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“Home is behind, the world ahead

And there are many paths to tread

Through shadow, to the edge of night

Until the stars are all alight.”

—J.R.R. Tolkien, The Lord of the Rings
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Chapter 1

Abstract

Galaxies evolve hierarchically through merging with lower-mass systems, and the “remnants” of these

events are a key indicator of their past assembly history. These “remnants” are star systems that,

during their lifetime, were captured by the gravitational potential of a larger galaxy, and ended up in

the star halo of their host. Accurately measuring the properties of the accreted galaxies and hence

unraveling the Milky Way (MW) formation history is a challenging task. In this work I present

CASBI (Chemical Abundance Simulation Based Inferece), a novel inference pipeline for Galactic

Archaeology based on Simulation Based Inference methods. CASBI leverages on the fact that there

is a well defined mass-metallicity relation for galaxies. CASBI performs inference of key galaxy

properties based on multidimensional chemical abundances of stars in the stellar halo. Hence, I recast

the task of unraveling the merger history of the MW into a SBI problem to recover the properties

(e.g. total stellar mass and infall time) of the halo building blocks using the multidimensional

chemical abundances of stars in the stellar halo as observable. I highlight CASBI’s potential by

inferring posteriors for the stellar masses of completely phase mixed dwarf galaxies solely from the

2d-distributions of stellar abundance in the iron vs. oxygen plane and find accurate and precise

inference results.
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Chapter 2

Introduction

2.1 Morphology of the Milky Way: disk and halo

This section in inspired by [BT08]. The majority of stars in the Milky Way lies in a flattened,

roughly axisymmetric structure known as the Galactic disk. The midplane of this disk is called the

Galactic plane. In the direction z perpendicular to the Galactic plane the density of stars follows

an exponential,

ρ(R, z) = ρ(R, 0)e−|z|/zd(R), (2.1)

where zd(R) is the scale height at radius R. A good representation of the vertical structure of the

disk is obtained by superimposing two populations described by different scale heights: the thin disk

with zd(R) ≃ 300 pc and the thick disk with zd(R) ≃ 1 kpc. Age-wise the stars in the thin disk are

younger. The thick disk is characterized by stars with lower metallicity and, at a given metallicity,

they have higher abundances of the α elements relative to iron, suggesting that the thick disk formed

earlier. The outermost stellar structure is the stellar halo, where 1% of the stars of the Galaxy reside.

These stars are old and have low metallicity, suggesting that this structure was one of the first to form

in the history of the Galaxy. It is also characterized by no mean rotation and an almost spherical

mass distribution that follows a power-law function of the radius (ρ ∝ r−3). The stellar halo is where

the majority of disrupted stellar systems reside, like globular clusters and small satellite galaxies,
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8 2. Introduction

which are the main protagonists of this thesis. As described in [Col+18], the classical kinematic cuts

to select different components are for thin disk stars a total velocity Vtot < 50 km s−1, for thick disk

70 km s−1 < Vtot < 180 km s−1 and for the halo stars Vtot > 200 km s−1. It is also possible to make

cuts based on tangetial velocity: VT < 40 km s−1 for the thin disk and 60 km s−1 < VT < 150 km s−1

for the thick disk, but still VT > 200 km s−1 for the halo.

2.2 Galactic Archaeology

Milky Way like galaxies have an eating habit of destroying and digesting hundreds of lower mass

systems. The heaviest of these “meals” possess a star content that adds up to form an extended

galactic halo of stars. The long orbital time scale in the halo has allowed these stellar systems to

retain information of the progenitor orbits in the phase space, especially in the Energy-Angular

momentum plane. Thus, as described in [DB24], the galactic halo is not only a “fossil record” of the

assembly history of the MW, but it is also a great tool to study high redshift (now destroyed) dwarf

galaxies, opening a cosmological window in our MW neighborhood, with all of its observational

advantages. For these reasons, the flourishing field of Galactic Archaeology has become increasingly

popular, aiming, as the name “Archaeology” suggests, to probe information on the early Universe

by studying old and near relicts of the past. The main limitation in the study of the galactic halo

has been the limited and incomplete amount of velocity information available.

The scenery changed with the launch of the astrometric Gaia mission and its goal of creating

an all-sky phase space map of the Galaxy. A data-heavy period has begun, especially with the

Gaia second data release (DR2) which contains position, parallax and proper motion of 1.3 billion

sources, with a limiting magnitude of G = 21. If we take nearby stars using the tangential velocity

cut to select mostly halo objects, it is possible to obtain the Hertzsprung-Russell diagram (HRD)1

in Fig. 2.1. This HRD presents two clearly distinct sequences, separated at the level of the turn-

off point, which are referred to as blue and red sequences with respect to the Gaia color index

GBP −GRP. As proposed in [Col+18], this bimodality is interpreted as the presence of two stellar

1The HRD is a scatter plot of color index and absolute magnitude of stars, which are respectively linked to
their stellar luminosity and their temperature. This kind of plots are common tools for astronomers to study stellar
population and star evolution.
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Figure 2.1: Left: HRD for stars in halo like orbit from the DR2. Center: Stars in halo like orbit
divided into the blue and red sequence. Right: Toomroe diagram for the stars in the two sequences.
This Figure is taken from [DB24].

populations with different mean metallicities, [Fe/H] ∼ -1.3 and [Fe/H] ∼ -0.5. Further studies show

that chemically the red sequence has higher α-element abundances with respect to the blue sequence,

while dinamically its orbits are mostly prograde and characterized by low eccentricity; on the other

hand, stars belonging to the blue sequence are on high eccentricity orbits that reach further into

the halo. This kind of chemodynamical analysis was further tested by [Hel+18], and finally the red

sequence was associated with thick disc stars and the blue sequence with an ancient massive merger.

In Fig. 2.2 I report the most recent Gaia release (GD3) and a summary of its exceptional and

challenging dataset which has given new fuel to the field of Galactic Archaeology.

Inferring the assembly history of the Milky Way is a challenging task, even in the era of the

Gaia mission and its six-dimensional phase space data, and the complementary chemical information

obtained from wide-field spectroscopic programs such as GALAH [De +15], H3 [Con+19], APOGEE

[Maj+17], RAVE [Ste+06], SEGUE [Yan+09], or LAMOST [Cui+12]. Although the dynamical

times of the accreted objects are on the order of the age of the host galaxy, phase mixing of accreted

and in situ stars will occur, and phase space only retains part of the information on the original

infall parameters. Hence, robustly identifying distinct structures is challenging, and disentangling

the components in fully phased mixed situations is nearly impossible. However, stellar chemical

abundances remain unchanged throughout the lifetime of a star, serving as unique labels to tag

stars. In order to understand why chemical tagging is so effective, we need to keep in mind some

important results: the chemical abundance space is dependent on the star formation history and
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Figure 2.2: Gaia third data release in number.

the total stellar mass of galaxies, leading to distinct differences in the abundance distribution of

different galaxies (e.g. [Buc+23]). In particular, the type II (core collapse) supernove (SNe) of

massive stars produce α-elements and iron in an almost constant ratio over short timescales (Myr),

while type Ia SNe produce iron more efficiently over long time scales period (Gyr). As previously

stated, the chemical space is dominated by the total mass of the galaxy, since the more massive

galaxies are more capable to resist the expulsion of metals due to supernova feedback, stellar wind,

or ram pressure. In particular for dwarf satellite galaxies, as extensively shown in [Kir+13], there

exist a mass metallicity relation that holds for several orders of magnitude. In figure 2.3 I report

this relation for MW and M31 satellite galaxies.

A great tool to study the star formation history, having access to the metallicity of individual

stars, is the Metallicity Distribution Function (MDF). The shape of this distribution can tell us

whether a galaxy evolved isolated (“closed box” model) or with gas flow during its star formation

lifetime. To obtain a faithful model for the MDF for satellite dwarf galaxies, the introduction of

ram pressure stripping is required. During their orbit, satellite dwarf galaxies pass through the

hot corona, which can exert ram pressure on the galaxies’ gas, and this kind of stripping is able

to efficiently remove all the gas after a couple of pericentric passages, effectively halting the star
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Figure 2.3: Left: the stellar mass stellar metallicity relation for MW and M31 satellites dwarf
galaxies. The average metallicity were obtained using spettroscopy instead of photomoetry since
they are not effected by the age-metallicity degeneracy. The functional form obtain by fitting the
MW satellite is: < [Fe/H] >= (−1.69± 0.04) + (0.3± 0.02) log( M⋆

106M⊙
). It can be appreciated that

this relation holds also for more massive galaxies (right), like the sample from the Sload Digital Sky
Survey (SDSS). This Figure is taken from [Kir+13].
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Figure 2.4: Left panel: Toomre diagram for Gaia DR2 data where in blue are stars selected to
pick out the GSE structure. Middle panel: similar to the left panel but with simulated data of a
minor merger, resulting in a less concentrated structure, mostly due to the fact that a more massive
structure is more able to retain its original orbital properties. Right panel: the star in blue is the
same as in the left panel cross-mated with the APOGEE chemical information. This Figure is taken
from [Hel+18].

formation history.

The crossmatch between Gaia and spectroscopic data allowed for the discovery of the ”Gaia-

Sausage-Enceladus” (GSE) ([Bel+18], [Hel+18]), a massive accretion event whose remnant now

dominates the observation of the inner stellar halo of our Galaxy. In the early works, the GSE

is described as a major structure with mostly highly eccentric retrograde orbit with a chemical

abundance distribution of stars that is highly distinct from the thin and thick disc stars of the Milky

Way, as shown in Fig. 2.4. Today, we know that some of the GSE stars selected in [Hel+18] belong

to the Sequoia event, as describe in [Mye+22], and that the the GSE has a zero net velocity. It is

important to note that in both [Bel+18] and [Hel+18], the use of numerical simulations has been

crucial to interpret the observational results, relying on N-body simulation of a massive merger (20%

of the mass of the host) with a MW like galaxy.

As well described in [Kyl20], numerical simulations are not well suited for statistical inference,

often due to the intractability of the likelihood, and in general scientists rely on powerful ad hoc

or field-specific summary statistics to overcome this problem. With the increasing growth of Ma-

chine Learning capabilities and the interconnection between probabilistic models and likelihood-free

methods, I decided to test the Simulation Based Inference (SBI) technique on the challenging task of

inferring MW satellites parameters (e.g. stellar mass and infall time) from the chemical abundance

plane, while also facing the intrinsic problem of not knowing at prior how many parameters we have
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to infer in a given galactic halo. Hence CASBI (Chemical Abundance Simulation Based Inference)

is a prof-of-concept work that aims to take advantage of cosmological simulations to guide the infer-

ence process and obtain accurate and calibrated posterior distribution via Neural Posterior Estimate

(NPE). As reported in Chapter 5, CASBI is able to strongly constrain the stellar mass parameters,

probably due to the previously cited mass-metallicity relation, but lacks the information to brake

the degeneracy of the infall time.

This thesis is structured as follows. Chapter 3 reports two methods that try to bridge the

gap between simulations and observations in the field of Galactic Archaeology, and also a brief

introduction to the SBI technique. In chapter 4 the main CASBI pipeline is presented. In chapter

5 the results obtained on the test set and metrics to evaluate the accuracy and calibration of this

method on both a subhalo and a halo basis are reported. In chapter 6, I summarize the major

findings, describe limitations, and propose some future prospects.
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Chapter 3

Previous work

In this chapter, I present two inspiring methods for studying galactic halo. CASBI tries to build

upon the core ideas and results presented in these two works, leveraging the automatic and accurate

tools available in the Machine Learning realm to perform inference. Lastly, a short summary of the

general framework of Simulation Based Inference is presented, with a focus on the Neural Posterior

Estimate technique.

3.1 The reconstruction of the Assembly history of the Milky

Way

Robustly identify distinct structures in a galactic halo is challenging, and disentangling components

in fully phase mix situations is nearly impossible. In order to characterize the assembly history

[Cun+22] propose using the “CARDs”, the Chemical Abundance Ratio Distribution of the stars,

obtained from a subsample of accreted object candidate from the FIRE-2 zoom-in cosmological simu-

lations of MW-mass galaxies [Wet+16]. This method does not recover posteriors for the parameters

of the accreted objects, but rather considers the host halo as a linear combinations of templates

CARDs

CARDhalo, model(xd) =
∑︂
i

∑︂
j

AijCARDtemp,ij(xd|Msat,i, t100,j), (3.1)

15



16 3. Previous work

treating each coefficient Aij as the fraction of mass contribution to the chemical abundance ratio

xd from the accretion event of the template satellite with mass Msat,i and quenching time t100,j
1,

and it tries to recover those coefficients by minimizing the difference between the observed CARDs

and the linear combination of the templates. An example of template iron and magnesium joint

distributions constructed from dwarf galaxies is presented in Fig. 3.1. The templates that were used

belong to the catalog of star particles in the FIRE simulations belonging to dwarf galaxies, stellar

streams, and phase-mixed debris constructed in [Pan+21]. This method relies on the assumption

that the chemical space of accreted and isolated dwarf galaxies is similar up to the quenching time,

due to ram pressure quenching the star formation history of the accreted object and hence ’freezing’

these abundance ratios. A possible limitation of this assumption, which might also affect CASBI

results, is that a distinction between destroyed and surviving accreted dwarf galaxies is not taken

into account. This can lead, as described in [Nai+20], to a -0.3 dex offset of the mass metallicity

relation [Kir+11] that might be necessary.

The second work is described in [Dea+23]. This method takes advantage of the mass-metallicity

relation to decompose the MDF of the host galaxy as a mixture of accreted halo’s MDF, assumed

gaussian for each of these building blocks. This decomposition is based on [Kir+11] that demon-

strated that at the dwarf mass scale, not only does the average metallicity varies with the mass, but

also the width of the MDF, with the lowest mass dwarf having a wider spread of metallicities. The

Likelihood that is used in [Dea+23] for the [Fe/H] distribution, indicated as z is then:

P (z|N,Li, µi, σi) =
1∑︁
Li

N∑︂
i=1

LiN (z|µi, σi), (3.2)

where they have assumed that the number of stars in the sample scales linearly with galaxy luminosity

Li, that the µi follows a mass-metallicity relation and that the σi depend on the galaxy luminosity

as described in [Kir+11].

Similarly to CASBI, this method faces the challenge of having a variable number of parameters,

making them difficult to sample in practice. In order to tackle this problem they decided to bin

the luminosity Lj and count the number of contributions from each bin Nj . In order to perform

1The t100,j is defined as the time for a dwarf or halo progenitor to form 100% of its stars. In CASBI, it is also
referred to as infall time.
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Figure 3.1: Template for accretion events constructed using dwarf galaxy in [Cun+22]. More massive
dwarf galaxies have CARDs that extend to higher metallicities. At fixed stellar mass, galaxies that
assemble more quickly (lower t100) have more density at higher [Mg/Fe] than the component with a
more extended star formation history.

the inference, they adopted a nested sampling scheme to obtain a posterior distribution for the

number of galaxies in each luminosity bin. Using the inferred posterior probability, they were able

to draw the Milky Way halo number of satellite as a function of their luminosity, reported in Fig.

3.2. The samples used in this posterior were obtained from different spectroscopic surveys after

applying various cuts to avoid contamination from thick disc stars. The cuts were made based on

parallax distance, radial distance, height with respect to the plane of the galaxy, and only stars with

retrograde orbits were selected.

CASBI adopts the same superimposition of the components contribution, without neither a

prefix nor an analytical form for the joint distribution of the chemical abundances, relaxing these

assumptions and relying only on the available samples from the N-body simulations.
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Figure 3.2: The estimated number of destroyed dwarf galaxy in the MW halo as a function of their
V band absolute magnitude. The separation in two bins of log(g) is because dwarf stars and giants
can have different metallicity biases. This Fig. is taken from [Dea+23].

3.2 Simulation Based Inference

The SBI framework has existed along with the more traditional likelihood-based inference methods

for quite some years already, having its roots in Approximate Bayes Computation (ABC) [Rub84],

and has been used in a variety of fields, from cosmology to particle physics. The main difference

between SBI and likelihood-based methods, such as Markov Chain Monte Carlo (MCMC), is that

the former does not require the likelihood function to be known, but rather relies on a simulator to

generate synthetic data x once the input parameters θ are passed to it, and the inference pipeline

is trained based on data-parameters pairs (x,θ).

The recent advance of this technique was made possible by the use of ML models to emulate con-



3.2. Simulation Based Inference 19

ditional probability distributions, a technique known as Neural Density Estimation (NDE) [Pap19].

NDE is achieved by training a Normalizing Flow architecture2, a generative model that allows to

obtain samples from a complex distribution p(x) by constructing a series of bijiective transforma-

tions f i
ϕi

that map x to a latent space z that is distributed as a simple distribution, like a Gaussian.

Accordingly to [KD18], by approximating the transformation f i with the i-th layer of a Neural

Network with parameters ϕi, the model learns how to sample from p(x) using the schema presented

in Eq.3.3.

p(x) ∼ x ≡ h0

f1
ϕ1←−→ h1

f2
ϕ2←−→ h2 . . .

fK
ϕK←−→ hK ≡ z ∼ N (z; 0, I) (3.3)

Using the change of variable formula, the probability density function (pdf) can be written as:

log p(x) = log p(z) + log

⃓⃓⃓⃓
det

(︃
∂z

∂x

)︃⃓⃓⃓⃓
= log p(z) +

K∑︂
i=1

log

⃓⃓⃓⃓
det

(︃
∂hi

∂hi−1

)︃⃓⃓⃓⃓

= log p(z) +

K∑︂
i=1

log

⃓⃓⃓⃓
⃓det

(︄
∂f i

ϕi
(hi−1)

∂hi−1

)︄⃓⃓⃓⃓
⃓ ,

(3.4)

where the last term is the sum of the log determinant of the Jacobian of the transformations f i
ϕi
. In

order to train the model, the negative log pdf is used as loss function. Once the model is trained, it

is easy to sample from the distribution p(x) by sampling from the latent space z and applying the

inverse transformations (f1
ϕ1
)−1◦· · ·◦(fK

ϕK
)−1. In order to keep the computation tractable, the use of

coupling layers allows to obtain a triangular Jacobian. A simple yet effective coupling layer that

acts separately along dimensions d is the Affine coupling layer, presented in Eq. 3.5. The functions

s and t are usually parameterized by a neural network, and the fixed and transformed dimensions

are swapped after each layer to achieve an overall permutation-invariant transformation.

⎧⎪⎪⎨⎪⎪⎩
h1:d
i = h1:d

i−1

hd:D
i = hd:D

i−1 × exp(s(h1:d
i−1)) + t(h1:d

i−1)

(3.5)

2This has been by far the more popular option for NDE, but new and more performing models are beeing tested
in the active field of SBI methods. An example is described in [Dax+23].
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The choice of the invertible function affects the expressivity of the model, defined as the ability

to approximate a more complex multivariate distribution, at the cost of more parameters, compu-

tational time, and inference time.

Following the discussion presented in [Ho+24], when using NDE for Bayesian analysis, one can

choose to approximate the Posterior, the Likelihood or the Likelihood ratio3, and this choice de-

pends mostly on the problem that one wants to solve. As a rule of thumb, one can consider the

dimensionality of the observations and the parameters as the complexity of the Likelihood and the

Posterior respectively.

In this case, due to the complexity of the Likelihood distribution of the chemical abundance

space4, I choose to approximate the Posterior distributions, and so I adopted the Neural Posterior

Estimate (method F in Figure 3.3) that can be trained using the negative log-Posterior as loss

function:

LNPE(θ) = −EDtrain
logP̂(θi|xi)

= −EDtrain
log

(︃
p(θ)

p̃(θ)
qω(θi, xi)

)︃
,

(3.6)

where the Posterior distribution P̂(θi|xi) is approximated by the product of the ratio of the prior

p(θ) and proposal distribution p̃(θ) and the neural conditional distribution qω(θi, xi), parameterized

by the parameters ω. Usually, the conditioning of the posterior approximation is obtained by making

the transformation f dependent on the observation x, but due to its high dimensionality, especially

in cosmological simulations, an embedding network is used to compress the observations in a latent

space that is past to the NPE to guide the inference. Many excellent frameworks are already available

to handle SBI analysis, and CASBI is built on top of the ltu-ili5 python package [Ho+24]. In

particular, CASBI analysis was performed with the lampe backend6 to train a Neural Posterior

Estimate of the posteriors of the parameters.

3They are referred to as Neural Posterior Estimate (NDE), Neural Likelihood Estimate (NLE) and Neural Ration
Estimate (NRE) respectively. All of these techniques aim at the same goal: sampling the Posterior distribution.

4We would need to evaluate the Likelihood on the 64× 64 pixel space, while the vector parameter space has only
two dimensions.

5https://github.com/maho3/ltu-ili
6https://github.com/probabilists/lampe?tab=readme-ov-file

https://github.com/maho3/ltu-ili
https://github.com/probabilists/lampe?tab=readme-ov-file
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Figure 3.3: Different approaches to Simulation Based Inference, from [Kyl20].
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Chapter 4

CASBI: Chemical Abundance

Simulation Based Inference

CASBI is a Simulation Based Inference (SBI) Python package to recover the properties of building

blocks of the Milky Way like galaxy’s halo from spectroscopic observations of chemical abundances.

In this chapter, I present the components and the pipeline of the inference process in Sections 4.1

and 4.2, while also reporting some of the early tests in Appendix A.1 and A.2 that are not present

in the final version of this project.

4.1 Simulator and Preprocessing

The data-parameters pairs (x,θ) needed to train the NPE are obtained from the Numerical Inves-

tigation of a Hundred Astrophysical Objects (NIHAO) project [Wan+15]. The NIHAO is a set

of ∼100 cosmological zoom-in hydrodynamical simulations evolved using the N-body SPH solver

Gasoline [WSQ04], with halos that range from dwarf (Mstar ∼ 5 × 109M⊙) to Milky Way like

(Mstar ∼ 2 × 1012M⊙). The halos were identified using the Amiga Halo Finder code (AHF), pre-

sented in [KK09], by looking for overdensity in an adaptively smoothed density field. In order to

handle these simulations, in CASBI the pre-processing is done using the tools available in pynbody

[Pon+13]. Fig. 4.1 shows face on samples of galaxies in the NIHAO simulation.

23
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Figure 4.1: Face on NIHAO galaxies from [Wan+15]. Images are 50 kpc on a side.

Similarly to [Cun+22] and [Dea+23], CASBI relies on the assumption that once the accreted

object falls into the gravitational potential of the Milky Way like galaxy its star formation rate is

halted, so each of the snapshots in these simulations is treated as a possible building block of galactic

halo.

The construction of the observables is done by aggregating multiple subhalo into a single stellar

halo. In order to create subhalo I construct 2D histogram, referred to as xi, by binning the chemical

abundance plane ([O/Fe], [Fe/H])1 for each of the snapshot available in NIHAO. In Fig. 4.2

some of these galaxies abundance plane are reported. Hence, the observations are multidimensional

distributions of chemical abundances. I have also filtered the galaxies that I use as building blocks

to retain only those with a total stellar mass lower than the stellar mass of the Large Magellanic

Cloud (Mstar < 6 × 109M⊙), the largest accreted object by the Milky Way. The 2D histograms

have 64× 64 pixels, and minimum and maximum values set after filtering all stars that were outside

1They are respectively proxy for α elements abundance and metallcity



4.1. Simulator and Preprocessing 25

4 2 0
[Fe/H]

0.0

0.4

0.8

[O
/F

e]

log10Mstar[M ] : 6.65
[Gyr] : 2.17 

4 2 0
[Fe/H]

log10Mstar[M ] : 6.85
[Gyr] : 2.82 

4 2 0
[Fe/H]

log10Mstar[M ] : 7.76
[Gyr] : 4.12 

4 2 0
[Fe/H]

log10Mstar[M ] : 8.92
[Gyr] : 11.88 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 4.2: Example of chemical abundance plane used in CASBI with different masses and infall
time. The logarithm number density is reported in the colorbar.

the 0.01 percentile in either metallicity or α element abundance2. All the star particles are collected

into a pandas dataframe, and each of the xi is uniquely identifiable through the Galaxy name

attribute3. The set of all possible subhalos is defined as “Template Library”. The actual stellar halo

observable xj =
∑︁Nj

sub
i xj

i used in CASBI is then a super imposition of Nsub of these 2D histograms,

where N j
sub is the number of accreted objects that are present in the j-th galaxy halo. The actual

choice of how to sample the template library created from the NIHAO simulations can be adapted.

Firstly, I tested to randomly sample in A.2, but eventually CASBI uses a more physically informed

approach by using a luminosity function and a total stellar mass budget in Section 4.2. In CASBI

the template library is a Python class that is implemented to handle the training and test sets,

returning different data formats depending on whether they need to be passed to the inference

pipeline or to be inspected by the user. The user can decide what kind of luminosity function to

adopt, the stellar mass budget, and the noise level to apply to the observations.

The goal of CASBI is to recover the parameters θji for each of the subhalos in the galactic halo

from the observable xj=
∑︁

i x
j
i , and to gain insight into the number of subhalos. Among all the

possible parameters available from the simulations, I have decided to limit the parameters to stellar

mass Mstar and age of the accreated galaxy τ , also called infall time due to their equivalence in the

assumption of quenched star formation after accretion.

2This filtering was used to remove strong outlier star particles present in some of the NIHAO snapshots.
3The xi that are used in this work are conceptually equivalent to the CARDs in [Cun+22]
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4.2 Realistic halo and one step Inference

Figure 4.3: CASBI pipeline. In this thesis analysis I have fixed the Template Library to be a
subsample of the NIHAO simulations, as described in Section 4.1, but it can be swapped with
user-choice simulations. The choice of the Template Library incorporate all the assumption that one
make on the chemical enrichment history of Galaxies, the dynamical effects that accreted objects
undergo, and the cosmology, making this part the principal cause of possible mispecification. During
sampling non-repeated subhalos are sampled, aiming to reproduce a Luminosity function that
can be set by the user. For the analysis, the Luminosity function N(< L) was taken it from
[Kop+08]. Moreover a stellar mass budget can be set to generate realistic stellar halo without
the need of fixing the number of subhalos (even though a maximum number of subhalos is set in
the analysis for computational reasons). In the analysis, the stellar mass budget of the halo was
fixed accordingly to [DBS19], but it can be set by the user accordingly to the estimated total stellar
mass available in the observation. The SBI pipeline can incorporate a Surrogate Simulator to
perform the sequential version of NPE. In the analysis I do not adopt this component as described in
Section A.1. The Observational Realism encapsulate all that concerns bridging the gap between
simulation and observation, i.e. uncertainties of spectroscopic surveys, selection functions, etc. In
my analysis I have only injected the possibility to add instrumental noise, leaving background and
foreground contamination and selection function as future work. During inference, the user can pass
a galaxy abundance plane xj and obtain posterior θji for the the i-th most massive subhalo. The
model used to infer needs to be trained to the correct amount of noise that one suppose to be present
in the observation of xj .
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The objective of the inference is not trivial, since in order to recover the parameters of the building

blocks of the Milky Way like galaxy we need to fix the dimensionality of the priors. This is equivalent

to having complete knowledge on the number of substructures that are present in the galactic halo.

In order to avoid the need for a two-step inference4 and still retain the possibility to access the

information on how many subhalos populate a given abundance plane, I have decided to condition

the SBI model to retrieve the i-most massive subhalo of the j-th stellar halo. In this way, the NPE

is trained with pairs of (x, θ) = ((i, xj), θji ), where xj =
∑︁

i x
j
i and xj

i are ordered accordingly to

their stellar mass Mstar. Hence, the j-th stellar halo abundance plane is shown as many times as

the number of subhalos present in it, and to guide the model in inferring the right parameters θji ,

the embedding is conditioned on the integer i. The subhalo index i is concatenated to each input of

the fully connected layers of the CNN used to embed the observations, and it is also concatenated

before passing the embedded information to the Normalizing Flow. This conditioning is summarized

in the lower part of Fig. 4.3, in which the CASBI SBI pipeline shows the integer i as a red node

concatenated to each layer of the embedding network.

Before proceeding, it is necessary to define the concept of magnitude. In astronomy, the magni-

tude is a measure of the brightness of an object. The apparent magnitude of an object, is defined

as

m1 −mref = −2.5log10
(︃

F1

Fref

)︃
, (4.1)

where F is the flux (i.e. the brightness), and m is the apparent magnitude with respect to another

object that is used as reference. If the distance of the object d (in parsec) is known, then it is also

possible to define the absolute magnitude M as

m−M = 2.5 log10

(︃
d

10

)︃
, (4.2)

which can be interpreted as the apparent magnitude of the object as seen from a distance of 10

parsec. If we have observation in a particular band, for example the V band5, we refer to the

absolute magnitude in that band using MV .

4This approach is presented in Appendix A.2.
5The V (“Visual”) band, has an effective wavelength of λ = 551nm and a bandwidth of ∆λ = 88 nm.
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As described in section 4.1, in order to create a more realistic mock galaxy halo, I have decided

to adopt a sampling scheme for the subhalos that is based on the luminosity function described in

[Kop+08]. The luminosity function describes the subhalos distribution in a range of luminosities

that spans from MV = −2 all the way to the luminosity of the Large Magellanic cloud

dN

dMV
= 10× 100.1(MV +5). (4.3)

We can manipulate Eq. 4.3 to express it as a function of the Luminosity L

dN

dL
=

dN

dMV
× dMV

dL
= 100.1(MV,⊙−2.5log10(L)+5)+1 × (−2.5L−1) ∼ L−1.25, (4.4)

which can be integrated to obtain the number of subhalos with luminosity lower then L

N(< L) = K × L1+α, (4.5)

where K is an integration constant and α = −1.25 is the single power law exponent obtained by

[Kop+08]. Other work based not only on SDSS observations like [Kop+08] but also on ΛCDM

N -body simulation set α = −1.9± 0.2 ([Tol+08]). In this work, the value of α is fixed at -1.25 and

leave the analysis of the impact of this choice to future work. Assuming a stellar-to-light mass ratio

L/Mstar ∼ 2, I normalize the equation 4.5 after setting the support to be the interval of masses

that are available in the catalog of NIHAO simulations (104.7M⊙ < Mstar < Mhalo
star ) and sample

from this distribution using an inverse scheme, with Mhalo
star being the mass budget for the mock halo

(Mhalo
star = 1.4± 0.2× 109M⊙ based on [DBS19]). After obtaining the analytic samples, the first and

second Nearest Neighbors (NN) in the catalog are taken, making sure that the distance between the

analytic and catalog sample is lower than 10% of the mass of the analytic one, and one of those NN

is randomly selected as a subhalo for the mock halos. Lastly, the total mass budget is reduced by

the mass of the NN that was used. The choice of the mass budget can be adapted and comes from

observations that do not take into account the Large and Small Magellanic Cloud, but it can be

customized or even set into a range of stellar-budget mass at each generation of a mock stellar halo.

During this iterative procedure I make sure to sample non-repeated subhalos within the same mock
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galaxy, while also avoiding repetitions of the same combinations between subhalos both within the

training and test sets and across these two sets.

In Fig. 4.3, I report the CASBI pipeline. The modularity of the SBI technique is fully integrated,

allowing to change all the components of this pipeline. The template library can be set to use a

different suite of simulated galaxies (e.g. [Pil+23]), the sampling scheme can incorporate different

luminosity function and stellar halo budget, the NPE, the embedding network architecture and

hyperparameters can be modified to allow for higher accuracy and posterior coverage thanks to

the optuna grid search implementation, and surrogate models (Free Form Flow FFF [Dra+24]) or

semi-analytic model (GRUMPY [KM22]) can be implemented to allow for the Sequential version of

the NPE. For the analysis presented in Chapter 5, the results are obtained using 1000 training set

and 100 test set data pairs.



Chapter 5

Results

In this chapter the results of the inference pipeline on the test set are reported. I also tried to bridge

the gap between simulations and observations by adding various levels of noise to the observable

x and checked the response of both the chosen accuracy and calibration metrics. In the opening

section 5.1, the calibration metrics that were used to seize the constraint capability and the possible

biases of the posterior distributions are described.

5.1 Calibration

This section is strongly inspired by [Ho+24]. In posterior estimation, our aim is to maximize the

constraining of θ given the observable x and to determine whether the uncertainties are calibrated

to the training data. These criteria are naturally adversarial, and this problem can be interpreted as

another instance of the bias-variance trade-off. It is possible to confront various NPE precisions by

comparing the cumulative posterior value of the test set P̂(Dtest) =
∏︁Ntest

i P̂(θi|xi), since a larger

posterior value concentrates more probability mass around the true value, which directly results

in a higher constraining power. The calibration of the model uncertainties can be obtained using

the Probability Integral Transformation (PIT), defined as the cumulative density function of the

posterior given x0:

31
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PIT(θ|x0) =

∫︂ θ

−∞
P̂(θ|x0)dθ. (5.1)

Due to the poor scaling of the PIT to higher dimensions, it is better to construct an estimate of

the PIT value as follows:

PIT(θ|x0) = Eθ̂∼P̂(θ|x)[Θ(θ̂ − θ)], (5.2)

where Θ is the Heaviside step function. The PIT counts the number of times that the posterior

samples θ̂ fall below the true parameter value θ. If we match the true posterior everywhere, we expect

the PIT value to be uniformly distributed in the range [0, 1] for each of the test set samples. Usually,

the PIT distribution is studied using percentile-percentile (P-P) plots1, comparing the cumulative

distribution function (CDF) of the PIT value to the CDF of a uniform distribution. This tool

can be used to constrain the over- and under-confidence regions of the posteriors. In Fig. 5.1 I

report an example of uncalibrated posteriors approximation and the corresponding P-P plot 2. But,

the percentile-percentile plot can also be an indicator of biases that are not compensated by the

uncertanties, as it is clear in Fig. 5.2 (a), leading to posteriors that are not scientifically accurate. In

addition, the number of modes mismatches between the inferred and true samples can be captured

using this kind of plot, as shown in the toy model of Fig. 5.3.

1Also called quantile-quantile plot.
2The plot is not accurate, it is created to give a rough idea of the general relation between the posterior behavior

and how it is reflected in the P-P plot.
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Figure 5.1: Examples of SBI uncalibrated posterior. Left: overconfident (red) and underconfident
(green) posteriors obtained from the same data θ, for which the true posterior (blue) is shown. Right:
P-P plot for the two uncalibrated posteriors. The goal of the calibration is to obtain a distribution
that is underconfident and as close to the diagonal as possible. This figure is inspired by [Fal+].

Since as the dimensionality of θ increases, the proper coverage requires exponentially more sam-

ples, one can rely on the PIT of each component θi of the marginal posterior, and we expect that

the value

PIT(θi|x0) = Eθ̂∼P̂(θi|x)[Θ(θî − θi)], (5.3)

has the same properties as the PIT obtain in equation 5.2 if the model is globally consistent on the

test set.

Lastly, as an approximation to verify multivariate posterior coverage, I use the Test of Accuracy

with Random Points (TARP) [Lem+23]. TARP constructs, in the limit of sufficient samples, an

estimate of posterior coverage which is guaranteed to converge to the true posterior coverage. All of

the previously described posterior coverage methods are already integrated in the ltu-ili package.
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Figure 5.2: A visualization of the quantile–quantile plot for two toy scenarios. In (a), the inferred
posterior has the correct spread, but is offset from the correct mean, leading to significant overconfi-
dence. In (b), the inferred posterior is correctly centered, but has a spread that is too large, leading
to significant underconfidence. This Figure and its caption are taken from Appendix A of [Wag+21].
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Figure 5.3: A visualization of the quantile–quantile plot for a toy model where the inferred posterior
is univariate but the true posterior is bivariate. Note that the signal falls neither cleanly in the over
or underconfident regions, but rather crosses from one to the other. This Figure and its caption are
taken from Appendix A of [Wag+21].

5.2 Test set

The ltu-ili accuracy and coverage plots from the ltu-ili package of the 100 galaxies halos of the

test set are reported, respectively, in Figs. 5.4, 5.5 and 5.6. In Fig. 5.4, the error bars represent the

68% confidence interval, and I find good predictive performance on the stellar mass Ms throughout

the mass range probed, while the infall time τ is poorly constrained. The lack of predictability of the

infall times can be associated with the degeneracy of the chemical abundances between a massive

system that was accreted early on and a less massive system that was accreted more recently. The

integration of the orbital information or using more α elements (e.g. Mg, Si, Mn) could alleviate this

limitation of the model. Both of these improvements are left for future work. The results presented

in the remaining sections are obtained only for the stellar mass parameters. Figs. 5.5 and 5.6

percentile plots show that the model is well calibrated in both marginal and posterior probabilities.

The optuna multi-objective optimization was essential to achieve these results, since I looked for

the hyperparameters that were able to obtain the highest log-probability and the minimum distance

from the diagonal at the 0.5 level for the TARP value.
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Figure 5.4: Predicted vs True values with error bars representing the 68% confidence interval
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Figure 5.5: Coverage for the marginal probabilities.
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Figure 5.6: TARP percentile-percentile plot. Approximation of coverage plot for the joint distribu-
tion.
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5.3 A first step toward inference on observations

Simulations, in general, have no uncertainties associated with their values. If we want to bridge

the gap between the idealized realm of numerical simulations and the real world, we need to inject

all the possible sources of noise and error that affect observations. Inspired by the work presented

in [BMB24], I tested the robustness of the model by training it on observations contaminated by

Gaussian noise with zero mean and increasing standard deviation σNoise
3. In Fig. 5.7, we can see

that as σNoise increases, the characteristic features of the abundance plane are blurred out, making

it harder to recognize distinct contributions from different accretion events.
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Figure 5.7: Logaritmic density distribution of particles in the abundance plane for the first test set
galaxy halo (halo index j = 0) of template library generated with different levels of observational
noise σNoise.

For each of the galaxy in Fig. 5.7, I report in Fig. 5.8 the posterior samples of the star mass of

a few subhalo that populate those galactic halo. In this example, we can appreciate that the true

3I generated a new template library for each σNoise
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Figure 5.8: Posterior of the stellar mass for subhalos with index i belonging to the first stellar
halo of the test set (j = 0), for each of the template library generated with different levels of
observational noise σNoise. The vertical lines show the true values for each subhalo.

value for each of the subhalos falls close to the posterior estimate (i.e., the posterior mean) and that

posterior predictions are relatively peaked around the true values. Also, it is clear that the model

is able to recognize that a higher value of i corresponds to a distribution of samples that is shifted

towards lower values of the star mass.

In the appendix, I report the same ltu-ili plots of Fig. 5.4, 5.5 and 5.6 for each of the noise

levels that I have tested. All results are obtained on the test set of each template library. A

general trend seems to emerge as the noise increases: the model becomes overconfident. From the

accuracy plots, we can clearly see that the model starts to be biased toward inferring smaller stellar

masses. This is actually expected since the peculiar and unique feature of major merger starts to

become more and more blurred.

5.4 Subhalo level accuracy and uncertainty

Although all the performances on a subhalo level can be appreciated just by examining the appendix

plots, I decided to give some average accuracy and uncertainty metrics over the test set to highlight

the general trends that are visible when varying the noise level. The accuracy is calculated as the

test set average of the mean absolute error (MAE) and the root mean square error (RMSE) between
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Figure 5.9: Average accuracy metric over the test set for different noise level.

the sample average and the true value of the stellar mass. From Fig. 5.9 we can see the expected

degradation of accuracy with the noise level.

The uncertainty is calculated using the the test set average of the samples’ standard deviation4,

the 68% and 99% percentiles. Also in this case the performances are degraded by the noise, especially

when we consider the 99% percentile.

4I approximate the posterior with a Gaussian, reasonable assumption sustained by the spot check plot presented
in Fig. 5.8.
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Figure 5.10: Average uncertanty metric over the test set for different noise level.

5.5 Galactic halo reconstruction

To further understand the possible biases introduced by training on noisy data, I decided to study

inference at the halo level. Given a certain galactic halo xj I try to understand how well we can

reconstruct its subhalo stellar mass distribution. The test set average of the Kullback-Lieber (KL)

divergence and Jensen-Shannon (JS) entropy between the distribution of the sample estimate and

the true values are presented in Figs. 5.11 and 5.12 respectively. Once again, as the chemical feature

gets blurred, the performance to be able to disentangle the contribution from different subhalos in

a given galaxy becomes more challenging.
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Figure 5.11: Test set KL divergence average between the distribution of sample estimate and the
true values.
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Figure 5.12: Test set JS entropy average between the distribution of sample estimate and the true
values.



Chapter 6

Conclusion

I find that SBI can be applied to the complex task of parameter estimation for accreted dwarf

galaxies in the MW, leveraging only the chemical information. This allows for the inference of infall

dwarf galaxies properties even in the case of fully phase-mixed objects in the Galactic halo and

opens up a completely new avenue for Galactic Archaeology. The information of multidimensional

chemical abundance distributions is able to guide the model towards a well-calibrated and accurate

reconstruction of the stellar mass of accreted dwarf galaxies when tested on noise-free data. More-

over, it is clear that after adding an observational noise σNoise higher than 0.01 dex, the pipeline

starts to be affected by the blurring of the information and becomes biased to inferring smaller

stellar masses. Furthermore, CASBI avoids the need to bin the subhalo information as in [Dea+23].

In this way with CASBI it is possible to directly perform Bayesian inference on the parameters of

each individual subhalo. One limitation of this method is the simplified scenario in which I have

tested CASBI. I have assumed to be able to perfectly remove background and foreground stars and

perform inference on a clean halo sample. Additionally, no observational selection function has yet

been assumed. These challenges will be implemented in the ’Observational Realism’ component of

the CASBI pipeline as future work (see Fig. 4.3). Moreover, the poor performance on the infall

time might need to add either more α element abundances, or the dynamical information of the

action angle plane. Lastly, the final goal of this prof-of-concept work would be to be applied to real

spectroscopic observations.
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The code for CASBI, including extensive documentation, is available on GitHub 1, as well as the

data 2 to reproduce the results of this work.

1https://github.com/vepe99/CASBI
2https://zenodo.org/records/13730400

https://github.com/vepe99/CASBI
https://zenodo.org/records/13730400


Appendix A

Early Test

In this Appendix are reported two CASBI integration that are not present in the final structure of

the package. In A.1 I tested whether the use of surrogate simulator for the sequential version of the

NPE could allow the pipeline to achieve better results. In A.2 are reported the initial solution to

fix the dimensionality of the prior.

A.1 Free Form Flow as a surrogate simulator

If new data pairs are generated at inference time, by sampling the prior, passing those samples to

the simulator, and sequentially repeating the inference, it is possible to achieve better accuracy, as

shown empirically in Fig. A.1, at the cost of losing the amortize property1 .

1The amortize property is defined as the possibility to infer the posterior of a given observation without the need
to simulate new data pairs.
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Figure A.1: Different SBI method accuracy over 10 independent test with similar simulation budget.
The S stends for the Sequential version implementation of corresponding NDE used. The error is
defined in terms of the Classifier Two Sample Test (C2ST) [LO18], which is defined as the accuracy
of a classifier to distinguish between true and inferred posterior samples, with a C2ST value of 0.5
implying that the two sampled distributions are the same. This Figure is taken from [Ho+24].

Inspired by this result, I have decided to explore the possibility of implement Sequential Neural

Posterior Estimate (SNPE) in CASBI. The use of the simulator at inference time is not usually

possible for cosmological application; in fact, running those simulations is both computationally

and time consuming. I have decided to implement a surrogate simulator that aims to learn how to

sample new observations x from the Likelihood probability p(x|θ). The surrogate simulator that I

adopted is the Free Form Flow (FFF) [Dra+24] model, a Normalizing Flow architecture that relaxes

the need for invertible transformations and only requires dimensionality preservation at each step.

After trying to use the more common Neural Spline Flow (NSF), as in [WB23], I decided to adopt

FFF due to higher fidelity in the generation of new observations x, using the D-statistic [LRH] of

the two-dimensional Kolmogorov-Smirnov test as fidelity metric. The architecture of the FFF is

composed of an encoder and a decoder that take the role respectively of the forward transformation

fθ to the normally distributed latent space, and an approximation of the inverse transformation gϕ

that maps the latent space to the observation space. The major innovations in Free Form Flow that

are needed to understand the choice and flexibility of this architecture are:

• Gradient Trick: since the most computationally expensive part of the loss function of normal-

izing flow is calculating the Jacobian of the transformation, the authors propose to estimate

its gradient using a pair of vector-Jacobian and Jacobian-vector products easily available in
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standard automatic differentiation libraries. The gradient trick is implement in the pipeline

by rewriting the maximum likelihood loss derived from equation 3.4 as:

Lf−1

ML = Ex,v[−logp(fθ(x))− vTJθSG(J−1v)], (A.1)

where v is a random vector with unit variance with the same dimensions as x, and SG is

the Stop Gradient operation. This loss enable to train normalizing flow architecture with a

tractable inverse function whose Jacobian determinant is not easily accessible.

• Inverse Approximation: classical normalizing flow architecture requires the access to the ana-

lytic inverse of the transformations f−1
θ , either by constructing Invertible Neural Network or

defining the flow with a differential equation with a known reverse time process. The authors

propose to approximate the inverse with a learned inverse gϕ ≈ f−1
θ . The loss function is then

modified to learn this approximation with the following contribution, called reconstruction

loss:

LR =
1

2
Ex[||x− gϕ(f

−1
θ (x))||2]. (A.2)

This part allows to remove the architectural constrains from fθ and gϕ except for preserving

the dimensions.

Combining both contributions from equations A.1 and A.2 leads to the following loss function:

Lg
FFF = Lg

ML + βLR, (A.3)

where the Lg
ML is used in place of the Lf−1

ML with the justification that they have the same critical

points and the β is a trade off hyperparameter. For a more in depth explanation and a mathematical

foundation of FFF architecture I refer to the original paper [Dra+24].

In CASBI, I have chosen to use a Skip Connection Multi Layer Perceptron (SC-MLP) as both

encoder and decoder, and I have followed the suggestions in Appendix B.1 of [Dra+24] to make

this architecture conditional by concatenating to each layer the parameters θ sampled from the

prior distributions. Although the FFF architecture has good interpolation capability, returning
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average D-static values lower than 0.3 when reconstructing the test set, the problem of sampling

independent parameter values from the prior distributions makes the net extrapolate in regions of

the conditional space where no data were shown, degrading the generate abundance subhalo. For

example, it could happen that a very large Mstar is sampled together with a very low infall time τ ,

which is a combination of parameters that are not physical and hence was not shown during training,

so the generated halo is not realistic, that is, it has a very high D-statistic value. Due to the general

poorer performance of SNPE using the FFF as a surrogate simulator, I have decided not to include

this architecture in the analysis. Future work could incorporate some level of correlation in the prior

distribution of the parameters, since currently the ltu-ili package allows only for independent

priors.

A.2 Two step Inference

I decided to tackle the problem of fixing the dimensionality of the prior in the case of fully mixed

remnants separating the inference in two steps, in the first it infers the number of subhalos and in

the second the parameters of each of the subhalos:

1. Inference of the number of substructure: In this step I train a NPE to recover the

posterior distribution of the number of substructure Nsub, by using the observable xj. The

prior for the parameter is assumed to be uniform between 2 and 100. This boundaries were

selected in accordance to the order of magnitude of substructures found in [Dea+23]. For each

of the possible Nsub I extract 1000 xj =
∑︁Nsub

i=1 xj
i from the NIHAO simulations, in order

to have a total of almost 105 SBI training couples (N j
sub, x

j), with 20% used as validation.

I used the same process to generate almost 104 test set samples, making sure that the same

combinations of Galaxy name attribute weren’t shown in training and test. The training of

the NPE is done using the sbi backend, using 4 nsf (neural spline flow) with 10 layers and 100

neurons each. In order to take full advantage of the image-like structure of the data, I adopt

as embedding network a Convolutional Neural Network (CNN) to reduce the dimensionality

of the input of the NPE from 64 × 64 to 128. The CNN have 3 convolutional layers with 8,

16 and 32 filter, 3 Max Pooling layers and 3 fully connected layers with 512, 256, 128 neurons.
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In this step I have not impose that the Nsub must be a discrete variable, and I have decide to

just truncate the inferred value to the closest integer. To the knowledge of the author no SBI

framework has implemented a way of dealing with the inference of discrete random variables,

so I leave a more precise implementation as a future work. I propose instead another method

to obtain the number of substructure, by casting this inference as a classification problem. I

use a SkipConnection CNN 2, considering the number of substructure as the label to assign to

each xj .

2. Inference of θj: Once I have the estimate Ñsub, whether using dynamical information, the

inference pipeline, or the classification method, I can proceed to the inference of parameters θji .

The priors for the parameters are assumed to be uniform between the minimum and maximum

values available for the galaxies that I have filtered from the NIHAO simulations. I extract

105 random samples of Ñsub snapshots from the NIHAO simulations, and I construct the

observable couples (xj , (θj1, . . . , θ
j

Ñsub
)), with 20 % used as validation. I repeat the same process

to generate 103 test set samples, making sure that the same combinations of Galaxy name

attribute weren’t shown in training and test to perform calibration of the inference model.

The NPE training is performed using the sbi backend, using 4 nsf (neural spline flow) with

10 layers and 100 neurons each. Once again I use the same CNN architecture of the previous

step as embedding for the observation xj .

Even though highly modular, this two-step inference has some limitations: the accuracy and calibra-

tion of the second step are heavily dependent on the ability of the first step to recover the number

of sunhalos and hence to constrain the dimensionality of the prior for the second step. I expected

the pipeline to be able to recover most of the information from the most massive subhalos, thanks

to their more distinct feature in the abundance plane. The second problem is related to the linear

scaling of the parameter dimension as a function of the number of subhalos. In a realistic case, I

expect to have an order of ≈ 100 subhalos, resulting in a parameter space of dimension 2*100 = 200.

Although I expect SBI to be able to handle high-dimensionality inference, it is clear that for each

Ñsub a new training is required with its own hyperparameter tuning phase, resulting in the end in

2The architecture is the same as the embedding network described before with the addition of the Skip Connection
layer in the fully connected layer, where the output of the previous layer gets added to the output before being passed
trough the activation function, alleviating the vanishing gradient problem and allowing for better accuracy.
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a collection of pre-trained models to be used depending on the number of subhalos3.

In order to avoid this intense and time-consuming phase, I rethought the inference pipeline,

which I present in section 4.2.

3Another possibility would be to limit the inference to the first M most massive subhalos, were I fix M and I
assume that the remaining subhalos do not contribute significantly to the galactic halo.



Appendix B

Accuracy

In the following appendix I report the accuracy plots from the ltu-ili package for the test set with

different noise levels σNoise.
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Figure B.1: Predicted vs True values with error bars representing the 68% confidence interval. The
noise level is σNoise = 0.01
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Figure B.2: Predicted vs True values with error bars representing the 68% confidence interval. The
noise level is σNoise = 0.02
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Figure B.3: Predicted vs True values with error bars representing the 68% confidence interval. The
noise level is σNoise = 0.04
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Figure B.4: Predicted vs True values with error bars representing the 68% confidence interval. The
noise level is σNoise = 0.06
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Figure B.5: Predicted vs True values with error bars representing the 68% confidence interval. The
noise level is σNoise = 0.13
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Appendix C

Coverage

In the following appendix I report the marginal coverage plots from the ltu-ili package for the

test set with different noise levels σNoise.
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Figure C.1: Coverage for the marginal probabilities. The noise level is σNoise = 0.01
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Figure C.2: Coverage for the marginal probabilities. The noise level is σNoise = 0.02

0.00 0.25 0.50 0.75 1.00
Predicted Percentile

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 P
er

ce
nt

ile

log10 (Ms)[M¯]

0.00 0.25 0.50 0.75 1.00
Predicted Percentile

0.0

0.2

0.4

0.6

0.8

1.0 log10 (τ)[Gyr]

Figure C.3: Coverage for the marginal probabilities. The noise level is σNoise = 0.04
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Figure C.4: Coverage for the marginal probabilities. The noise level is σNoise = 0.06
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Figure C.5: Coverage for the marginal probabilities. The noise level is σNoise = 0.13
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Appendix D

TARP

In the following appendix I report the joint coverage plots (TARP) from the ltu-ili package for

the test set with different noise levels σNoise.
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Figure D.1: TARP percentile-percentile plot. Approximation of coverage plot for the joint distribu-
tion. The noise level is σNoise = 0.01
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Figure D.2: TARP percentile-percentile plot. Approximation of coverage plot for the joint distribu-
tion. The noise level is σNoise = 0.02
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Figure D.3: TARP percentile-percentile plot. Approximation of coverage plot for the joint distribu-
tion. The noise level is σNoise = 0.04
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Figure D.4: TARP percentile-percentile plot. Approximation of coverage plot for the joint distribu-
tion. The noise level is σNoise = 0.06
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Figure D.5: TARP percentile-percentile plot. Approximation of coverage plot for the joint distribu-
tion. The noise level is σNoise = 0.13
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