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Abstract

Fracture propagation in porous materials is an important issue in many petroleum

and civil engineering problems such as hydraulic fracturing and overtopping stability

of dams. In this Thesis an eXtended Finite Element Method (X-FEM) formulation

for 2D poroelasticity is presented. Using X-FEM, a fracture is modeled as a discon-

tinuity in the displacement field by exploiting the partition of unity property of finite

element shape functions. This step in the displacement field is represented by adding

additional degrees of freedom to already existing nodes thus no remeshing is required.

A discontinuity can be inserted or extended in any direction and at anytime during

the simulation. The fracture process zone is lumped into a single plane ahead of the

existing crack by using the cohesive zone approach. Fracture propagation is based on

a stress state averaged from the effective stress in the surrounding of the crack tip.

Darcy’s law is used to calculate the fluid flow in the bulk material. Fluid flow from the

formation into the crack and vice versa are accounted for. Several fracture simulations

have been done to show the performance of the numerical model.

This research is addressed to investigate if there is a mesh independence fracture

propagation in saturated porous media by means of X-FEM simulations. Attention

will be focused on the stepwise advancement of a fracture submitted to a mode I crack

propagation. Simulations will be performed by testing similar meshes with different

element sizes.



1: Introduction

In order to better understand the behavior of materials under external loads that lead

to failure mechanisms, the study of fracture propagation has become an important

issue in engineering.

In fact, predicting the probability of total failure of a structure or its residual

strength, requires not only the analysis of the onset of the first damage in the material,

but also the investigation of the evolution of the fracture itself.

If the attention is focused on our society, for instance, it can be easily seen that

people are usually surrounded by mechanical systems and installations. Nuclear power

plant to produce energy; dams to protect cities from floods; power lines to transfer

electricity; aeroplanes or high speed trains to travel; satellites to guarantee communi-

cations. If one or more of these structures fail, the consequences can be very serious

(see Figure 1.1): from financial or environmental problems, up to worse scenarios such

as a big dam failure in a densely populated area, or the breaking of a nuclear power

plant.

Figure 1.1: On November 12th 2001, the American Airlines Flight 587 crashed shortly after
takeoff because of a tail structure failure while encountering wake turbulence.

Porous materials consist of a solid skeleton including interconnected networks of pores

1



Introduction 2

that can be filled with air (void) or with fluid at the gas or liquid phase.

Understanding the behavior of these materials and their fracturing and failing mech-

anisms, together with the fluid redistribution, is now leading to new technological

challenges. Applications can be found, for instance, in Oil&Gas, Civil and Biomedical

engineering problems.

(a) A schematic representation of the extrac-
tion of shale or tight gas [1]. A mixture of
water, sand, and chemicals are pumped into
a shale/sandstone layer under high pressures.
Hydraulic fracturing occurs and shale/tight
gas flows out of the small fissures that were
created.

(b) Aerial picture shows giant cracks at the
base of Campos Novos concrete gravity Dam
(Brazil).

Figure 1.2: Two examples about the importance of fractures in porous materials.

In Oil&Gas engineering, hydraulic fracturing (sometimes referred to as ‘fracking’)

is the process of pumping water underground, mixed with a small proportion of sand

and chemicals, at a high enough pressure to create small cracks in the rock (see Figure

1.2a). Unconventional gas is located in rocks with extremely low permeability such
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as shale or sandstone, which makes extracting it more difficult. These cracks help to

release the unconventional natural gas that would otherwise not be accessible. The

International Energy Agency (IEA) predicts that the global industrial energy demand

will increase by almost 40% up to 2035 [52], and natural gas will meet around 26% of

total global energy demand by the same year [2]. In Civil engineering, an application of

importance is related to the overtopping stability analysis of dams [88] (see Figure 1.2b).

In Biomedical engineering, instead, applications can be found in the intervertebral disc

herniation. A herniated disc occurs when the annulus fibrosus breaks open due to the

propagation of a crack [55].

Thus, poroelastic models able to predict fractures could give more details about

those kind of processes.

1.1: Physical behavior of fractures

Fractures can be seen as a complex succession of different mechanical events. The

first event in fracture propagation of an existing crack is the nucleation of the micro-

separations in a small area, called process zone, see Figure 1.3a.

The process zone consists of a small damage area, ahead of the growth of the

macro-cracks, in which micro-separations and crack-bridging (i.e. fibers running from

one crack-surface to the other) take place. From a microscopic point of view, micro-

separations are tiny cracks in the micro-structure of the material. The nucleation

phenomenon of these cracks usually occurs in areas with specific features: the stresses

are high, and the inter-atomic bonds are sufficiently weak; this happens close to mate-

rial inhomogeneities such as a cavity, or around phase boundaries like an existing crack

or a notch (Figure 1.3b). Another possibility for the crack to nucleate is at imperfec-

tions on the free surfaces of specimens, because these locations are generally favorable

to stress corrosion cracking and fatigue failure (e.g. crystalline solids).

The nucleation process corresponds to a energy dissipation, through friction (pro-

duction of heat) and plastic permanent deformation (of the surrounding bulk material).

This means that the step is irreversible, reducing the stiffness and the strength of the

material also when the applied loads are removed. On the other hand, whenever the
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(a) A simplified representation of the process zone (shade
area) with micro-separations ahead of an existing crack in a
granular material [76].

(b) Internal force field in a con-
tinuum, with an existing crack,
under extension. The concen-
tration of the internal force is
higher near the crack tips.

Figure 1.3: Micro-separations and force lines lines around an existing crack.

applied loads are increased, a growth and a melting of the micro-cracks can be seen.

At this point larger growths and defects can be visible with the naked eye, without

using specific equipment. Moreover, these kinds of bigger defects give rise to higher

stress concentrations in the material that, combined with a reduction of strength and

stiffness, can lead to the total failure of the structure.

The evolution processes from micro-separations to final failure are different for each

material [20]. Analyzing the behavior of two materials commonly used in civil engi-

neering (i.e. concrete and steel), from the structural macroscopic level of observation,

it can be said that concrete acts like a heterogeneous material, instead steel does not.

In fact, concrete is characterized by differences in strength and stiffness of the two main
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ingredients (i.e. cement paste, and aggregates of different shapes and dimensions) while

steel can be considered as a homogeneous material. As a result, in concrete there are

many possible sources for nucleation of micro-separations, also because of the initial

drying shrinkage [18], instead in steel, where also the atomic structure is more regular

than in the previous material, the final crack, if it exists, can be very sharp. It can be

concluded that the process zone in concrete is wider than in steel, and also the final

crack pattern is more spread in heterogeneous materials [102].

Figure 1.4: Diffuse crack pattern in concrete (Van Mier 1997).

Finally, fracture processes can be influenced by loading conditions (e.g. cyclic

loadings that lead to fatigue fracture) and by environmental conditions (e.g. salt water

can accelerate the fracture evolution in metals by means of a process called “stress-

corrosion”, or even temperature can lead to failure composite materials).

1.2: Fracture models

Nowadays, to model the fracture propagation in the process zone, it is usual to lump

all the effects due to micro-separations into just one model that can guarantee to

govern the propagation of the main crack, instead of paying attention to each single

micro-separation. This model has to keep in consideration two important hypotheses
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of fracturing processes: first, the stiffness and the strength of the material must be

reduced in a realistic way; secondly, this reduction must be accompanied by a correct

reduction of the internal energy of the material itself [76].

The first models on fractures propagation date back to almost one century ago. The

first work about this topic is due to the English aeronautical engineer Griffith that was

interested in explaining the failure in brittle materials and developed, during the World

War I, a first theory in 1920 [38] that was mainly based on the theorem of minimum

energy. Griffith assumed the crack like a discontinuity in a smooth displacement field,

allowing it to go further over a certain length when the surface energy in the structure

was equal to the energy needed in the process zone for micro-separations to nucleate

and grow. Several years later, at the U.S. Naval Research Laboratory, a group working

under Irwin extended Griffith’s theory for ductile materials [47] by including small-scale

yielding around the crack tip and by introducing the idea of stress intensity factors to

quantify the stress nearby a crack tip. In 1968, Rice [80] gave a new generalization

of the previous works to elastic-plastic solids. The combination of this application

with the Finite Element Method (FEM) led to the so-called Linear Elastic Fracture

Mechanics (LEFM) which represented the most advanced theory for simulating cracks

growth. Even though this method gives important benefits, it also has three main

drawbacks: first of all, the small-scale yielding assumption represents a limitation

because it requires that the process zone is comparable with the geometrical dimensions

of the crack or, at least, that the difference is relatively small; secondly, the LEFM

method does not consider any kind of crack nucleation in an undamaged part of the

material away from a flaw; the third reason is related with the numerical modeling, in

fact the direction of the propagation is not truly implemented into the FEM model,

which means that expensive computational remeshing techniques are required.

1.3: FEM for fracture propagation

Many computational models are based on Finite Elements (FE). FE uses a grid and

shape approximations to calculate the fields of interest. The factors that play a key-role

and have to be considered in computational fracture mechanics are:
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� model for bulk behavior

� method for including discontinuities in the FEM

� damage initiation or yield criterion

� damage evolution model or constitutive model for crack growth

There are two approaches to the numerical analysis of failure in media, continuum

damage mechanics and fracture mechanics.

The coming of the FEM in computational engineering and science represented a

turning point and marked the rise of deeply new techniques for simulating fracture

propagation, generally denoted as nonlinear theories. The most important of them are

divided into two branches: the smeared (or continuous) approach, and the discrete (or

discontinuous) approach [76].

Figure 1.5: Early discrete crack modeling.

In the first approach, the displacement field is assumed to be continuous everywhere

and cracks are introduced by deteriorating the stiffness and the strength of the material

in the integration points of the the process zone. This means that in these models there

is not a true introduction of a real crack (i.e. the displacement field is not discontinuous

and there are no physical separations in the mesh). Hence, in these simulations there

are large deformation gradients in the process zone, which eventually cause numerical

problems to the algorithm [76]. Total failure can occur once the stiffness of the whole

structure is equal to zero.

Furthermore, the band in the process zone, where the deformations are located,

must have at least the maximum width available for each single element of the mesh.
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This implies strict limitations for the applicability of this model to materials with quite

narrow process zones. In order to avoid these problems the so-called Embedded Dis-

continuity Elements approaches have been developed [69, 15, 91]. In these methods,

the large deformation gradients are taken into account as additional strain fields in

the kinematic relations and the effects of displacement jumps to the finite elements

are added as an incompatible mode strain. However, these methods lack robustness.

Unfortunately, all the continuous models suffer from another important problem: since

the entire structure is considered homogeneous, the models are not able to correctly

describe the width of the process zone and, consequently, all damage is put in one sin-

gle material point. Because of the nature of the problem, remediations like remeshing

techniques are not useful for this purpose, but strategies named regularisation mod-

els [26], in which the strain term is usually extended with a higher order derivative

(nonlocal strain), have been incorporated.

On the other hand, in the discrete approach, cracks are modeled as discontinu-

ities in the displacement field. This method offers the advantage of its applicability

also in materials in which process zones are narrow, compared to the structural dimen-

sions. There are several discrete methods to introduce discontinuities in FEM: adaptive

remeshing, interface elements or meshless methods [55]. In remeshing techniques, the

mesh is continuously reconstructed in order to fit the discontinuity between the ele-

ments, this is why this method is classified as a geometrical approach. The problems

related to adaptive remeshing are: difficulty in implementation and the computational

complexity. From a numerical point of view, interface elements use elements of zero

width that are fitted between the elements to model discontinuity and the nodes of

the continuum elements are linked to the ones of the new elements. Interface modeling

requires an a priori knowledge of the crack path, for the elements have to be aligned

with it. Therefore the discontinuity is mesh dependent and a dummy stiffness has to

be introduced in order to prevent the crack from debonding when it is not physical

[27].

Finally, as a continuation of LEFM, in the 1960s, Dugdale and Barenblatt [33, 13]

introduced the so-called cohesive zone approach, which is still considered a discrete
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method. This tool represents the key to avoid the problem of limitation of LEFM

due to the length of the process zone, in fact the cohesive zone also works when this

restriction fails to hold.

Figure 1.6: Schematic representation of the cohesive surface approach to fracture. The
interface tractions that describe the perfect bond and debonding processes are represented
in red.

Through this technique, as shown in Figure 1.6, the whole process zone is lumped

into one single plane (or line) ahead of the existing fracture, which means that all the

physical processes ahead of the tip are reduced to one equation. The nature of the

work of the cohesive zone is such that the stress singularity in the tip of the crack is

canceled; in other words, the traction forces are reduced to zero towards the crak-tip

(Figure 1.7).

However, the actual shape of the cohesive zone is still a point of research [22, 101,

109]. Among the main advantages of this approach, it should be mentioned: firstly,

the possibility that this method gives for capturing crack nucleation; secondly, the

fact that it does not need the determination of the process zone’s length, when the

cohesive relation along the surface is specified. Moreover, a constitutive relation of the

cohesive surface completely determines failure characteristics so that, together with

balance laws, boundary conditions and constitutive relation for the bulk, it fully speci-
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Figure 1.7: Close-up of a schematic representation of the cohesive zone. The opening of the
surface is denoted as [u].

fies the problem and fractures can grow up as a consequence of the deformation process

without any additional failure criterion. Later on, this approach has been developed

in different ways, e.g. by inserting cohesive constitutive relations at specified planes

in the structure independently from the presence or not of a crack [67]. The simplest

cohesive constitutive relation keeps in count the cohesive surface traction as a function

of the displacement jump across that surface. For ductile fracture, the most relevant

parameters are tensile strength and fracture energy [41] and from dimensional consid-

erations, this introduces a characteristic length into the model. For brittle decohesion

relations, the shape of the stress-separation relation plays a much larger role [82].

Several Authors [10, 85, 9] worked on the relation between cohesive surfaces and

the finite element mesh, so that now it is conventional to incorporate them into the

meshes using interface elements positioned between the standard continuum elements

to model discontinuities. In order to simulate a perfect bond before cracking, a high

dummy stiffness is introduced into the model and it is applied to the interface elements.

When fracture takes place along well defined interfaces and when the crack path is

already known a priori (i.e. from experiments), interface elements can be placed along

the crack path in the mesh [83].

In 1994, Xu and Needleman [110] placed interface elements between all continuum

elements in the finite mesh and they achieved the important goal of modeling complex

fracture phenomena (e.g. crack branching or crack initiation away from the crack tip).



Introduction 11

The drawback of placing interfaces between all continuum elements is that the process

is not completely mesh independent, because the crack path is aligned with element

boundaries. Moreover, a too weak dummy stiffness generates flexible results and, on

the other side, a too strong dummy stiffness can cause numerical problems like traction

oscillation at the cohesive surfaces [84, 27, 76].

In this Thesis, a discrete crack on Porous Media is modeled through elements based

on the partition of unity property of finite element shape functions [63]. This approach,

firstly proposed by Belytschko and other Authors in 1999 [14, 32], will be explained in

the next Chapter. The main reasons for which this method is preferred, compared to

the others, are listed below:

� discontinuities can be extended or added at any moment and in any direction

� the topology of the FE mesh is not modified

� no alignment between elements and crack path is required

� no dummy stiffness is needed

� relatively coarse meshes can be used

� cohesive constitutive models can be used

1.4: Computational poroelastic fracturing models

Starting from the 1960s, mathematical models have been developed to study the behav-

ior of fractures, especially on Porous Media. This growing interest was mostly due to

the massive use of hydraulic fracturing (also known as high-volume hydraulic fractur-

ing, 1968) for recovering unconventional oil and gas economically from tight sandstone

reservoirs in the U.S.

In fact, tight gas sands require advanced fracture technologies to be exploited effi-

ciently and most of them have to be fractured before they flow at commercial rates. The

main reason for such operations lies in the fact that this kind of rock is characterized

by low permeability and low porosity.
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Analytical solutions in the framework of LEFM have been obtained during past

decades (e.g. [81, 40, 31]) but all of them were limited by the assumption of stationary

problems and they were affected by strong simplifications (e.g. minimization of the

exchange of fluid between soil and the crack tip). Moreover, fracture processes on

porous media are preceded by a damage zone, therefore the materials are classified

as quasi-brittle, and the models based on the LEFM cannot capture this nonlinear

behavior in the process zone. The exact evolution of micro-damage to macro-cracks

strongly depends on the material and its heterogeneity and initial defects. In 1990,

Boone end Ingraffea [19] presented a general model of linear fracture mechanics, in

which there was hydraulic driven fracture propagation in a porous medium. The model

implemented a discrete fracture process using interface elements, so that the crack

path is known a priori, neglecting fracture toughness (i.e. traction free) and the fluid

was assumed to have a laminar flow and to be incompressible. Darcy’s law was used

to estimate the fluid flow from the crack into the structure by means of material

permeability and water pressure gradient.

Schrefler et al., and Secchi et al. [86, 90] proposed a method for simulating hydraulic

fracture nucleation and propagation in poroelastic media using remeshing techniques.

Thanks to the remeshing model, the fracture follows the face of the elements around

the fracture tip which is closest to the normal direction of the maximum principal stress

at the fracture tip. Thus, the direction of propagation is based on the principal stress.

The Authors kept the same hypothesis concerning the fluid flow as Boone and Ingraffea,

but the fluid is now considered compressible. One of the most relevant disadvantages

in remeshing techniques is the requirement of a suitable algorithm to map nodal data

between remeshing steps [55]. The work has been extended, in 2012, by the same

Authors, to simulate hydraulically driven fractures in 3-D environments [88].

All these models present a traction-separation relation to model fracture processes,

in which the cohesive law is able to capture the linear elastic behavior prior to fracture.

Fracture processes can be generally divided into three main classes (see also Figure 1.8):

mode I fracture (peel test; opening mode; a tensile stress normal to the plane of the

crack), mode II fracture (shear; sliding mode; a shear stress acting parallel to the plane
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of the crack and perpendicular to the crack front), mixed mode fracture (a combination

of peel and shear; tearing mode; a shear stress acting parallel to the plane of the crack

and parallel to the crack front).

Figure 1.8: Crack modes used in modeling rock fractures in a reservoir. (Picture taken from
[70]).

Interface elements in combination with remeshing techniques were used by Khoei

et al. [53] for fracturing processes in saturated porous media. Moreover, they im-

plemented a mixed mode cohesive model to represent the process zone considering

dynamic conditions. The previous poroelastic models, in fact, considered quasi-static

conditions. This implies the negligibility of inertial mass effects, while time cannot be

neglected. In fact, in hydraulic fracturing processes the law of conservation of mass of

the fluid is time-dependent.

Réthoré, De Borst et al. [28] were able to model shear banding in a porous material

by means of the partition of unity method, where the fluid flow was considered by using

Darcy’s law with constant permeability and gradient of pressures established from the

pressure difference on both sides of the crack. Later on [78], a continuous description

of pressures was used, the fluid flow was related to crack opening and a viscous Couette

flow profile in the crack. However, this model does not consider crack propagation.

The partition of unity method was used by Remmers [76] and later on was also

applied by Kraaijeveld [55] to simulate the behavior of crack propagations in ionized

porous media, and by Remij [74] to simulate arbitrary crack propagation and nucleation

in porous materials.
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Recently, numerical simulations of crack propagation in porous materials, solids

permeated by an interconnected network of pores filled with a fluid, for both mode

I, tensile loading, and mode II, shear loading, of fracture mechanics, showed that the

crack does not propagate smoothly inside the material, but has a stepwise pattern

[55, 88, 89]. Moreover an experimental work confirms that mode I crack propagation

in hydrogels is stepwise [71]. However, at the moment, there are no numerical projects

aimed to investigate the stepwise advancement of fractures in porous media.

Figure 1.9: Two pictures of the physical stepwise crack propagation identified by Pizzocolo
in hydrogels [71].

1.5: Research goal and lay-out of the thesis

In this work a poroelastic model that can simulate fracture nucleation and propagation

using the partition of unity method is presented. In particular, attention is given to

mode I fractures, to investigate the mesh independence of the model. Simulations

are performed for several mesh sizes and the influence of materials and numerical

parameters of the model are discussed. The utilization of the numerical model can also

be extended for simulating multiple cracks in a continuum, but there are no examples

in this Thesis. Firstly, the crack will be modeled in solid materials; secondly, in porous

ones with identical loading conditions and by means of a continuous formulation for

the porous phase.
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The study on mesh independence may also give more insight in the investigation

of stepwise behavior of fractures during fracturing processes and Hydraulic Fracturing

operations on porous media. By means of the eXtended FEM (X-FEM) code of the

Department of Mechanical Engineering of the Eindhoven University of Technology, the

research aims to better understand if the stepwise progress of cracks, recently obtained

through Numerical Simulations both with remeshing techniques and the Partition of

Unity Method, in the research groups of the University of Padova and the Eindhoven

University of Technology, corresponds to the physical behavior of fractures in materials

or if it is a numerical artifact.

The lay-out of the Thesis will be as follows: in the next Chapter the X-FEM will be

discussed from both a theoretical and analytical point of view: momentum and mass

balance relations will be derived; the cohesive law used in this work will be described;

a quasi-static model with small strain theory will be included as well as some remarks

concerning the implementation of the model on the FE code. In the Third Chapter

the main settings, the relevant parameters and the choices made for the simulations

will be explained. In the Fourth Chapter the numerical results obtained during Mode-

I fracturing processes will be presented and discussed. Recommendations for future

works will be given. Finally, in the last Chapter, a conclusion will be drawn based on

the numerical performances of the code.



2: The eXtended Finite Element Method (X-FEM)

In order to describe the fracture processes involved in this work, the partition of unity

approach is used.

Mathematically speaking, discrete cracks are generally referred to as strong discon-

tinuities, i.e. displacement jumps. However, the traditional FE models are suitable for

those cases in which no prominent cracks can be recognized.

Therefore, an alternative way to introduce into the FEM fractures, consists on

modeling them as discontinuities in the displacement fields by exploiting the partition

of unity property of finite element shape functions. Hence, an approximation of the

discontinuous field, independently of the underlying mesh, is used. Thus, no remeshing

techniques are required, because the step in the displacement field is obtained by adding

extra degrees of freedom into the already existing nodes.

PU-FEM and X-FEM were developed in the nineties and use enhancement functions

to add discontinuities to the standard shape functions of the FE.

For in this work an eXtended Finite Element Method (X-FEM) formulation for

2D poroelastic media is presented, the fracture process zone is lumped into a single

plane that is located ahead of the existing crack by using the cohesive zone modeling

approach.

2.1: The problem of mesh dependence

Both continuous and discontinuous fracture models have the disadvantage to be lim-

ited because of the mesh size. The effects have been seen in several problems (e.g.

numerical anomalies due to large deformations gradients [76]). In order to overcome

these numerical anomalies, especially in the process zone, recent improvements in the

field of numerical fracture mechanics have tried to shift the attention on new methods

able to avoid mesh dependencies.

Camacho and Ortiz [22] were initially interested in avoiding finite element mesh prob-

lems in cohesive surface 1 models. Therefore they considered a rigid cohesive surface in

1Discontinuities or cracks are also referred to as cohesive surfaces

16
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combination with a continuous adaptive mesh refinement so that whenever there was

an exceeding of the maximum ultimate stress in the material, the algorithm created a

new initially-rigid interface element in the FE mesh.

The remeshing technique replaced the intersected continuum elements. This ap-

proach is mainly axed on a procedure commonly used in LEFM, like showed by Ingraf-

fea and Saouma in 1985 [46]. Here, the fracture simulation is stopped every time the

crack tip is propagated, in order to rebuild a new FE mesh. This operation requires a

laborious process of reallocating the variables (e.g. local stresses) to the new material

points in the FE mesh.

Subsequently, another path has been investigated, in which the cohesive surface

is incorporated in the continuum elements. This was possible by means of using the

partition of unity property of finite element shape functions [11] together with a dis-

continuous mode incorporated at the element level [65]. In this approach the cohesive

zone is represented by using a jump in the displacement field of the continuum elements

[105, 106, 64]. The partition of unity approach to cohesive fracture is commonly referred

to as an application of the eXtended Finite Element Method (e.g. [29, 76, 77, 96]).

Even though the name seems to lead to the conclusion that the method consists

on an extension of the FEM, this is not true. In fact, the X-FEM exploits a property

of the standard FE shape functions that has not been acknowledged until Babûska

and Melenk published, in 1997, their seminal paper [11]. Nevertheless, this specific

partition of unity property has been used unintentionally previously in a certain number

of publications (e.g. Goto et al. 1992 [37]).

Summarizing, whereas in previous research the cohesive zone model has generally

been introduced either at all element boundaries [109] or in the path of interest [83,

85], the application of this method on discontinuity kinematics allows the crossing of

continuum elements for the cohesive zone [64, 75, 104] and also the overcoming of the

mesh dependence problem.
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2.2: The X-FEM applied to cohesive fracture

In this section a concise overview of cohesive fracture models will be given, especially

focusing the attention on the cohesive zone models applied in combination with X-

FEM. In fact, X-FEM (or PU-FEM) are used to represent a discontinuity, instead the

cohesive zone is used to represent a fracture.

The cohesive zone model represents a damage evolution. The evolution can be de-

scribed as nonlinear springs (see Figure 2.1).

(a) Shear loading. (b) Tensile loading.

Figure 2.1: Traction forces at the discontinuity represented as (nonlinear) springs for a. Shear
loading b. Tensile loading.

The idea of introducing a cohesive surface methodology [33, 13, 39] is a very useful

technique to simulate fracture propagations in several engineering applications, espe-

cially in the field of material science. In fact, all the events, that eventually occur in

the process zone, are lumped into one single surface ahead of the crack tip. From a

mathematical point of view, the separation of this cohesive surface is regulated by an

independent constitutive relation that is responsible for the fracturing process on the

material.

In the past decades, a generalization of the methodology has been given [67]: this
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configuration allowed to model crack nucleations away from an existing crack tip or

void.

The cohesive surface can be considered as a discontinuity in the displacement field

of the body [76], which is in direct conflict with the classical formulations of solid

mechanics where, instead, a body is described by continuous and smooth displacements,

stress and strain fields.

A FE domain, characterized by a spatial discretization, played a key role for the

introduction of discontinuities. In the first models (e.g. Ngo and Scordelis, 1967 [68])

a jump in the displacement field was created by simply disconnecting two adjacent

elements. In this way the relative displacement of the elements was a measure for the

separation of the cohesive zone and the nodal forces at the disconnected elements were

extrapolated from the tractions obtained through the cohesive constitutive equation.

In the following years a more elegant method was introduced: instead of just dis-

connecting elements in FE model, several Authors [10, 84, 9] modeled cracks by using

the so-called interface elements. These elements are made of two surfaces, connected

to the adjacent continuum elements. Interface elements have been preferred to the

previous ones, especially for those simulations in which big geometrical effects were

expected (e.g. delamination buckling) because they offer the advantage of an adequate

description of either relative displacement of the two surfaces and total rotation of the

cohesive zone.

In order to avoid a mesh dependent model, generated by inserting the disconti-

nuity after the discretization (i.e. the crack path is dependent to the FE mesh), the

displacement jump can be incorporated in the analytical field of displacements before

performing the discretization. The discontinuity is then part of the boundary value

problem without changing the mechanical model.

The smartest way to introduce discontinuities on continuous and smooth fields is

to insert another displacement field, on the top of the existing base field, multiplied

with a unit step function [14]. A unit step function, usually referred to as Heaviside

function, is a discontinuous function whose value is zero for negative argument and one

for positive argument. It is used in structural mechanics, together with the Dirac delta
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function, to describe different types of structural loads (see Figure 2.2).

(a) The Heaviside step function, using the half-
maximum convention. The function is used
in the mathematics of fracture mechanics the-
ory to represent discontinuities on a continuous
displacement field.

(b) The Dirac delta function represented by a
line surmounted by an arrow. The height of
the arrow is usually used to specify the value
of any multiplicative constant, which will give
the area under the function.

Figure 2.2: Schematic representation of the Heaviside step function and of the Dirac delta
function.

Here, the Heaviside function is equal to zero on one side of the discontinuity, one

on the other side, so that the final amplitude of the displacement jump is equal to the

amplitude of the second added displacement field exactly at the discontinuity.

Hence, the discontinuous displacement field can be transformed into a discretized

field by exploiting the partition of unity property of FE shape functions [11]. By means

of an extra set of degrees of freedom, added to the existing nodes of the FE mesh,

the additional displacement field is represented. The use of these enhanced functions

makes the preservation of the continuity along the crack possible. This method has

been recently extended in cohesive surface formulations [105, 64] after a period in which

it was used for LEFM simulations.
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2.2.1: Advantages of the X-FEM applied to cohesive fracture

The partition of unity approach to cohesive fracture presents a number of advantages

over conventional models.

One of the great advantages of this method lies in the fact that discontinuities can

be extended or added in any moment, in arbitrary directions and anywhere in the

model, during simulations just by adding new additional degrees of freedom irrespec-

tive of the structure of the underlying FE mesh (e.g. Figure 2.3 taken from Wells et

al. [105]).

Figure 2.3: Crack growth in a single edge notched beam, simulated with the partition of
unity approach to cohesive fracture. The cohesive surface (bold line) crosses the continuum
elements (Wells and Sluys 2001).

Another great advantage, for instance over remeshing techniques, highlighted by

Camacho and Ortiz [22], is that the topology of the FE mesh is not modified. The

amount of nodes and elements remains therefore the same, as well as their mutual con-

nectivity, which means that the discontinuity is projected on the element by additional

degrees of freedom and not nodes.

Furthermore, no alignment between elements and crack path is required, no dummy

stiffness is needed and a standard discretization is used. Avoiding the use of high

dummy stiffnesses, numerical problems such as spurious stress oscillations [84] or stress

wave reflections in dynamic simulations [76] are prevented.

Another benefit related to this method is also that relatively coarse meshes can
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Figure 2.4: The body Ω crossed by discontinuity Γd. The body is completed with the
boundary conditions.

be used, even if it has to be said that the method is not easy to be implemented in

commercial codes.

Finally, since this methodology is based on an existing cohesive surface formulation,

existing cohesive constitutive models can still be used.

2.3: Analytical solutions

Following the work by Wells et al. (2001-2002), analytical formulations for the X-FEM

applied to cohesive surfaces problems are given in the next subsections. In particular,

the principal equations that govern the problem of this Thesis will be derived.

2.3.1: Kinematic relations

Consider a domain Ω with boundary Γ as shown in Figure 2.4. The domain is crossed

by discontinuity Γd and divided in two domains, Ω+ and Ω−. The normal nd of the

discontinuity is directed towards the domain Ω+. The total displacement field u(x, t)

is decomposed into two parts: a continuous regular field û(x, t) and an additional

discontinuous enhanced displacement field ũ(x, t) [105]:

u(x, t) = û(x, t) +HΓd
(x)ũ(x, t) (2.1)
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where x is the position of the material point in the body Ω, t is the time and HΓd

is a step function which is constant and defined in each side of a discontinuity:

HΓd
=





H+ if x ∈ Ω+

H− if x ∈ Ω−
(2.2)

The step h is defined as the magnitude of the following function:

h = H+ +H− (2.3)

Wells and Sluys [105] used a standard Heaviside step function to describe the jump:

HΓd
=





1 if x ∈ Ω+

0 if x ∈ Ω−
(2.4)

But also other functions have been used in the past years (e.g. Réthoré et al. [79]).

The model assumes a small strain formulation and the strain field can be calculated by

taking the derivative displacement field (2.1) with respect to the position in the body

x:

�(x, t) = ∇sû(x, t) +HΓd
∇sũ(x, t) x /∈ Γd (2.5)

where ∇s is the symmetric differential operator:

∇su =
1

2
(∇u+ (∇u)T ) (2.6)

The displacement jump is not uniquely defined at the discontinuity, hence the

corresponding strain field is unbounded. Therefore the magnitude of the displacement

jump [u(x, t)]d at the discontinuity Γd is representing the opening of the crack and it

is given by:

[u(x, t)]d = hũ(x, t) x ∈ Γd (2.7)
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The pressure in the domain Ω is assumed to be discontinuous as well. Pressure

values inside the discontinuity are different from the ones in the surrounding formation.

The gradient of this difference quantifies the interaction of fluid flow between the

fracture and the formation. By enhancing the pressure field with a signed distance

function like in previous works (e.g. Réthoré et al. 2007, [78]), the gradient near a

discontinuity is taken into account in a natural way:

p(x, t) = p̂(x, t) +DΓd
(x)p̃(x, t) (2.8)

in which the distance function DΓd
(x) is defined:

DΓd
(x) = |(x− xΓd

) · nd| x ∈ Ω (2.9)

Here, xΓd
represents the coordinate of the nearest point on the discontinuity and

nd is the corresponding normal vector. The pressure gradient flow follows from the

spatial derivative of the pressure field (2.8):

∇p(x) = ∇p̂(x) +DΓd
(x)∇p̃(x) +∇DΓd

(x)p̃(x) (2.10)

where the gradient of the distance function DΓd
is:

∇DΓd
(x) =




nd if x ∈ Ω+

−nd if x ∈ Ω−
(2.11)

2.3.2: Balance equations

The whole system can be described by using two balance equations: the balance of

linear momentum and the mass balance. In this section, the weak forms of the two

balance equations are derived for both the bulk material and the interface. The skeleton

is assumed to be incompressible and linear elastic. The permeability is assumed to be

isotropic and constant.
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2.3.2.1: Linear momentum balance

The porous skeleton is considered to be fully saturated with a fluid. It is assumed that

there is no mass transfer between the two constituents. The process is quasi-static and

isothermal. Gravity, inertia and convection are neglected. The momentum balance for

constituent χ is than [28]:

∇ · σχ + m̂χ = 0 (2.12)

where σ is the total stress tensor and m̂ is the source momentum. The constituents

χ are the solid and the fluid respectively notated as χs and χf . The momentum balance

states that:

�

χ=s,f

m̂χ = 0 (2.13)

With these assumptions the linear momentum balance reads, e.g. [28, 56, 58]:

∇ · σ = 0 (2.14)

with:

σ = σs + σf = σs − αpI = σe − αpI (2.15)

where σ can be decomposed in Terzaghi’s effective stress σe, the hydrostatic pres-

sure p, I is the unit matrix and α the Biot effective stress coefficient [28].

Biot’s effective stress coefficient is given by:

α = 1− Kt
Ks

(2.16)

here Kt is the bulk modulus of the porous medium and Ks is the bulk modulus of

the solid grains. The solid grains are assumed to be incompressible and thus α = 1.

In the small strain theory the effective stress is described with a linear stress-strain
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relation:

σe = 2µ�+ λtr(�)I (2.17)

where the strain tensor � has been defined in (2.5) and µ and λ are respectively the

first and second Lamé constants. In an isotropic material, like the one used in this

Thesis, these are defined as:

µ =
E

2(1 + ν)
λ =

νE

(1 + ν)(1− 2ν)
(2.18)

with E and ν being the Young’s modulus and the Poisson’s ratio, respectively.

Generally, (2.14) is also written as:

σ = σe − pI (2.19)

neglecting the Biot effective stress coefficient.

The effective stress σe is related to the strains � which have been defined in (2.5)

by means of a linear elastic constitutive law. In rate form, this Hooke’s law reads:

σ̇e = C�̇ (2.20)

The momentum balance is completed with the following boundary conditions:

σ · nΓ = tp(x, t) x ∈ Γt

u(x, t) = up(x, t) x ∈ Γu

(2.21)

with Γt ∪ Γu = Γ,Γt ∩ Γu = ∅.
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2.3.2.2: Mass balance

Under equal assumptions as made for the momentum balance, the mass balance is

written as [28]:

δρχ
δt

+∇ · (ρχvχ) = 0 (2.22)

where ρχ is the mass density and vχ is the absolute velocity. A fully saturated medium

is considered, which means:

nf + ns = 1 (2.23)

where nf = V f

V
and ns = V s

V
are the volume fractions. Under the assumption of

incompressible constituents equation (2.22) can be written as [28, 78]:

∇ · vs +∇ · nf (vf − vs) = 0 (2.24)

In equation (2.24) the last term represents the seepage flux:

q = nf (vf − vs) (2.25)

Generally, the mass balance with an incompressible fluid assumption, is also written

in a smoother way [28]:

∇ · vs +∇ · q = 0 (2.26)

where vs is the deformation velocity of the solid skeleton and q is related to the

pressure gradient by means of Darcy’s law [55]. Darcy’s relation is assumed to hold for

the fluid flow in the bulk material [17]:

q = −K · ∇p (2.27)

where K is the permeability tensor, which is assumed to be constant in time and

space [56]. In the case of an isotropic material, the permeability is equal to K = KI.
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The mass balance is supported by the following boundary conditions:

q(x, t) · nΓ = qp x ∈ Γq

p(x, t) = pp x ∈ Γp

(2.28)

with Γq ∪ Γp = Γ, Γq ∩ Γp = ∅.

2.3.2.3: Local constitutive behavior

The governing equations are completed by momentum and mass balance at the fracture

surface. There is a need of coupling the discontinuity and the surrounding porous

medium in the balance equations. Momentum and balance equations are coupled

respectively by traction in the discontinuity and a fluid flow through the discontinuity.

In accordance with the cohesive zone approach, the softening of the material is

governed by a traction acting on the discontinuity surface. The relation between the

traction and the opening displacement is defined with a cohesive law. This traction

is coupled to the hydrostatic pressure in the crack [29]. Assuming continuity of stress

from the formation to the fracture, the local momentum balance can be written as:

σ · nd = td − pdnd (2.29)

where td is the cohesive traction relating the opening of the crack with crack soft-

ening, nd is the normal of the crack surface directed into the body and pd is the

hydrostatic pressure in the discontinuity:

pd = p(x ∈ Γd) (2.30)

In order to describe the local mass balance, assumptions on how the fluid flow

takes place are needed. In particular, referring to mode I loading, the one used in this

Thesis, fluid flow is dependent on the crack rate opening and the tangential flow into

the crack. Réthoré et al. [29, 78] coupled the fluid flow to the opening rate of the crack

and the local mass balance, based on Couette flow, in the crack. The disadvantage of
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this approach is that a second order derivative is needed to describe the local fluid flow.

In this work, Couette flow is considered, also considering different damage models for

the cohesive zone permeability. Fluid flow is assumed to only depend on the opening

rate of the crack. In the description of the local mass balance it is not considered

the tangential fluid flow in the fracture. Mass balance is therefore an equilibrium of

fluid exchange between the formation and the fracture, and of the opening rate of the

fracture. Integrating the local mass balance, this reads:

q+
Γd

· nd − q−
Γd

· nd + [u̇]n − un
δ

δs
(kd

δpd

δs
) (2.31)

with q+
Γd

and q−
Γd

being the fluid flow from the fracture into formation for the frac-

ture side of the Ω+ and the Ω− domain respectively, [u̇]n denoting the time derivative

of the normal opening of the fracture, un being the opening in the fracture and kd

being the permeability in the fracture. In Equation (2.31), under the assumption of

small deformations, the normal vectors of the two fracture lips in opposite direction

are used. Assuming a Couette flow, the permeability is given by:

kd =
u2
n

12µ
(2.32)

where µ is the dynamic viscosity of the fluid. The derivation of this equation can

be found in Irzal et al. 2013, [48].

2.3.3: Weak form

Weak formulation is an important tool for the analysis of mathematical equations that

allow the transfer of concepts of linear algebra to solve problems in other fields (e.g.

partial differential equations). In a weak formulation, an equation is no longer required

to hold absolutely (and this is not even necessarily well defined) and has instead weak

solutions only with respect to certain “test vectors” or “test functions”.

The weak form of the balance equation is obtained by multiplying Equations (2.14)

and (2.26) with admissible test functions for the displacement and pressure field.

These functions are called η and ζ, respectively, and have the same form as the
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original fields:

η = η̂ +HΓd
η̃

ζ = ζ̂ +DΓd
ζ̃

(2.33)

This means that they can be decomposed in a regular part and in an enhanced part.

The weak form of the momentum balance (2.14), using the divergence theorem, is:

�

Ω

η · (∇ · σ)dΩ = 0 (2.34)

Substituting the variations into Equations (2.14) and (2.26), applying Gauss’ theo-

rem, using the symmetry of the Cauchy stress tensor, introducing the internal bound-

ary Γd and the corresponding admissible displacement jump and using the boundary

conditions at the external boundaries Γt and Γq it gives:

�

Ω

∇η̂ : σdΩ +

�

Ω

HΓd
∇η̃ : σdΩ = (2.35)

�

Γt

η̂ · tpdΓt +
�

Γt

HΓd
η̃ · tpdΓt −

�

Γd

η̃ · (σ · nd)dΓd

−
�

Ω

ζ̂∇ · vsdΩ−
�

Ω

DΓd
ζ̃∇ · vsdΩ +

�

Ω

∇(ζ̂) · qdΩ (2.36)

+

�

Ω

∇(DΓd
ζ̃) · qdΩ =

�

Γq

ζ̂qpdΓq +

�

Γq

DΓd
ζ̃qpdΓq −

�

Γd

ζ̂q+
Γd

· nddΓ +

�

Γd

ζ̂q−
Γd

· nddΓ

In these equations, tp and qp are the prescribed traction and prescribed fluid outflow

boundary conditions, respectively, (Figure 2.4) and Γd represents the integral over the

internal boundary of the discontinuity. The terms σ · nd , q+
Γd

· nd and q−
Γd

· nd are

given by the balance Equations at the discontinuity (2.29) and (2.31). By taking one

of the admissible variations δη̂, δη̃, δζ̂ and δζ̃ at the time, the weak form of equilibrium
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can be separated into four sets of equations that can be called: continuous momentum

balance (η̃ = 0), discontinuous momentum balance (η̂ = 0), continuous mass balance

(ζ̂ = 0), discontinuous mass balance (ζ̃ = 0). A detailed theoretical description is given

in [78, 105].

2.3.3.1: Continuous momentum balance η̃ = 0

�

Ω

(∇η̂) : σdΩ =

�

Γt

η̂ · ttdΓ−
�

Γ+
d

η̂ · (σ · n+)dΓ−
�

Γ−
d

η̂ · (σ · n−)dΓ (2.37)

The last two terms describe the traction on the discontinuity. The cohesive traction

td and the pressure are equal one to the other at the two opposite crack surfaces. The

two total stresses are thus equal in sign but directed in opposite direction. This leads

to the following continuous momentum equation:

�

Ω

(∇η̂) : σdΩ =

�

Γt

η̂ · ttdΓ (2.38)

2.3.3.2: Discontinuous momentum balance η̂ = 0

The momentum balance for the discontinuous part as follows:

�

Ω

HΓd
∇η̃ : σdΩ =

�

Γt

(HΓd
η̃) · ttdΓ−

�

Γ+
d

(HΓd
η̃) · (σ · n+)dΓ−

�

Γ−
d

(HΓd
η̃) · (σ · n−)dΓ

(2.39)

The last two integrals can be simplified by using the momentum balance on the dis-

continuity (σ · n+ = td − µfn
+) and filling in the Heaviside function (2.2):

−
�

Γ+
d

(HΓd
η̃) · (σ · n+)dΓ−

�

Γ−
d

(HΓd
η̃) · (σ · n−)dΓ = −

�

Γ+
d

hη̃ · (td − pn+)dΓ (2.40)

Substituting this into the momentum equation, the momentum equation for the dis-
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continuous part is reached:

�

Ω

HΓd
∇η̃ : σdΩ +

�

Γ+
d

hη̃ · (td − pn+)dΓ =

�

Γt

(HΓd
η̃) · ttdΓ (2.41)

Identical to the derivation of the momentum balance, the continuous mass balance

(ζ̃ = 0) and the discontinuous part (ζ̂ = 0) are considered.

2.3.3.3: Continuous mass balance ζ̂ = 0

−
�

Ω

ζ̂∇ · vsdΩ +

�

Ω

∇ζ̂ · qdΩ = (2.42)
�

Γf

ζ̂ffdΓ−
�

Γ+
d

ζ̂q+Γd
· n+dΓ−

�

Γ−
d

ζ̂q−Γd
· n−dΓ

The last two integrals represent the fluid flow through the crack. These terms are given

in equation (2.31):

−
�

Γ+
d

ζ̂q+Γd
· n+dΓ−

�

Γ−
d

ζ̂q−Γd
· n−dΓ = (2.43)

−
�

Γ+
d

ζ̂(q+Γd
· n+ + q−Γd

· n−)dΓ =

�

Γ+
d

ζ̂[u̇]ndΓ

Using (2.44) in the mass balance equation, this leads to the continuous mass balance:

−
�

Ω

ζ̂∇ · vsdΩ +

�

Ω

∇ζ̂ · qdΩ−
�

Γ+
d

ζ̂[u̇]ndΓ =

�

Γf

ζ̂ffdΓ (2.44)

2.3.3.4: Discontinuous mass balance ζ̃ = 0

Immediately, using DΓd
= 0 on Γd, the discontinuous equation for the mass balance is

reduced to:
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−
�

Ω

DΓd
ζ̃∇ · vsdΩ +

�

Ω

∇DΓd
ζ̃ · qdΩ =

�

Γf

DΓd
ζ̃ffdΓ (2.45)

where δDΓd
is the gradient of the signed distance function.

2.4: Numerical description

The governing equations, including boundary conditions and local behavior at the crack

surface, were given. These equation are solved in a FEM context.

By using a 2D FEM, a body is discretized into small elements where every node

has two displacement degrees of freedom and one pressure degree of freedom. In this

configuration, jump in the displacement field cannot be captured as present in a frac-

ture. Hence, the nodes surrounding the discontinuity are enhanced with additional

degrees of freedom by exploiting the partition of unity property of finite element shape

functions [63, 105].

A continuous scalar field f(x, t) in a domain can be represented by discrete values

that are assigned to the nodes and their corresponding shape functions:

f(x, t) =

nnod�

i=1

φi(x)ai(t) (2.46)

here φi(x) is the shape function associated to node i and ai(t) is the discrete value of

the scalar field f in that specific node. The shape function φi(x) is therefore equal to 1

in node i and 0 in all other nodes. Additionally, the set of shape functions possesses the

so-called partition of unity property, which implies that the sum of all shape functions

in an arbitrary point x in the domain is equal to 1:

nnod�

i=1

φi(x) = 1 ∀x ∈ Ω (2.47)
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The part of the domain Ω for which the magnitude of the shape function of node i is

non-zero is called the support of the node. It has been shown [11] that when the field

f(x, t) is not continuous, it can still be discretised using the FE shape functions by

means of a combination with an enhanced basis function, according to:

f(x, t) =

nnod�

i=1

φi(x)

�
ai(t) +

m�

j=1

γj(x)bij(t)

�
(2.48)

where γj(x, t) is an enhanced basis with m orthogonal terms and bij are the additional

nodal degrees of freedom that support the enhanced basis functions. The number m

of enhanced base functions may be different for each node i in the model. However,

in order to avoid linear dependence, the enhanced basis γj and the shape functions φi

may not originate from the same span of functions.

The displacement field is enhanced with the Heaviside function causing the fracture

to be represented by a jump in the displacement field. The pressure is enhanced with

the distance function, therefore it must be enriched with a continuous function that

has a discontinuous spatial derivative.

Discretization is performed following the Bubnov-Galerkin approach. Momentum and

mass balance will be derived in a FE formulation with displacement and pressure as

degrees of freedom. Both pressure and displacement fields are interpolated with bilin-

ear shape functions. The time discretization is performed with an implicit Euler time

scheme. The resulting system is time-dependent and non-linear, and it is therefore

solved using a Crank-Nicholson scheme for time-integration and Newton-Raphson iter-

ation within each time increment. The porous media is considered to be fully saturated

with a fluid and subjected to small variations in the displacement gradient. The bulk

poroelasticity is based on Biot theory.

Consider a finite element domain crossed by a discontinuity as shown in Figure 2.5.

A structured mesh containing four nodal elements is used in this work. Additional

degrees of freedom are added to the black nodes that are crossed by the discontinuity.
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Ω
+

Ω
-

Figure 2.5: Two-dimensional finite element mesh crossed by a discontinuity represented by
the black bold line. The black nodes are enhanced with additional degrees of freedom notated
by ·̃. The gray elements contain additional terms in the stiffness matrix and the internal force
vector.

It is assumed that the discontinuity within an element is a straight line, always ends

at an element edge, and it is referred to as cohesive segment.

The numerical integration is performed by the standard Gauss integration. How-

ever, only using the original integration points, is not sufficient any more since the

discontinuity can cross at least an element at arbitrary direction. In order to acquire

sufficient integrations points at each side of the discontinuity an adopted integration

method, introduced by Wells and Sluys [105], is used (see Figure 2.6). Two integration

points per element are located at the discontinuity to integrate the discretized local

balance equations.

Following the Bubnov-Galerkin approach, the discretized displacement fields be-

comes:

u = N
�
û
�
+HΓd

N
�
ũ
�

(2.49)

p = H
�
p̂

�
+DΓd

H
�
p̃

�
(2.50)
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Figure 2.6: Numerical integration of quadrilateral elements crossed by a discontinuity (bold
line). The sample points are denoted by a +. The element on the left is split into a sub-
element with five vertices and one with three vertices. The first part must be triangulated
into five smaller areas, denoted by the dashed lines. Each of these areas is integrated using
a standard 1 point Gauss integration scheme. The element on the right is split into two
quadrilateral sub-elements. Each of these parts can be integrated with a standard 2 � 2
Gauss integration scheme.

where N
�
and H

�
contain the shape functions for respectively the nodal displacement

and pressure. The columns û
�
and p̂

�
contain the continuous nodal values of respectively

the displacement and the pressure while ũ
�
and p̃

�
contain the values in the enhanced

nodes.

The discretized strain in the bulk can be calculated as:

�
�
= ∇su = ∇sN

�
û
�
+HΓd

∇sN
�
ũ
�

(2.51)

= Bû
�
+HΓd

Bũ
�

with B = ∇sN
�
.

The discretized gradient of the pressure is defined as follows:

∇p = ∇H
�
p̂
�
+ (DΓd

∇H
�
+ δDΓd

H
�
)p̃
�

(2.52)

The constitutive equation for the total stress is:

∇ · σ = σe − pI (2.53)



The eXtended Finite Element Method (X-FEM) 37

The total stress, written in vector notation as σ
�
= [σxx σyy σxy]

T , can be trans-

formed using equation (2.49) to nodal values:

σ
�
=
δσ
�
δ�
�

δ�
�
δû
�
û
�
+
δσ
�
δ�
�

δ�
�
δũ
�
ũ
�
+
δσ
�
δp̂
�

p̂
�
+
δσ
�
δp̃
�

p̃
�

(2.54)

= DBû
�
+HΓd

DBũ
�
+H

�
p̂
�
+DΓd

H
�
p̃
�

with D being the stiffness matrix defined as:

D =




c c− 2µ 0

c− 2µ c 0

0 0 2µ




with c = 2µ+λ. Where µ and λ represent, respectively, the first and the second Lamé

constants.

The flow is transformed by:

q =
δq

δû
�
û
�
+
δq

δũ
�
ũ
�
+
δq

δp̂
�

p̂
�
+
δq

δp̃
�

p̃
�

(2.55)

= −kf∇H
�
p̂

�
− kf (DΓd

∇H
�
+ δDΓd

H
�
)p̃
�

(2.56)

2.4.1: Discretized momentum equations

Using (2.49), (2.51) and (2.54), the continuous momentum equation can be discretized

into:
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�

Ωe

BTDBdΩeû
�
+

�

Ωe

HΓd
BTDBdΩeũ

�
−
�

Ωe

BT (m
�
H
�
)dΩep̂

�
−
�

Ωe

DΓd
BT (m

�
H
�
)dΩep̃

�
=

(2.57)
�

Γt

N
�
T ttdΓ

with m
�

being a column vector m
�
= [1, 1, 0]T .

In order to discretize the discontinuous momentum equation, the discretization of

the tractions at discontinuity Γd is needed:

td = hQTTedQN
�
ũ
�
− n+H

�
p̂
�

(2.58)

here is Ted the linearized tangent stiffness of the cohesive material law defined

in the local coordinate system of the crack and, Q is an orthogonal transformation

matrix that preforms the transformation from the local coordinate system to the global

coordinate system [76]. In (2.58) it is assumed that the pressure at the crack surface

is only determined by the continuous nodes: p = p̂
�
. The tangent stiffness in the global

coordinate system is defined as T = QTTedQ.

The discretization of the discontinuous momentum equation (2.41) in separate terms

reads:

�

Ω

HΓd
∇η̃ : σdΩ = (2.59)

�

Ωe

HΓd
BTDBdΩeû

�
+

�

Ωe

H2
Γd
BTDBdΩeũ

�
−
�

Ωe

HΓd
BT (m

�
H
�
)dΩep̂

�
−
�

Ωe

HΓd
DΓd

BT (m
�
H
�
)dΩep̃

�
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�

Γ+
d

hη̃ · (td − pn+)dΓ =

�

Γ+
d

hN
�
TTN

�
dΓũ

�
−

�

Γ+
d

hN
�
Tn+H

�
dΓp̂

�
(2.60)

Putting the results together, the discontinuous part of the momentum equation is

therefore achieved:

�

Ωe

HΓd
BTDBdΩeû

�
+

�

Ωe

H2
Γd
BTDBdΩeũ

�
−
�

Ωe

HΓd
BT (m

�
H
�
)dΩep̂

�
(2.61)

−
�

Ωe

HΓd
DΓd

BT (m
�
H
�
)dΩep̃

�
+

�

Γ+
d

hN
�
TTN

�
dΓũ

�
−
�

Γ+
d

hN
�
Tn+H

�
dΓp̂

�
=

�

Γt

HΓd
N
�
ttdΓ

2.4.2: Discretized mass balance

Using ∇·vs = m
�
T∇vs and following the same procedure as in the previous section, the

discrete continuous mass balance is given by:

−
�

Ωe

H
�
Tm
�
TBdΩe ˙̂u

�
−
�

Ωe

HΓd
H
�
Tm
�
TBdΩe ˙̃u

�
−
�

Ωe

kf∇H
�
T∇H

�
dΩep̂

�
(2.62)

−
�

Ωe

kf∇H
�
T (DΓd

∇H
�
+ δDΓd

H
�
)dΩep̃

�
− h

�

Γ+
d

H
�
T (n+)TN

�
dΓ ˙̃u

�
=

�

Γf

H
�
TffdΓ

Doing the same for the discontinuous part of the mass balance equation, this leads to:

−
�

Ωe

DΓd
H
�
Tm
�
TBdΩe ˙̂u

�
−
�

Ωe

DΓd
HΓd

H
�
Tm
�
TBdΩe ˙̃u

�
(2.63)

−
�

Ωe

kf (DΓd
∇H
�
+ δDΓd

H
�
)∇H

�
dΩep̂

�
−
�

Ωe

kf (DΓd
∇H
�
+ δDΓd

H
�
)T (DΓd

∇H
�
+ δDΓd

H
�
)dΩep̃

�
=

�

Γf

DΓd
H
�
TffdΓ
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2.4.3: Discrete system of equations

The discrete equations for the momentum balance (2.57, 2.61) and mass balance (2.62,

2.63) lead to following set of equations:




0 0 0 0

0 0 0 0

Cp̂û Cp̂ũ 0 0

Cp̃û Cp̃ũ 0 0







˙̂u�
˙̃u�
˙̂p
�̇
p̃
�



+




Kûû Kûũ Cûp̂ Cûp̃

Kûũ Kũũ Cũp̂ Cũp̃

0 0 Mp̂p̂ Mp̂p̃

0 0 Mp̃p̂ Mp̃p̃







û�
ũ�
p̂
�
p̃
�



=




f
�
ext
û

f
�
ext
ũ

f
�
ext
p̂

f
�
ext
p̃




(2.64)

The element matrices are divided in two categories:

The stiffness matrices:

Kûû =

�

Ωe

BTDBdΩe

Kûũ =

�

Ωe

HΓd
BTDBdΩe

Kũũ =

�

Ωe

H2
Γd
BTDBdΩe +

�

Γ+
d

hN
�
TTN

�
dΓ

Mp̂p̂ = −
�

Ωe

kf∇H
�
T∇H

�
dΩe

Mp̂p̃ = −
�

Ωe

kf∇H
�
T (DΓd

∇H
�
+ δ �DΓd

H
�
)

Mp̃p̂ = −
�

Ωe

kf (DΓd
∇H
�
+ δ �DΓd

H
�
)T∇H

�
dΩe

Mp̃p̃ = −
�

Ωe

kf (DΓd
∇H
�
+ δ �DΓd

H
�
)T (DΓd

∇H
�
+ δ �DΓd

H
�
)dΩe

and the coupling matrices:
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Cûp̂ = −
�

Ωe

BT (m
�
H
�
)dΩe

Cûp̃ = −
�

Ωe

DΓd
BT (m

�
H
�
)dΩe

Cũp̂ = −
�

Ωe

HΓd
BT (m

�
H
�
)dΩe −

�

Γ+
d

hN
�
Tn+H

�
dΓ

Cũp̃ = −
�

Ωe

HΓd
DΓd

BT (m
�
H
�
)dΩe

Cp̂û = −
�

Ωe

H
�
Tm
�
TBdΩe

Cp̂ũ = −
�

Ωe

HΓd
H
�
Tm
�
TBdΩe −

�

Γ+
d

hH
�
T (n+)TN

�
dΓ

Cp̃û = −
�

Ωe

DΓd
H
�
Tm
�
TBdΩe

Cp̃ũ = −
�

Ωe

DΓd
HΓd

H
�
Tm
�
TBdΩe

The external force vectors are given by:

f

�
ext
û =

�

Γt

N
�
T ttdΓ

f

�
ext
ũ =

�

Γt

HΓd
N
�
ttdΓ

f
�
ext
p̂ =

�

Γf

H
�
TffdΓ

f
�
ext
p̃ =

�

Γf

DΓd
H
�
TffdΓ

In order to solve this system of equations, the Cranck-Nicholson scheme is used. Time

dependent terms are approximated in a linearized way by means of:

δ(·)
δt

=
(·)t+Δt − (·)t

Δt
(2.65)
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where the term (·)t+Δt is the unknown solution at the next time step, (·)t is the known
solution from the previous time step, and Δt is the length of the time step. On the

other hand, the time independent terms are approximated by a scaling between the

old and new time step by:

(·) = θ̄(·)t+Δt + (1− θ̄)(·)t and θ̄ ∈ [0, 1] (2.66)

Previous literature [55] concluded that stabilization is reached if θ̄ ≥ 1
2
.

The Euler implicit time scheme is retrieved when θ̄ = 1, while for θ̄ = 0 the explicit

Euler scheme is retrieved. Taking a short time step, it will lead to initial oscillations. In

order to have a stable time integration the following law needs to be satisfied [55, 103]:

Δt >
Δx2

ckf
(2.67)

here x is the length of the element and c is usually the consolidation constant. For

an incompressible material, like the one used in this Thesis, the denominator becomes

(E ·K).

At this point, the general system of equations is linear. However, the cohesive law

introduces a non-linear term to the system. In order to solve the system in an iterative

way, a linearization of the system is needed, according to:

σ
�
j = σ

�
j−1 + δσ

�
(2.68)

pj = pj−1 + δp (2.69)

in which subscripts j and j − 1 define the iteration numbers. In combination with

the time stepping scheme, the following result can be found:

(·)t+Δt
j−1 + δ(·)− (·)t

Δt
+ θ̄{(·)t+Δt

j−1 + δ(·)}+ (1− θ̄)(·)t (2.70)
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Using this last tool in System (2.64), the final system can be obtained:




Kûû Kûũ Cûp̂ Cûp̃

Kûũ Kũũ Cũp̂ Cũp̃

Cp̂û Cp̂ũ θ̄ΔtMp̂p̂ θ̄ΔtMp̂p̃

Cp̃û Cp̃ũ θ̄ΔtMp̃p̂ θ̄ΔtMp̃p̃







δû�
δũ�
δp̂
�
δp̃
�



=




f
�
ext
û −f

�
int
û

f
�
ext
ũ −f

�
int
ũ

Δtf
�
ext
p̂ −f

�
int
p̂

Δf
�
ext
p̃ −f

�
int
p̃




(2.71)

f
�
ext
û =

�

Γt

N
�
T tt

t+ΔtdΓ

f
�
int
û =

�

Ωe

BTσ
�
j−1dΩe

f
�
ext
ũ =

�

Γt

HΓd
N
�
tt
t+ΔtdΓ

f
�
int
ũ =

�

Ωe

HΓd
BTσ

�
j−1dΩe +

�

Γ+
d

hN
�
T{tdj−1

− (pcrackj−1 )}dΓ

f
�
ext
p̂ =

�

Γf

ΔtH
�
T (θ̄f t+Δt

f + (1− θ̄)f tf )dΓ +H
�
T (s+)T · qΓd

|Sd

f
�
int
p̂ = Cp̂û · (û

�
t+Δt
j−1 − û

�
t) + Cp̂ũ · (ũ

�
t+Δt
j−1 − ũ

�
t) + ΔtMp̂p̂ · (θ̄p̂

�
t+Δt
j−1 + (1− θ̄)p̂

�
t)

+ ΔtMp̂p̃ · (θ̄p̃
�
t+Δt
j−1 + (1− θ̄)ũ

�
t
f )

f
�
ext
p̃ =

�

Γf

ΔtDΓd
H
�
T (θ̄f t+Δt

f + (1− θ̄)f tf )dΓ

f
�
int
p̃ = Cp̃û · (û

�
t+Δt
j−1 − û

�
t) + Cp̃ũ · (ũ

�
t+Δt
j−1 − ũ

�
t) + ΔtMp̃p̂ · (θ̄p̂

�
t+Δt
j−1 + (1− θ̄)p̂

�
t)

+ ΔtMp̃p̃ · (θ̄p̃
�
t+Δt
j−1 + (1− θ̄)ũ

�
t
f )

This matrix is symmetric if the linearized stiffness matrix, which descends from the

cohesive law, is symmetric. With the Camacho-Ortiz cohesive law, that will be in-

troduced in the next paragraph, this is not the case. However, for the solution, this

method does not suffer this kind of problems [55]. As mentioned before, the system is
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solved in an iterative way using the Newton-Raphson method.

Convergence is therefore reached when:

||f
�
int − f

�
ext|| ≤ �res||f

�
int|| (2.72)

where �res is a given precision and:

||f
�
|| =

�
f
�
f
�
T (2.73)

2.5: Cohesive zone method

The first part of this section explains how the numerical model handles crack nucleation

and propagation. In the second part the cohesive zone model, used in this work, is

explained.

2.5.1: Crack nucleation and propagation

The development of micro-cracks into mature cracks can be divided into 3 stages:

nucleation, growth and merging. The merging of two cracks in the vicinity of each-

other is not considered in this work. To govern the nucleation and the propagation of

a fracture, a yield criterion is needed to determine the moment and the direction of the

propagating fracture. The stress state at the crack tip is not known exactly, hence an

approximation based on the stress in the integration points surrounding the crack tip

is necessary. Therefore, a Gaussian weighting function is used to calculate the average

stress [49]. The average stress σav at the crack tip is then the weighted sum of the

integration points near the crack tip:

σav =

nint�

i=1

wi
wtot

σe,i with wtot =

nint�

j=1

wj (2.74)

here nint is the number of integration points in the domain, σe,i is the current



The eXtended Finite Element Method (X-FEM) 45

effective stress state at the integration point i, which has a weight factor wi defined as:

wi =
(2π)

2
3

l3a
e

−r2i
2l2a (2.75)

with ri being the distance between the crack tip and the integration point ni, and la

being a length scale parameter defining how fast the weight factor decays as a function

of the distance between the integration points and the crack tip.

Figure 2.7: Schematic representation of a material with at the crack tip a global x-y coordinate
system and a local coordinate system, described with a normal unit vector n and a tangential
unit vector s.

As it was proposed by Remmers et al. [77], the average stress surrounding the crack

tip is used to determine both the moment and the direction of propagation. From this

average stress, an equivalent traction teq at the crack tip is calculated [22]:

teq(θ) =

�
< tn >2 +

1

β
t2s with < tn >=





0 if tn ≤ 0

tn if tn > 0
(2.76)

where < · > are the McCauley brackets defined as:

< x >=





0 if x ≤ 0

x if x > 0
(2.77)

Normal and shear tractions, tn and ts, can be calculated from the averaged tip
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stress in equation (2.74) according to:

tn = nTσavn ts = sTσavn (2.78)

where n and s are respectively the normal and tangent vector to an axis η. The

axis η is rotated by an angle θ with respect to the x-axis (see Figure 2.7). The normal

and tangent vector are defined by:

n = [−sin(θ), cos(θ)]T s = [cos(θ), sin(θ)]T (2.79)

The parameter β is used to scale the influence of the shear traction on the equivalent

traction, typically β = 2.3 is used [22, 77]. The equivalent traction can be calculated

for all angles θ.

If the maximum equivalent traction exceeds the yield strength τult of the material,

the fracture is extended in the direction of angle θ through one element. The angle

for which this occurs is exactly the direction of the crack growth. Remmers et al. [76]

showed that, due to the periodic trigonometric functions, it is sufficient to calculate

the equivalent tractions for angles in the range of 0 < θ < π. The representation of

extending an existing crack in a two-dimensional finite element mesh is shown in Figure

2.8. The extended discontinuity is a straight line through the next element. The part

of the discontinuity that crosses through one element is called a cohesive segment.

For the calculation of the angle θ and the initial tractions tn and ts of the new

segment, two different averaged stresses σav are used: (i) a smeared averaged stress

with length scale la and (ii) a local averaged stress. The equivalent tractions calculated

from the smeared stress are used to check whether the yield criterion is exceeded. The

initial tractions are closely related to the local stress state. Therefore, initial tractions

are calculated with the local stress using the angle θ determined from the smeared

stress.
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Crack�tip

Normal�node

Enhanced�node

Cohesive�zone

BA

Figure 2.8: Representation of an extension of a discontinuity along a two-dimensional finite
element mesh. Before crack propagation (A) and after crack propagation(B). Left: when
the tractions in the additional sample point (denoted with the triangle) exceed the threshold
value, the discontinuity is extended into the next element along the projected weak interface
(dashed line). Right: the hashed nodes and the elements have just been enhanced. In this
case the propagation angle θ = 0. Note that in both pictures the nodes supporting the tip
are not enhanced in order to have zero opening at the crack tip.

The disadvantage of using an average stress in the yield criterion is that the crack

propagation can be slightly delayed due to the averaging of the stress. Instead, the

advantage, is that the direction of propagation is more reliable since it is based on

a global stress state. However, the initial tractions in the discontinuity will also be

underestimated [77]. To avoid this problem, two different length scale parameters la

are used, see Equation (2.75). The moment and direction of fracture propagation are

determined by a length scale parameter which is typically three times the element size

[105], while the initial tractions are calculated with one forth of this length scale.

The average stress criterion based on the equivalent traction in Equation (2.76)

is also used to determine the moment of fracture nucleation. Instead of calculating

this criterion for each integration point in the mesh, which would be computationally

inefficient, an additional checkpoint is added, since there is no integration point in the

center of an element hence it is necessary to add an extra checkpoint to use Equation

(2.74). Therefore, it is possible to restrict nucleation to a prescribed area. Thus,

in order to further increase the numerical efficiency, the nucleation criterion is not

calculated for every integration in an element but only once in the center of the element.

Whenever the equivalent traction in one of the checkpoints exceeds the nucleation

criterion, a discontinuity is added. The cohesive segment is assumed to be straight and
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crosses the checkpoint under the angle θ with respect to the x-axis. The cohesive zone

of the nucleated crack must have a length of at least one element to be, kinematically

speaking, possible.

However, since nucleation is not the goal of this research, numerical implementations

of this restriction are illustrated in Figure 2.9 with three examples, and briefly described

in the next section.

2.5.1.1: Examples

Nucleation�checkpoint

Violated�nucleation�checkpoint

Normal�node

Enhanced�node

Cohesive�zone

B CA

Crack�tip

Figure 2.9: Three different locations of nucleation checkpoints with corresponding cohesive
zones.

The first example is when the nucleation point is located in the middle of the

material. The length of the cohesive zone is therefore such that crack tips are not

located at the boundaries of the element, where the nucleation point is located (Figure

2.9 A).

A second example is illustrated with the nucleation point located in an element

that is a neighbor of an element on the mesh boundary (Figure 2.9 B). Here, the nodes

at the mesh boundary also need to be enhanced to prevent having a crack tip at the

mesh boundary.

The last and simplest example is when the nucleation point is in an element at the

mesh boundary (Figure 2.9 C). The cohesive zone is then only extended through one

more element. If the nucleation criterion is exceeded in multiple checkpoints at the

same time, nucleations occurs in the checkpoint with the highest equivalent traction.

For further numerical implementation issues see Remmers et al. [77].
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2.5.2: Cohesive zone model

The cohesive law used in this work was firstly introduced by Camacho and Ortiz [22].

In order to avoid sudden jumps in the stress field, the initial tractions of the cohesive

segment are chosen to be equal to tractions calculated in equation (2.78) with the local

length scale parameter. If the initial normal traction tn0 is positive, the segment is

assumed to open in tensile mode (mode I). A cohesive law is used for the damage

evolution, i.e. softening behavior after reaching the critical stress state. The critical

length can be obtained by:

δn =
Gc
τult

(2.80)

where τult represents the ultimate traction forces, and Gc is the fracture toughness.

Fracture toughness is a property that describes the ability of a material containing a

crack to resist fracture. It is therefore one of the most important properties in any

material for many design applications [74].

Hence, when there is a positive opening of the crack, the cohesive law reads:

tn = τulte
− [u]n

δn with [u]n ≥ 0 (2.81)

This relation is shown in Figure 2.10. Note that the area underneath the softening

curve is the fracture toughness Gc. From an analytical point of view, this is calculated:

� +∞

−∞
tnd[u]n =

� +∞

0

tnd[u]n = τultδn

� +∞

0

e−rdr = τultδn = Gc (2.82)

In this model, a loading function f is defined as:

f(un, k) = un − k (2.83)

where un is the normal separation crack and k is a history parameter. k is introduced
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Figure 2.10: Normalized distribution of the exponential cohesive law for tensile loading related
to traction forces and displacements.

in order to remember the current opening k0 and the traction τ0 in case of unloading

each time step, and it is equal to the largest value of un reached. When f = 0, loading

occurs and when f < 0 there is unloading. When the new opening is smaller than

previous, then unloading can take place according to:

tn =
τ0
k0

[u]n (2.84)

Instead, damage is defined as:

D = 1− tn
τult

(2.85)

When the cohesive law approaches zero, a macro crack is developed (i.e. when the

local damage approaches maximum, D = 1). When locally the opening decreases,

compared to previous time step, unloading takes place. The aforementioned cohesive

law parameters Gc and τult can be obtained from experimental data.



3: Settings and Parameters

After the first Introduction concerning fracture mechanics and the overview about

the numerical method implemented in this work, a presentation of the settings and

parameters chosen for this Thesis will be given in this section.

3.1: Materials

A solid material is characterized by structural rigidity and resistance to changes of

shape or volume. The atoms in a solid are tightly bound to each other. A solid does

not exhibit macroscopic flow, as fluids do. Any degree of departure from its original

shape is called deformation. The proportion of deformation to original size is called

strain. If the applied stress is sufficiently low, almost all solid materials behave in

such a way that the strain is directly proportional to the stress (Hooke’s law). The

coefficient of the proportion is called the modulus of elasticity or Young’s modulus.

This region of deformation is known as the linear-elastic region.

A porous medium (or a porous material) is a material formed by a solid skeleton

that includes pores. These pores can be filled with air (void) or with fluid. The skeletal

part of the material is often called matrix or frame.

A porous material put under a constant load is not deforming instantaneously but

settles gradually to a final deformation. This is a common effect observed in sands,

clays and rocks with the presence of an interstitial fluid. In geotechnics, this behavior

is commonly referred to as consolidation. The rate of deformation due to the applied

load depends on the velocity with which the water is squeezed out of the solid skeleton.

In 1923, Terzaghi [93, 94] described this coupling between the pore pressure and the

solid skeleton deformation. Terzaghi assumed that a porous material was build up from

internally connected elastic solid grains and a fluid filling the voids between the grains.

In order to describe the consolidation behavior, Terzaghi introduced the effective stress

notation. This means that the total stress in the porous material is divided into an

effective stress in the solid skeleton and a hydrostatic pressure, according to:

σ = σe − pI (3.1)

51
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where σ is the total stress, σe is the effective stress, p is the hydrostatic pressure

and I is the unit matrix. Even though Terzaghi’s theory is almost one century aged,

it is still remarkably accurate for the consolidation of 1D soil layers and is still being

used as a benchmark (see also Appendix A). Later on, Biot presented a theory of

three-dimensional poroelasticity of fluid saturated porous materials [16, 17].

Figure 3.1: Schematic representation of the representative volume unit of the solid grains
and the internal fluid.

Since the compressibility of the constituents is small with respect to the compressibility

of the medium, the constituents are assumed to be incompressible also in this work.

Instead this is not the case for hydraulic fracturing processes, where high pressures

influence the compressibility both of the fluid and the bulk material. Small deformation

theory is used.

In this work either solid and saturated porous media will be analyzed.

In particular, the porous beam used in the numerical simulations will be considered

made of an isotropic material. In materials science, “isotropic” means having identical

values of a property in all directions.

Crack initiation and propagation in an isotropic material occurs if the equivalent

traction in equation (2.76) exceeds the fracture criterion τult. In an isotropic material

this parameter is independent of the fracture direction. This means that there is no

dependency between the orientation of the cohesive zone and the fiber direction. Thus,

the strength of the material is equally distributed in the body of the material and there

are no fiber directions with maximum of minimum values reached. To model fracture

in an isotropic material, the fracture criterion τult is therefore taken to be independent
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on the angle between the fiber direction and the normal of the fracture.

To summarize, it will be assumed a material which is: two-dimensional, linear elas-

tic, isothermal, homogeneous, isotropic and fully saturated (the last assumption only

for the porous phase). This does not represent exactly the reality of the shale/sandstone

rocks formations (see Appendix B for further details) but the analysis of the results

obtained could give indications for future projects.

The material chosen in this work is sandstone. The general mechanical properties of

sandstone are listed in Table 3.1. A detailed description of petroleum rock mechanics,

especially referring to shale and sandstone rocks, can be found in [3]. In the next

Chapter the values of the parameters of interest will be precisely specified for every

simulation.

Table 3.1: The mechanical properties given in this Table are the typical properties of two
known rock materials which have been tested in laboratory for various applications. It should
be noted that these properties may vary significantly depending especially on geological
location, chemical compositions, internal defects or fissures, temperature, regional seismic
activities, loading history, age, dimensions of test specimens.

SedimentaryClastic Sandstone Shale
Elastic Properties Poisson’s Ratio 0.05 - 0.40 0.05 - 0.32

Isotropic Elastic Modulus (GPa) 4.6 - 90.0 4.6 - 90.0
Isotropic Shear Modulus (GPa) 1.9 - 36.7 1.9 - 36.7

Strength Properties Tensile Strength (MPa) 2 - 25 2 - 25
Shear Strength (MPa) 8 - 40 8 - 40

Other Properties Porosity (%) 1.8 - 21.4 1.8 - 21.4
Permeability (µm) 10−5 - 0.1 10−8 - (2 · 10−6)

Note that in the input file of the material properties (named sandstone.dat) the Tensile

Strength will be called ‘Tultimate’ and the Fracture Toughness simply ‘Toughness’. In

this work, only sandstone will be considered in the simulations.

3.2: Numerical tools

The simulations presented in this report have been run in a Ubuntu 12.04 operating

system, and different programming languages have been used to achieve the tasks



Settings and Parameters 54

required.

3.2.1: Mesh

The very first step of this work consists of the realizations of the two-dimensional

meshes. The use of mesh generation techniques, enables the division a complex domain

into small elements.

The meshes used for this purpose have been created via a tool called Gmsh Mesh

Generator (GMG). In order to produce the FE mesh, GMG needs to compile an input

text file written in the programming language C++. The extension of these files is

.geo, and one file has to be prepared for each mesh. The contents of these files are the

vertices of the mesh geometry, the length of the lines that connect the vertices and the

amount of elements desired on each side of the beam. However, to better reach the

goal of this Thesis, a refinement in the meshes has been done in the central zone. Thus,

the global 2D mesh appears like a composition of two different meshes, see Figure 3.2.

Figure 3.2: The bold black line represents the inverse-C-shaped mesh and it contains triangu-
lar elements. The bold red line represents the refined mesh and it contains squared elements.
The two mesh are unified in order to obtain one overall mesh. (The numbers represent the
sides of the beam ad they will be used as references for the Table 3.2).

A first part, made with triangular bigger elements, in which the loads will be
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applied. A second part, fitted in between the other one, made with four nodal fine

square elements.

An algorithm has been implemented to link the two surfaces so that the final beam

consists of one unique surface. Once the surfaces are connected and the input file is

ready, GMG creates automatically the discretization of the domain (see Figure 3.3).

Figure 3.3: One of the meshes used during simulations. The refined zone in the middle, where
the initial crack is placed, is coupled with the roughest part. This 2D mesh has 2271 vertices
and 3934 elements.

The zone of major interest in the mesh is surely the central one, where the square

elements are allocated. The central region is made of a finer mesh, since fracture

growth occurs here. Moreover in this part, in the middle of the vertical left side, the

initial discontinuity is placed. The choice of making squared elements in the zone of

the discontinuity is strictly linked with the mathematical model of the cohesive zone,

illustrated in the previous Chapter. In fact, since the length should be at the least equal

to two or three elements, it is worth having squared elements instead of triangular ones.

Furthermore, because of the symmetry of the beam created and of the loads applied
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at the nodes, it is already known that the crack will propagate in horizontal direction

(0�) and triangular elements may cause some problems to the crack path.

It has been shown that taking the stress state obtained from a temporary sample

point at the tip of the discontinuity gives inaccurate results (e.g. [76]). A better

approach to determine the stress state in the tip is by using a non-local approach

using a Gaussian weight function. In literature (e.g. Wells and Sluys [105]; see also

formula 2.75) many Authors have taken the la parameter as approximately three times

the typical element length le. la being a length scale parameter defining how fast the

weight factor decays as a function of the distance between the integration points and

the crack tip. A disadvantage of the approach is that the average stress is significantly

smaller than the actual stress at the tip. As a result, the discontinuity will be extended

slightly late. For these reasons, the elements have been chosen to be squared, so that

the three-times-criterion can be better respected in each simulation.

Several meshes have been created in order to adequately investigate the research

topic, however each mesh uses the same boundary conditions for every simulation.

Hence, the only things that change are the dimensions, and consequently the number,

of the elements inside the beam.

3.2.2: Numerical model

The numerical model is programmed in Dawn, a numerical tool developed by Remmers

et al. [76]. Dawn is build on the Jem/Jive finite element toolkit developed by Habanera.

The numerical implementation of the cohesive zone, and all the input files con-

taining the parameters about the materials, are written in C++. In this project the

number of elements in the mesh is upper bounded since the administrator of the central

server did not allow to build meshes with a too high number of elements. For instance,

simulations with nearly 130000 elements had been killed by the administrator since

the process occupied more than 60 Gb of memory and the computation was extremely

slow. Almost one month of calculations was not compatible with the time schedule of

this Thesis. Suggestions to overcome the problem will be given in the next Chapter.



Settings and Parameters 57

Once the mesh is prepared, in order to start a simulation, three input files need to

be managed.

The first one directly descends from the mesh. In this file are listed the nodes, the

elements, the node groups (i.e. the nodes in the boundary sides, distinguishing, for

instance, the nodes in the middle-bottom side of the beam, the nodes in the corner-

bottom, etc..), the node constraints (in this work the only limitations will concern

pressures and displacements) and the loads applied to the structure (position, intensity,

direction).

Instead, the second file contains the material parameters. Since the personal taste

of the Author of this Thesis is focused on Oil&Gas fracturing problems, the porous

materials chosen for the simulations are soils. Especially, attention is given to different

types of sandstone, varying some physical parameters of interest. The most important

information that have to be insert in this file are the values of: Young’s modulus,

Poisson’s modulus, Ultimate Strength, Toughness, Intrinsic Permeability, Dynamic

Viscosity, and two Specific Length referred to 2.75. One length is more general, the

other one is established in order to circumscribe the zone around the tip and to involve

a lower number of integration points during each time step.

The third file that has to be compiled is the so-called defaults file. This is the

biggest of the three. It contains all the general choices that will be run by the code.

Here all the main information, such as which kind of input file has to be considered or

which model should be implemented, are listed. Moreover, in this document are written

several additional information that play a key role on the simulations, for example: the

location and the dimensions of the initial crack, the velocity used during the pulling

process of the material, the interval of time between one integration and the next one.

A screenshot of this file is given in Figure (3.4).

3.2.3: Matlab and ParaView

When the simulations are finished, the code gives as ouputs different files that can be

divided into two groups: the .gnu files and the .vtu files.

The first set of files contains 13 columns of numbers. Each column corresponds to



Settings and Parameters 58

Figure 3.4: In this picture a part of the defaults file can be seen. The file, written in C++,
contains a list of commands that have to be written in order to start the simulations.

a particular parameter of interest (e.g. position of the crack in the beam, pressure in

the crack). There is one .gnu file for each time step expected in the simulation. The

longer is the simulation (i.e. the bigger is the end time), the higher will be the number

of output files. The parameters that will be considered particularly important for this

project will be plotted using Matlab. Matlab is a high-level language and interactive

environment for numerical computation, visualization, and programming. The reason

why this tool has been used in this work lies in the fact that it reaches solutions faster

than usual spreadsheets or traditional programming languages.

The second set of files, on the other hand, have to be read through ParaView.

This tool is an open-source, multi-platform data analysis and visualization application.

ParaView was developed to analyze extremely large datasets using distributed memory

computing resources. With ParaView, the fracture propagation can be seen as well as

the evolution of all the parameters of interest on the porous medium. Like for the .gnu
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files, also for the .vtu files the code produces one file for each time step.

Several plots and pictures containing the results of the simulations performed will

be shown and commented in the next Chapter.

3.3: Settings

Mesh independence of the model and, eventually, stepwise propagation are investigated.

In order to study the mesh independence, an X-FEM code is used. For the advantage

of implementing a X-FEM code is that it works well also with not refined meshes, the

leading idea used in this work is the following. Three meshes with identical boundary

conditions are created. The only difference is in the number of elements, especially

in the refined zone in the middle. Then, the different behaviors will be analyzed,

particularly changing some strategical parameters.

The general features of the meshes prepared in this project are listed in Table 3.2.

The shape of the mesh is chosen arbitrary.

Table 3.2: List of the boundary values of the beam prepared for the simulations. Whereas
the boundary values of the mesh will be kept constant, the size of the elements inside the
beam will vary. Each side of the beam has been identified with a number. See also Figure
3.2 for references.

Side Black Line Red Line
1 = 3 60000 mm
6 = 8 30000 mm
2 = 4 25000 mm
5 = 7 3000 mm

The reason for using mm in the beam, lies in the fact that if m were used, the

difference in the orders of magnitude in the stiffness matrix would have been too high

(e.g. Young’s modulus: 109, permeability: 10−15). While using mm this gap can be

reduced.



4: Numerical simulations: results

4.1: Physical behavior or numerical artifact?

It is difficult to exactly predict how fractures propagate under thousands of meter of

soils during hydraulic fracturing processes. Even in the field, by using instruments for

remote data acquisition, is rather difficult to obtain the evolution profile of the cracks.

Thus, the numerical modeling of their behavior is a research topic.

In the last years of studies, the research groups from the Technical University of

Eindhoven and the University of Padova achieved similar results by means of completely

different techniques. Both groups observed a stepwise behavior of the fracture during its

advancement in the soil (or the material involved in the study) through FE simulations.

However, the scientific community did not have paid much attention on this feature

in the past decades, that is therefore still a relatively unknown argument. Does the

fracture propagate following a stepwise behavior or is it a numerical artifact?

It has been recently demonstrated, by means of experiments, that mode I crack

propagation in hydrogels is stepwise [71]. However, no experimental data can be found

in literature concerning low permeable porous materials such as shale rocks or sandstone

rocks. In fact, it is difficult to reproduce in laboratory the exact in situ conditions of

these rocks, especially the fully saturation of the material (J.M.R.J. Huyghe, personal

communication). Moreover, an accurate numerical description of the phenomenon is

still missing.

The main idea that will be followed in this FE Analysis work, consists in comparing

the results obtained by testing three different meshes with a mode I crack propagation.

If a mesh-independent behavior of the fracture will be seen, this could lead to conclude

that there is a physical stepwise advancement in the tested material.

Therefore, in the next sections of this Chapter, the performances of the numerical

model used in this Thesis, to try to give an answer to this problem, will be shown by

several fracture simulations.

60
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4.2: Solid

Before skipping directly to the porous problem, a study on a solid material has been

done. This part of the work chronologically represents the first period of simulations.

Although the results are not particularly interesting for the aim of the Project, this

period was extremely useful for the calibration of the model and the parameters.

In fact, after having run different tests, it was possible to establish the definitive setup

of the material’s properties.

Moreover, a threshold of reliability for the number of elements in the mesh has been

defined. Even if there were no problems for the convergence of the code with a number

of elements that was higher than 10000 elements (this number involves both squared

and triangular elements), the simulations took too much time with respect to the time

schedule of this work. Therefore, it was reasonably determined that the most refined

mesh would not have had more than 11000 elements. Although, it must be specified

that typically the computational costs are defined not by the number of elements but

by the degrees of freedoms associated to them.

A continuous pressure profile across the crack is accounted for. Kraaijveld [55] already

tested such pressure for ionized porous materials. However, the stepwise advancement

in Mode I propagation was difficult to see since the continuous pressure profile only

works for sufficiently smooth meshes. On the other hand, using a very refined mesh,

the advantage of implementing X-FEM, that allows the utilization of a quite rough

mesh, is lost. Hence, dealing with the stepwise progression of the crack in mode I, this

is only possible with finer meshes [89].

The choice of the squared element sizes in the central region of the mesh is based

on a mathematical criterion. The length of cohesive elements is chosen so that the

fracture process zone is discretized with adequate resolution, and the need for numer-

ical convergence is satisfied. In fact, since the cohesive length should be two or three
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times the element size, this value is established by using the following equation:

Rc = η
E

�
Gc

(Tult)2
(4.1)

Equation (4.1) was also used by Khoei et al. in 2010 [53]. Here, Rc is the length of

process zone, Gc is the specific fracture energy, Tult the tensile strength, η a constant

equal to π/8 according to the Barenblatt cohesive theory [13] and E
�
the effective elas-

tic modulus defined as E for plane stress and E/(1 + ν2) for plane strain problems.

According to this formula, and choosing the following parameters:

� E = 18 · 103 MPa

� Tensile Strength = Tult = 9 MPa

� π/8 = 0.3925

� Toughness = Gc = 11.46 N
mm

The length of the process zone (see also Figure 4.1) reads:

Rc � 1000 mm (4.2)

Recalling that the element size Δx is related to Rc by:

Rc
3

= Δx Δx = 333 mm (4.3)

This number represents the element size of the coarsest mesh prepared. The rough

mesh contains 3844 elements. The refined central zone contains 90 elements squared

elements along the horizontal side and 9 squared elements on the vertical one. The

other two meshes used for the simulations have different elementary sizes and in par-

ticular dimensions decrease. The so-called medium mesh has Δx = 250 mm, 5262

elements and 120x12 squared elements; while the smooth mesh has Δx = 150 mm,
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10148 elements and 200x20 squared elements in the strategic zone.

Figure 4.1: In this Figure, the cohesive traction zone obtained in the simulations is shown.
The highest traction values can be detected at the crack tip, as foreseen by the theory. The
cohesive traction values represent the cohesive length. As it was calculated previously, the
area where the cohesive zone plays its role is just around the crack tip. In this image, the
length of the process zone is equivalent to three rough squared mesh elements.

The choice of taking such high values of Δx, compared to the ones commonly used

in literature, is due to the fact that the limiting values for the size of a fully developed

fracture process zone, range from 0.3 to 2 m for concrete and similar quasi-brittle ma-

terials [53], like sandstone. Hence this value of Rc, in order to have the most realistic

simulations.

Finally, an investigation about the velocity of the prescribed displacements has been

done. The prescribed displacements can be seen as a continuous pulling load applied

at some predefined nodes. The magnitude of the loadings applied in the nodes of the

structure heavily affects the response of the material. The loadings are related with
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the prescribed displacement u by means of the linear relation:

u = v ·Δt (4.4)

where v represents the velocity of the displacements and Δt is the time step.

Figure 4.2: Influence of the pulling force on a solid beam. Here, one of the simulations
in which the initial crack directly jumps over the refined central zone, due to a too high
prescribed displacements. The distribution of the Maximum Principal Stress is illustrated.

In this work Δt = 1s is chosen for the simulations, since it comes from:

Δt >
Δx2

EK
(4.5)

where K = Kint

µ
is the ratio between the intrinsic permeability and the dynamic vis-

cosity. This criterion is always verified and for every mesh. The displacements are

assumed to be constant, without interruptions or jumps, during their development

from the first time-step until the end time of the process.

Without an adequate pulling force, the fracture cannot propagate or maybe it starts

propagating and then suddenly stops. On the contrary, if too much displacement

is imposed to the structure, the process is not developed in the aimed way: which

means, with moments of quiescence and rapid advancements in the refined mesh during
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fracture propagation. In the second scenario, in fact, numerical simulations show that

the fracture can even jump directly after one single step outside the refined region of

interest. An example of this wrong failure mechanism is given in Figure 4.2 from the

simulations.

4.3: Porous

During the simulations with the porous medium, pressure values at every side of the

beam are equal to zero (p = 0), which means that water is allowed to flow in and out

from the beam without any kind of restriction. Therefore, free drainage is assumed at

every side of the beam. Boundary conditions are shown in Figure 4.3.

Figure 4.3: Boundary conditions of the beam assumed during simulations considering a porous
medium. Two equal forces applied in opposite direction allow the initial crack propagating.

A consolidation process at the tip of the crack as a mechanism for the stepwise

propagation is accounted for. The crack is preceded by a cohesive zone to account

for damage ahead of the tip. The stress state at the crack tip of a Mode I crack is

first carried by the fluid. This, results in a negative pressure and, consequently, in an
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attraction of fluid towards the crack tip itself. Hence, fluid is attracted to the crack

tip, resulting in progressive transfer of the tensile stress from the fluid to the effective

stress of the solid.

In order to enhance the visibility of a stepwise behavior, a term λ is introduced in the

code. This is a numerical trick for modifying the velocity of the displacements. Hence

λ = F · Δt, where F represents a factor for magnifying the time effects. Therefore,

introducing this term, also the end-time must be changed because of Equation 4.4.

Which means that for reaching the same prescribed displacement, simulation times

vary with respect to lambda. Thus, using different words, λ represents an éscamotage

for lowering (if λ < 1) the velocity of the prescribed displacements.

An example that includes a prescribed displacement of 15mm is given. The influ-

ence of different values of λ will be investigated, in particular:

� λ = 0.3 end time = 50 s

� λ = 0.1 end time = 150 s

� λ = 0.05 end time = 300 s

In the following plots some general notations will be used and here are briefly

recalled:

� time = simulation time [s]

� d = magnitude in vertical direction of the applied displacement [mm]

� intf = reaction due to the displacement in that node [N ]

� tip0x and tip0y = tip locations on x and y axis respectively [mm]

In Figure 4.4 a comparison between the rough mesh and the smooth mesh is given.

Especially, attention is focused on the influence of λ parameter. A time versus reac-

tion force plot will be therefore analyzed. The general trend seems to be similar for

the three different curves, with a straight growing line up to the peak, and a curved

decreasing tail. The more the time needed to the nodes of the beam to reach the
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prescribed displacement is increased, the more the time needed to the whole process

to occur assumes high values. In other words, if lower traction forces are applied at

the nodes, the time needed to achieve the prescribed displacement will increase. The

peaks of the curves are in the same range of magnitude both for x and y axis either

for rough and smooth mesh, while differences can be seen at the end of the tails. Here,

the curves reach lower values with the rough mesh. Moreover, a general stepwise trend

of the second part of the curve (from the peak to the right side) is detected. This

particular behavior is more significant by lowering λ values. Furthermore, this effect

is more visible in the rough mesh than in the smooth one.

(a) Rough mesh. (b) Smooth mesh.

Figure 4.4: The influence of λ on rough and smooth mesh. In these plots, the comparison
between time versus reaction due to the displacement in that node plots. The difference
between the two meshes is larger for λ = 0.05.

Similar behavior can be found plotting time versus tip location along the x-axis

(Figure 4.5). Here, again, a shifting of the curves on the time-axis, due to the different

end times, can be seen. Analyzing these first four graphs it can be concluded that peel-

ing the beam by using a correction factor λ = 0.3 is not sufficiently refined for the goal

of this project. In fact, in this configuration, mesh independence features and stepwise

advancement cannot be seen since the process is performed with too high displacement
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velocity. This gives an indication about which values of λ have to be chosen in order

to correctly investigate the consolidation phenomenon and, consequently, the stepwise

behavior. Therefore, in the following paragraphs, a value of at least λ = 0.05, or even

less, will be accounted for during simulations.

Another plot of interest is represented in Figure 4.6. In this comparison, the impact

of the mesh chosen is more remarkable. Even though the peaks of the curves take place

in the same position along the d-axis with the smooth mesh, this is not the case for

the rough mesh, in which the more λ decreases, the more the peaks move to the right

side of the graph. Moreover, the distance between the different curves is more stressed

in the smooth mesh. Also in this configuration, a stepwise behavior can be recognized

both in rough and smooth mesh, for λ = 0.05. The possibility of investigating the

problem with different meshes definitely gives more detailed descriptions about the

on-going processes.

(a) Rough mesh. (b) Smooth mesh.

Figure 4.5: The influence of λ on rough and smooth mesh. Here the comparison between
time versus tip location on x-axis plots. Again, using λ = 0.05 and also λ = 0.1, a clear
stepwise advancement can be seen, especially in the rough mesh. However, rough meshes can
lead to false conclusions about the physical interpretation of the plot. In fact the stepwise
behavior seems to disappear in the smooth mesh.

Figure 4.7 shows the results obtained by plotting the displacements on the y-axis
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(a) Rough mesh. (b) Smooth mesh.

Figure 4.6: The influence of λ on rough and smooth mesh. In these graphs, the comparison
between magnitude in vertical direction of the applied displacement versus reaction due to
the displacement in that node plots. Rough mesh is not as good as smooth mesh in capturing
the differences in using several λ values.

versus the location of the tip on the x-axis. This graph is particularly important be-

cause it clearly shows the presence of a stepwise advancement in fracture propagation.

Referring to the rough mesh, the three curves are almost flattened into one unique

curve. Furthermore, even if in the curve plotted with λ = 0.3 there is no a stepwise

progression, this can be seen either from λ = 0.1 and from λ = 0.05. Slightly different

are the results in the smooth mesh. In fact, analyzing the problem in a more detailed

way, there is a divergence of the curves, although the general trend is the same. More-

over, here for λ = 0.1 the stepwise curve smoothly starts disappearing. Instead, with

λ = 0.05, stepwise behavior can be seen again but the steps are smaller than in the

rough mesh.

The last plot (Figure 4.8) is particularly interesting if compared with Figure 4.4.

Here attention is stressed on the threshold value of the force needed to the fracture to

start propagating. Therefore it can be seen that changing λ also the peaks of each curve

change. These values physically correspond to the points of instable equilibrium after

which the fracture starts propagating if the continuous load is still applied. When



Numerical simulations: results 70

λ decreases, also the intf assumes smaller values and the tip of the crack advances

throughout a stepwise trend. This behavior can be seen especially in two different

zones. Looking at the graph, this has a higher effect between T ip0x values from

0.3 to 0.5 and from 1 to 2. Again, rough mesh seems to give more visibility to this

phenomenon.

At the end of this λ-analysis, it has been understood that the velocity of the pre-

scribed displacements has an influence on the investigation of the stepwise advancement

of fractures. In particular, it can be concluded from this study that the more λ de-

creases, the more the stepwise effect can be detected. Hence, in the following simulation

that will be illustrated, a value of λ = 0.01 will be assumed. Thus, it has been chosen

to perform longer simulations in favor of more detailed results concerning the stepwise

property.

The results are shown in Figure 4.9. The three graphs plot the same parameters

that have already been described before. The difference lies in the fact that here the

value of λ is kept constant, while the different meshes are put in one single graph.

From a global point of view, rough, medium and smooth meshes assume the same

trend in all the three plots. Especially the solution seems to converge at the end of the

processes, which means far away from the initial crack at time t = 0. Therefore, the

meshes present more differences at the beginning of the delamination process. As far

as the stepwise advancement of the fracture is concerned, all the three meshes show

this evidence. This is an indirect confirmation that assuming λ = 0.01 is a good testing

value. Referring to the third graph of Figure 4.9, it can be seen that the steepness of

the loading straight line is higher with the smooth mesh, while rough mesh shows the

less steep line. On the other hand, the rough mesh reaches the highest peak values

and this peak occurs later than in the smooth mesh. Medium mesh is always placed

in between the two other meshes.

Another important consideration concerns the interval of time between one step

and its following. In fact, especially referring to the second graph of Figure 4.9, the

more the time increases, the more the pausing time between one jump and the following

augments. This is true for every mesh. Physically speaking, it means that when the
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(a) Rough mesh. (b) Smooth mesh.

Figure 4.7: The influence of λ on rough and smooth mesh. Here the comparison between
magnitude in the vertical direction of the applied displacements versus tip location on x-
axis plots. In the rough mesh it can be seen that the code gives almost the same solution
implementing a value λ equal to 0.05 and 0.1, while the smooth meshes can capture small
differences.

(c) Rough mesh. (d) Smooth mesh.

Figure 4.8: The influence of λ on rough and smooth mesh. Here the comparison between tip
location on x-axis versus reaction force plots. A value λ = 0.3 is not able to properly define
the process (the peak in the curve is barely visible).
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Figure 4.9: Comparison between rough, medium and smooth mesh using λ = 0.01.
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crack starts its propagation into the material it will have a sudden diffusion through

several elements in a short interval of time. Then, a general decrease of the steepness

of the three curves can be seen at the end of the process. Hence, at the end of the

fracture process, the jumps will be once in a while. For this reason in the Thesis, in

order to better analyze the mesh independence of the problem, fractures at the end of

the process will be studied.

The previous simulation considered a constant absolute permeability for the fluid fully

saturated medium surrounding the fracture. A cubic law was considered for the perme-

ability within the fracture. This has been stated for a long time in the case of laminar

flow (or Couette flow) through open fractures and its validity has been confirmed in

the case of closed fractures where the surfaces are in contact and the aperture decreases

under applied stress [88].

However, the cubic law (or Poiseuille law) is valid when the fracture surfaces are

held open or are closed under stress, without significant changes when passing from

opening to closing conditions. This hypothesis is violated during hydraulic fracturing

processes, since the presence of proppants and grains of sand reduce the width of the

completely opened crack. Moreover, permeability is not dependent on the rock type

or stress history, but is defined by crack aperture only.

For these reasons, in this work it was decided to reduce the exponential value that

affects the crack opening. Therefore, the cohesive zone permeability still reads a cubic

law:

Kd =
(δc)

2

12µ
· ∇Pc (4.6)

whereKd is the permeability, δc is the crack opening, µ represents the dynamic viscosity

of the fluid. The main difference is that it takes into account a damage model for the

cohesive zone permeability that is no more at the power of three but the power of two.

This should give more realistic results about the fluid flow especially around the crack

tip. Performing several tests, the new implementation brought the important result
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of seeing the fracture jumping through multiple elements for the first time since the

beginning of the simulations.

It has been tried also to do not use a cubic law, but the code gave numerical oscillation

problems.

Hence, a study on the influence of the dynamic viscosity and the intrinsic permeability,

at this point, is needed.

(a) λ = 0.05. (b) λ = 0.05.

Figure 4.10: Here, λ = 0.05 and a new damage model for the cohesive zone permeability are
accounted for. This leads to smoother solutions at the beginning of the curve and highlights
the jumps of the fracture at the end of the process. Jumps through multiple elements can be
seen.

Considering a value λ = 0.05 and the new damage model, what can be seen is

that the opening assumes a smoother behavior at the beginning, instead during the

last cracking moments of the simulations the jumps across multiple elements are more

visible. Especially referring to 4.10b this fact can be highlighted. Again, the three

different meshes have been tested.

Keeping the ratio between the intrinsic permeability Kint and the dynamic viscosity

µ constant and equal to 5 mm4

N ·s , several configurations have been tested. Only medium

mesh is accounted for. The values used are listed in Table 4.1.
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Table 4.1: List of the values for the intrinsic permeability and the dynamic viscosity tested
during the simulations.

Dynamic Viscosity µ Intrinsic Permeability Kint
1.0e−10 (N · s ·mm−2) 5.0e−10 (mm2)
1.0e−9 (N · s ·mm−2) 5.0e−9 (mm2)
1.0e−8 (N · s ·mm−2) 5.0e−8 (mm2)
1.0e−7 (N · s ·mm−2) 5.0e−7 (mm2)
1.0e−6 (N · s ·mm−2) 5.0e−6 (mm2)
1.0e−5 (N · s ·mm−2) 5.0e−5 (mm2)
1.0e−4 (N · s ·mm−2) 5.0e−4 (mm2)

The results are shown in Figure 4.11 and 4.12.

The differences among the curves are very strong. Referring to the trends, and

focusing the attention on Figure 4.11b, the behavior of the curves can change a lot. In

particular, the more the curve loses its typical shape of a delamination test (i.e. without

the peak), the lower is the distance traveled by the crack in the medium. Moreover, for

exponential values starting from -6 up to -10, the curves converge into similar solutions.

Hence, a more detailed description of these solution-converging simulations have been

analyzed. Results are shown in Figure 4.12. Thus, for the following research, a dynamic

viscosity of 1.0e−9 N · s ·mm−2, which corresponds to water at 20 �C, will be used.

Four more plots (Figure 4.13 and 4.14) show how the intrinsic permeability plays

a fundamental role on the correct calibration of the model and how can it changes for

different meshes. Especially referring to Figure 4.13b and to Figure 4.13d, the meshes

lead to completely different solutions, even though the propagation does not loose its

typical stepwise advancement.

Since this moment, no strong argumentations can be given about the mesh indepen-

dence of the problem, therefore it was decided to create a new mesh, with the smallest

possible size allowed for the squared elements: 100 mm. The heaviness of the compu-

tation did not allow a further and more refined investigation.

Therefore, the new mesh counts 17702 elements and 12870 vertices. However, in
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(a) Medium mesh. (b) Medium mesh.

Figure 4.11: The two plots above show the influence of the intrinsic permeability and the
dynamic viscosity on the propagation of a fracture in a beam under Mode I cracking simu-
lations. (Since the detailed values are listed in Table 4.1, here they are indicated just with
the number of their exponential power, that is the same for Kint and µ). The higher is the
viscosity of the fluid, the more the fluid needs time to advance, since the tangential friction
is more important.

(c) Medium mesh. (d) Medium mesh.

Figure 4.12: Since the results of Figure 4.11 show a convergence of the solutions to low
permeability and low dynamic viscosity values analyzed, a more detailed study on those
values has been done with a magnification on the zone of interest. (Again, since the detailed
values are listed in Table 4.1, here they are indicated just with the number of their exponential
power, that is the same for Kint and µ).
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this configuration, the physical phenomenon challenges the numerical scheme. In fact,

stepwise growth of fractures in mode I propagation in porous media is difficult to see

considering a continuous pressure profile. Moreover the continuity of the problem,

needs a sufficiently fine mesh in order to resolve the steep pressure gradients by means

of the discretization. On the other hand, the advantage of using X-FEM, that guarantee

accurate solutions with quite rough meshes all over the continuum, is lost.

The results obtained seems to go in this direction. A stepwise behavior through

multiple elements can be seen, even if the problem should be investigated with a more

refined mesh. Sandstone material is studied, and the values reads:

� Kint = 5.0e−12 mm2

� µ = 1.0e−9 N · s ·mm−2

� Emod = 18 GPa

� Poisson�s Ratio = 0.275

� Tensile Strength = 3 MPa

� Fracture Toughness = 11.465 N
mm

What can be observed during a simulation can be divided into different parts. At

time t = 0 no forces act in the beam, no pre-stresses are applied into the material,

the structure has no initial deformations and a discontinuity is placed on the left side

in the middle. Then the boundary conditions are applied (see also Figure 4.3) but the

loading needs to overcome a threshold value before the crack starts its propagation

through the medium. The first two or three propagations have a bigger entity than

the following ones. In fact, later on, the process reach a stable stepwise advancement.

Here the pause time (from 7 up to 15 time steps) and the fracture progression (from 2

to 3 elements each jump), see Figure 4.15 and 4.16. Finally, in Figures 4.17 and 4.18

some parameters of interest are shown.
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(a) Kint = 5.0e−6 mm2. (b) Kint = 5.0e−12 mm2.

Figure 4.13: The intrinsic permeability plays a central role on the study of the mesh indepen-
dence problem. In fact, inadequate values may lead to wrong solutions or misunderstanding
scenarios. In these graphs the different behavior of the meshes gives completely different
solutions, especially for the less permeable material.

(c) Kint = 5.0e−6 mm2. (d) Kint = 5.0e−12 mm2.

Figure 4.14: These plots reflect the same aspects already underlined in Figure 4.13. Even
though a clear stepwise advancement can be seen in the less permeable material, the influence
of the mesh assumes a key role. This is not the case for the more permeable material, since
the three meshes present just tiny differences.
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(a) Time step = 327.

(b) Time step = 328.

Figure 4.15: Starting from a Paraview screenshot of the simulation, numbers have been
added below the zone of interest to identify each element. Here in particular attention is
focused on the jump of the fracture through two elements, in two following time steps, with
a redistribution of the underpressure zone in front of the tip.
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(a) Time step = 335.

(b) Time step = 336.

Figure 4.16: Here, attention has to be paid to the time steps in which this phenomenon
occurs. In fact, looking at Figures 4.15 and 4.16 together, it can be seen that two following
jumps are showed with a pause time in between (from time step 328 to 336). During the
quiescence time, the underpressure ahead the crack tip is redistributed in the material.
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(a) (b)

Figure 4.17: Pressure distribution (MPa) for the delamination test at t = 250 s. (a) for a
large part of the sample and (b) for a zoom around the crack tip.

(a) (b)

Figure 4.18: S22 (stress on y-plane) distribution at the end of the process. In the first picture
(a) an overall view of the beam is given, while in the second one (b) attention is focused on
the tip zone.

4.4: Discussion

Numerical simulations in mode I crack propagation (shear traction is assumed to remain

zero) of fractures in a fully saturated material are presented. The partition of unity
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approach is used to integrate cracks into the FEM. A discontinuity is inserted in the

displacement field by enhancing the field with the Heaviside function. The accuracy of

the numerical performance has been tested on several benchmarks.

A zero propagation angle was assumed in every propagation step. The results

obtained show the presence of a stepwise growth of the fracture along the cracking

path. Crack growth (i.e. the extension of the discontinuity) is governed by the stress

state at the tip.

When the stress state exceeds the value of the ultimate traction of the material, the

discontinuity propagates. Due to the pure mode I fracture conditions, the discontinuity

is extended when the maximum stress in tip in the direction perpendicular to the

weak interface (i.e. the y-direction) exceeds the normal strength. The presence of

a duration of a pause Δt between one jump and the following can be observed. A

possible explanation [89] is that an incompressible fluid consolidation comes into play

which prevents tip advancement until the underpressures due to the last advancement

have been dissipated, and the stress has been transferred again to the solid phase. This

means that pressure dips exist after each advancement stage. Instead, during the period

of quiescence, the effective stress is below the threshold. Hence, no advancement can be

seen. Underpressures keep the crack tip closed, while very high tractions in the cohesive

zone try to open the fracture. The stress state is first carried by the fluid, which results

in reduced pressures and attraction of fluid towards the crack tip. Crack propagation

velocity increased with higher permeability values. In the context of consolidation of

the porous material this can be explained as faster tensile stress transfer from the fluid

to the solid skeleton in the highly permeable material. The presence of periods of

quiescence is in accordance with previous literature [95]. Moreover, the results show

an attraction of fluid before the crack tip, while, along the sides of the crack fluid is

pushed from the crack into the bulk formation. The influence of the local mass balance

is considered. Decreasing the intrinsic permeability, the area of underpressure before

the crack tip reduces its dimensions without altering the crack path. When the material

is less stiff and permeable, the influence of the fluid becomes more profound and the

time needed to resolve the problem is bigger. Upon loading the effective stresses at the
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crack tip increases. Therefore the influence of the fluid flow on the crack propagation

is verified. The extension of the cohesive length through multiple elements is verified

as well (see also Figure 4.1).

However, the sudden propagation of the fracture from one time step to its following,

can only be seen through two or maximum three elements (see Figures 4.15 and 4.16).

While the reason of preparing meshes with different element sizes was to eventually put

in evidence a jump through much more elements. Identification of stepwise propagation

will be more clear if there is completely no mesh-dependent crack growth. This is why

this problem deserves further scrutiny.

Figure 4.4 shows that by lowering the pulling force, the time needed to reach the

ultimate strength increases.

Considering Figure 4.6, an indication about the mesh independence of the problem

can be detected. In fact, moving from rough to smooth mesh, the peaks of the curves

are almost aligned into one single d value, which means that the mesh is finer enough

not to be affected by variations of λ.

Referring to Figure 4.8 the influence of the porous material can be observed. If a

solid material was considered, the force needed for the propagation of the fracture (intf)

would have been the same. Instead, looking at the graphs, the blue line, corresponding

to λ = 0.3, needs a higher pulling force, and higher underpressures are detected at the

crack tip. On the contrary, applying a lower prescribed displacement (red line) the fluid

inside the beam, that initially carries the load, according to the consolidation theory,

has more time to transfer the stresses to the solid part. The time of consolidation is

approximately coupled to the Young’s modulus E and the hydraulic permeability K

(see Equation 4.5). In the second scenario, the fluid has more time to flow out. The

effects are even enhanced in the smooth mesh, since the reduced element sizes can

better describe the phenomenon.

However, the general picture of the failure (Figure 4.9) gives some indications that

the phenomenon is probably mesh independent. In fact, even though the curves are

slightly different, and the smooth mesh propagates earlier, because it better captures

the on going process, the general trend is the same and, continuously reducing the mesh
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sizes, it is reasonable to think that at a certain point, below a mesh-size threshold

value, there will be no more differences among the graphs. Which means that the

phenomenon would be mesh-independent. Unfortunately, further investigation was

not possible because of the presence of a certain number of limitations. Therefore,

what can be concluded is that, considering a sufficient low velocity for the prescribed

displacements and a sufficient fine mesh, a mesh independent problem coupled with

a stepwise crack propagation can be seen. The numerical results are qualitatively

consistent with the previous experimental work [71].

4.4.1: Limitations, recommendations and future work

The main limitation encountered during simulations concerned the duration of the

process. The computational time required by the simulations, especially for very dense

meshes, was too high (e.g. the last simulation presented took almost two weeks without

any interruption).

A consequence of using the continuous pressure profile is that the element size

around the discontinuity must be small enough to capture a pressure jump. This

interferes with the main advantage of X-FEM: X-FEM does not require a fine mesh.

Another limitation lies in the code itself. In fact, the discontinuity is not allowed

to stop in any part of an element that is not a boundary side (i.e. it cannot stop in the

middle of an element, thus stepwise advancement observed, especially in rough meshes,

can be misleading because it might not be a physical behavior).

Concerning the numerical implementation, improvements on the numerical calcula-

tion times can be made by changing the method on how the average stress is calculated.

In the current method the distance between the crack tip and every integration point

is calculated and assigned with a weight factor (defined with equation 2.75).

A possible and most important remediation for the first problem illustrated could be

the parallelization. This computer astuteness would allow to resolve the problems in a

faster way. Parallel computing is a form of computation in which many calculations are

carried out simultaneously, operating on the principle that large problems can often be
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divided into smaller ones, which are then solved concurrently (i.e. in parallel).

As far as the future work is concerned, there are many possible tips that have to

be implemented.

First of all, gravity should be taken into account on the code in order to make it

more realistic.

Another work of interest, that could be useful for Oil & Gas industries, would be

a complete characterization of the materials used in the simulations. In fact, while

sandstone presents more or less the same properties wherever in the world, shale rock

may vary a lot (J.M.R.J. Huyghe, personal communication). This is the reason why

in this Project sandstone has been chosen.

Moreover, despite sandstone materials, shale rock formations present a swelling

behavior during hydraulic fracturing processes. Hence, also this characteristic should be

accounted for in the code. In order to better represent the behavior of rock formations

submitted to fracturing processes, it would be better to consider a special orthotropic

material: a transverse isotropic material. A transversely isotropic material is one

characterized by physical properties which are symmetric with respect to an axis that

is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry.

Hence, within this plane, the material properties are the same in all directions. Such

materials are also known as “polar anisotropic” materials. Details will be given in

Appendix B.

An interesting next step is to extend the current method to 3D situations, especially

for hydraulic fracturing. X-FEM has been used before in 3D situations but none of

them addressed hydraulic fracturing [88]. However, some more experimental tests

should be performed in order to validate the numerical models developed, especially

to investigate the stepwise propagation behavior.

Finally, the stepwise advancement may be relevant for earthquake engineering [89].

Thus, a possible further investigation could be the coupling between the current code

and a tool for capturing and solving the acoustic wave propagation related to hydraulic

fracturing operations and, probably, to the physical stepwise advancement. This could
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lead to sharply capture pressure fluctuations and acoustic wave propagations simulta-

neously and, therefore, to better understand the stepwise advancement.



5: Conclusions

In this Thesis a X-FEM formulation for 2D poroelasticity is presented. The numerical

model can simulate crack propagation for Mode I of fracture mechanics in a fully

saturated medium. The fluid flow from the formation into the crack is accounted for.

The research goal has been investigated analyzing the behavior of three similar meshes

characterized by the fact of having different mesh sizes. Crack propagation occurs

firstly, and by applying a lower load, for smoother meshes than coarsest ones. In the

context of consolidation phenomenon of the porous material, this can be explained as a

more accurate tensile stress transfer from the fluid to the solid skeleton. With respect

to the mesh independence problem, the numerical model is robust for stiffer materials

with a short process zone (low fracture toughness). The permeability of the material

also plays a key role.

From this work it can be concluded that the model is, at least, not mesh dependent.

A weak mesh independence of the model has been shown, although a finer mesh is

needed. Indications about a physical stepwise advancement of the fracture through the

material have been found. However, more efficient calculation systems need to be used

before such a conclusion can be drawn. Comparing rough meshes with more refined

meshes, the X-FEM model seems to yield smooth solutions for a phenomenon which

in nature is not smooth. The results of this work strongly indicate that the X-FEM

in combination with a cohesive law description can become a reliable tool to model

stepwise fracture propagation in porous materials. Therefore, further experimental

and numerical analysis are required. Finally, from an industrial point of view the main

question is whether this kind of X-FEM model can be extended to three-dimensional

hydraulic fracturing situations.
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Appendix A

Accuracy of the numerical model

The accuracy of the numerical model has been tested with different known analytical

solutions [74]. Here two examples of interest, with respect to the target of the work, are

performed. However, note that these examples do not consider fracturing processes.
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(a) Representation of the 1D consolidation
problem.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

Normalized pressure (−)

S
oi

l d
ep

th
 (m

)
0.01

0.11
0.23

0.390.590.99

FEM
Analytical solution

(b) Normalized pressure in the soil for vari-
ous times. The number in the line represents
a normalized time defined as td = ckt

H2 . The
analytical solution is borrowed from Terzaghi
[93, 94].

Figure 1: 1D consolidation problem.

A 1D consolidation problem is considered (Figure 1a). The top surface is drained,

so that p = 0, and it is vertically loaded with a load σyy. The bottom surface is

100
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constrained, thus displacements are not allowed in both directions, moreover it is also

impervious δp
δy

= 0. The two vertical walls are also impervious and constrained in x-

direction, forcing fluid flow through the top surface. The analytical solution based on

Terzaghi’s theory can be found in [54, 24]. The parameters used in the numerical model

are listed in Table 1. The mesh is made of squared elements with width Δx = 0.1m.

The normalized hydrostatic pressure of the soil is shown in Figure 1b at various

times. Consolidation behavior can be observed. At early times, almost all the load is

carried by the water. Water flows out of a slice of the porous material and the load

is carried by the solid skeleton. The numerical model calculates a hydrostatic pressure

distribution, that is consistent with Terzaghi’s analytical solution.

Table 1: Model parameters used for the consolidation benchmark.

E = 3.0e4 [Pa] H = 10 [m] σyy = 1000 [Pa]
ν = 0.2 [-] Δt = 600 [s]

k = 10e-10 [m
4

Ns
] θ̄ = 1.0 [-]

Mandel Cryer (unconfined compression)

Biot’s theory of poroelasticity [17] describes the coupling between mechanical and

pressure responses. This coupling is not present in the original consolidation theory

presented by Terzaghi. In 1953 Mandel [61] presented a solution of Biot’s consolidation

theory for a cylindrical sample compressed between two parallel plates. This solution

describes a non-monotonic pressure response. In 1963 Cryer [25] obtained a similar

response at the center of a sphere that consolidates under a hydrostatic pressure. Both

results quantify the effect of the Poisson’s ratio on the development and dissipation of

the pore pressure and are now referred to as the Mandel-Cryer effect [4, 23].

In Mandel’s problem a cross-section of a poroelastic infinitely long sample is placed

between two rigid plates (Figure 2). Due to the infinite length of the specimen the

problem can be considered as a plane strain problem. Both sides of the specimen

are stress-free in normal and shear direction and free drainage is prescribed with zero

pressure. The two rigid plates are impervious. All model parameters are given in Table



Appendix A 102

Table 2: Model parameters used in the isotropic Mandel-Cryer benchmark.

E = 1.5 [Mpa] a = 2.5 [mm] B = 1.0 [-]
ν = 0.2 [-] b = 0.5 [mm] Δt = 150 [s]
νu = 0.5 [-] F = 0.05 [N] θ̄ = 1.0 [-]

k = 2.8e-4 [mm
4

Ns
]

2b

2a

2F

2F

x

y

p=0p=0

Figure 2: Scheme of the Mandel-Cryer problem.

2. The mesh consists of squared elements with a element size Δx = 0.05mm.

At time t = 0+ a uniform compression force of 2F is applied to both plates. This

initially creates a uniform pore pressure generated by the so-called Skempton effect.

The initial pore pressure is half the amount of the applied load (F
a
). Due to free

drainage at the lateral sides the pressure dissipates. The initial pore pressure is added

to the compressive stiffness of the sample. At the lateral sides drainage is faster than

in the middle of the sample. A load transfer occurs from the softer sides towards the

stiffer center. This initially causes the pressure in the center to increase above the

initial pressure jump. Eventually all the pore pressure must dissipate due to the free

drainage.

Mandel presented only the exact solution for the pore pressure. Both solid and fluid

constituents are assumed to be incompressible and the material is considered isotropic.

Cheng and Detournay [23] listed the solutions for the displacement, stress, pressure
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and flow for the Mandel problem. The normalized pressure for several times across the

sample can be seen in Figure 3. The rise of pore pressure in the center is observed

for the first two times plotted in Figure 3. This is also shown in Figure 4a, where the

pressure in the center of the sample is plotted as a function of time. Validations of the

numerical model with the analytical solutions for the x-displacement of the right side,

y-displacement of the top plate, and flow in x-direction, at the right side are shown in

Figure 4.
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Figure 3: Normalized pressure pa
F over the sample in x-direction, where x = 0 is in the

center. The numbers drawn in the line indicate the time in seconds. Analytical solution from
Mandel(1953) [61].

In a confined compression situation the numerical model calculates a hydrostatic

pressure distribution that is consistent with Terzaghi’s theory (Figure 1b). At early

times the difference between the numerical result and the analytical solution is most

significant. This difference decreases over time. The analytical solution is slightly in
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(a) The pore pressure response (MPa) in the
center of the sample over time. It can be seen
that there is a non-monotonic pressure increase
shortly after the loading.
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(c) The y displacement (mm) of the top plate
shown as a function of time (s).
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Figure 4: Results for Mandel’s problem. Analytical solutions from Cheng and Detournay
[23].
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front of the numerical result at later times. Similar behavior is found in the Mandel

Cryer problem (Figure 3). Here the difference between the analytical and numerical

values increases over time. The lagging behind of the numerical solution could be

attributed to the implicit time scheme used. However, the problem did not disappear

by using a Cranck-Nicholson (θ̄ = 0.5) time scheme. Taking a time step closer to the

minimum time step in equation (2.67) may reduce the effect [55].

It can be concluded that the two accuracy checks are fulfilled successfully.
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Transverse Isotropy

This section describes the constitutive behavior of a transverse isotropic material. Such

a material is an orthotropic material with one plane of isotropy. This section has

been introduced since the simulations of this Thesis considers an isotropic material.

However, in order to better describe a shale/sandstone rock formation, a transverse

isotropic material would be more adequate. Here, the mathematical formulation of the

problem, that can be implemented in the code, is given.

A material with parallel fibers in one direction which are randomly distributed in

the cross-section satisfies this description. A plane strain description in the x-y plane

is assumed. It is assumed also that the fibers are aligned in the x∗ direction (see Figure

5). The linear elastic constitutive effective stress formulation under small deformations

is the following [4]:




σ∗
exx

σ∗
eyy

σ∗
exy


 = S∗

ani




�∗xx

�∗yy

γ∗
xy


 (1)

with S∗
ani being a [3x3] stiffness matrix:

S∗
ani =




E2
l (1−νtt)

El(1−νtt)−2Etν2lt

ElEtνlt
El(1−νtt)−2Etν2lt

0

ElEtνlt
El(1−νtt)−2Etν2lt

Et(El−Etν2lt)

(1+νtt)[El(1−νtt)−2Etν2lt]
0

0 0 Glt


 (2)

here El and Et are respectively the longitudinal and transversal Young’s modulus, νlt

and νtt are the Poisson’s ratios representing the compressive strain in the direction of

the second subscript due to a tensile stress in the direction of the first subscript, and

Glt is the shear modulus in the x-y plane. Here, based on symmetry, the following
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identity was used:

νlt
El

=
νtl
Et

(3)

The stress strain relations used in the numerical model are defined in the global x-y

coordinate system. It is therefore necessary to transform the stress σ
�
∗ to the global

stress σ
�
. This can done by applying the following matrix transformations:[44]

σ
�
∗ = Tσ

�
(4)

�
�
∗ = RTR−1�

�
(5)

where Tr is the rotation matrix:

Tr =




cos2 θf sin2 θf 2 sin θf cos θf

sin2 θf cos2 θf −2 sin θf cos θf

− sin θf cos θf sin θf cos θf cos2 θf − sin2 θf


 (6)

The matrix R is introduced because the transformation rule is only valid for elastic

shears [44]. The factor 2 in matrix R accounts for the difference between the elastic

and engineering shear strain in the constitutive equation.

R =




1 0 0

0 1 0

0 0 2


 (7)

Equation (1) can be written in short as:

σ
�
∗ = S∗

ani�
∗
�

(8)
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and for the stress in the global coordinate system:

σ
�
= Sani��

(9)

Filling in equations (4) and (5) in (8) results in:

σ
�
= T−1

r S∗
aniRTrR

−1�
�

(10)

Thus the stress strain relation in the global x-y coordinate system for a transverse

isotropic material rotated with angle θf is given by stiffness matrix Sani:

Sani = T−1
r S∗

aniRTrR
−1 (11)

y

x

y

x

y

x

y*

x*

Figure 5: Representation of the fibers rotated around an angle θf in the x-y coordinate
system.
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strana commozione. Perchè insieme abbiamo fatto un gran bel viaggio, a ben

guardare! (E molti altri ancora ci attendono..).

Ci sono stati anche momenti “pieni di oscurità e di pericolo”, come dice Sam,
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perchè “non dovremmo nemmeno essere qui. Ma ci siamo” con il nostro bisogno e il
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