε ∆ k̂ Ratio
0.05 4 6 1.60
0.10 4 6 1.60
0.15 4 10 2.00
0.20 4 6 1.60
0.25 4 6 1.60
0.30 4 6 1.60
0.35 4 6 1.60
0.40 4 6 1.60
0.45 4 6 1.60
0.50 4 6 1.60

k = 10

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 20

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 1 1 1.02
0.20 0 0 1.00
0.25 0 0 1.00
0.30 3 6 1.12
0.35 0 0 1.00
0.40 2 5 1.10
0.45 1 1 1.02
0.50 0 0 1.00

k = 50

ε ∆ k̂ Ratio
0.05 1 1 1.01
0.10 1 1 1.01
0.15 2 3 1.03
0.20 1 1 1.01
0.25 4 44 1.44
0.30 3 8 1.08
0.35 3 4 1.04
0.40 3 75 1.75
0.45 5 61 1.61
0.50 3 47 1.47

k = 100

Table 5.5: See Table 5.4 for further details.

5.3.4 Comparison with Borassi et al.

In this section we compare the RAND H algorithm with the Borassi et al.’s
strategy in terms of running time. It is important to point out that, for a
given network, their algorithm computes the exact top-k centralities with
high probability while RAND H approximates all the Harmonic centralities.
Moreover, it can also deal with directed and not strongly connected graphs
while RAND H takes as input undirected and connected graphs only.

Unfortunately a Python implementation of the Borassi et al.’s algorithm
adapted to the Harmonic Centrality does not exist yet so we are going to
use their function that computes the Closeness Centrality:

65

5. Experimental Results

centrality.TopCloseness(G, k)

that returns the top-k Closeness centralities of G. This function has been
included into the NetworKit framework which includes a Python interface
but the main algorithms have been written in C++ [27].

In Table 5.6 we reported RAND H time gain on Borassi et al. on two au-
thorship networks and two social networks. It is clear that, if we choose a
low upper bound value (ε ∼ 0.05) the gain is always negative, meaning that
RAND H required more time than Borassi et al. On the other hand, if we
take into consideration higher k values we see that RAND H recovers more
and more in terms of running time since it does not depend on k while the
BFSCut function time performances are inversely proportional to k. This
aspect is emphasized in larger networks cases such as Gowalla or Wiktionary
(de).

Furthermore we should point out that the Borassi et al.’s algorithm sup-
ports multithreading while our RAND H implementation does not. A multi-
threaded implementation of RAND H would doubtlessly achieve far better
results. Nevertheless it is impressive that, in several cases, our sequential
implementation is still quicker than a multi-threaded implementation of the
Borassi et al.’s strategy.

5.4 RAND H: second set of experiments

Up until now the choice of the number of random samples have been imple-
mented as

samples =

⌈
log n

ε2

⌉

In other words we imposed C = 1. However, this could not be the optimal
choice into a practical scenario. In fact a lower C value would certainly
diminish the number of samples and so the algorithm’s running time but we
cannot predict the actual impact on the precision since the theory imposes us
to choose C ≥ 1. In the following experiments we are going to analyze how
the RAND H’s time and precision changes if we linearly lower the number
of samples.

5.4.1 C = 0.5: time and precision performances

Our first choice of C is 0.5 since we want to understand the consequences
on the RAND H’s precision of selecting exactly half of the samples we were
selecting before.

66

5.4. RAND H: second set of experiments

Network ε k Gain

Gowalla

0.05
1 -92155%
50 -406.61%

500 -296.17%

0.15
1 -10717%

50 40.60%
500 53.55%

0.3
1 -3652%

50 79.39%
500 83.89%

1 -1901%
0.5 50 89.01%

500 91.40%

Network ε k Gain

Wikinews
(en)

1 -97886%
0.05 50 -28507%

500 -703.81%
1 -11636%

0.15 50 -3326%
500 3.72%
1 -3840%

0.3 50 -1050%
500 67.67%
1 -2195%

0.5 50 -570.08%
500 81.17%

Network ε k Gain

Anybeat

1 -86902%
0.05 50 -14554%

500 -2976%
1 -10833%

0.15 50 -1741%
500 -286.56%

1 -3742.73%
0.3 50 -547.26%

500 -35.86%
1 -2255%

0.5 50 -296.77%
500 16.72%

Network ε k Gain

Wiktionary
(de)

1 -359.61%
0.05 50 -297.47%

500 -226.79%
1 48.21%

0.15 50 55.21%
500 63.17%
1 83.21%

0.3 50 85.48%
500 88.06%
1 90.30%

0.5 50 91.61%
500 93.10%

Table 5.6: Time performance comparison between RAND H and Borassi et
al.’s algorithms. ε: error upper bound used by RAND H. k: number central-
ities extracted by the Borassi et al.’s algorithm. Gain: time gain of RAND H
on Borassi et al.

67

5. Experimental Results

Authorship networks

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of vertices 1e5

0.75

0.80

0.85

0.90

0.95

1.00

G
a
in

ǫ=0. 05

ǫ=0. 1

Social networks

0.0 0.5 1.0 1.5 2.0
Number of vertices 1e5

0.0

0.2

0.4

0.6

0.8

1.0

G
a
in

ǫ=0. 05

ǫ=0. 1

Figure 5.10: Time gain of the RAND H algorithm, C = 0.5

By looking at Table 5.7 we can observe that, since we halved the number
of samples, the time gain is greater than in Table 5.3. The number of short-
est paths RAND H has to compute are exactly half than before but some
post-processing operations for output formatting are still necessary. Thus
the overall running time is slightly more than half the time required in the
previous experiment. Figures 5.10 and 5.11a also show us that the time gain
is still directly proportional to the network size as we expected.

We can also see that, despite the lower number of samples, the accuracy
decreased linearly. Above all, the average absolute and relative errors still
have the same scale than in Table 5.3. This result is significant since the
errors made by RAND H are still much lower than the corresponding up-
per bound ε. By comparing the graphs represented in Figures 5.3 and 5.11
we can verify that the trend of the precision metrics did not substantially
change. The main differences are represented by the improvement of the
time gain and the slight deterioration of the precision metrics which still
remain remarkably positive if compared to their corresponding ε value.

5.4.2 C = 0.5: top-k analysis

Another interesting aspect we considered in our analysis is the precision that
the RAND H algorithm achieved among the top-k most central vertexes.
More precisely, we performed again the comparison with the exact top-k
Harmonic centralities we did in the previous experiment, this time with half
of random samples. As we can see from Tables 5.8 and 5.9 the top-k ranking
precision is still remarkably good if compared with the previous experiment,
especially for the lower k values. Surprisingly the Wiktionary (de) network
obtained even better results than before since the number of outliers in most
of the cases is less than in Table 5.4. On the other hand RAND H had a
slight worse ranking precision on the Wikinews (en) network since it ranked

68

5.4. RAND H: second set of experiments

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.970

0.975

0.980

0.985

0.990

0.995

1.000

T
im

e
 g
a
in

Wikiquote (En)
Wiktionary (De)

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
v
e
ra
g
e
 a
b
so
lu
te
 e
rr
o
r

1e3

Wikiquote (En)
Wiktionary (De)

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
_b

o
u
n
d

1e3

Wikiquote (En)
Wiktionary (De)

(c) d bound over ε.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

E
rr

o
r

v
a
ri

a
n
ce

1e−4

Wikiquote (En)
Wiktionary (De)

(d)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r

1e−2

Wikiquote (En)
Wiktionary (De)

(e)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0

1

2

3

4

5

6

7

M
a
x
im
u
m
 e
rr
o
r

1e 2

Wikiquote (En)
Wiktionary (De)

(f)

Figure 5.11: Precision metrics for the RAND H algorithm with different
choices of the upper bound ε. C = 0.5. Represented data is referred to Table
5.7.

69

5. Experimental Results

Wikiquote (en)

ε Samples Gain Avg. err d bound Var Avg. δ Max err
0.05 2290 97.34% 0.64e-3 12.83e-3 0.61e-6 2.91e-3 3.28e-3
0.10 573 99.33% 0.87e-3 8.66e-3 1.02e-6 3.04e-3 4.23e-3
0.15 255 99.67% 1.06e-3 7.07e-3 1.83e-6 3.61e-3 6.61e-3
0.20 144 99.78% 2.08e-3 10.41e-3 7.34e-6 8.34e-3 12.89e-3
0.25 93 99.83% 2.74e-3 10.95e-3 10.87e-6 8.80e-3 16.12e-3
0.30 65 99.87% 3.70e-3 12.34e-3 21.20e-6 11.88e-3 22.43e-3
0.35 48 99.88% 4.30e-3 12.30e-3 27.14e-6 13.51e-3 26.83e-3
0.40 37 99.89% 2.99e-3 7.48e-3 12.10e-6 9.58e-3 19.05e-3
0.45 29 99.90% 4.10e-3 9.10e-3 26.30e-6 12.84e-3 28.45e-3
0.50 24 99.90% 5.05e-3 10.10e-3 40.69e-6 16.12e-3 27.99e-3

Wiktionary (de)

ε Samples Gain Avg err d bound Var Avg. δ Max err
0.05 2378 98.46% 0.97e-3 19.45e-3 1.33e-6 2.56e-3 5.42e-3
0.10 595 99.60% 1.19e-3 11.87e-3 2.10e-6 3.16e-3 7.05e-3
0.15 265 99.80% 2.56e-3 17.06e-3 9.50e-6 6.65e-3 9.52e-3
0.20 150 99.87% 4.41e-3 22.05e-3 29.29e-6 11.84e-3 34.75e-3
0.25 96 99.90% 2.92e-3 11.67e-3 13.49e-6 7.81e-3 18.57e-3
0.30 67 99.92% 2.69e-3 8.98e-3 11.83e-6 7.59e-3 23.43e-3
0.35 50 99.93% 4.62e-3 13.19e-3 35.12e-6 12.44e-3 41.88e-3
0.40 38 99.94% 4.46e-3 11.14e-3 31.24e-6 11.97e-3 34.25e-3
0.45 30 99.94% 4.89e-3 10.86e-3 39.44e-6 13.53e-3 49.23e-3
0.50 25 99.95% 11.13e-3 22.25e-3 180.60e-6 28.40e-3 68.75e-3

Table 5.7: Same experiment as in Table 5.3, C = 0.5.

the actual first Harmonic Centrality as the 20th using ε = 0.05 and we overall
registered more outliers than in the previous case.
A more extended view is provided by Figure 5.12 where we can still notice
the peaks and nadirs trend as in the C = 1 case.

In conclusion, despite the Wikinews (en) experiment with ε = 0.05, we can
say that the overall RAND H ranking precision was not compromised by
the samples reduction and, for k ∼ 20, it still precisely ranks the top-k Har-
monic centralities. Furthermore, Table 5.10 also shows us that, if we impose
C = 0.5, RAND H becomes more competitive with respect to the algorithm
designed by Borassi et al., especially for larger networks and for k bigger
than 50.

70

5.4. RAND H: second set of experiments

Wiktionary (de)

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 1

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 5

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 1 1 1.10
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 1 6 1.60
0.50 1 1 1.10

k = 10
ε ∆ k̂ Ratio

0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 1 2 1.10
0.30 1 3 1.15
0.35 2 6 1.30
0.40 1 1 1.05
0.45 2 5 1.25
0.50 3 6 1.30

k = 20

ε ∆ k̂ Ratio
0.05 4 4 1.08
0.10 2 2 1.04
0.15 0 0 1.00
0.20 1 1 1.02
0.25 0 0 1.00
0.30 0 0 1.00
0.35 1 1 1.02
0.40 0 0 1.00
0.45 1 1 1.02
0.50 5 5 1.10

k = 50

ε ∆ k̂ Ratio
0.05 2 2 1.02
0.10 0 0 1.00
0.15 0 0 1.00
0.20 1 1 1.01
0.25 0 0 1.00
0.30 0 0 1.00
0.35 1 1 1.01
0.40 0 0 1.00
0.45 1 1 1.01
0.50 5 5 1.05

k = 100

Table 5.8: Precision of the RAND H algorithm among the top-k vertexes. ε:
upper bound value, ∆: number of missed correct centralities, k̂: number of
vertexes added to obtain all the exact top-k set, ratio: as defined in Equation
5.13. C = 0.5

71

5. Experimental Results

Wikinews (en)

ε ∆ k̂ Ratio
0.05 1 19 20.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 1

ε ∆ k̂ Ratio
0.05 2 15 4.00
0.10 1 3 1.60
0.15 1 3 1.60
0.20 1 3 1.60
0.25 1 3 1.60
0.30 1 3 1.60
0.35 1 3 1.60
0.40 1 3 1.60
0.45 1 3 1.60
0.50 1 3 1.60

k = 5

ε ∆ k̂ Ratio
0.05 5 10 2.00
0.10 4 6 1.60
0.15 4 6 1.60
0.20 4 6 1.60
0.25 4 6 1.60
0.30 4 6 1.60
0.35 4 6 1.60
0.40 4 6 1.60
0.45 4 6 1.60
0.50 4 6 1.60

k = 10

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 20

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 2 6 1.12
0.35 1 24 1.48
0.40 2 12 1.24
0.45 2 22 1.44
0.50 5 22 1.44

k = 50

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 1 1 1.01
0.15 2 42 1.42
0.20 1 1 1.01
0.25 4 6 1.06
0.30 7 52 1.52
0.35 4 58 1.58
0.40 4 16 1.16
0.45 6 48 1.48
0.50 7 63 1.63

k = 100

Table 5.9: See Table 5.8 for further details.

5.4.3 C = 0.25: time and precision performances

Since the results we obtained using C = 0.5 were quite encouraging, we
expect that a further reduction of the number of samples could make the
RAND H algorithm save even more time without compromising its preci-
sion. More precisely we suppose that the error keeps growing linearly as we
halve again the selected samples.

By comparing the results reported in Table 5.11 and in Figure 5.14 with
the ones we obtained in the previous experiments (Tables 5.3 and 5.7) we
can make the following considerations. First of all the time gain rose again
thanks to the smaller number of samples (see also Figure 5.13). Then, the
precision metrics changed as we expected. In particular metrics which are

72

5.4. RAND H: second set of experiments

0 100 200 300 400 500

k

0.0

0.5

1.0

1.5

2.0

R
a
ti
o

1e1

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(a) Wikinews (en)

0 100 200 300 400 500

k

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(b) Wiktionary (de)

0 100 200 300 400 500

k

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(c) Gowalla

0 100 200 300 400 500

k

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(d) Brightkite

Figure 5.12: RAND H top-k precision ratio, C = 0.5

directly proportional to the errors (the average error, d bound, the relative
error and the maximum error) are nearly two times their original value we
registered with C = 1. Therefore, selecting d0.25 · log n/ε2e samples does
not compromise the precision of the RAND H algorithm and, at the same
time, it saves almost 75% of running time.

5.4.4 C = 0.25: top-k analysis

As we did in the previous sections we also examined the ranking precision
among the top-k vertexes. Similarly to the C = 0.5 case, we can see in Tables
5.12 and 5.13 that RAND H is still considerably accurate in identifying the
top-k most central vertexes, especially when k ∼ 10. We recorded the ma-
jority of the errors when k ≥ 100 since these centralities have quite similar
values and, according with Figure 5.15 RAND H fails to rank them correctly

73

5. Experimental Results

Network ε k Ratio

Gowalla

1 -49400%
0.05 50 -171.83%

500 -112.57%
1 -6223%

0.15 50 65.28%
500 72.85%

1 -2274%
0.3 50 86.96%

500 89.80%
1 -1481%

0.5 50 91.31%
500 93.21%

Network ε k Ratio

Wikinews
(en)

0.05 1 -50890%
0.05 50 -14786%
0.05 500 -318.29%
0.15 1 -6577%
0.15 50 -1849%
0.15 500 45.23%
0.3 1 -2484%
0.3 50 -654.51%
0.3 500 78.80%
0.5 1 -1827%
0.5 50 -462.75%
0.5 500 84.19%

Network ε k Ratio

Anybeat

0.05 1 -50384%
0.05 50 -8403%
0.05 500 -1684%
0.15 1 -6697%
0.15 50 -1045%
0.15 500 -140.34%
0.3 1 -2741%
0.3 50 -378.56%
0.3 500 -0.45%
0.5 1 -1947%
0.5 50 -244.80%
0.5 500 27.63%

Network ε k Ratio

Wiktionary
(de)

1 -142.54%
0.05 50 -109.75%

500 -72.45%
1 68.77%

0.15 50 73.00%
500 77.80%
1 87.57%

0.3 50 89.25%
500 91.16%
1 91.62%

0.5 50 92.76%
500 94.04%

Table 5.10: Comparison with Borassi et al. algorithm. C = 0.5.

Authorship networks

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of vertices 1e5

0.94

0.95

0.96

0.97

0.98

0.99

1.00

G
a
in

ǫ=0. 05

ǫ=0. 1

Social networks

0.0 0.5 1.0 1.5 2.0
Number of vertices 1e5

0.70

0.75

0.80

0.85

0.90

0.95

1.00

G
a
in

ǫ=0. 05

ǫ=0. 1

Figure 5.13: Time gain of the RAND H algorithm, C = 0.25

74

5.4. RAND H: second set of experiments

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

T
im

e
 g
a
in

Wikiquote (En)
Wiktionary (De)

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 a

b
so

lu
te

 e
rr

o
r

1e3

Wikiquote (En)
Wiktionary (De)

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0

1

2

3

4

5

6

7

8

d
_b

o
u
n
d

1e3

Wikiquote (En)
Wiktionary (De)

(c)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
rr

o
r

v
a
ri

a
n
ce

1e−4

Wikiquote (En)
Wiktionary (De)

(d)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r

1e−2

Wikiquote (En)
Wiktionary (De)

(e)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error upper bound

0

1

2

3

4

5

6

7

8

M
a
x
im

u
m
 e
rr
o
r

1e−2

Wikiquote (En)
Wiktionar (De)

(f)

Figure 5.14: Precision metrics for the RAND H algorithm with different
choices of the upper bound ε. C = 0.25. Represented data is referred to
Table 5.11.

75

5. Experimental Results

Wikiquote (en)

ε Samples Ratio Avg err d bound Var Avg. δ Max err
0.05 1146 98.60% 0.99e-3 19.75e-3 1.26e-6 3.46e-3 5.55e-3
0.10 287 99.60% 2.39e-3 23.91e-3 7.41e-6 7.81e-3 11.01e-3
0.15 128 99.79% 2.94e-3 19.59e-3 11.79e-6 9.56e-3 19.67e-3
0.20 73 99.85% 4.40e-3 22.02e-3 28.06e-6 14.17e-3 23.62e-3
0.25 47 99.88% 2.54e-3 10.15e-3 11.41e-6 8.20e-3 23.34e-3
0.30 33 99.89% 6.37e-3 21.24e-3 54.79e-6 19.93e-3 39.48e-3
0.35 24 99.90% 5.23e-3 14.95e-3 37.55e-6 16.65e-3 33.97e-3
0.40 19 99.91% 4.02e-3 10.06e-3 23.85e-6 12.92e-3 24.80e-3
0.45 15 99.91% 6.92e-3 15.38e-3 68.99e-6 21.70e-3 41.77e-3
0.50 12 99.91% 10.19e-3 20.38e-3 152.32e-6 32.39e-3 56.90e-3

Wiktionary (de)

ε Samples Ratio Avg err d bound Var Avg. δ Max err
0.05 1190 99.19% 1.17e-3 23.41e-3 2.12e-6 3.09e-3 7.41e-3
0.10 298 99.77% 1.51e-3 15.10e-3 3.55e-6 4.08e-3 14.16e-3
0.15 133 99.88% 2.88e-3 19.22e-3 14.93e-6 7.99e-3 19.55e-3
0.20 75 99.91% 2.71e-3 13.54e-3 11.50e-6 7.32e-3 23.31e-3
0.25 49 99.93% 4.83e-3 19.31e-3 35.46e-6 12.64e-3 24.07e-3
0.30 34 99.94% 7.48e-3 24.92e-3 84.56e-6 19.95e-3 47.77e-3
0.35 25 99.95% 17.28e-3 49.37e-3 398.59e-6 44.47e-3 74.58e-3
0.40 20 99.95% 6.95e-3 17.37e-3 85.69e-6 19.17e-3 46.45e-3
0.45 16 99.95% 12.47e-3 27.71e-3 221.33e-6 31.92e-3 54.46e-3
0.50 13 99.95% 11.83e-3 23.66e-3 192.01e-6 31.00e-3 76.05e-3

Table 5.11: Same experiment as in Table 5.3, C = 0.25.

because its lower precision.

We also repeated the comparison with the Borassi et al. algorithm and, in
accordance with Table 5.14, we noticed again a remarkable improvement.
However, their algorithm is still much more competitive than RAND H for
k = 1.

76

5.4. RAND H: second set of experiments

Wiktionary (de)

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 1

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 5

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 1 5 1.50
0.35 2 7 1.70
0.40 1 5 1.50
0.45 1 1 1.10
0.50 1 1 1.10

k = 10
ε ∆ k̂ Ratio

0.05 0 0 1.00
0.10 2 2 1.10
0.15 0 0 1.00
0.20 0 0 1.00
0.25 1 2 1.10
0.30 3 6 1.30
0.35 1 2 1.10
0.40 3 9 1.45
0.45 2 7 1.35
0.50 2 2 1.10

k = 20

ε ∆ k̂ Ratio
0.05 1 1 1.02
0.10 2 2 1.04
0.15 4 4 1.08
0.20 1 81 2.62
0.25 7 7 1.14
0.30 2 2 1.04
0.35 1 1 1.02
0.40 1 84 2.68
0.45 14 15 1.30
0.50 10 101 3.02

k = 50

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 2 2 1.02
0.15 3 3 1.03
0.20 1 31 1.31
0.25 7 7 1.07
0.30 2 2 1.02
0.35 1 1 1.01
0.40 1 34 1.34
0.45 15 15 1.15
0.50 10 51 1.51

k = 100

Table 5.12: Precision of the RAND H algorithm among the top-k vertexes. ε:
upper bound value, ∆: number of missed correct centralities, k̂: number of
vertexes added to obtain all the exact top-k set, ratio: as defined in Equation
5.13. C = 0.25

77

5. Experimental Results

Wikinews (en)

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 1

ε ∆ k̂ Ratio
0.05 1 1 1.20
0.10 1 3 1.60
0.15 1 3 1.60
0.20 1 3 1.60
0.25 1 3 1.60
0.30 1 3 1.60
0.35 1 3 1.60
0.40 1 3 1.60
0.45 1 3 1.60
0.50 1 3 1.60

k = 5

ε ∆ k̂ Ratio
0.05 4 4 1.40
0.10 5 10 2.00
0.15 4 6 1.60
0.20 4 6 1.60
0.25 4 6 1.60
0.30 4 6 1.60
0.35 4 6 1.60
0.40 4 6 1.60
0.45 4 6 1.60
0.50 4 6 1.60

k = 10

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 0 0 1.00
0.25 0 0 1.00
0.30 0 0 1.00
0.35 0 0 1.00
0.40 0 0 1.00
0.45 0 0 1.00
0.50 0 0 1.00

k = 20

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 0 0 1.00
0.15 0 0 1.00
0.20 1 2 1.04
0.25 1 4 1.08
0.30 3 14 1.28
0.35 2 34 1.68
0.40 3 5 1.10
0.45 4 16 1.32
0.50 3 9 1.18

k = 50

ε ∆ k̂ Ratio
0.05 0 0 1.00
0.10 1 47 1.47
0.15 2 43 1.43
0.20 1 4 1.04
0.25 1 5 1.05
0.30 5 57 1.57
0.35 2 64 1.64
0.40 7 62 1.62
0.45 2 52 1.52
0.50 12 76 1.76

k = 100

Table 5.13: See Table 5.8 for further details.

78

5.4. RAND H: second set of experiments

0 100 200 300 400 500

k

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(a) Wikinews (en)

0 100 200 300 400 500

k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
ti
o

1e1

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(b) Wiktionary (de)

0 100 200 300 400 500

k

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(c) Gowalla

0 100 200 300 400 500

k

1

2

3

4

5

6

7

8

R
a
ti
o

ǫ=0. 05

ǫ=0. 10

ǫ=0. 20

ǫ=0. 30

ǫ=0. 40

ǫ=0. 50

(d) Brightkite

Figure 5.15: RAND H top-k precision ratio, C = 0.25

79

5. Experimental Results

Network ε k Ratio

Gowalla

1 -25733%
0.05 50 -41.86%

500 -10.94%
1 -3576%
50 79.81%

0.15 500 84.21%
1 -1707%
50 90.07%

0.3 500 92.24%
1 -1315%

0.5 50 92.23%
500 93.92%

Network ε k Ratio

Wikinews
(en)

1 -27325%
0.05 50 -7906%

500 -124.98%
1 -4111%

0.15 50 -1129%
500 65.45%
1 -2007%

0.3 50 -515.41%
500 82.71%
1 -1615%

0.5 50 -400.74%
500 85.93%

Network ε k Ratio

Anybeat

1 -29766%
0.05 50 -4930%

500 -955.94%
1 -4174%

0.15 50 -620.01%
500 -51.13%

1 -2131%
0.3 50 -275.91%

500 21.10%
1 -1647%

0.5 50 -194.35%
500 38.22%

Network ε k Ratio

Wiktionary
(de)

1 -27.36%
0.05 50 -10.14%

500 9.45%
1 80.63%

0.15 50 83.25%
500 86.23%
1 90.52%

0.3 50 91.80%
500 93.26%
1 92.45%

0.5 50 93.47%
500 94.63%

Table 5.14: Comparison with Borassi et al. algorithm, C = 0.25.

80

5.5. TOPRANK H

5.5 TOPRANK H

In this section we report and analyze the performances achieved by the
TOPRANK H algorithm in terms of time and precision through three main
sets of experiments. The first set had been thought to validate the theoretical
results we achieved in Chapter 4 into a practical environment so we imposed
β = 1 and α = 1.01. The other two sets were meant to verify whether it
is possible to boost the time performance of the TOPRANK H algorithm
without compromising its precision since it should exactly compute the top-
k Harmonic centralities.

5.5.1 First set of experiments: β = 1, α = 1.01

Let us summarize the main features of Table 5.15. It is trivial to observe
that, as we consider higher values of k, the time performances diminish, es-
pecially for smaller networks. This is due to the greater number of shortest
paths needed to be computed and to the initial overhead of the algorithm.
This phenomena can be observed more easily in Table 5.16 and in Figure
5.16.
Moreover, the time gain gets better as we increase the network size, espe-
cially from the number of vertexes point of view. This represents an evident
consequence of the initial overhead due to the execution of the RAND H
algorithm. A straightforward view is provided by Figure 5.16.
Finally, although TOPRANK H was designed to compute the exact top-k
Harmonic centralities with high probability, it failed in one of the consid-
ered cases (k = 100 of the Wikinews (en) network). This probably means that
we did not choose the optimal combination of the α and β constants. In the
following experiments we will try to overhaul this aspect by changing the
constants values.

2.2e4 2.5e4 2.8e4 8.9e4 9.3e4 1.2e5 1.4e5 1.5e5 1.6e5
Number of vertexes

0.80

0.85

0.90

0.95

1.00

G
a
in

Authorship networks

K = 1
K = 10
K = 100

4.0e3 6.5e3 7.1e3 1.3e4 2.4e4 5.7e4 6.4e4 1.3e51.10e5
Number of vertexes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
a
in

Social networks

K = 1
K = 10
K = 100

Figure 5.16: Time performances achieved by the TOPRANK H algorithm.

81

5. Experimental Results

Authorship networks

Name Samples
k = 1 k = 10 k = 100

k̂ Gain k̂ Gain k̂ Gain Prec.
Wikinews (en) 6745 0 96.285% 2 96.325% 3 96.266% 98.50%
Wiktionary (de) 6309 0 96.433% 4 96.499% 31 96.473% 100%
DBpedia prod. 6112 0 94.954% 5 94.353% 33 95.348% 100%
Github 5551 0 96.086% 1 96.101% 13 96.055% 100%
Wikiquote (en) 4642 0 95.071% 1 95.082% 18 95.020% 100%
arXiv cond-mat 4499 1 93.185% 2 93.105% 46 93.135% 100%
Wikibooks (fr) 1991 0 91.056% 3 90.588% 46 89.997% 100%
Wikinews (fr) 1853 0 92.203% 0 92.170% 57 92.039% 100%
Writers 1693 2 89.116% 1 88.593% 52 88.184% 100%

Social networks

Name Samples
k = 1 k = 10 k = 100

k̂ Gain k̂ Gain k̂ Gain Prec.
Gowalla 7782 0 96.284% 0 96.252% 13 95.931% 100%
Epinions trust 5896 0 96.086% 1 96.101% 13 96.055% 100%
Epinions 3564 0 94.975% 3 94.948% 18 94.824% 100%
Brightkite 3280 1 92.709% 2 92.790% 21 92.516% 100%
Gplus 1779 0 87.587% 12 88.351% 33 86.553% 100%
Anybeat 1148 1 86.178% 14 86.072% 49 85.390% 100%
Wiki-elec 767 1 85.440% 14 85.390% 43 83.197% 100%
Advogato 723 1 78.265% 18 77.922% 82 73.723% 100%
Facebook 515 1 77.006% 18 76.461% 222 67.446% 100%

Table 5.15: Samples: number of samples used by the RAND H first esti-
mation. k: number of top centralities the algorithm extracted. k̂: number of
samples added to the candidate set H. Gain: time gain in the basic algorithm
(as defined in Equation 5.1). Prec.: precision achieved by the algorithm ex-
pressed as the correct number of ranked centralities over k (note that if we
omitted this column for a specific k value it means that the precision was
always 100%).

82

5.5. TOPRANK H

Network k Time (s) Gain

Wikinews (en)

1 324.04 96.05%
5 304.51 96.29%
10 304.08 96.29%
15 303.19 96.30%
20 300.45 96.34%
25 300.64 96.33%
30 300.55 96.33%
35 301.88 96.32%
40 300.93 96.33%
45 300.68 96.33%
50 301.76 96.32%
100 302.38 96.31%
150 303.61 96.30%
200 304.86 96.28%
300 307.90 96.25%
500 313.43 96.18%
750 342.66 95.82%
1000 346.75 95.77%

Table 5.16: k: number of top centralities the algorithms extracted
(TOPRANK H and solving APSP). Time: time in seconds required by the
TOPRANK H algorithm. Gain: time gain on solving APSP.

Comparison with Borassi et al.

As we can see from Table 5.17 it is clear that TOPRANK H is worse than the
Borassi et al.’s strategy for each value of k we choose. Very likely this is due
to the lack of multithreading support of our implementation. However we
can still verify that time gain is gradually recovered by TOPRANK H as we
consider bigger k values.

5.5.2 Second set of experiments: β = 0.5, α = 1.01

Into this set of experiments we halved the number of random samples used
by the RAND H algorithm. As we saw in the RAND H experiments this
saves a remarkable amount of time and entails little impact on the algo-
rithm’s precision. We were encouraged to undertake this experiment since
we supposed the execution of the RAND H algorithm took the majority of
the TOPRANK H running time. In Table 5.15 we can see that the number
of samples used by the approximation algorithm is much higher than candi-
date set size, |H| = k + k̂. This means in that experiment RAND H solved
much more SSSPs than TOPRANK H did.

If we consider the results reported in Table 5.18 we can conclude that, as we

83

5. Experimental Results

Network k Gain

Gowalla
1 -152753%
10 -872.46%
100 -778.72%

Network k Gain

Wikinews
(en)

1 -143302%
10 -111309%
100 -19974%

Network k Gain

Anybeat
1 -28806%
10 -8458%
100 -3661%

Network k Gain

Wiktionary
(de)

1 -460.51%
10 -399.55%
100 -362.23%

Table 5.17: k: number of top centralities to extract. Gain: time gain of the
TOPRANK H algorithm on Borassi et al.

Name Samples
k = 1 k = 10 k = 100

k̂ Gain k̂ Gain Prec. k̂ Gain
Gowalla 3891 0 98.14% 2 98.16% 100% 21 98.09%
Wikinews (en) 3373 0 98.02% 4 98.01% 100% 13 97.98%
Wiktionary (de) 3155 0 98.17% 8 98.12% 100% 57 98.05%
Anybeat 575 1 91.86% 13 91.61% 95% 203 89.83%

Table 5.18: Samples: number of samples used by the RAND H algorithm.
k̂: number of additive approximated Harmonic centralities added to the
candidate set H. Gain: time gain achieved on solving APSP. Prec.: precision
expressed as the number of centralities correctly computed over k.

expected, the time performances improved from the previous experiment
(Table 5.16). Moreover, the overall precision did not substantially drop. This
also represents an additional proof of the RAND H’s good precision even if
it selects half of the random samples it is supposed to select.

Comparison with Borassi et al.

Despite the lower number of samples, Table 5.19 shows us that TOPRANK H
is still much less competitive than Borassi et al. even tough it achieved re-
markable improvements if compared the previous case (Table 5.17).

5.5.3 Third set of experiments: β = 0.5, α = 1.1

Since the TOPRANK H algorithm should compute the exact top-k central-
ities with high probability, it should not have made any mistake. Since β
does not seem to have significant impact on the algorithm’s precision, as

84

5.5. TOPRANK H

Network k
Improvement

ratio

Gowalla
1 -76348%
10 -378.28%

100 -313.00%

Network k
Improvement

ratio

Wikinews
(en)

1 -76532%
10 -60112%
100 -10773%

Network k
Improvement

ratio

Anybeat
1 -16920%
10 -5058%

100 -2517%

Network k
Improvement

ratio

Wiktionary
(de)

1 -187.61%
10 -168.42%
100 -155.82%

Table 5.19: k: number of top centralities to extract. Gain: time gain of the
TOPRANK H algorithm on Borassi et al. . β = 0.5, α = 1.01.

Name Samples
k = 1 k = 10 k = 100

k̂ Gain k̂ Gain k̂ Gain Prec.
Gowalla 3891 0 98.16% 4 98.21% 25 98.17% 100%
Wikinews (en) 3373 0 98.13% 4 98.13% 11 98.02% 100%
Wiktionary (de) 3155 0 98.28% 7 98.26% 64 98.1% 100%
Anybeat 575 1 91.27% 16 91.14% 138 89.29% 100%

Table 5.20: Samples: number of samples used by the RAND H algorithm.
k̂: number of additive approximated Harmonic centralities added to the
candidate set H. Gain: time gain achieved on solving APSP. Prec.: precision
expressed as the number of centralities correctly computed over k.

last set of experiments we modified the value of α to 1.1 in order to add
more approximated centralities to the candidate set H.

By comparing Table 5.20 with 5.18 we can observe that, even though the α
modification from 1.01 to 1.1 had very little effect on k̂, it was enough to
reach 100% precision for each network we analyzed for this purpose. On
the other hand we noticed a negative but not severe impact on the running
time due to the greater number of SSSP problems the algorithm has to solve
(this can be verified by comparing the Gain columns of Tables 5.20 and 5.18).

85

Chapter 6

Conclusion and future work

We adapted to the Harmonic Centrality two existing randomized algorithms
for both the approximation and exact computation of the Closeness Central-
ity of the nodes of a network. We provided the required theoretical support
to prove the correctness of the approaches we developed and then we veri-
fied these achievement into a practical environment. We wrote a Python im-
plementation of the algorithms we presented in Chapter 4 and tested them
on an eighteen large benchmark networks dataset. As we expected from the
theory, both the RAND H and the TOPRANK H algorithms required much
less running time than solving the APSP problem. Furthermore, we noticed
that the errors affecting Harmonic Centrality values estimated by RAND H
were much lower than the corresponding upper bound ε. We also showed
that the relative errors were very low too and this encouraged us to pick less
random samples to boost the RAND H time performances without compro-
mising the overall precision. We observed satisfying results also with half
and a quarter of random samples since both the running time and the pre-
cision decreased linearly compared to the number of random samples. In
our analysis RAND H has been proven to be also an efficient top-k central-
ity ranker even if used with an high upper bound (ε ≤ 0.25), especially for
small values of k. We also calculated that, in many cases, the algorithm was
less competitive than the Borassi et al. strategy from the running time point
of view, most likely because our implementation does not support multi-
threading. On the other hand, with large networks and higher k values, our
RAND H implementation still required much less time than Borassi et al..

Concerning the TOPRANK H algorithm we discovered that choice of the
α constant is crucial for the algorithm’s precision. The algorithm did not
always correctly ranked the top-k Harmonic centralities even though α was
greater than 1. Besides a 100% precision could be achieved by increasing α
by 0.09. Similarly to RAND H, the TOPRANK H running time was remark-
ably reduced by lowering the number of random samples and this did not

87

6. Conclusion and future work

compromise its ranking precision. Unfortunately, in our experiments this
algorithm was never more competitive than Borassi et al. but we verified
that, as we rise k, it gradually recovers the disadvantage.

6.1 Future developments

Our work could be improved in several different ways such as:

• Multithreading: a multi-threaded implementation could dramatically
reduce the running time of the algorithm we designed.

• Graph tool library: unfortunately the graph tool library shortest path
instruction does not support the computation of the shortest path from
all the vertexes to a subset of vertexes. This could enhance the time
performances of the RAND H algorithm since, at the moment, it im-
plements this requirement through a for-loop.

• TOPRANK H time analysis: as we illustrated in Chapter 4 this algo-
rithm’s two main phases. First the Harmonic centralities are estimated
through the RAND H algorithm and then it computes the exact Har-
monic Centrality of each vertex in the candidate set H. The precision
and the time required by these phases can be controlled through the α
and β constants. A deeper analysis of these two phases could be done
in order to understand what is the optimal choice that would allow
us to obtain a 100% precision by minimizing the algorithm’s running
time.

• Better implementation: probably a more efficient implementation of
both the RAND H and the TOPRANK H algorithm could lower their
running time.

88

Appendix A

Appendix

A.1 Implemented algorithms code

1 from graph tool . a l l import ∗
import random

3 import cons tants
import sys

5 import math
import numpy as np

7

Returns the optimal number of samples
9 # in order to get the required p r e c i s i o n

def numberOfSamples (n , prec) :
11 i f n <= 0 or prec <= 0 or prec > 1 :

re turn 1
13

S c i e n t i f i c round , re turn values
15 # between 1 and n

return min (n , max(1 , math . c e i l (0 . 5 + cons tants . samplesConstants ∗
math . log (n) / pow(prec , 2))))

17

Function to perform the Eppstein
19 # algorithm f o r the Harmonic c e n t r a l i t y

def Rand H (G, prec) :
21

Number of nodes of graph G
23 n = G. num vert ices ()

25 # In some cases (e . g . Toprank H) we c a l l
Rand H (G, prec) funct ion with a pre−

27 # c a l c u l a t e d number of samples
i f (prec >= 1) :

29 # P r e c i s i o n i n t e r p r e t e d as number of samples
l = prec

31 e l s e :
P r e c i s i o n i n t e r p r e t e d as i t s e l f , now

33 # the optimal number of samples i s

89

A. Appendix

c a l c u l a t e d through the funct ion
35 l = numberOfSamples (n , prec)

37 # L i s t of unique random chosen v e r t i c e s
r chosen = [G. ver tex (v) f o r v in random . sample (range (0 , n − 1) ,
l)]

39

Performs SSSP from each node in v to each node in
41 # the s e t ’ r chosed ’ (in accordance with the paper) .

43 m u l t f a c t = (n / (l ∗ (n − 1)))
max dist = G. num vert ices () + 1

45

approx harmonics = [s h o r t e s t d i s t a n c e (G, source=G. ver tex (v) ,
max dist=max dist) . g e t a r r a y () f o r v in r chosen]

47 transposed h = np . transpose (approx harmonics)

49 re turn [(1 . / d i s t s [(d i s t s < max dist) ∗ (d i s t s > 0)]) . sum () ∗
m u l t f a c t f o r d i s t s in transposed h]

Listing A.1: RAND H algorithm Python code

1 from epps import Rand H
import sys

3 import math
from operator import i t e m g e t t e r

5 from exact harmonic import harmonic
from b i s e c t import b i s e c t l e f t

7 import cons tants

9 # Function f (l)
def f (alpha , n , l) :

11 i f l == 0 or n < 1 :
re turn 0

13 re turn alpha ∗ math . s q r t (math . log (n)) / l

15 # Function to c a l c u l a t e the most appropriate value f o r ’ l ’
def l c a l c (n) :

17 i f n <= 0 :
re turn None

19

Asymptotic value f o r ’ l ’ as reported in
21 # the paper

l = cons tants . oka samples const ∗ pow(n , 2 / 3) ∗ pow(math . log (n) ,
1 / 3)

23

S c i e n t i f i c rounding of ’ l ’ because
25 # ’ l ’ must be an i n t e g e r

re turn math . c e i l (l + 0 . 5)
27

def Toprank H (G, k) :
29 # 1 i f we t o t a l l y t r u s t in Rand H

high i f not
31 alpha = cons tants . oka const

90

A.1. Implemented algorithms code

33 # Number of nodes in G
n = G. num vert ices ()

35

Samples f o r Rand H
37 l = l c a l c (n)

39 # Estimated harmonic c e n t r a l i t y c a l c u l a t e d with Eppstein and ’ l ’
samples

Order must not be reversed in order to use b i s e c t l e f t c o r r e c t l y
41 e p p s d i c t = Rand H (G, l)

e p p s d i c t = { s t r (i) : e p p s d i c t [i] f o r i in range (0 , n) }
43 hs = sorted (e p p s d i c t . i tems () , key= i t e m g e t t e r (1))

45 # Ca lc u la t i ng h k − 2 f (l) :
threshold = hs [n − k − 1] [1] − 2 ∗ f (alpha , n , l)

47

Index of the threshold in the ’ harmonics ’ l i s t
49 E index = b i s e c t l e f t ([x [1] f o r x in hs] , threshold)

51 # Check i f there i s a t l e a s t one c e n t r a l i t y to s e l e c t
i f E index > n − 1 :

53 re turn {}

55 # Ca lc u la t i ng exac t topk harmonic c e n t r a l i t i e s
f o r each node in s e t E

57 topK = sorted ((harmonic (G, [x [0] f o r x in hs [E index : n]])) . i tems
() , key= i t e m g e t t e r (1) , reverse=True)

59 # Including a l s o other nodes with harmonic
c e n t r a l i t y equals to h k

61 to k = k − 1
while to k < len (topK) − 1 and topK [to k + 1] == topK [to k] :

63 to k += 1

65 # Top k harmonic c e n t r a l i t i e s
re turn [topK [0 : to k + 1] , n − E index − 1]

Listing A.2: TOPRANK H algorithm Python code

from graph tool . a l l import ∗
2

C a l c u l a t e s exac t harmonic c e n t r a l i t y f o r the s e t of v e r t i c e s S
4 def harmonic (G, S) :

re turn {v : c l o s e n e s s (G, source=G. ver tex (v) , harmonic=True , norm=
True) f o r v in S}

Listing A.3: Harmonic Centrality exact algorithm Python code

91

Bibliography

[1] Python 3 documentation. https://docs.python.org/3/.

[2] Alex Bavelas. Communication patterns in task-oriented groups. Journal
of the acoustical society of America, 1950.

[3] Paolo Boldi and Sebastiano Vigna. Axioms for centrality. CoRR,
abs/1308.2140, 2013.

[4] Michele Borassi, Pierluigi Crescenzi, and Andrea Marino. Fast and sim-
ple computation of top-k closeness centralities. CoRR, abs/1507.01490,
July 2015.

[5] Carter T Butts. Sna: tools for social network analysis. 2009.

[6] Colin Cooper, Alan Frieze, Kurt Mehlhorn, and Volker Priebe. Average-
case complexity of shortest-paths problems in the vertex-potential
model. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 15–26. Springer, 1997.

[7] David Eppstein and Joseph Wang. Fast approximation of centrality. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’01, pages 228–229, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics.

[8] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–,
June 1962.

[9] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM
(JACM), 34(3):596–615, 1987.

93

https://docs.python.org/3/

Bibliography

[10] Alan M Frieze and Geoffrey R Grimmett. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics, 10(1):57–
77, 1985.

[11] Wassily Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American statistical association, 58(301):13–30,
1963.

[12] Donald B Johnson. Efficient algorithms for shortest paths in sparse
networks. Journal of the ACM (JACM), 24(1):1–13, 1977.

[13] Jérôme Kunegis. Konect: The koblenz network collection. In Proceed-
ings of the 22Nd International Conference on World Wide Web, WWW ’13
Companion, pages 1343–1350, New York, NY, USA, 2013. ACM.

[14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data, June 2014.

[15] Nan Lin. Foundations of Social Research. McGraw-Hill, New York, 1976.

[16] Massimo Marchiori and Vito Latora. Harmony in the small-world. Phys-
ica A: Statistical Mechanics and its Applications, 285(3):539–546, 2000.

[17] Kurt Mehlhorn and Volker Priebe. On the all-pairs shortest-path al-
gorithm of moffat and takaoka. Random Structures & Algorithms, 10(1-
2):205–220, 1997.

[18] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67,
1967.

[19] Alistair Moffat and Tadao Takaoka. An all pairs shortest path algorithm
with expected time o(nˆ2\logn). SIAM Journal on Computing, 16(6):1023–
1031, 1987.

[20] Mark EJ Newman. The structure and function of complex networks.
SIAM review, 45(2):167–256, 2003.

[21] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. Ranking of closeness
centrality for large-scale social networks. In International Workshop on
Frontiers in Algorithmics, pages 186–195. Springer, 2008.

[22] Paul W Olsen, Alan G Labouseur, and Jeong-Hyon Hwang. Efficient
top-k closeness centrality search. In 2014 IEEE 30th International Confer-
ence on Data Engineering, pages 196–207. IEEE, 2014.

[23] Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and cen-
trality in temporal networks. Phys. Rev. E, 84:016105, Jul 2011.

94

http://snap.stanford.edu/data

Bibliography

[24] Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

[25] Yannick Rochat. Closeness centrality extended to unconnected graphs:
The harmonic centrality index. In ASNA, number EPFL-CONF-200525,
2009.

[26] Ryan A. Rossi and Nesreen K. Ahmed. An interactive data repository
with visual analytics. SIGKDD Explor., 17(2):37–41, 2016.

[27] Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Net-
workit: An interactive tool suite for high-performance network analysis.
CoRR, abs/1403.3005, 2014.

[28] Duncan J Watts. Small worlds: the dynamics of networks between order and
randomness. Princeton university press, 1999.

95

	Contents
	Introduction
	Preliminaries
	Centrality definitions
	Description and complexity of the problem

	Efficient algorithms for the computation of Closeness Centrality
	Fast Top-k Closeness Centrality computation
	Upper bound of the Closeness Centrality
	Computation of r(v)
	The algorithm

	Fast Closeness Centrality Approximation
	The algorithm
	Theoretical analysis

	Exact top-k Closeness centralities fast computation
	The algorithm
	Theoretical analysis

	Conclusions

	Efficient Algorithms for the Harmonic Centrality
	Borassi et al. strategy applied to the Harmonic Centrality
	An upper bound for h(v)

	Fast Harmonic Centrality Approximation
	The algorithm
	Theoretical analysis

	Fast top-k Harmonic centralities exact computation
	The algorithm
	Theoretical analysis

	Conclusions

	Experimental Results
	Introduction
	Performance metrics
	Constants

	Experimental setup
	RAND_H: first set of experiments
	Time performances
	Precision
	Top-k analysis
	Comparison with Borassi et al.

	RAND_H: second set of experiments
	C = 0.5: time and precision performances
	C = 0.5: top-k analysis
	C = 0.25: time and precision performances
	C = 0.25: top-k analysis

	TOPRANK_H
	First set of experiments: = 1, = 1.01
	Second set of experiments: = 0.5, = 1.01
	Third set of experiments: = 0.5, = 1.1

	Conclusion and future work
	Future developments

	Appendix
	Implemented algorithms code

	Bibliography

