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Introduction

String theory is one of the major theoretical frameworks of modern physics. It attempts to unify the
matter content and all the interactions, including gravity, in a unique quantum mechanical theory,
by invoking the fact that the constituent building blocks of the universe are not point particles but
rather extended objects called strings. This theory was first introduced as an attempt to explain the
strong interaction. This proposal originates from an insight by Veneziano [1] and was subsequently
developed by Nambu and Susskind [2]–[4]. However, the discovery of Quantum Chromo Dynamics
(QCD) which was able to describe the theory of strong interaction and the subsequent development of
the Standard Model of particle physics set string theory aside. It came back into play when Scherk and
Schwarz [5] suggested that the massless spin-2 excitation in the string spectrum might be the graviton.
In fact, every other attempt to quantise Einstein’s theory of general relativity in the usual way and
incorporate it into the Standard Model failed creating a non-renormalizable quantum theory. This
suggestion prompts the development of the so-called bosonic string theory. Since in this framework
the different particles are given by the different oscillation modes of the strings, in order to take
into account also the fermionic particles present in nature, it was necessary to introduce also fermionic
modes in the string spectrum. This was achieved through a series of works (e.g [6]–[9]) that introduced
supersymmetry and led to the emergence of superstring theory.

On the other hand, another major step forward in theoretical physics is the holographic conjecture,
introduced by ’t Hooft [10]. It states that in order to have a consistent theory of quantum gravity, at
the Planckian scale the degrees of freedom of our world can be seen as defined on a two-dimensional
lattice at the boundary, evolving with time.
This conjecture, despite being a general feature of quantum gravity theories, has been mostly studied
in the context of string theory [11], where a concrete example of it was provided through the AdS/CFT
(Anti-de Sitter/Conformal Field Theory) correspondence [12]. It states that a string theory defined
on a background containing an AdSn+1 as a factor is dual to a n-dimensional conformal field theory,
i.e. a QFT with conformal symmetry, defined on the boundary of the Anti-de Sitter space.

The major example of this duality is the one involving the maximally supersymmetric N = 4 Super
Yang-Mills theory (SYM) in four dimensions and type IIB superstring theory defined on AdS5 × S5.
It is worth noting that, since N = 4 SYM is a cousin of QCD, this correspondence explains why at
the beginning string theory was introduced as a theory of strong interaction.
As in the previous example, AdS/CFT in many cases relates a string theory to a gauge theory, for this
reason it is also known as gauge-string correspondence. In particular, the duality relates the gauge
coupling gYM and the number of colors Nc, i.e. the rank of the gauge group of the theory, to the
string tension T and the string coupling gs in the following way

λ ∝ T 2 ,
1

Nc
∝ gs
T 2

, (1)

where λ = g2YMNc is the ’t Hooft coupling.
An important regime in which to study the duality is the planar limit (also known as ’t Hooft limit)
[13], where Nc −→ ∞ and λ = g2YMNc is kept fixed. In this limit, the only surviving Feynman
diagrams in the perturbative expansion around λ = 0 in the gauge theory are the planar diagrams,
namely those which can be drawn on a plane. On the other hand, in the string theory this corresponds
to considering the free string (gs −→ 0). This is one of the most useful aspects of the correspondence;
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in fact, it allows to study a strongly coupled gauge theory (λ −→ ∞) by means of a weakly coupled
string theory (gs −→ 0 and T −→∞), which allows for perturbative computations.

In the ’t Hooft limit AdS/CFT relates the string energy levels as a function of T to the planar scaling
dimensions for local operators as a function of λ.
Strings freely propagating in a curved background are described by means of a non-linear sigma model
(NLSM) action. In general, there is no method for solving the spectrum in the coupling regions where
perturbative theory is not defined for either the string or the gauge theory. Nevertheless, in the case of
the N = 4 SYM and AdS5×S5 duality, several results coming from both the gauge and the string sides
suggest the presence of a phenomenon called integrability which allows to exactly solve the theories in
the planar limit, for arbitrary values of the couplings.

Integrability was first introduced for classical Hamiltonian dynamical systems. Physicists realised that
there were some non-trivial Hamiltonian systems in which the solutions could be explicitly written
down. One of these was the well-known Kepler problem, which describes the motion of the planets
around the Sun. Liouville realised that this feature of some systems is related to the presence of n
independent conserved quantities in involution, where n is the number of degrees of freedom of the
system. If the set of conserved quantities is not spoilt under the quantisation procedure, then the
corresponding quantum model is said to be quantum integrable. A first step in the study of quantum
integrability was taken by Bethe [14], when he was able to exactly solve the energy spectrum of the
Heisenberg XXX spin chain, by means of a set of equations known as Bethe ansatz equations (BAE).
Furthermore, studying the thermodynamic properties of a one-dimensional bosonic gas with a delta
function interaction, Yang and Yang [15] introduced the thermodynamic Bethe ansatz (TBA) by which
it is possible to find the free energy of a thermodynamic quantum integrable system.
In field theories, where there is an infinite number of degrees of freedom, integrability requires the
presence of an infinite set of conserved charges. At the classical level, for a two-dimensional field theory,
this is equivalent to finding a Lax connection by which the equations of motion can be written as the
zero curvature condition of that connection. On the other hand, in two-dimensional quantum field
theories integrability is strictly connected with the structure of the scattering processes. Specifically,
in each scattering the number of particles in the initial state is equal to the number of particles in the
final state, the set of the incoming momenta is equal to the set of the outgoing ones, and the S-matrix
is factorised into the product of two-body S-matrices. Finally, in order to make this latter condition
well-defined, the two-body S matrix must obey the Yang-Baxter equation.

Regarding the N = 4 SYM and AdS5 × S5 duality, the first signs of integrability appeared on the
gauge theory side, where some spin chain structures similar to the Heisenberg Hamiltonian were found
[16]–[19]. Subsequently, on the string theory side, it was found that the NLSM is classically integrable
[20] and, in addition, some hints suggested that the integrable structure is not spoilt in the quantum
theory [21], [22].
Therefore, both theories were considered as quantum integrable theories and a complete (at all-loop)
S-matrix was proposed for both the gauge theory [23]–[25] and the NLSM [26].

These results led to the research of integrability in less supersymmetric cases of the Maldacena duality,
such as the AdS3/CFT2 correspondence. The case we shall consider is the AdS3×S3×T 4 background.
This NLSM has been proven to be classically integrable [27]. Moreover, unlike the AdS5 case, this
superstring background can be supported by both Ramond-Ramond (RR) and Neveu- Schwarz-Neveu-
Schwarz (NSNS) fluxes. It is worth noting that even in the mixed-flux case, the classical theory remains
integrable [28]. Eventually, assuming that integrability persists at the quantum level, a complete S-
matrix has been proposed for the AdS3 × S3 × T 4 background [29]–[31]. Knowing the S-matrix, the
string energy spectrum can be computed by means of the asymptotic Bethe equations1:

eipj l
M∏
k ̸=j

S
ikij
ijik

(pj , pk) = 1 , j = 1, ...,M, (2)

1In particular, these are the Bethe equations when the S-matrix is diagonal in the flavour space. In the case of non
diagonal scattering, it can be diagonalised by means of the nested algebraic Bethe ansatz.
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where l is the length of the system, pj , j = 1, ...,M are the momenta of the M particles in the
asymptotic state and the index i labels the flavour of the particles. In fact, once the momenta are
known, the energy can be calculated using the dispersion relations, namely

E =
M∑
k=1

ωik(pk) . (3)

More precisely, these equations do not take into account the finite-size corrections due to the wrapping
effects of the string [32]. These corrections are exponentially suppressed in l and can be perturbatively
added to the spectrum found by the asymptotic BAE following the Lüscher approach [33], [34]. On
the other hand, since in the thermodynamic limit l −→ ∞, the TBA approach gives the correct free
energy of the model.
This fact, suggested to introduce a double Wick rotation on the worldsheet coordinates

τ −→ −iσ̃ , σ −→ iτ̃ . (4)

It was pointed out in [35] that the ground state energy (GSE) of the finite-size theory can be found
from the free energy of the finite temperature theory after the double Wick rotation, which can be
computed by means of the TBA. In the case of a relativistic theory, the double Wick rotation acts
trivially and the theory remains unchanged, while in the non-relativistic case, like the gauge-fixed
NLSM, it produces a new theory, the so-called mirror theory.
It is worth pointing out that in the mixed-flux AdS3×S3×T 4 background, the double Wick rotation
leads to a nonunitary theory and unitarity is recovered only in the pure RR flux case.

The aim of this work is to study the perturbative aspects of both the AdS3 × S3 × T 4 mixed-flux
worldsheet theory and its mirror theory and to study how the results found in one model can be
mapped into the other. The motivation lies in the fact that in order to find the ground state energy
using the TBA approach on the mirror theory, this has to be an integrable theory and in a 1+1-
dimensional QFT, scattering processes provide information on whether the theory is integrable or not.
In particular, the thesis is structured as follows. In chapter 1 we introduce the concept of integrability
both in classical and in quantum mechanics. Eventually, we discuss the QFT case introducing the
factorised scattering theory. In chapter 2, we briefly discuss the main characteristics of the bosonic
string that are useful in our discussion. In particular, we introduce the Polyakov action in a flat
Minkowski space and point out its gauge symmetry and how it can be fixed. Finally, we generalise the
treatment to the non-linear sigma model on curved backgrounds. In chapter 3 we specialise the NLSM
to the mixed-flux AdS3×S3×T 4 background. We work in the first-order formalism and fix the light-
cone gauge. Then, we find the quadratic and quartic worldsheet Hamiltonian by perturbatively solving
the Virasoro constraints in the large string tension expansion and we compute the two-body tree-level
S matrix. In chapter 4 after having introduced the Bethe equations and the thermodynamic Bethe
ansatz, we discuss how the mirror theory can be used to find the GSE of the finite-size NLSM. Then,
we find the quadratic and quartic mirror Lagrangian for the AdS3 × S3 × T 4 gauge-fixed background
and we quantise this theory. Eventually, we compute the the two-body tree level S matrix comparing
the results with the ones found in the previous chapter.
In chapter 5 we investigate the behaviour of the worldsheet mirror theory under some production
processes. These are important because they provide information on the integrability of the theory.
In particular, we consider six-point processes and finally we discuss how their amplitudes can be
mapped into the NLSM.



Chapter 1

Integrability

Integrability is a powerful tool for both classical and quantum theories that allows to exactly solve a
system exploiting its symmetries. Intuitively, the system has enough mutually independent symmetries
(conserved charges) to constrain all its degrees of freedom. This property was first studied in the
context of classical Hamiltonian systems and then it was implemented in quantum mechanics and in
quantum field theory. As mentioned in the introduction, we will deal with a model which is integrable
at the classical level and that is also supposed to preserve this structure after the quantisation. For
this reason, it is worth beginning our discussion by introducing the main concepts and features about
integrability.

1.1 Classical integrability

Let us start by introducing the concept of integrability in the context of classical Hamiltonian systems.
In this section we refer to [36], [37], [37].
Let H(pi(t), qi(t)) be the Hamiltonian of an n−dimensional classical system, where qi, i = 1, ..., n are
the coordinates and pi are the canonically conjugated momenta. The dynamic of the system is given
by the Hamilton equations

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, (1.1)

which are, according to the Hamilton second variational principle, the critical points of the Hamiltonian
functional

S[q, p] :=

∫ t2

t1

dt

(
n∑
i=1

piq̇i −H(qi(t), pi(t))

)
, (1.2)

where · = d
dt .

The solutions of the Hamilton equations are curves defined in the space Γ ⊆ R2n, known as phase
space.
Given two generic function F (qi, pi) and G(qi, pi) defined on the phase space, it is possible to define a
bilinear antisymmetric operator, known as Poisson bracket, given by

{F,G} :=
∑
i

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)
. (1.3)

In general, if two functions have zero Poisson bracket, we say that they are in involution.
If a system has a symmetry, i.e. a transformation that leaves the action invariant, due to the Noether
theorem it has a corresponding conserved charge, namely a function of the phase space which remains
constant along the solutions of the Hamilton equations (1.1).
In other words, let F be a Noether charge, since its total time derivative has to be zero along the
solutions, using (1.3) and (1.1), it follows that its Poisson bracket with the Hamiltonian vanishes. i.e.

dF

dt
= {H,F} = 0 . (1.4)

4



1.1. CLASSICAL INTEGRABILITY 5

Let us note that the knowledge of a conserved charge reduces the dynamic to a 2n− 1 subsurface in
Γ given by the implicit equation F = const.
Following this intuition it is possible to give a definition of integrability :

Definition 1.1.1. The system defined by the Hamiltonian H(qi, pi) is said to be Liouville integrable
if it admits n independent conserved charges in involution, i.e. if there exists a set of n functions Fi,
i = 1, ..., n such that

1. {Fi, H} = 0 ∀i = 1, ..., n ;

2.
∑n

i=1 ci∇Fi = 0⇒ c1 = · · · = cn = 0

3. {Fi, Fj} = 0 ∀i, j = 1, ..., n ;

The first condition just impose that the functions are conserved quantities, while the second one
imposes that, given the constants a1, . . . , an, the set defined by the implicit equations

Ma := {(qi, pi) ∈ Γ , F1 = a1, ..., Fn = an} , (1.5)

is a well-defined n-dimensional manifold embedded in the phase space. Note that we could expect that,
in order to completely constrain the motion on a curve in the phase space, we should have required
2n − 1 conserved charges, in such a way that the manifold Ma becomes a one dimensional curve.
However, it turns out that, due to the Hamiltonian structure, n is the maximum possible number of
independent conserved quantities in involution and they are sufficient to completely solve the system.
In fact the Liouville-Arnol’d theorem establishes that a Liouville integrable Hamiltonian system can
be solved by quadratures, namely by solving integrals. Moreover, if Ma is, connected and compact it
follows that

1. Mn is diffeomorphic to the n-dimensional torus

Tn = S1 × . . .× S1 ; (1.6)

2. There exists a canonical transformation, i.e. a transformation which preserves the structure of
the Hamilton equations, to angle-action variables (qi, pi) → (ϕi, Ii). The action variables are
defined by

Ii =
1

2π

∫
Ci

n∑
j=1

pjdqj , (1.7)

where C1, ...Cn are independent cycles onMa that cannot be deformed into each other. Further-
more, in these variables both the Hamiltonian and the conserved quantities become a function
only of the action variables, namely H = H(Ii) and Fj = Fj(Ii);

Therefore, in a Liouville integrable system, the phase space is foliated in tori and the Hamilton
equations in the angle-action variables become

ϕ̇i =
∂H

∂Ii
, İ =

∂H

∂ϕi
= 0 . (1.8)

Thus, using the fact that the Hamiltonian depends only on the action variables and these are constant
along the motion, the solutions are

Ii(t) = Ii(0) , ϕ(t) = ϕ(0) + ωi t , (1.9)

where

ωi =
∂H

∂Ii
. (1.10)

This approach allows to explicitly define and understand the intuition behind integrability. However,
it does not provide any method of building the conserved charges of a system. For this reason, let us
introduce a modern approach, known as Lax formalism that allows to explicitly write down all the
conserved quantities of a model once its equations of motion are recast in a special matrix form called
Lax representation.
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1.1.1 Lax formalism

Let us introduce two N ×N matrices L and M , whose entries take values in a phase space and which
satisfy the equation

L̇ = [M,L] , (1.11)

where [·, ·] denotes the usual matrix commutator. If this matrix equation is equivalent to an Hamil-
tonian problem, namely there exists an Hamiltonian defined in the same phase space such that (1.1)
are solved iff (1.11) are solved, then L and M are called Lax pair, and the Hamiltonian system is said
to have a Lax representation.
The Lax equation (1.11) is solved by

L(t) = g(t)L(0)g−1(t) , (1.12)

where the matrix g(t) is given by solving the equation

M(t) = ġ(t)g−1(t) . (1.13)

According to the solution (1.12), the L matrix at the time t is given just by a similarity transformation
of the matrix at the initial time. Therefore, the eigenvalues and the trace are preserved along the
Hamiltonian flux. In general, given this representation we can define the functions

Qj = TrLj . (1.14)

These are conserved charges of the Hamiltonian system. Indeed

Q̇j = Tr
(
L̇Lj−1

)
+Tr

(
LL̇Lj−2

)
+ ...+Tr

(
Lj−1L̇

)
= j Tr

(
L̇Lj−1

)
= j Tr

(
[M,L]Lj−1

)
= j Tr

([
M,Lj

])
= 0 .

(1.15)

In this way, the Lax representation allows to build a tower of conserved charges of a dynamical system.
However, at this stage we do not have any information about the Poisson structure and if this charges
are in involution. In order to impose the involution condition in the Lax representation, let us briefly
introduce a tensorial notation that will be useful also when we will discuss the quantum mechanical
case.
Let Eij be the canonical base of the vector space of the N ×N matrices. We define

L1 := L⊗ 1 =
∑
ij

Lij (Eij ⊗ 1) , L2 := 1⊗ L =
∑
ij

Lij (1⊗ Eij) , (1.16)

where Lij are the components of the L matrix. Clearly, by generalising this notation we have L3 =
1⊗ 1⊗ L and

T12 =
∑
ijkl

Tijkl (Eij ⊗ Ekl) and T21 =
∑
ijkl

Tijkl (Ekl ⊗ Eij) , (1.17)

where T is a generic tensor.
It can be shown [36] that the involution condition of the charges (1.14) corresponds to the existence
of a matrix r such that

{L1, L2} = [r12, L1]− [r21, L2] , (1.18)

where the Poisson bracket is given by

{L1, L2} =
∑
ijkl

{Lij , Lkl} (Eij ⊗ Ekl) . (1.19)

Furthermore, a well-known property of Poisson brackets is that they respect the Jacobi identity

{A, {B,C}}+ {C, {A,B}}+ {B, {C,A}} = 0 . (1.20)
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Using this property on L1, L2 and L3 together with the condition (1.19), we find that the r−matrix
is constrained by the relation

[L1, [r12, r13] + [r12, r23] + [r32, r13] + {L2, r13} − {L3, r12}] + cycl. perm = 0 , (1.21)

where cycl. perm denotes all the cyclic permutations of the indices 1,2 and 3. It is worth considering
the case in which the r-matrix is independent of the phase space points. In this case, the Poisson
brackets involving r vanish and (1.21) is solved by imposing

[r12, r13] + [r12, r23] + [r32, r13] = 0 . (1.22)

Imposing the condition r12 = −r21 this equation is known as classical Yang-Baxter equation. We will
come back to this expression when dealing with quantum integrable systems, in which a quantum
version of this equation plays an important role.
In general, one can go further and introduce a complex parameter z, known as spectral parameter,
such that the Lax matrices become a function of this parameter: L = L(z) and M = M(z). This
allows to generalise the Lax formalism and include more integrable systems. Further discussion of this
aspect can be found, for example, in Chapter 1 of [37].

So far, we have considered matrices with a finite number of entries. This corresponds to considering
integrable systems with finite degrees of freedom. In fact, an N×N Lmatrix can give rise to maximum
N independent conserved quantities, since, by construction, the Qn defined in (1.14) are all functions
of the eigenvalues of L, which in the best case are N independent functions. For this reason, in order
to discuss integrability in classical field theory, where there are infinite degrees of freedom, and then
we need an infinite number of independent charges in involution, we have to generalise this formalism.
Let us consider a (1 + 1)-dimensional field theory. Let τ be the time-like coordinate and σ be the
space-like coordinate, we assume that the equation of motion can be cast in the form

(∂σ − Lσ(τ, σ, x))Ψ(τ, σ, x) = 0 ,

(∂τ − Lτ (τ, σ, x))Ψ(τ, σ, x) = 0 ,
(1.23)

where Ψ, Lσ and Lτ are matrices depending on the fields of the system and on the complex parameter
x. In particular, Ψ is referred to as the wavefunction, while Lτ and Lσ are the two components
of a connection known as the Lax connection. In fact, the two equations (1.23) can be thought
of as the parallel transport condition of the wavefunction under the covariant derivative defined as
Dµ = (∂µ − Lµ), where µ = τ, σ. Given the expression of the connection, the solution of the linear
system (1.23) is

Ψ(τ, σ, x) =←−exp
(∫

γ
Lτdτ + Lσdσ

)
Ψ(τ0, σ0, x) , (1.24)

where ←−exp denotes the path-ordering symbol and γ is a generic curve with initial point (τ0, σ0) and
final point (τ, σ). Clearly, the expression of Ψ(τ0, σ0, x) is given by the boundary conditions of the
fields and then the solution is the parallel transport of the wave function along the curve γ using the
Lax connection.
Imposing the so-called compatibility condition ∂σ∂τΨ = ∂τστΨ, (1.23) are equivalent to

∂τLσ − ∂σLτ − [Lτ ,Lσ] = 0 . (1.25)

This is the zero curvature condition. In fact, this equation imposes that the curvature tensor of the
Lax connection is equal to zero, i.e. Fµν = [Dµ, Dν ] = ∂τLσ−∂σLτ − [Lτ ,Lσ] = 0. Furthermore, since
the curvature is null, the expression (1.24) is well defined and does not depend on the chosen curve,
but only on the initial and final point.
Solving non-linear Hamilton equations by means of the linear problem (1.23) is referred to as the inverse
scattering method. For further discussion and examples, we refer to Chapter 13 of [36]. Finally, explicit
expressions of the fields can be found by means of the linear Gel’fand-Levitan-Marchenko equation
[38] [39].
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Instead, let us focus on the conserved charges. We introduce the monodromy matrix, as the path-
ordered exponential along the path σ ∈ [−r/2, r/2] at fixed time

T (τ, x) =←−exp

(∫ r/2

−r/2
Lσ(τ, σ, x) dσ

)
. (1.26)

This operator act just by parallel transporting a quantity along the whole period r.
By deriving with respect to time this expression one can find

∂τT =

∫ r/2

−r/2
dσ e

∫ r/2
σ Lσ dσ ∂τLσ e

∫ σ
−r/2 Lσ dσ (1.25)

=

∫ r/2

−r/2
dσ e

∫ r/2
σ Lσ dσ (∂σLτ + [Lτ ,Lσ]) e

∫ σ
−r/2 Lσ dσ

=

∫ r/2

−r/2
dσ ∂σ

(
e
∫ r/2
σ Lσ dσLτe

∫ σ
−r/2 Lσ dσ

)
= Lτ (τ, r/2, x)T (τ, x)− T (τ, x)Lτ (τ,−r/2, x) .

(1.27)

And imposing periodic boundary conditions on the fields, such that Lµ(τ, r/2, x) = Lµ(τ,−r/2, x)

∂τT = [Lτ (τ,−r/2, x), T (τ, x)] . (1.28)

This is the analogous of the Lax equation (1.11) that we found in finite degrees of freedom, where now
the L matrix is substituted by the monodromy matrix. Therefore, the function

T (x) := TrT (x) , (1.29)

called transfer matrix is constant along the solutions and then its eigenvalues are conserved charges.
Expanding the eigenvalues (or alternatively, the quantities Tj := TrT j) in x we obtain an infinite
set of conserved charges. In conclusion, if the Hamilton equations of a two-dimensional classical field
theory can be cast in the form (1.25), automatically it admits an infinite tower of conserved quantities
and the monodromy matrix contains the information about all of them. Clearly, in order to impose
that these charges are in involution, one still has to assume the existence of an r-matrix which satisfies
a generalisation of the constraint (1.18).

1.2 Quantum integrability

In his paper [14], while solving the Heisenberg spin chain model for ferromagnetism, Bethe introduced
a powerful tool, called coordinate Bethe ansatz, by which it is possible to exactly solve some quantum
systems. This technique, as we will extensively see in Chapter 4, consists of making a specific ansatz
on the expression of the wavefunction. Then, imposing the periodic boundary conditions, this gives
rise to the so-called Bethe equations, which, when solved, return the complete spectrum of the system.
As in the classical case, these systems are related to the presence of several conserved charges, which
constrain the structure of the model. Moreover, following the same reasoning as in the Lax formalism
in classical integrability, it is possible to find a quantum version of the L operator, of the monodromy
matrix and of the Yang-Baxter equations, that allows to explicitly build the conserved quantities of
the system. This approach, in contrast to the coordinate Bethe ansatz, is known as Algebraic Bethe
ansaz, since it allows to construct an integrable model and to find its Bethe equations starting from
an underlying algebraic structure.
In this section, we sketch some of the main results of this approach in quantum mechanical systems,
referring to [40], [41], [37], and [42].
Let us assume that the quantisation of a classical integrable system does not spoil its integrable
structure. Therefore, let {Qj} be the set of conserved charges of the system, after the quantisation
this becomes a set of quantum operators {Qj} such that each of them remains constant under the
Heisenberg evolution, i.e.

[Ĥ,Qi] = 0 , (1.30)
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where Ĥ is the Hamiltonian operator. Furthermore, the involution condition is obtained by replacing
the Poisson bracket with the commutator

[Qi,Qj ] = 0 , ∀i, j . (1.31)

This condition means that it is possible to simultaneously diagonalise all the charges.
In analogy to the classical case, let us introduce the monodromy matrix T (λ) depending on a complex
parameter λ. This is a matrix defined on an auxiliary vector field A and whose entries are operators
acting on the Hilbert space H on which our quantum system is defined. From T (λ) let us define the
transfer matrix T as

T (λ) := TrA T (λ) . (1.32)

We are tracing over the auxiliary space, therefore T (λ) is an operator in H. We can expand T (λ) in
λ around a point λ0 :

T (λ) =
∑
k

1

k!
(λ− λ0)k Ik , (1.33)

where {Ik} is a set of operators in H, that can be either finite or infinite. Furthermore, imposing the
condition

[T (λ), T (µ)] = 0, ∀λ, µ , (1.34)

one can find that all the operators are in involution, i.e.

[Ik, Ij ] = 0, ∀k, j . (1.35)

Indeed,

0 =
dk

dλk
dj

dµj
[T (λ), T (µ)] = dk

dλk
dj

dµj
[T (λ), T (µ)]

∣∣∣∣λ=λ0
µ=µ0

(1.33)
= [Ik, Ij ] . (1.36)

If one of the Ik is the Hamiltonian of some quantum system, the expansion of the transfer matrix
provides a set of conserved quantities in involution for that model, which can be identified with the
remaining Ik operators. However, it is worth stressing that nothing guarantees that the charges are
independent of each other, and furthermore, in general they can be not self-adjoint, non-local et cetera.
To have local operators, it is important to expand T around the correct point λ0, and in some cases
one needs to expand not the transfer matrix itself but rather one of its functions. For instance, to
recover the Heisenberg model, the correct way is to expand the logarithm of T , in such a way that

T (λ) = exp

(∑
k

1

k!
(λ− λ0)k Ik

)
. (1.37)

Let us consider operators acting on the space A1 ⊗A2 ⊗H. We define

T1(λ) := T (λ)⊗ 12 , T2(λ) := 11 ⊗ T2(λ) . (1.38)

This means that T1 and T2 act trivially on A2 and A1 respectively. Using this notation and the
relation (1.32), we can write the lhs of (1.34) as follows:

[T (λ), T (µ)] = [TrA T (λ),TrA T (µ)] = [TrA1 T1(λ),TrA2 T2(µ)] = TrA1⊗A2 [T1(λ), T2(µ)] . (1.39)

Therefore, the involution condition of the operators on the Hilbert space becomes the matrix relation

TrA1⊗A2 T1(λ)T2(µ) = TrA1⊗A2 T2(µ)T1(λ) . (1.40)

Two matrices related by a similarity transformation have the same trace. Hence, let us assume the
existence of an invertible matrix R, such that

R12(λ, µ)T1(λ)T2(µ)R
−1
12 (λ, µ) = T2(µ)T1(λ) . (1.41)
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The subscripts denote that it acts non-trivially on both the spaces. In fact, since it is a transformation
in the space where we take the trace, R12 is defined on A1 ⊗A2. The relation (1.41) can be recast in
the form

R12(λ, µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ, µ) . (1.42)

This is known as RTT−TTR relation or intertwining relation and it guarantees that (1.40) is satisfied.
The effect of R is to permute monodromy matrices that act on different copies of the auxiliary space.
For this reason, the R-matrix cannot assume any value, but it has to satisfy some compatibility
conditions, which come from the fact that when there are more matrices (i.e. T1(λ1), ..., Tn(λn))
defined on several copies of the space A, there are different ways of going from an initial configuration
to a final one. In fact, the expression of the R-matrix must be such that all possible permutations give
the same result. In particular, in the case of three monodromy matrices, we have two possibilities of
going from T1T2T3 to T3T2T1:

T1(λ1)T2(λ2)T3(λ3) = (R12(λ1, λ2))
−1 T2(λ2)T1(λ1)T3(λ3)R12(λ1, λ2)

= (R13(λ1, λ3)R12(λ1, λ2))
−1 T2(λ2)T3(λ3)T1(λ1)R13(λ1, λ3)R12(λ1, λ2)

= (R23(λ2, λ3)R13(λ1, λ3)R12(λ2, λ3))
−1 T3(λ3)T2(λ2)T1(λ1)R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2)

(1.43)

And

T1(λ1)T2(λ2)T3(λ3) = (R23(λ2, λ3))
−1 T1(λ1)T3(λ3)T2(λ2)R23(λ2, λ3)

= (R13(λ1, λ3)R23(λ2, λ3))
−1 T3(λ3)T1(λ1)T2(λ2)R13(λ1, λ3)R23(λ2, λ3)

= (R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3))
−1 T3(λ3)T2(λ2)T1(λ1)R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3)

(1.44)

Where we have used the fact that R12 and T3 commute since R12 acts trivially on A3 and so on. Thus,
by matching (1.43) and (1.44) we obtain

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2) . (1.45)

This is the quantum Yang-Baxter equation. Once this relation is fulfilled, also all the other higher-
order compatibility conditions are respected. In addition to this equation, the R-matrix has another
constraint. In fact, by exchanging 1↔ 2 and λ↔ µ in (1.42) we find

R21(µ, λ)T2(µ)T1(λ) = T1(λ)T2(µ)R21(µ, λ) =⇒ (R21(µ, λ))
−1 T1(λ)T2(µ) = T2(µ)T1(λ) (R21(µ, λ))

−1 .
(1.46)

And comparing this expression with the original equation (1.42) it follows

R12(λ, µ)R21(µ, λ) = I . (1.47)

To be precise, (1.46) implies that R21(µ, λ) = f(λ, µ)R−1
12 (λ, µ), where f(λ, µ) is a generic function.

However, without loss of generality, we can set f(λ, µ) = 1.
Note that the Yang-Baxter equation and (1.47) are algebraic equations defined in the vector space
A1 ⊗ A2 ⊗ A3 without any physical connection. However, by plugging a generic solution of these
into (1.42), one can find a monodromy matrix T and then construct an integrable quantum system.
This R-matrix is the quantum version of the r-matrix that we have seen in the classical case and, as
the name suggests, the quantum Yang-Baxter equation (1.45) is the quantum version of the classical
equation (1.22). To check this fact, let us expand the matrix in powers of ℏ

R = I+ ℏr + ℏ2A+ o(ℏ2) . (1.48)

Substituting this expression in (1.45) we found

3 · I+ ℏ
(
r12(λ1, λ2) + r13(λ1, λ3) + r23(λ2, λ3)

)
+ ℏ2

(
r12(λ1, λ2)r13(λ1, λ3) + r12(λ1, λ2)r23(λ2, λ3)

+ r13(λ1, λ3)r23(λ2, λ3) +A12(λ1, λ2) +A13(λ1, λ3) +A23(λ2, λ3)
)
+ o(ℏ2) = 3 · I+ ℏ

(
r23(λ2, λ3)

+ r13(λ1, λ3) + r12(λ1, λ2)
)
+ ℏ2

(
r23(λ2, λ3)r13(λ1, λ3) + r23(λ2, λ3)r12(λ1, λ2) + r13(λ1, λ3)r12(λ1, λ2)

+A23(λ2, λ3) +A13(λ1, λ3) +A12(λ1, λ2)
)
+ o(ℏ2)
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The order ℏ0 and ℏ1 are trivially equal, while imposing the equality on the order ℏ2 one can find

r12r13 + r12r23 + r13r23 = r23r13 + r23r12 + r13r12 =⇒ [r12, r13] + [r12, r23] + [r32, r13] = 0 , (1.49)

where for simplicity, we have omitted the parameters dependency and we have used the property
r23 = −r32 to pass from the first to the second equation. Note that this property in the quantum
theory comes from expanding the relation (1.47), while in the classical theory it was set by hand.
Therefore, we found that at the first order in ℏ the R matrix fulfils the classical Yang-Baxter equation
(1.22) and we can conclude that it is given by the quantisation of the classical r-matrix.

Let us now give an example of how it is possible to construct a quantum integrable system starting
from this algebraic structure. In particular, we build the Heisenberg XXX spin-chain model.
Let us specialise the discussion in the case in which the auxiliary vector space is A = C2. The
monodromy matrix becomes

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
, (1.50)

where A,B,C and D are Hilbert space operators. Thus, the transfer matrix is

T (λ) = TrT (λ) = A(λ) +D(λ) . (1.51)

Let us find some simple solutions of the Yang-Baxter equation together with (1.47). The first trivial
solution is given by the identity matrix. Another trivial solution is the permutation matrix P. This is
defined by the action P (A1 ⊗A2) = A2 ⊗A1 and in C2 ⊗ C2 it reads

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.52)

The first non trivial solution is given by the combination of these two in the following way

R(λ, µ) = R(λ− µ) = (λ− µ)I+ cP , (1.53)

and putting c = i

R(λ− µ) =


λ− µ+ i 0 0 0

0 λ− µ i 0
0 i λ− µ 0
0 0 0 λ− µ+ i

 . (1.54)

Clearly, any other matrix given by the multiplication of this one by a generic function F(λ, µ) is a
solution as well. In fact, the Yang-Baxter equation is solved up to an overall scalar factor. Plugging
this expression of the R-matrix into the RTT-TTR relation (1.42) imposes some relations between the
operators that compose the monodromy matrix. Developing the operator algebra set by R it is possible
to find the Bethe equations. All the details about this discussion can be found in the references at the
beginning of this section.
Let us focus instead on the construction of the Hilbert space and the Hamiltonian. The Heisenberg
model is composed by N spin-1/2 particles in a lattice. The Hilbert space of each particle is H = C2.
First, let us define the quantum L-operator as

La,j(λ) := Raj

(
λ− i

2

)
=

(
λ− i

2

)
Iaj + iPaj =

(
λ+

iσz
j

2 iσ−j

iσ+j λ− iσz
j

2

)
, (1.55)

where σx, σy and σz are the Pauli matrices and σ± = σx±iσy. This is the quantum Lax operator, and
it has to be interpreted as acting on A⊗Hj , where Hj is the Hilbert space of the j-th particle. On the
other hand, a labels the copy of the auxiliary space in which the operator acts. The last expression,
where we have a 2 × 2 matrix, whose entries are operators acting on Hj , makes this interpretation
manifest. Since R solves the Yang -Baxter equation, if we set Ta(λ) = La,j(λ), this trivially solves
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the RTT-TTR relation, where T1(λ) = R1j(λ − i/2 and T2(µ) = R2j(µ − i/2), because it becomes
equal to the Yang-Baxter. However, the quantum model obtained by this choice contains only one
particle. Therefore, in order to recover the complete Hilbert space of the XXX spin-chain model with
N particles, let us write the monodromy matrix as

Ta(λ) = La,N (λ)La,N−1(λ)...La,1(λ) . (1.56)

Since each single L-operator satisfies the RTT-TTR condition and matrices acting on different spaces
commute, also this monodromy matrix solves the RTT-TTR relation(1.42). Indeed,

R12T1T2 = R12L1,NL1,N−1 · · · L1,1L2,NL2,N−1 · · · L2,1

= R12L1,NL2,NL1,N−1L2,N−1 · · · L1,1L2,1

= R12L1,NL2,NR
−1
12 R12L1,N−1L2,N−1R

−1
12 R12 · · ·R−1

12 R12L1,1L2,1R
−1
12 R12

= L2,NL1,NL2,N−1L1,N−1 · · · L2,1L1,1R12

= L2,NL2,N−1 · · · L2,1L1,NL1,N−1 · · · L1,1R12 = T2T1R12 .

Note that in general one can change the definition of the Lax operator with La,j = Raj(λ−w), ∀w ∈ C.
This only changes the point around which the logarithm of the transfer matrix will be expanded.
Now that we have the monodromy matrix, we can find the transfer matrix and, according to the
expansion (1.37), we can construct a set of operators in involution in the following way:

Ik =
d

dλk
log T (λ)

∣∣∣
λ=i/2

, (1.57)

where we are expanding around the point λ = i/2, which, as we will see, in the correct point that
allows to recover the Heisenberg Hamiltonian. In particular, after some algebra, one can find

iI1 = i
d

dλ
log T (λ)

∣∣∣
λ=i/2

= i
dT
dλ
T −1(λ)

∣∣∣
λ=i/2

=

N∑
j=1

Pjj+1 . (1.58)

On the other hand, the Hamiltonian of the XXX spin-chain is

H = −J
N∑
j=1

(
S⃗j+1 · S⃗j −

1

4

)
= −J

4

N∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1 − 1

)

= −J
2

N∑
j=1

(Pjj+1 − 1) = −J
(
i

2
I1 −

N

2

)
.

(1.59)

Therefore, the Hamiltonian commutes with all the other operators of the expansion, which can be
identified with the set of independent conserved quantities in involution {Qk} of the spin-chain.

1.3 Factorised scattering theory in two-dimensional QFTs

Let us finally discuss the integrability for (1+1)-dimensional QFTs that supports scattering processes.
This is the case of the non-linear sigma model and the corresponding mirror theory that we will discuss
in the next chapters. It turns out that infinitely many independent conserved charges in involution
have a non-trivial physical effect on the scattering processes of the theory. Furthermore, as we shall
see, in these theories, the R-matrix is related to the two-body S-matrix.
As pointed out in [43], integrability in field theory is associated with the presence of infinitely many
conserved charges that transform according to higher and higher representations of the Lorentz group.
This is the reason why we consider only (1+1)-theories. In fact, due to the Coleman-Mandula theorem
[44], in dimensions d > 2, under some reasonable physical hypothesis, a theory possessing conserved
charges of higher rank under the Lorentz group would necessarily have a trivial S matrix. Following
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[43] and [45], let us give a physical intuition about this argument. Let Qs be a s-th rank conserved
tensor. Its action on a one-particle state in momentum space is

eicQs |p⟩ = eicp
s |p⟩ , (1.60)

where p is the momentum of the particle. Furthermore, if we suppose that Qs is an integral of a local
current, its action on a multiparticle state will be the sum of the actions on the individual states,
namely

eicQs |p1, · · ·, pN ⟩ = eic(p
s
1+···+psN ) |p1, · · ·, pN ⟩ . (1.61)

For simplicity here we are considering the case in which all the particles have the same flavour. We
will generalise to different flavours in the next subsection.
Let us consider a wavepacket localised both in coordinate and momentum space:

ψ(x) ∝
∫ +∞

−∞
dp e−a

2(p−p0)2eip(x−x0) . (1.62)

This is a gaussian-like wavepacket localised around the value p0 in momentum space. This means that
in position space it is localised around the value for witch the phase is stationary for p = p0, namely
x0. Let us now apply the operator eicQs . According to (1.60), its action on the wavepacket gives

ψ̃(x) =

∫ +∞

−∞
dp e−a

2(p−p0)2eip(x−x0)eicp
s
. (1.63)

In momentum space it is again localised around p0. On the other hand, now the stationary condition
in position space is x − x0 + scps−1

0 = 0. Therefore, after the action of eicQs the particle is localised
around the point x0 − csps−1

0 . In general, given N particles described by localised wavepackets in
position x1, ..., xN and with momenta p1, ..., pN , Qs generates the shifts

xi −→ xi − csps−1
i , ∀i = 1, ..., N . (1.64)

For s = 1 this is the standard momentum action, which translates the entire system by the same
amount. On the other hand, for s > 1, each particle is translated by different amounts depending on
its momentum.
If Qs is a conserved charge of the model, the scattering matrix S commutes with it, and then

⟨f |S|i⟩ = ⟨f |eicQsSe−icQs |i⟩ , (1.65)

where |f⟩ and |i⟩ are respectively the final and the initial states of a scattering process. Since Qs
shifts particles in different ways, this means that the elements of the S matrix do not change if the
positions of the particles are reshuffled. In three spatial dimensions, it is always possible to change
the relative positions of the particles in such a way that they no longer collide with each other. This
is a physical explanation of the fact that in d > 2, the presence of an higher-rank conserved charge,
necessarily implies that the S-matrix is trivial. On the other hand, in one spatial dimension, there
can be non-trivial scattering processes despite the presence of one or more high-rank charges. In fact,
particles are constrained on a line, and therefore any reshuffling cannot change their fate of colliding.

In one spatial dimension, the presence of a high-rank charge does not necessarily imply that the
scattering processes are trivial. However, it still imposes strong constraints on the collisions. Let us
consider a 3 −→ 3 process. In Figure 1.1, the possible scattering configurations are shown depending
on the initial relative positions of the particles. In (a) and (c) the scattering is decomposed into a
sequence of 2 −→ 2 processes and the S-matrix factorised in the product of the corresponding two-body
S-matrices. On the other hand, the situation (b), in which the three collisions occur simultaneously,
cannot be reduced to just the product of scattering between two particles. This is what usually happens
in multi-particle collisions, where non-trivial terms are added to the interactions of each individual
pair. However, if the S-matrix commutes with Qs, the three configurations can be moved one into the
other and their S-matrices must be equal. Therefore, also (b) can be seen as the product of 2 −→ 2
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Figure 1.1: Possible configurations of a 3 −→ 3 scattering process. The configurations (a) and (c) can be reduced to the
product of three two body processes. For instance the (a) process can be see as the sequence (12)− (13)− (23). On the
other hand, in general (without the presence of an higher-rank charge), (b) can not be reduced to two-body scattering.

scattering events. This means that all the information is encoded into the two-body S-matrix and all
the other processes are obtained by the product of these.
Finally, by imposing that (a) and (c) give the same contribution one obtain

S(p1, p2)S(p1, p3)S(p2, p3) = S(p2, p3)S(p1, p3)S(p1, p2) , (1.66)

This is again the Yang-Baxter equation. In this context, as pointed out above, it arises imposing that
3 −→ 3 processes do not depend on the order in which the different two-body scattering events occur.
On the other hand, in the previous section, we found that this equation arises from the consistency
condition on the permutations of an algebraic structure. We will come back soon to this expression,
showing that also in this case it is related to the permutation relations of an algebra, known as the
Zamolodchikov-Faddeev (ZF) algebra.

Before discussing this algebra, let us first consider the other physical conditions that arise from the
integrability of a (1 + 1)-dimensional QFT. In fact, even though in 1 + 1 dimensions the Coleman-
Mandula theorem is no longer valid and the scattering processes are not necessary trivial, the presence
of an infinite set of conserved quantities with different ranks severely constrains the structure of the
S-matrix. Let us discuss how.
Let {Qk}, k = 1, . . . ,∞ be a set of independent conserved charges in involution. As already pointed
out, since they commute to each other, there exists a basis that simultaneously diagonalises all of
them. Thus,

Qk |p⟩ = Qk(p) |p⟩ , ∀k . (1.67)

Let us consider a n −→ m scattering event and write the asymptotic initial and final states as

|p1, · · ·, pn⟩(in)α1,···,αn
, |p̃1, · · ·, p̃m⟩(out)β1,···,βm , (1.68)

where αj and βk label the flavours of the particles. The asymptotic initial state is prepared at the time
τ = −∞ when all particles are infinitely separated. During the evolution, the particles scatter each
other until they become again infinitely separated in the final state at τ = +∞. The conservation of
the charges implies that the eigenvalues of each of them are equal in the initial and in the final state,
i.e.

n∑
i=1

Qk(pi;αi) =
m∑
j=1

Qk(p̃j ;βj) , ∀k . (1.69)

Thus, there are infinite many constraints. The only solution is given when n = m and the set of initial
momenta {pi} is equal to the set of final momenta {p̃j}. Therefore, in two-dimensional integrable
QFTs collision processes are such that the number of particles in the initial state is always equal to
the number of particles in the final state as well as their set of momenta. In other words, scattering
is reduced to the exchange of momenta (at least when the two particles have the same mass and
dispersion relation) between the particles involved.
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1.3.1 Zamolodchikov-Faddeev algebra

In the previous section, we saw that the two-body S matrix of a two-dimensional integrable QFT obeys
the Yang-Baxter equation. We also pointed out that, as seen in the quantum mechanical case, this
equation is the consequence of a consistency relation of the permutations in some algebra. Furthermore,
imposing the conservation of infinitely many charges, we found that scattering processes correspond
to the exchange (permutation) of the momenta of the particles in the flavour space. Therefore, by
combining these two results, we expect that the Yang-Baxter equation for the S-matrix comes from
the permutation relations in the algebra defined by the creation and annihilation operators of the
asymptotic states. This is known as the Zamolodchikov-Faddeev (ZF) algebra and was first introduced
in [46] and [47]. Let us discuss the ZF algebra following [48] and [49].

Let A†
α(p) and Aα(p) be the creation and annihilation operators. A†

α(p) acts on the vacuum state
of the theory |Ω⟩ by creating a one-particle state of momentum p and flavour labelled by the index
α. On the other hand, Aα(p) is the hermitian conjugate of the creation operator and annihilates the
vacuum.
Therefore, the asymptotic in and out states can be written in the following way

|p1, . . . , pn⟩(in)α1,...,αn
= A†

α1
(p1) . . . A

†
αn

(pn) |Ω⟩ ,

|p1, . . . , pn⟩(out)β1,...,βn
= (−1)

∑
k<l ϵαk

ϵβlA†
βn
(pn) . . . A

†
β1
(p1) |Ω⟩ ,

(1.70)

where p1 > p2 > . . . > pn. Let xj be the position in space of the particle with momentum pj . Clearly,
to properly define the position, one should smear the momenta and consider wavepackets. In the in
state the particles are sufficiently separated that they do not feel any interaction between each other
and are located as follows : x1 < x2 < . . . < xn. This allows the particles to become closer and closer
during the motion, and there is a sequence of 1

2n(n−1) collisions. After sufficient time, the interactions
become again negligible and the system reaches the out state in which x1 > x2 > . . . > xn. In (1.70)
the order of the operators reflects the order of the particles in the position space. If in the initial state
the particles are not positioned in the order discussed earlier, the process can be seen as a sequence of
independent processes with that order, and the S-matrix is just the product of the single matrices. For
this reason, it is sufficient to discuss in states with the configuration (1.70). On the other hand, the
final state can only have the configuration discussed above. In fact, any other configurations cannot
be the final state because further collisions will necessarily occur in a finite amount of time.
The parameters ϵα in (1.70) are defined in such a way that ϵα = 0 when α labels a boson and ϵα = 1
when α labels a fermion. In fact, in the free interaction limit, the ZF operators become the usual in
and out free creation and annihilation operators, and the term (−1)

∑
k<l ϵαk

ϵαl takes into account the

passage from a† outα1 (p1) . . . a
† out
αn (pn)→ a† outαn (pn) . . . a

† out
α1 (p1) .

The S-matrix interpolates between the in and out states

|p1, . . . pn⟩(in)α1,...,αn
= Sβ1,...,βnα1,...,αn

(p1, . . . , pn) |p1, . . . pn⟩(out)β1,...,βn
, (1.71)

where we have used the fact that the number of particles and the set of momenta are the same before
and after the scattering. In particular, since the S-matrix is factorised in the product of two-body
processes, let us consider

|p1, p2⟩(in)α1,α2
= Sα3,α4

α1,α2
(p1, p2) |p1, p2⟩(out)α3,α4

=⇒ A†
α1
(p1)A

†
α2
(p2) |Ω⟩ = Sα3,α4

α1,α2
(p1, p2)(−1)ϵα3ϵα4A†

α4
(p2)A

†
α3
(p1) |Ω⟩ .

(1.72)

Therefore, defining the matrix

Rα3,α4
α1,α2

(p1, p2) := Sα3,α4
α1,α2

(p1, p2)(−1)ϵα3ϵα4 , (1.73)

we find the commutation relation between the ZF creation operators

A†
α1
(p1)A

†
α2
(p2) = A†

α4
(p2)A

†
α3
(p1)R

α3,α4
α1,α2

(p1, p2) . (1.74)

Let us simplify the notation of the flavour indices. We have already introduced the canonical base
of the vector space of N × N matrices E j

i . This can be decomposed into the tensor product of two
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canonical bases of a N -dimensional vector space E j
i = Ei ⊗ Ej . Let N be the number of flavours

present in the theory, using these vectors, we can introduce the notation

A† = A†
αE

α , A = AαEα , (1.75)

and
R(p1, p2) = Rα3,α4

α1,α2
E α1
α3

⊗ E α2
α4

, (1.76)

where we are summing over repeated indices.
Using this notations, the complete ZF algebra can be written as

A†
1A

†
2 = A†

2A
†
1R12 , A1A2 = R12A2A1 , A1A

†
2 = A†

2R21A1 + δ(p1 − p2)I (1.77)

The subscripts as usual denote the vector spaces on which each operator acts non trivially.
This is a deformation of the free oscillator algebra. In fact, now it is possible to explicitly see that in
the free limit (S = I) these become the usual canonical commutation relations for bosons and fermions.
Applying the commutation relation of A† (1.77) twice, where the second time we exchange the indices
1↔ 2, we find

A†
1A

†
2 = A†

2A
†
1R12 = A†

1A
†
2R21R12 , (1.78)

and we obtain the analogous of (1.47), which in this case is known as unitarity condition

R12(p1, p2)R21(p2, p1) = I . (1.79)

On the other hand, considering the 3 −→ 3 scattering, this can be obtained by permuting the creation
operators in two different ways

A†
1A

†
2A

†
3 = A†

3A
†
2A

†
1R12R13R23 , A†

1A
†
2A

†
3 = A†

3A
†
2A

†
1R23R13R12 , (1.80)

and imposing that the two right-hand sides are equal we obtain the Yang-Baxter equation

R12R13R23 = R23R13R12 . (1.81)

This is a generalisation of the result obtained in (1.66), where now the theory contain more than one
type of particle, including fermions.

In conclusion, in two-dimensional integrable QFTs, scattering processes are characterised by very
specific properties, namely

• The number of particles in the initial and final state are always the same. Therefore, any
production process is forbidden ;

• The set of initial and final momenta are equal ;

• The two-body S-matrix obeys the Yang-Baxter equation (1.81) ;

Furthermore, the knowledge of the two-body S-matrix is sufficient to reconstruct the complete matrix.
In the next chapters we will study these properties for the worldsheet scattering in the AdS3×S3×T 4

non-linear sigma model and its mirror model in perturbation theory.



Chapter 2

Bosonic String

Before analysing the non-linear sigma model (NLSM) on AdS3×S3×T 4 let us start by discussing the
free bosonic string propagating in a flat D-dimensional space-time. We will then generalise to curved
backgrounds. In this chapter, we will follow [50], [51] and [52].

2.1 Point particle

First of all, let us start by considering a point particle freely moving in a D-dimensional Minkowski
space-time.
Let ηµν be the Minkowski metric defined as

ηµν = diag(−1, 1, 1, . . . , 1) , (2.1)

and Xµ be the coordinates, with µ = 0, 1, . . . , D − 1 .
The well-known covariant equations of motion are

dPµ

dτ
= 0 , (2.2)

where Pµ is the four-momentum and τ the proper time. In particular, in the massive case these
becomes

m
d2Xµ

dτ2
= 0 , (2.3)

wherem the mass of the particle. To be more generic, we can parameterise the worldline of the particle
as Xµ = Xµ(λ). As a consequence of this parameterisation, the proper time can be rewritten as

dτ =
√
−ds2 =

√
−ηµνẊµẊνdλ , (2.4)

where Ẋµ = dXµ

dλ .
Therefore (2.3) becomes

d

dλ

 mẊµ√
−ηµνẊµẊν

 = 0 . (2.5)

Let Xµ(λi) and Xµ(λf ) be the initial and the final points of the trajectory; it can be seen that the
action that gives the EOM (2.5) is

S = −m
∫ λf

λi

dλ

√
−ηµνẊµẊν . (2.6)

From the physical point of view, the extremisation of this functional selects the trajectory which
maximises the proper time.

17
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Nevertheless, this action is not defined for massless particles. Therefore, in order to generalise this
expression, let us introduce a metric hλλ on the worldline whose line element reads

ds2 = hλλ(λ)dλ
2 = −e2(λ)dλ2 . (2.7)

We have also introduced the field e(λ), which is a 1-form and will be useful for rewriting the action
in a more manageable way. Clearly, being a one-form, under the change of coordinates λ̃ = λ̃(λ) it
transforms as follows

ẽ(λ̃) =

(
e
dλ

dλ̃

)
(λ̃) . (2.8)

Now, using this metric, it is possible to define the action

S = −1

2

∫ λf

λi

dλ
√
−hλλ(h−1

λλ Ẋ
µẊµ +m2) . (2.9)

This action, as we expected since the physics cannot depend on the parameter chosen to describe the
the worldline, is invariant under reparameterisation. As a consequence, this theory has a gauge symme-
try which needs to be fixed by a proper gauge choice. In other worlds, because of the reparametrisation
invariance, not all the D degrees of freedom are physical, as can be seen by imposing, for instance, the
gauge choice λ = t , such that

X0(λ) = t , (2.10)

where t is the time coordinate of the Minkowski space.
This action, as we will see later, is very similar to the Polyakov action for the bosonic string; therefore,
we will come back to this expression and to the corresponding gauge symmetry soon. For now, let us
rewrite the action in a more convenient way using the field e(λ)

S =
1

2

∫ λf

λi

dλ(e−1ẊµẊµ −m2e) . (2.11)

Note that, by exploiting the equation of motion, in the massive case the additional degree of freedom
e(λ) is completely fixed in terms of Xµ. In fact,

e(λ) =

√
−ẊµẊµ

m
. (2.12)

Replacing this expression in the action (2.11) one can recover the expression (2.6), showing that the
two actions are equivalent for m ̸= 0. Furthermore, let us consider the conjugate momentum in the
massive case and check that we obtain the correct result

Pµ =
∂L

∂Ẋµ

= e−1Ẋµ =
mẊµ√
−ηρνẊρẊν

. (2.13)

Now that we are sure that the action correctly describes massive particles, we can consider the case
m = 0. In this case, the EOM for e(λ) reads

ẊµẊµ = 0 , (2.14)

which is the null trajectories condition. Now e(λ) is not fixed, but it can assume any value.
Finally, the EOM for Xµ are given by

d

dλ

(
e−1Ẋµ

)
=
dPµ

dλ
= 0 , (2.15)

showing that (2.11) gives the correct description of a freely moving point particle in a D dimensional
Minkowski space-time. This action can be generalised to a curved space-time by replacing ηµν with a
generic Lorentzian metric Gµν .
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2.2 Nambu-Goto Action

We have seen how to describe the motion of a free point particle in space-time. It is described by a
one-dimensional curve called worldline. If, instead, we have a string, during its motion it sweeps a
two-dimensional surface, known as worldsheet.
The worldsheet can be parameterised by two parameters, called worldsheet coordinates which are
usually labelled by σ which is the space-like coordinate and τ which is the time-like coordinate, while
the Minkowski space (or the generalised curved background) is referred to as the target spacetime. Let
Xµ be the coordinates of the target space-time, then the string motion is described by the map

Xµ = Xµ(σ, τ) . (2.16)

In the following we will use the compact notation σα = (σ, τ), α = 0, 1.
Let −r ≤ σ ≤ r and τ ∈ R; there are two types of strings, namely:

• Open strings: the two ends do not coincide and therefore they have the topology of an interval ;

• Closed strings: the two ends coincide and therefore they have the topology of a circle, i.e.
Xµ(σ+2r, τ) = Xµ(σ, τ). The worldsheet swept during the motion is a cylinder of circumference
2r.

Note that σ can be seen as an angle variable. Therefore, it can be rescaled to 0 ≤ σ ≤ π in the
open case and to 0 ≤ σ ≤ 2π in the closed case. Thus, the periodicity condition can be rewritten as
Xµ(σ + 2π, τ) = Xµ(σ, τ). In the following, we will focus on closed strings.

We want to find an action whose EOM describes a free string propagating in a D-dimensional
Minkowski space. This should be invariant under worldsheet reparameterizations, because these do
not change the physics of the system. In order to find this action, let us recall the point particle case.
In this case we found that the action is proportional to the integral of the length of the worldline (i.e.√
−ds2). Therefore, generalising this result, the action should be proportional to the integral of the

area of the worldsheet.
In order to find the area of the worldsheet, let us use the pull-back to induce the metric of the target
space (in this case the Minkowski metric) on the worldsheet

γαβ =
∂Xµ

∂σα
∂Xν

∂σβ
ηµν , (2.17)

where γαβ is the induced worldsheet metric.
Thus, we can write the so-called Nambu-Goto action

S = −T
∫
dA = −T

∫
d2σ

√
−det

(
∂Xµ

∂σα
∂Xν

∂σβ
ηµν

)
, (2.18)

where T is the string tension. This action, as expected, is invariant under

• Poincare’ transformation of the target spacetime.

• Reparameterisation of the worldsheet.

The difference between these two symmetries is that the first one is global while the second one is
local and is the manifestation of a gauge redundancy of the degrees of freedom.
We can rewrite the Nambu-Goto action by using the explicit expression

γαβ =

(
Ẋ · Ẋ Ẋ ·X ′

Ẋ ·X ′ X ′ ·X ′

)
, (2.19)

where · denotes the scalar Minkowski product, Ẋµ = ∂Xµ

∂τ and Xµ ′ = ∂Xµ

∂σ .
Therefore, the action becomes

S = −T
∫
d2σ

√
−(Ẋ)2(X ′)2 + (Ẋ ·X ′)2 , (2.20)

where it has been used the notation Ẋ · Ẋ = (Ẋ)2.
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2.2.1 String tension

As we mentioned above, the parameter T is called string tension. In the following we show that, in
fact, it has the physical meaning of energy per unit of length.
Let us move to the gaugeX0 = τ . In this way we are left withD−1 d.o.f, namely X⃗ = (X1, X2, ..., XD−1)

In order to find the potential energy we put the kinetic term equal to zero , i.e. dX⃗
dτ = 0 .

Then, the action becomes

S = −T
∫
dσdτ

√√√√(dX⃗
dσ

)2

. (2.21)

Integrating in σ we obtain

S = −
∫
dτV = −T

∫
dτ

∫
dσ
dX⃗

dσ
= −T

∫
dτL , (2.22)

and therefore

V = TL , (2.23)

where V is the potential energy and L the length. Thus, the string tension is exactly the energy of
the string per unit of length. As a consequence of this fact, the minimum energy is obtained when the
string length approaches zero, and it becomes a point particle. Nevertheless, this situation is avoided
due to quantum effects.

2.2.2 Equations of motion

In this section we find the EOM of the bosonic string. First of all, let us define the conjugate momenta

Pµ =
∂L
∂Ẋµ

= −T
(Ẋ ·X ′)X ′

µ − (X ′)2Ẋµ√
−(Ẋ)2(X ′)2 + (Ẋ ·X ′)2

; (2.24)

then, the equations of motion read

dPµ
dτ

+
d

dσ

(
∂L
∂Xµ ′

)
= 0 , (2.25)

where
∂L
∂Xµ ′ == −T

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ√

−(Ẋ)2(X ′)2 + (Ẋ ·X ′)2
. (2.26)

These equations can be recast in a more compact form. In fact, by exploiting the formula of the
variation of the determinant

δ
√
−det γ =

1

2

√
−det γ γαβδγαβ , (2.27)

and computing the variation of the matrix with respect to Xµ
α , where X

µ
0 = Ẋµ and Xµ

1 = Xµ ′

δγ =
δγ

δXµ
α
δXµ

α = (∂βXµ)(∂αδX
µ) , (2.28)

we can finally rewrite the EOM in the following way

∂α(
√
−det γγαβ∂βX

µ) = 0 . (2.29)

Note that the Nambu-Goto action, because of the presence of the square root is difficult to quantise.
For this reason, it is useful to search for an equivalent Lagrangian (a Lagrangian that gives rise to the
same EOM (2.29)), which does not contain any square root.
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2.3 Polyakov Action

An equivalent action can be found by introducing a dynamical worldsheet metric hαβ and generalising
the point particle case (2.9). In this way we can write the so called Polyakov action,

S = −T
2

∫ +∞

−∞
dτ

∫ r

−r
dσ
√
−hhαβ∂αXµ∂βX

νηµν , (2.30)

where
√
−h =

√
−deth. Now the worldsheet metric is not induced by the target one, but it is a

dinamical field by itself, which evolves according to its EOM.

The variation with respect to the worldsheet metric gives the stress-energy tensor

Tαβ = − 2

T

1√
−h

δS

δhαβ
=

1

2
∂αX

µ∂βXµ −
1

4
hαβh

γδ∂γX
µ∂δXµ , (2.31)

and the equation of motions read

∂α(
√
−dethhαβ∂βX

µ) = 0 , (2.32)

Tαβ = 0 . (2.33)

The first equation (2.32) is equal to the one obtained by the Nambu-Goto action (2.29), with the only
difference that instead of having the induced metric γαβ, we have hαβ. Solving the second equation
(2.33) we find the expression of the metric

hαβ = 2(hγδ∂γX
µ∂δXµ)

−1∂αX
ν∂βXν = f(σ, τ)γαβ , (2.34)

where f(σ, τ) = 2(hγδ∂γX
µ∂δXµ)

−1. Therefore, hαβ is given by γαβ times a function of the worldsheet
coordinates. When this expression is plugged back into the equations of motion ofXµ (2.32), we obtain

0 = ∂α

(√
−dethhαβ∂βX

µ
)
= ∂α

(
f(σ, τ)

√
−det γf−1(σ, τ)γαβ∂βX

µ
)
= ∂α

(√
−det γγαβ∂βX

µ
)
.

(2.35)
Hence we are left with the same equation obtained by the the Nambu-Goto action and thus it has
been proved that the two actions are equivalent.

2.3.1 Symmetries

As the Nambu-Goto action, the Polyakov action is invariant under global Poincaré transformations

Xµ −→ ΛµνX
ν + bµ , (2.36)

and has the same gauge symmetry due to the worldsheet reparametrisation

σα −→ σ̃α , hαβ −→
∂σγ

∂σ̃α
∂σδ

∂σ̃β
hγδ . (2.37)

In addition, there is another symmetry, the so-called Weyl invariance

hαβ −→ Ω(σ, τ)hαβ . (2.38)

Note, that this symmetry is the reason why we have been able to recover the Nambu-Goto equation
of motion from the Polyakov action. Furthermore, let us note that this invariance holds only in two
dimensions.
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2.3.2 Conformal Gauge

As seen above, the Polyakov action has two local symmetries, namely the change of worldsheet coor-
dinate and the Weyl invariance. The latter is a local rescaling of the metric that preserves the angles.
Using these two invariances, one can fix the form of the metric.

In particular, note that the metric hαβ is a 2 × 2 symmetric matrix, therefore it has 3 degrees of
freedom. Moreover, the reparametrisation invariance gives two gauge conditions. Hence we are left
with only one degree of freedom and the metric can be rewritten in the following form

hαβ = eϕηµν , (2.39)

where ϕ = ϕ(σ, τ) is a generic function of the woordsheet coordinate and ηµν is the 2-dimensional
Lorentz matrix.
Finally, by exploiting the Weyl invariance, the overall factor can be set to one and we are left with

hαβ =

(
−1 0
0 1

)
. (2.40)

This is the conformal gauge and shows that it is always possible to set the worldsheet metric as the
flat one.
Nevertheless, it is worth pointing out tht after this choice, there is still a residual gauge.

In order to show the presence of this residual gauge, let us consider an infinitesimal worldsheet coor-
dinate transformation

σα → σα − ξα(σ, τ) ; (2.41)

the corresponding infinitesimal transformations induced on the fields and the metric are

δXµ = ξα∂αX
µ,

δhαβ = ξγ∂γhαβ + hαγ∂βξ
γ + hβγ∂αξ

γ ,

δ(
√
−h) = ∂α(ξ

α
√
−h) .

(2.42)

On the other hand, an infinitesimal Weyl transformation can be written as

δhαβ = Ω(σ, τ)hαβ. (2.43)

Combining both the transformations there is the residual gauge condition

ξγ∂γhαβ + hαγ∂βξ
γ + hβγ∂αξ

γ = Ωhαβ , (2.44)

and considering the conformal gauge choice (hαβ = ηαβ) in (2.44) we find

∂σξ
τ − ∂τξσ = 0 ,

2∂τξ
τ = Ω ,

2∂σξ
σ = Ω .

(2.45)

Finally, subtracting the last two equations we obtain

∂σξ
τ − ∂τξσ = 0 ,

∂σξ
σ − ∂τξτ = 0 .

(2.46)

Now it is useful to introduce the lightcone coordinates on the worldsheet

σ± = τ ± σ . (2.47)

In these coordinates the residual gauge conditions (2.46) become

∂+ξ
− = ∂−ξ

+ = 0 . (2.48)
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Therefore, after fixing the conformal gauge we still have the freedom of performing a generic coordinate
redefinition of the type

σ+ −→ σ̃+(σ+) , σ− −→ σ̃−(σ−) , (2.49)

which leave the conformal choice invariant. Looking at this condition from another point of view,
given the flat metric in lightcone coordinates

ds2 = −dσ+dσ− , (2.50)

a transformation of the type (2.49) leaves the metric invariant except for an overall factor which can
be reabsorbed by a Weyl transformation.
Clearly, this residual gauge condition needs to be fixed. We will discuss how to fix it soon. For now,
let us make a final comment that will be useful in order to make the gauge choice. If we write the
change of coordinate (2.49) in the form

τ −→ τ̃ =
1

2
(σ̃+(τ + σ) + σ̃−(τ − σ)) ,

σ −→ σ̃ =
1

2
(σ̃+(τ + σ)− σ̃−(τ − σ)) ,

(2.51)

it is clear that both τ̃ and σ̃ are solutions of the free wave equation(
∂2

∂σ2
− ∂2

∂τ2

)
τ̃ = 0 ,

(
∂2

∂σ2
− ∂2

∂τ2

)
σ̃ = 0 . (2.52)

This means that as residual gauge freedom we can choose any solution of the free wave equation to
be one of the worldsheet coordinates.

2.3.3 Equations of motion and constraints

In the conformal gauge the action becomes

S = −T
2

∫ +∞

−∞
dτ

∫ r

−r
dσ∂αX · ∂αX , (2.53)

and the equations of motion read
□Xµ = 0 . (2.54)

In this way, the theory seems to be equivalent to free bosonic particles. However, we still need to
consider the equations of motion of the metric, which provide a constraint for the field Xµ.

In particular, the stress-energy tensor in the conformal gauge becomes

Tαβ =
1

2
∂αX · ∂βX −

1

4
ηαβ∂γX · ∂γX . (2.55)

Therefore, the condition Tαβ = 0 gives

Ẋ ·X ′ = 0 ,

1

2
(Ẋ2 +X ′ 2) = 0 .

(2.56)

These are the Virasoro constrains in the flat target spacetime.
In order to solve the equations of motion and the constraints, it is useful to move to the light-cone
coordinates (2.47) on the worldsheet. Changing the coordinates, the action (2.53) reads

S = T

∫
dσ+dσ−∂+X

µ∂−Xµ , (2.57)

and the equation of motion (2.54) becomes

∂+∂−X
µ = 0 , (2.58)
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where ∂± = ∂/∂σ±. This equation is solved by a generic function of only σ+ or a generic function of
only σ−. Note that σ+ = const describes a particle moving on the string in the negative verse (i.e. to
the left), while σ− = const describes a particle moving on the string in the positive verse (i.e. to the
right). Therefore, the general solution can be written in terms of a right-moving and a left-moving
mode

Xµ(σ+, σ−) = Xµ
L(σ

+) +Xµ
R(σ

−) . (2.59)

In addition, in the close string case there is the periodicity condition

Xµ(σ + 2π, τ) = Xµ(σ, τ) . (2.60)

The periodicity allows to write the solutions in the Fourier base in the following way

Xµ
L(σ

+) =
1

2
xµ +

1

4πT
pµσ+ + i

√
1

4πT

∑
n̸=0

1

n
α̃µne

−inσ+

Xµ
R(σ

−) =
1

2
xµ +

1

4πT
pµσ− + i

√
1

4πT

∑
n̸=0

1

n
αµne

−inσ−
,

(2.61)

where xµ and pµ are respectively the position and the momentum of the string center of mass. Note
that the single expressions XL and XR do not respect the periodicity condition because of the linear
terms in σ+ and σ−, respectively. However, when they are summed, the periodicity is recovered.
Furthermore, the reality of the field Xµ implies

α̃µn = (α̃µ−n)
∗ , αµn = (αµ−n)

∗ . (2.62)

The constraints coming from the equation of motions of the metric Tαβ = 0 in the light-cone coordi-
nates read

(∂+X)2 = 0 ,

(∂−X)2 = 0 .
(2.63)

Let us evaluate them using the Fourier expansion (2.61). First we compute

∂+X
µ =

1

4πT
pµ +

√
1

4πT

∑
n̸=0

α̃µne
−inσ+

,

∂−X
µ =

1

4πT
pµ +

√
1

4πT

∑
n̸=0

αµne
−inσ−

,

(2.64)

and defining

αµ0 :=

√
1

4πT
pµ , α̃µ0 :=

√
1

4πT
pµ , (2.65)

as the zero mode coefficients, the constraints are given by

(∂+X)2 =
1

4πT

∑
n∈Z
m∈Z

α̃n · α̃me−i(m+n)σ+
= 0 ,

(∂−X)2 =
1

4πT

∑
n∈Z
m∈Z

αn · αme−i(m+n)σ−
= 0 .

(2.66)

These expressions can be recast in the more compact form

(∂+X)2 =
1

2πT

∑
n∈Z

L̃ne
−inσ+

= 0 ,

(∂−X)2 =
1

2πT

∑
n∈Z

Lne
−inσ−

= 0 ,

(2.67)
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where

L̃n =
1

2

∑
m∈Z

α̃n−m · α̃m , Ln =
1

2

∑
m∈Z

αn−m · αm , (2.68)

and finally, these are solved by
L̃n = Ln = 0 , ∀n ∈ Z . (2.69)

Let us recall that we have defined the zero oscillator modes (2.65) in such a way that they are equal
to each other α0

n = α̃0
n and are proportional to the momentum of the string center of mass. Therefore,

using the mass-shell condition, they give the effective mass of the string:

m2 = −pµpµ = −(4πT )α0 · α0

= −(4πT )α̃0 · α̃0 .
(2.70)

Finally, exploiting the Virasoro constraints (2.69) we obtain

m2 = 8πT
∑
n>0

α̃n · α̃−n = 8πT
∑
n>0

αn · α−n (2.71)

This relation between the α̃n and αn modes is known as level matching.

2.4 Quantisation

There are two main ways of quantising this theory:

• The covariant quantisation. The theory is quantised in terms of the target coordinates Xµ, that
are enforced to respect the usual canonical commutation relations (CCR), namely

[X(µσ, τ), P ν(σ′, τ)] = iδ(σ − σ′)ηµν ,

[Xµ(σ, τ), Xν(σ′, τ)] = [Pµ(σ, τ), P ν(σ′, τ)] = 0 .

The physical states of the theory are then obtained by restricting the Fock space to the space that
respect the Virasoro constraint conditions. This approach is manifestly covariant and involves
the presence of ghost states.

• The light-cone quantisation. In this approach, the residual gauge freedom is fixed. This allows to
solve the Virasoro constraints before quantising the theory. In order to proceed with the gauge
fixing, a useful choice is to introduce the lightcone coordinates also on the target spacetime:

X± =
1√
2
(X0 ±XD−1) . (2.72)

The equations of motion of these fields are the usual free wave equations(
∂2

∂σ2
− ∂2

∂τ2

)
X+ = 0 ,

(
∂2

∂σ2
− ∂2

∂τ2

)
X− = 0 . (2.73)

On the other hand, we have seen that one of the worldsheet coordinates can be fixed to be a
general solution of the free wave equation. Therefore, a natural choice is to identify one of the
lightcone coordinates on the target manifold with one of the worldsheet coordinates. This choice
leads to the so-called light-cone gauge.

X+ = x+ + p+τ , (2.74)

where x+ and p+ are constants and can be shown to be the position and momentum of the string
center of mass along the X+ direction.
Finally, the theory is quantised using only the physical degrees of freedom. In this case the
theory is no longer manifestly covariant, but it does not contain ghost states.
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2.5 String spectrum

Clearly, the two approaches shown in the previous section are equivalent. Let us summarise the main
results:

• Enforcing the Lorentz symmetry when quantising the theory, the dimension of the target space-
time has to be D = 26.

• The spectrum contains a tachyon particle, i.e. a particle with negative mass square. More
precisely, since the mass square of a quantum field is the second derivative of the potential, it
means that we are expanding the quantum oscillations of this field around a maximum of the
potential.

• The spectrum contains also three massless fields, namely

Gµν , Bµν , Φ ,

where

1. Gµν is a symmetric traceless tensor, which corresponds to a spin-2 massless particle, i.e.
the graviton. Therefore, Gµν is the background metric that is perturbed by the presence
of the string ;

2. Bµν is an anti-symmetric tensor, i.e. a 2-form, also known as Kalb-Ramond field ;

3. Φ is a scalar field called dilaton.

2.6 Non-linear sigma model

So far, we have considered only strings propagating in a flat spacetime. Now, let us consider a
string propagating on a curved background, with a generic metric Gµν . The Polyakov action can be
generalised in the following way

S = −T
2

∫
d2σ
√
−hhαβ∂αXµ∂βX

νGµν . (2.75)

This is known as non-linear sigma model (NLSM). The reason is due to the fact that this action was
first introduced in the context of β − decay by Gell-Mann, dealing with a field called σ.
As in the Polyakov action, this action is invariant under worldsheet coordinate redefinition and Weyl
transformations. Furthermore, it is also invariant under redefinitions of the coordinates of the target
space

Xµ −→ X̃µ , Gµν −→ G̃µν =
∂Xρ

∂X̃µ

∂Xσ

∂X̃ν
Gρσ . (2.76)

However, in general, this is not a symmetry, but a field redefinition. This will become a symmetry
only if the metric Gµν remains invariant under the redefinition, and hence if the diffeomorphism is an
isometry of the background space.

We have seen how strings couple with the background metric Gµν (2.75) . Nevertheless, we have seen
that there are two other fields emerging from the string spectrum, namely the Kalb-Ramond field Bµν
and the dilaton Φ, with which the string can couple.
Let us start considering the coupling with Bµν . This can be written in the form

S = −T
2

∫
d2σ
√
−h(hαβ∂αXµ∂βX

νGµν + ϵαβBµν∂αX
µ∂βX

ν) , (2.77)

where ϵαβ is the Levi-Civita symbol with convention ϵτσ = 1 .

In order to justify this expression, let us recall the contribution to the action given by the interaction
between a charged relativistic point particle and an electromagnetic field

Sint =

∫
dτAµẊ

µ . (2.78)
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The electromagnetic field is written in terms of the gauge potential one-form Aµdx
µ. The pull-back

of Aµ on the worldline of the particle gives exactly the expression (2.78).
Therefore, by generalising this argument, the coupling between the string and the 2-form Bµν is given
by the pull-back of the field on the worldsheet, giving exactly the expression

S =

∫
d2σ
√
−hϵαβBµν∂αXµ∂βX

ν . (2.79)

Finally, let us consider the coupling with the dilaton field Φ. This contributes to the action with the
additional term

1

2πT

√
−hΦR(2) , (2.80)

where R(2) is the worldsheet Ricci curvature. Note that this term breaks the Weyl invariance. However,
it can be proved that it is recovered by considering loop contributions. In the next sections, we will
ignore the dilaton contribution and we will focus only on the background metric and on the Kalb-
Ramond field.

2.7 Superstring theory

For the sake of completeness, let us make a final comment before passing to the AdS3 × S3 × T 4

non-linear sigma model. So far, we have considered only bosonic fields in the action and then the
string spectrum is exclusively composed by bosons. In order to implement fermionic modes on the
worldsheet one has to introduce the so-called superstring theory, which, as the name suggests, is a
supersymmetric theory. Superstring theory has some differences with respect to the bosonic string
theory, namely: the tachyon mode disappears from the spectrum, the critical dimension becomes D =
10 and in addition to the massless bosonic fields Gµν , Bµν (often referred to as the Neveu-Schwarz-
Neveu-Schwarz (NS-NS) two-form in this context) and Φ, there are further bosonic and fermionic
modes in the spectrum. The peculiar aspect is that, contrary to the pure bosonic case, in which the
string action is unique, the way in which the additional fermionic modes are implemented gives rise
to different classes of superstring theories. In what follows, we will refer to the so-called Type IIB
theory. Since we will use it in the NLSM action, it is worth pointing out that in this theory additional
massless bosonic excitations, known as Ramond-Ramond (RR) 3-form, appear in the spectrum.



Chapter 3

AdS3 × S3 × T 4 non-linear sigma model

In this chapter we will consider a free bosonic string propagating in AdS3 × S3 × T 4. This NLSM
has been shown to be classically integrable [27], [28]. Since the fields of the theory are functions of
the worldsheet coordinates σ and τ , this is a (1 + 1)− dimensional quantum field theory. Therefore,
one can expect that if the symmetries and the integrability structure survive also at the quantum
level, it should obey the factorised scattering constraints. In particular, the initial and the final sets of
momenta must be equal, there is no production in the final states, and the 2 −→ 2 S-matrix respects
the Yang-Baxter equations. Furthermore, symmetries constrain the structure of the S-matrix in such
a way that it is possible to find its complete (to all loop) expression. The complete non-perturbative
worldsheet S-matrix for the AdS3×S3× T 4 background has been derived for both the vanishing [29],
[30] and the non-vanishing [31] NS-NS flux case up to some pre-factors, known as dressing factors. In
particular, so far there is a proposal for these factors for the pure-RR [53] and the pure-NSNS [54]
case, but not for the generic theory.
In this chapter, we will focus on the perturbative aspects of the model. We will fix the residual gauge
by exploiting the lightcone gauge choice, and then we will solve the Virasoro constraints perturbatively
in large string tension expansion. Ultimately, we will compute and discuss the two-body tree-level
worldsheet S matrix.

3.1 Action

Let us consider a bosonic string freely propagating in AdS3 × S3 × T 4. The action is described by

S = −T
2

∫ +∞

−∞
dτ

∫ r

−r
dσ(γαβ∂αX

µ∂βX
νGµν + ϵαβBµν∂αX

µ∂βX
ν) , (3.1)

where Gµν is the target spacetime metric, Bµν the NS-NS B-field, γαβ =
√
−hhαβ and hαβ is the

worldsheet metric. As seen in the previous chapter, this action is invariant under reparameterisations
of the worldsheet and Weyl transformations. These are manifestations of the fact that not all the
degrees of freedom that we are considering are physical. As in the flat Minkowski spacetime we can
fix the conformal gauge, i.e.

hαβ =

(
−1 0
0 1

)
.

However, unlike the flat case, discussed in the previous chapter, now the conformal gauge does not
give rise to free bosons, but the field dependent metric Gµν contributes with non trivial terms. In fact
the equations of motion in conformal gauge read

∂α∂
αXµ + Γµνρ∂βX

ν∂βXρ − 1

2
Hµ

στ ∂γX
σ∂δX

τ ϵγδ = 0 ,

Tαβ = ∂αX
µ∂βX

νGµν −
1

2
ηαβ∂γX

µ∂γXνGµν = 0 ,

(3.2)

28
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where Γµνρ are the Christoffel symbols and H is a 3-form defined by H = dB. Note that, indeed,
because of the non-trivial metric structure, the equations are different from the free bosons case that
we found in flat background. These can be seen as the string generalisation of the point particle
geodetic equations in curved spacetime.
However, given an infinitesimal change of coordinate σα → σα + ξα(σ, τ) and an infinitesimal Weyl
transformation δhαβ = Ω(σ, τ)hαβ, we know that there is still a residual gauge freedom, given by the
condition

∂αξβ + ∂βξα = Ωηαβ , (3.3)

We will fix this redundancy by using the lightcone gauge.

Before fixing the gauge, let us specialise the action to the background we are considering.

3.1.1 Metric

The line element reads
ds2 = ds2AdS3

+ ds2S3 + ds2T 4 , (3.4)

where

1. AdS3 is the 3-dimensional Anti-de Sitter space. In general, the n-dimensional Anti-de Sitter
space is a maximally symmetric Lorentzian space with negative curvature. Therefore, it has
n(n+ 2)/2 isometries and the Riemann tensor is constrainted to be

Rµνρσ =
R

n(n− 1)
(gµρgνσ − gµσgνρ) ,

where gµν is the metric and R the scalar curvature. As a consequence, the Ricci tensor reads

Rµν =
R

d
gµν .

Since the curvature is negative (R < 0), from the expression of the Ricci tensor it follows that
the Anti-de Sitter space is a solution of the Einstein equation in vacuum and with negative
cosmological constant Λ = 2n/(n− 2)R.
Given the flat space Rn−1,2 with metric diag(−1,−1,+1,+1, ...,+1) and line element

ds2 = −dx21 − dx22 +
n+1∑
i=3

dx2i , (3.5)

the embedding of AdSn in this space is defined by the constraint

−x21 − x22 +
n+1∑
i=3

x2i = −1 . (3.6)

Note that we are considering an unitary radius. On AdSn we can use the coordinate system
(t, r, x̂i) given by

x1 = sin t cosh r , x2 = cos t cosh r , xi = x̂i sinh r , (3.7)

where 0 ≤ t ≤ 2π , r ≥ 0 and x̂i is a coordinate system on Sn−2. In these coordinates, the line
element induced by (3.5) on AdSn is ds2AdSn

= − cosh2 r dt2 + dr2 + sinh2 r dΩ2
n−2, where dΩ

2
n−2

is the line element on Sn−2.
Performing the change of coordinate ρ = sinh r and specialising this result to AdS3, the metric
can be rewritten as follows

ds2AdS3
= −(1 + ρ2) dt2 +

1

1 + ρ2
dρ2 + ρ2 dψ2 , (3.8)

where t can be extended to the whole real axis, i.e. t ∈ R , ρ ≥ 0 and 0 ≤ ψ ≤ 2π is the angle
on S1.
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Finally, let us introduce another coordinate system, which is the one we will use in our compu-
tations √

1 + ρ2 =
1 +

z21+z
2
2

4

1− z21+z
2
2

4

, ρeiψ =
z1 + iz2

1− z21+z
2
2

4

, (3.9)

where z1, z2 ∈ R.
The line element becomes

ds2AdS3
= −

(4 + z21 + z22
4− z21 − z22

)2
dt2 +

( 4

4− z21 − z22

)2
(dz21 + dz22) , (3.10)

2. S3 is the 3-dimensional sphere. Given the flat Euclidean space R4 with line element

ds2 =

4∑
i=1

dx2i , (3.11)

the embedding of S3 in this space is defined by the constraint

4∑
i=1

x2i = 1 . (3.12)

We can use the coordinate system (ω, θ, ϕ) given by

x1 = sinω cos θ , x2 = cosω cos θ , x3 = sin θ sinϕ , x4 = sin θ cosϕ . (3.13)

In these coordinates, the line element induced by (3.11) on S3 is ds2S3 = cos2 θ dω2 + dθ2 +
sin2 θ dϕ2.
Performing the change of coordinate r = sin θ, the metric can be rewritten in isometric coordi-
nates:

ds2S3 = (1− r2) dω2 +
1

1− r2
dr2 + r2 dϕ2 , (3.14)

where 0 ≤ r ≤ 1 and 0 ≤ ϕ ≤ 2π.
Finally, let us introduce the coordinate system which we will use in our computations

√
1− r2 =

1− y21+y
2
2

4

1 +
y21+y

2
2

4

, reiϕ =
y1 + iy2

1 +
y21+y

2
2

4

, (3.15)

where y1, y2 ∈ R.
The line element becomes

ds2S3 =
(4− y21 − y22
4 + y21 + y22

)2
dω2 +

( 4

4 + y21 + y22

)2
(dy21 + dy22) , (3.16)

3. T 4 is the 4-dimensional torus with line element

ds2T 4 = dxidxi , (3.17)

where xi ∈ R , i = 5, 6, 7, 8.

Now, we can write the explicit expression of the metric Gµν and of the B-field that appear in the
action (3.1). Note that we have discussed the presence and the physical meaning of the B-field in the
NLSM action; however, we have not seen an explicit expression for it as a function of the background.
The expression is derived by considering the supersymmetric generalisation of the bosonic string and
putting the fermions to zero. The complete expression for the line element is

ds2 = −Gttdt2 +Gωωdω
2 +Gzz(dz

2
1 + dz22) +Gyy(dy

2
1 + dy22) +

8∑
j=5

dxjdxj , (3.18)
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where

Gtt =
(4 + z21 + z22
4− z21 − z22

)2
, Gωω =

(4− y21 − y22
4 + y21 + y22

)2
,

Gzz =
( 4

4− z21 − z22

)2
, Gyy =

( 4

4 + y21 + y22

)2
,

(3.19)

and the NS-NS B-field is given by [31]

B =
q(

1− z21+z
2
2

4

)2 [z1dz2 ∧ dt+ z2dt ∧ dz1] +
q(

1 +
y23+y

2
4

4

)2 [y3dy4 ∧ dω + y4dω ∧ dy3] , (3.20)

where 0 ≤ q ≤ 1. In particular, this formula describes both the pure RR flux model (q = 0) and the
pure NS-NS flux model (q = 1), and in the other cases it supports the mixed RR-NSNS flux [55].
As discussed in the previous chapter (3.1) is invariant under reparameterisation of the target spacetime.
This is a field redefinition; however, if the transformation is an isometry and leaves also the B-field
invariant, then it becomes a symmetry of the action. In this case, there are the two symmetries

t −→ t+ const , ω −→ ω + const , (3.21)

which means that the action is invariant under t and ω translations. These two symmetries, because
of the Noether theorem, imply the presence of the corresponding conserved charges

E = −
∫ r

−r
dσ Pt , J =

∫ r

−r
dσ Pω , (3.22)

where Pt and Pω are the conjugate momenta of t and ω, respectively. These can be interpreted as the
energy and the angular momentum in the ω-direction of the string.

3.2 First-order action

In order to fix the lightcone gauge, it is useful to write the action in the first-order form. First, let us
introduce the conjugate momenta

Pµ =
δL
δẊµ

= −T
(
γτβGµν + ϵτβBµν

)
∂βX

ν . (3.23)

Using the expression of the momenta, the action can be rewritten in the first-order formalism

S =

∫ r

−r
dτdσ

(
PµẊ

µ +
γτσ

γττ
C1 +

1

2Tγττ
C2

)
, (3.24)

where
C1 = PµX́

µ ,

C2 = GµνPµPν + T 2GµνX́
µX́ν + 2TGµνBνκPµX́

κ + T 2GµνBµκBνλX́
κX́λ .

(3.25)

As seen in the previous chapter, the equation of motion of the metric give the Virasoro constraints,
which in this form are given by

C1 = C2 = 0 . (3.26)

3.3 Uniform lightcone gauge

Let us introduce the lightcone coordinate and momenta on the target manifold

t = x+ − ax− , ω = x+ + (1− a)x− ,
Pt = (1− a)p+ − p− , Pω = ap+ + p− ,

(3.27)
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with inverse transformations

x+ = aω + (1− a)t , x− = ω − t ,
p+ = Pω + Pt , p− = (1− a)Pω − aPt

(3.28)

where a ∈ R is a parameter. Therefore, more precisely, this is a one-parameter family of coordinate
transformations. The lightcone momenta are defined by the usual expression p± = ∂L/∂ẋ±.
Let us write the metric (3.18) isolating the ω and the t terms in the compact form

ds2 = −Gttdt2 +Gωωdω
2 +GjjdX

jdXj , (3.29)

where Xj are the remaining transversal coordinates. As we will see, these are the physical degrees of
freedom because, after the gauge fixing, they are the only remaining fields.
Using this notation and the lightcone coordinates, the first-order action (3.24) becomes

S =

∫ r

−r
dτdσ

(
p+ẋ

+ + p−ẋ
− + PjẊ

j +
γτσ

γττ
C1 +

1

2Tγττ
C2

)
. (3.30)

Now it is possible to fix the uniform lightcone gauge

x+ = τ , p− = 1 . (3.31)

This gauge is called uniform because the light-cone momenta p− is constant along the string.
Exploiting the gauge condition and the Virasoro constraints C1 = C2 = 0, the action can be written
in the following way

S =

∫ r

−r
dτdσ(PjẊ

j + p+) . (3.32)

With the gauge condition we have fixed p− and x+. Now we can exploit the two Virasoro constraints
to fix the value of x− and p+ in terms of the transversal coordinates.
In particular, the first constraint can be used to find the expression of

x́− = −PjX́j , (3.33)

while for the second constraint we find

GµνPµPν + T 2GµνX́
µX́ν + 2TGµνBνκPµX́

κ + T 2GµνBµκBνλX́
κX́λ = 0 . (3.34)

Note that, since the metric does not depend on x+ and x−, this expression only depends on p± , x́±,
Xj , X́j and Pj . However, using the gauge condition and the first Virasoro constraint we have

p− = 1 , x́+ = 0 , x́− = −PjX́j . (3.35)

Therefore, (3.34) is a second degree equation in p+ as a function of Xj , X́j and Pj .

Let us make a couple of additional comments. First of all, let us note that in the expression (3.32),
the Lagrangian density is written as the Legendre transform of −p+. Therefore, it follows that

H = −p+(Xj , X́j , Pj) , (3.36)

where H is the Hamiltonian density. Hence, the lightcone Hamiltonian turns out

H(Xj , X́j , Pj) = −
∫ r

−r
dσp+(X

j , X́j , Pj) = E − J , (3.37)

and it depends on the energy and the angular mometnum of the string.

Furthermore, let P− be the total lightcone momentum, the gauge fixing also fixes the length of the
string in terms of P−. In fact

P− =

∫ r

−r
dσp− =

∫ r

−r
dσ = 2r = aE + (1− a)J , (3.38)
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and thus

r =
P−
2
. (3.39)

The length depends also on the energy and angular momentum of the string. After the gauge fixing,
we are dealing with a two-dimensional quantum field theory defined on a cylinder of length given by
the total lightcone momentum. As we will see, the finiteness of the string spatial dimension will play
an important role in the introduction of the mirrom model. On the other hand, let us note that, if the
lightcone total momentum goes to infinity, the worldsheet becomes an infinite plane. This is known
as decompactification limit.

Before fixing the lightcone gauge, the theory was invariant under worldsheet Lorentz transformations.
In fact, by imposing the conformal gauge to the NLSM action (3.1) one can find

S = −T
2

∫ r

−r
dτdσ(ηαβ∂αX

µ∂βX
νGµν + ϵαβBµν∂αX

µ∂βX
ν) . (3.40)

This action is explicitly invariant under worldsheet proper Lorentz transformations. However, the
gauge condition (3.31) breaks the Lorentz invariance. Therefore, after the gauge fixing, we are left with
a non-relativistic theory. We will come back to this aspect when we consider the mirror transformation.

Moreover, since we are dealing with closed strings, we have to impose the periodic condition Xj(r) =
Xj(−r). In general, for an angular direction, this relation becomes

ω(r) = ω(−r) + 2πm , m ∈ Z , (3.41)

because of the presence of topologically non-trivial configurations given by the wrapping of the string
around the angular direction. However, we will consider only configurations with zero winding number
m. Therefore, the periodic condition for the lightcone coordinate x− = ω − t reads

∆x− =

∫ r

−r
dσx́− = 0 . (3.42)

Using the first Virasoro constraint (3.33), one can find

∆x− = −
∫ r

−r
dσPjX́

j = 0 . (3.43)

Note that this expression can be written in terms of the worldsheet momentum. In fact, the gauge-
fixed action is invariant under σ translations. This means that, due to the Noether theorem, there
exists a conserved quantity given by

pws = −
∫ r

−r
dσ

∂L
∂Ẋj

X́j = −
∫ r

−r
dσPjX́

j , (3.44)

which is the worldsheet momentum.
From these two equalities follows that the periodicity condition i.e. the level-matching condition reads

∆x− = pws = 0 . (3.45)

Therefore the physical states have zero worldsheet momentum.

Ultimately, we expect the gauge-fixed action to be invariant under time reversal. Note that before
fixing the gauge, the NLSM (3.1) is not invariant neither under τ −→ −τ nor under σ −→ −σ due
to the B-field term that mixes the space and time derivatives with the presence of the ϵαβ tensor.
However, after imposing the lightcone gauge, the conditions x+ = τ and ∂L/∂ẋ− = 1 imply that
under time reversal

x+ −→ −x+ , x− −→ −x− . (3.46)

Therefore, time reversal in the gauge-fixed action sends

t −→ −t , ω −→ −ω . (3.47)
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Since the metric is diagonal and does not depend nether on t nor on ω, the first term in the action
remains invariant under time reversal. On the other hand, the second term is given by

−T
2

∫ r

−r
dτdσϵαβ(Bz1t∂αz1∂βt+Bz2t∂αz2∂βt+By1ω∂αy1∂βω +By2ω∂αy2∂βω) . (3.48)

In fact, as we can see from the explicit expression of the B-field (3.20), these are the only non vanishing
components. Therefore, this term always contains one and only one τ -derivative and one and only
one t or ω field, namely two −1 sources under time reversal. For this reason we expect the lightcone
Hamiltonian to be invariant under time-reversal. Clearly, the same argument does not hold for parity
transformation which remains broken.

3.4 Large string tension expansion

In order to compute the worldsheet S matrix, let us consider the decompactification limit

P− −→∞ , T fixed, (3.49)

in which the worldsheet cylinder becomes an infinite plane. In this limit it is possible to define the
asymptotic in and out states and then the S matrix is well defined. Since H = E − J has to remain
finite and P− = αE + (1− α)J −→∞, it turns out that also E and J go to infinity.
In order to proceed with the quantisation of the asymptotic worldsheet theory, we need to find the
lightcone Hamiltonian. We have seen that this corresponds to the opposite of p+(X

j , X́j , Pj). On the
other hand, p+ can be found by solving the second Virasoro constraints C2 = 0, which is a second
degree equation. This means that the expression of the Hamiltonian can be analytically computed.
However, this results to be a complicated non-linear expression in the physical fields.
For this reason, let us perturbatively solve the equation in the large string tension expansion, (i.e.
expanding around 1/T = 0).
Let us note that in the second Virasoro constraint (3.34), the string tension always multiplies a ∂/∂σ
term. Therefore in the lightcone Hamiltonian we can perform the rescaling

σ → Tσ . (3.50)

In this way
∂

∂σ
→ 1

T

∂

∂σ
, dσ → Tdσ , (3.51)

and the dependence of the lightcone momentum p+ on the string tension T disappears:

H(Xj , X́j , Pj) = −T
∫
dσp+(X

j , X́j , Pj)|T=1 . (3.52)

Performing the field redefinition

Xj → Xj

√
T

, Pj →
Pj√
T
, (3.53)

the Hamiltonian can be expanded in powers of 1/T

H(Xj , X́j , Pj) = T

∫
dσ

(
1

T
H(2) +

1

T 2
H(4) +

1

T 3
H(6) + ...

)
=

∫
dσ

(
H(2) +

1

T
H(4) +

1

T 2
H(6) + ...

)
,

(3.54)

where H(2) is the quadratic Hamiltonian, H(4) the quartic and so on.
We expect the expansion to have only even terms. In fact, the gauge-fixed action remains unchanged
under transformations of the type

Xj −→ −Xj , Pj −→ −Pj . (3.55)
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In order to see this property, let us note that using the gauge condition and the first Virasoro constraint
one can find that under this transformations, t and ω do not change. Moreover, the metric (3.18) is
quadratic in the physical fields, and then its expression also remains equal. This shows that the first
term of the action does not change. On the other hand, the second term contains the B-field (3.20)
that transforms as follows

Bµν −→ −Bµν . (3.56)

However, the only non vanishing component are the one in which it multiplies a physical field (that
changes the sign) and a non physical field (t or ω, that does not change the sign). Therefore, this
second term is also invariant.
It is interesting to note that, rescaling the expression of the worldsheet momenta we obtain

pws = −
1

T

∫
dσPjX́

j . (3.57)

This means that from the physical point of view, in the large string tension expansion we are consid-
ering states with small worldsheet momenta.
Ultimately, let us stress that the procedure of going in the decompactification limit and then expanding
the Hamiltonian in the large tension expansion, is different from the so-called Berenstein-Maldacena-
Nastase (BMN) limit [56], in which

P− −→∞ , T −→∞ , (3.58)

and P−/T is kept fixed. Also in this limit, it is possible to expand the Hamiltonian in powers of 1/T ,
however, now this is also an expansion in 1/P−, giving finite-size corrections to the Hamiltonian. In
what follows, we will use the first approach because it allows to deal with asymptotic states and to
define the S matrix.

3.5 Perturbative lightcone Hamiltonian

Let us perturbatively solve the second Virasoro constraint.
First, it is convenient to introduce the complex fields and momenta

z =
1√
2
(z1 + iz2) , pz =

1√
2
(pz1 + ipz2) ,

y =
1√
2
(y1 + iy2) , py =

1√
2
(py1 + ipy2) ,

u =
1√
2
(x5 + ix6) , pu =

1√
2
(p5 + ip6) ,

v =
1√
2
(x7 + ix8) , pv =

1√
2
(p7 + ip8) ,

(3.59)

where it has been used the notation pz1 = ∂L/∂ż1 , p5 = ∂L/∂ẋ5 and so on. We will denote the
corresponding complex conjugate fields and momenta by using the notation (z)∗ = z̄ and (p)∗ = p̄
and so on for all the fields.
Note that in this notation p̄z is the conjugate momentum of z while pz is the conjugate momentum of
z̄, indeed

∂L
∂ż

=
∂ż1
∂ż

∂L
∂ż1

+
∂ż2
∂ż

∂L
∂ż2

=
pz1√
2
− i pz2√

2
= p̄z . (3.60)
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The same goes for the other fields.
Using these coordinates and the lightcone coordinates for t and ω the metric takes the form

ds2 =
[
−
(2 + |z|2
2− |z|2

)2
+
(2− |y|2
2 + |y|2

)2]
dx2+

+
[
−a2

(2 + |z|2
2− |z|2

)2
+ (1− a)2

(2− |y|2
2 + |y|2

)2]
dx2−

+
[
2a
(2 + |z|2
2− |z|2

)2
+ 2(1− a)

(2− |y|2
2 + |y|2

)2]
dx+dx−

+
8

(2− |z|2)2
dzdz̄ +

8

(2 + |y|2)2
dydȳ + 2dudū+ 2dvdv̄ ,

(3.61)

and the B-field becomes

B =
4iq

(2− |z|2)2
[z̄dx+ ∧ dz − zdx+ ∧ dz̄ − az̄dx− ∧ dz + azdx− ∧ dz̄]

+
8iq

(2 + |y|2)2
[ȳdx+ ∧ dy − ydx+ ∧ dȳ + (1− a)ȳdx− ∧ dy − (1− a)ydx− ∧ dȳ] ,

(3.62)

where |z| = zz̄. Inserting these expressions in the second Virasoro constraint and solving perturbatively
at the first order in 1/T one can find the quadratic lightcone Hamiltonian density

H(2) = −p(2)+ = pz p̄z+pyp̄y+pup̄u+pvp̄v+|ź|2+|ý|2+|ú|2+|v́|2+|z|2+|y|2+iq(z̄ź−z ´̄z+ȳý−y ´̄y) . (3.63)

This is the free Hamiltonian of the theory. Setting the parameter q = 0, which correspond to the pure
RR-flux, the theory describes two complex massive and two complex massless Klein-Gordon fields.
However, the q-dependent term gives a non trivial additional contribution to the dispersion relations
and also to the interaction vertices as we will see soon.
The equations of motion of the free Hamiltonian are

ż = pz , u̇ = pu ,

ṗz = −z + z′′ − 2iqz′ , ṗu = u′′ .
(3.64)

Deriving the first row of (3.64) with respect to τ and inserting the result in the second row gives

z̈ − z′′ + z + 2iqz′ = 0 , ü− u′′ = 0 . (3.65)

The equations of motion of y and v are equal to those of z and u respectively.

3.5.1 Quantisation

In order to canonically quantise the theory let us impose

[z(σ, τ), p̄z(σ
′, τ)] = [z(σ, τ), ˙̄z(σ′, τ)] = iδ(σ − σ′) , [z(σ, τ), z(σ′, τ)] = [ż(σ, τ), ż(σ′, τ)] = 0 ,

[u(σ, τ), p̄u(σ
′, τ)] = [u(σ, τ), ˙̄u(σ′, τ)] = iδ(σ − σ′) , [u(σ, τ), u(σ′, τ)] = [u̇(σ, τ), u̇(σ′, τ)] = 0 ,

(3.66)
and the same conditions holds for y and v.
Despite the presence of an additional term due to the B-field, the solutions can still be written as
plane waves with a modification of the dispersion relations.
In particular, the Anti-de Sitter and the sphere directions give rise to two complex scalar massive
particles, whose solutions are

z(σ, τ) =

∫
dp√
(2π)

[
e−i(ω(p)τ−pσ)√

2ω(p)
az(p) +

ei(ω̄(p)τ−pσ)√
2ω̄(p)

a†z̄(p)

]
,

y(σ, τ) =

∫
dp√
(2π)

[
e−i(ω(p)τ−pσ)√

2ω(p)
ay(p) +

ei(ω̄(p)τ−pσ)√
2ω̄(p)

a†ȳ(p)

]
,

(3.67)
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where a†z, a
†
z̄ (a

†
y, a

†
ȳ) and a

z, az̄ (ay, aȳ) are the usual creation and annihilation operators, that satisfy
the canonical commutation relations (CCR)

[az(p), a†z(p
′)] = [az̄(p), a†z̄(p

′)] = δ(p− p′) ,

[az(p), az(p′)] = [a†z(p), a
†
z(p

′)] = [az̄(p), az̄(p′)] = [a†z̄(p), a
†
z̄(p

′)] = 0 ,
(3.68)

and the dispersion relations are

ω(p) =
√

1− 2qp+ p2 , ω̄(p) =
√
1 + 2qp+ p2 . (3.69)

On the other hand the torus directions give rise to two complex scalar massless particle whose solutions
are

u(σ, τ) =

∫
dp√

(2π)2|p|

[
e−i(|p|τ−pσ)au(p) + ei(|p|τ−pσ)a†ū(p)

]
,

v(σ, τ) =

∫
dp√

(2π)2|p|

[
e−i(|p|τ−pσ)av(p) + ei(|p|τ−pσ)a†v̄(p)

]
,

(3.70)

where
[au(p), a†u(p

′)] = [aū(p), a†ū(p
′)] = δ(p− p′) ,

[au(p), au(p′)] = [a†u(p), a
†
u(p

′)] = [aū(p), aū(p′)] = [a†ū(p), a
†
ū(p

′)] = 0 ,
(3.71)

3.5.2 Quartic Hamiltonian

By solving the second Virasoro constraint up to the second order in 1/T one can find the quartic
Hamiltonian

H(4) = 2zz̄ź ´̄z − 2yȳý ´̄y − yȳź ´̄z + zz̄ý ´̄y − yȳpz p̄z + zz̄pyp̄y + (|z|2 − |y|2)(pup̄u + pvp̄v + |ú|2 + |v́|2)

+
iq

2
(|z|2 − |y|2)(z̄ź − z ´̄z + ȳý − y ´̄y)

− iq

2
(pz ´̄z + p̄z ź + py ´̄y + p̄yý + pu ´̄u+ p̄uú+ pv ´̄v + p̄vv́)(z̄pz − zp̄z − ȳpy + yp̄y)

+
iq

2

(
pz p̄z + pyp̄y + pup̄u + pvp̄v + |ź|2 + |ý|2 + |ú|2 + |v́|2

)
(z̄ź − z ´̄z − ȳý + y ´̄y)

+
(2a− 1)

2

(
(pz p̄z + pyp̄y + pup̄u + pvp̄v + |ź|2 + |ý|2 + |ú|2 + |v́|2)2

)
+

(2a− 1)

2

(
−(|z|2 + |y|2)2 − (pz ´̄z + p̄z ź + py ´̄y + p̄yý + pu ´̄u+ p̄uú+ pv ´̄v + p̄vv́)

2
)

+
(2a− 1)iq

2

(
(z̄ź − z ´̄z + ȳý − y ´̄y)

(
pz p̄z + pyp̄y + pup̄u + pvp̄v + |ź|2 + |ý|2 + |ú|2 + |v́|2 − (|z|2 + |y|2)

))
− (2a− 1)iq

2

(
(pz ´̄z + p̄z ź + py ´̄y + p̄yý + pu ´̄u+ p̄uú+ pv ´̄v + p̄vv́)(z̄pz − zpz̄ + ȳpy − ypȳ)

)
.

(3.72)

This Hamiltonian gives the four-legs vertices interactions. Note that the this Hamiltonian has some
symmetries, namely

• It is invariant under the U(1) symmetries given by

Xi −→ eiqiϕXi and X̄i −→ e−iqiϕX̄i ,

with Xi = z, y, u, v and X̄i = z̄, ȳ, ū, v̄, which constraints the possible scattering processes, e.g.
it prevents processes such as zz −→ yy.

• It is invariant under the exchange of massless fields

u←→ v , (3.73)
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while, under the exchanging of the massive fields the a-independent part changes its sign and
the a-dependent part remains equal, i.e.

z ←→ y =⇒

{
H(a = 1/2) −→ H(a = 1/2)

(H−H(a = 1/2)) −→ −(H−H(a = 1/2))
(3.74)

• It is invariant under σ and τ translations

σ −→ σ + const , τ −→ τ + const . (3.75)

• As already pointed out in section 3.3 it is invariant under time-reversal

τ −→ −τ (3.76)

• As pointed out in section 3.3 it is not invariant under parity transformations. This, as we
mentioned above is due to the terms proportional to the B-field, which change their sign under
parity. This means that if together with a parity transformation we also change the sign of the
B-field , (i.e. we change the sign of the overall q factor), the Hamiltonian remains invariant.
Explicitly

σ −→ −σ and q −→ −q . (3.77)

3.6 Worldsheet S matrix

Now that we have the quartic Hamiltonian, which contains the first non-trivial interaction terms, it is
possible to compute the two body tree-level S matrix. According to the integrability structure, knowing
these processes corresponds to knowing the complete S matrix because every n −→ n process can be
decomposed into 2 −→ 2 processes. In general, one can go further in the perturbative computation of
the Hamiltonian and including also the fermionic modes it is possible to compute the loop corrections
to the S matrix. Note that even if we are considering processes with only bosons in the initial and
final states, at the quantum level one has to consider also the fermionic modes because they start
to enter in the loops. However, this is not a simple task, and in addition, this procedure does not
consider the non-perturbative contributions because we are dealing with a perturbative expansion in
both ℏ and the inverse of the string tension 1/T . On the other hand, as mentioned above, exploiting
the symmetries of the model, it is possible to fix the complete S matrix up to some prefactors called
dressing factors. This approach is known as bootstrap approach. In any case, it is worth pointing out
that perturbative computations are useful in order to verify that the S matrix respects the necessary
conditions for integrability (at least at the considered perturbative level) and to check the perturbative
expansion of the bootstrapped S matrix.

Therefore, let us compute the tree-level 2 −→ 2 S matrix. Using the Hamiltonian approach, the S
matrix operator can be written as follows

S = T exp

(
−i
∫ +∞

−∞
dτ

∫ r

−r
dσHI(σ, τ)

)
, (3.78)

where T is the time-ordered product and the Hamiltonian has been split in H = Hf +HI , where Hf
and HI are the free (quadratic) and the interactive Hamiltonian respectively.
By expanding the S matrix we obtain

S = I− i
∫ +∞

−∞
dτ

∫ r

−r
dσHI(σ, τ) + ... , (3.79)

and a generic 2 −→ 2 tree-level matrix element Sklij , where i and j are the two particle species in the
initial state and k and l are the two particle species in the final state, is given by

Sklij = ⟨kl|I|ij⟩ − i
∫ +∞

−∞
dτ

∫ r

−r
dσ ⟨kl|HI(σ, τ) |ij⟩ . (3.80)
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Let us note that, since there are four particles in total (two incoming and two outgoing), the only non
vanishing tree-level matrix elements are obtained using the quartic Hamiltonian.
Therefore, defining the T matrix as

S = I+ iT , (3.81)

its tree-level components are given by

Tklij = −
1

T

∫ +∞

−∞
dτ

∫ r

−r
dσ ⟨kl|H(4)(σ, τ) |ij⟩ . (3.82)

The asymptotic initial and final states are given by the usual expressions

a†z(p)a
†
y(q) |0⟩ = |z(p)y(q)⟩ , ⟨0| az(p)ay(q) = ⟨z(p)y(q)| . (3.83)

Working in interaction picture, the field operators inside the expression (3.82) can be replaced by the
free plane wave expressions (3.67) and (3.70).
We will not go through the computation’s details, because we will see similar calculations when we
deal with the mirror theory.
Let us summarise the matrix elements, rescaling for convenience T to T→ T · T.

• Massive-massive

T |z±(p1)z±(p2)⟩ =
(
−(p1 + p2)(ω

±
1 p2 + ω±

2 p1)

2(p1 − p2)
+

(
a− 1

2

)
(ω±

1 p2 − ω
±
2 p1)

)
|z±(p1)z±(p2)⟩

T |z±(p1)y±(p2)⟩ =
(
(ω±

1 p2 + ω±
2 p1)

2
+

(
a− 1

2

)
(ω±

1 p2 − ω
±
2 p1)

)
|z±(p1)y±(p2)⟩

T |z±(p1)z∓(p2)⟩ =
(
−(p1 − p2)(ω±

1 p2 + ω∓
2 p1)

2(p1 + p2)
+

(
a− 1

2

)
(ω±

1 p2 − ω
∓
2 p1)

)
|z±(p1)z∓(p2)⟩

T |z±(p1)y∓(p2)⟩ =
(
(ω±

1 p2 + ω∓
2 p1)

2
+

(
a− 1

2

)
(ω±

1 p2 − ω
∓
2 p1)

)
|z±(p1)y∓(p2)⟩

(3.84)

• Massive-massless

T |z±(p1)U(p2)⟩ =
(
(ω±

1 p2 + |p2|p1)
2

+

(
a− 1

2

)
(ω±

1 p2 − |p2|p1)
)
|z±(p1)U(p2)⟩ (3.85)

• Massless-massless

T |U(p1)V (p2)⟩ =
(
a− 1

2

)
(|p1|p2 − |p2|p1) |U(p1)V (p2)⟩ . (3.86)

It has been used the notation z+ = z, z− = z̄, ω+ = ω, ω− = ω̄ and U, V = u, ū, v, v̄ are generic
massless particles. Furthermore, let E1 and E2 be the energies of the two incoming particles; these
matrix elements are written in the kinematic configuration v1 > v2, where v1 =

∂E1
∂p1

and v2 =
∂E2
∂p2

are
the velocities of the two particles. In fact, as we will see when we perform the explicit calculations
for the mirror theory, at a certain point one has to exploit the property of the composition of the
Dirac delta with a function, which gives an absolute value (e.g. in the massive-massive case it gives
the contribution 1/|ω±

2 (p1∓q) − ω
±
1 (p2∓q)|). For this reason, the choice of the kinematic condition

v1 > v2 (or v1 < v2) is necessary to remove the modulus in the denominators. The remaining matrix
elements can be computed considering the symmetries discussed in the previous section.
From the structure of the T matrix, as we expect since the classical theory is integrable, we can check
that the two-body S matrix respects the Yang-Baxter equation at tree-level. In particular, since we
are considering the expansion at first order in 1/T , T must satisfy the classical Yang-Baxter equation:

[T12,T13] + [T12,T23] + [T13,T23] = 0

=⇒ TαlikTnmαj + TαljkTnmiα + Tmαjk Tnliα = Tnαik Tmljα + Tnαij Tmlαk + Tαmij Tnlαk ,
(3.87)
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where we are summing over the Greek indices.
In order to see this last point, note that the only non-vanishing matrix elements are the diagonal
elements. Therefore T has the following structure

Tklij = δki δ
l
jTij , (3.88)

and the classical Yang-Baxter equation is satisfied

TαlikTnmαj + TαljkTnmiα + Tmαjk Tnliα = δmj δ
l
k δ

n
i (TikTij + TjkTij + TjkTik)

= Tnαik Tmljα + Tnαij Tmlαk + Tαmij Tnlαk .
(3.89)

It is worth noting that the matrix elements depend on the gauge parameter a. At first sight this may
seem strange, because physical observables should not depend on the gauge choice. The reason is due
to the fact that here we are considering asymptotic states with generic values of the momenta; however,
as pointed out above, the physical states have to respect the level matching condition. Furthermore,
following the discussion in [57] it is worth checking that the energy spectrum of the string does not
depend on the gauge parameter. Given an asymptotic state with momenta p1, . . . , pM , the total
worldsheet momentum (3.44) and Hamiltonian (3.37) are given by

pws =

M∑
k=1

pk , H =

M∑
k=1

ωik(pk) , (3.90)

where ωi(p) is the energy of a particle of flavour labelled by i, computed using the non-perturbative
dispersion relations. As we shall see in the next chapter, the momenta and consequently the energy
spectrum are constrained by the Bethe equations, which, after diagonalising the S matrix can be
written as

eipj l
M∏
k ̸=j

S
ikij
ijik

(pj , pk; a) = 1 , (3.91)

where S
ikij
ijik

are the component of the two-body complete (at all-loop) S matrix in the flavour space
and l = 2r is the length of the string.
The dependence of the S matrix from the gauge parameter a can be factorised as follows [58]

S
ikij
ijik

(pj , pk; a) = e
ia
(
pkωij

(pj)−pjωik
(pk)

)
S
ikij
ijik

(pj , pk) (3.92)

On the other hand, combining (3.37) and (3.38) one can find

l = 2r = aE + (1− a)J = aH + J , (3.93)

and inserting these expressions in the Bethe equations we obtain

eipj(J+aH)
M∏
k ̸=j

e
ia
(
pkωij

(pj)−pjωik
(pk)

)
S
ikij
ijik

(pj , pk) = eipj(J+aH)e−iapjH
M∏
k ̸=j

S
ikij
ijik

(pj , pk)

= eipjJ
M∏
k ̸=j

S
ikij
ijik

(pj , pk) = 1 ,

(3.94)

where we have used the level matching condition pws = 0. Therefore, the Bethe equations and then
the energy spectrum do not depend on the gauge choice as expected.

Finally, let us discuss parity and time reversal from the point of view of the S matrix.
Time reversal sends

ω −→ −ω , p =
√
ω2 − 1 + q2 + q −→ p . (3.95)
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Hence, the matrix elements gain a minus sign. However, time reversal also changes the sign of the
term inside the modulus, giving another overall minus sign. Therefore, the matrix elements do not
change. On the other hand parity transformation sends

p −→ −p , ω(p) =
√
1− 2qp+ p2 −→

√
1 + 2qp+ p2 = ω̄ , (3.96)

changing the structure of the matrix. Adding to parity the transformation q −→ −q, we have

p −→ −p , ω(p) =
√
1− 2qp+ p2 −→

√
1− 2qp+ p2 = ω , (3.97)

and the S matrix does not change.

3.7 Lagrangian

Our purpose is to discuss the mirror model obtained by this NLSM. As we shall see, in order to pass
to the mirror theory, it is convenient to move to the Lagrangian description. For simplicity, we will
consider only the field z, however, the same reasoning holds for all the other fields.
The Hamilton equation for z and z̄ are

ż =
δH
δp̄z

= pz +O(3) , ˙̄z =
δH
δpz

= p̄z + Ō(3) ,

where O(3) are the higher order contributions (of order grater and equal to three) in the fields and
their momenta. Note that there are no order two contributions because H(3) = 0. These equations
can be solved perturbatively. In particular, at the first order we have pz = ż. The second order,
as mentioned above, is zero. The third order is obtained by considering the contribution given by
δH(4)/δp̄z and substituting pz with its first order solution, that is, ż. Proceeding in this way, it is
possible to find the expression of pz as a function of the fields and their derivatives at any order. The
general solution can be written as follows

pz = ż +O(3) , p̄z = ˙̄z + Ō(3) (3.98)

Clearly now O(3) is a different function than before. However, we keep the same notation because
they are still contributions of order grater and equal to three.
Now, performing the Legiandre transform

L = pz ˙̄z + p̄z ż −H
= ˙̄z(ż +O(3)) + ż( ˙̄z + Ō(3))− (ż +O(3))( ˙̄z + Ō(3))− zz̄ − ź ´̄z − iq(z̄ź − z ´̄z)
−H(4)(pz = ż, p̄z = ˙̄z) +O(6)

= ż ˙̄z − zz̄ − ź ´̄z − iq(z̄ź − z ´̄z)−H(4)(pz = ż, p̄z = ˙̄z) +O(6) ,

(3.99)

where O(6) contains interaction terms of order grater or equal than six. Then, restoring all the fields
we find that the quadratic Lagrangian is

L(2) = ż ˙̄z + ẏ ˙̄y − zz̄ − yȳ − ź ´̄z − ý ´̄y + u̇ ˙̄u− ú´̄u+ v̇ ˙̄v − v́´̄v − iq(z̄ź − z ´̄z + ȳý − y ´̄y) . (3.100)

On the other hand, it is worth noting that the quartic Lagrangian is given by

L(4)(x, x́, ẋ) = −H(4)(x, x́, px = ẋ) , (3.101)

where x is a compact notation which indicates all the fields. Let us finally point out that this result
is no longer valid at higher orders. In fact, in general, there are non-trivial additional terms when
substituting the higher order terms of p in H.
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3.7.1 Static gauge and T-duality

We have computed the worldsheet Lagrangian of the gauge-fixed theory starting from the Hamiltonian
and performing the usual Legendre transform. Alternatively, one can directly compute the gauge-fixed
Lagrangian without passing from the Hamiltonian. In order to proceed in this direction, it is necessary
to introduce the so-called T-duality in string theory.
Let us consider a general bosonic string theory propagating in a background containing at least one
circular dimension of radious R and angle ϕ. The string can wrap an integer number of times around
this dimension. If we consider for simplicity the background R1,24×S1 (note that the total spacetime
dimension is 26 because in this example we are dealing with a pure bosonic theory), the action for the
angular part in given by [50]

S[ϕ] =
R2

4πα′

∫
d2σ∂αϕ∂

αϕ , (3.102)

where α′ is given in terms of the string tension by α′ = 2πT and the partition function is

Z =

∫
DϕeiS[ϕ] . (3.103)

The action (3.102) is invariant under the shift of the angular field ϕ −→ ϕ + λ. We can gauge this
symmetry by replacing the derivative with the covariant derivative defined as

∂αϕ −→ Dαϕ = ∂αϕ+Aα , (3.104)

where we have introduced a new field Aα, which transforms as follows

Aα −→ Aα − ∂αλ (3.105)

After gauging the shift, in order to preserve the theory, one has to add the additional term ϕ̃ ϵαβ∂αAβ
to the Lagrangian. Thus, the action results

S[ϕ, ϕ̃, Aα] =
R2

4πα′

∫
d2σDαϕD

αϕ+
1

2π

∫
d2σϕ̃ ϵαβ∂αAβ , (3.106)

where ϕ̃ is a Lagrange multiplier and its equation of motion reads ϵαβ∂αAβ = 0. This means that
Aα is a pure gauge and can be chosen to be Aα = 0, restoring the expression of the starting action.
Therefore, the partition function

Z =

∫
DϕDAαDϕ̃ e

iS[ϕ,ϕ̃,Aα] , (3.107)

describes the same quantum theory as (3.103). Then, we can integrate out the field ϕ by fixing the
gauge condition ϕ = 0 with a delta function contribution in the partition function. The result is given
by

Z =

∫
DAαDϕ̃ exp

(
iR2

4πα′

∫
d2σAαA

α +
i

2π

∫
d2σϕ̃ ϵαβ∂αAβ

)
.

Finally, integrating out Aα one can obtain

Z =

∫
Dϕ̃ exp

(
− α′

4πR2

∫
d2σ∂αϕ̃∂

αϕ̃

)
. (3.108)

This new action describes the same quantum theory of the initial one (3.102), because they have the
same partition function. The relation between the two theories is known as T-duality. From a physical
point of view, note that the duality sends R −→ α′/R. This means that in string theory, due to the
finiteness of the particles, it is not possible to distinguish between a circular dimension of radious R
and a circular dimension of radious α′/R.

Taking this reasoning in particular to the NLSM (3.1), let us denote the Lagrangian by L(∂αx
+, ∂αx

−, Xj).
As we pointed out, this is invariant under the shift x− −→ x− + λ because it is an isometry of the
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background metric. Therefore, it is possible to perform a T-duality in the x− direction. By gauging
the symmetry we obtain

L(∂αx
+, ∂αx

−, Xj) −→ L(∂αx
+, ∂αx

− +Aα, X
j) + x̃−ϵαβ∂αAβ ,

where x̃− is the Lagrangian multiplier. The equation of motion for Aτ gives

∂σx̃
− =

∂L
∂ẋ−

= p− . (3.109)

Fixing x− and integrating out Aα gives the T-dual Lagrangian. Furthermore, the equation (3.109)
shows that fixing the lightcone gauge in the first-order Lagrangian (3.24) is equivalent to fixing the
static gauge

x+ = τ , x̃− = σ (3.110)

in the dual Lagrangian. This gauge condition does not depend on the conjugate momenta; therefore,
it can be directly applied to the Lagrangian, without moving to the first-order formalism. This is an
alternative way to find the Lagrangian of the gauge-fixed theory. Examples of this way of computing
the gauge-fixed Lagrangian can be found in [59].

3.8 Alternative parameterisation

Let us make a final comment on the parameterisation chosen for the Anti-de Sitter (3.9) and the
sphere(3.15). There is another useful parameterisation often chosen in the letterature (e.g. in [60]).
Starting from the metric written in the form

ds2 =
1

1 + ρ2
dρ2 − (1 + ρ2) dt2 + ρ2 dψ2 +

1

1− r2
dr2 + (1− r2) dω2 + r2 dϕ2 , (3.111)

it is possible to rewrite it using the stereographic coordinates defined as follows

ρ =
√
(X1)2 + (X2)2 , ψ = − arctan

(
X2

X1

)
,

r =
√
(X3)2 + (X4)2 , ϕ = arctan

(
X4

X3

)
.

(3.112)

In these coordinates the metric becomes

ds2 =
1 + (X2)2

1 + ρ2
(dX1)2 +

1 + (X1)2

1 + ρ2
(dX2)2 − 2X1X2

1 + ρ2
dX1dX2 − (1 + ρ2)dt2+

1− (X4)2

1− r2
(dX3)2 +

1− (X3)2

1− r2
+

2X3X4

1− r2
dX3dX4 + (1− r2)dω2 .

(3.113)

Using these fields, it is possible to proceed in the same way as the previous parameterisation. In
particular, one can define again the lightcone coordinates (3.27) for t and ω and fix the lightcone
gauge (3.31). By solving perturbatively the two Virasoro constraints C1 = C2 = 0 in large string
tension expansion and introducing the complex fields

X1 =
Z − Z̄
i
√
2

, X2 =
Z + Z̄

−
√
2
, X3 =

Y + Ȳ

−
√
2
, X4 =

Y − Ȳ
i
√
2

,

P1 =
PZ − P̄Z
i
√
2

, P2 =
PZ + P̄Z

−
√
2

, P3 =
PY + P̄Y

−
√
2

, P4 =
PY − P̄Y
i
√
2

,

(3.114)

where Pj is the conjugate momentum of Xj , one can find the quadratic and quartic Hamiltonian

H(2+4) =ZZ̄ + Ź ´̄Z + Y Ȳ + Ý ´̄Y + PZ P̄Z + PY P̄Y +
1

2

{
−2PZ P̄ZY Ȳ + 2PY P̄Y ZZ̄ + 2Ý ´̄Y ZZ̄

− 2Ź ´̄ZY Ȳ + 4PZ P̄ZZZ̄ − 4PY P̄Y Y Ȳ + 2Y Ȳ Y Ȳ − 2ZZ̄ZZ̄ + Z2(P̄ 2
Z − ´̄Z2) + Z̄2(P 2

Z − Ź2)

+ Y 2( ´̄Y 2 − P̄ 2
Y ) + Ȳ 2(Ý 2 − P 2

Y )

}
.

(3.115)
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For simplicity we have considered the pure RR-flux case i.e. q = 0 and we have fixed the gauge
choice a = 1/2. The quadratic Hamiltonian is the same as we found with the previous parameteri-
sation. However, the quartic Hamiltonian seems to be different from the previous one. Note that we
are dealing with the same gauge-fixed theory. In fact, the NLSM, as mentioned above, is invariant
under field redefinitions (i.e. change of coordinates of the target manifold). Furthermore, in the two
parameterisations t and ω are defined in the same way, and for this reason the gauge fixing conditions
x+ = τ and p− = 1 are the same in both parameterisations. This means that the two Hamiltonians
describe the same theory, but the fields are named in a different way. Due to the S matrix equivalent
theorem we expect that if we compute the S matrix using (3.115) we should find the same result as
before. In order to check this fact, let us remember that in interaction picture the fields respect the
free equation of motions that in the q = 0 case are

Z̈ − Z ′′ + Z = 0 , PZ = Ż . (3.116)

Exploiting these equations one can find the following equalities

4PY P̄Y Y Ȳ = 4Ẏ ˙̄Y Y Ȳ = 4Y ′Ȳ ′Y Ȳ + 2Y Ȳ Y Ȳ − Y 2( ˙̄Y 2 − ´̄Y 2)− Ȳ 2(Ẏ 2 − Ý 2) + total derivative ,

4PZ P̄ZZZ̄ = 4Ż ˙̄ZZZ̄ = 4Z ′Z̄ ′ZZ̄ + 2ZZ̄ZZ̄ − Z2( ˙̄Z2 − ´̄Z2)− Z̄2(Ż2 − Ź2) + total derivative .
(3.117)

Therefore, up to a total derivative the Hamiltonian can be recast in the simpler form

H(2+4) = ZZ̄+ Ź ´̄Z+Y Ȳ + Ý ´̄Y +PZ P̄Z +PY P̄Y −2Ź ´̄ZY Ȳ +2Ý ´̄Y ZZ̄+2Ź ´̄ZZZ̄−2Ý ´̄Y Y Ȳ , (3.118)

that is exactly the same expression found for the previous parameterisation.
Finally, one can find that the field redefinitions that transform one description to the other one are
the following

X1 =
4z1

4− z21 − z22
, X2 = − 4z2

4− z21 − z22
,

X3 =
4y1

4 + y21 + y22
, X4 =

4y2
4 + y21 + y22

(3.119)

and the complex fields are related by

Z =
2i

(2− |z|2)
z̄ , Y = − 2

(2 + |y|2)
ȳ . (3.120)



Chapter 4

Mirror Theory

In the previous chapter we discussed the NLSM on AdS3×S3×T 4. As we have seen, this is a (1+1)-
dimensional quantum field theory defined on an infinite cylinder of circumference 2r = P−, fixed after
the gauge-fixing. An important task is to compute the spectrum of the model and in particular the
ground-state energy (GSE). For a quantum integrable theory, the energy spectrum is given by solving
the Bethe equations. However, due to some finite-size effects, this approach does not directly work
for the gauge-fixed NLSM. On the other hand, for a quantum integrable theory defined on an infinite
line, the thermodynamic Bethe ansatz (TBA) equations allow to find exactly the free energy at finite
temperature. This result can be used to find the GSE of the finite-size NLSM. In fact, by performing
a double Wick rotation on a theory defined on a circle of length L and at temperature T , one obtains
the so-called mirror theory defined on a circle of length L̃ = 1/T and at temperature T̃ = 1/L. It has
been shown [35] that the free energy of the mirror model computed for L̃ −→∞ at finite T̃ is related
to the ground state energy at T −→ 0 and finite L of the starting theory; therefore, this can be found
using the TBA approach.
In this chapter we will discuss the thermodynamic Bethe ansatz and how it can be implemented in
order to find the ground state energy of a field theory like the gauge-fixed NLSM. Furthermore, we will
consider the mirror AdS3 × S3 × T 4 theory. Since this is necessary to construct the energy spectrum
of the corresponding gauge-fixed NLSM, it is worth studying the behaviour of this theory especially
with respect to the integrability. In particular, in this chapter we compute the tree-level S matrix of
the mirror theory, and we will go further with other perturbative investigations in the next chapter.

4.1 Thermodynamic Bethe Ansatz

The Bethe ansatz equations (BAE) were first discovered by Bethe in [14], while solving the Heisenberg
model, and together with their thermodynamic version, the thermodynamic Bethe ansatz equations,
are powerful tools that allow to find the spectrum of quantum integrable systems. We will discuss
these tools considering two quantum mechanical models, namely the Lieb-Liniger model, which is the
first model in which the TBA approach has been introduced [15] and the XXX spin chain. In this
section, we will mainly follow [41], [61] and [62].

4.1.1 Lieb-Liniger model

Let us consider a gas of N bosonic particles interacting via a delta function potential, defined on a
circle of length L. Following [63] the Hamiltonian of the model is

H =

N∑
j=1

−∂2xj + 2c
∑
j1<j2

δ(xj1 − xj2) , (4.1)
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where the interaction is considered repulsive, i.e. c > 0.
The Schrödinger equation reads− N∑

j=1

∂2xj + 2c
∑
j1<j2

δ(xj1 − xj2)

Ψ(x1, x2, ..., xN ) = EΨ(x1, x2, ..., xN ) . (4.2)

Because of the delta function, this is equivalent to free particles

−
N∑
j=1

∂2xjΨ(x1, x2, ..., xN ) = EΨ(x1, x2, ..., xN ) , (4.3)

with the boundary conditions

(∂xj − ∂xk)Ψ|xj=xk+0+ − (∂xj − ∂xk)Ψ|xj=xk+0− = 2cΨ . (4.4)

Therefore, due to the contact term, the wave functions are continuous but not derivable where two
particles exchange their positions. Let us now restrict the problem to the region

D1 = x1 < x2 < ... < xN . (4.5)

We are dealing with identical bosonic particles, therefore it is possible to find the solutions in D1 and
then recover the whole domain by symmetrysing the wave function. Restricting the domain to this
region and exploiting the Bose symmetrisation in the LHS of (4.4), the boundary conditions become

(∂xj+1 − ∂xj − c)|xj+1=xjΨ(x1, x2, ..., xN ) = 0 . (4.6)

Let us introduce the so-called Bethe ansatz for the wave function

Ψ(x1, x2, ..., xN ) =
∑
P∈πN

Ap e
i
∑N

j=1 kPj
xj , (4.7)

where {k}j is a set of parameters which need to be determined by imposing that the wave function
solves the Schrödinger equation (4.2) together with the boundary conditions of the problem and πN
is the set of all the permutations of N elements. Inserting this ansatz in (4.6) one can find that the
wave function in the region D1 is given by

ΨD1(x1, x2, ..., xN ) =
∑
P∈πN

(−1)[P ]e
i
∑N

j=1 kPj
xj+

i
2

∑
N≥j1>j2≥1 ϕ(kPj1

−kPj2
)
, (4.8)

where [P ] is the parity of the permutation P and ϕ is given by

eiϕ(ki−kj) =
c+ i(ki − kj)
c− i(ki − kj)

. (4.9)

Moreover, the expression of the total energy and momentum are respectively

E =

N∑
j=1

k2j , P =

N∑
j=1

kj . (4.10)

At this point it is possible to find the complete wave function defined in the whole domain by sym-
metrising (4.8). Note that exchanging two particles gives an overall minus sign to the wave function
because of the term (−1)[P ]. Furthermore, according to (4.9), ϕ(ki − kj) is antisymmetric under the
exchange of ki and kj . Therefore, the wave function takes the form

Ψ(x1, x2, ..., xN ) =
∏

N≥j1>j2≥1

sgn(xj1−xj2)
∑
P∈πN

(−1)[P ]e
i
∑N

j=1 kPj
xj+

i
2

∑
N≥j1>j2≥1 sgn(xj1−xj2 )ϕ(kPj1

−kPj2
)
.

(4.11)
Note that the wave functions are antisymmetric under the exchange of the momenta and then they
vanish if at least two of them are equals.



4.1. THERMODYNAMIC BETHE ANSATZ 47

Bethe equations

The parameters ki are not free, but they are fixed by the periodicity conditions. In fact, the theory is
defined on a circle of length L and the wave functions must obey the relations

Ψ(x1, x2, ..., xj−1, xj + L, xj+1, ..., xN ) = Ψ(x1, x2, ..., xj−1, xj , xj+1, ..., xN ) . (4.12)

Imposing these relations one can find that the set {kj} must satisfy

eikjL = (−1)N−1e−i
∑N

i̸=j ϕ(kj−ki) =
N∏
i ̸=j

kj − ki + ic

kj − ki − ic
. (4.13)

These are the Bethe equations for the Bose gas, first found by Lieb and Liniger in [63].
Let us consider for simplicity the case N = 2, the wave function in D1 = x1 < x2 is

ΨD1(x1, x2) = eix1k1+ik2x2−
i
2
ϕ(k1−k2) − eix2k1+ik2x1+

i
2
ϕ(k1−k2) . (4.14)

This is composed by two contributions, namely an incoming and an outgoing state and the S matrix
which connects these two states turns out1

S(k1, k2) = S(k1 − k2) = −eiϕ(k1−k2) =
k1 − k2 − ic
k1 − k2 + ic

. (4.15)

Therefore, by generalising to N particle the Bethe equations can be written as

eikjL
N∏
i ̸=j

S(kj − ki) = 1 . (4.16)

It is worth noting that like the factorised scattering case in QFT, the n −→ n scattering is factorised
into the product of two-body processes. Furthermore, this is an important writing because we will
find again this expression when we discuss field theories.
Let us take the logarithm of the Bethe equations (4.13), we obtain

kj +
1

L

∑
k

ϕ(kj − kk) =
2π

L
Jj , (4.17)

where

Jj ∈

{
Z+ 1

2 , for N even

Z, for N odd
. (4.18)

Note that now the sum includes also i = j. This is possible because as mentioned above, ϕ is
antisymmetric in the exchange of the momenta, and then it goes to zero when the two momenta are
equal.
On the other hand, taking the logarithm of the expression of the S matrix as a function of ϕ (4.15)
gives

−i logS(kj − kk) = π + ϕ(kj − kk) . (4.19)

Hence, the logarithm form of the Bethe equations can be written as follows

kj −
i

L

∑
k

logS(kj − kk) =
2π

L
Ij , (4.20)

where Ij = Jj + N/2 and then Ij ∈ Z + 1/2. Alternatively, one can directly take the logarithm on
(4.16)

kj −
i

L

∑
k ̸=j

logS(kj − kk) =
2π

L
Ĩj , (4.21)

where now the sum is over all the indices except i and Ĩj ∈ Z.
Let us now discuss some useful properties of the solutions of the Bethe equations (4.17)

1Now that we know the expression of the S matrix we can write the wavefunction in an alternative form. Multiplying

by e
i
2
ϕ(k1−k2) we obtain ψD1(x1, x2) = eix1k1+ix2k2 + S(k1 − k2)e

ix2k1+ix1k2 . This is the same expression that we will
find when we discuss the QFT Bethe ansatz.



48 CHAPTER 4. MIRROR THEORY

• In the case at hand (c > 0) all the {kj} are real.

• For every set of {Ij} such that Ii ̸= Ij , ∀ i ̸= j there is a unique set of {kj} such that
ki ̸= kj , ∀ i ̸= j that is a solution of the corresponding Bethe equations. In fact, following [15]
we can introduce the Yang-Yang functional defined as follows

B({k}) = 1

2
L

N∑
j=1

k2j +
1

2

∑
j,l

Φ(kj − kl)− 2π

N∑
j=1

Ijkj , (4.22)

where

Φ(k) =

∫ k

0
dk′ϕ(k′) . (4.23)

Note that Φ(k) is an even function. The extremum conditions of the B functional are exactly
the Bethe equations (4.17). Furthermore, the Hessian

∂i∂jB = δij

(
L+

N∑
l=1

2c

(ki − kl)2 + c2)

)
− 2c

(ki − kj)2 + c2)
, (4.24)

is definite positive, and hence the minimum is a global minimum, showing that the solutions are
unique. This means that {Ij}, also referred to as the quantum numbers, completely describe
the set of eigenfunctions.

• Ij > Ii ⇒ kj > ki. In fact, the RHS of (4.17) is obviously monotonic increasing in the quantum
numbers. On the other hand, the LHS is monotonic increasing in the momenta, since

ϕ(k)′ =
2c

c2 + k2
> 0 . (4.25)

Thermodynamic

Following the discussion of Yang and Yang [15], let us analyze the thermodynamic of the Bose gas
with a delta function interaction going in the thermodynamic limit

L −→∞ , N −→∞ , (4.26)

where the density N/L is kept fixed. Note that, according to the BAE, the difference between two
consecutive momenta kj+1 − kj depends on the momenta themselves, but is always of the order 1/L.
This means that in the thermodynamic limit we are no longer dealing with a lattice discrete theory,
but we are dealing with a theory defined on the whole real line.
First, let us rewrite the BAE in the following way

kj +
1

iL

∑
l

logS(kj − kl) = h(kj) , (4.27)

where h(kj) = 2πIj/L. This is possible because, as mentioned above, the map between the momenta
and the quantum numbers is a one-to-one map. Given the set of all possible quantum numbers {Ij},
in a given configuration, some of them will be occupied by a particle and some of them will be empty.
The latter are called holes. It is useful to define the particle and hole densities ρ and ρh in such a way
that

Lρdk = # of particles in dk

Lρh dk = # of holes in dk .
(4.28)

The sum of these two densities gives the total density of the quantum numbers and therefore as a
function of h = 2πI/L it turns out

ρ(h) + ρh(h) = ρt(h) =
1

2π
. (4.29)
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Thus, as a function of the k’s

ρ(k) + ρh(k) = ρt(k) =
1

2π

dh

dk
. (4.30)

Taking the thermodynamic limit of (4.27) the sum becomes an integral weighted by the particle
densities and the momenta become continuous variables kj → p

p+
1

i

∫ +∞

−∞
dp′ logS(p− p′)ρ(p′) = h(p) . (4.31)

Deriving with respect to p one obtains

1 +
1

i

∫ +∞

−∞
dp′

d

dp
logS(p− p′)ρ(p′) = dh

dp
(p) = 2π(ρ(p) + ρh(p)) . (4.32)

This result can be recast in the compact form

ρ(p) + ρh(p) =
1

2π
+ C ∗ ρ(p) , (4.33)

where

C(p) = 1

2πi

d

dp
logS(p) =

1

π

c

c2 + p2
, (4.34)

is known as Cauchy kernel and the symbol ∗ defines the convolution product

(f ∗ g)(p) =
∫ +∞

−∞
dp′ f(p− p′)g(p′) . (4.35)

The energy and the particle density are given by

e =
E

L
=

∫ +∞

−∞
dp p2ρ(p) , n =

N

L
=

∫ +∞

−∞
dp ρ(p) . (4.36)

In the thermodynamic limit the particle and hole densities full characterise the Bethe states and they
are constrained by the equation (4.33). For example, if we want to find the ground state of the model,
according to the expression of the energy (4.36), the particle density has to be different from zero only
in a symmetric interval around zero, namely −pf ≤ p ≤ pf , where pf is called the Fermi momentum
in analogy with the Fermi gas. On the other hand, the hole density has to be zero in this interval and
different from zero outside the interval. In this way, by restricting (4.33) in the region −pf ≤ p ≤ pf
and by fixing the total density n, the particle density in the ground state is obtained by solving the
two equations

ρ(p) =
1

2π
+

∫ +pf

−pf
dp′ C(p− p′)ρ(p′) , n =

∫ +pf

−pf
dp′ ρ(p′) . (4.37)

Let us point out that a general state given by ρ and ρh has an entropy. In fact, there are different
configurations that lead to a specific state due to the fact that the density functions tell us how many
particles (holes) there are in an interval, but they do not give any information about which specific slots
(quantum numbers) are occupied in that interval. In particular, before performing the thermodynamic
limit, the number of available states in an interval ∆kj is Lρt(kj)∆kj , while the number of occupied
and unoccupied states are Lρ(kj)∆kj and Lρh(kj)∆kj , respectively. Finally, the number of all possible
configurations is the product of the number of the configurations in each single interval

# =
∏
j

(Lρt(kj)∆kj)!

(Lρ(kj)∆kj)!(Lρh(kj)∆kj)!
. (4.38)

The entropy is the logarithm of the number of configurations. Thus, taking the logarithm of (4.38) one
can find the expression of the entropy. In particular, in the thermodynamic limit, using the Stirling’s
approximation i.e. log n! = n log n−n+1/2 log(2πn)+O(1/n) the expression of the entropy becomes

S = L

∫ +∞

−∞
dp [(ρ(p) + ρh(p)) log(ρ(p) + ρh(p))− ρ(p) log ρ(p)− ρh(p) log ρh(p)] . (4.39)
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Now that we have the expression of the entropy (4.39), the energy and the number of particles (4.36)
it is possible to write the thermodynamic partition function in the grand canonical ensemble

Zgc =
∑
n

⟨ψn| e−(H−µN)/T |ψn⟩ =
∫
D[ρ, ρh] e

−G[ρ,ρh]/T , (4.40)

where µ is the chemical potential, |ψn⟩ is a base of eigenstates and G is given by

G[ρ, ρh] = E[ρ, ρh]− TS[ρ, ρh]− µN [ρ, ρh]

= L

∫ +∞

−∞
dp [ρ(p)(p2 − µ− T log(ρ(p) + ρh(p) + T log ρ(p))

+ ρh(p)(T log ρh(p)− T log(ρ(p) + ρh(p)))] ,

(4.41)

It is worth noting that the integral in the partition function is restricted to the particle and hole
densities which respect the Bethe equations (4.33).
In the thermodynamic limit, the overall L in the G expression goes to infinity, and then it is possible
to evaluate the partition function using the saddle-point approximation.
The variation is

δG = L

∫ +∞

−∞
[δρ(p2 − µ− T log(1 + ρh/ρ))− δρh(T log(1 + ρ/ρh))] . (4.42)

However, as mentioned above ρ and ρh are not two independent fields. They must obey

δρ(p) + δρh(p) = C ∗ δρ(p) . (4.43)

Inserting (4.43) in (4.42), and defining
ρh
ρ

:= eϵ/T , (4.44)

the extremum condition δG = 0 is given by the equation

ϵ(p) = p2 − µ− C ∗ T log(1 + e−ϵ(p)/T ) . (4.45)

This is the equilibrium condition of the system and is also known as the thermodynamic Bethe ansatz
equation.
Inserting the solutions of the extremum condition in the partition function one can find

Zgc = e−G/T , (4.46)

where G is the grand canonical free energy and is given by

G = −LT
2π

∫ +∞

−∞
dp log(1 + e−ϵ/T ) . (4.47)

This shows that once the TBA are solved all the thermodynamic is solved, because the free energy
and then the partition function are known. For instance it is possible to compute the pressure of the
gas

P = −
(
∂G
∂L

)
=

T

2π

∫ +∞

−∞
dp log(1 + e−ϵ/T ) . (4.48)

4.1.2 XXX Spin chain

For the sake of completeness, let us briefly discuss the Heisenberg model, first introduced in [64],
dealing with ferromagnetism. This is not only the first model ever solved by the Bethe ansatz, but it
also allows us to generalise the previous discussion to models containing bound states.
The Hamiltonian is

H = −J
N∑
j=1

(
S⃗j+1 · S⃗j −

1

4

)
. (4.49)
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This describes a one dimensional lattice of N spins S⃗j , interacting with the nearest-neighbor. If the
coupling constant is positive, i.e. J > 0 the energy is minimised when all the spins are aligned along
the same direction and, therefore, it describes a ferromagnet, while if J < 0 the energy is minimised
when the neighbour spins are anti-parallel, describing an antiferromagnet. We are considering spin-1/2
particles, hence the total Hilbert space is

H =

N⊗
i=1

C2 . (4.50)

Furthermore, let us consider a closed chain with the condition S⃗N+1 = S⃗1.
The Hamiltonian commutes with the projection of the total spin along any axis, in fact, being

S⃗tot =
N∑
i=1

S⃗i , (4.51)

it holds

[H,Sztot] = [H,Sytot] = [H,Sxtot] = 0 . (4.52)

This means that it can be chosen a common base of eigenstates for both H and one of the projections
of the total spin, for instance Sztot.
Let |↑⟩j and |↓⟩j be, respectively, the up and down spin states on the j-th lattice site, defined in such
a way that Szj |↑⟩j = 1/2 |↑⟩j and Szj |↓⟩j = −1/2 |↓⟩j . We can define the ferromagnetic wave function
with all spins up by

|0⟩ =
N⊗
i=1

|↑⟩i . (4.53)

This state can be used to create all the other eigenstates of the Sztot operator. In fact, given the ladder
operators,

S±
j = Sxj ± iS

y
j , (4.54)

which act on the up and down states in the following way

S+ |↓⟩ = |↑⟩ , S+ |↑⟩ = 0 , S− |↓⟩ = 0 , S− |↑⟩ = |↓⟩ , (4.55)

one can define a generic state with M downspins as

ΨM =
∑

1≤j1<j2<...<jM≤N
ψ(j1, j2, ..., jM ) |j1, j2, ..., jM ⟩ , (4.56)

where

|j1, j2, ..., jM ⟩ = S−
j1
, ..., S−

jM
|0⟩ . (4.57)

The total magnetisation of such a state is (N/2−M).
The Bethe ansatz for the spin chain is

ψ(j1, j2, ..., jM ) =
∑
P∈πN

Ap e
i
∑N

i=1 kPi
ji , (4.58)

and solving the Schrödinger equation the wave functions turn out

Ψ(j1, j2, ..., jM ) =
∏

M≥a>b≥1

sgn(ja − jb)
∑
P∈πM

(−1)[P ]ei
∑M

a=1 kPaja+
i
2

∑
M≥a>b≥1 sgn(ja−jb)ϕ(kPa ,kPb

) ,

(4.59)
where

ϕ(ka, kb) = i log

(
cos ka+kb2 − e

i
2
(ka−kb)

cos ka+kb2 − e−
i
2
(ka−kb)

)
. (4.60)
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Defining the rapidities λ in such a way that

k(λ) = i log

(
1
2 + iλ
1
2 − iλ

)
+ π , (4.61)

the phase ϕ(ka, kb) can be written as

ϕ(ka, kb) = θ(λa − λb) = i log

(
i+ λa − λb
i− λa + λb

)
, (4.62)

and the energy of the system is given by

E = J
M∑
a=1

2

4λ2a + 1
. (4.63)

Bethe equations

In the same way as the Bose gas, imposing the periodicity condition on the lattice wave functions

ψ(j1, j2, ..., ja−1, ja +N, ja+1, ..., jM ) = ψ(j1, j2, ..., ja−1, ja, ja+1, ..., jN ) , (4.64)

one obtains the Bethe equations

eikaN = (−1)M−1e−i
∑M

b ̸=a ϕ(ka,kb) , (4.65)

that in terms of the rapidities (4.61) can be written as[
λa +

i
2

λa − i
2

]N
=

M∏
b ̸=a

λa − λb + i

λa − λb − i
. (4.66)

Following the same argument of the Bose gas case, also in this case the S matrix is factorised in 2 −→ 2
scatterings, which one is given by

S(λa − λb) = −eiϕ(k(λa),k(λb)) =
λa − λb − i
λa − λb + i

, (4.67)

and the Bethe equations can be rewritten as

eikaN
M∏
b̸=a

S(λa − λb) = 1 or eikaN
M∏
b=1

S(λa − λb) = −1 . (4.68)

Where in order to pass from the first to the second expression it has been used the fact that S(λa−λa) =
−1.

String configurations

In the Heisenberg model, the momenta are not constrained to be real as in the repulsive Bose gas, but
they can assume complex values. Let us consider a complex momentum ka = k + iη with a positive
imaginary part. In the limit N −→∞ the LHS of the Bethe equation goes

eikaN = eikN−ηN −→ 0 . (4.69)

Therefore, also the RHS of (4.66) has to vanish once we take the limit. This means that there must
exist an other rapidity λb such that in this limit goes as

λb = λa + i . (4.70)
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Note that imposing that the RHS of the Bethe equation goes to zero is equivalent to requiring that
the S matrix has a pole. In particular, the condition (4.70) provides a pole for the matrix S(λa− λb).
Now, let us consider the Bethe equation for λb. If kb has a positive imaginary part, the LHS goes
to zero. On the other hand, the condition (4.70) does not make vanishing the RHS of this equation
(from another point of view, this condition does not provide a pole for the matrix S(λb−λa)). Hence,
there must exist another rapidity λc which satisfies the condition

λc = λb + i⇒ λc = λa + 2i . (4.71)

Conversely, if we consider a momentum with negative imaginary part, we have to impose that the
S matrix vanishes when N −→ ∞. However, we can take these solutions into account by using the
fact that the Bethe equations are invariant under complex conjugation. Following this procedure, it
is possible to build states with an arbitrary large number of rapidities that are separated from each
other by a multiple of i and which are symmetrically distributed around the real axis. These are called
string configurations. The l-th set of rapidities of a string composed of n down-spins can be written
in the compact form

λn,al = λnl + i/2(n+ 1− 2a) , a = 1, 2, ..., n , (4.72)

where λln ∈ R is the centre of mass of the string. These strings have length n and we will call them
n-string.
It is worth pointing out that despite the fact that the repulsive Bose gas does not have string solutions
because all the momenta are real, the attractive gas instead shows this type of configurations. This is
intuitive from a physical point of view because, as we will see, string solutions correspond to bound
states, and we expect such states in a model with an attractive potential.
We have shown that in the limit N −→ ∞ the Bethe solution can be written as strings of arbitrary
length. Let Mn be the number of n-strings; then the total number of down spins is given by

M =
∞∑
n=1

nMn . (4.73)

It is possible to show that the string configurations are bound states. In fact, let us consider, for
simplicity, the case M = 2; the Bethe wavefunction is

ψ(ja, jb) = eijaka+ijbkb−
i
2
ϕ(ka,kb) − eijbka+ijakb+

i
2
ϕ(ka,kb) , (4.74)

where in the limit N −→ ∞ we have the string configuration λa = λ − i/2 and λb = λ + i/2. The
phase shift becomes

ϕ(ka, kb) = i log

(
i+ λ− λ− i
i− λ+ λ+ i

)
−→ −i · ∞ . (4.75)

Therefore, the the second term of the wave function dominates

ψ(ja, jb) ≈ −const · eik(ja+jb)−η(ja−jb) , (4.76)

where, since according to (4.61) ka = k∗b , it has been used the notation ka = k + iη and kb = k − iη.
The wave function is then composed by a term which describes the dynamic of the centre of mass
of the two spins and a term that is exponentially suppressed in the distance between the two spins,
representing the bounding between them.

Inserting the strings configurations in the Bethe equation (4.68) one obtain

eikaN
∞∏
n=1

Mn∏
l=1

n∏
b=1

S(λa − λn,bl ) = −1 , (4.77)

where, the product is constrained by the total downspin configuration (4.73).
By taking the product of (4.77) over all rapidities within the string to which ka belongs, the above
set of equations can be simplified as follows(

−
λmj + im2
λmj − i

m
2

)N ∞∏
n=1

Mn∏
l=1

m∏
a=1

n∏
b=1

S(λm,aj − λn,bl ) = (−1)m . (4.78)
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The first term, written using the momenta instead of the rapidities is(
−
λmj + im2
λmj − i

m
2

)N
= eiN

∑m
a=1 k(λ

m,a
j ) = eik

m
j N , (4.79)

where kmj is the total momentum of the string. Thus,the Bethe equations for strings is

eik
m
j N

∞∏
n=1

Mn∏
l=1

m∏
a=1

n∏
b=1

S(λm,aj − λn,bl ) = (−1)m . (4.80)

In the limit N −→ ∞ the strings configurations are exactly solutions of the Bethe equations. It is
worth noting that this limit is different from the thermodynamic limit in which also the number of
downspinsM goes to infinity and their ratio N/M remains fixed. Indeed, in the thermodynamic limit,
there are solutions that deviates from the string configurations. However, the string hypothesis, first
made by Bethe, assumes that the thermodynamic of the system (i.e. the free energy) is completely
described in terms of only strings solutions.

Thermodynamic

The thermodynamic of the spin chain can be studied following the same procedure as for the Bose gas
and also including the string configurations.
First, let us take the logarithm of the Bethe equation (4.80)

kmj −
1

N

∞∑
n=1

Mn∑
l=1

Θmn(λ
m
j − λnl ) =

2π

N
Imj , (4.81)

where

Θmn(λ
m
j − λnl ) = i

m∑
a=1

n∑
b=1

logS(λm,aj − λn,bl ) . (4.82)

Note that, as one can check performing the explicit computation, the sum over all the spins along
a string gives a function θmn(λ

m
j − λnl ) which depends only on the centre of mass of the strings, as

we have already seen in the LHS of (4.78). As in the Bose gas case, let us take the thermodynamic
limit. First, we introduce the particle and hole densities ρn and ρhn. In particular, in this case ρn is
the density of n-strings present in the configuration, while ρhn is the density of n-string holes. Deriving
(4.81) with respect to the rapidity and following the same procedure as before, we obtain

an(λ)−
∞∑
m=1

Knm ∗ ρm(λ) = ρn(λ) + ρhn(λ) , (4.83)

where

an(λ) =
1

2π

d

dλ
knj (λ) =

1

2π

n

λ2 + n2/4
(4.84)

and

Knm =
1

2π

d

dλ
Θnm(λ) . (4.85)

Note that for convenience in (4.83) we have exchanged the labels n and m with respect to the previous
notation. Furthermore, since we consider the thermodynamic limit, the centre of mass of the string λmj
is replaced by the continuous variable λ. In order to compute the free energy, we need the expression
of the entropy, the energy, and the number of excitations (in this case downspins).
Following the same discussion of the Lieb-Liniger model, the entropy results

S = N
∞∑
n=1

∫ +∞

−∞
dλ [(ρn(λ) + ρhn(λ)) log(ρn(λ) + ρhn(λ))− ρn(λ) log ρn(λ)− ρhn(λ) log ρhn(λ)] . (4.86)
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The energy is given by

e =
E

N
=
J

N

∞∑
n=1

Mn∑
l=1

n∑
a=1

2

4(λn,al )2 + 1
=
J

N
π

∞∑
n=1

Mn∑
l=1

an(λ
n
l ) = −Jπ

∞∑
n=1

∫ +∞

−∞
dλ an(λ)ρn(λ) . (4.87)

Finally the number of excitations is

M =
∞∑
n=1

∫ +∞

−∞
dλnρn(λ) . (4.88)

Now it is possible to write the the grand canonical free energy. In the thermodynamic limit, as the
Bose gas, the overall system size factor N allows the partition function to be evaluated using the
saddle-point method. Pointing out that, according to the Bethe equation (4.83), the variation of the
particles and of the holes densities are connected by

∞∑
m=1

Knm ∗ δρm + δρn + δρhn = 0 , (4.89)

then the extremum condition δG = 0 gives the Thermodynamic Bethe ansatz equations for the XXX
spin chain model

log Yn =
Jπ

T
an +

∞∑
m=1

Knm ∗ log
(
1 +

1

Y m

)
. (4.90)

Where in the equation above we defined

Yn(λ) :=
ρhn
ρn

(λ) (4.91)

and

En := Jπan(λ) (4.92)

is the energy per unit of system size of an n-string centered around the rapidity λ. Note that the
result (4.90) is the generalisation of the one found for the Lieb-Liniger model. In fact, in that case
there were only one-dimensional strings, the system size was L and the energy per unit of L was p2−µ
.
Furthermore, note that, plugging the expression of δρhn as a function of δρn inside the expression of
the variation of the free energy, in order to isolate the variation δρn, the convolution passes from the
terms Kmn and δρm to Kmn and T log(1 + ρn/ρ

h
n). The correct way to do that would be using the

convolution from the right, namely log(1 + ρn/ρ
h
n)∗̃Knm, defined as follows

f ∗̃g =

∫ +∞

−∞
dλ′ f(λ′)g(λ′ − λ) . (4.93)

However, both in the Bose gas and in the spin chain case the kernels are even functions and therefore
(4.93) is equivalent to the standard convolution.
Finally, using the equilibrium condition, the grand canonical free energy is

G = −TN
∞∑
n=1

∫ ∞

−∞
dλ an(λ) log

(
1 +

1

Yn
(λ)

)
. (4.94)

Therefore, solving the TBA equations (4.90) iteratively it is possible to find the Yn functions. By
plugging them into the free energy, the thermodynamic of the system is solved. This approach can be
generalised to all models supporting the string hypothesis.



56 CHAPTER 4. MIRROR THEORY

4.2 Bethe-Yang equations in field theories

In the previous section we have discussed the TBA for quantum mechanical models; however, we
are interested in generalising that description to QFT, in the context of factorised scattering theory.
Following [49], let us consider the asymptotic state

|Ψ(p1, ..., pM )⟩ =
∑
π∈SM

χ(pπ1 , ..., pπM ) |pπ1 , ..., pπM ⟩ , (4.95)

Note that these states are the analogous of the Bethe ansatz states that we have considered in the
spin-chain case. In fact, these act as eigenstates of the Hamiltonian since knowing the asymptotic
momenta of the particles and their dispersion relations allows to find the energy of the state.
Furthermore, let us emphasise that we are considering asymptotic states. This is due to the fact that
in QFT we deal with an asymptotic S matrix, computed when particles are infinitely distant from
each other in such a way that they do not interact. This means that in string theory, this treatment
is valid in the decompactification limit, in which the worldsheet becomes an infinite plane and the
asymptotic states can be defined.
In a two dimensional integrable theory, the asymptotic states can be written using the ZF algebra
operators

|p1, ..., pM ⟩ =
∫
σ1≪...≪σM

dσ1 . . . dσM ei(p1σ1+···+pMσM )A†(σ1) . . . A
†(σM ) |0⟩ , (4.96)

where we are considering the region σ1 ≪ . . .≪ σM . This is a configuration with a well-defined total
momenta and it is known as magnon or spin wave. The multimagnon state (4.95) is composed by
different magnons and we can relate them by recalling the ZF algebra (1.74)

A†
i (p1)A

†
j(p2) = A†

l (p2)A
†
k(p1)R

kl
ij (p1, p2) , (4.97)

where for bosons Rklij = Sklij is the S matrix. For simplicity in this discussion we will consider only one
type of excitantion and we will drop the indices.
In this way, considering for instance two particles, we can write

|Ψ(p1, p2)⟩ = χ(p1, p2) |p1, p2⟩+ χ(p2, p1) |p2, p1⟩
= χ(p1, p2)S(p1, p2) |p2, p1⟩+ χ(p2, p1)S(p2, p1) |p1, p2⟩ ,

(4.98)

from which follows

χ(p2, p1) = S(p1, p2)χ(p1, p2) . (4.99)

Therefore, the magnons with two contiguous indices permuted are related by

χ(p1, ..., pj+1, pj , ..., pM ) = S(pj , pj+1)χ(p1, ..., pj , pj+1, ..., pM ) . (4.100)

In factorised scattering theory the S matrix is decomposed in the product of two-to-two scattering
processes. Thus, the multimagnon state can be written in the following way

|Ψ(p1, ..., pM )⟩ =
∑
π∈SM

∏
(j,k)∈π

S(pj , pk) |pπ1 , ..., pπM ⟩ , (4.101)

where it has been set χ(p1, ..., pM ) = 1.
Let us stress that this has the same expression as the Bethe wavefunction found in both the Lieb-
Liniber and the Heisenberg models; i.e. it is a sum of free waves weighted by the relative S matrices.
So far, as mentioned above, we have considered the decompactification limit of the string. In order to
try to recover the finite-size theory, one can mimic what we did in the quantum mechanic systems and
impose the periodic conditions. Let us again consider for simplicity the two-particle case. Let l = 2r
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be the length of the string and consider the shift σ1 −→ σ1 + l. In position space, the periodicity
condition reads 2

|Ψ(σ1, σ2)⟩ = |Ψ(σ2, σ1 + l)⟩ , (4.102)

where

|Ψ(σ1, σ2)⟩ =
∫
dp1 dp2 e

−ip1σ1−ip2σ2 (|p1, p2⟩+ S(p1, p2) |p2, p1⟩) . (4.103)

The condition (4.102) tells that the physics of the system does not change if we consider the particle
with label 1 as the leftmost one or the rightmost one because the worldsheet space is a circle. Using
(4.103) and (4.102) the explicit condition is∫
dp1 dp2 e

−ip1σ1−ip2σ2 (|p1, p2⟩+ S(p1, p2) |p2, p1⟩) =
∫
dp2 dp1 e

−ip2σ2−ip1(σ1+l) (|p2, p1⟩+ S(p2, p1) |p1, p2⟩) ,
(4.104)

that is equivalent to∫
dp1 dp2 e

−ip1σ1−ip2σ2 |Ψ(p1, p2)⟩ =
∫
dp1 dp2 e

−ip1σ1−ip2σ2
(
e−ip1lS−1(p1, p2) |Ψ(p1, p2)⟩

)
. (4.105)

Generalising this reasoning to M particles, the periodicity condition σj −→ σj + l is

|Ψ(p1, ..., pM )⟩ =

eipj l M∏
k ̸=j

S(pj , pk)

 |Ψ(p1, ..., pM )⟩ , (4.106)

which leads to the Bethe equations

eipj l
M∏
k ̸=j

S(pj , pk) = 1 . (4.107)

This result is intuitive because moving a particle from the σj position to σj+l is achieved by scattering
it with all the other particles in between and this returns the product of the S matrices that we find
in the Bethe equations.
In principle these equations allow us to find the momenta and then the spectrum of the worldsheet
Hamiltonian. However, let us recall that we are dealing with an asymptotic S matrix defined in the
decompactification limit and therefore this does not account for wrapping configurations [32]. These
configurations give some corrections to the Bethe equations which are exponentially suppressed in
l. This means that, while the BAE return only the asymptotic spectrum of the theory and are not
able to provide a finite-size description, the TBA equations, in which l −→ ∞ provide the correct
thermodynamics of the system. As we shall see in the next chapter, these can be used to find the
ground-state energy of the string.

4.3 Mirror transformation

In the previous section, we pointed out that the BAE are not able to describe the spectrum of a
finite-size worldsheet string due to wrapping effects. However, as first discussed in [35] for relativistic
theories and then generalised in [65] for non-relativistic theories, it is possible to use the TBA to find
the ground state energy.
Let us consider a theory in which both the time and space coordinates are periodic, i.e. τ ∈ S1 and
σ ∈ S1. This means that this theory is defined on a torus. Let R and L be respectively the length of
the time and space circumference, we can write the Hamiltonian

H =

∫ L

0
dσH(p, x, x′) . (4.108)

2In particular in this expression the first spatial variable labels the leftmost particle, while the second spatial variable
labels the rightmost particle. This is the reason why after the l-shift the two arguments σ1 and σ2 are exchanged in
parentheses.
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Since both time and space are periodic, the Euclidean quantum partition function Z is equal to the
thermodynamic partition function ZTH in which the temperature in defined by T = 1/R. Indeed,
given the Hilbert space H of the theory, the thermodynamic partition function is

ZTH := TrH
(
e−HR

)
=

∫
dy ⟨y| e−HR |y⟩ (4.109)

where we are tracing over the coordinate basis |y⟩. Using the well-known expression of the time
evolution kernel (for instance, it can be found in Chapter 9 of [66])

⟨xf (τ ′)|xi(τ)⟩ = ⟨xf (τ)|e−H(τ ′−τ)|xi(τ)⟩ =
∫
x(τ)=xi
x(τ ′)=xf

DxDp exp

(
i

∫ τ ′

τ
dτ̃ ẋ(τ̃)p(τ̃)−H(p(τ̃), x(τ̃))

)
,

(4.110)
and exploiting the periodicity condition y(0) = y(R) = y we can rewrite the thermodynamic partition
function as

ZTH =

∫
dy ⟨y| e−HR |y⟩ =

∫
dy ⟨y(R)|y(0)⟩ =

∫
dy

∫
x(0)=y
x(R)=y

DpDx exp

(∫ R

0
dτ

∫ L

0
dσ (ipẋ−H)

)
=

∫
DpDxe

∫R
0 dτ

∫ L
0 dσ (ipẋ−H) = Z(R,L) ,

(4.111)

where the last integral is computed on all the possible paths that start at τ = 0 and end at τ = R
at the same spatial point. This is exactly the definition of the path integral for a quantum theory
defined on a torus. The exponential

∫ R
0 dτ

∫ L
0 dσ (ipẋ−H) is the Euclidean action written in the first-

order formalism defined by a Wick rotation τ −→ −iτ on the Minkowski action. Note that sending
R −→ ∞, (T −→ 0) we recover the theory defined on an infinite cylinder. On the other hand, by
sending L −→∞ we end up with a theory defined on an infinite line at finite temperature, which can
be studied by means of the TBA equations.
Starting from the thermodynamic definition, another useful way of writing the partition function is

Z(R,L) = TrH
(
e−HR

)
=
∑
n

⟨ψn| e−HR |ψn⟩ =
∑
n

e−EnR , (4.112)

where |ψn⟩ is a complete set of Hamiltonian eigenstates.
Let us now introduce a new theory, known as mirror theory, defined by a double Wick rotation

τ −→ −iτ , σ −→ iσ (4.113)

on the original theory and let us now consider σ as the time variable and τ as the space one. In the
next sections, in order to make this last point more explicit, we will denote a mirror transformation
by τ −→ −iσ and σ −→ iτ . However, for now, in this proof it is simpler to keep the same notation.
The mirror Hamiltonian results

H̃ =

∫ R

0
dτH̃(p̃, x, ẋ) . (4.114)

If the starting theory is relativistic, then the two theories are the same. In fact, a Lorentz-invariant
Lagrangian is composed by terms with all the Lorentz indices contracted, like ηab∂aϕ∂bϕ, where η

ab

is the Minkowski metric and ϕ a scalar field. A mirror transformation changes the overall sign of the
metric (dτ2 − dσ2 −→ −dτ2 + dσ2), but this is recovered by exchanging the meanings of time and
space. On the other hand, a non-relativistic theory, as the gauge-fixed worldsheet theory, gives rise to
a different theory under a mirror transformation.
Given the Hamiltonian, we can define the mirror partition function

Z̃(R,L) =

∫
Dp̃Dx e

∫R
0 dτ

∫ L
0 dσ (ip̃x′−H̃) , (4.115)
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which in thermodynamic notation reads

Z̃(R,L) =
∑
n

⟨ψ̃n| e−H̃L |ψ̃n⟩ =
∑
n

e−ẼnL . (4.116)

Let L(x, ẋ, x′) be the Lagrangian density of the starting theory. The mirror Lagrangian will be
L̃ = L(x, iẋ,−ix′). Performing the Euclidean rotation in both theories, we obtain

L(x, ẋ, x′) τ−→−iτ−−−−−→ L(x, iẋ, x′) , L(x, iẋ,−ix′) σ−→−iσ−−−−−→ L(x, iẋ, x′) , (4.117)

which are the same Lagrangian. This means that the two Hamiltonian in the Euclidean are the
Legendre transforms of the same function but one with respect to time and the other with respect to
space, namely H = iẋ∂L∂ẋ − L and H̃ = ix́∂L∂x́ − L.
Therefore, integrating out the momenta in the Euclidean partition functions we find

Z̃(R,L) = Z(R,L) . (4.118)

To be precise, the integration over the momenta, in addition to the Lagrangian, gives also non-trivial
measure factors. We will come back to these corrections in the next chapter in section 5.1, for the
moment we will suppose that they do not spoil the relation between the two partition functions.
We have found that a model defined on a circle of length L at temperature T = 1/R is equivalent to
its mirror model defined on a circle of length R and at temperature 1/L. If we send R −→∞ we end
up with the partition function of the string theory defined on an infinite cylinder. In particular, we
have

Z(R,L) =
∑
n

⟨ψn| e−HR |ψn⟩ =
∑
n

e−EnR ≈ e−E(L)R , (4.119)

where E(L) is the ground state energy of the string. On the other hand, applying the limit in the
mirror theory, we end up with a theory defined on an infinite line at finite temperature T = 1/L.
Therefore, the partition function is the exponential of the free energy

Z̃(R,L) = e−RLf(L) , (4.120)

and as we know from the previous sections this can be computed by meas of the TBA. In particular,
here f is the free energy for unit of the system size. Comparing the two partition functions it follows

E(L) = Lf(L) . (4.121)

Hence, the ground state energy depends on the free energy of the mirror model and can be exactly
computed using the thermodynamic Bethe ansatz.

4.4 Mirror AdS3 × S3 × T 4 model

Let us come back to the AdS3 × S4 × T 4 NLSM. According to what we have found in the previous
section, it is possible to define the corresponding mirror theory and use it to find the ground state
energy. This has been done in the pure RR background case [67]. In order for the TBA equations to
be used, the mirror theory has to be integrable. As mentioned above, the string and mirror theory are
related by a double Wick rotation. Intuitively, we can expect that the map between the S matrices is
given by the following analytic continuation

ω −→ ω̃ = −ip , p −→ p̃ = iω . (4.122)

However, the relation between the Wick rotation and the analytic continuation of the correlation func-
tions, which has been studied in the context of axiomatic QFT by relating the Wightman construction
in Minkowski space to the Osterwalder–Schrader construction in Euclidean space, is subtle and in this
case needs to be investigated.
Therefore, let us discuss the relation between the two theories at the perturbative level. First, we find
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the mirror two-body S matrix at the tree-level and compare it with the result obtained in the NLSM
(3.84)-(3.85)-(3.86).
By sending τ −→ τ̃ = −iσ and σ −→ σ̃ = iτ in the gauge-fixed NLSM Lagrangian, we can find the
mirror one, which up to the fourth order is

L(2)+(4)
mirror =ż ˙̄z + ẏ ˙̄y − zz̄ − yȳ − ź ´̄z − ý ´̄y + u̇ ˙̄u− ú´̄u+ v̇ ˙̄v − v́´̄v + q(z ˙̄z − z̄ż + y ˙̄y − ȳẏ)

− 1

2

(
− 4zz̄ż ˙̄z + 4yȳẏ ˙̄y + 2yȳż ˙̄z + 2yȳź ´̄z − 2zz̄ẏ ˙̄y − 2zz̄ý ´̄y

+ 2(yȳ − zz̄)(u̇ ˙̄u+ v̇ ˙̄v + ú´̄u+ v́´̄v)

+ q(z ˙̄z − z̄ż + y ˙̄y − ȳẏ)(yȳ − zz̄)
+ q(z ˙̄z − z̄ż − y ˙̄y + ȳẏ)(ź ´̄z + ż ˙̄z + ý ´̄y + ẏ ˙̄y + u̇ ˙̄u+ ú´̄u+ v̇ ˙̄v + v́´̄v)

+ q(źz̄ − z ´̄z − ýȳ + y ´̄y)(ź ˙̄z + ´̄zż + ý ˙̄y + ´̄yẏ + u̇´̄u+ ú ˙̄u+ v̇´̄v + v́ ˙̄v)
)

− 2a− 1

2
(ź ´̄z + ý ´̄y + ú´̄u+ v́´̄v + ż ˙̄z + ẏ ˙̄y + u̇ ˙̄u+ v̇ ˙̄v)2

+
2a− 1

2
((zz̄ + yȳ)2 + (ż ´̄z + ˙̄zź + ẏ ´̄y + ˙̄yý + u̇´̄u+ ˙̄uú+ v̇´̄v + ˙̄vv́)2)

+
q

2
(2a− 1)(z̄ż − z ˙̄z + ȳẏ − y ˙̄y)(ź ´̄z + ý ´̄y + ú´̄u+ v́´̄v + ż ˙̄z + ẏ ˙̄y + u̇ ˙̄u+ v̇ ˙̄v + zz̄ + yȳ)

− q

2
(2a− 1)(ż ´̄z + ˙̄zź + ẏ ´̄y + ˙̄yý + u̇´̄u+ ˙̄uú+ v̇´̄v + ˙̄vv́)(z̄ź − z ´̄z + ȳý − y ´̄y) ,

(4.123)

where ϕ̇ = dϕ
dτ̃ and ϕ́ = dϕ

dσ̃ .
This Lagrangian has the same symmetries discussed for the string theory in the previous chapter, with
the obvious modification due to the mirror transformation :

• it is invariant under parity
σ̃ −→ −σ̃ . (4.124)

• it is not invariant under time-reversal. This is due to the terms proportional to the parameter
q, which change their sign under time-reversal. Therefore, the Lagrangian is invariant under the
transformation

τ̃ −→ −τ̃ and q −→ −q . (4.125)

4.4.1 Quantisation

Recall that in the string theory, z and z̄ were one the complex conjugate of the other. However, when
passing to the path-integral description, one usually integrates on both the fields without imposing
any condition. Therefore, after the Wick rotation of the path integral, there is nothing to ensure that
the two fields remain one the conjugate of the other. In fact, as we will see, this is no longer valid.
The free equations of motion now are

z̈ − z′′ + z = −2qż ¨̄z − z̄′′ + z̄ = 2q ˙̄z ü− u′′ = 0 . (4.126)

As in the previous case, the equations for y and v are exactly the same of these two, for this reason
we focus only on z and u. Note that taking the complex conjugation of the first equation, for q real,
we do not find the second one.
The conjugate momenta are

pz =
∂L(2)

∂ż
= ˙̄z − qz̄ , pz̄ =

∂L(2)

∂ ˙̄z
= ż + qz , pu =

∂L(2)

∂u̇
= ˙̄u . (4.127)

Imposing the canonical quantisation conditions

[z(σ, τ), ˙̄z − qz̄(σ′, τ)] = [z̄(σ, τ), ż + qz(σ′, τ)] = iδ(σ − σ′) , [z(σ, τ), z(σ′, τ)] = [z̄(σ, τ), z̄(σ′, τ)] = 0 ,

[u(σ, τ), ˙̄u(σ′, τ)] = iδ(σ − σ′) , [u(σ, τ), u(σ′, τ)] = [u̇(σ, τ), u̇(σ′, τ)] = 0 ,
(4.128)
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the solutions are

z(σ, τ) =

∫
dp√
(2π)2e

(
e−i(ωτ−pσ)az(p) + ei(ω̄τ−pσ)a†z̄(p)

)
, (4.129)

z̄(σ, τ) =

∫
dp√
(2π)2e

(
e−i(ω̄τ−pσ)az̄(p) + ei(ωτ−pσ)a†z(p)

)
, (4.130)

u(σ, τ) =

∫
dp√

(2π)2|p|

(
e−i(|p|τ−pσ)au(p) + ei(|p|τ−pσ)a†ū(p)

)
, (4.131)

ū(σ, τ) =

∫
dp√

(2π)2|p|

(
e−i(|p|τ−pσ)aū(p) + ei(|p|τ−pσ)a†u(p)

)
, (4.132)

where

ω =
√
p2 + 1− q2 − iq , ω̄ =

√
p2 + 1− q2 + iq , e =

√
p2 + 1− q2 , (4.133)

and the creation and annihilation operators satisfy the usual commutation relations

[az(p), a†z(p
′)] = [az̄(p), a†z̄(p

′)] = δ(p− p′) ,

[az(p), az(p′)] = [a†z(p), a
†
z(p

′)] = [az̄(p), az̄(p′)] = [a†z̄(p), a
†
z̄(p

′)] = 0 .
(4.134)

Alternatively, we could find the dispersion relations directly from the Lagrangian using the path-
integral and computing ⟨z̄z⟩. In addition, also the S matrix can be computed in the path-integral
approach, exploiting the LSZ formula, and therefore it may seem useless to have found the explicit
expressions of the field operators. However, in order to compare the mirror results with the string ones,
we have to know the fields normalisation that enter in the S matrix formula and these are explicitly
found in the plane-wave expressions.
As mentioned above, from the explicit expression of the fields one can see that (z)∗ ̸= z̄. For this
reason, it is not obvious that the two fields should have the same creation and annihilation operators.
In fact, in principle, from the free equation of motion, without imposing any relation between the two
fields, we can have

z̄(σ, τ) =

∫
dp√
(2π)2e

(
e−i(ω̄τ−pσ)b(p) + ei(ωτ−pσ)b†(p)

)
.

However, from the expression of the propagator ⟨z̄z⟩ that we know from the path-integral, together
with the commutation relations (4.128), z̄ is fixed to be (4.130). This is also intuitive from a physical
point of view because the mirror transformation cannot change the number of particles in the spectrum.
Ultimately, these are the correct expressions of the fields in the interaction picture since they reproduce
the same expression of the propagator that one can find by using the quadratic Lagrangian in the
path integral. Indeed, restricting the Lagrangin only to z and z̄ we find

⟨zz̄⟩ := 1

Z

∫
DzDz̄ zz̄ exp

(
iS[z, z̄] + i

∫
d2σJz + J̄ z̄

)∣∣∣∣
J=J̄=0

= (−i)2 δ
δJ̄

δ

δJ
logZ[J, J̄ ]

∣∣∣∣
J=J̄=0

= − 1

Z

δ

δJ̄

δ

δJ

∫
DzDz̄ exp

(
i

∫
d2p z(−p)(p20 − 1− p21 + 2iqp0)z̄(p) + J(p)z(−p) + J̄(−p)z̄(p)

)∣∣∣∣
J=J̄=0

= − δ

δJ̄

δ

δJ

∫
DzDz̄ exp

(
−i
∫
d2p J(p)

(
1

p20 − 1− p21 + 2iqp0

)
J̄(−p)

)∣∣∣∣
J=J̄=0

=
i

p20 − 1− p21 + 2iqp0
.

(4.135)

Where Z[J, J̄ ] is the partition function with the source terms J and J̄ . Now that we have pointed out
the relation between z and z̄, it is possible to note that the mirror Lagrangian is not hermitian for
q ∈ (0, 1) and then the theory is nonunitary. In order to recover the unitarity, one should continue q
to the imaginary axis; however, the mirror transformation does not act on its value and in that case
it would be the string theory that would be nonunitary. The only case in which both the NLSM and
the mirror theory are unitary is the pure RR flux case (q = 0). This aspect is not yet clear from
a physical point of view, but it is still possible to perform perturbative calculations considering q a
generic parameter.
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4.4.2 Worldsheet S matrix

At this point, in order to check the relation between the string and the mirror theory, it is possible to
compute the two-body worldsheet S-matrix at the tree-level.
Given the generic 2 −→ 2 scattering

a(p1)b(p2) −→ c(p3)d(p4) ,

the Tab−→cd matrix element reads

T = −i× (2π)2× δ(p1+p2−p3−p4)δ(ω1+ω2−ω3−ω4)× (fields normalisation)×Mab−→cd , (4.136)

where M is the Feynman amplitude and can be computed from the Lagrangian exploiting the LSZ
formula. According to the plane-wave expression the fields normalisation are

1√
(2π)22e

and
1√

(2π)22|p|
(4.137)

for the massive and massless fields respectively.
Let us show a couple of example of calculations before giving the complete expression of the tree-level
S matrix.

1. Massive-massive scattering between z and z̄. It is interesting to consider this type of scattering
processes because, contrary to the scattering between two equal particles (e.g. two z), which are
trivially elastic due to the U(1) charge conservation, in principle they can admit different final
states, i.e.

z(p1)z̄(p2) −→ y(p3)ȳ(p4) , z(p1)z̄(p2) −→ u(k3)ū(k4) , z(p1)z̄(p2) −→ v(k3)v̄(k4) ,

z(p1)z̄(p2) −→ z(p3)z̄(p4) .

Let us start with the first process. Using the Feynman rules, we find

Tzz̄→yȳ =
1

4
√
e1e2e3e4

((−1 + ω1ω2)(1 + ω3ω4) + p1p2 + ω3ω4p1p2 − ω4(ω2p1 + ω1p2)p3

− ω3(ω2p1 + ω1p2)p4 + (−1 + ω1ω2 + p1p2)p3p4 + 2a(1 + ω1p2(ω4p3 + ω3p4)

− ω1ω2(ω3ω4 + p3p4) + p1(−ω3ω4p2 + ω2ω4p3 + ω2ω3p4 − p2p3p4)) + ω3(−1 + ω1ω2 + p1p2)q

− ω4(−1 + ω1ω2 + p1p2)q − (ω2p1 + ω1p2)(p3 − p4)q + a(ω3 − ω4 − ω3p1p2 + ω4p1p2

+ ω4p1p3 − ω4p2p3 + ω3(p1 − p2)p4 + ω2(−1 + ω3ω4 + p1p3 − p1p4 + p3p4)− ω1(−1
+ ω2(ω3 − ω4) + ω3ω4 − p2p3 + (p2 + p3)p4))q) · δ(p1 + p2 − p3 − p4)δ(ω1 + ω̄2 − ω3 − ω̄4) ,

which vanishes for both the solutions of the delta functions, that are p1 = p3 , p2 = p4 and
p1 = p4 , p2 = p3.
The same is true for Tzz̄−→uū (and for Tzz̄−→vv̄ , that has the same expression)

Tzz̄−→uū =
1

4
√
e1e2

√
|k3|

√
|k4|)

(−k3(k4(1 + (−1 + 2a)ω1ω̄2 + (−1 + 2a)p1p2 + aω1q − aω̄2q)

+ (ω̄2(p1 − 2ap1) + ω1(p2 − 2ap2) + a(−p1 + p2)q)|k4|) + |k3|(k4((−1 + 2a)ω̄2p1

+ (−1 + 2a)ω1p2 + a(p1 − p2)q) + (−1 + p1(p2 − 2ap2) + aω̄2q

+ ω1(ω̄2 − 2aω̄2 − aq))|k4|)) · δ(p1 + p2 − k3 − k4)δ(ω1 + ω̄2 − |k3| − |k4|) .

In fact the energy-momentum conservation constrains k3 and k4 to have different signs since
there are no solutions with both the momenta either positives or negatives. This is reasonable
from the physical point of view because these would correspond to configurations in which the
two massless particles go in the same direction and with the same speed (i.e. the speed of light)
and for this reason they cannot scatter each other. Finally, it can be seen that, considering one
of the two momenta positive and the other negative, the matrix element automatically vanishes
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without even inserting the explicit solution.
The fact that these three matrix elements vanish shows that also without the constraint of the
U(1) charges conservation the scattering are elastic. In fact, as we will see from the complete
expression of the matrix, this property at tree-level holds for every process.
Furthermore, not only the scattering is elastic, but when performing the calculation of the
process z(p1)z̄(p2) −→ z(p3)z̄(p4) it can be seen that the momentum of each particle remains
the same after the scattering. In fact the matrix element is given by

Tzz̄−→zz̄ =
1

2
√
e1e2e3e4

(−1 + ω̄2ω̄4 − ω3ω̄4 − ω̄2ω3p1p4 + p1p2p3p4 + ω1(ω3 + ω̄2(−1 + ω3ω̄4)

− ω̄4p2p3 − q) + ω̄2q − ω3q + ω̄4q + a(2 + 2ω̄2ω3p1p4 − 2p1p2p3p4 − ω̄2q + ω3q

− ω̄4q + ω̄2ω3ω̄4q − ω̄4p2p3q − ω̄2p1p4q + ω3p1p4q + ω1(2ω̄4p2p3 + q + ω̄2ω̄4q

− ω3ω̄4q + p2p3q − ω̄2ω3(2ω̄4 + q))))δ(p1 + p2 − p3 − p4)δ(ω1 + ω̄2 − ω3 − ω̄4) ,

and evaluated for p1 = p4 and p2 = p3 it vanishes. Therefore, using the dispersion relations
(4.133) and the property of the delta function

δ(p1+p2−p3−p4)δ(ω1+ω2−ω3−ω4) =
e1e2

|e2p1 − e1p2|
(δ(p1−p3)δ(p2−p4)+δ(p1−p4)δ(p2−p3))

(4.138)
the final result is

T |z(p1)z̄(p2)⟩ =
(
(ω1 − ω̄2)(ω̄2p1 + ω1p2)

2(ω1 + ω̄2)
− 1

2
(−1 + 2a)(ω̄2p1 − ω1p2)

)
|z(p1)z̄(p2)⟩ , (4.139)

where it has been set p1 > p2 in order to remove the modulus at denominator.

2. Massless-massless scattering between two u. It is worth considering this scattering because there
are some interesting features that we will return to when we discuss production processes. For
simplicity, now that we know that all processes are elastic at the tree-level, we consider the
scattering

u(k1)u(k2) −→ u(k3)u(k4) ,

that has only one channel. The matrix element is given by

Tuu−→uu =
−(−1 + 2a)(−k1k2 + |k1||k2|)(−k3k4 + |k3||k4|)

2
√
|k1|
√
|k2|
√
|k3|
√
|k4|

δ(k1 + k2 − k3 − k4)δ(|k1|+ |k2| − |k3| − |k4|) .

Let us note that it vanishes if k1 and k2 or k3 and k4 have the same sign. Physically, this means
that the massless particles cannot scatter if they go in the same direction as we expect. Using
the property of the delta function

δ(k1+k2−k3−k4)δ(|k1|+|k2|−|k3|−|k4|) =
|k1||k2|

||k2|k1 − |k1|k2|
(δ(k1−k3)δ(k2−k4)+δ(k1−k4)δ(k2−k3))

we find

T |u(k1)u(k2)⟩ = (2a− 1) k1k2 |u(k1)u(k2)⟩ . (4.140)

for both (k1 > 0 ∧ k2 < 0) ∨ (k1 < 0 ∧ k2 > 0). The amplitude is proportional to (2a− 1) and
then it vanishes in the gauge a = 1/2.

Let us summarize the 2 body tree-level S matrix:
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• Massive-massive

T |z±(p1)z±(p2)⟩ =
(
(ω±

1 + ω±
2 )(ω

±
1 p2 + ω±

2 p1)

2(ω±
1 − ω

±
2 )

+

(
a− 1

2

)
(ω±

1 p2 − ω
±
2 p1)

)
|z±(p1)z±(p2)⟩

T |z±(p1)y±(p2)⟩ =
(
−(ω±

1 p2 + ω±
2 p1)

2
+

(
a− 1

2

)
(ω±

1 p2 − ω
±
2 p1)

)
|z±(p1)y±(p2)⟩

T |z±(p1)z∓(p2)⟩ =
(
(ω±

1 − ω
∓
2 )(ω

±
1 p2 + ω∓

2 p1)

2(ω±
1 + ω±

2 )
+

(
a− 1

2

)
(ω±

1 p2 − ω
∓
2 p1)

)
|z±(p1)z∓(p2)⟩

T |z±(p1)y∓(p2)⟩ =
(
−(ω±

1 p2 + ω∓
2 p1)

2
+

(
a− 1

2

)
(ω±

1 p2 − ω
∓
2 p1)

)
|z±(p1)y∓(p2)⟩

(4.141)

• Massive-massless

T |z±(p1)U(p2)⟩ =
(
−(ω±

1 p2 + |p2|p1)
2

+

(
a− 1

2

)
(ω±

1 p2 − |p2|p1)
)
|z±(p1)U(p2)⟩ (4.142)

• Massless-massless

T |U(p1)V (p2)⟩ =
(
a− 1

2

)
(|p1|p2 − |p2|p1) |U(p1)V (p2)⟩ . (4.143)

As in the string case, it has been used the notation z+ = z, z− = z̄, ω+ = ω, ω− = ω̄ and U, V =
u, ū, v, v̄ are generic massless particles and all remaining matrix elements can be found by exploiting
the symmetries of the Lagrangian. Furthermore, also in this case the matrix elements are written in
the kinematic configuration v1 > v2. Note that all sectors of the T matrix have the same structure.
In fact, given two particles X and Y , with energy E1 and E2 and momenta p1 and p2 respectively, the
structure of all the matrix elements is the following:

TXY−→XY =

{
± (E1+E2)(E1p2+E2p1)

2(E1−E2)
if X and Y belong to the same species

±E1p2+E2p1
2 if X and Y do not belong to the same species ,

(4.144)

where we have neglected the term proportional to (a − 1/2) that is manifestly the same in all the
processes. Note that this formula is also valid in the massless-massless scatterings, in which E1p2 +
E2p1 = 0.
Another interesting aspect is that, as we wanted, the matrix has the same structure as that of the
NLSM. In particular, it can be written in the following way

Tklij = δki δ
l
jTij . (4.145)

For this reason, at the tree-level it respects all the integrability requirements, including the classic
Yang-Baxter equation.

Furthermore, note that the mirror matrix can be obtained from the NLSM one by applying the
transformation (4.122).
To be more precise, by applying this transformation directly to the expressions (3.84)-(3.85)-(3.86)
one finds the expressions (4.141)-(4.142)-(4.143) with an overall minus sign. This is due to the fact
that it maps the configuration v1 > v2 to the configuration v2 > v1. In fact, as discussed above, the
kinematic choice allows us to remove the absolute values in the denominators. For example, in the
mirror massive-massive case, the Dirac delta gives the term 1/|(ω±

2 ±iq)p1− (ω±
1 ±iq)p2|. On the other

hand, let us recall that in the NLSM in these processes we had the term 1/|ω±
2 (p1∓q) − ω

±
1 (p2∓q)|.

The transformation (4.122) sends ω±
2 (p1∓q)−ω

±
1 (p2∓q) > 0 to (ω±

2 ±iq)p1− (ω±
1 ±iq)p2 < 0. For this

reason, it maps to each other opposite kinematic configurations of the S matrix, explaining the overall
minus sign.
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In order to get rid of this change of sectors, we can change the definition of mirror transformation in
the following way:

p −→ p̃ = −iω , ω −→ ω̃ = −ip . (4.146)

In fact, owing to the time-reversal invariance of the AdS3× S3× T 4 NLSM (or alternatively from the
mirror point of view to the parity invariance) this transformation is equivalent to the previous one;
however, in this case, it preserves the kinematics.
Finally we can do the same specular discussion of parity and time reversal made in the case of the
string matrix.
Under parity transformation, momenta and energy transform as follows

p −→ −p ω −→
√

(−p)2 + 1− q2 + iq = ω ,

and v1 > v2 goes to v1 < v2, leaving the matrix invariant. If instead we consider time reversal, we
have

ω −→ −ω p2 = (ω − iq)2 − 1 + q2 −→ (−ω − iq)2 − 1 + q2 ̸= p2 ,

and the matrix elements change. Adding to time-reversal the transformation q −→ −q, we have

ω −→ −ω , p2 = (ω − iq)2 − 1 + q2 −→ (−ω + iq)2 − 1 + q2 = p2 , (4.147)

and again v1 > v2 goes to v1 < v2. Therefore, the S matrix does not change.



Chapter 5

Production processes

One of the main properties of a quantum integrable field theory is the fact that in every process, the
number of particles in the initial state is equal to the number of particles in the final state and therefore
there is no particle production. This property is very peculiar if we consider four-dimensional QFTs
such as the Standard Model in which in general initial and final states can have a very different number
of particles. However, if a theory has an infinite number of conserved charges, these constrain the S
matrix in such a way that particle production is no longer allowed. Moreover, scattering processes
with the same number of particles in the initial and final states m→ m are obtained by the product
of two-body processes, and hence, in general, they do not vanish. Therefore, it seems that these
processes are not obtained by crossing the corresponding production processes. As we shell see, this
is not exactly true. In fact, we will see that only the configurations that give a pole to the propagator
contribute to the amplitudes of the m→ m scatterings . Furthermore, in these cases, the propagator
degenerates to a delta function. The values of the momenta that give a pole to the propagator are
such that they are physical values only in the m → m processes, while they are unphysical in the
production cases. Thus, the two amplitudes are still obtained by crossing; however, when we insert
the physical values into a production process, the delta function, which is the only contributing term,
vanishes.
In this chapter, we investigate the behaviour of the mirror model with respect to the production
processes. Furthermore, we want to understand the relation between the amplitudes in the gauge-
fixed NLSM and in the mirror theory. In order to proceed, we will consider production processes
involving six external legs. These processes have two contributions: the first one is given by the quartic
Lagrangian and consists of Feynman diagrams with two vertices and one propagator in between,
while the second one is given by the sixth-order Lagrangian vertex. As we expect, according to
the integrability hypothesis, the sum of the two contributions vanishes, giving a zero probability of
production.

5.1 Hamiltonian vs Lagrangian

Before going through the computations of the amplitudes of the production processes, we pause for a
moment to make a reflection. Both the string NLSM and the mirror model are theories with derivative
interactions; i.e. their interactive Lagrangians contain derivative terms. For this reason, we are not
dealing with a theory with the standard relation Lint = −Hint, because the derivative terms give
non-trivial contributions to the Legendre transform. However, note that as seen in section 3.7, if we
stop at the fourth order, the relation between the Hamiltonian and the Lagrangian is still the trivial
one. This is the reason why we have not discussed this problem before when we have computed the
two-body processes in which only the quartic Lagrangian contributes. Nevertheless, in the production
computations, we need to use the sixth-order Lagrangian. For this reason, it is worth understanding
what is the connection between the canonical quantisation with the Hamiltonian and the path-integral
quantisation with the Lagrangian in the presence of derivative interactions.
In order to discuss this problem, let us consider a simple toy model in which the relation between the
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interaction Lagrangian and Hamiltonian is not the trivial one :

L =
1

2
∂µϕ∂

µϕ− λϕ2∂µϕ∂µϕ . (5.1)

The conjugate momenta is

π = ϕ̇− 2λϕ2ϕ̇ =⇒ ϕ̇ =
π

1− 2λϕ2
.

Therefore, the corresponding Hamiltonian density is

H =
1

2

(
π2

1− 2λϕ2

)
+

1

2
(∇ϕ)2− λϕ2(∇ϕ)2 = 1

2
π2 +

1

2
(∇ϕ)2− λϕ2(∇ϕ)2 + 1

2
π2(2λϕ2 + (2λϕ2)2 + ...) .

(5.2)
Note that, passing from the Lagrangian to the Hamiltonian, an infinite series of interaction terms
appears.
The Hamiltonian density can be divided into the free part and the interactive part, namely

H0 =
1

2
π2 +

1

2
(∇ϕ)2 , Hint = −λϕ2(∇ϕ)2 +

1

2
π2(2λϕ2 + (2λϕ2)2 + ...) .

The free theory is described by the usual Klein-Gordon Hamiltonian. Therefore, the solution are
the well-known plane waves, and the ETCR reads [ϕ(x⃗, t), π(y⃗, t)] = iδ(3)(x⃗ − y⃗), with π = ϕ̇. Now,
let us consider a 3 −→ 3 process at the tree-level. Using the Lagrangian there is only one diagram
that contributes to the amplitude, given by two vertices λϕ2∂µϕ∂

µϕ, connected by a propagator. On
the other hand, using the Hamiltonian approach, in addition to this diagram, there is also another
contribution, given by the vertex 2λ2π2ϕ4.
Computing the first diagram with the Hamiltonian, the tree-level S matrix turns out

S = ⟨f | (−i)
2

2

∫
d4xd4yT ((λϕ2∂µϕ∂

µϕ)(x)(λϕ2∂µϕ∂
µϕ)(y)) |i⟩ , (5.3)

where |i⟩ and |f⟩ are the initial and final states and T is the time-ordered product. Using the Wick’s
theorem, the time-ordered product hits all the possible pairs, giving Feynman propagators. Among
these, let us focus on the one that contains two time derivatives:

S = . . .+
(−i)2

2
4 ⟨f |

∫
d4xd4y(λϕ2ϕ̇)(x)(λϕ2ϕ̇)(y)) |i⟩ ⟨0|T (ϕ̇(x)ϕ̇(y)) |0⟩ . (5.4)

The overall factor 4 occurs because both the terms have two derivatives and therefore they can be
contracted in 4 different ways.
This term gives rise to a contribution that is not present in the path integral. In fact, when computing
amplitudes with the path integral, the space-time derivatives always act externally on the propagators,
while in the term (5.4) the derivatives are inside the propagator. Therefore, the non-commutability
of the time derivatives with the time-ordered product gives rise to additional terms, which are not
present in the path integral approach.

d

dt1

d

dt2
⟨0|T (ϕ(x⃗, t1)ϕ(y⃗, t2)) |0⟩ =

d

dt1

d

dt2
⟨0| θ(t1 − t2)ϕ(x⃗, t1)ϕ(y⃗, t2) + θ(t2 − t1)ϕ(y⃗, t2)ϕ(x⃗, t1) |0⟩

=
d

dt1
⟨0| −δ(t1 − t2)[ϕ(x⃗, t1)ϕ(y⃗, t2)] + θ(t1 − t2)ϕ(x⃗, t1)ϕ̇(y⃗, t2) + θ(t2 − t1)ϕ̇(y⃗, t2)ϕ(x⃗, t1) |0⟩

= ⟨0| − d

dt1
(δ(t1 − t2)[ϕ(x⃗, t1)ϕ(y⃗, t1)]) + δ(t1 − t2)[ϕ(x⃗, t1), ϕ̇(y⃗, t2)] |0⟩+ ⟨0|T (ϕ̇(x)ϕ̇(y)) |0⟩ .

And using [ϕ(x⃗, t), ϕ(y⃗, t)] = 0 and [ϕ(x⃗, t), ϕ̇(y⃗, t)] = iδ(x⃗− y⃗) , it gives

⟨0|T (ϕ̇(x)ϕ̇(y)) |0⟩ = −iδ(4)(x− y) + d

dt1

d

dt2
⟨0|T (ϕ(x⃗, t1)ϕ(y⃗, t2)) |0⟩ . (5.5)
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Inserting this expression in (5.4) one can find

S = path integral− 2(−i)2
∫
d4xd4y ⟨f | (λϕ2ϕ̇)(x)(λϕ2ϕ̇)(y) |i⟩ iδ(4)(x− y)

= path integral + 2iλ2
∫
d4x ⟨f | ϕ̇2ϕ4 |i⟩ .

(5.6)

This new term is exactly the same term that arises from the second diagram with an opposite sign.
Therefore, it seems that at least at the tree-level, despite the fact that there are a different set of
diagrams, the total amplitude computed with the canonical approach and the path integral is exactly
the same. As we will see soon, this result can be generalised.
Now let us consider what is the behaviour of the two methods with respect to loop diagrams, con-
sidering the one-loop correction to the propagator. The only diagram that contributes in both the
Hamiltonian and the path integral approach is the one given by the vertex λϕ2∂µϕ∂

µϕ with two legs
contracted.
Therefore, following the same logic as before, the difference between the two approaches is

S = path integral + (−i)(−i) ⟨ϕ|
∫
d4xλϕ2δ(4)(x− x) |ϕ⟩

= path integral− δ(0) ⟨ϕ|
∫
d4xλϕ2 |ϕ⟩ .

(5.7)

This is a contact term and this time there is no term in the Hamiltonian that can cancel out this
additional contribution. The reason is that the Lagrangian is incomplete. In fact, following the
path-integral proof, before passing to the Lagrangian, there is also the integral over the momenta

Z =

∫
DpDqe

i
ℏ
∫
dt(pq̇−H(p,q)) . (5.8)

Here, for simplicity, we consider the quantum mechanical case with momentum p and position q. Then
it can be easily generalised to the QFT case.
It is important to stress that at the exponent there is exactly the action S(p, q) as a function of p
and q; however, since we are integrating over all the possible q and p, these two variables are not
constrained by the canonical relation q̇ = δH

δp . In order to obtain the usual formula for the partition
function, we have to integrate out the momenta. To do that, let us expand the action around its
stationary point p̄ such that q̇ = δH

δp (q, p̄)

S(p, q) = S(q, p̄) +
1

2

δ2S

δp2
(q, p̄)(p− p̄)2 + 1

3!

δ3S

δp3
(q, p̄)(p− p̄)3 + ... (5.9)

Now S(q, p̄) is exactly the action written in terms of the Lagrangian S(q, p̄) =
∫
dtL(q, q̇). Therefore,

Z becomes

Z =

∫
Dqe

i
ℏW , (5.10)

where W is the Wilsonian action defined as

e
i
ℏW =

∫
Dpe

i
ℏ
∫
dt(pq̇−H(p,q))

= e
i
ℏS

∫
Dpe

i
ℏ (

1
2

δ2S
δp2

(q,p̄)(p−p̄)2+ 1
3!

δ3S
δp3

(q,p̄)(p−p̄)3+...)
.

(5.11)

Therefore

W = S − iℏ ln(
∫
Dpe

i
ℏ (

1
2

δ2S
δp2

(q,p̄)(p−p̄)2+ 1
3!

δ3S
δp3

(q,p̄)(p−p̄)3+...)
) . (5.12)

Note that at the tree level W = S. This result can also be seen from the effective field theory (EFT)
perspective. In fact, the momenta can be considered just as additional fields that are integrated out
from the spectrum of the theory. A well-known result of EFT is that when integrating out a field,
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at the tree level the exponent in the path integral becomes just the exponent itself computed at the
solution of the classical equation of motion of the field that is integrated out. In our case, the classical
EOM of p imposes the canonical relation, and then the exponent becomes the action. However, as can
be seen from (5.12) there are quantum corrections. Generally, most theories (such as the Standard

Model) are at most quadratic in p , containing terms such that δ2S
δp2

= const, which are absorbed in
the measure and do not provide any quantum corrections to L. This is not the case for neither the
toy model we are considering nor the NLSM. In fact, in the case of the toy model,

W = S − iℏ ln
∫
Dπe

i
ℏ

δ2S
δπ2 (ϕ,π̄)(π−π̄)2

= S +
iℏ
2
ln det

(
δ2S

δπ2

)
+ const

= S +
iℏ
2
Tr ln

(
δ2S

δπ2

)
+ const = S +

iℏ
2

∫
d4x ⟨x| ln

(
−2

1− 2λϕ2

)
|x⟩+ const

= S − iℏ
2

∫
d4p ⟨x|p⟩ ⟨p|x⟩

∫
d4x ln(1− 2λϕ2(x)) + const

= S − iℏ
2

∫
d4p

(2π)4

∫
d4x ln(1− 2λϕ2(x)) + const

= S − iℏ
2
δ(0)

∫
d4x ln(1− 2λϕ2(x)) + const .

(5.13)

Therefore, the Lagrangian density becomes

L =
1

2
∂µϕ∂

µϕ− λϕ2∂µϕ∂µϕ−
iℏ
2
δ(0) ln(1− 2λϕ2)

=
1

2
∂µϕ∂

µϕ− λϕ2∂µϕ∂µϕ+ iℏδ(0)λϕ2 + ...

(5.14)

The last term, obtained by expanding the logarithm to the first order, is exactly the additional term
that appears in the Hamiltonian computation. In this way, we are able to recover the result obtained
with the canonical quantisation.
We have seen that, in general, if the theory has higher derivative terms, the Lagrangian in the path-
integral receives some corrections, which correspond to corrections to diagrams with one leg contracted
to itself. This is the reason why in section 4.3, as pointed out in [65], we stressed the fact that when
integrating out the momenta in the Euclidean partition functions, additional non-trivial terms arise.
Finally, we have shown that for our tree-level production computations we can still safely relay on the
Lagrangian, without adding any correction. However, we expect that at the loop-level these start to
appear and modify the Feynman rules.

5.2 Production and scattering

As pointed out in the introduction of this chapter, in factorised scattering theory the m −→ m
scatterings do not seem to be obtained by the crossing of the corresponding production processes,
which, as we know, must have vanishing amplitudes. The reason is due to the structure of the
propagator.
Let us consider, for simplicity, the standard relativistic propagator

∆(p) = lim
ϵ→0

i

E2 − p2 −m2 + iϵ
. (5.15)

The NLSM is not a relativistic theory and the propagator has a different structure, however, following
the same logic, this discussion can be generalised to any type of propagator.
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Performing the limit we find

∆(p) = lim
ϵ→0

i

E2 − p2 −m2 + iϵ

= lim
ϵ→0

i ·
(
Re

(
1

E2 − p2 −m2 + iϵ

)
+ i Im

(
1

E2 − p2 −m2 + iϵ

))
= lim

ϵ→0
i ·
(

1

E2 − p2 −m2
− iϵ

(E2 − p2 −m2)2 + ϵ2

)
=

i

E2 − p2 −m2
+ πδ(E2 − p2 −m2) ,

(5.16)

where, in order to have a non-vanishing real part, the first term is considered outside the pole (i.e.
E2 − p2 −m2 ̸= 0). Therefore, the first term corresponds to the propagator when the particle is off-
shell, while the second term is the expression of the propagator when the particle is on-shell. Clearly,
this discussion does not depend on the dispersion relation of the particles, and then this holds in the
same way for the NLSM. From a more formal point of view, this relation can be seen as the well-known
distribution relation

lim
ϵ→0

1

x+ iϵ
= P

(
1

x

)
− iπδ(x) , (5.17)

where P denotes the Cauchy principal value defined in such a way that

⟨P
(
1

x

)
|f(x)⟩ := lim

ϵ→0

∫
|x|>ϵ

dx
f(x)

x
. (5.18)

Therefore, we expect (and as we shall see, this is exactly what happens) that in scattering processes
the propagators have a pole only in the factorised configurations, namely in the configurations in which
the number of the incoming particles is equal to the number of the outgoing particles and the set of
the initial and final momenta are the same. In particular, we will see that the propagator pole occurs
when a particle in the final state has the same momentum as a particle in the initial state. This gives a
delta function contribution, which, together with the delta functions coming from the conservation of
the energy-momentum, constrains the configuration to the factorised one. On the other hand, all the
other configurations, i.e. production processes or in general processes in which the initial and final sets
of momenta are different, do not provide any pole to the propagator, and then the computation can be
done in a straightforward way by using the principal value. Hence, removing iϵ from the propagator,
as we will do, automatically corresponds to considering only this kind of process, which we expect to
vanish.

5.3 Light-cone momenta

Before analysing the production processes, let us introduce a useful notation. In a two-dimensional
theory, the momentum has only two components, namely (p0, p1). Furthermore, the dispersion relation
constrains the possible values that p0 and p1 can take. Therefore, the energy and the momentum of
each particle depend only on one parameter. A useful way to make this feature manifest, without
imposing every time the dispersion relations is to introduce the so-called light-cone momenta, defined
as

(p, p̄) = (p0 + p1, p0 − p1) . (5.19)

Let us first discuss the case of relativistic theories, then we will move to the string NLSM and mirror
model. In these variables, the relativistic dispersion relation (p0)2 − (p1)2 = m2 becomes pp̄ = m2.
Hence, imposing the dispersion relation, we can rewrite the light-cone momenta introducing a real
variable a such that

(p, p̄) = (ma,ma−1) . (5.20)

In this way all the information about the energy and momentum of a particle is encoded in the
parameter a.
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The inverse relations are

p0 =
1

2
m

(
a+

1

a

)
, p1 =

1

2
m

(
a− 1

a

)
. (5.21)

Note that particles with a > 0 have positive energy and then travel forwards in time, while particles
with a < 0 have negative energy and travel backwards in time. This means that crossing is obtained
by sending a −→ −a.
Now, let us consider a scattering process a+ b −→ c+ d, where all the particles have the same mass.
The energy momentum conservation gives the two equations p0a + p0b = p0c + p0d and p1a + p1b = p1c + p1d,
which in light-cone coordinates becomes

a+ b− c− d = 0 ,
1

a
+

1

b
− 1

c
− 1

d
= 0 . (5.22)

We now have all the ingredients to move on to the mirror theory, however, for the sake of completeness,
let us discuss a little further some interesting features of the relativistic case.
Another useful notation is obtained by introducing the parameter θ = log a, known as rapidity. In
this way we obtain

(p, p̄) = (meθ,me−θ) , (5.23)

and thus using (5.21)
p0 = m cosh θ , p1 = m sinh θ . (5.24)

According to what discussed above, a real value of the rapidity describes a forward particle. Further-
more, crossing is given by the shift

θ −→ θ + iπ . (5.25)

Let us discuss how a Lorentz transformation acts in these coordinates. In 1+1 dimensions, a Lorentz

matrix is a matrix Λ that respects the equality ΛT ηΛ = η, where η =

(
−1 0
0 1

)
.

Therefore, given a generic matrix Λ =

(
a b
c d

)
, enforcing the Lorentz condition one can find

ΛT ηΛ = η ⇒


a2 − c2 = 1

ab− cd = 0

d2 − b2 = 1

⇒ Λ =

(
coshω sinhω
sinhω coshω

)
,

where ω is a real parameter. Note that this choice corresponds to the proper orthochronous subgroup.
Other choices can be made by changing the relative signs of the entries in a coherent manner.
Therefore, applying a Lorentz transformation to the vector (p0, p1), given by (5.24) we find that the
effect is to shift the rapidities, i.e. θ −→ θ + ω. This means that the two-body S matrix of a 1 + 1
relativistic theory has to be a function only of the difference of the rapidities θ12 = θ1− θ2 to preserve
Lorentz invariance. Further discussions can be found in [45].

Let us come back to the non-relativistic mirror model. Let us rewrite the dispersion relations of the
mirror massive particle z and y (4.133) in the following way:

(ω + iq)2 − p2 = 1− q2 . (5.26)

This form is equal to the relativistic expression where the energy is replaced by (ω− iq) and the mass
square is replaced by 1− q2. Therefore, as in the relativistic case, we can introduce the parameter a,
such that

(ω + iq) + p =
√
1− q2a , (ω + iq)− p =

√
1− q2a−1 , (5.27)

and the inverse map is

ω =
1

2

√
1− q2

(
a+

1

a

)
− iq , p =

1

2

√
1− q2

(
a− 1

a

)
. (5.28)
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Figure 5.1: Feynman diagram of the process z(a1)z(a2)z(a3)z̄(a4)z̄(a5)z̄(a6) −→ 0 given by the quartic Lagrangian. The
arrows describe the direction of the U(1) currents. There are 9 diagrams of this type, given by the z and z̄ permutations
of this one.

On the other hand, following the same procedure for z̄ and ȳ we find

ω̄ =
1

2

√
1− q2

(
a+

1

a

)
+ iq , p =

1

2

√
1− q2

(
a− 1

a

)
. (5.29)

Now that we have a manageable tool to deal with the momenta without having the square roots that
arise from the dispersion relations, we can start discussing the production processes.

5.4 Massive production processes

Let us start considering the production processes. In particular, we consider scattering with six exter-
nal legs, which at the tree-level receive a contribution by the quartic and the sixth-order Lagrangian.
If the theory is integrable, we expect that the two contributions cancel each other out, as shown in
[45] in the case of the sine-Gordon model.
Let us start by considering a massive production process, namely, a production process in which all
the particles involved are massive.
In particular, we consider the scattering

z(a1)z(a2)z(a3)z̄(a4)z̄(a5)z̄(a6) −→ 0 . (5.30)

Let us stress that we are dealing with a non-relativistic theory, that in the case of the mirror model is
not even unitary. Hence, the crossing symmetry property becomes more subtle. In [68] is shown how
to implement crossing symmetry in the gauge-fixed worldsheet AdS5×S5 NLSM. It is important that
these types of relations hold also for the gauge-fixed string because they allow to constrain the values
of the dressing factors [22] of the S matrix in the bootstrap approach. Anyway, for our purposes,
from the plane-wave expression of the fields (4.129), we note that z either annihilates a particle with
energy ω and momentum p, or creates an anti-particle with energy ω̄ and momentum p. Therefore,
in perturbative computations, a scattering with z̄ in the final state is obtained by a process with z
in the initial state by sending ω −→ −ω̄ and p −→ −p and vice versa. Let us stress that this map is
well-defined since it also sends the dispersion relations into each other. According to the light-cone
expressions (5.28) and (5.29), crossing is obtained by the map a −→ −a and since in our computations
we do not make any assumptions on the value of the ai, this means that showing that the process
(5.30) vanishes corresponds to showing that all the other processes obtained by crossing also vanish.

Only for this process, for simplicity we will consider the gauge a = 1/2. The Feynman diagrams are
shown in Figure 5.1 and the Feynman rules for the vertices are :
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•

z(a2) z̄(a3)

z̄(a4)z(a1)

= i

(
−2ω1ω̄3 +

iq

2

(
(ω̄3 − ω1)(1 + p2p4 + ω2ω̄4) + (p1 − p3)(ω2p4 + ω̄4p2)

))
+ permutations

=
i

16a1a2a3a4

(
8a2a4(2ia1q + (1 + a21)

√
1− q2)(2ia3q − (1 + a23)

√
1− q2) + iq

(−2(a1 − a3)(1 + a1a3)(1 + a2a4)(−1 + q2)(−i(a2 − a4)q −
√

1− q2 + a2a4
√
1− q2)

− (4ia1a3q + (1 + a21)a3
√

1− q2 − a1(1 + a23)
√

1− q2)(4a2a4 − (−1 + a22)(−1 + a24)

(−1 + q2)− (2ia2q + (1 + a22)
√

1− q2)(2ia4q − (1 + a24)
√

1− q2)))
)
+permutations .

While, according to (4.135), the propagator is

∆(x− y) = i

∫
d2p

(2π)2
eip(x−y)

p20 − 1− p21 + 2iqp0 + iϵ
. (5.31)

It can be interpreted either as a particle propagating from x to y, or as an anti-particle propagating
from y to x. If we compute the propagator for the configuration shown in Figure 5.1, in which the
momenta a1, a2 and a4 enter in the vertex, in momentum space it becomes

∆ =
i

1− q2
a1a2a4

(a1 + a2)(a1 + a4)(a2 + a4) + iϵa1a2a4
1−q2

. (5.32)

And the same is true for all the other diagrams. As pointed out above, the propagator has a pole when
there are two particles such that ai = −aj . These configurations give the factorised 3 −→ 3 processes
in which all the momenta in the initial state are the same of the final state. Therefore, dealing with
production processes, we can safely remove iϵ, considering the principal value.
The amplitude is a function of the light-cone momenta of the six particles, however, using the energy-
momentum conservation

a1 + a2 + a3 + a4 + a5 + a6 = 0 ,

1

a1
+

1

a2
+

1

a3
+

1

a4
+

1

a5
+

1

a6
= 0 ,

(5.33)

we can write, for instance, a4 and a5 as a function of the momenta of the other particles. Thus,
the amplitude depends only on four momenta, namely M = M(a1, a2, a3, a4). Note that when the
propagator has a pole, as we expect, there are three constraints and then the independent momenta
are three.
In order to simplify the computation, we note that, since z(a1), z(a2) and z(a3) are identical particles,
the amplitude must be symmetric under the exchange of a1, a2 and a3. Therefore, we can introduce
the variables

s1 = a1 + a2 + a3 , s2 = a1a2 + a2a3 + a3a1 , s3 = a1a2a3 ,

a4 = a4 .
(5.34)

This new variables are manifestly symmetric under the exchange of a1, a2 and a3 and allow to simplify
the expression of the amplitude. We performed the calculation using Mathematica. In order to make
the calculation of many terms manageable, we expanded each diagram in powers of q and Q =

√
1− q2

in the following way:

Mi =
∑
m,n

qnQmMi
mn , (5.35)

where Mi is the amplitude of the i−th diagram, and we treated each element of the expansion
separately. At the end, after all the simplifications, we recovered the complete expression by summing
all the coefficients of the expansion. The final amplitude computed using the fourth Lagrangian in
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Figure 5.2: Six-legs vertex diagram of the scattering z(a1)z(a2)z(a3)z̄(a4)z̄(a5)z̄(a6) −→ 0. The arrows above the legs
describe the direction of the momenta, while the arrows along the legs describe the direction of the U(1) currents.

the variables (5.34) is :

iM4 =
i
(
1− q2

)
8a24 (a4 + s1) s23 (a4s2 + s3)

(
−iqs2

(
2iq
(
q2 − 1

)
s22 +

(
4
(
1− 5q2

)√
1− q2 + 3iq

(
q2 − 1

)
s1

)
s3s2 + i

(
q2 − 1

)
s3

(
21qs3 + 2s1

(
q + 2i

√
1− q2s3

)))
a64 − 2iqs1s2

(
2iq
(
q2 − 1

)
s22 + (4

(
1− 5q2

)
√
1− q2 + 3iq

(
q2 − 1

)
s1)s3s2 + i

(
q2 − 1

)
s3

(
21qs3 + 2s1

(
q + 2i

√
1− q2s3

)))
a54 − s2

(((
−5s21

+ 21s2 + 81
)
s23 + 3s1

(
s2
(
−s21 + s2 + 38

)
+ 7
)
s3 + s2

(
2s2 (s2 + 8)− s21 (s2 − 3)

))
q4 + 4i

√
1− q2(

−
(
(s2 − 5) s3s

2
1

)
+
(
−s21 + s2 + 24

)
s23s1 + s2 (4s2 + 1) s1 + s2 (5s2 + 24) s3

)
q3 −

((
11s21 + 21s2

+ 279
)
s23 + s1

(
s2
(
−3s21 + 3s2 + 142

)
+ 21

)
s3 + s2

(
2s2 (s2 + 16)− 3s21 (s2 − 1)

))
q2 − 4i

√
1− q2

(
s2

+ s1s3

) (
−s3s21 + (2s2 + 1) s1 + (s2 + 42) s3

)
q − 2

(
s21 − 8

)
s22 + 2

(
8s21 − 9

)
s23 + 52s1s2s3

)
a44 −

(
s1s2

+ s3

)(((
16s21 + 21s2 + 81

)
s23 + s1

(
2s21 + 3s2 (s2 + 38) + 21

)
s3 + s2

(
(s2 + 3) s21 + 2s2 (s2 + 8)

))
q4

+ 4i
√
1− q2

(
(4s2 + 5) s3s

2
1 + (s2 + 24) s23s1 + s2 (4s2 + 1) s1 + s2 (5s2 + 24) s3

)
q3 − ((32s21 + 21s2

+ 279)s23 + s1
(
2s21 + s2 (3s2 + 142) + 21

)
s3 + s2

(
2s2 (s2 + 16)− s21 (s2 − 3)

)
)q2 − 4i

√
1− q2(s2

+ s1s3) (s1 (2s2 + 1) + (s2 + 42) s3) q − 2
(
s21 − 8

)
s22 + 2

(
8s21 − 9

)
s23 + 52s1s2s3

)
a34 + s1

((
3s1s

3
2

+
(
(s2 − 3) s21 + 5s2

)
s3s2 −

(
16s21 + 21s2 + 81

)
s33 − s1

(
2s21 + 3s2 (s2 + 38) + 21

)
s23

)
q4 + 4i

√
1− q2(

s32 + s1 (s2 − 1) s3s2 − s1 (s2 + 24) s33 −
(
(4s2 + 5) s21 + s2 (5s2 + 24)

)
s23
)
q3 −

(
3s1s

3
2 + (3s21 (s2 − 1)

− 11s2)s3s2 −
(
32s21 + 21s2 + 279

)
s33 − s1

(
2s21 + s2 (3s2 + 142) + 21

)
s23

)
q2 − 4i

√
1− q2 (s2 + s1s3)(

s22 − s3 (2s1 + s3) s2 − s3 (s1 + 42s3)
)
q + 2s3

((
s21 − 8

)
s22 − 26s1s3s2 +

(
9− 8s21

)
s23
))
a24 − 2iqs1s2s3(

4
√

1− q2
((
1− 5q2

)
s1s3 −

(
q2 − 1

)
s2
)
− iq

(
1− q2

) (
3s1s2 + 2

(
s21 + s2

)
s3 + 21s3

))
a4 − iqs1s23(

4
√

1− q2
((
1− 5q2

)
s1s3 −

(
q2 − 1

)
s2
)
− iq

(
1− q2

) (
3s1s2 + 2

(
s21 + s2

)
s3 + 21s3

)))
.

(5.36)
Now, let us consider the six-leg vertex. In order to find its amplitude, we need the expression of
the sixth-order Lagrangian. We can find it in the usual way by solving the Virasoro constraints
C1 = C2 = 0 at the second order in 1/T and performing the Legendre transform to pass from the
Hamiltonian to the Lagrangian. Finally, we perform the double Wick rotation to pass from the string
to the mirror theory.
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Figure 5.3: Feynman diagrams of the scattering u(k1)ū(k2) −→ v(k3)v̄(k4)z(a1)z̄(a2) given by the quartic Lagrangian.
The arrows describe the direction of the U(1) currents. Diagrams (a) and (b) have a massive z propagator in between,
(c) and (d) have a massless v propagator, while (e) and (f) have a massless u propagator.

In the gauge a = 1/2 we find

L(6) = 1

4
|z|4

(
|z|2(9|ż|2 − |ź|2)− (ż2 − ź2)(z̄2 − ´̄z2)

)
− q

4
|z|2

(
|z|2(żz̄ − z ˙̄z) + 2(ź2z̄ ˙̄z − ´̄z2zż) + 6|ż|2(z ˙̄z − z̄ż)

)
− q2

4
|ż|2

(
−z2( ˙̄z2 − ´̄z2)− z̄2(ż2 − ź2) + 2|z|2(|ż|2 − |ź|2)

)
.

(5.37)

The Feynman diagrams are shown in Figure 5.2 and the amplitude given by this Lagrangian is exactly
the opposite of (5.36).
Thus,

iMtot = iM4 + iM6 = 0 . (5.38)

Therefore, we have shown that the production processes of the type (5.30) have vanishing amplitudes
at tree-level.

5.5 Massive-massless production processes

Now let us consider production processes in which there are both massless and massive particles.
In particular, we consider the scattering

u(k1)ū(k2) −→ v(k3)v̄(k4)z(a1)z̄(a2) . (5.39)

In this case we use a mixed notation, i.e. the light-cone momenta for the massive particles and the
standard momenta notation for the massless ones. Clearly, following the same argument, also in
this case, showing that this process has zero amplitude corresponds to showing that all the processes
obtained by the crossing of this one have vanishing amplitude.
The propagators of the particles u and v are the usual propagators of a massless relativistic particle,
that in momentum space reads

∆ =
i

p20 − p21 + iϵ
. (5.40)

In this case there are six Feynman diagrams, which are shown in Figure 5.3. Note that, as in the
previous case, the poles of the propagators occur in the configuration in which the process becomes a
3 −→ 3 scattering with the same initial and final sets of momenta. In fact, let us consider, for instance,
the (a) diagram in Figure 5.3. From the structure of the vertex and the expression of the massive
propagator (5.31), we conclude that it gains a pole when k1 = −k2 and |k1| = −|k2|, as expected.
Furthermore, now the diagrams with a massless propagator have a pole also when all the momenta
of the massless particles in the vertex have the same sign. However, as pointed out in the previous
chapter when we computed the two-body S matrix, a vertex with four massless vanishes when the
incoming/outgoing particles go in the same direction. Thus, the contribution of these configurations to
the delta function part of the propagator is zero, and we are left with only the factorised configurations.
For this reason, once again we can safely remove the iϵ prescription from the propagator when dealing
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with production processes.
The energy momentum conservation in this mixed notation reads

k1 + |k1|+ k2 + |k2| = k3 + |k3|+ k4 + |k4|+
√

1− q2(a1 + a2) ,

|k1| − k1 + |k2| − k2 = |k3| − k3 + |k4| − k4 +
√

1− q2
(

1

a1
+

1

a2

)
,

(5.41)

and we solve it in a1 and a2, writing the amplitude as a function of the massless momenta.
In order to proceed with the computation of the amplitude, due to the modulus coming from the
massless dispersion relation, it is useful to separate the cases according to the sign of the momenta:

• k1 > 0, k2 > 0 and k3 > 0, k4 > 0 : There are no solutions to the energy-momentum constraint
with this configuration.

• k1 > 0, k2 > 0 and k3 < 0, k4 < 0 :

iM4 =
8ik1k2k3k4

(k1 + k2) (k3 + k4)

(
i
(
2a2 − 3a+ 1

)
(k3 + k4) q

(
(k1 + k2) (k3 + k4) (k1 (k3 + k4) + k2 (k3 + k4)

+ q2 − 1)
)1/2

+ k1

(
−i
(
2a2 − 3a+ 1

)
q
(
(k1 + k2) (k3 + k4)

(
k1 (k3 + k4) + k2 (k3 + k4) + q2 − 1

))1/2
+ 2k3

(
4(1− 2a)2k2k4 + (a− 1)

(
a
(
2q2 − 1

)
− q2

))
− 2(a− 1)k4

(
−2aq2 + a+ q2

)
+ 4(1− 2a)2k2k

2
3

+ 4(1− 2a)2k2k
2
4

)
− (a− 1)k2

(
i(2a− 1)q

(
(k1 + k2) (k3 + k4)

(
k1 (k3 + k4) + k2 (k3 + k4) + q2 − 1

))1/2
+ 2k3

(
−2aq2 + a+ q2

)
+ 2k4

(
−2aq2 + a+ q2

))
+ 2(1− 2a)2k21 (k3 + k4)

2 + 2(1− 2a)2k22 (k3 + k4)
2

)
.

(5.42)

• k1 > 0, k2 > 0 and k3 > 0, k4 < 0 :

iM4 = −
4i(2a− 1)k1k2k3k4

k1 + k2 − k3

(
2iaq

(
(k1 + k2 − k3) k4

(
k1k4 + k2k4 − k3k4 + q2 − 1

))1/2
− 2ak4

(
q2 − 1

)
− k1q2 − k2q2 + k3q

2 − 2iq
(
(k1 + k2 − k3) k4

(
k1k4 + k2k4 − k3k4 + q2 − 1

))1/2
+ k4

(
q2 − 1

)
+ k1 + k2 − k3

)
.

(5.43)

• k1 > 0, k2 > 0 and k3 < 0, k4 > 0 is obtained from (5.43) by exchanging k3 ←→ k4.

• k1 > 0, k2 < 0 and k3 > 0, k4 < 0 :

iM4 = 0 . (5.44)

Even though, in order to remove the absolute values, we have set the sign of the momenta, to recover
the crossing configurations we allow them to assume any value. In fact, taking for example k1 < 0
in (5.42), the amplitude corresponds to the situation in which in the final state there is a massless
particle ū with positive momenta.
All the other cases are obtained from these. In particular, parity transformations, i.e. ki −→ −ki , i =
1, 2, 3, 4, map between sectors with opposite signs of the momenta and time reversal maps between
sectors in which the signs of k1 and k3 and the signs of k2 and k4 are exchanged. Furthermore,
recalling that the mirror model is not invariant under time reversal, in order to find the correct
expression, we also have to send q −→ −q. Let us explicitly see how this map works. First, by
crossing the massive particles, we obtain the scattering u(k1)ū(k2)z(a1)z̄(a2) −→ v(k3)v̄(k4). The
amplitude is still the same because once the energy-momentum conservation has been exploited, it
does not depend on the momenta of the massive particles. At this point, we note that the Lagrangian
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Figure 5.4: Feynman diagrams of the scattering u(k1)u(k2)u(k3)ū(k4)ū(k5)ū(k6) −→ 0 given by the quartic Lagrangian.
The arrows describe the direction of the U(1) currents. There are 9 diagrams of this type, given by the u and ū
permutations of this one.

is invariant under the exchange of u and v and their respective antiparticles. Therefore, by relabelling
the momenta in such a way that k1 ↔ k3 and k2 ↔ k4, this amplitude is equal to that of the process
v(k3)v̄(k4)z(a1)z̄(a2) −→ u(k1)ū(k2). Finally, we can use the generalised time reversal to recover
the process (5.39). This means, for example, that we can find the amplitude in the case in which
k1 > 0, k2 < 0 and k3 > 0, k4 > 0 just by exchanging k1 and k3 together with k2 and k4 and sending
q −→ −q in the expression (5.43). Using a combination of this transformation and parity, one can
recover all the sectors.

Ultimately, solving the Virasoro constraints, we find the six-point vertex of this process. The pieces
of the sixth-order Lagrangian responsible for this vertex are written in the Appendix A. As in the
previous case, we find that this vertex cancels out exactly iM4 and then the total amplitude is zero.

5.6 Massless production processes

Finally, let us consider a production process involving only massless particles. We consider the scat-
tering

u(k1)u(k2)u(k3)ū(k4)ū(k5)ū(k6) −→ 0 . (5.45)

The same considerations that we did for crossing and the propagator pole structure in the previous
section are also valid here.
The Feynman diagrams are shown in Figure 5.4 and the energy-momentum conservation reads

k1 + k2 + k3 + k4 + k5 + k6 = 0 ,

|k1|+ |k2|+ |k3|+ |k4|+ |k5|+ |k6| = 0 .
(5.46)

Also in this case, in order to remove the absolute values, it is convenient to split the discussion in
different cases according to the signs of the momenta.

• k1 > 0 and k2 > 0 :

– k3 > 0 and k4 > 0 :

iM4 = 0 (5.47)

– k3 < 0 and k4 > 0:

iM4 = 0 (5.48)

– k3 < 0 and k4 < 0 :

iM4 = −64i(1− 2a)2k1k2 (k1 + k2) k3k4 (k3 + k4) . (5.49)
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All the other cases can be found from these ones using crossing, parity, or time-reversal transforma-
tions, as shown in the previous section.
On the other hand the sixth-order Lagrangian is

L(6) = 1

2
(1− 2a)2(u̇2 − ú2)(u̇ ˙̄u− ú´̄u)( ˙̄u2 − ´̄u) , (5.50)

and the amplitude of the six-point vertex once again cancels out iM4.
In conclusion, we have seen that in the mirror theory, the production processes with six external legs
at the tree-level have vanishing amplitude, according to the integrability hypothesis.

5.7 NLSM production processes

Due to the relation discussed in the previous chapter between the S matrices at the tree level of the
two theories, we expect that also these results can be mapped between the two theories.
Let us start by finding the map between an amplitude computed in the mirror theory and an amplitude
computed in the NLSM. Remaining at the tree-level, a Feynman diagram is composed by vertices and
propagators. The map between the two theories is given by1 ∂τ̃ −→ i∂σ and ∂σ̃ −→ i∂τ , where the
tilde notation denotes the mirror theory, while the non-tilde notation denotes the NLSM. According
to the plane wave expressions, this means that the map between the vertices is

P̃ −→ −iE , Ẽ −→ −iP , (5.51)

where P and E denote respectively the momentum and the energy of any massive or massless particle
of the theory.
On the other hand, (5.51) also maps between the dispersion relations of the two theories, and since
these provide the pole of the propagators, this map also provides the relation between the propagators.
In fact, taking for example the massive case, we have

i

(ω̃ + iq)2 − p̃2 − 1 + q2
(5.51)−−−→ i

ω2 − (p− q)2 − 1 + q2
. (5.52)

Finally, as we request since we are dealing with the same scattering process in the two theories, the
energy-momentum constraints are left invariant by (5.51). It only gives an overall factor ±i. Therefore,
since each element that composes the tree-level amplitudes transforms coherently, this transformation
maps the amplitudes of the two theories into each other.
Let us stress that this argument does not guarantee by itself that this is also the map between the tree-
level S matrices. In fact, as seen before, in the calculation of the S matrix the normalisation factors
(4.137) also appear. These explicitly break this map for generic values of the momenta. However,
as we have found in the previous chapter, when they are combined with the factors coming from the
delta functions in the allowed kinematic configurations, this map is restored also for the S matrix.

We have seen the expressions of the light-cone momenta for massive particles in the case of the mirror
theory. Following the same procedure, the corresponding expressions in the NLSM are

ω =
1

2

√
1− q2

(
a+

1

a

)
, p =

1

2

√
1− q2

(
a− 1

a

)
+ q , (5.53)

for z and y, and

ω̄ =
1

2

√
1− q2

(
a+

1

a

)
, p =

1

2

√
1− q2

(
a− 1

a

)
− q , (5.54)

for z̄ and ȳ.
Hence, according to the expressions (5.28) and (5.29), in this parameterisation, the map (5.51) becomes

ã −→ −ia . (5.55)

1Note that we have seen in the previous chapter that the double Wick rotation is given by τ → −iσ̃ and σ → iτ̃ .
However, by exploiting the time-reversal invariance of the NLSM or equivalently the parity invariance of the mirror
theory, this rotation is equivalent to τ → iσ̃ and σ → iτ̃ . From this it follows that the derivatives transform in the
manner written in the text.
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Alternatively, using the equivalent mirror transformation (4.122) the map reads ã −→ i
a .

Clearly, these two maps are equivalent. In fact, in light-cone momenta a parity and a time reversal
transformation are given by

parity: a −→ 1

a
, time reversal: a −→ −1

a
, (5.56)

and exploiting the fact that the mirror theory is invariant under parity, while the NLSM is invariant
under time reversal it follows that the two descriptions are the same.
On the other hand, for the massless particles, given the momentum k̃ in the mirror model and k in
the NLSM, the relation (5.51) is just

k̃ −→ −i|k| , |k̃| −→ −ik , (5.57)

where the standard dispersion relation of a massless particle has been exploited. Let us note that,
according to this expression, the analytic continuation of k̃ > 0 to k > 0 is given by k̃ −→ −ik, while
the analytic continuation of k̃ < 0 to k < 0 is given by k̃ −→ ik. Therefore, written in a compact
notation it becomes

k̃ −→ ±ik , (5.58)

depending on the sign of the momenta. Clearly, we can equivalently choose to map the two theories
in the opposite sectors just by changing the signs.
We have found that, given an amplitude in the mirror modelM(ki, ai), we can find the corresponding
amplitude in the NLSM by the analytic continuations (5.55) + (5.58). It is worth recalling that when
we were computing the amplitudes, we stressed the fact that, in order to also take into account the
crossing processes, the light-cone momenta were free to take any real values. Now, we can go further
and consider the momenta in the complex plane. In fact, all the expressions and computations we
did are well defined for any complex number. In other worlds, we did not assume in any passage
that the light-cone momenta were real. In this way, we have an expression defined for any complex
value of the momenta, which, when restricted to the NLSM physical region, describes the amplitude
of the scattering in the NLSM theory, while, when restricted to the mirror physical region, describes
the amplitude of the mirror scattering. Finally, since we have found that the expressions of the
amplitudes vanish for any complex value, we conclude that six-point production processes also vanish
in the NLSM, according to its classical integrability.
It is worth pointing out that for a generic theory this map does not guarantee that the amplitudes
in the two theories have the same structure. In fact, has mentioned at the beginning of this section
the propagator is split into a principal value plus a delta function term. In general, this map can mix
the two terms when passing from one theory to the other. However, the simple pole structure of an
integrable theory, which consists of setting the initial momenta equal to the finale ones, is invariant
under this map, and then the structure is preserved. Non integrable theories may have a more generic
pole structure which is not preserved under this map.



Conclusions

In this thesis we have studied some perturbative aspects of both the mixed-flux AdS3×S3×T 4 gauge-
fixed non-linear sigma model and its corresponding mirror theory in order to check the integrability
hypothesis and to investigate their relation.
First of all, we have quantised the bosonic gauge-fixed NLSM. The worldsheet theory is composed
of four complex massive modes and four complex massless modes, the latter coming from the torus.
Then, we found the tree-level two-body S matrix involving both massive and massless particles. As
follows from its structure (3.84)-(3.85)-(3.86) it preserves the set of momenta and obeys the classical
Yang-Baxter equation, according to the classical integrability of the theory.
Performing the double Wick rotation on the NLSM Lagrangian we end up with a non-unitary mirror
theory. In fact, as can be seen from the dispersion relations (4.133), the massive particles have complex
energies for the values of the parameter q for which the NLSM is defined, namely q ∈ (0, 1). More
generally, they are complex for q ∈ R, while they become real when q is analytically continued on
the imaginary axis. On the other hand, in the latter case, the NLSM becomes non-unitary. Since q
interpolates between the pure RR flux model (q = 0) and the pure NS-NS flux model (q = 1), the
only case in which both theories are unitary is the pure RR case (q = 0).
Thereafter, we have quantised the mirror theory leaving q as a free parameter on the whole complex
plane and we have computed the two-body tree-level S matrix (4.141)-(4.142)-(4.143). This is related
to the NLSM one by the map p→ iω and ω → ip and respects all the integrability conditions.

Another requirement for integrability is the absence of particle production processes. To investigate
this aspect, we have considered scattering processes with six external legs. At the tree-level these
receive a contribution from the quartic and from the sixth-order Lagrangian. The latter has been
computed in the NLSM by solving the Virasoro constraints at second order in 1/T and has been
mapped to the mirror theory using the usual double Wick rotation. Since these theories have derivative
interactions, which means that they have derivative terms in the potential, the relation Lint = −Hint
is no longer valid at order higher than the quartic Lagrangian. As we expect, the Hamiltonian and
the Lagrangian approaches still give the same result in the computation of the Feynman diagrams
once we consider additional terms coming from the non-commutability between the time derivatives
and the time-ordered product in the Hamiltonian. Furthermore, we expect that integrating out the
momenta in the path-integral formula (5.8), the Lagrangian receives some corrections because of the
derivative interaction terms. However, we have shown that these corrections start to appear at the
quantum level, and thus, at the tree-level we can safely rely on the Feynman rules drawn from the
Lagrangian, without considering any corrections.
In order to compute the six-point amplitudes in the production configurations, we have removed the
iϵ prescription from the propagator, considering the virtual particle propagating in between the two
vertices always off-shell. In fact, the propagator can be split into a Cauchy principal value term, which
is the off-shell contribution, and a delta function term, which is the on-shell contribution. We have
shown that the latter is responsible for the factorisation of the m → m processes. Therefore, it does
not contribute to the production amplitudes and can be neglected in our discussion. This corresponds
to the physical intuition of what factorised scattering is. In fact, as seen in the first chapter, in
integrable QFTs, a m→ m process is decomposed into a series of two-to-two processes. The on-shell
propagator splits the Feynman diagram into two vertices, where the propagator becomes a physical
incoming particle in one of them and a physical outgoing particle in the other one, manifestly showing
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the factorisation of the scattering.
Finally, with all the ingredients at hand, we have computed some production processes with six external
legs involving both massive and massless modes at the tree-level in the mirror theory. We have shown
that all of them have vanishing amplitudes, according to the integrability hypothesis.
Moreover, the mirror amplitudes can be mapped to the NLSM by the analytic continuation (5.55) +
(5.58). Therefore, since we found that the amplitudes vanish for any complex value of the light-cone
momenta and since in these processes this map acts coherently on the propagators in the sense that
it maps the principal values to the principal values and the delta functions to the delta functions; the
absence of production in the mirror theory is mapped to the absence of production in the NLSM and
vice versa. Let us stress that all these results and the tree-level integrability structure are still valid
for any value of the parameter q in the complex plane, without assuming q ∈ (0, 1), that is the interval
in which the NLSM is defined .
From these results, further investigations can be carried out. First, the tree-level matrix can be used
to check the complete non-perturbative S-matrix by expanding it in T >> 1. In particular, this is
known up to four overall factors, called dressing factors, and the perturbative results can be used
to give a perturbative evaluation of these factors. Furthermore, one can investigate the integrability
structure at the one- or higher-loop levels. Since in this case fermionic particles start to appear in
the loops, the two-body S matrix is no longer diagonal; however, it is still supposed to respect the
Yang-Baxter equations. Some steps in this direction can be found e.g. in [69], [70].
Finally, since the mirror theory is necessary to compute the ground state energy of the finite-size
string, further investigations need to be carried out about its non-unitarity. In particular, in order to
have a well-defined description, it must return a real energy spectrum for the string. So far, the TBA
approach has been carried out in the special cases q = 0 [67], [71], [72] and q = 1 [73].





Appendix A

Sixth-order Lagrangian

Here we write the explicit expression of the pieces of the sixth-order Lagrangian which contribute to
the u(k1)ū(k2) −→ v(k3)v̄(k4)z(a1)z̄(a2) scattering:

L(6) = 1

2
i

(
−u̇v̇(−2(1− 2a)aqz̄(−3iż ˙̄u ˙̄v + iź ´̄u ˙̄v + iź ˙̄u´̄v + iż ´̄u´̄v) + 2(1− 2a)aqz(−3i ˙̄z ˙̄u ˙̄v + i´̄z ´̄u ˙̄v + i´̄z ˙̄u´̄v

+ i ˙̄z ´̄u´̄v)− izz̄(−((−1 + 4(1− 2a)− (1− 2a)2) ˙̄u ˙̄v) + i´̄u(i´̄v + i(1− 2a)2 ´̄v)) + 2i(1− 2a)2(−ź ˙̄z(´̄u ˙̄v + ˙̄u´̄v)

− ź ´̄z(− ˙̄u ˙̄v − ´̄u´̄v) + iż(−3i ˙̄z ˙̄u ˙̄v + i´̄z ´̄u ˙̄v + i´̄z ˙̄u´̄v + i ˙̄z ´̄u´̄v)))− úv́(izz̄((1 + (1− 2a)2) ˙̄u ˙̄v − (1 + 4(1− 2a)

+ (1− 2a)2)´̄u´̄v)− 2(1− 2a)aqz̄(−iź(´̄u ˙̄v + ˙̄u´̄v)− iż(− ˙̄u ˙̄v − ´̄u´̄v))− 2(1− 2a)aqz(i´̄z(´̄u ˙̄v + ˙̄u´̄v) + i ˙̄z(− ˙̄u ˙̄v

− ´̄u´̄v)) + 2i(1− 2a)2(ż ´̄z(´̄u ˙̄v + ˙̄u´̄v) + ż ˙̄z(− ˙̄u ˙̄v − ´̄u´̄v) + iź(−i´̄z ˙̄u ˙̄v − i ˙̄z ´̄u ˙̄v − i ˙̄z ˙̄u´̄v + 3i´̄z ´̄u´̄v))) + úv̇(izz̄(´̄u ˙̄v

− ˙̄u´̄v) + (1− 2a)q(−iżz̄(´̄u ˙̄v − ˙̄u´̄v) + iźz̄( ˙̄u ˙̄v − ´̄u´̄v) + z(−i´̄z ˙̄u ˙̄v + i ˙̄z ´̄u ˙̄v − i ˙̄z ˙̄u´̄v + i´̄z ´̄u´̄v))− (1− 2a)2

(−i(zz̄(´̄u ˙̄v − ˙̄u´̄v) + 2iź(−i ˙̄z ˙̄u ˙̄v − i´̄z ´̄u ˙̄v + i´̄z ˙̄u´̄v + i ˙̄z ´̄u´̄v)− 2iż(i´̄z ˙̄u ˙̄v − i ˙̄z ´̄u ˙̄v + i ˙̄z ˙̄u´̄v − i´̄z ´̄u´̄v)) + q(−iżz̄(´̄u ˙̄v
− ˙̄u´̄v) + iźz̄( ˙̄u ˙̄v − ´̄u´̄v) + z(−i´̄z ˙̄u ˙̄v + i ˙̄z ´̄u ˙̄v − i ˙̄z ˙̄u´̄v + i´̄z ´̄u´̄v)))) + u̇v́(izz̄(−´̄u ˙̄v + ˙̄u´̄v) + (1− 2a)q(−iżz̄(−´̄u ˙̄v
+ ˙̄u´̄v) + iźz̄( ˙̄u ˙̄v − ´̄u´̄v) + z(−i´̄z ˙̄u ˙̄v − i ˙̄z ´̄u ˙̄v + i ˙̄z ˙̄u´̄v + i´̄z ´̄u´̄v))− (1− 2a)2(i(zz̄(´̄u ˙̄v − ˙̄u´̄v)− 2iź(−i ˙̄z ˙̄u ˙̄v + i´̄z ´̄u ˙̄v

− i´̄z ˙̄u´̄v + i ˙̄z ´̄u´̄v) + 2iż(i´̄z ˙̄u ˙̄v + i ˙̄z ´̄u ˙̄v − i ˙̄z ˙̄u´̄v − i´̄z ´̄u´̄v)) + q(−iżz̄(−´̄u ˙̄v + ˙̄u´̄v) + iźz̄( ˙̄u ˙̄v − ´̄u´̄v) + z(−i´̄z ˙̄u ˙̄v

− i ˙̄z ´̄u ˙̄v + i ˙̄z ˙̄u´̄v + i´̄z ´̄u´̄v))))

)
.

(A.1)
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