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Introduction

Minimization problems are at heart of Calculus of Variations. They arise

everywhere in Physics, Engineering, Biology, Modeling and other fields of

study. Each problem may be formulated and approached in multiple ways,

possibly depending on the aim and the features of the problem.

One fundamental and in fact strongly relevant feature for a variational prob-

lem is dimensionality. By dimensionality of a problem we mean the dimension

of the objects and spaces involved.

One class of variational problems which enjoys particularly nice properties

is the class of problems with codimension equal to 1, e.g. minimization over

a space of R1 valued maps or minimization of area over (n− 1)-dimensional

surfaces.

In this thesis we go through two results concerning minimization problems in

codimension 1. Besides being both about problems in codimension 1, these

two results are structurally related, even though they are born in two quite

different context.

The first one is found in [5]. This article from Robert Miller Hardt and Jon

T. Pitts is a milestone in the history of Geometric Measure Theory. In it the

authors consider an (n − 1)-dimensional normal current N having compact

support and rectifiable boundary and they find a way of decomposing N as

the integral over (0, 1) of some rectifiable currents {Rs}s∈(0,1). As a corollary,

they also produce an integral current T satisfying







∂T = ∂N

M(T ) ≤ M(N)
.
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ii INTRODUCTION

Hardt-Pitts’s Theorem guarantees that if some fixed rectifiable boundary

allows for a mass-minimizing current, then the same minimum is attained by

some other current which is also integral.

The second result which we will be presenting is found in [7]. While

Hardt-Pitts article falls into the area of abstract Geometric Measure Theory,

in this paper Milan Korda and Rodolfo Rios-Zertuche prove a decomposition

result about occupation measures.

Occupation measures are a classM of measures in which the space(1) C1(Ω,Rn)

can be embedded and in which any integral functional F of the form

F : W 1,∞(Ω) −→ R

y 7→
∫

Ω

L
(

x, y(x), Dy(x)
)

dx+

∫

∂Ω

L∂
(

x, y(x)
)

dHn−1

(where L ∈ L1(Ω × R × R
n) and L∂ ∈ L1

(

∂Ω × R)) can be extended in a

natural way as

F : M −→ R

(µ, µ∂) 7→
∫

Ω×R×Rn

Ldµ +

∫

∂Ω×R

L∂ dµ∂
.

The problem of minimizing the extended functional over the class of occupa-

tion measures is linear, and thus amenable for numerical approaches (such as

linear programming and convex optimization). Numerical methods are not

the topic of this thesis, the interested reader is referred to [8] for fundamental

definitions and [6] for a number of applications.

Our objective is to prove the decomposition result for occupation measures

and use it to show that under suitable convexity assumptions the “numeri-

cally easier” relaxed problem on the space M has the same solution as the

original problem on the space W 1,∞(Ω).

We now briefly anticipate the formal definition of occupation measure

and the main decomposition result.

1Here Ω is an open subset of Rn with piecewise C1 boundary.
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We say that a couple (µ, µ∂) is a relaxed occupation measure (or simply

occupation measure) on Ω if

(i) µ is a compactly supported and positive Radon measure on Ω×Y ×Z.
µ∂ is a compactly supported and positive Radon measure on ∂Ω× Y .

(ii) µ(Ω× Y × Z) = Ln(Ω).

(iii) For any φ ∈ C∞(Ω× Y ), the measures µ and µ∂ satisfy
∫

Ω×Y×Z

(

∂φ

∂x
(x, y) +

∂φ

∂y
z

)

dµ(x, y, z) =

∫

∂Ω×Y

φ(x, y)n(x) dµ∂(x, y),

(1)

where n(x) is the exterior normal vector to Ω at x.

Our final result will be that for any occupation measure (µ, µ∂) there exists

a family {ψr}r∈[−1,0] ⊂ W 1,∞(Ω) such that:

• for any φ ∈ L1(µ) which is affine in z we have
∫

Ω×R×Rn

φ dµ =

∫

[−1,0]

∫

Ω

φ
(

x, ψr(x), Dψr(x)
)

dLn(x) dL1(r);

• for any φ∂ ∈ L1(µ∂) we have
∫

∂Ω×R

φ∂ dµ∂ =

∫

(−1,0)

∫

∂Ω

φ∂
(

x, ψr(x)
)

dHn−1(x) dL1(r).

For the sake of completeness we feel compelled to point out that paper [7],

on which the second part of this thesis is based, has some flaws in its proofs,

though in the end they do not affect the validity of the main results.

We omit the typographical mistakes(2) but we list here the other issues to

2For instance, the fundamental identity proven in [7, Lemma 2.14, page 20] lacks

of a negative sign, since S(u) is defined as S(u) :=

∫

Ω×Y×Z

∫

∞

y

u(s) ds dµ(x, y, z),

while the computations at page 20 are carried out considering S(u) defined as
∫

Ω×Y×Z

∫ y

−∞

u(s) ds dµ(x, y, z). Similarly the formula which in this thesis is proven in

Lemma 3.2.11(1), must have a negative sign because ρ is negative, while in the paper (e.g.

at page 24) it is used as if ρ was positive.
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the benefit of the interested reader who may wish to make a comparison with

the original paper:

• In the proof of lemma 2.15 (and in the rest of the paper) the authors

never make use of the reduced boundary, which is the actual object

of interest throughout the entirety of the proof. They instead use the

topological boundary. It can be proven, and it is clear at the end of the

proof, that under our hypothesis the reduced boundaries and the topo-

logical boundaries which we consider coincide Hn-almost everywhere;

• In the proof of Lemma 2.19 the authors prove that the measure m2 is

absolutely continuous with respect to the measure m1 (m2 ≪ m1, see

page 103 of this thesis for the definitions), which is true, but they use it

to directly deduce the existence of the maps Jr (the same maps which

we define in (3.28) at page 98). This deduction is not possible without

first finding the value of the limit which we prove in claim 5 at page

102.
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Chapter 1

Notations and fundamental

definitions

In this chapter we will be dealing with currents. Currents are one of the

fundamental objects in the field of Geometric Measure Theory. We shall

briefly introduce them, describe their use and recall some fundamental prop-

erties which will be at the core of our discussion.

To properly understand the formalism behind currents we shall

• define the exterior algebra of a vector space, its wedge product and its

inner product;

• prove existence and uniqueness of the exterior algebra;

• define the space of linear and alternating maps and its wedge product;

• state the fundamental link between the exterior algebra and alternating

maps;

• define the space of k-forms on an open set of Rn;

• define what is a current, its total variation, its mass and how they

extend k-surfaces and their Hk-measure;

1



2 1. Notations and fundamental definitions

• define the cartesian product, define the join of two currents and state

the fundamental properties of these two operations;

• define rectifiable currents and state a characterization theorem for them;

• define integral currents, which will be in a way the final objective of

this chapter.

1.1 Elementary notation

Definition 1.1.1 (Open balls).

Given a metric space (X, d), an element a ∈ X and a poritive real number

r, we define The open ball centered in a and with radius r as

B(a, r) := {x ∈ X : d(x, a) < r}.

Definition 1.1.2 (m-dimensional measure of the unit ball).

Given a non negative integer m, we’ll denote by α(m) the measure of the

unitary open ball in R
m with respect to them-dimensional lebesgue measure:

α(m) := Lm(U(0, 1)).

Definition 1.1.3 (m-dimensional upper and lower densities of a measure at

a point).

Given a metric space (X, d), a non negative integerm, and a positive measure

µ on X, define the m-dimensional upper density of µ at a as

Θ∗m(µ, a) := lim sup
r→0+

1

α(m)rm
µ
(

B(a, r)
)

and the the m-dimensional lower density of µ at a as

Θm
∗ (µ, a) := lim inf

r→0+

1

α(m)rm
µ
(

B(a, r)
)

.

Definition 1.1.4 (Density of a measure at a point).

Given a metric space (X, d), a non negative integerm, and a positive measure
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µ on X, if Θ∗m(µ, a) = Θm
∗ (µ, a), then define the m-dimensional density of

µ at a as

Θ(µ, a) := Θm
∗ (µ, a)

(

= Θ∗m(µ, a)
)

.

Definition 1.1.5 (Tangent cone of a subset at a point).

Given a normed space (X, || · ||X), a subset S of X and an element a ∈ X,

define the Tangent cone of S at a as follows:

Tan(S, a) := {x ∈ X : ∀ǫ > 0, ∃s ∈ S, ∃r > 0 such that ||s−a|| < ǫ and ||r(s−a)−x|| < ǫ}.

Any element of Tan(S, a) will be called a tangent vector of S at a.

Definition 1.1.6 ((φ,m)−approximate tangent vectors at a).

Given a normed space (X, || · ||X), a positive integer m, a positive measure φ

on X and an element a ∈ X, define the Set of (φ,m)-approximate tangent

vectors as

Tanm(φ, a) :=
⋂

S⊂X s.t.
Θm(φx(X\S))=0

Tan(S, a).

Definition 1.1.7 (mth Grassmann manifold).

• Given a vector space V , its mth Grassmann manifold is the set

G(V,m) := {W ≤ V : dim(W ) = m}

containing all m-dimensional subspaces of V .

• The grassmann manifold G(Rn,m) will be denoted shortly as G(n,m).

Definition 1.1.8 (Rectifiable sets).

Let E be a sub set of a metric space X and let m be a positive integer. We

will say that E is:

• m-rectifiable if there exists a Lipschitzian map f mapping a bounded

subset of Rn onto E.
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• countably m-rectifiable if E equals the union of some countable family

of m-rectifiable sets.

• countably (φ,m)-rectifiable (with φ measure on X) if it exists a count-

ably m rectifiable set R ⊂ X such that φ(E \R) = 0.

• (φ,m)-rectifiable if it is countably (φ,m)-rectifiable and φ(E) <∞.

1.2 Tensor product of vector spaces

For all vector spaces considered we will take as given that the field they

are defined on is R.

Idea: the tensor product of some vector spaces V1, ..., Vm can be

thought as the minimal vector space that is able to embody the

properties of any multilinear map from V1 × ...× Vm to R.

Definition 1.2.1 (Tensor product of vector spaces).

Given m vector spaces V1, V2, ..., Vm we call a tensor product of V1, ..., Vm any

coupling (V , µ) where V is a vector space and φ : V1 × V2 × ... × Vm → V is

an m-linear map such that

for any m-linear map f from V1 × ...× Vm to some other

vector space W, ∃!g : V → W linear and such that f = g ◦ µ.

We will denote:

• the space V as V1 ⊗ V2 ⊗ ...⊗ Vm

• the image through µ of an m-tuple (v1, ..., vm) as v1 ⊗ ...⊗ vm.

Theorem 1.2.1. Consider m vector spaces V1, ..., Vm. Their tensor product

exists and is unique up to isomorphism.

Proof.

Let F be the real vector space

F :=
{

f : V1 × ...× Vm → R : Card({v : f(v) 6= 0}) <∞
}
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Let, for any (v1, ..., vm) ∈ V1 × ...× Vm, fv1,...,vm be the map

fv1,...,vm : V1 × ...× Vm → R

(w1, ..., wm) 7→







1 if (w1, ..., wm) = (v1, ..., vm)

0 otherwise

Let φ be the (injective) map

φ : V1 × ...× Vm → F

(v1, ..., vm) 7→ fv1,...,vm

Let G ≤ F be the subspace generated by the elements of the type

φ(v1, ..., vi−1, x, vi+1, ..., vm) + φ(v1, ..., vi−1, y, vi+1, ..., vm)+

−φ(v1, ..., vi−1, x+ y, vi+1, ..., vm)

together with the elements of the type

φ(v1, ..., vi−1, cx, vi+1, ..., vm)− cφ(v1, ..., vi−1, x, vi+1, ..., vm)

Define then

V1 ⊗ ...⊗ Vm := F/G,

v1 ⊗ ...⊗ vm := [φ(v1, ..., vm)] = [fv1,...,vm ],

(remembering the notation µ(v1, ..., vm) ≡ v1 ⊗ ...⊗ vm).

Now

• The tensor map µ is m-linear by construction.

• Im(µ) generates V1 ⊗ ...⊗ Vm.

• Any m-linear map f : V1 × ... × Vm → W induces in a natural way a

unique linear map on Im(µ).

Therefore The couple (F/G, µ) defined is a tensor product of the m starting

vector spaces.

It is also unique, because if we assume that there was anothe coupling

(W,µ′) being a tensor product, then
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1. ∃!g : F/G→ W linear and s.t. µ′ = gµ

2. ∃!g′ : F/G→ W linear and s.t. µ = g′µ′

3. Putting together ”1.” and ”2.” we find that gg′µ′ = µ′ and g′gµ = µ.

4. Since the maps µ and µ′ must be monomorphisms (otherwise the fun-

damental property of tensor products is contradicted), it follows that

gg′ = idW and g′g = idF/G, so that g′ = g−1 and g, g′ are isomorphisms.

Proposition 1.2.1 (Isomorphisms with tensor products).

• If λ is a permutation of {1, 2, ...,m}, then

Φλ : V1 ⊗ ...⊗ Vm → Vλ(1) ⊗ ...⊗ Vλ(m)

v1 ⊗ ...⊗ vm 7→ vλ(1) ⊗ ...⊗ vλ(m)

other elements 7→ by linearity

is an isomorphism.

• If m < n then

Φm,n :
(

V1 ⊗ ...⊗ Vm
)

⊗
(

Vm+1 ⊗ ...⊗ Vn
)

→ V1 ⊗ ...⊗ Vn

(v1 ⊗ ...⊗ vm)⊗ (vm+1 ⊗ ...⊗ vn) 7→ v1 ⊗ ...⊗ vn

other elements 7→ by linearity

is an isomorphism.

• The map

ΦR R⊗ V → V

c⊗ v 7→ cv

is an isomorphism.

• Assume that V can be decomposed in the direct sum V = P ⊕Q. Then

V ⊗W ∼= (P ⊗W )⊕ (Q⊗W ).
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As a consequence it follows that

dim(V1 ⊗ ...⊗ Vm) =
m
∏

i=1

dim(Vi).

Proposition 1.2.2 (Naturality of the tensor product).

The tensor product of vector spaces is natural, in the sense that given m

morphisms of vector spaces (continuous linear maps)

f1 : V1 → W1

f2 : V2 → W2

...

fm : Vm → Wm,

there is a unique morphism

Φ : V1 ⊗ ...⊗ Vm → W1 ⊗ ...⊗Wm

such that for all (v1, ..., vm) ∈ V1 × ...× Vm it holds

Φ(v1 ⊗ ...⊗ vm) = f1(v1)⊗ ...⊗ fm(vm).

Such Φ is denoted by f1 ⊗ ...⊗ fm.

Proof.

Consider the construction of the tensor product made in the proof of Theorem

1.2.1.

Then we would like

Φ : V1 ⊗ ...⊗ Vm −→ W1 ⊗ ...⊗Wm

[fv1,...,vm ] 7→ [ff1(v1),...,fm(vm)]

other elements 7→ by linearity

to be a well defined morphism of vector spaces.

To be well defined we need to show that it does not depend on the choice of
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a representative for each class (uniqueness will follow as the set {[fv1,...,vm ] :
vi ∈ Vi} is a generator of V1 ⊗ ...⊗ Vm).

Another representative is obtainen by summing to fv1,...,vm any element of

the group G (defined in the proof of the theorem 1.2.1). Now by definition

of G, by linearity of the maps fi and by definition of the quotient classes

in W1 ⊗ ... ⊗ Wm (which uses the subgroup G′ of W1 × ... × Wm defined

analogously as G) the morphism is well defined.

1.3 Graded algebras

1.3.1 Definition of graded algebras

Idea: the concept of graded algebra is a completely abstract in

nature. Its fundamental purpose, in our discussion, is to fix the

natural set of properties which, as we will se, characterize the ex-

terior algebra.

Definition 1.3.1 (Graded algebra). We call a graded algebra any triplet

(A, {An}n∈N, µ) where:

• A is a vector space.

• {An}n∈N is a set of vector spaces with which A can be decomposed as

A =
∞
⊕

n=0

An.

• µ : A× A→ A is a bilinear map such that µ(Am × An) ∈ Am+n.

We will usually write the bilinear map µ as a product, and write x ·y in place

of µ(x, y).

Although they are not true in general, most of the graded algebras which

are dealt with satisfy these three properties:

• µ is associative.
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• A0
∼= R and the unit element of A0 is also a unit element for the ring

A.

• Anticommutative law of the product: ξ ·η = (−1)mnη·ξ ∀ξ ∈ Am, ∀η ∈
An.

1.3.2 Tensor algebra of a vector space V

Idea: the tensor algebra of a vector space can be thought as the

minimum vector space which is able to embody within itself the

properties of any multilinear map from some power of V to another

vector space W .

Definition 1.3.2 (Tensor algebra of a vector space V ).

We define the tensor algebra of the vector space V as

⊗

∗

V :=
∞
⊕

n=0

⊗

n
V,

where
⊗

0
V = R,

⊗

1
V = V,

⊗

2
V = V ⊗ V, ...

and where the product is defined on the subspaces
(

⊗

m
V
)

×
(

⊗

n
V
)

as

simple concatenation of tensor products, i.e.

(v1 ⊗ ...⊗ vm) · (w1 ⊗ ...⊗ wn) := v1 ⊗ ...⊗ vm ⊗ w1 ⊗ ...⊗ wn.

The tensor algebra has the following universal mapping property:

(A, {An}n∈N, µ) is a graded algebra

µ is associative

A has a unit element

ϕ : V → A1 is a linear map























⇒

∃!ϕ :
⊗

∗
V → A

unit preserving morphism of

algebras such that

ϕ|⊗1V = ϕ and

ϕ(
⊗

m
V ) ⊂ Am ∀m ∈ N

Besides, the construction of the tensor algebra is natural, in the sense

that:

V, V ′ are vector spaces

f : V → V ′ is a linear map

}

⇒
∃!f :

⊗

∗
V →

⊗

∗
V ′

extending f and preserving the unit element
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such extension f will be denoted by ⊗∗f .

1.3.3 Exterior algebra of a vector space

Idea: the exterior algebra of a vector space can be thought as the

minimum vector space which is able to embody within itself the

properties of any multilinear and alternating map from some power

of V to another vector space W .

Notice that the exterior algebra can be defined in a way which does

not depend from the space of multilinear alternating maps, which

we will in fact define afterwards.

Definition 1.3.3 (The ideal UV ). We define the two sided ideal UV gener-

ated by the set {x ⊗ x : x ∈ V } (it is indeed a subset of
⊗

2
V ). In other

words

UV = {a⊗ x⊗ x⊗ b : a, b ∈
⊗

∗
V, x ∈ V }.

Definition 1.3.4 (Exterior algebra).

Given a vector space V we define its exterior algebra
∧

∗
V as the quotient

∧

∗
V :=

(

⊗

∗
V
)

/UV.

We notice that the following general properties of the objects just defined:

• UV =
∞
⊕

m=2

(

⊗

m
V ∩ UV

)

.

•
∧

∗
V =

∞
⊕

m=0

∧

m
V, where

∧

m
V :=

⊗

m
V /

(

⊗

m
V ∩ UV

)

.

and that therefore the product operation induced by the product in ⊗∗V (i.e.

the one defined as ([v1⊗...⊗vm]·[w1⊗...⊗wn] = [v1⊗...⊗vm⊗w1⊗...⊗wn] on
the fundamental elements and extended by linearity) makes

∧

∗
V a graded

algebra.

We will denote its product operation by ∧.
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Observation: The product of the exterior algebra is anticommutative.

In fact

x ∧ y + y ∧ x = [x⊗ y + y ⊗ x]

= [(x+ y)⊗ (x+ y)− x⊗ x− y ⊗ y]

= [0]

because (x+ y)⊗ (x+ y)− x⊗ x− y ⊗ y ∈ UV .

The exterior algebra has the following universal mapping character-

ization:

(A, {An}n∈N, µ) is a graded algebra

µ is associative and anticommutative

A has a unit element

ϕ : V → A1 is a linear map























⇒

∃!ϕ :
∧

∗
V → A

unit preserving morphism of

algebras such that

ϕ|⊗1V = ϕ and

ϕ(
∧

m
V ) ⊂ Am ∀m ∈ N

Besides, the construction of the exterior algebra is natural, in the sense

that:

V, V ′ are vector spaces

f : V → V ′ is a linear map

}

⇒
∃!f :

∧

∗
V →

∧

∗
V ′

extending f and preserving

the unit element

such extension f will be denoted by ∧∗f .

Moreover ∧∗f =
∞
⊕

m=0

∧mf , where ∧mf := ∧∗f |∧mV .

1.3.4 Scalar product in the exterior algebra

Assume that a vector space V on a field K has a scalar product ·.
Then the scalar product induces the natural polarity map

β : V −→ V ∗ ∼=
∧1

V

v 7→ β(v)
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where
β(v) : V −→ K

w 7→ w · v
.

By naurality of the exterior algebras, the map β can be extended in a unique

way to

β :
∧

∗
V →

∧∗
V

and in particular

β =
∞
⊕

n=0

β|∧nV =: β0 + β1 + β2 + ... .

Now given two simple multivectors

v = u1 ∧ ... ∧ un

w = u′1 ∧ ... ∧ u′m,

we see that

g(v) ∈
∧n

(V,K) ∼= Hom
(

∧

n
V,K

)

∼= Homn
(

∧

∗
V,K

)

,

where

Homn
(

∧

∗
V,K

)

:=

{

ξ ∈ Hom
(

∧

∗
V,K

)

: Ker(ξ) ⊃
⊕

m 6=n

∧

m
V

}

,

and that more precisely it holds

〈w, g(v)〉 =
∑

σ

sgn(σ)
n
∏

i=1

〈ui, u′σ(i)〉

= det

















− uT1 −
...

− uTn −

















| |
u′1 · · · u′n

| |

















(1.1)

so that an inner product 〈·, ·, 〉 can be defined on
∧

∗
V as

〈v, w〉 :=〉v, g(w)〉.

We see that
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• 〈·, ·〉 is symmetric

• it is bilinear wrt the sum of multivectors

• 〈v, λw〉 = λn〈v, w〉 if w ∈
∧

n
V

• 〈v, λv〉 > 0 for any nonzero simple multivector v.

This inner product allows to define a norm of simple multivectors as

|v| :=
√

〈v, v〉.

1.4 m-linear alternating maps

Idea: Multilinear alternating maps are well known to play a role in pretty

much any branch of mathematics, mainly in the form of determinant of

matrices. Here we present them in a form which is slightly more general

than determinants, since we consider maps which are not necessarily R

valued, but possibly take value in any real vector space W .

1.4.1 Definition

Definition 1.4.1 (m-linear alternating function,
∧m

(V,W )).

Given two vector spaces V,W , we say that f is an m-linear alternating func-

tion if

f : V m → W

is m-linear and f(v1, ..., vm) = 0 whenever ∃i 6= j s.t. vi = vj.

We denote the set of m-linear alternating functions between V and W as
∧m

(V,W ) and we will call each of its elements an m-covector.

Proposition 1.4.1. The spaces
∧m

(V,W ) and Hom(
∧

m
(V ), W ) are iso-

morphic.

Proof. Asdf...
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Notice that there is a natural linear isomorphism

Hom(
∧

m
V,W ) ∼= Homm(

∧

∗
V,W )

where Homm(
∧

∗
V,W ) is the linear subspace of Hom(

∧

∗
V,W ) containing

the maps which take value 0 on any element of
∧

n
V with n 6= m. Also

define
∧∗

(V,W ) :=
∞
⊕

m=0

∧m
(V,W ).

1.4.2 The diagonal map (or anticommutative product)

The diagonal map or anticommutative product in
∧

∗
V is the op-

eration

ψ :
∧

∗
V −→

∧

∗
V ⊗

∧

∗
V

defined by:

• ψ(1, 1) = 1

• ψ(v1 ∧ ...∧ vm) =
m
∏

i=1

(vi ⊗ 1 + 1⊗ vi), where the product rule intended

in ”
∏

” is that

(vi ⊗ 1) · (1⊗ vj) = vi ⊗ vj = −(1⊗ vj) · (vi ⊗ 1).

1.4.3 The wedge product of alternating maps

Definition 1.4.2 (Wedge product for alernating maps). If W is an algebra

(not necessarily graded) with its own product operation, then define

∧ :
∧∗

(V,W ) ×
∧∗

(V,W ) →
∧∗

(V,W )

(α, β) 7→ α ∧ β

by defining it on the simple covectors: if α ∈
∧

m
V and β ∈

∧

n
V , then

define α ∧ β ∈ Homm(
∧

∗
V,W ) as the composition

α ∧ β :
∧

∗
V

ψ−→
∧

∗
V ⊗

∧

∗
V

α⊗β−−→ W ⊗W
ν−→ W

where ν is defined using the product of W as ν(s⊗ t) = s · t.
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1.5 Lattices and representability by integra-

tion

Key takeaway: a lattice L is family of maps enjoying some very ge-

neral hypothesis. We will not be dealing with lattices in their complete

generality, but we shall spend a couple pages to appreciate their power

in the context of measure theory and functional analysis. In fact, de-

spite their generality it is possible to prove theorems of representation

by integrability for functionals defined on L and taking values in R.

Definition 1.5.1 (Lattices of functions).

Let X be a set.

• We call a lattice of functions on X any set L of functions from X to R

such that:

1. f, g ∈ L ⇒ f + g ∈ L and inf{f, g} ∈ L.

2. 0 ≤ c <∞, f ∈ L ⇒ cf ∈ L and inf{f, c} ∈ L.

3. f, g ∈ L, f ≤ g ⇒ g − f ∈ L.

• Observation: f ∈ L = lattice of functions ⇒ f+ = f − inf{f, 0} ∈ L

and f− = f+ − f ∈ L.

• Observation/definition: L is a lattice of functions⇒ L+ := L∩{f ≥ 0}
is a lattice of functions.
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Theorem 1.5.1 (Representation by integration).

Let L be a lattice on X. Let λ : L → R such that for any

f, g, h1, h2, h3, ... ∈ L the following statements hold:

• λ(f + g) = λ(f) + λ(g).

• c ∈ [0,+∞) ⇒ λ(cf) = cλ(f).

• f ≥ g ⇒ λ(f) ≥ λ(g)

• hn ↑ f as n→ ∞ ⇒ λ(hn) ↑ λ(f) as n→ ∞.

Then there exists a measure φ on X such that

λ(f) =

∫

f dφ ∀f ∈ L.

The measure φ in the above theorem is not unique in general, but it has some

properties. In particular the proof of the theorem constructs a φ which has

some regularities (see Herbert-Federer, section 2.5).



1.5 Lattices and representability by integration 17

Theorem 1.5.2.

Let L be a lattice on X. Let λ : L → R such that for any

f, g, h1, h2, h3, ... ∈ L the following statements hold:

• λ(f + g) = λ(f) + λ(g).

• c ∈ [0,+∞) ⇒ λ(cf) = cλ(f).

• sup(L ∩ {g : 0 ≤ g ≤ f}) <∞.

• hn ↑ f as n→ ∞ ⇒ λ(hn) ↑ λ(f) as n→ ∞.

Let
λ+ : L+ −→ R

f 7→ sup(L ∩ {g : 0 ≤ g ≤ f})
and

λ− : L+ −→ R

f 7→ − inf(L ∩ {g : 0 ≤ g ≤ f})
.

Then there exist two positive measures ψ+ and ψ− on X such that

λ+(f) =

∫

f dψ+ and λ−(f) =

∫

f dψ− ∀f ∈ L+,

λ(f) =

∫

f dψ+ −
∫

f dψ− ∀f ∈ L.

Definition 1.5.2 (Daniell integral).

Let L be a lattice on X. We will call:

• a Daniell integral on L any function λ satisfying the hypothesis of

theorem 1.5.2.

• a monotone Daniell integral on L any function λ satisfying the hypoth-

esis of theorem 1.5.1
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Theorem 1.5.3.

Suppose that:

1. (E, || · ||) is a separable normed space.

2. (E∗, || · ||∗) is its dual.

3. X is a set and L is a lattice on X such that L+ contains a countable

subset K of maps such that

∑

f∈K

f(x) ≥ 1 ∀x ∈ X.

4. Ω is a vector space of functions mapping X into E such that:

(a) f ∈ L, y ∈ E ⇒ f · y ∈ Ω.

(b) ω ∈ Ω, α ∈ E∗ ⇒ α ◦ ω ∈ L, || · || ◦ ω ∈ L.

(c) ω ∈ Ω, ||·||◦ω ≥ f ∈ L+ ⇒ ∃ξ ∈ Ω : ||·||◦ξ = f, (||·||◦ω)·ξ =
f · ω

5. T : Ω → R is a linear map such that, for any f ∈ L+ and any

ξ1, ξ2, ... ∈ Ω:

(a) λ(f) := supT (Ω ∩ {ω : || · || ◦ ω ≤ f}) ∀f ∈ L+,

(b) || · || ◦ ξn ↓ 0 ⇒ T (ξn) → 0.

Then λ is a monotone Daniell integral on L+.

Moreover, if φ is the L+ regular measure associated with λ, then ∃ k :

X → E∗ φ-measurable such that:

(a) || · || ◦ k is φ-measurable

(b) T (ω) =

∫

〈ω(x), k(x)〉 dφ(x) ∀ω ∈ Ω.

Such a function k is φ-almost unique. Every member of Ω is φ measur-

able. For each φ measurable function η with values in E, the real valued

function 〈η, k〉 is φ measurable; in case || · || ◦ η is φ summable, so is

〈η, k〉.
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Definition 1.5.3 (Variation integral and measure).

Under the hypothesis of theorem 1.5.3, we call λ the variation integral and

φ the variation measure associated with T .

Definition 1.5.4 (The lattice of continuous functions with compact sup-

port).

For any locally compact Hausdorff topological space X, will denote by K(X)

the set of continuous maps f : X → R whose support is compact.

Theorem 1.5.4 (Riesz Representation Theorem).

Let X be a locally compact hausdorff space. Let L := K(X) be the lattice

of continuous functions with compact support. If a functional µ : L→ R

is linear and it satisfies the property

supµ(L ∩ {g ∈ L : 0 ≤ g ≤ f} <∞ ∀f ∈ L+,

then µ is a Daniell integral.

1.5.1 Coverings, Vitali relations, approximate limits

and approximate continuity

Key takeaway: Continuity is usually a property which is too

strong to assume. We would like to define a weaker notion of con-

tinuity. For the sake of generality we present this topic using the

notion of Vitali covering. Our use of approximate continuity will

be limited to the case in which the Vitali covering is given by Borel

sets and we will need these notions in order to apply Theorem 4.5.9

at page 482 of [4].

Definition 1.5.5 (Coverings and Vitali relations).

Let X be any set.

• We will call a covering relation any subset of the set

{(x, S) : x ∈ S ⊂ X}.
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• For any covering relation C and any Z ⊂ X, define

Z(C) := {S ∈ P(X) : ∃x ∈ Z s.t. (x, S) ∈ C}

(where P(X) is the power set of X).

• We will say that a covering C is fine at a point x ∈ X if inf{diam(S) :

(x, S) ∈ C} = 0

Let now τ be a topology on X and φ a measure on X.

• We will call a φ-Vitali relation any covering relation V such that:

1. V (X) is a family of borel sets.

2. V is fine at every point of X.

3. If a covering relation C ⊂ V is fine at each point of some set

Z ⊂ X, then C(Z) contains a countable disjoint subfamily that

covers φ-almost all of Z.

Definition 1.5.6 ((φ, V )-density of a set A at the point x).

Define the (φ, V )-density of A at x the quantity

(V ) lim
S→x

φ(S ∩ A)
φ(S)

.

Definition 1.5.7 (Approximate limit of a function between topological spaces).

Let X and Y be topological spaces and consider f : X → Y . We say that

y ∈ Y is the (φ, V )−approximate limit of f at x if:

∀W ⊂ Y neighborhood of y, the set X \ f−1(W ) has zero density at x.

Note that if Y is a Hausdorff topological space and the approximate limit

y of f at x exists, then it is unique. In that case we will write

y = (φ, V )ap lim
z→x

f(z).
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Definition 1.5.8 (Approximate (φ, V )-continuity of a function).

We say that f is (φ, V )-approximately continuous at x ∈ dmn(f) if

f(x) = (φ, V )ap lim
z→x

f(z).

Definition 1.5.9 ((φ, V )-approximate upper limit).

If X is a topological space and f : X → R, then we define the (φ, V )-

approximate upper limit of f the quantity

(φ, V )ap limsup
z→x

f(z) := inf
{

t ∈ R : {z : f(z) > t} has zero (φ, V )−density at x
}

.

Definition 1.5.10 ((φ, V )-approximate lower limit).

If X is a topological space and f : X → R, then we define the (φ, V )-

approximate lower limit of f the quantity

(φ, V )ap liminf
z→x

f(z) := sup
{

t ∈ R : {z : f(z) < t} has zero (φ, V )−density at x
}

.

Theorem 1.5.5 (Measurability and approximate continuity).

Let φ be a measure on a set X. Let Y be a separable metric space, and let

f : X → Y be a generic function. Then:

f is φ measurable ⇔ f is (φ, V )− approximately

continuous at x for φ− a.e. x ∈ X
.

1.6 Currents

Idea: m-currents on R
n are objects which generalize the concept

of m-dimensional surfaces in R
n.

The mass M(T ) of a current T is a quantity which generalizes the

concept ofm-dimensional Hausdorff measure for them-dimensional

surface.

Definition 1.6.1. Let Ω be an open subset of Rn.

Then we define

• a k-form on Ω as any continuous map from Ω to
∧k

(Rn);
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• Em(Ω) as the set of smooth k forms on Ω;

Dm(Ω) as the set of smooth k forms on Ω with compact support.

• Em(Ω) as the dual space of Em(Ω);
Dm(Ω) as the dual space of Dm(Ω).

We call m-dimensional current any element of Dm.

To any m-dimensional orientable surface S we can associate a current JSK

by integration, defining its action on an m-form ω as

JSK(ω) :=

∫

S

〈ω(x),−→S (x)〉 dHm(x),

where
−→
S (x) is any unitary and simple m-vector associated to the tangent

space to S at x.

1.6.1 The current En

Idea: the current En is the fundamental n current on R
n rep-

resenting the classical integration with respect to the lebesgue

measure and the canonical volume n-form e1 ∧ ... ∧ en.

Definition 1.6.2 (The current associated with Lebesgue integration in R
n).

Define the current En ∈ Dn(R
n) as

En := Ln ∧ e1 ∧ ... ∧ en,

which, in other words, is the current acting by lebesgue integration:

En : Dn(Rn) −→ R

φ 7→
∫

〈 e1 ∧ ... ∧ en, φ 〉 dLn
.
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1.6.2 Comass of a covector and mass of a current

Idea: mass and comass of m-forms are quantities associated to m-

forms. They are pretty much the equivalent of dual norms. Our

purpose is to use them in the fundamental definition of mass of a

current.

The mass M of a current generalizes the m-dimesional area of m-

dimensional surfaces. In fact one can easily see, applying the defini-

tions, that if S is anm-dimensional surface, thenM(JSK) = Hm(S).

Definition 1.6.3 (Comass of a covector).

For any covector ξ ∈
∧m

(Rn) we define its comass as ( 1 )

||ξ|| := sup{|〈ξ, v〉| : v is a unit, simple m-vector}.

Definition 1.6.4 (Comass of an m-form).

Define the comass of an m-form φ ∈
∧m

(Rn) as

M(φ) := sup{||φ(x)|| : x ∈ U}

Definition 1.6.5 (Mass of an m-current).

Define the mass of an m-current T as

M(T ) := sup{T (φ) : φ ∈ Dm, M(φ) ≤ 1}.

1.6.3 Pushforward of a current

Definition 1.6.6 (Pushforward of a current).

Given two open subsets U, V of some euclidian space E, a map f ∈ C∞(U, V )

and a current T ∈ Dm(U) such that f |spt(T ) is proper, we define the pushfor-
ward of T through f as the current f#T ∈ Dm(V ) given by

f#T : Dm(V ) −→ R

φ 7→ T
(

γφ ∧ (f#φ)
) .

1The norm of a simple m-vector (v1, ..., vm) is simply ||(v1, ..., vm)|| :=

√

√

√

√

m
∑

i=1

||vi||2.
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where γφ is an element of D0(V ) such that

spt(T ) ∩ f−1(spt(φ)) ⊂ Int{x : γφ(x) = 1}.

(Of course the definition of f#T (φ) is independent on the choice of γφ).

1.6.4 Currents representable by integration

Definition 1.6.7.

We say that a current T ∈ Dm(Ω) is representable by integration if there

exist a map
−→
T : Ω →

∧

m
(Rn) (i.e. an m-vector field on Ω) and a measure

||T || on Ω such that the action of T on any m ∈ Dm(Ω) can be written as

T (ω) =

∫

Ω

〈ω(x),−→T (x)〉 d||T ||.

In this case we call
−→
S the orientation of T and ||T || the total variation

measure of T .

We state without proof two fundamental facts about currents repre-

sentable by integration. For the proof the reader may see [4].

Theorem 1.6.1 (Representation by integration).

An m-current T is representable by integration if and only if it has finite

mass.

Proposition 1.6.1.

If a current S is representable by integration, then its orientation
−→
S is

carachterized by the property

〈−→S (x), y〉 = lim
r→0+

−→
S (1U(x,r)(y))

||S||(B(x, r))
∀y ∈

∧m
(Rn).
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1.6.5 Cartesian product of current

Proposition 1.6.2. [Cartesian product of currents]

Let A,B ⊂ R
n be two open subsets. Let

p : A× B −→ A

(a, b) 7→ a

and
q : A× B −→ B

(a, b) 7→ b

be the projections from the cartesian product onto A and B respectively.

Let i, j ∈ N and let S ∈ Di(A) and T ∈ Dj(B).

Then there exists a unique current in Di+j(A×B), denoted by S×T , such
that for any k ∈ {0, 1, ..., i+ j}, any α ∈ Dk(A) and any β ∈ Di+j−k(B)

it holds that

S × T (p#α ∧ q#β) =







S(α)T (β) if k = i

0 otherwise
.

Definition 1.6.8 (Cartesian prouct of currents).

The current T ×S defined in proposition 1.6.2 is said cartesian product of S

and T .

Notation 1.6.1. Denote by P and Q the maps

P : R
m −→ R

m × R
n

a 7→ (a, 0)
,

Q : R
n −→ R

m × R
n

b 7→ (0, b)
.
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Proposition 1.6.3 (Properties of the cartesian product).

Let S ∈ Di(A) and T ∈ Dj(B). Then

• spt(S × T ) = spt(S)× spt(T )

• Boundaries satisfy the following equality

∂(S × T ) =



















(∂S)× T + (−1)iS × ∂T if i, j > 0

(∂S)× T if i > 0 = j

S × ∂T if j > 0 = i

• Let
r : A× B −→ B × A

(a, b) 7→ (b, a)
.

Then

r#(S × T ) = (−1)ijT × S.

• If both S and T are representable by integration, then, defined

ξ : A× B −→
∧

i+j
(Rn)

(a, b) 7→ (∧iP )
−→
S (a) ∧ (∧jQ)

−→
T (b)

,

it holds that

S × T =

∫

〈ξ, ·〉 d(||S|| × ||T ||)

(therefore S × T is representable by integration and ||S × T || ≤
||S|| × ||T ||).

• If both S and T are representable by integration and at least for

one among
−→
S (a) and

−→
T (b) is simple for (||S|| × ||T ||)-a.e. (a, b) ∈

A× B, then

||S × T || = ||S|| × ||T ||,

||ξ(a, b)|| = 1,

−−−→
S × T = ξ a.s..
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1.6.6 The join of two currents

Definition 1.6.9 (Join of two currents).

We define the join S××T of two currents S ∈ Di(R
n) and T ∈ Dj(R

n) trhough

the map

F : R
n × R× R

n −→ R
n

(x, t, y) 7→ (1− t)x + ty

as

S ××T := F#(S × J0, 1K × T ).

Proposition 1.6.4 (Properties of the join).

• It holds that

∂(S ××T ) =































(∂S)××T − (−1)i S ××∂T if i, j > 0

(∂S)××T − (−1)i T (1)S if i > 0 = j

S(1)T − S ××∂T if j > 0 = i

S(1)T − T (1)S if i = j = 0

• S ××T = (−1)(i+1)(j+1)T ××S

• A#(S ××T ) = A#S ××A#T for every affine map A.

1.6.7 Deformation chains and the homotopy formula

Definition 1.6.10 (Proper function).

We say that a function f between metric spaces X and Y is proper if f−1(K)

is compact for every compact K ⊂ Y .

Definition 1.6.11 (Deformation chain).

Given an open set U ⊂ R
n, a current T ∈ Dm(U) and a proper function

h ∈ C∞([0, 1] × spt(T ),Rm), we call deformation chain of T (associated

with h) the current h#(J0, 1K × T ).



28 1. Notations and fundamental definitions

Proposition 1.6.5 (Homotopy formula).

Fix a generic T ∈ Dm(U). If h ∈ C∞([0, 1]×spt(T ),Rm) is proper and a homo-

topy between the functions f and g (i.e. f(·) = h(0, ·) and g(·) = h(1, ·)), then
the deformation chain of T associated with h satisfies the following equation:

g#T − f#T =







∂
(

h#(J0, 1K × T )
)

+ h#(J0, 1K × ∂T ) if m > 0

∂
(

h#(J0, 1K × T )
)

if m = 0

1.6.8 Polihedral and rectifiable currents

Idea: Currents, if considered in their complete generality, are very

abstract objects. We could say that for our purpose, which is to

study surfaces using currents, there are too many more currents

than there are surfaces. Because of this, rewriting variational prob-

lems from the set of surfaces to the space of currents may lead to

non-interpretable results.

We would like to describe a subclass of currents which are “more

similar” to surfaces. Rectifiable currents are precisely that. They

are still currents and they are still a class which is strictly wider

than the set surfaces, but they are much more similar to them.

They can be thought as the union of a finite amount of (Hm,m)-

rectifiable sets, possibly overlapping.

Notice that the definition is quite abstract, but that the character-

ization theorem below gives equivalent definitions which are much

more concrete.

Definition 1.6.12 (Pm,K(U)).
Given K ⊂ U ⊂ R

n with K compact and U open, we define Rm,K(U) as

the additive subgroup of Dm(U) generated by all m-dimensional oriented

simplexes whose convex hull is contained in K.
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Definition 1.6.13 (Integral polihedral chains).

We define as Pm(U) the set

Pm(U) :=
⋃

K⊂U,
K compact

Pm,K(U).

Each element of Pm(U) will be called Integral polihedral chain

Definition 1.6.14 (Polihedral chains).

Define Pm(U) as the vector space (on the considered field) generated by

Pm(U) (whose elements have only integer coefficents).

Definition 1.6.15 (Rm,K(U)).

Given K ⊂ U ⊂ R
n with K compact and U open, we define Rm,K(U) as the

set of m-dimensional currents T of U with the following property: ”for all

ǫ > 0, the exist:

• An euclidean space E

• C ⊂ Z ⊂ E with C compact and Z open

• A lipschitz map f : Z → U such that f(C) ⊂ K

• An integral polihedral chain P ∈ Pm,C

satisfying M(T − f#P ) < ǫ.”

Definition 1.6.16 (Rectifiable m-currents in U).

Define the set Rm(U) of rectifiable m-dimensional currents in U as

Rm(U) :=
⋃

K⊂U,
K compact

Rm,K(U).
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Theorem 1.6.2 (Equaivalent conditions for rectifiability of a current).

Given an open subset U of Rn and a m-current T ∈ Dm(U) with compact

support, the following 5 statements are equivalent:

1. T is rectifiable.

2. T ∈ Rm,K for every compact K ⊂ U such that spt(T ) ⊂ Int(K).

3. ∀ǫ > 0, ∃Z ⊂ R
m open, ∃A ⊂ Z compact, ∃f ∈ Lip(Z,U) such

that

M(T − f#E
m
xA) < ǫ.

4. ∃B ⊂ spt(T ) which is Hm-measurable and (Hm,m)-rectifiable,

∃η : U →
∧

m
, Hm

xB-summable m-vector field, such that

(a) T = (Hm
xB) ∧ η.

(b) η(x) is simple for Hm-a.e. x ∈ B

(c) |η(x)| ∈ N \ {0} for Hm-a.e. x ∈ B

(d) Tanm(Hm
xB, x) is associated with µ(x).

5. M(T ) <∞, U is (||T ||,m)-rectifiable and, for ||T ||-a.e. x ∈ U ,

(a) Θm(||T ||, x) ∈ N \ {0}.

(b)
−→
T (x) is simple.

(c) Tanm(||T ||, x) is associated with
−→
T (x).

Moreover, if one of the above holds, then ||T || = Hm
xΘm(||T ||, ·).

1.6.9 Integral currents

Definition 1.6.17 (Integral currents with support in K).

For a natural number n and a compact subset K of the oper set U , define

the set Im,K(U) as

Im,K(U) := {T : T ∈ Rm,K(U), ∂T ∈ Rm−1,K(U)}.
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Definition 1.6.18 (Integral currents).

Define the set of integral m-currents as the abelian additive subgroup of

Rm(U) as the union

Im(U) :=
⋃

K⊂U,
K compact

Im,K(U).

1.6.10 Boundary of a current

Idea: The boundary of a current is the notion which indeed gen-

eralizes the notion of topological boundary for surfaces.

Definition 1.6.19.

Given a current T ∈ Dm(Ω) with m ≥ 1, we define the boundary of T as

the current ∂T ∈ Dm−1(Ω) whose action on any ω ∈ Dm−1 is given by

∂T (ω) := T (dω).

1.6.11 Normal currents

Definition 1.6.20 (The set Im,K).

For K ⊂ U ⊂ R
n, with U open and K compact, and for an integer m ≥ 0,

we define

Im,K(U) :=







{T : T ∈ Rm,K(U) and ∂T ∈ Rm−1,K(U)} if m > 0

R0,K(U) se m = 0
.

Definition 1.6.21 (Normal currents).

Let T ∈ Dm(U).

• We say that T is locally normal if T is representable by integration

and either ∂T is representable by integration or m = 0.

• We say that T is normal if it is locally normal and spt(T ) is compact.

• Define

N(T ) :=







M(T ) +M(∂T ) if m > 0

M(T ) if m = 0
.
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• Denote by Nloc
m (U) the set of locally normal currents on U .

• For any compact subset K of U , denote by Nm,K(U) the set of nomal

m-currents on U whose support is contained in K.

• Denote by Nm(U) the set of normal currents on U .

Proposition 1.6.6.

The following implications hold:

• N(T ) <∞ ⇒ T is locally normal.

• T is normal ⇒ N(T ) <∞.



Chapter 2

Hardt Pitts

2.1 First theorem: finding a suitable rectifi-

able current to work with

Lemma 2.1.1.

If m ∈ {1, 2, ..., n− 1} and B is a countably (Hn−1, n− 1)-rectifiable subset of

R
n, then the set

Z :=
{

z ∈ S
n−1 : Hm

(

{x ∈ B : z ∈ Tanm(Hm
xB, x)}

)

> 0
}

is contained in the countable union of great (m− 1)-spheres.

Proof.

For any linear subspace P of Rn having dimension j ∈ {1, 2, ...,m} define

S(P ) := B ∩
{

x : P ⊂ Tanm(Hm
xB, x) ∈ G(n,m)

}

.

Also define

Gm := G(n,m) ∩ {P : Hm
(

S(P )
)

> 0}

33
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and (inductively), for any j = m− 1, m− 2, ..., 1,

Gj := G(n, j) ∩
{

P : Hm
(

S(P )
)

> 0 and

P is not contained in any Q ∈
m
⋃

k=j+1

Gk

}

.

Claim 1. The following implication holds:

j ∈ {1, 2, ...,m}
P,Q ∈ Gj

P 6= Q















⇒ Hm(P ∩Q) = 0.

Proof of claim 1.

If j = m, then the implication is trivial, since rectifiability of B implies that

P = Tanm
(

Hm
xB, x) ∀x ∈ S(P )

Q = Tanm
(

Hm
xB, x) ∀x ∈ S(Q)

and so, since P 6= Q and the tangent space at a point x is unique, that

S(P ) ∩ S(Q) = ∅.

Consider now the case j ∈ {1, ...,m− 1}.
Assume by contradiction that there is a subset A+ of S(P )∩S(Q) such that

Hm(A+) > 0.

Then the subspace V := P +Q ≤ R
n would have dimension dim(V ) strictly

greater than j and it would satisfy Hm
(

S(V )
)

> 0.

This means that there exists a subspace V ′ ≤ V such that

dim(V ′) ∈ {j + 1, ...,m}

Hm
(

S(V ′)
)

≥ Hm
(

S(V )
)

> 0

P ≤ V ′
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which in other words is an element of Gdim(V ′) containing P . But this con-

tradicts, by definition of Gj, the fact that P ∈ Gj.

We deduce that Hm
(

S(P ) ∩ S(Q)
)

must be 0.

Claim 2. The set Gj is countable for all j = 1, 2, ...,m.

Proof of claim 2.

By definition of countable (Hm,m)-rectifiability, B is contained in the union

of a countable amount of m-rectifiable sets {Bj}j∈N.
By definition of m-rectifiability, each set Bj has finite Hm measure.

Assume by contradiction that one of the sets Gj was uncountable.

Then the uncountable Gj could be described as Gj = {Pα}α∈A, where A is

an uncountable set of indices.

For any α ∈ A define Aα := S(Pα).

For any α ∈ A define Γα := {j ∈ N : Hm(Bj ∩ Aα) > 0}.
The set Γα must be non-empty for all α, otherwise Hm(Aα) = 0, which by

definition of Gj is not true.

Therefore there must be at least one k ∈ N which intersects an uncountable

amount of Aα in a Hm-non trivial set.

This means, since all sets Aα are Hm-essentially disjoint, that Hm(Bk) = ∞.

But this contradicts the fact that Hm(Bj) <∞ ∀j ∈ N.

We conclude that Gj must therefore be countable for all j = 1, ...,m, as we

wished.

Observing now that

Z = Sn−1 ∩





m
⋃

j=1

⋃

P∈Gj

P



 =
m
⋃

j=1

⋃

P∈Gj

(Sn−1 ∩ P ),

the statement of the lemma is immediately deduced using claim 2.
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We now state and prove the first important result in [5]. In this Theorem

we consider a Normal current in codimension 1 whose support is compact

and whose boundary is rectifiable and we are able to find a suitable integral

current R which is linked to N by some useful properties.

Theorem 2.1.2.

If N ∈ Nn−1(R
n) (remember that by definition this means that it has compact

support) and ∂N ∈ Rn−2(R
n), then there exists R ∈ In−1(R

n) with ∂R = ∂N

and such that:

1. ||N −R|| = ||N ||+ ||R||.

2.
−−−−→
N −R(x) +

−→
R (x) = 0 for ||R||-a.e. x ∈ R

n.

3. The following implication holds:

f : Rn → R is Ln-measurable

∂ (Exf) = N −R

λ := ap liminf f

µ := ap limsup f























⇒

0 < Θn−1(||N −R||, x)
= Θn−1(||R||, x)
= µ− λ ∈ Z

for ||R||-a.e. x ∈ R
n

Proof.

Let C := J0K ××∂N ∈ Rn−1(R
n).

Let U ⊂ R
n be a bounded open set containing spt(N) ∪ spt(C).

Let r ∈ R>0 be such that dist(spt(τrz#C), U) > 0 ∀z ∈ S
n−1.

Let, for any z ∈ S
n−1, hz(t, x) := (1− t)(x+ rz) + tx be the homotopy from

τrz to the identity.

Let Cz := hz#(J0, 1K × ∂N) + τrz#C.

Let B be the set B := {x : Θn−1(||C||, x) > 0}.
Let Bz be the set Bz := {x : Θn−1(||Cz||, x) > 0}.

Claim 1.

For any z ∈ S
n−1 it holds that ∂Cz = ∂N .

Proof of Claim 1. Using proposition 1.6.4, we deduce that
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∂C = J0K(1)∂N − J0K ××∂(∂N)

= ∂N

and by the homotopy formula we have

∂Cz = ∂
(

hz#(J0, 1K × ∂N)
)

+ ∂
(

τrz#C
)

= hz(1, ·)#∂N − hz(0, ·)#∂N + hz#
(

J0, 1K × ∂(∂N)
)

+ τrz#∂C

= ∂N − τrz#∂N + 0 + τrz#∂C

= ∂N.

Claim 2.

For every z ∈ S
n−1, the current Cz is an (n − 1)-rectifiable

current.

Proof of claim 2.

The current C is rectifiable, since it is the join of two rectifiable currents.

Cz is obtained from rectifiable currents through pushforwards, sums and

cartesian products.

Claim 3.

The sets B and Bz are (Hn−1, n−1)-rectifiable sets and Hn−1-

measurable sets (for any z ∈ S
n−1).

Proof of claim 3.

With reference to [4, 4.1.28, p. 384-385], we see that the rectifiability of C

implies that the open set U is (||C||, n − 1)-rectifiable, which by definition

means that there is a countably m-rectifiable set A ⊂ U such that ||C||(U \
A) = 0 and that ||S||(U) <∞.

The same theorem tells that ||C|| = Hn−1
xΘn−1(||C||, ·), so that the set

B = {x ∈ U : Θn−1(||C||, x) > 0} has full ||C||-measure (i.e. ||C||(B) =

||C||(U). This in particular means that the set A must contain ||C||-almost

all points of B, which by definition means that B is (||C||, n− 1)-rectifiable.
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Hn−1-measurability is due to the fact that Θn−1(||C||, ·) is aHn−1-measurable

map.

The argument that shows (||C||, n−1)-rectifiability andHn−1-measurability

of Bz is analogous.

Claim 4.

For any z ∈ S
n−1 and for ||Cz||-a.e. x ∈ U it holds that

z ∧ −→
C z(x) = 0 and z ∈ Tann−1(Hn−1

xBz, x).

Proof of claim 4.

Since Cz is rectifiable, it is also representable by integration through a vector

field which is simple for ||Cz||-a.e. x ∈ R
n.

By construction the current τrz#C has its support disjoint from U .

The homotopy current hz#(J0, 1K× ∂N) has a ”translation component” par-

allel to z in all the points of its support, so that the vector z is contained

in almost all the tangent spaces. Since tangent spaces of are associated with

the vectori field
−→
Cz, it follows by definition (of vector subspace associated

with a simple m-vector) that z ∧ −→
Cz = 0 for ||Cz||-a,e, x ∈ U .

The analogous statement on Bz follows from the fact just proven and [4,

4.1.28, p. 384-385].

Claim 5.

There is a function g of bounded variation such that N −C =

∂
(

En
xg
)

.

Proof of claim 5.

By claim 1 it holds ∂(N − R) = ∂N − ∂R = 0. Since we are dealing

with currents in R
n, which is simply connected, this implies that the current

N − R is also exact (by the version of Poincaré’s lemma for currents). It

is therefore the boundary ∂M of some M ∈ Dn(R
n). All n-currents on R

n
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are representable by integration and therefore exists g ∈ L1
loc(R

n) such that

M = En
xg.

To see that f is BV we shall use the notation

d̂xi := dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxn

and notice that, for any (n−1)-form ω = w1(x) ˆdx1+ ...+wn(x) ˆdxn, we have

∂
(

En
xg
)

(w) = En
xg
(∂w1

∂x1
(x)dx1 ∧ ˆdx1 + ...+

∂wn
∂xn

(x)dxn ∧ ˆdxn

)

= En
xg

(

(

n
∑

i=1

(−1)i+1∂wi
∂xi

)

dx

)

=

∫

Rn

g div(w) dx

where
w : R

n −→ R
n

x 7→
(

w1(x),−w2(x), ..., (−1)n+1wn(x)
) .

Therefore

sup
φ∈C1

c (R
n)

|φ|≤1

∫

Rn

g div(φ) dLn = sup
φ∈C∞

c (Rn)
|φ|≤1

∫

Rn

g div(φ) dLn

=
∥

∥∂
(

En
xg
)∥

∥

= ‖N −R‖(Rn) <∞.

Define F := {x : (Ln)ap liminf
z→x

g(z) < (Ln)ap limsup
z→x

g(z)}.

Claim 6.

The set F is a (Hn−1, n− 1)-rectifiable Borel set.

Proof of claim 6.

It is precisely the statement of [4, 4.5.9 (16), p.483], together with [4, 4.5.9

(2), p.482] to see that the set is in fact a Borel set.
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Claim 7.

It exists z ∈ S
n−1 such that Hn−1

(

(

F ∪ B
)

∩ Bz

)

= 0.

Proof of claim 7. We apply the lemma above to both F and B to see that

Hn−1-almost all z ∈ S
n−1 are tangent vectors for a subset of F ∪ B which

has null Hn−1-measure. Therefore there is at least one (and there are in fact

infinitely many) such z. We pick one and call it z.

We see that therefore:

• inside U the tangent spaces on Hn−1-almost all intersection points of

F ∪ B and Bz have dimension at most n− 2.

• If F and Bz overlapped on a set with nonzero Hn−1-measure, then that

set would be (Hn−1, n− 1)-rectifiable and the tangent spaces of F and

Bz would coincide.

An analogous statement holds for B and Bz.

• Outside of U there are only points of Bz, since both F and B are

contained in U .

These observations show that Hn−1
(

(F ∪ B) ∩ Bz

)

= 0.

We can finally define the current R that we were looking for as R := Cz. We

now prove that it has the properties we desired.

Claim 8.

The two following implications hold:

Hn−1(W ) <∞
W ⊂ R

n \ F

}

⇒ ||N − C||(W ) = 0 (2.1)

and
Hn−1(W ) <∞
W ⊂ R

n \ (F ∪ B)

}

⇒ ||N ||(W ) = 0. (2.2)
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Proof of claim 8.

Proof of (2.1):

Consider a Hn−1-measurable set W with Hn−1(W ) <∞.

Assume that W ⊂ R
n \ F .

Then W equals the uncountable union

W =
⋃

s∈R

(

W ∩
{

x : ap liminf
z→x

g(z) = s = ap limsup
z→x

g(z)
}

)

.

Since Hn−1(W ) < ∞, then only a countable amount real numbers s

can satisfy

Hn−1
(

W ∩
{

x : ap liminf
z→x

g(z) = s = ap limsup
z→x

g(z)
}

)

> 0.

This tell us, in particular, that the map s 7→ Hn−1({x : λ(x) ≤ s ≤
µ(x)}) (with s ∈ R) is L1-a.e. null. Therefore, using [4, 4.5.9(14),

p.483], we see that

||N − C||(W ) = ||∂(En
xg)||(W )

=

∫ +∞

−∞

∫

{x: λ(x)≤s≤µ(x)}

1W (x)dHn−1(x) dL1(s)

= 0

Proof of (2.2):

Consider a Hn−1-measurable set W with Hn−1(W ) <∞.

Assume that W ⊂ R
n \ (F ∪B).

Notice that for any set A ∈ R
n \B it holds that ||C||(A) = 0, and that

||N ||(A) ≤ ||C||(A)+ ||N−C||(A) ≤ 0+ ||N ||(A)+ ||C||(A) = ||N ||(A).

Thus ||N ||(A) = ||N − C||(A).
It follows now from the first implication proven above that

||N ||(W ) = ||N − C||(W ) = 0.
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Claims 7 and 8 automatically imply that

||N ||(Bz) = 0.

Moreover for any A ⊂ BRn
(1),

||N − Cz||(A) = ||N − Cz||(A \Bz) + ||N − Cz||(A ∩Bz)

≥ ||N ||(A \Bz)− ||Cz||(A \Bz)+

+||Cz||(A ∩ Bz)− ||N ||(A ∩Bz)

= ||N ||(A \Bz) + ||Cz||(A ∩Bz)

= ||N ||(A) + ||Cz||(A).

The inverse inequality is trivial, and therefore we have

||N − Cz||(A) = ||N ||(A) + ||Cz||(A).

Claim 9.

For Hn−1-a.e. x ∈ R
n \ (F ∪B) it holds that Θn−1(||N ||, x) =

0.

Proof of claim 9.

By definition

Θn−1(||N ||, x) = lim
r→0+

||N ||
(

B(x, r)
)

α(n)rn−1
.

Assume by contraddiction that there is a set A+ ⊂ R
n \ (F ∪ B) of positive

Hn−1 measure such that

Θn−1(||N ||, x) > 0 ∀x ∈ A+.

Then there must be some ε > 0 such that

Hn−1
(

{x : Θn−1(||N ||, x) > ε}
)

> 0.

1BRn := {Borel subsets of Rn}



2.1 First theorem: finding a suitable rectifiable current to work with43

Denote by Q this positive value.

This implies, using [4, 2.10.19(3), p. 181], that

||N ||(A+) ≥ εQ > 0,

but this contradicts claim 8.

As a conclusion there can be no set outside of F ∪ B having positive ||N ||
measure.

Claim 10.

For any function f as in 3 of Theorem 2.1.2, define Ef :=

{x ∈ R
n : λ(x) < µ(x)}. Then

Hn−1(Bz \ Ef ) = 0

and for any x ∈ R
n and any r ∈ R>0

||N − Cz||
(

B(x, r)
)

=

= ||N ||
(

B(x, r) \ Ef
)

+ ||N − Cz||
(

B(x, r) ∩ Ef
)

.

Proof of claim 10.

Suppose by contradiction that

Hn−1(Bz \ Ef ) > 0.

Then:

1. Analogously as earlier in the proof of claim 9, we see that

||Cz||(Bz \ Ef ) > 0.

2. In the precise same way as in the proof of the first implication of claim

8, we see that

||N − C||(Bz \ Ef ) = 0.

3. We know by claims 7 and 8 that ||N ||(Bz) = 0, and so that in particular

||N ||(Bz \ Ef ) = 0.
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These three observations are contradictory, since they imply that

0 = ||N − C||(Bz \ Ef ) = ||N ||(Bz \ Ef ) + ||Cz||(Bz \ Ef ) > 0.

This means that Hn−1(Bz \ Ef ) can not be positive, and must therefore be

0.

More in general, then, it also holds that ||Cz||(Rn \ Ef ) = 0, since

‖Cz‖(Rn \ Ef ) =
=

∫

Rn\Bz

Θn−1
(

‖Cz‖, x
)

dHn−1(x) +

∫

Bz\Ef

Θn−1
(

‖Cz‖, x
)

dHn−1(x)

= 0

Fix now some x ∈ R
n and some r > 0.

We see that

||N − Cz||
(

B(x, r)
)

= ||N − Cz||
(

B(x, r) \ Ef
)

+

+ ||N − Cz||
(

B(x, r) ∩ Ef
)

= ||N ||
(

B(x, r) \ Ef
)

+ ||Cz||
(

B(x, r) \ Ef
)

+

+ ||N − Cz||
(

B(x, r) ∩ Ef
)

= ||N ||
(

B(x, r) \ Ef
)

+ ||N − Cz||
(

B(x, r) ∩ Ef
)

= ||N ||
(

B(x, r)
)

+ ||Cz||
(

B(x, r) ∩ Ef
)

Now statement 3 of the theorem can be proven using claim 10 and [4,

4.1.28 (p.385), 4.5.9(15) (p.483)].

In fact:

• By claim 10 the set F containsHn−1-a.e. point x of Rn with Θn−1(||Cz||, x) >
0.

• Since ||N − Cz|| = ||N ||+ ||Cz||, then it is also true that

Θn−1(||N − Cz||, ·) = Θn−1(||N ||, ·) + Θn−1(||Cz||, ·).
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• By claim 9 ||N || has zero (n− 1)-density Hn−1-a.e. outside of F ∪ B,

and so in particular Hn−1-a.e. in Bz (by claim 7).

Since ||Cz||(Rn \ Bz) = 0 and (by [4, 4.1.28 (p.384)]) ||Cz|| ≪ Hn−1,

this means that Θn−1(||N ||, ·) = 0 ||Cz||-a.e. .

• By [4, 4.1.28 (p.384)], since Cz is rectifiable, Θn−1(||Cz||, x) ∈ Z for

||Cz||-a.e. x ∈ R
n.

• By [4, 4.5.9(15) (p.483)], for every Borel subset W of F , it holds

||N − C||(W ) =

∫

W

(µ− λ) dHn−1

Putting these observations together we have, for every Borel subset W of F ,

that
(

Hn−1
xΘn−1(||Cz||, ·)

)

(W ) = ||Cz||(W )

= 0 + ||Cz||(W )

= ||N ||(W ) + ||Cz||(W )

= ||N − Cz||(W )

=
(

Hn−1
x(µ− λ)

)

(W )

which means that

(µ− λ)(x) = Θn−1(||Cz||, x) for Hn−1-a.e. x ∈ F.

Since ||Cz|| ≪ Hn−1 and since F has full ||Cz||-measure, we deduce that in

particular

(µ− λ)(x) = Θn−1(||Cz||, x) for ||Cz||-a.e. x,

and statement 3 is proven.

Lastly we can see, using [4, p.357], that for any y ∈
∧m

R
n

〈−−−−→N − Cz, y〉 = lim
r→0+

(N − Cz)(bx,ry)

||N − Cz||
(

B(x, r)
)

= lim
r→0+

N(bx,ry) − Cz(bx,ry)

||N ||
(

B(x, r)
)

+ ||Cz||
(

B(x, r)
)

= lim
r→0+

−Cz(bx,ry)

||Cz||
(

B(x, r)
)

= 〈−−→
Cz, y〉.
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And this proves statement 2, concluding the proof of the theorem.

2.2 Main result of Hardt-Pitts: mass reduc-

ing integral current

The purpose of Theorem 2.1.2 is to provide the rectifiable current R

which will allow to prove the Theorem below, which is the main result of

Hardt-Pitts’s paper.

Theorem 2.2.1 (Main result).

If N ∈ Dn−1(R
n), M(N) < ∞, spt(N) is compact and ∂N ∈ In−2(R

n),

then there exists T ∈ In−1(R
n) such that

1. ∂T = ∂N ;

2. M(T ) ≤ M(N).

Proof.

The current N satisfies the properties of Theorem 2.1.2.

Let then R, f, λ and µ be as in Theorem 2.1.2.

By [4, 4.5.9(13), p. 483]

N −R = ∂
(

En
xf
)

=

∫ +∞

−∞

∂
[

En
x{x : f(x) ≥ s}

]

dL1(s)

=

∫

[0,1)

(

∑

j∈Z

∂
[

En
x{x : f(x) ≥ s+ j}

]

)

dL1(s)

(2.3)

and similarly

||N −R|| =
∫

[0,1)

(

∑

j∈Z

||∂
[

En
x{x : f(x) ≥ s+ j}

]

||
)

dL1(s). (2.4)
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Claim 1. There exists s ∈ (0, 1) such that

(a) ∂
[

En
x{x : f(x) ≥ s+ j}

]

∈ Rn−1(R
n) ∀j ∈ Z.

(b) M(N −R) ≥
∑

j∈Z

M
(

∂
[

En
x{x : f(x) ≥ s+ j}

] )

(c) ||R||
(

λ−1(s+ j) ∪ µ−1(s+ j)
)

= 0 ∀j ∈ Z.

Proof of claim 1.

We make three observations:

1. By [4, 4.5.9(12), p.483] the current ∂
[

En
x{x : f(x) ≥ s}

]

is inRloc
n−1(R

n)

for L1-a.e. s ∈ R. Since in our case the current N − R is not just in

Nloc
n−1(R

n) (as in [4, 4.5.9(12)]), but in Nn−1(R
n) (i.e. it also has com-

pact support), the current ∂
[

En
x{x : f(x) ≥ s}

]

is also in Rn−1(R
n)

for L1-a.e. s ∈ R.

This means that the set

{s ∈ [0, 1) : ∂
[

En
x{x : f(x) ≥ s}

]

∈ Rn−1(R
n)}

has full (i.e. unitary) L1 measure.

2. The set

{

s ∈ [0, 1) : M(N −R) ≥
∑

j∈Z

M
(

∂
[

En
x{x : f(x) ≥ s+ j}

]

)

}

has strictly positive L1-measure.

Assume by contradiction that this was not the case, i.e. that

M(N −R) <
∑

j∈Z

M
(

∂
[

En
x{x : f(x) ≥ s+ j}

])

for L1-a.e. s ∈ [0, 1).
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Then

∫

[0,1)

(

∑

j∈Z

||∂
[

En
x{x : f(x) ≥ s+ j}

]

||(Rn)

)

dL1(s) =

=

∫

[0,1)

(

∑

j∈Z

M(∂
[

En
x{x : f(x) ≥ s+ j}

]

)

)

dL1(s)

>

∫

[0,1)

M(N −R) dL1(s)

= ||N −R||(Rn)

which contradicts equation (2.4).

3. Since

||R||(Rn) <∞ and R
n =

⋃

s∈[0,1)

⋃

j∈Z

λ−1(s+ j)

there can only be a countable amount of s ∈ [0, 1) for which

L1

(

⋃

j∈Z

λ−1(s+ j)

)

> 0.

This means that

L1
(

{

s ∈ [0, 1) : L1(λ−1(s+ j)) = 0 ∀j ∈ Z
}

)

= 1.

An identical statement can be analogously deduced for µ.

These three observations together show that the set of s ∈ [0, 1) which would

satisfy the desired properties has strictly positive L1-measure, and is therefore

non-empty.

Define, for each j ∈ Z, Sj := ∂
[

En
x{x : f(x) ≥ s+ j}

]

.
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Claim 2. For the selected s and ||R||-almost every x ∈ R
n

the following statements are true:

(a) λ(x) 6= s+ j and µ(x) 6= s+ j ∀j ∈ Z.

(b) For all j ∈ Z the measure ||Sj|| has density at x given

by

Θ(||Sj||, x) =







1 if λ(x) < s+ j < µ(x)

0 otherwise

(c) 0 < Θn−1(||R||, x) = µ(x)− λ(x) ∈ Z.

(d) if λ(x) < s+j < µ(x), then −−→
R (x) =

−−−−→
N −R(x) = −−→

Sj .

Proof of claim 2.

Statement (a) is a direct consequence of statement (c) from claim 1.

Statement (b) follows from Theorem 2.1.2 above, [4, 4.5.9(17), p.483] and

[4, 4.5.6(2,3), p.478]. In fact:

Case 1 (λ(x) < s+ j < µ(x)):

• In the theorem above we proved that µ(x)−λ(x) > 0 for ||R||-a.e.
x ∈ R

n.

• By [4, 4.5.9(17), p.483] the normal exterior vector n({y : f(y) ≥
s+ j}, x) is a unit vector (instead of being 0) for Hn−1-a.e. x for

which λ(x) < s+ j < µ(x).

• Now [4, 4.5.6(2,3), p.478] can be used together with the two obser-

vations just made to deduce that Θn−1(||Sj||, x) = 1 for ||R||-a.e.
x ∈ R

n for which λ(x) < s+ j < µ(x).

Case 2 (µ(x) < s+ j):
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If λ(x) ≤ µ(x) < s+ j, then by definition of µ(x) it must be that

lim
S⊂Rn

S→x

Ln(S ∩ {y : f(y) ≥ s+ j})
Ln(S) = 0.

This implies in particular, since

Θn(Lnx{y : f(y) ≥ s+ j}, x) := lim
r→0+

Lnx{y : f(y) ≥ s+ j}
(

B(x, r)
)

Ln
(

B(x, r)
) ,

that

Θn(Lnx{y : f(y) ≥ s+ j}, x) = 0.

This further implies, by definition of exterior normal, that

n
(

{y : f(y) ≥ s+ j}, x
)

= 0.

We have shown this inclusion:

{x : µ(x) < s+ j} ⊂ {x : n
(

{y : f(y) ≥ s+ j}, x
)

= 0},

and using [4, 4.5.6(2,3), p.478] we see that Θn−1(||Sj||, x) = 0 for Hn−1-

a.e. x having µ(x) < s+ j.

Case 3 (λ(x) > s+ j):

It is analogous to case 2, only using the definition of λ instead of the

definition of µ.

Statement (c) was proven in claim 9 at page 42, and more in general was a

part of statement “3.” in the theorem above.

Statement (d) requires a couple more details:

• from (b), [4, 4.5.9(17), p.483] and [4, 4.5.6(2,3), p.478] we deduce that

∥

∥∂
[

En
x{x : f(x) ≥ s+ j}

]∥

∥ = Hn
x{x : λ(x) < s+ j < µ(x)};
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• The second equation in [4, 4.5.9(13), p.483] is equivalent to saying that

for any f ∈ L1(||N −R||) we have
∫

Rn

f d‖N −R‖ =

∫

R

∫

Rn

f d
∥

∥∂
[

En
x{x : f(x) ≥ s}

]∥

∥ ds,

so that, denoting En
x{x : f(x) ≥ s} by Rs and using also the first

equation in [4, 4.5.9(13), p.483], we can write
∫

R

∫

Rn

〈w(x),−−→∂Rs(x)〉 d‖∂Rs‖(x) ds = (N −R)(ω)

=

∫

Rn

〈w(x),−−−−→N −R(x)〉 d‖N −R‖(x)

=

∫

R

∫

Rn

〈w(x),−−−−→N −R(x)〉 d‖∂Rs‖(x) ds.

This means that

−−−−→
N −R(x) =

−−−−−−−−−−−−−−−→
∂
[

En
x{x : f(x) ≥ s}

]

(x) for L1-a.e. s and ‖∂Rs‖-a.e. x.

From these two observations we deduce that (up to making a different choice

for s in claim 1) property (d) holds for Hn−1-a.e. x for which λ(x) < s+ j <

µ(x) and for all j.

Define the current

S :=
∑

j∈Z

Sj.

Claim 3. For ||R||-almost every x ∈ R
n, the density of the

measure ||S|| satisfies the equalities

Θn−1(||S||, x) =
∑

j∈Z

Θn−1(||Sj||, x)

= Card
(

{j ∈ Z : λ(x) < s+ j < µ(x)}
)

= µ(x)− λ(x)

= Θn−1(||R||, x)

and the orientation
−→
S satisfies

−→
S (x) =

−→
R (x).
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Proof of claim 3.

In claim 2 was proven that
−→
Sj =

−→
R for all j (and so that in particular the

orientation is the same for all values of j in ||R||-a.e. point x). This allows

to deduce

Θn−1(||S||, x) =
∑

j∈Z

Θn−1(||Sj||, x).

The other equalities easily follow from claims 1 and 2 and from Theorem

2.1.2.

The equality
−→
S (x) =

−→
R (x) follows again from the fact that

−→
Sj =

−→
R for all

j ∈ Z.

Claim 4. ||S|| = ||R||+ ||S −R||.

Proof of claim 4.

By rectifiability and Theorem [4, 4.1.28, p.385]

||S|| = Hn−1
xΘ(||S||, ·),

||R|| = Hn−1
xΘ(||R||, ·),

||S −R|| = Hn−1
xΘ(||S −R||, ·).

By claim 3

Θn−1(||S||, ·)1{x:Θn−1(||R||,x)>0} = Θn−1(||R||, ·) Hn−1-a.e.

Θn−1(||S||, ·)1{x:Θn−1(||R||,x)=0} = Θn−1(||S||, ·)−Θn−1(||R||, ·) Hn−1-a.e..
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Now for any Borel set W it holds

||S||(W ) =

∫

W

Θn−1(||S||, ·) dHn−1

=

∫

W

Θn−1(||S||, ·)1{x:Θn−1(||R||,x)>0} dHn−1+

+

∫

W

Θn−1(||S||, ·)1{x:Θn−1(||R||,x)=0} dHn−1

=

∫

W

Θn−1(||R||, ·) dHn−1+

+

∫

W

(

Θn−1(||S||, ·) − Θn−1(||R||, ·)
)

dHn−1

= ||R||(W ) + ||S −R||(W ).

Now we know that

∂R = ∂N

∂S = ∂

(

∑

j∈Z

Sj

)

=
∑

j∈Z

∂Sj = 0,

which implies

∂(R− S) = ∂N.

Moreover

M(N) = ||N ||(Rn)

= ||N −R||(Rn)− ||R||(Rn)

= ||N −R||(Rn)− ||S||(Rn) + ||S −R||(Rn)

≥ ||S −R||(Rn)

= M(R− S)

where the inequality follows from (b) of claim 1.

We define T := R− S and the theorem is proven.
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2.3 Hardt-Pitts decomposition and its con-

nection to Theorem 3.2.1

In [11] Maciej Zworski pointed out one fundamental takeaway from Hardt-

Pitts proof. That is the following theorem:

Theorem 2.3.1.

Let N ∈ Nn−1(R
n).

Assume that N has compact support and that ∂N ∈ In−2(R
n).

Then there exists a family {Rs}s∈(0,1) such that

(i) Rs ∈ Rn−1(R
n) for L1-a.e. s ∈ (0, 1);

(ii) N =

∫

(0,1)

Rs dL1(s);

(iii) ||N || =
∫

(0,1)

||Rs|| dL1(s);

(iv) ||∂N || =
∫

(0,1)

||∂Rs|| dL1(s), and more in particular ∂Rs = ∂N for

L1-a.e. s ∈ (0, 1).

Proof of Theorem 2.3.1.

Take R and f as in Theorem 2.1.2 and define

Rω := R +
∑

j∈Z

∂
[

En
x{x : f(x) ≥ j + s}

]

∀s ∈ (0, 1).

We can now deduce:

• (i) from the proof of claim 1.

• (ii) from equation (2.3).

• (iii) from equation (2.4).

• (iv) using the fact that

∂Rs = ∂R = ∂N for L1-a.e. s ∈ (0, 1),
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to write

||∂N ||(A) =
∫

(0,1)

||∂R||(A) ds =
∫

(0,1)

||∂Rs||(A) ds.

In the next Chapter, Theorem 3.2.1 will provide not only an alternative

proof for the decomposition in the specific case of occupational measures,

but also a procedure to compute the actual currents Rs.

We now anticipate Theorem 3.2.1 and formulate its connection with the

Hardt-Pitts decomposition more concretely. To do so we need to associate a

suitable current to any occupation measure.

Consider a measure µ as in Theorem 3.2.1 on Ω×Y ×Z ⊂ R
n×R×R

n and

consider the maps {ψr}r∈[−1,0] as in Theorem 3.2.1.

Define Tµ, Rs ∈ Dn

(

Ω× Y
)

as

Tµ(ω) :=

∫

Ω×Y×Z

〈

ω(x, y),











1

0

.

.

.

0

z1











∧











0

1

.

.

.

0

z2











∧ · · · ∧











0

0

.

.

.

1

zn











〉

dµ(x, y, z)

and

Rs(ω) :=

∫

Ω

〈

ω
(

x, ψs(x)
)

,













1

0

.

.

.

0
∂ψs

∂x1
(x)













∧













0

1

.

.

.

0
∂ψs

∂x2
(x)













∧ · · · ∧













0

0

.

.

.

1
∂ψs

∂xn
(x)













〉

dLn(x).

Then (3.4) implies that

Tµ =

∫

(−1,0)

Rs ds.
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Chapter 3

Occupation measures

3.1 Variational problems and the definition

of occupation measures

In this section we start by presenting a simple prototype of variational

problem (P) on an open bounded subset Ω of Rn. It will provide a context

for some observations about C1(Ω) maps. Such observations will show how

the definition of occupation measures (made shortly after) is in fact quite

natural. We shall then present the actual problem of interest, (GP), and its

relaxed version, (RGP), made using occupation measures.

3.1.1 A tipical variational problem

Our entire discussion will be focused on techniques to solve a certain type

of variational problems. A simple formulation of such type of problems is

the following:

57
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(P):

Simple problem (P):

Let m,n ∈ N. We will refer to n as the dimension and to m as

the codimension.

Let Ω ⊂ R
n be open, connected and with piecewise C1 boundary.

Let Y := R
m and Z := R

mn ∼= Mm×n(R).

Let L : Ω × Y × Z → R be a locally bounded and measurable

function (which we will call Lagrangian of the problem).

Remember that W 1,∞(Ω, Y ) = Lip(Ω, Y ).

Define the functional

F : W 1,∞(Ω, Y ) −→ R

y(·) 7→
∫

Ω

L(x, y(x), Dy(x)) dx.

Find

inf
y∈W 1,∞(Ω,Y )

F (y).

3.1.2 Measures induced by maps in C1(Ω)

Before defining the space of occupation measures we make some observa-

tions which will make its definition quite natural.

Consider the set C1(Ω) of real functions that are C1 on the closure of Ω.

To each map y ∈ C1(Ω) one can associate naturally the map

y : Ω× Y × Z −→ Ω× Y × Z

x 7→ (x, y(x), Dy(x))

and therefore the Borel measure µy on Ω×Y ×Z obtained by pushing forward

Ln through y:

µy = y#Ln : BΩ×Y×Z −→ [0,+∞]

B 7→ Ln
(

y−1(B)
)

.

The measure µy has the property that for any measurable f : Ω×Y ×Z → R

it holds
∫

Ω×Y×Z

f dµy =

∫

Ω

f(x, y(x), Dy(x)) dLn(x).
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Moreover for any φ ∈ C∞
c (Ω× Y ) one may consider the map

φy : Ω −→ R

x 7→ φ(x, y(x))

and notice that for all j ∈ {1, 2, ..., n}

0 =

∫

Ω

∂φy
∂xj

dx

=

∫

Ω

[

∂φ

∂xj
(x, y(x)) +

m
∑

i=1

∂φ

∂y
(x, y(x))

∂yi
∂xj

(x, y(x))

]

dx

=

∫

Ω×Y×Z

[

∂φ

∂xj
(x, y(x)) +

m
∑

i=1

∂φ

∂yi
(x, y(x))zij

]

dµy(·)(x, y, z).

We will define occupation measures to be the ones satisfying precisely

these properties, as one can see below.

3.1.3 Definition of simple occupation measures (with-

out boundary component)

For any Radon measure on Ω× Y × Z define the two properties

(O1): For all j ∈ {1, ..., n} and all φ ∈ C∞
c (Ω× Y )

∫

Ω×Y×Z

[

∂φ

∂xj
(x, y(x)) +

m
∑

i=1

∂φ

∂yi
(x, y(x))zij

]

dµ(x, y, z) = 0.

(O2):

∫

Ω×Y×Z

||z|| dµ(x, y, z) <∞.

Definition 3.1.1.

Define the set of simple occupation measures on Ω× Y × Z as

M0 :=
{

µ : µ is a Radon measure on Ω× Y × Z

satisfying (O1) and (O2)
}

.

We observe that

1. M0 is a vector space.
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2. The total variation distance

||µ− ν|| := sup{|µ(A)− ν(A)| : A ∈ BΩ×Y×Z}

is a norm on M0.

3. If y ∈ W 1,∞(Ω, Y ) and A ∈ BΩ, B ∈ BY , C ∈ BZ , then

µy(A× B × C) = Ln
(

A ∩ y−1(B) ∩Dy−1(C)
)

.

3.1.4 Relaxing the simple variational problem using

simple occupation measures

We shall now can define the relaxed version of problem (P):

(RP):

Relaxed problem (RP):

Let m,n,Ω, Y, Z, L, F be as in the original problem (P).

Define the extension F of F as

F : M0 −→ R

µ 7→
∫

Ω×Y×Z

Ldµ

and find

inf
µ∈M0

F (µ).

First a general observation: C1(Ω, Y ) = C1(Ω, Y ) ∩ W 1,∞(Ω, Y ) and it is

dense in W 1,∞(Ω, Y ).

Further immediate observations can be made about (RP) and (P):

1. For all y ∈ C1(Ω, Y ), µy ∈ M0 and

F (y) = F (µy).

2. The functional F is not necessarily linear, while F is always linear.

3. The first two observations imply that

inf
y∈W 1,∞(Ω,Y )

F (y) ≥ inf
µ∈M0

F (µ).
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3.1.5 The variational problem of our interest

The problem which we will be dealing with is a more general version of

the simple problem (P) in which we add a boundary contribution to the

functional F and we consider possible constraints either within Ω, on its

boundary or on both. The formal statement of this general version is the

following:

(GP):

General problem (GP):

Let m,n,Ω, Y, Z, L be as in problem (P).

Let σ := Hn−1
x∂Ω.

Let F,G : Ω× Y × Z → R be two measurable maps.

Let F∂ , G∂ : ∂Ω× Y → R be two σ × Lm-measurable maps.

Let L∂ : ∂Ω× Y → R be a bounded and σ-measurable map.

Define C as the set of y ∈ W 1,∞(Ω, Y ) satisfying

F (x, y(x), Dy(x)) = 0, G(x, y(x), Dy(x)) ≤ 0 ∀x ∈ Ω,

F∂(x, y(x)) = 0, G∂(x, y(x)) ≤ 0 ∀x ∈ ∂Ω.

Find

inf
y∈C

(∫

Ω

L(x, y(x), Dy(x)) dx +

∫

∂Ω

L∂(x, y(x)) dσ(x)

)

.

We shall define, for future reference,

F(y) :=

∫

Ω

L(x, y(x), Dy(x))dx +

∫

∂Ω

L∂(x, y(x)) dσ(x)

for all y ∈ W 1,∞(Ω, Y ).

3.1.6 Definition of occupation measures

We now give a formal definition of the actual occupation measures which

we will be dealing with.
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Definition 3.1.2 (Relaxed occupation measures).

We say that a couple (µ, µ∂) is a relaxed occupation measure (or simply

occupation measure) on Ω if

(i) µ is a compactly supported and positive Radon measure on Ω×Y ×Z.
µ∂ is a compactly supported and positive Radon measure on ∂Ω× Y .

(ii) µ(Ω× Y × Z) = Ln(Ω).

(iii) For any φ ∈ C∞(Ω× Y ), the measures µ and µ∂ satisfy

∫

Ω×Y×Z

(

∂φ

∂x
(x, y) +

∂φ

∂y
z

)

dµ(x, y, z) =

∫

∂Ω×Y

φ(x, y)n(x) dµ∂(x, y),

(3.1)

where n(x) is the exterior normal vector to Ω at x.

We will denote by M the set of relaxed occupation measures on Ω (we will

not write M(Ω, Y, Z) as all the sets will be clear from the context).

In the following, when referring to the single measures in the couple (µ, µ∂),

we will refer to µ as relaxed occupation measure and to µ∂ as relaxed

boundary measure.

We make some observations:

1. The condition (3.1) is a system of n equations.

2. M is a vector space.

3. Every relaxed occupation measure (µ, µ∂) satisfies

∫

Ω×Y×Z

||z|| dµ(x, y, z) <∞. (3.2)

4. If µ ∈ M0, then the couple (µ, 0) is a relaxed occupation measure.
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3.1.7 Relaxed version of the general problem

We now have all the necessary tools to define a relaxed version of (GP)

using occupation measures.

(RGP):

Relaxed general problem (RGP):

Letm,n,Ω, Y, Z, σ, L, L∂ , F,G, F∂ , G∂ be as in problem (GP).

Define C as the set of (µ, µ∂) ∈ M satisfying

spt(µ) ⊂
{

(x, y, z) : F (x, y, z) = 0 and G(x, y, z) ≤ 0
}

,

spt(µ∂) ⊂
{

(x, y) : F∂(x, y) = 0 and G∂(x, y) ≤ 0
}

.

Find

inf
(µ,µ∂)∈C

(∫

Ω×Y×Z

Ldµ +

∫

∂Ω×Y

L∂(x, y) dµ∂

)

.

We shall define, for future reference,

F((µ, µ∂)) :=

∫

Ω×Y×Z

Ldµ +

∫

∂Ω×Y

L∂(x, y) dµ∂

for all couples (µ, µ∂) ∈ M.

We notice that if y(·) is a map in C ∩ C1(Ω), where C is the set described in

(GP), then the occupation measure (µy, 0) is in the set C defined in (RGP).

From this one deduces that the solution of (RGP) is less or equal to the

solution of (GP). The viceversa is not true in general, as shown in the

following counterexample.

Proposition 3.1.1.

Problems (GP) and (RGP) are, in general, not equivalent.

Proof.

We prove the proposition by showing a simple counterexample. Consider the

particular case of problem (GP) in which

Ω = [0, 1], Y = R, Z = R,
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L(x, y, z) = min{|z − 1|, |z + 1|}, L∂(x, y, z) ≡ 0,

F (x, y, z) = y, G(x, y, z) ≡ 0,

F∂(x, y) ≡ 0 ≡ G∂(x, y)

G,F∂ , G∂ are null and therefore give no actual constraint. The constraint

given by F , though, makes is so that the set C contains only the identically

null function. This means that the solution to (GP) is 1, which is the mini-

mum attained by the only feasible map y(·).

The relaxation of the described problem has the conditions

spt(µ) ⊂ [0, 1]× {0} × R,

spt(µ∂) ⊂ {0, 1} × R.

The defining condition of occupation measures is
∫

[0,1]×R×R

(

∂φ

∂x
(x, y) +

∂φ

∂y
z

)

dµ =

∫

{0,1}×R

φ(x, y)n(x) dµ∂ ,

which, since n(x) = −1{0}(x) + 1{1}(x), is the same as

∫

[0,1]×R×R

(

∂φ

∂x
(x, y) +

∂φ

∂y
z

)

dµ = −
∫

{0}×R

φ(0, y) dµ∂ +

∫

{1}×R

φ(1, y) dµ∂ .

We now simply notice that:

• L ≥ 0, which means that

inf
(µ,µ∂)∈C

(∫

Ω×Y×Z

Ldµ +

∫

∂Ω×Y

L∂(x, y) dµ∂

)

≥ 0.

• The measures

µ := L1 ⊗ δ0 ⊗
(

1

2
δ−1 +

1

2
δ1

)

µ∂ = 0

define a feasible variational measure for the considered problem.

•
∫

Ω×Y×Z

Ldµ +

∫

∂Ω×Y

L∂(x, y) dµ∂ = 0.
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It is now clear that the defined occupation measure (µ, µ∂) attains the min-

imum of the relaxed problem, which is therefore precisely 0.

The goal of the following section will be to prove that under suitable

hypothesis the problems (GP) and (RGP) have the same solution.

3.2 Conditions for null gap in codimension 1

In this section we aim at proving that under the set of hypothesis CV 1,

CV 2, ..., CV 6 listed below it is possible to prove a decomposition which is

of the same type as the one from Hardt-Pitts and use it to show that (GP)

and (RGP) have the same solution.

3.2.1 Notation and some observations

We shall now set notation and basic assumptions for future reference:

CV 1: L : Ω× Y × Z → R is Ln-measurable and locally bounded,

L∂ : ∂Ω× Y → R is
(

Hn−1
x∂Ω

)

-measurable and locally bounded.

CV 2: F,G : Ω× Y × Z → R is Ln-measurable.

CV 3: F∂ , G∂ : ∂Ω× Y → R is
(

Hn−1
x∂Ω

)

-measurable.

CV 4: L is convex in z, i.e. L(x, y, ·) : Z → R is convex for all (x, y) ∈ Ω×Y .

CV 5: F−1(0) ∩ G−1
(

(−∞, 0]
)

∩
(

{x}×{y}×Z
)

is convex for every (x, y) ∈
Ω× Y .

CV 6: F−1(0) ∩ G−1
(

(−∞, 0]
)

and F−1
∂ (0) ∩ G−1

∂

(

(−∞, 0]
)

are closed.

All these hypothesis, which are rather general, are for example implied by

the following set of more familiar hypothesis:

• L, F,G, L∂ , F∂ , G∂ are coutinuous,



66 3. Occupation measures

• L and G are convex in z,

• either F is non-negative and convex in z or it is affine in z.

3.2.2 Main results of this section: decomposition and

zero gap

We state here the three main results of this chapter and also show how

the first two easily imply the third. We will then proceed to prove the first

two theorems in the following sections.

Theorem 3.2.1 (Decomposition in codimension 1).

Let n,m,Ω, Y, Z be as in (RGP).

Assume that m = dim(Y ) = 1.

Let µ be a compactly supported, positive and finite Radon measure on Ω×Y ×Z.
Assume that for all φ ∈ C∞

c (Ω× Y ) the measure µ satisfies

∫

Ω×Y×Z

(

∂φ

∂x
+
∂φ

∂y
z

)

dµ(x, y, z) = 0. (3.3)

Then there exist

• a compactly-supported, positive and finite Radon measure ν on R,

• a family {ϕr}r∈R ⊂ W 1,∞(Ω, Y ) = W 1,∞(Ω)

such that for all φ ∈ L1(µ) which are affine in z we have

∫

Ω×Y×Z

φ dµ =

∫

R

∫

Ω

φ
(

x, ϕ(x), Dϕ(x)
)

dx dν. (3.4)

Moreover the family {ϕr}r∈R can be found such that if r ≥ r′ then ϕr(x) ≤
ϕ(r′) ∀x ∈ Ω.



3.2 Conditions for null gap in codimension 1 67

Theorem 3.2.2.

Let n,m, σ, L, F,G, L∂ , F∂ , G∂ be as in (RGP).

Assume m = dim(Y ) = 1.

Assume that L, F,G, L∂ , F∂ , G∂ satisfy CV 1,...,CV 6.

Assume that (µ, µ∂) ∈ C (C as in (RGP)).

Then:

(i) There exists ϕ ∈ W 1,∞(Ω) ∩ C (with C as in (GP)) such that

∫

Ω

L(x, ϕ(x), Dϕ(x)
)

dx +

∫

∂Ω

L∂(x, ϕ(x)) dσ ≤

≤
∫

Ω×Y×Z

Ldµ +

∫

∂Ω×Y

L∂ dµ∂ .
(3.5)

(ii) If L, F and G are also continuous, then there exists a sequence
{

gi : Ω → Y
}

i∈N
⊂ C∞(Ω) ∩W 1,∞(Ω) such that

lim
i→∞

(∫

Ω

L(x, gi(x), Dgi(x)) dx +

∫

∂Ω

L∂(x, gi(x)) dσ

)

≤

≤
∫

Ω×Y×Z

Ldµ +

∫

∂Ω×Y

L∂ dµ∂

(3.6)

and

lim
i→∞

F (x, gi(x), Dgi(x)) = 0, lim
i→∞

G(x, gi(x), Dgi(x)) ≤ 0 ∀x ∈ Ω (3.7)

F∂(x, gi(x)) = 0, G∂(x, gi(x)) ≤ 0 ∀x ∈ ∂Ω. (3.8)



68 3. Occupation measures

Theorem 3.2.3.

Let n,m, σ, L, F,G, L∂ , F∂ , G∂ be as in (RGP).

Assume m = dim(Y ) = 1.

Assume that L, F,G, L∂ , F∂ , G∂ satisfy CV 1,...,CV 6.

Denote by Mc the solution to (GP) and by Mr the solution to (RGP).

Assume that Mc <∞.

Then

Mc =Mr.

Proof of Theorem 3.2.3.

We prove the theorem by proving the two inequalities separately .

Proving Mc ≥Mr:

Consider a map ϕ ∈ W 1,∞(Ω, Y ).

Define the functional

Fϕ : C0(Ω× Y × Z) −→ R

φ 7→
∫

Ω

φ(x, ϕ(x), Dϕ(x)) dx
.

The functional Fϕ is linear and, since ϕ is a Lipschitz function, con-

tinuous. In other words Fϕ is in the dual space of C0(Ω × Y × Z).

By Riesz–Markov–Kakutani representation theorem there is a unique

signed measure µ(ϕ) such that

Fϕ(φ) =

∫

Ω×Y×Z

φ dµ(ϕ) ∀φ ∈ C0(Ω× Y × Z).

In a completely analogous way one finds a measure µ
(ϕ)
∂ on ∂Ω×Y such

that

∫

∂Ω

φ(x, y(x))dσ(x) =

∫

∂Ω×Y

φ dµ
(ϕ)
∂ ∀φ ∈ C0(Ω× Y ).

The pair (µ(ϕ), µ
(ϕ)
∂ ) is indeed in C (since ϕ is in C) and F( (µ(ϕ), µ

(ϕ)
∂ ) ) ≤

F(ϕ).

This shows how Mc ≥Mr.
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Proving Mc ≤Mr:

Assume that (µ, µ∂) ∈ C.

Then it satisfies the hypothesis of Theorem 3.2.2, and the theorem

yields a ϕ ∈ C such that F(ϕ) ≤ F((µ, µ∂)).

This shows how Mc ≤Mr.

3.2.3 Proof of Theorem 3.2.1

We now prove a sequence of lemmas which we will use to prove the the-

orem. From now to the end of the proof of Theorem 3.2.1 we will assume

that any considered measure µ satisfies the hypothesis of Theorem 3.2.1.

Lemma 3.2.4.

Let πΩ : Ω× Y × Z → Ω be the projection.

Then there exists c ∈ R>0 such that πΩ#µ = cLn.

Proof of Lemma 3.2.4.

By [1] there exists an orthogonal matrix whose entries are all nonzero. Tak-

ing its columns and normalizing them, one can see that there exists an or-

thonormal basis {u1, ..., un} whose vectors’ coordinates (with respect to the

canonical basis) are all nonzero.

Let R ⊂ Ω be a parallelepiped whose generating vectors are all multiples of

the vectors u1, ..., un.

Let τ : Rn → R
n be a translation such that τ(R) ⊂ Ω.

Write τ as finite composition τk ◦ τk−1 ◦ ... ◦ τ1 of translations each one of

which has direction parallel to one of the coordinate axis (i.e. the direction

of τi is in {e1, e2, ..., en} for all i = 1, ..., k).

Define τ̃i := τi ◦ τi−1 ◦ ... ◦ τ1, for every i = 1, ..., k.

Notice that it is possible to choose the translations τ1, ..., τk in such a way

that(1) co
(

τ̃i−1(R)∪ τ̃i(R)
)

⊂ Ω for all i = 1, ..., k. Assume then that τ1, ..., τk

1Given a subset A of Rn we denote by co(A) the convex hull of A and with co(A) its

closure.
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were chosen with that property.

For each i = 1, ..., k define j(i) to be the index representing the direction

of the translation τi (i.e. for all i we have j(i) ∈ {1, ..., n} such that the

direction of τi is parallel to ej(i)).

Define, for each i ∈ {1, .., k}, the map φi : Ω → R as

φi(x) :=

∫ xj(i)

−∞

(

1τ̃i(R)(x1, ..., xj(i)−1, s, xj(i)+1, ..., xn)+

−1τ̃i−1(R)(x1, ..., xj(i)−1, s, xj(i)+1, ..., xn)
)

ds.

Since τ̃i−1(R) and τ̃i(R) are closed parallelepiped and one is the translated

of the other, co
(

τ̃i−1(R) ∪ τ̃i(R)
)

is a closed set.

Notice that φ(x) is

• non-zero for every x in the interior of the set co
(

τ̃i−1(R) ∪ τ̃i(R)
)

;

• possibly 0 (although it is not guaranteed) on its boundary;

• equal to 0 elsewhere.

This means that supp(φi) = co
(

τ̃i−1(R) ∪ τ̃i(R)
)

.

Define also
φi : Ω× Y → R

(x, y, z) 7→ φi(x).

Claim 1.

φ is a Lipschitz map and the partial derivative
∂φi
∂xj(i)

is given by

∂φi
∂xj(i)

= 1τ̃i(R) − 1τ̃i−1(R)

Proof of claim 1.

Lipschitz regularity follows from the choice on the vectors generating R, none

of which is orthogonal to any of the vectors in the canonical basis.

The other statement is quite trivial, since
∂φi
∂xj(i)

is

• Equal to 1 in the set int
(

τ̃i(R) \ τ̃i−1(R)
)

.
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• Equal to −1 in the set int
(

τ̃i−1(R) \ τ̃i(R)
)

.

• Either −1, 0,+1 or not defined in the set ∂
(

τ̃i(R)
)

∪ ∂
(

τ̃i−1(R)
)

.

• Equal to 0 everywhere else.

Now, by Lipschitz regularity, the map φ can be approximated, in a neigh-

borhood of spt(µ) by a sequence {fj}j∈N ⊂ C∞
c (Ω× Y ) of smooth functions

with compact support which converge uniformly to φ.

Moreover:

• uniform convergence implies that the derivatives {Dfj}j converge point-
wise to the derivative Dφi (where it exists);

• Lipschitz regularity implies that the sequence {fj} can be taken such

that the sequence of the derivatives {Dfj} is uniformly bounded.

These two observations show that the dominated convergence Theorem ap-

plies and that therefore

∫

Ω×Y×Z

(

∂φi
∂xj(i)

+
∂φi
∂y

zj(i)

)

dµ = lim
m→∞

∫

Ω×Y×Z

(

∂fm
∂xj(i)

+
∂fm
∂y

zj(i)

)

dµ = 0.

To conclude the proof of the lemma we simply put all these pieces together

and see that

πΩ#µ
(

τ̃i(R)
)

− πΩ#µ
(

τ̃i−1(R)
)

= µ(τ̃i(R)× Y × Z)− µ(τ̃i−1(R)× Y × Z)

=

∫

Ω×Y×Z

(

1τ̃i(R)×Y×Z − 1τ̃i−1(R)×Y×Z

)

dµ

=

∫

Ω×Y×Z

(

∂φi
∂xj(i)

+
∂φi
∂y

zj(i)

)

dµ

= 0.

The whole argument above made proves that for any parallelepiped R ⊂ Ω

with directions parallel to u1, ..., un and any translation τ which keeps τ(R)

in Ω, the πΩ#µ-measure of R and τ(R) is the same.
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All measures with this property must be a multiple of the Lebesgue measure

(cfr [10, Theorem 2.20, page 50]), and the lemma is proven.

For any vector field X : Ω× Y → R
n+1 define

µ(X) :=

∫

Ω×Y×Z

〈X(x, y), (z1, ..., zn,−1)〉 dµ(x, y, z). (3.9)

Lemma 3.2.5.

Let X : Ω× Y → R
n+1 be a smooth and compactly-supported vecor field.

Assume that X vanishes on a neighborhood N of ∂Ω× Y .

Assume also that div(X) = 0 on Ω.

Then

µ(X) = 0.

Proof of Lemma 3.2.5.

Assume without loss of generality that N is an open neighborhood.

Notice that spt(µ) is a compact set contained in the open set Ω× Y .

Then there is a closed (and therefore compact) neighborhood K of spt(µ)

which is contained in Ω× Y .

Let then χ ∈ C∞
c (Ω× Y ) be such that it is identically 1 on K.

Define, for each i ∈ {1, ..., n},

X̃i(x, y) :=

∫ y

−∞

Xi(x, s) ds.

Then

• X̃i ∈ C∞(Ω× Y ) and it vanishes on a neighborhood of ∂Ω× Y .

• X̃i · χ ∈ C∞
c (Ω× Y )

• X̃i · χ = X̃i ∀x ∈ K;

• µ
(

(Ω× Y ) \K
)

= 0.
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This means, by (3.3), that

0 =

∫

Ω×Y×Z

(

∂(X̃iχ)

∂xi
+
∂(X̃iχ)

∂y
z

)

dµ

=

∫

Ω×Y×Z

(

∂X̃i

∂xi
+
∂X̃i

∂y
zi

)

dµ

=

∫

Ω×Y×Z

(

∂X̃i

∂xi
+Xi(x, y)zi

)

dµ

Now

µ(X) =

∫

Ω×Y×Z

(

−Xn+1(x, y) +
n
∑

i=1

Xi(x, y)zi

)

dµ

= −
∫

Ω×Y×Z

Xn+1(x, y) dµ −
n
∑

i=1

∫

Ω×Y×Z

∂X̃i

∂xi
(x, y) dµ(x, y, z).

= −
∫

Ω×Y×Z

(

Xn+1(x, y) +
n
∑

i=1

∂X̃i

∂xi
(x, y)

)

dµ

We can see that

• Xn+1(x, y) =

∫ y

−∞

∂Xn+1

∂y
(x, s) ds.

• Passing the derivatives inside the integral sign

∂X̃i

∂xi
(x, y) =

∫ y

−∞

∂Xi

∂xi
(x, s) ds ∀i = 1, ..., n.

So that

Xn+1(x, y) +
n
∑

i=1

∂X̃i

∂xi
(x, y) =

∫ y

−∞

(

∂Xn+1

∂y
(x, s) +

n
∑

i=1

∂Xi

∂xi
(x, s)

)

dµ

=

∫ y

−∞

div(X)(x, s) ds

= 0.

For any measurable, compactly-supported and bounded function u : Ω×Y →
R, define the value

S(u) := µ(X(u)),
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where

X(u) : Ω× Y −→ R
n+1

(x, y) 7→ (0, ..., 0,

∫ +∞

y

u(x, s) ds)
.

In other words

S(u) = −
∫

Ω×Y×Z

∫ +∞

y

u(x, s) ds dµ(x, y, z). (3.10)

Lemma 3.2.6.

Denoted by K the set of measurable, compactly-supported and bounded

functions u : Ω× Y → R, the functional

S : K −→ R

u 7→ S(u)

is representable by integration through an absolutely continuous non-

positive measure.

That is to say that there exists a measurable map ρ : Ω × Y → (−∞, 0]

such that

S(u) =

∫

Ω×Y

u(x, y)ρ(x, y) dx dy ∀u ∈ K.

Proof of Lemma 3.2.6.

We use Radon-Nikodym’s Theorem.

First notice that the map

νS : BΩ×Y −→ R

B 7→







−S(1B) if B bounded

− lim
r→+∞

S(1B∩B(0,r)) if B unbounded

defines a positive measure.

Claim 2. If Ln+1(A) = 0, then S(1A) = 0.



3.2 Conditions for null gap in codimension 1 75

Proof of claim 2.

If Ln+1(A) = 0, then using Tonelli-Fubini’s Theorem we deduce that

L1
(

{s : 1A(x, s) = 1}
)

= 0 for Ln-a.e. x.

Using Lemma 3.2.4 this means that

L1
(

{

(s : 1A(x, s) = 1
}

)

= 0 for µ-a.e. (x, y, z) ∈ Ω× Y × Z.

It now follows immediately from (3.10) that

S(1A) = 0.

The claim shows that νA is absolutely continuous with respect to Ln+1.

So by Radon-Nicodym’s Theorem we deduce the existence of a measurable

function (−ρ) : Ω× Y → [0,+∞) such that

νA(A) =

∫

Ω×Y

(−ρ) dLn+1 ∀A ∈ BΩ×Y .

This means that (3.10) is true for any indicator function of a measurable

set. It can therefore be extended by linearity to simple functions and by

convergence theorems to all measurable, bounded and compactly supported

functions u, and this concludes the proof of the lemma.

Lemma 3.2.7.

The map ρ has the following properties:

(1) ρ(x, ·) : Y → (−∞, 0] is non-increasing for Ln-almost all x ∈ Ω

(up to Ln+1-equivalence on ρ).

(2) (x, y) ∈ Ω× [N,+∞) ⇒ ρ(x, y) = −1.

(3) (x, y) ∈ Ω× (−∞, N ] ⇒ ρ(x, y) = 0.

(4) ρ ∈ L∞(Ω× Y ).
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Proof of statement (1).

Let R ⊂ Ω × Y be an (n + 1)-dimensional cube with directions parallel to

the n+ 1 axis x1, ..., xn, y.

Let τt(x, y) := (x, y + t) be a translation along the y direction.

Now using Lemma 3.2.6 and definitions (3.9) and (3.10) we have

∫

R

ρ(x, y + t) dLn+1(x, y) =

∫

τt(R)

ρ(x, y) dLn+1(x, y)

=

∫

Ω×Y

1τt(R)(x, y)ρ(x, y) dLn+1(x, y)

= S(1τt(R))

= µ
(

0, ..., 0,

∫ +∞

y

1τt(R)(x, s) ds
)

= µ
(

0, ..., 0,

∫ +∞

y−t

1R(x, s) ds
)

= −
∫

Ω×Y×Z

∫ +∞

y−t

1R(x, s) ds dµ.

Since µ is a positive measure, the last expression is clearly non-increasing in

t. Since this is true for all t and all R, this proves that ρ is non-increasing in

the y direction.

Proof of statements (2) and (3).

Consider now an open set RΩ ⊂ Ω and two real numbers a < b.

Let R := RΩ × [a, b].
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Then

∫ +∞

y

1R(x, s) ds =































0 if x 6∈ RΩ

0 if x ∈ RΩ, y ≥ b

b− y if x ∈ RΩ, y ∈ (a, b)

b− a if x ∈ RΩ, y ≤ a

so that:

• if a < b ≤ −N , then

∫

R

ρ dLn+1 = −
∫

Ω×Y×Z

∫ +∞

y

1R(x, s) ds dµ(x, y, z) = 0;

• if N ≤ a < b, then

∫

R

ρ dLn+1 = −
∫

Ω×Y×Z

∫ +∞

y

1R(x, s) ds dµ(x, y, z)

= −
∫

RΩ×Y×Z

(b− a) dµ

= −(b− a)Ln(RΩ).

Using Lebesgue’s Differentiation Theorem we get precisely our desired result.

Proof of statement (4).

Assume by contradiction that ρ is not essentially bounded.

Then let Bj := {(x, y) ∈ Ω× Y : ρ(x, y) ≤ −j} ∀j ∈ N \ {0}.
By assumption Ln+1(Bj) > 0 ∀j.
Take N > 0 such that spt(µ) ⊂ Ω× (−N,N)× Z, as in Lemma ??.

By the same lemma ρ(x, ·) is non-increasing for all x and it is constant on

[N,+∞). Therefore

Ln+1
(

Bj ∩ (Ω× [N,N + 1])
)

> 0 ∀j ∈ N \ {0}, (3.11)
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otherwise ∃j, ∃A ⊂ Ω such that

Ln(A) = 0 and ρ(x, y) > −j ∀(x, y) ∈
(

Ω \ A
)

× Y,

which would imply essential boundedness.

Take then, for all j, a set AΩ
j ⊂ Ω such that

Ln(AΩ
j ) > 0 and AΩ

j × [N,N + 1] ⊂ Bj.

Define Aj := AΩ
j × [N,N + 1].

Norice that by construction

Aj ∩ spt(µ) = ∅ ∀j. (3.12)

Take, for all j, and open set UΩ
j ⊂ Ω such that

AΩ
j ⊂ UΩ

j and Ln
(

UΩ
j \ AΩ

j

)

<
Ln(AΩ

j )

j
,

which exists by outer regularity of the Lebesgue measure.

Define, for all j, Uj := UΩ
j × [N,N + 1]. These open sets satisfy

Aj ⊂ Uj and Ln
(

Uj \ Aj
)

<
Ln(Aj)

j
∀j. (3.13)

Define, for all j, the function fj :=
1

Ln(Aj
1Uj

.

Each function fj trivially satisfies (since ρfj ≤ 0)

∫

Ω×Y

ρfj dLn+1 ≤
∫

Aj

(−j)fj dLn+1 = −j. (3.14)

Moreover, by approximation of fj with functions in C∞
c (Ω×Y ), it is possible

to find (for each j) a function φj ∈ C∞
c (Ω× Y ) such that

∫

Ω×Y

ρφj dLn+1 ≤ −j
2

(3.15)

Ln(πΩ
(

supp(φj)
)

≤ 2Ln(AΩ
j ) (3.16)

sup
x∈Ω

∫ +∞

−∞

φj(x, s) ds ≤ 2
1

Ln(Aj)
=

2

Ln(AΩ
j

(3.17)
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Now we put together lemmas 3.2.4 and 3.2.6, identity (3.10), non-negativity

of µ and φj, and the bounds just proven to get

−1

j
≥
∫

Ω×Y

ρφj dLn+1

= S(φj)

= µ
(

0, ..., 0,

∫ y

−∞

φj(x, s) ds
)

= −
∫

Ω×Y×Z

∫ y

−∞

φj(x, s) ds dµ

≥ −
∫

Ω×Y×Z

∫ +∞

−∞

φj(x, s) ds dµ

≥ −
∫

Ω×Y×Z

2

Ln(AΩ
j )
1πΩ supp(φj)(x) dµ(x, y, z)

= − 2

Ln(AΩ
j )
πΩ#µ

(

supp(φj)
)

= − 2

Ln(AΩ
j )
cLn

(

supp(φj)
)

≥ −4c.

Here c is independent of j, being it the constant given by Lemma 3.2.4, and

we have therefore reached a contradiction.

We conclude that ρ must be Ln+1-essentially bounded.

Notation 3.2.1.

From this point on we shall

• Consider ρ to be bounded (taking a suitable representative in its

class of essentially bounded maps);

• Denote the range of ρ by I (i.e. I :=
[

inf
Ω×Y

ρ(x, y), 0
]

= [−1, 0].

• Denote by ν the restriction L1
xI.
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Lemma 3.2.8.

Let X : Ω×Y → R
n+1 be a smooth and compactly supported vector field.

Assume that X vanishes in a neighborhood of ∂Ω× Y .

Then

µ(X) = S
(

− div(X)
)

.

Proof of Lemma 3.2.8.

Let

X̃ := X +

(

0, ..., 0,

∫ +∞

y

div(X)(x, s) ds

)

.

Indeed

div(X̃) =
n
∑

i=1

∂X

∂xi
+

∂

∂y

(

Xn+1 +

∫ +∞

y

div(X)(x, s) ds

)

= div(X)− div(X)

= 0.

So Lemma 3.2.5 gives

0 = µ(X̃)

= µ(X) + µ

(

(

0, ..., 0,

∫ +∞

y

div(X)
)

)

= µ(X) + S
(

div(X)
)

= µ(X)− S
(

− div(X)
)

.

Lemma 3.2.9.

The map ρ is in BV (Ω× Y ).

Proof of Lemma 3.2.9.

Let X ∈ C1
c (Ω× Y,Rn+1) such that sup

(x,y)∈Ω×Y

||X(x, y)|| ≤ 1.

We know that

• being compactly supported, X vanishes in a neighborhood of ∂Ω× Y ;

• our hypothesis on µ implies
∫

Ω×Y×Z

||z|| dµ(x, y, z) <∞

(see section 3.1.6);
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• an explicit representation for µ(·), S(·) are given by (3.9) and (3.10);

• µ(X), S(div(X)) and ρ are linked by lemmas 3.2.6 and 3.2.8;

• by Lemma 3.2.7 ρ is essentially bounded;

• for any non-negative real number t, the inequality
√
1 + t2 ≤ 1+t holds.

These facts put together plus the use of Cauchy-Schwarz inequality tell us

that

∣

∣

∣

∣

∫

Ω×Y

ρ div(X) dLn+1

∣

∣

∣

∣

= |S(div(X))| = |µ(−X)| =

=

∣

∣

∣

∣

∫

Ω×Y×Z

〈−X(x, y), (z,−1)〉 dµ
∣

∣

∣

∣

≤
∫

Ω×Y×Z

(

1 + ||z||
)

dµ <∞.

This holds for any φ considered, so that

sup
φ∈C1

c (Ω×Y )
||φ||∞≤1

∫

Ω×Y

ρ div(X) dLn+1 ≤
∫

Ω×Y×Z

(

1 + ||z||
)

dµ <∞,

which by definition means that ρ ∈ BV (Ω× Y ).
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Remark 1.

By the coarea formula (cfr. [2, Theorem 1, p.185]), ∃A ∈ I such that

• L1(I \ A) = 0,

• For all r ∈ A, it holds

sup
φ∈C1

c (ρ
−1
(

(−∞,r)
)

||φ||∞≤1

∫

ρ−1
(

(−∞,r)
)
div(X) dLn+1 < ∞,

i.e. ρ−1
(

(−∞, r)
)

is a set of finite perimeter (crf. [2, def 5.1]).

Using [9, prop. 12.1, p.122], we deduce the existence of a set {νr}r∈A of

R
n+1 valued measures on R

n+1 such that for all r the measure νr has the

properties

•
∫

ρ−1
(

(−∞,r)
)
div(φ) dLn+1 =

∫

Rn+1

〈φ, dνr〉 ∀φ ∈ C1
c (R

n+1,Rn+1);

• |νr|(Rn+1) <∞.

By De Giorgi’s Structure Theorem (cfr. [9, Theorem 15.9, p.170]) the

measures νr and the sets Er := ρ−1
(

(−∞, r)
)

satisfy that

• spt(νr) = ∂∗Er ⊂ ∂Er ⊂ R
n+1 and Hn

(

∂Er \ spt(νr)
)

= 0;

• νr = ηr(·)Hn
x∂∗Er where

ηr : ∂∗Er −→ S
n

x 7→ lim
t→0+

νr
(

B(x, t)
)

|νr|
(

B(x, t)
)

is the measure theoretic outer unit normal to Er (cfr. [9, p.167]).

• The generalized Gauss-Green formula
∫

Er

∇φ dLn+1 =

∫

∂∗Er

φ(x, y)ηr(x, y) dHn(x, y) (3.18)

holds for all φ ∈ C1
c (Ω× Y ).

The generalized Gauss-Green formula is actually equivalent with the

usual Gauss-Green formula
∫

Er

div(X) dLn+1 =

∫

∂∗Er

〈X, ηr〉 dHn ∀X ∈ C1
c (Ω× Y,Rn+1). (3.19)
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Lemma 3.2.10.

Let r ≤ r′ ≤ 0.

Let (x, y) ∈ ∂∗Er ∩ ∂∗Er′.
Then

ηr
(

x, y
)

= ηr′
(

x, y
)

.

Proof of Lemma 3.2.10.

Throughout this proof, for simplicity, each variable x or y will represent a

vector in R
n+1, differently from the statement of the lemma.

We recall [2, def. 5.7.2, p.198], by which for any x ∈ ∂∗Er we set

Hr(x) :=
{

y ∈ R
n+1 : 〈ηr(x), y − x〉 = 0

}

,

H+
r (x) :=

{

y ∈ R
n+1 : 〈ηr(x), y − x〉 ≥ 0

}

,

H−
r (x) :=

{

y ∈ R
n+1 : 〈ηr(x), y − x〉 ≤ 0

}

,

E(ε)
r (x) :=

{

y ∈ R
n+1 : x+ ε(y − x) ∈ Er

}

∀ε > 0.

By [2, Theorem 1, p.199]

1
E

(ε)
r (x)

→ 1H−(x) in L1
loc(R

n+1) (3.20)

as ε→ 0+.

We know that

• Er′ ⊂ Er (obvious by definition of Er, Er′);

• By [2, corollary 1, p.203], for all x ∈ ∂∗Er, the vector ηr(x) is the

exterior outer normal to Er at x (as defined also in [4, 4.5.5, p.477]).

The inclusion Er ⊂ Er′ and the convergence (3.20) tell that

• E(ε)
r (x) ⊂ E

(ε)
r′ (x) ∀ε > 0, so that 1

E
(ε)
r (x)

≤ 1
E

(ε)

r′
(x)
.

• 1
E

(ε)
r (x)

→ 1H−
r (x)} in L1

loc(R
n+1).

1
E

(ε)

r′
(x)

→ 1H−
r′
(x)} in L1

loc(R
n+1).
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This means that 1H−
r (x) ≤ 1H−

r′
(x), and since H−

r (x) and H−
r′ (x) are both

semispaces, then they must coincide or have parallel boundaries. In both

cases their defining vectors ηr(x) and ηr′(x) must coincide.

Remark 2.

Lemma 3.2.10 tells that the two maps

E : Ω× Y −→ R
n+1

(x, y) 7→







ηr(x, y) if y = ϕr(x) ∃r ∈ I

0 otherwise

and (in particular)

En+1 : Ω× Y −→ R

(x, y) 7→







[ηr(x, y)]n+1 if y = ϕr(x) ∃r ∈ I

0 otherwise

are well defined Ln+1-a.e. .
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Lemma 3.2.11.

Let µΩ×Y := πΩ×Y #µ.

Remember that I := [−1, 0] and ν := L1
xI.

Then:

(1) If g ∈ L1
(

Ln+1
x(Ω×Y )

)

, then the following integration formula holds:
∫

I

∫

Er

g(x, y) dLn+1(x, y) dν(r) = −
∫

Ω×Y

ρg dLn+1. (3.21)

(2) For any Borel set B of Ω× Y the measure µΩ×Y of B can be expressed

as

µΩ×Y (B) = −
∫

I

∫

∂∗Er

1B(x, y)[ηr(x)]n+1 dHn(x, y) dν(r). (3.22)

(3) If f ∈ L1(µΩ×Y ), then
∫

Ω×Y

f dµΩ×Y = −
∫

I

∫

∂∗Er

f [ηr(·)]n+1 dHn dν(r). (3.23)

(4) Define, for all r ∈ I, A0
r :=

{

(x, y) ∈ ∂∗Er : [ηr(x, y)]n+1 = 0
}

.

Then

Hn(A0
r) = 0 for ν-a.e. r.

(5) Define, for all r ∈ I, A+
r :=

{

(x, y) ∈ ∂∗Er : [ηr(x, y)]n+1 > 0
}

.

Then

Hn(A+
r ) = 0 for ν-a.e. r.

(6) ∀ε > 0, ∃δε > 0 such that µΩ×Y

(

E−1
n+1

(

(0, δε)
)

)

< ε.

(7) Define

J : Ω× Y −→ R ∪ {+∞}

(x, y) 7→











− 1

E(x, y) if E(x, y) < 0

+∞ otherwise

.

Then

J ∈ L1(µΩ×Y ).
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(8) If f ∈ L∞(Ω× Y ), then

∫

I

∫

∂∗Er

f dHn dν(r) =

∫

Ω×Y

fJ dµΩ×Y

(9) If B ⊂ Ω is a Borel set, then the following implication holds:

Ln(B) = 0 ⇒
∫

I

∫

∂∗Er

1B(x) dHn dν(r) = 0.

Proof of statement (1).

We prove this formula in an elementary way, using approximation with simple

functions.

Without loss of generality assume g ≥ 0 (the general case follows from the

usual argument of writing a general map g as the sum g+ − g−).

For any k ∈ N define:

• ρ(k)(x, y) :=
2k
∑

i=1

− i

2k
1ρ−1([− i

2k
,− i−1

2k
))(x, y).

• Φg(r) :=

∫

Er

g(x, y) dLn+1.

• Nk(r) :=
⌊2kr⌋
2k

∀r ∈ [−1, 0].

• Φ(k)
g (r) :=

∫

ENk(r)

g dLn+1.

We have the following list of elementary properties which hold for any k ∈ N:

• ||ρ(k) − ρ||L∞(Ω×Y ) ≤
1

2k
.

• Nk(r) = − i

2k
⇔ r ∈

[

− i

2k
,− i− 1

2k

)

.

• Nk(r) ∈
[

r − 1

2k
, r

]

∀r ∈ [−1, 0].
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• Nk(r) ↑ r as k → ∞.

• 0 ≤ Φ(k)
g ≤ Φ(k+1)

g ≤ Φg.

• Φ(k)
g (r)

k→∞−−−→ Φg(r) ∀r.

To conclude we have the three following facts:

(1): It holds

∣

∣

∣

∣

∫

Ω×Y

ρg dLn+1 −
∫

Ω×Y

ρ(k)g dLn+1

∣

∣

∣

∣

≤ 1

2k
||g||L1

k→∞−−−→ 0.

(2): By Beppo Levi’s Theorem we have

∫

[−1,0]

Φ(k)
g (r) dr

k→∞−−−→
∫

[−1,0]

Φg(r) dr.

(3): We have

∫

[−1,0]

Φ(k)
g =

∫

[−1,0]

∫

ENk(r)

g dLn+1 dr

=

∫

[−1,0]

2k
∑

j=1

(

1[− j

2k
,− j−1

2k
)(r)

∫

E
−j/2k

g dLn+1

)

dr

=
2k
∑

j=1

1

2k

∫

ρ−1
(

[−1,−j/2k)
)
g dLn+1

=
2k
∑

j=1

1

2k

2k−1
∑

i=j

∫

ρ−1([− j+1

2k
,− j

2k
))
g dLn+1

=

∫

Ω×Y





2k−1
∑

i=1

j

2k
g1ρ−1([− j+1

2k
,− j

2k
))



 dLn+1

=

∫

Ω×Y

−ρ(k)g dLn+1 − 1

2k

∫

Ω×Y

g dLn+1
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Proof of statements (2) and (3).

We can see that if X ∈ C1
c (Ω× Y,Rn+1) then

∫

I

∫

∂∗Er

〈X, ηr〉 dHn dν(r) =

∫

I

∫

Er

div(X) dLn+1 dν(r)

= −
∫

Ω×Y

ρ div(X) dLn+1

= −S(div(X))

= µ(X)

=

∫

Ω×Y×Z

〈X(x, y), (z,−1)〉 dµ (3.24)

Since the set C1
c (Ω × Y ) is dense in L1(µΩ×Y ), identity (3.24) holds for any

map in L1(Ω × Y ). Therefore it also holds for any µΩ×Y -integrable map

taking values in R
n+1.

Let now A ∈ BΩ×Y and define XA :=
(

0, ..., 0,1A

)

.

Then

−µ(A× Z) = −
∫

Ω×Y×Z

1A(x, y) dµ(x, y, z)

=

∫

Ω×Y×Z

〈XA(x, y), (z,−1)〉 dµ

=

∫

I

∫

∂∗Er

〈XA, ηr〉Hn dν(r)

=

∫

I

∫

∂∗Er

1A(x, y) [ηr(x, y)]n+1 dHn(x, y) dν(r)

where [ηr(x, y)]n+1 denotes the (n+ 1)-th component of the vector ηr(x, y).

To extend this formula to any f ∈ L1(Ω × Y ), simply use the vector field

Xf := (0, ..., 0, f) in place of XA above.

Proof of statement (4).

Let

A :=
⋃

r∈I

Ar.
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Then

µΩ×Y (A) = −
∫

I

∫

∂∗Er

1A(x, y)[ηr(x, y)]n+1 Hn(x, y) dν(r) = 0.

To conclude we see that by definition 〈ηr, ηr〉 = 1∂∗Er , so that using (3.24)

we can write
∫

I

∫

∂∗Er

1A(x, y) dHn(x, y) dν(r) =

∫

I

∫

∂∗Er

〈1AE , ηr〉 dHn dν(r)

=

∫

Ω×Y×Z

〈1A(x, y)E(x, y), (z,−1)〉 dµ(x, y, z)

= 0,

where E is the map defined in Remark 2.

This concludes the proof.

Proof of statement (5).

By contradiction assume that there is a subset P of I having ν positive

measure and whose elements r satisfy

Hn
(

{

(x, y) ∈ ∂∗Er : [ηr(x, y)]n+1 > 0
}

)

> 0.

For all such r define the set Br := {(x, y) ∈ ∂∗Er : [ηr(x, y)]n+1 > 0
}

.

Let B :=
⋃

r∈P

Br.

Then

µΩ×Y (B) = −
∫

I

∫

∂∗Er

1A[ηr(·)]n+1 dHn dν(r) < 0.

Since µΩ×Y is a positive measure, this is a contradiction and the claim is

proven.
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Proof of statement (6).

This is trivial. Follows from finiteness of µΩ×Y and continuity from above of

the measure.

Proof of statement (7).

For all j ∈ N \ {0} and all (x, y) ∈ Ω× Y , define

g(j)(x, y) :=











− 1

E(x, y) if E(x, y) < −1

j

j otherwise

Then we have

• g(j) is bounded, and more precisely g(j)(x, y) ∈ (0, j] ∀(x, y)

• g(j+1) ≤ g(j) ∀j;

• for all (x, y) ∈ Ω× Y , we have that g(j)(x, y)
n→∞−−−→ J(x, y).

• since they are bounded, each g(j) satisfies (3.23), and therefore any

bounded measurable f : Ω× Y → R satisfies
∫

Ω×Y

fg(j) dµΩ×Y = −
∫

I

∫

∂∗Er

fg(j)En+1 dHn dν(r).

Now

∫

Ω×Y

g(j) dµΩ×Y =

∫

I

(

∫

{En+1<− 1
j
}∩∂∗Er

1 dHn +

∫

{En+1∈(−
1
j
,0)}∩∂∗Er

−j[η(·)]n+1 dHn

)

dν(r)

≤
∫

I

(∫

∂∗Er

1 dHn

)

dν

= ||Dρ||(Ω× Y ) <∞.

Now using the Monotone Convergence Theorem, we can see that
∫

Ω×Y

J dµΩ×Y = lim
j→∞

∫

Ω×Y

g(j) dµΩ×Y ≤ ||Dρ||(Ω× Y ) <∞
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and the proof is concluded.

Proof of statement (8).

Use (7) to deduce that fJ ∈ L1(µΩ×Y ) and use (3) to conclude.

Proof of statement (9).

Let B ⊂ Ω be a Borel subset with zero Ln measure.

Then µ(B × Y × Z) = πΩ#µ(B) = cLn(B) = 0.

Then we have
∫

I

∫

∂∗Er

1B(x) dHn dν(r) =

∫

I

∫

∂∗Er

〈

1B(x)E(x, y), ηr(x, y)
〉

dHn dν(r)

=

∫

Ω×Y×Z

〈

1B(x)E(x, y), (z,−1)
〉

dµ(x, y, z)

= 0.
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In the next lemma we use the definition of measure theoretical boundary

(∂∗Er) which can be found in [2, p.208]. This set is Hn-equivalent to the

reduced boundary ∂∗Er (cfr. [2, Lemma 1, p.208]), but its definition is much

more practical in this context.

Lemma 3.2.12.

Let N > 0 be such that spt(µ) ⊂ Ω× [−N,N ]× Z.

Define, for all r ∈ [−1, 0], Er := {(x, y) ∈ Ω× Y : ρ(x, y) < r.

Define, for all x ∈ Ω,

ϕr(x) :=







inf{y : ρ(x, y) < r} if {y : ρ(x, y) < r} 6= ∅

+∞ otherwise

Then:

(1) Er is given by the union

Er =
⋃

x∈Ω

rx

where rx depends on ρ but must be either the open half-line (ϕr(x),+∞)

or the close half-line [ϕr(x),+∞).

(2) If y < −N , then for all r ∈ [−1, 0) we have

Θn+1
(

Ln+1
xEr, (x, y)

)

= 0.

(3) If y > N , then for all r ∈ [−1, 0] we have

Θn+1
(

Ln+1
xEr, (x, y)

)

= 1.

(4) If x ∈ Ω and y1, y2 ∈ Y with y1 < y2, then

Θn+1
(

Ln+1
xEr, (x, y1)

)

≤ Θn+1
(

Ln+1
xEr, (x, y2)

)

.

(5) The following implication about the measure theoretical boundary ∂∗Er

holds:
y1, y2 ∈ Y

y1 < y2

(x, y1) ∈ ∂∗Er

(x, y2) ∈ ∂∗Er























⇒ {x} × [y1, y2] ⊂ ∂∗Er.
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(6) The following double implication holds:

Card
(

({x} × Y ) ∩ ∂∗Er
)

> 1 ⇔ L1
(

({x} × Y ) ∩ ∂∗Er
)

> 0.

(7) The set

Pr :=
{

x ∈ Ω : Card
(

({x} × Y ) ∩ ∂∗Er
)

> 1
}

has zero Ln-measure.

(8) The map

ψr : Ω −→ Y

x 7→ inf
{

y : Θn+1
(

Ln+1
xEr, (x, y)

)

= 1
}

is well defined for Ln-a.e. x.

(9) The following implication about the measure theoretical boundary ∂∗Er

holds:

x ∈ Ω

Card
(

(

{x} × Y
)

∩ ∂∗Er
)

> 0

(x, y) ∈ ∂∗Er

ηr is well defined at (x, y)



























⇒ [ηr(x, y)]n+1 = 0.

(10) Define, for all r ∈ [−1, 0], the set Ar,Ω ⊂ Ω as

Ar,Ω :=
{

x ∈ Ω : Card
(

({x} × Y ) ∩ ∂∗Er
)

> 1
}

and the set

Ar :=
(

Ar,Ω × Y
)

∩ ∂∗Er.

Then for ν-a.e. r, we have

Hn(Ar) = 0.

(11) For ν-a.e. r, we have

Hn
(

∂∗Er \Gr(ψr)
)

= 0.
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(12) Define, for all r ∈ I, E(ψ)
r := {(x, y) ∈ Ω× Y : y ≥ ψr(x)}.

Then

Ln+1
(

Er∆E
(ψ)
r

)

= 0.

Proof of statement (1).

This is an immediate consequence of ρ being non-increasing along the y

direction.

Proof of statements (2) and (3).

These two statements follow from (3) and (2) of Lemma 3.2.11.

Proof of statement (4).

Follows from (1) and the definition of density, through obvious inclusions.

Proof of statements (5), (6) and (7).

(5) is obvioius from the definition of ∂∗Er (cfr. [2]) and (4).

(6) is a direct consequence of (5).

Now (7) must be true as well, otherwise using (5) and the coarea formula we

could deduce that Ln+1(∂∗Er) > 0, which can not be true, since Hn(∂∗Er) <

∞.

Proof of statement (7).

Proof of statement (8).

To be sure that ψr is well defined it is enough to remember (2) and (3), which

actually further tell us that ψr(x) ∈ [−N,N ] for Ln-a.e. x.
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Proof of statement (9).

The Structure Theorem for sets of finite perimeter (cfr. [2, Theorem 2, p.205]

and its proof) tells us that, up to excluding the points (x, y) of a set N with

zero Hn-measure, there are a locally C1 hypersurface S and a neighborhood

U of (x, y) in Ω× Y such that

• U ⊂ S,

• ηr(x, y) is normal to S at the point (x, y).

Since the neighborhood U must contain a segment which passes through x

and which is parallel to the y direction, the normal vector ηr(x, y) must be or-

thogonal to the y direction, and this is equivalent to saying that [ηr(x, y)]n+1 =

0.

Proof of statements (10) and (11).

(9) tells us that the set Ar is contained in the set A0
r defined in (4) of Lemma

3.2.11. Then (4) of Lemma 3.2.11 itself implies that

Hn(Ar) = 0 for ν-a.e. r,

and (10) is proved.

To see that (11) is true we notice that if Card({x} × Y ) = 1, then {x} ×
Y =

{(

x, ψr(x)
)}

. This means that ∂∗Er\Gr(ψr) ⊂ Ar and the thesis follows

from (10).

Proof of statement (12).

By (7) we have that Pr ⊂ Ω has zero Ln measure.

Moreover, because of the definition of ψr and because of (4), the following

two implications hold:

x ∈ Ω \ Pr
y < ψr(x)

}

⇒ Θn+1
(

Ln+1
xEr, (x, y)

)

= 0
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and
x ∈ Ω \ Pr
y > ψr(x)

}

⇒ Θn+1
(

Ln+1
xEC

r , (x, y)
)

= 0.

The first implication tells that Ln-almost all points of
(

E(ψ)
r

)C
have null

Ln+1
xEr density.

The second one tells that Ln-almost all points of E(ψ)
r \ Gr(ψr) have null

Ln+1
xEC

r density.

By [4, 2.10.19(1), p.181], this means that

Ln+1(Er \ E(ψ)
r ) = 0

and

Ln+1(E(ψ)
r \ Er) = Ln+1(Gr(ψr) \ Er) = 0.

Lemma 3.2.13.

(1) If M ∈Mn(R) is an n× n symmetric matrix of the form

M =



















a1 a2 a3 · · · an

a2 1 0 · · · 0

a3 0 1
...

...
...

. . .

an 0 · · · 1



















,

then

det(M) = a1 − a22 − a23 − ...− a2n = a1 −
n
∑

j=2

a2j .

(2) If a matrix A is in GLn(R) and it is of the form

A =









| | |
e1 − α1v e2 − α2v · · · en − αnv

| | |
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with

v =









α1

...

αn









∈ R
n and α1 6= 0,

then

det(A) = 1− α2
1 − α2

2 − ...− α2
n.

(3) For any B ⊂ H
(

x, ψr(x)
)

we have

Hn(B) =
1

∣

∣[ηr
(

x, ψr(x)
)

]n+1

∣

∣

Ln
(

πΩ(B)
)

. (3.25)

(4) Define the map

ζr : Ω → R
n

x 7→ ζr(x)

where

[ζr(x)]i :=



























0 if
(

x, ψr(x)
)

6∈ ∂∗Er

− [ηr
(

x, ψr(x)
)

]i

[ηr
(

x, ψr(x)
)

]n+1

if [ηr
(

x, ψr(x)
)

]n+1 6= 0

sgn([ηr
(

x, ψr(x)
)

]i)∞ otherwise

Then, for any x such that
(

x, ψr(x)
)

∈ ∂∗Er, the map

y 7→
(

y, ψr(x) + 〈y − x, ζr(x)〉

is the map that lifts Ω vertically onto the hyperplane H
(

x, ψr(x)
)

.

(5) If x0 ∈ Ω,
(

x0, ψr(x0)
)

∈ ∂∗Er and
[

ηr
(

x0, ψr(x0)
)]

n+1
6= 0, then

lim
t→0+

∫

B(x0,1)

∣

∣

∣

∣

∣

ψr
(

x0 + t(x− x0)
)

− y0

t
−
〈

x− x0, ζr(x0)
〉

∣

∣

∣

∣

∣

dLn(x) = 0

(3.26)

(6) If x ∈ Ω,
(

x, ψr(x)
)

∈ ∂∗Er and
[

ηr
(

x, ψr(x)
)]

n+1
6= 0, then

lim
t→0+

1

tn+1

∫

B(x,t)

∣

∣ψr(y)− ψr(x)− 〈y − x, ζr(x)〉
∣

∣ dLn(y) = 0. (3.27)
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(7) Define, for all r ∈ I, the map

p(r) : Ω −→ Ω× Y

x 7→
(

x, ψr(x)
)

Then, for ν-a.e. r, the measure Hn
x∂∗Er is absolutely continuous with

respect to the measure p
(r)
#

(

LnxπΩ
(

∂∗Er
)

)

.

In other words there exist maps Jr : Ω → [0,+∞) such that for any

integrable f : ∂∗Er → R we have
∫

∂∗Er

f dHn =

∫

Ω

f
(

x, ψr(x)
)

Jr
(

x, ψr(x)
)

dLn(x). (3.28)

Moreover we can say that(2)

Jr(x, y) = J(x, y) for Hn-a.e. (x, y) ∈ ∂∗Er.

Proof of statement (1).

This is elementary algebra. We use Laplace formula for determinants on the

first row and the rest is trivial.

Proof of statement (2).

We can define the real numbers

a1 :=
1

α2
1

− 1, a2 := −α2

α1

, a3 := −α3

αn
, ..., an := −αn

α1

and we can see, using Gauss operations between columns, that

det(A) = α2
1 det



















a1 a2 a3 · · · an

a2 1 0 · · · 0

a3 0 1
...

...
...

. . .

an 0 · · · 1



















= α2
1(a1 − a22 − a23 − ...− a2n)

= 1− α2
1 − ...− α2

n.

2Here J is the map defined in Lemma 3.2.11(7)
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Proof of statement (3).

We recall that the orthogonal projection from R
n+1 onto the hyperplane

{

x ∈ R
n+1 : xn+1 = 0

}

is the linear map with matrix

(

1n 0n

0Tn 0

)

and that the Hk measure of the parallelogram

P (v1, ..., vk) :=

{

k
∑

i=1

αivi : (α1, ..., αk) ∈ [0, 1]k

}

is

Hk
(

P (v1, ..., vk)
)

=

√

det
(

(

〈vi, vj〉
)

1≤i,j≤k

)

.

Now the statement follows from elementary algebra and (2).

Proof of statement (5).

By the Blow Up Theorem (cfr. [2, page 199]), we have that

1
E

(t)
r (x0,y0)

t→0+−−−→ 1H−(x0,y0) in L1
loc(Ω× Y ),

which by definition means that if we fixB := B(x0, 1)×[−N,N ] as a bounded

domain of integration, then

∀ε > 0 ∃δε > 0 : ||1
B∩E

(δ)
r (x0,y0)

− 1B∩H−(x0,y0)||L1 < ε ∀δ ∈ (0, δε),

which is to say that ∀ε > 0 ∃δε > 0 s.t.

Ln+1

(

B ∩
(

H−(x0, y0)∆E
(δε)
r (x0, y0)

)

)

< ε ∀δ ∈ (0, δε). (3.29)
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The elements of E(δ)
r can be described equivalently as follows:

(x, y) ∈ E(δ)
r (x0, y0)

def⇔ ∃(x, y) ∈ Er :







x = x0 + r(x− x0)

y = y0 + r(y − y0)

Ln+1-a.e.⇔ ∃(x, y) ∈ Ω× Y :



















y ≥ ψr(x)

x = x0 + r(x− x0)

y = y0 + r(y − y0)

⇔ y ≥ y0 +
1

r

(

ψr
(

x0 + r(x− x0)
)

− y0

)

This shows that not only Er, but also E
(δ)
r is an epigraph.

Now, using the coarea formula (cfr. [2, Lemma 1, p.104], using the projection

as linear map), we can rewrite (3.29) as
∫

B(x0,1)

∣

∣

∣

∣

y0 +
1

r

(

ψr
(

x0 + r(x− x0)
)

− y0

)

−
(

y0 + 〈x− x0, ζr(x0)〉
)

∣

∣

∣

∣

dLn(x) < ε,

which holds for all δ ∈ (0, δε), and this proves the statement.

Proof of statement (6).

This follows from (5) through change of variables.

Proof of statement (7).

Throughout this proof we shall consider a fixed r0 ∈ [−1, 0] and use, for

simplicity, the notation ψ ≡ ψr0 , ζ ≡ ζr0 , E ≡ Er0 , p ≡ p(r0).

Claim 3.

If δ ∈ (0, δε) and α > 0, then

Ln
{

y ∈ B(x, r) : |ψ(y)−ψ(x)−〈y−x, ζ(x)〉| ≥ α
}

≤ εδn+1

α
.
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Proof of claim 3.

This is simply a consequence of Chebychev’s inequality and (6).

Claim 4.

If δ ∈ (0, δε),
(

x, ψ(x)
)

∈ ∂∗E and
[

η
(

x, ψ(x)
)]

n+1
6= 0, then

Ln
(

(

πΩ
(

B(x, δ) ∩Gr(ψ)
)

)

∆
(

πΩ
(

B(x, δ) ∩H(x)
)

)

)

≤

≤ C(n, x)
√
ε δn.

where C(n, x) =

(

1 +
nα(n)

∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

)

.

Proof of claim 4.

Define our target set

R :=
(

πΩ
(

B(x, δ) ∩Gr(ψ)
)

)

∆
(

πΩ
(

B(x, δ) ∩H(x)
)

)

and, for any α ∈ (0, δ/2), the sets

• R1 :=







y ∈ B(x, δ) :







(

y, ψ(x) + 〈y − x, ζ(x)〉
)

∈ B
(

(x, ψ(x)), δ − α
)

(

y, ψ(y)
)

6∈ B
(

(x, ψ(x)), δ
)







• R2 :=







y ∈ B(x, δ) :







(

y, ψ(x) + 〈y − x, ζ(x)〉
)

6∈ B
(

(x, ψ(x)), δ − α
)

(

y, ψ(y)
)

∈ B
(

(x, ψ(x)), δ
)







• R3 :=

{

y ∈ B(x, δ) :
(

y, ψ(x) + 〈y − x, ζ(x)〉
)

∈
(

B
(

(x, ψ(x)), δ
)

\

B
(

(x, ψ(x)), δ − α
)

)

∩H(x)

}

.

About these sets we can say that

• R1 ∩R2 = ∅.

• By claim 3 Ln
(

R1 ∪R2

)

≤ εδn+1

α
.
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• Since B
(

(x, ψ(x)), δ
)

∩ H(x) and B
(

(x, ψ(x)), δ − α
)

∩ H(x) are two

concentric n-dimensional disks on H and since R3 is the projection on

Ω of their difference, we have

Ln(R3) =
1

∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

(

α(n)δn − α(n)(δ − α)n
)

=
α(n)

∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

(

δ − (δ − α)
)(

δn−1 + δn−2(δ − α)+

+δn−3(δ − α)2 + ...+ (δ − α)n−1
)

≤ nα(n)
∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

α δn−1.

• R ⊂ R1 ∪R2 ∪R3.

We can now obtain the statement of the claim simply taking α =
√
εδ and

writing

Ln(R) ≤ Ln(R1 ∪R2) + Ln(R3) ≤
(

1 +
nα(n)

∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

)

√
ε δn.

Claim 5.

If
(

x, ψ(x)
)

∈ ∂∗E and
[

η
(

x, ψ(x)
)]

n+1
6= 0, then

lim
r→0+

Hn
xGr(ψ)

(

B
(

(x, ψ(x)), r
)

)

p#Ln
(

B
(

(x, ψ(x)), r
)

) = − 1

[ηr
(

x, ψ(x)
)

]n+1

.

Proof of claim 5.

Using the notation Br := B
(

(x, ψ(x)), r
)

, we have

Hn
xGr(ψ)

(

Br

)

p#Ln
(

Br

) =

=
Hn
(

Gr(ψ) ∩Br

)

Hn
(

H(x) ∩Br

)

Hn
(

H(x) ∩Br

)

Ln
(

πΩ
(

H(x) ∩Br

)

)

Ln
(

πΩ
(

H(x) ∩Br

)

)

Ln
(

πΩ
(

Gr(ψ) ∩Br

)

)
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Using [2, Corollary 1(ii), p.203], item (3), and claim 4 we have that the left

hand side converges, as r goes to 0+, to
1

∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

, so that we have

finally proven that

lim
r→0+

Hn
xGr(ψ)

(

Br

)

p#Ln
(

Br

) =
1

∣

∣

[

η(x, ψ(x))
]

n+1

∣

∣

.

Consider now the measuresm1 := Hn
x∂∗E andm2 := p#

(

Lnx
(

πΩ(∂
∗E)
)

)

.

Using [3, Theorem 1.6(b), p.8] we see that they are both Radon measures (in

the sense of [2, p.4,5]).

Clearly m2 << m1, so that by the previous discussion and by [2, Theorem 2,

p.40] we must have

dm2 = |[η(x, ψ(x))]n+1| dm1.

Now we simply need to remember Lemma 3.2.11(4) to deduce that

m1 << m2

is true as well. We can further say, using Lemma 3.2.11(5) and again [2,

Theorem 2, p.40], that

dm1 = − 1

[η(x, ψ(x))]n+1

dm2.
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Lemma 3.2.14.

The following statements hold:

(1) If φ ∈ C1
c (Ω,R), then

∫

Ω

ψr

(

∇φ
0

)

dLn =

= −
∫

Ω

φen+1 dx −
∫

Ω

φ(x)ηr
(

x, ϕr(x)
)

Jr
(

x, ϕr(x)
)

dx.

(3.30)

(2) For ν-a.e. r, we have(3) (4)

Jr(x, y) = J(x, y) ∀(x, y) ∈ ∂∗Er.

(3) ψr is weakly differentiable and its weak derivative is given by the map

ζr defined in Lemma 3.2.13(4).

(4) for all X ∈ C∞
c (Ω× Y,Rn+1)

∫

I

∫

{(x,y)∈Ω×Y :y≥ψr(x)}

div(X)dLn+1 dν =

=

∫

I

∫

Ω

〈X(x, ψr(x)), (Dψr(x),−1)〉 dx dν(r).
(3.31)

Proof of statement (1).

If f ∈ L1(Hn
x∂∗Er), since ηr ∈ L∞(Ω × Y ), then fηr ∈ L1(Hn

x∂∗Er) and

Lemma 3.2.13(7) applies, giving

∫

∂∗Er

fηr dHn =

∫

Ω

f
(

x, ϕr(x)
)

ηr
(

x, ϕr(x)
)

Jr
(

x, ϕr(x)
)

dx. (3.32)

3Here Jr is the map given by Lemma 3.2.13(7), while J is the one defined in Lemma

3.2.11
4This statement is actually a repetition, since the same fact was already proven in

Lemma 3.2.13(7). We state and prove it again assuming only absolute continuity. This

simply strengthens the proof made earlier.
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Now let N > 0 such that spt(µ) ⊂ Ω× [−N,N ]× Z.

Let χ ∈ C∞
c (Ω× Y ) such that 0 ≤ χ ≤ 1 and χ(x, y) = 1 ∀(x, y) ∈ Ω ×

[−N,N ].

We recall the generalized Gauss-Green formula, stated in (3.18). It tells us

that for any F ∈ C1
c (Ω× Y )

∫

Er

∇F dLn+1 =

∫

∂∗Er

Fηr dHn.

Consider a function φ ∈ C1
c (Ω).

Define now φ as

φ : Ω× Y −→ R

(x, y) 7→ φ(x)
.

We have

• ∇φ(x, y) =
(

∇φ(x), 0
)

;

• φψ ∈ C1
c (Ω× Y ).

Let n0 denote the exterior normal vector to the set {(x, y) ∈ Ω×Y : y ≥ 0}.
In particular

n0 : Ω× Y −→ R
n+1

(x, y) 7→







−en+1 if y = 0

0 otherwise
.
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Now we have
∫

Ω

ψr∇φ dLn =

∫

Ω

∫ ψr(x)

0

∇φ(x) dy dx

=

∫

Ω

∫ ψr(x)

0

∇(χφ)(x, y) dLn+1

=

∫

{(x,y):x∈Ω, 0≤y≤ψr(x)}

∇(χφ)(x, y) dLn+1 −
∫

{(x,y):x∈Ω, 0≥y≥ψr(x)}

∇(χφ)(x, y) dLn+1

=

∫

{(x,y):x∈Ω, y≥0}

∇(χφ)(x, y) dLn+1 −
∫

{(x,y):x∈Ω, y≥ψr(x)}

∇(ψφ)(x, y) dLn+1

=

∫

{(x,y):x∈Ω, y≥0}

∇(χφ)(x, y) dLn+1 −
∫

Er

∇(ψφ)(x, y) dLn+1

=

∫

∂∗{(x,y):x∈Ω, y≥0}

χφn0 dHn −
∫

∂∗Er

χφηr dHn

=

∫

Ω×{0}

φn0 dHn −
∫

∂∗Er

φηr dHn

=

∫

Ω

(

− φen+1

)

dLn −
∫

Ω

φ
(

x, ψr(x)
)

ηr
(

x, ψr(x)
)

Jr
(

x, ψr(x)
)

dLn.

Proof of statement (2).

Consider (3.30) and look only at the (n + 1)-th entry of the equation. It

reads
∫

Ω

φ(x)
(

1 + [ηr
(

x, ϕr(x)
)

]n+1Jr
(

x, ϕr(x)
)

)

dLn = 0 ∀φ ∈ C1
c (Ω). (3.33)

The statements follows from the density of C1
c (Ω) in L

1(Ω).

Proof of statement (3).

Consider again (3.30), and this time look only at the first n entries. Applying

(2) to them the statement follows.



3.2 Conditions for null gap in codimension 1 107

Proof of statement (4).

In light of (2), equation (3.32) becomes

∫

∂∗Er

f(x, y)ηr(x, y) dHn(x, y) =

∫

Ω

f
(

x, ψr(x)
)

(

ζr(x)

−1

)

dLn(x), (3.34)

and it holds for any f ∈ L1(Hn
x∂∗Er).

Now applying (3.34) to f = Xi and adding over i = 1, ..., n gives statement

(4).
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Remark 3.

Definition of centroid and centroid-concentrated mass

Let µΩ×Y := (πΩ×Y )#µ.

Since µ is by hypothesis a finite measure, we can apply the disintegra-

tion Theorem to µ and the projection map πΩ×Y to obtain a family of

measures µxy on Z which are defined for µΩ×Y -a.e. (x, y) ∈ Ω × Y and

which are such that
∫

Ω×Y×Z

f dµ =

∫

Ω×Y

∫

Z

f(x, y, z) dµxy(z) dµΩ×Y (3.35)

for any f : Ω× Y × Z → R measurable.

Now, by (3.2) at page 62, the quantity

Z(x, y) :=

∫

Z

z dµxy (3.36)

is well defined for µΩ×Y -a.e. pair (x, y). Define Z(x, y) ∈ Z to be the

centroid of µ at (x, y).

We also define a measure µ on Ω × Y × Z whose projection (πΩ×Y )#µ

coincides with µΩ×Y and such that it is concentrated on the graph of

Z(·, ·):

µ : BΩ×Y×Z −→ [0,+∞)

B 7→
∫

Ω×Y

δ(
x,y,Z(x,y)

)(B) dµΩ×Y

.

We call µ the version of µ concentrated at its centroid in the z

variable.

An equivalent definition of µ is that for any f : Ω×Y ×Z → Rmeasurable

it holds
∫

Ω×Y×Z

f dµ =

∫

Ω×Y

f
(

x, y,Z(x, y)
)

dµΩ×Y . (3.37)
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Proof of Theorem 3.2.1.

Claim 6.

If φ ∈ C∞(Ω × Y × Z), it is linear in z and it is compactly-

supported in Ω× Y , then (3.4) holds.

Proof of claim 6.

Since by hypothesis z 7→ φ(x, y, z) is linear, there must be some X̃ ∈ C∞
c (Ω×

Y,Rn) such that

φ(x, y, z) = 〈X̃(x, y), z〉.

Define X ∈ C∞
c (Ω× Y,Rn+1) as X(x, y) :=

(

X̃(x, y), 0
)

.

Now

∫

Ω×Y×Z

φ dµ =

∫

Ω×Y×Z

〈X, (z,−1)〉 dµ

= µ(X)

= S(− div(X))

= −
∫

Ω×Y

ρ div(X) dLn+1

=

∫

I

∫

Er

div(X) dLn+1 dν(r)

=

∫

I

∫

{(x,y):y≥ψr(x)}

div(X) dLn+1 dν(r)

=

∫

I

∫

Ω

〈X
(

x, ψr(x)
)

,
(

Dψr(x),−1
)

〉 dx dν(r)

=

∫

I

∫

Ω

φ
(

x, ψr(x), Dψr(x)
)

dx dν(r).
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Claim 7.

If φ ∈ L1(µ) and it is linear in z, then

(1) ∃X̃ : Ω× Y → Z measurable and such that

φ(x, y, z) = 〈X̃(x, y), z〉.

(2) 〈X̃(x, y),Z(x, y)〉 ∈ L1(µΩ×Y ).

(3)

∫

Ω×Y×Z

φ dµ =

∫

Ω×Y×Z

φ dµ.

(4) It holds

∫

Ω×Y×Z

φ dµ =

∫

Ω×Y

〈X̃,Z〉 dµΩ×Y

=

∫

I

∫

Ω

〈

X̃
(

x, ψr(x)
)

, Z
(

x, ψr(x)
)

〉

dLn(x) dν(r).

Proof of claim 7.

(1) is obvious by the linearity of φ in z.

(2) can be seen through the chain of inequalities

+∞ >

∫

Ω×Y×Z

φ dµ

=

∫

Ω×Y

∫

Z

|〈X̃(x, y), z〉| dµxy dµΩ×Y

≥
∫

Ω×Y

∣

∣

∣

∣

∫

Z

〈X̃(x, y), z〉 dµxy
∣

∣

∣

∣

dµΩ×Y

=

∫

Ω×Y

|〈X̃(x, y),Z(x, y)〉| dµΩ×Y .
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(3) follows from (3.35), (3.36) and (3.37), since

∫

Ω×Y×Z

φ dµ =

∫

Ω×Y

∫

Z

〈X̃(x, y), z〉 dµxy(z) dµΩ×Y (x, y)

=

∫

Ω×Y

∫

Z

(

n
∑

i=1

X̃izi

)

dµxy(z) dµΩ×Y (x, y)

=

∫

Ω×Y

n
∑

i=1

X̃iZi(x, y) dµΩ×Y (x, y)

=

∫

Ω×Y

〈X̃(x, y),Z(x, y)〉 dµΩ×Y

=

∫

Ω×Y×Z

φ dµ.

To see (4) use (2), Lemma 3.2.11(3), Lemma 3.2.13 and Lemma 3.2.14(2).

In fact
∫

Ω×Y×Z

φ dµ =

∫

Ω×Y

∫

Z

〈X̃(x, y), z〉 dµxy dµΩ×Y

=

∫

Ω×Y

〈X̃,Z〉 dµΩ×Y

= −
∫

I

∫

∂∗Er

〈X̃,Z〉[ηr(·)]n+1 dHn dν(r)

=

∫

I

∫

Ω

〈

X̃
(

x, ψr(x)
)

,Z(x, ψr(x)
)

〉

dLn(x) dν(r).

Claim 8.

For Ln-a.e. x ∈ Ω we have that Z
(

x, ψr(x)
)

= Dψr(x).

Proof of claim 8.

If φ ∈ C∞(Ω× Y ×Z) is compactly supported in (x, y) and linear in z, then

claim 6 and claim 7(4) give

∫

I

∫

Ω

〈X̃
(

x, ψr(x)
)

, Dψr(x)〉 dx dν(r) =

∫

I

∫

Ω

φ
(

x, ψr(x), Dψr(x)
)

dx dν(r)

=

∫

Ω×Y×Z

φ dµ

=

∫

I

∫

Ω

〈

X̃
(

x, ψr(x)
)

, Z
(

x, ψr(x)
)

〉

dx dν(r)
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Claim 9. If φ ∈ L1(µ) and it is linear in z, then (3.4) holds

for φ.

Proof of claim 9.

We simply apply claim 8 to claim 7(4) and we get

∫

Ω×Y×Z

φ dµ =

∫

I

∫

Ω

〈

X̃
(

x, ψr(x)
)

, Z
(

x, ψr(x)
)

〉

dLn(x) dν(r)

=

∫

I

∫

Ω

〈

X̃
(

x, ψr(x)
)

, Dψr(x)
〉

dLn(x) dν(r)

=

∫

I

∫

Ω

φ
(

x, ψr(x), Dψr(x)
)

dLn(x) dν(r)

Claim 10. For ν-a.e. r ∈ R, ψr ∈ W 1,1(Ω) ∩W 1,∞(Ω).

Proof of claim 10.

ψr is clearly in L
∞(Ω), since ψr(x) ∈ [−N,N ] for all r ∈ (−1, 0], and therefore

in L1(Ω), since Ω is bounded by hypothesis.

We defined Dψr(x) ≡ ζr(x) by truncation of the vector ηr
(

x, ψr(x)
)

and

rescaling by a factor − 1

[ηr
(

x, ψr(x)
)

]n+1

= J
(

x, ψr(x)
)

. This clearly implies

that

|Dψr(x)| ≤
∣

∣J
(

x, ψr(x)
∣

∣ .

We proved in J is almost everywhere positive we have

∫

Ω

|J
(

x, ψr(x)
)

| dx =

∫

Ω

J
(

x, ψr(x)
)

dx =

∫

∂∗Er

1 dHn <∞,

and this proves that Dψr ∈ L1(Ω,Rn).

Moreover, since Z(x, y) :=

∫

Z

z dµxy and {x} × {y} × spt(µxy) ⊂ spt(µ), we

see that

Z(x, ψr(x)) ∈ K ∀x ∈ Ω,

where K is a compact subset of Z such that co
(

spt(µ)
)

⊂ Ω× [−N,N ]×K.

This proves boundedness of Z(x, ψr(x)), and therefore of Dψr(x).
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Claim 11.

If φ ∈ L1(Ω×Y ×Z) is constant in z, then (3.4) holds for φ.

Proof of claim 11.

By construction ηr is a unitary vector, and by Lemma 3.2.11 [ηr(·)]n+1 is

Hn-a.e. strictly negative. Recalling the definition of ζr and claim 8 we see

that ||Z(x, y)|| > 0 for Hn-a.e. (x, y) ∈ ∂∗Er.

So the following expressions are well defined Hn-a.e. and we can say that
∫

Ω×Y×Z

φ(x, y, z) dµ(x, y, z) =

∫

Ω×Y×Z

φ(x, y) dµ(x, y, z)

=

∫

Ω×Y

φ(x, y) dµΩ×Y

=

∫

Ω×Y

∫

Z

φ(x, y)

〈

z,
Z(x, y)

||Z(x, y)||2
〉

dµxy dµΩ×Y

=

∫

Ω×Y×Z

φ(x, y)

〈

z,
Z(x, y)

||Z(x, y)||2
〉

dµ(x, y, z)

=

∫

Ω×Y×Z

〈

φ(x, y)
Z(x, y)

||Z(x, y)||2 , z
〉

dµ(x, y, z)

Now these same computations read backwards show that

(x, y, z) 7→
〈

φ(x, y)
Z(x, y)

||Z(x, y)||2 , z
〉

is a map in L1(µ), and moreover it is clearly linear in z, so that claim 7(4)

applies, and allows us to continue the chain of equalities as follows:
∫

Ω×Y×Z

φ(x, y, z) dµ(x, y, z) =

∫

Ω×Y×Z

〈

φ(x, y)
Z(x, y)

||Z(x, y)||2 , z
〉

dµ(x, y, z)

=

∫

I

∫

Ω

〈

φ(x, ψr(x)
) Z

(

x, ψr(x)
)

||Z(x, ψr(x)
)

||2 , Z(x, ψr(x)
)

〉

dLn(x) dν(r)

=

∫

I

∫

Ω

φ
(

x, ψr(x)
)

dLn(x) dν(r).

To sum up we proved that ψr ∈ W 1,∞(Ω) for ν-a.e. r ∈ I and that any

map in L1(µ) which is either linear or constant in z satisfies (3.4). So the

statement of the theorem follows.
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3.2.4 Proof of theorem 3.2.2

Lemma 3.2.15.

(i) Let (µ, µ∂) be as in Theorem 3.2.2.

Let ν, ψr be as in Theorem 3.2.1.

Let L : Ω× Y × Z → R be measurable and assume that it is convex in

z.

Then

∫

I

∫

Ω

L
(

x, ψr(x), Dψr(x)
)

dLn(x) dν(r) ≤
∫

Ω×Y×Z

Ldµ. (3.38)

(ii) If, additionally, µ∂ is as in Theorem 3.2.2, then ψr|∂Ω : ∂Ω → R is a

well defined Lipschitz function and we have, for all φ : ∂Ω × Y → R

for which the integrals below are defined, that

∫

∂Ω×Y

φ dµ∂ =

∫

I

∫

∂Ω

φ
(

x, ψr(x)
)

dσ(x) dν(r),

where σ := Hn−1
x∂Ω.

Proof of statement (i).

By Jensen’s inequality on the map z 7→ L(x, y, z) we have

L
(

x, y,Z(x, y)
)

≤
∫

Z

L(x, y, z) dµxy.

Integrating we find

∫

Ω×Y×Z

Ldµ =

∫

Ω×Y×Z

L
(

x, y,Z(x, y)
)

dµ

=

∫

Ω×Y

L
(

x, y,Z(x, y)
)

dµΩ×Y

≤
∫

Ω×Y

∫

Z

L(x, y, z) dµxy dµΩ×Y

=

∫

Ω×Y×Z

Ldµ. (3.39)
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In the proof of Theorem 3.2.1 we saw that the following equivalences hold

for any φ ∈ L1(µ):

∫

Ω×Y×Z

φ dµ =

∫

Ω×Y

φ
(

x, y,Z(x, y)
)

dµΩ×Y

= −
∫

I

∫

∂∗Er

φ
(

x, y,Z(x, y)
)

[ηr(x, y)]n+1 dHn(x, y) dν(r)

=

∫

I

∫

Ω

φ
(

x, ψr(x), Dψr(x)
)

dLn(x) dν(r). (3.40)

Now, using (3.39) and (3.40), we have

∫

I

∫

Ω

L
(

x, ψr(x), Dψr(x)
)

dLn(x) dν(r) ≤
∫

Ω×Y×Z

Ldµ.

Proof of statement (ii).

Let nΩ : ∂Ω → Sn−1 be the exterior unit normal vector to Ω.

Since Ω has piecewise C1 boundary, Gauss-Green formula holds, hence

∫

Ω

div(X) dLn =

∫

∂Ω

〈X,nΩ〉 dσ ∀X ∈ C1(Ω,Rn). (3.41)

Taking X = φ
(

x, u(x)
)

ej for all j = 1, ..., n we can see that ∀φ ∈ C∞(Ω ×
Y ), ∀u ∈ C1(Ω)

∫

Ω

(

∂φ

∂x

(

x, u(x)
)

+
∂φ

∂y
Du(x)

)

dLn(x) =
∫

∂Ω

φ
(

x, u(x)
)

nΩ(x) dσ(x)

(3.42)

(this property is actually equivalent to the one before).

Claim 1.

(3.42) also holds for a couple (φ, u) with φ ∈ C∞(Ω × Y,Rn)

and u ∈ W 1,1(Ω) ∩ L∞(Ω).
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Proof of claim 1.

If u ∈ W 1,1(Ω), then (see [4, Theorem 3, p.127]) ∃{un}n∈N ⊂ W 1,1(Ω) ∩
C∞(Ω) such that

un
||·||W1,1−−−−→
n→∞

u.

Up to taking a subsequence, we can assume that the sequence {un}n con-

verges pointwise to u and that {Dun}n converges pointwise to Du.

Then, by continuity of φ and of its derivatives, for Ln-a.e. x,
∂φ

∂x

(

x, un(x)
)

+
∂φ

∂y

(

x, un(x)
)

Dun(x) →
∂φ

∂x

(

x, u(x)
)

+
∂φ

∂y

(

x, u(x)
)

Du(x).

If we also assume that u is essentially bounded, then the sequence {un}n can

be taken uniformly bounded, meaning that

∃C0 ∈ [0,∞) such that sup
n

||un||L∞ ≤ C0.

Define

M := max
(x,y)∈Ω×Y

|y|≤C0

max

{

∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

}

.

Then, for all n and for all x, we have
∣

∣

∣

∣

∂φ

∂x

(

x, un(x)
)

+
∂φ

∂y

(

x, un(x)
)

Dun(x)

∣

∣

∣

∣

≤M(1 + |Dun|(x).

By dominated convergence Theorem(5) this means that

lim
n→∞

∫

Ω

(

∂φ

∂x

(

x, un(x)
)

+
∂φ

∂y

(

x, un(x)
)

Dun(x)

)

dLn(x) =

=

∫

Ω

(

∂φ

∂x

(

x, u(x)
)

+
∂φ

∂y

(

x, u(x)
)

Du(x)

)

dLn(x).

5Actually here we use a slightly different variation of the dominated convergence The-

orem, which is

µ′ is a positive measure

g, {gn}n are in L1(µ′)

f, {fn}n are measurable

|fn| ≤ gn ∀n
fn(x) → f(x) for µ′-a.e. x
∫

gn dµ
′ →

∫

g dµ′















































⇒
∫

fn dµ
′ →

∫

f dµ′.

We use it with µ′ = Ln
xΩ, gn = M(1 + |Dun|) and g = M(1 + |Du|).
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An analogous argument on the same sequence {un}n shows that

lim
n→∞

∫

∂Ω

φ
(

x, un(x)
)

nΩ(x) dσ =

=

∫

∂Ω

φ
(

x, u(x)
)

nΩ(x) dσ,

so, since each un satisfies (3.42), the claim follows by passing to the limit.

Recall that within the proof of Theorem 3.2.1 (precisely in claim 10) we

showed that ψr ∈ W 1,∞(Ω) (which, by boundedness of Ω, means that ψr is

also in W 1,1(Ω)).

Since ψr are Lipschitz functions(6) they are well defined and Lipschitz con-

tinuous also on ∂Ω.

Now we can use (3.1), (3.4) and claim 1 (with u = ψr) to see that for any

φ ∈ C∞(Ω× Y ) we have
∫

∂Ω×Y

φ(x, y)nΩ(x) dµ∂(x, y) =

∫

Ω×Y×Z

(

∂φ

∂x
(x, y) +

∂φ

∂y
(x, y)z

)

dµ(x, y, z)

=

∫

I

∫

Ω

(

∂φ

∂x

(

x, ψr(x)
)

+
∂φ

∂y

(

x, ψr(x)
)

Dψr(x)

)

dLn(x) dν(r)

=

∫

I

∫

∂Ω

φ
(

x, u(x)
)

nΩ(x) dσ(x) dν(r). (3.43)

To conclude we fix any φ ∈ C∞(Ω× Y ) and

• notice that [nΩ(·)]i is a function in C1(∂Ω), since the boundary of Ω is

piecewice C1 by hypothesis;

• apply (3.43) to f (1), ..., f (n), with f (i) = φ[nΩ(·)]i, to obtain n vector

equations of the type
∫

∂Ω×Y

φ(x, y)[nΩ(x)]inΩ(x) dµ∂(x, y) =

=

∫

I

∫

∂Ω

φ
(

x, u(x)
)

[nΩ(x)]inΩ(x) dσ(x) dν(r).

6W 1,∞(Ω) = Lip(Ω).
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• sum up the i-th entries to obrain

∫

∂Ω×Y

φ(x, y)〈nΩ(x),nΩ(x)〉 dµ∂(x, y) =

=

∫

I

∫

∂Ω

φ
(

x, u(x)
)

〈nΩ(x),nΩ(x)〉 dσ(x) dν(r).

And the lemma is proven.
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Proof of Theorem 3.2.2.

Define

I := F−1(0) ∩G−1
(

(−∞, 0]
)

and

I∂ := F−1
∂ (0) ∩G−1

∂

(

(−∞, 0]
)

.

Claim 2.

The set I1 := {r ∈ [−1, 0] : ψr satisfies (3.5)} has strictly

positive ν measure.

Proof.

This is an easy consequence of CV 4 and Lemma 3.2.15.

Claim 3.

For ν-a.e. r we have

Ln
(

{

x ∈ Ω :
(

x, ψr(x), Dψr(x)
)

6∈ I
}

)

= 0.

Denote by I2 the set of all such r.

Proof.

We know that

• by claim 8 at page 111, for ν-a.e. r and Ln-a.e. x ∈ Ω we have

Dψr(x) = Z
(

x, ψr(x)
)

;

•
(

x, y,Z(x, y)
)

∈ co
(

({x} × {y} × Z) ∩ spt(µ)
)

∀(x, y) ∈ Ω× Y (7);

• by hypothesis spt(µ) ⊂ I

• by hypothesis CV 5 we have that I ∩ ({x} × {y} × Z) is convex for all

couples (x, y)

7We recall again that by co(A) we mean the convex hull of the set A.
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From these facts it is clear that for ν-a.e. r and Ln-a.e. x ∈ Ω we have

(

x, ψr(x), Dψr(x)
)

∈ I.

Claim 4.

For ν-a.e. r we have

σ
(

{

x ∈ ∂Ω :
(

x, ψr(x)
)

6∈ I∂
}

)

= 0.

Denote by I3 the set of all such r.

Proof.

It must be that for ν-a.e. r and σ-a.e. x ∈ ∂Ω we have

(

x, ψr(x)
)

∈ spt(µ∂),

otherwise 1(∂Ω×Y )\spt(µ∂) would be a measurable function contradicting Lemma

3.2.15(ii).

By hypothesis we know that spt(µ∂) ⊂ I∂ , so that the claim follows imme-

diately.

Now because of claims 2, 3 and 4, the set I1 ∩ I2 ∩ I3 has strictly positive

ν measure, and is therefore non-empty. Pick one r0 ∈ I1 ∩ I2 ∩ I3 and define

ϕ := ψr0 . It satisfies the seeked properties and thus (i) is proven.

We now proceed to prove (ii).

Consider a mollifier χ, i.e. χ ∈ C∞
(

R
n, [0,+∞)

)

and it satisfies that supp(χ) ⊂
BRn(0, 1) and

∫

Rn

χdLn = 1.

Consider a map h ∈ C∞(Ω)∩W 1,∞(Ω) such that 0 < h(x) < dist
(

x, ∂Ω
)

/2 ∀x ∈
Ω and extend it to Ω defining h(x) := 0 ∀x ∈ ∂Ω.
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Define

gi(x) :=











in

h(x)n

∫

Rn

χ

(

i
x− y

h(x)

)

ϕ(y) dy if x ∈ Ω

ϕ(x) if x ∈ ∂Ω

(3.44)

The sequence {gi}i is an approximation of ϕ by convolution (with the slight

modification of using the postive functions
h(x)

i
which uniformly converge

to zero in place of some positive constants εi converging to zero).

Since ϕ is Lipschitz continuous (and therefore absolutely continuous) we have

uniform convergence (with respect to the L∞ norm) of the sequence {gi}i to
ϕ.

What is left to prove is that gi ∈ W 1,∞(Ω) ∀i. To prove this we denote by

l the Lipschitz constant of ϕ, we denote by H the Lipschitz constant of h,

and we consider the following three different possibilities:

Case 1: x1, x2 ∈ ∂Ω.

In this case |gi(x2)− gi(x1)| = |ϕ(x2)− ϕ(x1)| ≤ l|x2 − x1|.

Case 2: x1, x2 ∈ Ω.
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In this case we have

|gi(x1)− gi(x2)| =

=

∣

∣

∣

∣

in

h(x1)n

∫

Rn

χ

(

i
x1 − y

h(x1)

)

ϕ(y) dy − in

h(x2)n

∫

Rn

χ

(

i
x2 − y

h(x2)

)

ϕ(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

ϕ(x1 − y) dy − in

h(x2)n

∫

Rn

χ

(

i
y

h(x2)

)

ϕ(x2 − y) dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

ϕ(x1 − y) dy − in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

ϕ(x2 − y) dy

∣

∣

∣

∣

+

+

∣

∣

∣

∣

in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

ϕ(x2 − y) dy − in

h(x2)n

∫

Rn

χ

(

i
y

h(x2)

)

ϕ(x2 − y) dy

∣

∣

∣

∣

≤ l||x1 − x2||
in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

dy+

+

∣

∣

∣

∣

in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

ϕ(x2 − y) dy − in

h(x1)n

∫

Rn

χ

(

i
u

h(x1)

)

ϕ

(

x2 − u
h(x2)

h(x1)

)

du

∣

∣

∣

∣

≤ l||x1 − x2||+

+

∣

∣

∣

∣

in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

l

∥

∥

∥

∥

y

(

1− h(x2)

h(x1)

)∥

∥

∥

∥

dy

∣

∣

∣

∣

≤ l||x1 − x2|| + l



 sup
||y||≤

h(x1)
i

∥

∥

∥

∥

y

h(x1)
(h(x1)− h(x2))

∥

∥

∥

∥





in

h(x1)n

∫

Rn

χ

(

i
y

h(x1)

)

dy

≤ l||x1 − x2|| +
lH

i
||x1 − x2||

=

(

l +
lH

i

)

||x1 − x2||.

Case 3: x1 ∈ ∂Ω, x2 ∈ Ω.
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We have

|gi(x1)− gi(x2)| =

=

∣

∣

∣

∣

ϕ(x1) − in

h(x2)n

∫

Rn

χ

(

i
y

h(x2)

)

ϕ(x2 − y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

in

h(x2)n

∫

Rn

χ

(

i
y

h(x2)

)

(

ϕ(x1)− ϕ(x2 − y)
)

dy

∣

∣

∣

∣

≤ sup
||y||≤

h(x2)
i

|ϕ(x1)− ϕ(x2 − y)|

≤ l sup
||y||≤

h(x2)
i

||x1 − x2 + y||

≤ l sup
||y||≤

dist(x2,∂Ω)
i

||x1 − x2 + y||

≤ l sup
||y||≤

||x2−x1||
i

||x1 − x2 + y||

≤ l
(

1 +
1

i

)

||x1 − x2||.

Lipschitz regularity on Ω is proven and the proof of Theorem 3.2.2 is con-

cluded.
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