UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Corso di Laurea Magistrale in Ingegneria Meccanica

APPLICAZIONE DI APPROCCI LOCALI ALLA RESISTENZA A FATICA DI GIUNTI SALDATI LASFR

Corelatore: Ing. ALBERTO CAMPAGNOLO

Relatore: Prof. GIOVANNI MENEGHETTI

Laureando: MIRKO DAVI - 1146428

ANNO ACCADEMICO 2017-2018

Indice

Ind	ce	1
1	Capitolo 1: INTRODUZIONE	. 1
1.1	I giunti saldati laser	.1
2	Capitolo 2: MECCANICA DELLA FRATTURA	.4
2.1	Meccanica della frattura lineare elastica (MFLE) per intagli a V a spigolo	
	vivo	.4
2.2	Intagli a V: campi di tensione e Notch Stress Intensity Factor (NSIF)	.5
2.3	Applicazione: intagli con 2α fissato e modo I di sollecitazione	.6
2.4	Peak Stress Method	10
2.5	Applicazione: intagli con 2α diverso e modo I+II di sollecitazione	10
	2.5.1 Criterio basato sulla densità di energia di deformazione	
	mediata (SED)	11
	2.5.2 Calcolo del SED mediato	13
	2.5.3 Termini di ordine superiore al primo	15
3	Capitolo 3: ANALISI SPERIMENTALI ARTICOLO REMES	17
3.1	Campioni sperimentali	17
3.2	Test a fatica	18
3.3	Elaborazione risultati sperimentali	20
3.4	Analisi statistica geometria campioni sperimentali	22
3.5	Modellazione analisi Elementi Finiti	31
3.6	Risultati analisi FEM	34
	3.6.1 Sforzo assiale	36
3.7	Applicazione Peak Stress Method (PSM) ai dati sperimentali	40
3.8	Analisi SED	45
4	Capitolo 4: ANALISI SPERIMENTALI ARTICOLO WIEBESIEK	47
4.1	Campioni sperimentali	47
4.2	Test a fatica	48
4.3	Elaborazione risultati sperimentali	48
4.4	Modellazione analisi Elementi Finiti	51
4.5	Risultati analisi FEM	52

	4.5.1	Sforzo assiale	54
	4.5.2	Torsione	56
4.6	Applica	zione Peak Stress Method (PSM) ai dati sperimentali	59
4.7	Analisi S	SED	65
5	Capitolo	5: ANALISI SPERIMENTALI ARTICOLO SONSINO	67
5.1	Campio	ni sperimentali	67
5.2	Test a fa	atica	67
5.3	Elabora	zione risultati sperimentali	68
5.4	Modella	zione analisi Elementi Finiti	71
5.5	Risultati	analisi FEM	72
	5.5.1	Sforzo assiale	74
	5.5.2	Torsione	76
5.6	Applica	zione Peak Stress Method (PSM) ai dati sperimentali	79
5.7	Analisi S	SED	
6	Capitolo	6: ANALISI SPERIMENTALI ARTICOLO BRUDER	87
6.1	Campio	ni sperimentali	87
6.2	Test a fa	atica	87
6.3	Elabora	zione risultati sperimentali	88
6.4	Modella	zione analisi Elementi Finiti	91
6.5	Risultati	analisi FEM	92
	6.5.1	Sforzo assiale	94
	6.5.2	Torsione	96
6.6	Applica	zione Peak Stress Method (PSM) ai dati sperimentali	
6.7	Analisi S	SED	105
7	Capitolo	7: ANALISI SPERIMENTALI ARTICOLO ASIM	107
7.1	Campio	ni sperimentali	107
7.2	Test a fa	atica	107
7.3	Elabora	zione risultati sperimentali	108
7.4	Modella	zione analisi Elementi Finiti	111
7.5	Risultati	analisi FEM	112
	7.5.1	Sforzo assiale	114
7.6	Applica	zione Peak Stress Method (PSM) ai dati sperimentali	117

7.7	Analisi SED	
7.8	Analisi 3D SED	124
8	Capitolo 8: ANALISI SPERIMENTALI ARTICOLO ALBRIGHT	
8.1	Campioni sperimentali	127
8.2	Test a fatica	
8.3	Elaborazione risultati sperimentali	128
8.4	Modellazione analisi Elementi Finiti	130
8.5	Risultati analisi FEM	131
	8.5.1 Sforzo assiale	133
8.6	Applicazione Peak Stress Method (PSM) ai dati sperimentali	136
8.7	Analisi SED	141
9	Capitolo 9: ANALISI SPERIMENTALI ARTICOLO ZHANG	
9.1	Campioni sperimentali	144
9.2	Test a fatica	145
9.3	Elaborazione risultati sperimentali	145
9.4	Modellazione analisi Elementi Finiti	147
9.5	Risultati analisi FEM	148
	9.5.1 Sforzo assiale	150
9.6	Applicazione Peak Stress Method (PSM) ai dati sperimentali	152
9.7	Analisi SED	157
10	Capitolo 10: ANALISI SPERIMENTALI EIBL	
10.1	1Campioni sperimentali	160
10.2	2Test a fatica	
10.3	3Elaborazione risultati sperimentali	163
10.4	4Modellazione analisi Elementi Finiti	170
10.5	5Risultati analisi FEM	171
	10.5.1 Sforzo assiale	173
10.6	6Applicazione Peak Stress Method (PSM) ai dati sperimentali	175
10.7	7Analisi SED	
11	Capitolo 11: BANDE DI PROGETTAZIONE A FATICA P	ER GIUNTI
LASE	R 193	
11.1	1Local biaxiality ratio	

11.2B	ande di progettazionpresenti in letteratura	197
12	CONCLUSIONI	204
13	Bibliografia	205

Elenco figure

Figura 1.1: Esempio di schema della saldatura laser [2]	1
Figura 1.2: Esempio di applicazione industriale della saldatura laser nel settore	
automotive	2
Figura 2.1: Modo I e modo II di sollecitazione	4
Figura 2.2: Equivalenza tra intaglio con raggio di raccordo piccolo e cricche	5
Figura 2.3: Sistema di riferimento all'apice dell'intaglio	5
Figura 2.4: Andamento singolarità di Williams al varie dell'angolo 2α	6
Figura 2.5: Equivalenza tra $\Delta K_1 e N_f$	7
Figura 2.6: Esempio di giunto saldato con intaglio a V a spigolo vivo con angolo di	
apertura $2\alpha = 135^{\circ}$	7
Figura 2.7: Esempio di categorie di dettagli dell'Eurocodice	9
Figura 2.8: Schema e nomenclatura dei campioni sperimentali esaminati [1]	14
Figura 3.1: Schema e nomenclatura dei campioni sperimentali esaminati [2]	18
Figura 3.2: Modalità di applicazione del carico	19
Figura 3.3: Risultati sperimentali a fatica campioni FWA FWB FWC FWE (sforzo	
assiale)	21
Figura 3.4: Risultati sperimentali a fatica campioni T (sforzo assiale)	21
Figura 3.5: Variabilità spessore saldatura per i campioni analizzati	26
Figura 3.6: Variabilità eccentricità saldatura per i campioni analizzati	28
Figura 3.7: Distribuzione statistica dello spessore di saldatura $t_{web} = 8 \text{ mm}$	29
Figura 3.8: Distribuzione statistica dello spessore di saldatura t_{web} = 12 mm	29
Figura 3.9: Distribuzione statistica dello spessore di saldatura t_{web} = 4 mm	30
Figura 3.10: Sistema di vincolo adottato sperimentalmente	31
Figura 3.11: Confronto in tensione equivalente fra modello con contatti e modello	
con vincoli di incastro	32
Figura 3.12: Modello FEM analizzato	33
Figura 3.13: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio	34
Figura 3.14: Risultati analisi FEM: tensione σ_{yy} , caso $t_{web} = 8$ mm	35

<i>Figura 3.15: Risultati analisi FEM: tensione locale</i> σ_{yy} <i>ad apice intaglio, caso t</i> _{web} =	
8 mm	35
Figura 3.16: Tensione locale σ_{xx} ad apice intaglio	36
Figura 3.17: NSIF factor ΔK_1	37
Figura 3.18: Tensione locale σ_{xx} ad apice intaglio	38
Figura 3.19: NSIF factor ΔK_1	39
Figura 3.20: Schema di vincolo utilizzato	41
Figura 3.21: Mesh dei campioni sperimentali (PSM) con eccentricità saldatura e	
vincoli aggiuntivi. Esempio dei risultati ottenuti in termini di tensione	
principale 11	41
Figura 3.22: Tensione principale 11 di picco in corrispondenza dell'apice	
dell'intaglio	42
Figura 3.23: Risultati dei campioni sperimentali rielaborati con il PSM in termini di	
tensione equivalente di picco per i campioni FWA FWB FWC FWE	44
Figura 3.24: Risultati dei campioni sperimentali rielaborati con il PSM in termini di	
tensione equivalente di picco per i campioni T	44
Figura 3.25: Mesh dei campioni sperimentali (SED)	45
Figura 4.1: Schema e nomenclatura dei campioni sperimentali esaminati [9]	47
Figura 4.2: Risultati sperimentali a fatica (sforzo assiale)	50
Figura 4.3: Risultati sperimentali a fatica (torsione e combinati)	50
Figura 4.4: Modello FEM analizzato	51
Figura 4.5: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio	52
Figura 4.6: Risultati analisi FEM: tensione σ_{xx}	53
Figura 4.7: Risultati analisi FEM: tensione locale σ_{xx} ad apice intaglio	53
Figura 4.8: Tensione locale σ_{xx} ad apice intaglio	54
Figura 4.9: NSIF factor ΔK_1	55
Figura 4.10: Tensione locale τ_{xy} ad apice intaglio	56
Figura 4.11: NSIF factor ΔK_2	56
Figura 4.12: Tensione locale τ_{xz} ad apice intaglio	57
Figura 4.13: NSIF factor ΔK_3	58
Figura 4.14: Schema di vincolo utilizzato	60

Figura 4.15: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in	
termini di tensione τ_{xz} per il caso di torsione	61
Figura 4.16: Tensione τ_{xz} di picco in corrispondenza dell'apice dell'intaglio	61
Figura 4.17: Dati sperimentali rielaborati in termini di $\Delta \sigma eq$	64
Figura 4.18: Mesh dei campioni sperimentali (SED)	65
Figura 5.1: Schema e nomenclatura dei campioni sperimentali esaminati [10]	67
Figura 5.2: Risultati sperimentali a fatica (sforzo assiale)	70
Figura 5.3: Risultati sperimentali a fatica (torsione e combinati)	70
Figura 5.4: Modello FEM analizzato.	71
Figura 5.5: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio.	72
Figura 5.6: Risultati analisi FEM: tensione σ_{xx}	73
Figura 5.7: Risultati analisi FEM: tensione locale σ_{xx} ad apice intaglio	74
Figura 5.8: Tensione locale σ_{xx} ad apice intaglio	74
Figura 5.9: NSIF factor ΔK_1	75
Figura 5.10: Tensione locale τ_{xy} ad apice intaglio	76
Figura 5.11: NSIF factor ΔK_2	76
Figura 5.12: Tensione locale τ_{xz} ad apice intaglio	77
Figura 5.13: NSIF factor ΔK_3	78
Figura 5.14: Schema di vincolo utilizzato	80
Figura 5.15: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in	
termini di tensione τ_{xz} per il caso di torsione	81
Figura 5.16: Tensione τ_{xz} di picco in corrispondenza dell'apice dell'intaglio	81
Figura 5.17: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$	83
Figura 5.18: Mesh dei campioni sperimentali (SED).	84
Figura 6.1: Schema e nomenclatura dei campioni sperimentali esaminati [11]	87
Figura 6.2: Risultati sperimentali a fatica (sforzo assiale)	90
Figura 6.3: Risultati sperimentali a fatica (torsione e combinati)	90
Figura 6.4: Modello FEM analizzato.	91
Figura 6.5: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio.	92
Figura 6.6: Risultati analisi FEM: tensione σ_{xx}	93

Figura 6.7: Risultati analisi FEM: tensione locale σ_{xx} ad apice intaglio	93
Figura 6.8: Tensione locale σ_{xx} ad apice intaglio	94
Figura 6.9: NSIF factor ΔK_1	95
Figura 6.10: Tensione locale τ_{xy} ad apice intaglio	96
Figura 6.11: NSIF factor ΔK_2	96
Figura 6.12: Tensione locale τ_{xz} ad apice intaglio	97
Figura 6.13: NSIF factor ΔK_3	98
Figura 6.14: Schema di vincolo utilizzato	100
Figura 6.15: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in	
termini di tensione τ_{xz} per il caso di torsione	101
Figura 6.16: Tensione τ_{xz} di picco in corrispondenza dell'apice dell'intaglio	101
Figura 6.17: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$	104
Figura 6.18: Mesh dei campioni sperimentali (SED)	105
Figura 7.1: Schema e nomenclatura dei campioni sperimentali esaminati [12]	107
Figura 7.2: Ingrandimento della saldatura laser con quota [12]	108
Figura 7.3: Risultati sperimentali a fatica (sforzo assiale)	110
Figura 7.4: Modello FEM analizzato	111
Figura 7.5: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio	112
Figura 7.6: Risultati analisi FEM: tensione τ_{xy}	113
Figura 7.7: Risultati analisi FEM: tensione locale τ_{xy} ad apice intaglio	113
Figura 7.8: Tensione locale σ_{xx} ad apice intaglio	114
Figura 7.9: NSIF factor ΔK_1	115
Figura 7.10: Tensione locale τ_{xy} ad apice intaglio	116
Figura 7.11: NSIF factor ΔK_2	116
Figura 7.12: Schema di vincolo utilizzato	118
Figura 7.13: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in	
termini di tensione τ_{xy}	118
Figura 7.14: Tensione τ_{xy} di picco in corrispondenza dell'apice dell'intaglio	119
Figura 7.15: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$	121
Figura 7.16: Mesh dei campioni sperimentali (SED)	122
Figura 7.17: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$	124

Figura 7.18: Modello 3D Asim	. 125
Figura 7.19: Risultati SED FEM 3D Asim	. 126
Figura 8.1: Schema e nomenclatura dei campioni sperimentali esaminati [13]	. 127
Figura 8.3: Risultati sperimentali a fatica (sforzo assiale)	. 129
Figura 8.2: Modello FEM analizzato	. 130
Figura 8.3: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio	. 131
Figura 8.4: Risultati analisi FEM: tensione τ_{xy} .	. 132
Figura 8.5: Risultati analisi FEM: tensione locale τ_{xy} ad apice intaglio	. 132
Figura 8.6: Tensione locale σ_{xx} ad apice intaglio	. 133
Figura 8.7: NSIF factor ΔK_1	. 134
Figura 8.8: Tensione locale τ_{xy} ad apice intaglio	. 135
Figura 8.9: NSIF factor ΔK_2	. 135
Figura 8.10: Schema di vincolo utilizzato	. 137
Figura 8.11: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in	
termini di tensione τ_{xy}	. 137
Figura 8.12: Tensione τ_{xy} di picco in corrispondenza dell'apice dell'intaglio	. 138
Figura 8.13: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$. 140
Figura 8.14: Mesh dei campioni sperimentali (SED)	. 141
Figura 8.15: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$. 143
Figura 9.1: Schema e nomenclatura dei campioni sperimentali esaminati [15]	. 144
Figura 9.2: Risultati sperimentali a fatica (sforzo assiale)	. 146
Figura 9.3: Modello FEM analizzato	. 147
Figura 9.4: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio	. 148
Figura 9.5: Risultati analisi FEM: tensione τ_{xy}	. 149
Figura 9.6: Risultati analisi FEM: tensione locale τ_{xy} ad apice intaglio	. 149
Figura 9.7: Tensione locale σ_{yy} ad apice intaglio	. 150
Figura 9.8: NSIF factor ΔK_1	. 151
Figura 9.9: Schema di vincolo utilizzato	. 153
Figura 9.10: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in	
termini di tensione σ_{yy}	. 153

Figura 9.11: Tensione σ_{yy} di picco in corrispondenza dell'apice dell'intaglio	. 154
Figura 9.12: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$. 156
Figura 9.13: Mesh dei campioni sperimentali (SED)	. 157
Figura 9.14: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$. 159
Figura 10.1: Dimensioni geometriche campioni lap joints [17]	. 160
Figura 10.2: Dimensioni geometriche campioni tube [17]	. 161
Figura 10.3: Dimensioni geometriche campioni peel [17]	. 161
Figura 10.4: Dimensioni geometriche campioni hut-profile [17]	. 162
Figura 10.5: Dimensioni larghezza saldatura in base materiale e spessore lamiere	
saldate [17]	. 162
Figura 10.6: Risultati sperimentali a fatica geometria lap joints (sforzo assiale)	. 164
Figura 10.7: Risultati sperimentali a fatica geometria tube (sforzo assiale)	. 166
Figura 10.8: Risultati sperimentali a fatica geometria tube (torsione)	. 166
Figura 10.9: Risultati sperimentali a fatica geometria peel (sforzo assiale)	. 168
Figura 10.10: Risultati sperimentali a fatica geometria hut-profile (torsione)	. 169
Figura 10.11: Modello FEM analizzato per geometria peel	. 170
Figura 10.12: Graduale infittimento della mesh in corrispondenza dell'apice	
dell'intaglio	. 171
Figura 10.13: Risultati analisi FEM: tensione σ_{xx} per geometria peel	. 172
Figura 10.14: Risultati analisi FEM: tensione locale σ_{xx} ad apice intaglio	. 172
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio	. 173
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1	. 173 . 174
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato	. 173 . 174 . 176
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti	. 173 . 174 . 176
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx}	173 174 176 176
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio	. 173 . 174 . 176 . 176 . 176 . 177
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio Figura 10.20: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$. 173 . 174 . 176 . 176 . 177 . 182
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio Figura 10.20: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$ Figura 10.21: Dati sperimentali geometria tube (sforzo assiale) rielaborati in	. 173 . 174 . 176 . 176 . 176 . 177 . 182
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 . Figura 10.17: Schema di vincolo utilizzato. Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio Figura 10.20: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$ Figura 10.21: Dati sperimentali geometria tube (sforzo assiale) rielaborati in termini di $\Delta \sigma_{eq}$. 173 . 174 . 176 . 176 . 177 . 182 . 182
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio Figura 10.20: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$ Figura 10.21: Dati sperimentali geometria tube (sforzo assiale) rielaborati in termini di $\Delta \sigma_{eq}$ Figura 10.22: Dati sperimentali geometria tube (torsione) rielaborati in termini di	. 173 . 174 . 176 . 176 . 177 . 182 . 182
Figura 10.15: Tensione locale σ_{xx} ad apice intaglio Figura 10.16: NSIF factor ΔK_1 Figura 10.17: Schema di vincolo utilizzato Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio Figura 10.20: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$ Figura 10.21: Dati sperimentali geometria tube (sforzo assiale) rielaborati in termini di $\Delta \sigma_{eq}$ Figura 10.22: Dati sperimentali geometria tube (torsione) rielaborati in termini di $\Delta \sigma_{eq}$.	. 173 . 174 . 176 . 176 . 176 . 177 . 182 . 182 . 182

Figura 10.24: Dati sperimentali geometria hut-profile rielaborati in termini di $\Delta \sigma_{eq}$ 184
Figura 10.25: Mesh dei campioni sperimentali (SED)
Figura 10.26: Confronto SED tra analisi piccoli spostamenti e grandi spostamenti
per i campioni peel spessore t=0.8mm
Figura 10.27: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta\sigma_{eq}$ 197
Figura 10.28: Dati sperimentali geometria peel rielaborati in termini di $\Delta\sigma_{eq}$ 192
Figura 10.29: Dati sperimentali geometria hut-profile rielaborati in termini di $\Delta\sigma_{eq}$ 192
Figura 11.1: Riassunto dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$
Figura 11.2: Suddivisione in classi dei dati in base al L.B.R
Figura 11.3: Riassunto dati con banda Meneghetti Lazzarin k=3 198
Figura 11.4: Riassunto dati con banda Meneghetti Lazzarin k=3.72
Figura 11.5: Riassunto dati con banda Lazzarin, Berto, Atzori k=3.72
Figura 11.6: Riassunto dati con banda Meneghetti Lazzarin k=5
Figura 11.7: Riassunto dati con banda Meneghetti Lazzarin modificata con $k=3.72$,
L.B.R. <0.56
Figura 11.8: Riassunto dati con banda Meneghetti Lazzarin modificata con $k=5$,
L.B.R. >0.82
Figura 11.9: Riassunto dati con banda Meneghetti Lazzarin modificata con $k=5$,
L.B.R. >0.82, esclusa geometria shear202

Elenco tabelle

Tabella 3.1: Proprietà e geometria dei campioni sperimentali. 1	9
Tabella 3.2: Elaborazione risultati sperimentali per serie di campioni FWA FWB	
FWC FWE (sforzo assiale)	20
Tabella 3.3: Elaborazione risultati sperimentali per serie di campioni T (sforzo	
assiale)2	20
Tabella 3.4: Andamento spessori saldatura ed eccentricità lungo i campioni	
analizzati2	24
Tabella 3.5: valori di ΔK_1 e ΔK_2 ottenuti considerando l'eccentricità media dello	
spessore di saldatura e i vincoli aggiuntivi (PSM)4	12
Tabella 3.6: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	
sperimentali analizzati	13
Tabella 3.7: Confronto tra i NSIFs calcolati con mesh fitte e PSM	16
Tabella 3.8: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
PSM	16
Tabella 4.1: Proprietà e geometria dei campioni sperimentali, materiale St35 [9] 4	18
Tabella 4.2: Elaborazione risultati sperimentali per serie di campioni (sforzo	
assiale)4	18
Tabella 4.3: Elaborazione risultati sperimentali per serie di campioni (torsione e	
combinati)	19
Tabella 4.4: valori di $\Delta K1$, $\Delta K2$ e $\Delta K3$ (PSM)	52
Tabella 4.5: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	
sperimentali analizzati	33
Tabella 4.8: Confronto tra i NSIFs calcolati con mesh fitte e PSM	6
Tabella 4.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
<i>PSM</i>	6
Tabella 5.1: Proprietà e geometria dei campioni sperimentali, materiale St35 [10] 6	38
Tabella 5.2: Elaborazione risultati sperimentali per serie di campioni (sforzo	
assiale)	38

Tabella 5.3: Elaborazione risultati sperimentali per serie di campioni (torsione e	
<i>combinati)</i> 6	39
Tabella 5.4: valori di $\Delta K1$, $\Delta K2$ e $\Delta K3$ (PSM)8	32
Tabella 5.5: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	
sperimentali analizzati8	32
Tabella 5.6: Confronto tra i NSIFs calcolati con mesh fitte e PSM8	35
Tabella 5.7: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
<i>PSM</i>	35
Tabella 6.1: Proprietà e geometria dei campioni sperimentali, materiale St35 [11]8	37
Tabella 6.2: Elaborazione risultati sperimentali per serie di campioni (sforzo	
assiale)	38
Tabella 6.3: Elaborazione risultati sperimentali per serie di campioni (torsione e	
combinati)8	39
Tabella 6.4: valori di $\Delta K1$, $\Delta K2$ e $\Delta K3$ (PSM))2
Tabella 6.5: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	
sperimentali analizzati10)3
Tabella 6.6: Confronto tra i NSIFs calcolati con mesh fitte e PSM 10)6
Tabella 6.7: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
<i>PSM</i>)6
Tabella 7.1: Proprietà e geometria dei campioni sperimentali, materiale HSLA [12]10)8
Tabella 7.2: Elaborazione risultati sperimentali per serie di campioni (sforzo	
assiale))9
Tabella 7.3: valori di $\Delta K1$, $\Delta K2$ (PSM)	19
Tabella 7.4: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	
sperimentali analizzati	20
Tabella 7.5: Confronto tra i NSIFs calcolati con mesh fitte e PSM 12	22
Tabella 7.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
<i>PSM</i>	23
Tabella 7.7: Tensione equivalente di picco ricavata da SED FEM	23
Tabella 8.1: Proprietà e geometria dei campioni sperimentali, materiale AISI 1008	
[13]	28

Tabella 8.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).	128
Tabella 8.3: valori di $\Delta K1$, $\Delta K2$ (PSM)	138
Tabella 8.4: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	120
	139
Tabella 8.5: Confronto tra i NSIFs calcolati con mesh fitte e PSM	142
Tabella 8.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e DSM	1 1 7
	142
Tabella 8./: Tensione equivalente di picco ricavata da SED FEM	142
Tabella 9.1: Proprietà e geometria dei campioni sperimentali, materiale Stl1403	145
Tabella 9.2: Elaborazione risultati sperimentali per serie di campioni (sforzo	
assiale)	145
Tabella 9.3: valori di $\Delta K1$ (PSM)	154
Tabella 9.4: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni	
sperimentali analizzati	155
Tabella 9.5: Confronto tra i NSIFs calcolati con mesh fitte e PSM	158
Tabella 9.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
PSM	158
Tabella 9.7: Tensione equivalente di picco ricavata da SED FEM	158
Tabella 10.1: Proprietà e geometria dei campioni sperimentali, materiale DC04 e	
st35	162
Tabella 10.2: Elaborazione risultati sperimentali per serie di campioni lap-joints	
(sforzo assiale)	163
Tabella 10.3: Elaborazione risultati sperimentali per serie di campioni tube (sforzo	
assiale)	164
Tabella 10.4: Elaborazione risultati sperimentali per serie di campioni tube	
(torsione)	165
Tabella 10.5: Elaborazione risultati sperimentali per serie di campioni peel (sforzo	
assiale)	167
Tabella 10.6: Elaborazione risultati sperimentali per serie di campioni hut-profile	
(torsione)	168
Tabella 10.7: valori di $\Delta K1$ (PSM)	177

Tabella 10.8: Calcolo della tensione equivalente di picco (PSM) campioni lap joints 178	}
Tabella 10.9: Calcolo della tensione equivalente di picco (PSM) campioni tube)
Tabella 10.10: Calcolo della tensione equivalente di picco (PSM) campioni peel 180)
Tabella 10.11: Calcolo della tensione equivalente di picco (PSM) campioni hut-	
profile	I
Tabella 10.12: Confronto tra i NSIFs calcolati con mesh fitte e PSM	3
Tabella 10.13: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e	
<i>PSM</i>	7
Tabella 10.14: Calcolo della tensione equivalente di picco (SED) campioni lap joints 189)
Tabella 10.15: Calcolo della tensione equivalente di picco (SED) campioni peel 190)
Tabella 10.16: Calcolo della tensione equivalente di picco (SED) campioni hut-	
profile	I
Tabella 11.1: L.B.R. per tutti i dati sperimentali analizzati197	7
Tabella 11.2: L.B.R.<0.5; percentuali dati compresi nelle bande)
Tabella 11.3: L.B.R.>0.5; percentuali dati compresi nelle bande)
Tabella 11.4: L.B.R.>0.5; percentuali dati compresi nelle bande escludendo la	
geometria lap-joints203	3

Capitolo 1: INTRODUZIONE

1.1 I giunti saldati laser

La saldatura laser è una tecnica di saldatura usata per unire vari pezzi di metallo, generalmente lamiere, con l'uso di un laser. Il raggio fornisce una sorgente concentrata di calore, che consente una saldatura sottile e profonda. Il processo è usato frequentemente in applicazioni ad alto volume, come l'industria automobilistica.

Negli ultimi anni la tecnica di saldatura laser ha reso possibile la realizzazione di giunzioni tra metalli unendo molteplici vantaggi operativi come la possibilità di ottenere cordoni molto piccoli e dotati di una zona termicamente alterata quasi assente, di implementare sistemi ad elevata automazione meccanica, e consentire quindi di abbassare il tempo di ciclo del prodotto pur garantendo uno standard qualitativo elevato.

Figura 1.1: Esempio di schema della saldatura laser [2].

La saldatura laser ha un'alta densità di potenza (dell'ordine 1 MW/cm²), risultante in piccole zone riscaldate con alta velocità di riscaldamento e di raffreddamento.

La dimensione del raggio laser può variare molto anche all'interno dello stesso campione saldato, in prima approssimazione si può considerare casuale la distribuzione dello spessore di saldatura in rapporto al valor medio. Oltre allo spessore della zona saldata, il raggio laser presenta anche un'eccentricità nel posizionamento della saldatura rispetto alla linea media teorica; tale valore, però, si può ritenere anch'esso con distribuzione casuale attorno ad un valore medio prossimo allo zero.

La profondità della penetrazione è proporzionale alla potenza fornita, ma dipende anche dalla geometria del giunto saldato. Spessori di lamiere diverse possono avere un diverso effetto sullo spessore di saldatura risultante in base alla profondità di saldatura del raggio laser.

Figura 1.2: Esempio di applicazione industriale della saldatura laser nel settore automotive.

Il problema che presentano i giunti saldati laser risiede nella non costanza delle caratteristiche geometriche lungo la zona di saldatura, come per esempio la variabilità della profondità di saldatura.

Inoltre risentono, come i giunti saldati ad arco, del problema della definizione delle caratteristiche di resistenza a fatica. Per i giunti saldati ad arco è presente in Eurocodice, Normativa Europea, la definizione di diversi dettagli/categorie di giunto differenti in base alla conformazione geometrica e relativi spessori in esame. Per ogni categoria di giunto è indicato un valore di resistenza. Il problema sorge quando si esaminano geometrie o spessori diversi da quelli previsti da normativa.

Nasce quindi l'esigenza anche nei giunti saldati laser, come nei giunti saldati ad arco, della definizione di curve di resistenza in tensione nominale da cui poter definire successivamente curve di resistenza per campi di tensioni locali che svincolano dalla definizione della categoria di giunto saldato/spessore.

L'obiettivo di questa trattazione è proprio di individuare la possibilità della definizione di curve di resistenza per giunti saldati laser in base al valore del campo locale di tensione ad apice dell'intaglio. Per far ciò si deve procedere analizzando la trattazione teorica della meccanica della frattura estesa a giunti saldati per intaglio a V a spigolo vivo. Dalle prove sperimentali si cercheranno di definire delle curve di resistenza per tipologia di giunto saldato e per variabilità degli spessori in esame, da cui si cercherà di definire un'unica curva di progettazione per giunti saldati laser in base al valore del fattore di intensificazione della tensione ad apice dell'intaglio.

Capitolo 2: MECCANICA DELLA FRATTURA

2.1 Meccanica della frattura lineare elastica (MFLE) per intagli a V a spigolo vivo

In questo capitolo si farà riferimento alla dispensa: "*Progettazione a fatica di componenti meccanici indeboliti da intagli a V a spigolo vivo – applicazione ai giunti saldati*" di A. Campagnolo e G. Meneghetti [1].

Si possono definire i modi di sollecitazione piani, modo I e modo II nel caso di un intaglio a V a spigolo, cioè con raggio di raccordo all'apice dell'intaglio $\rho=0$.

Questi modi di sollecitazione sono definiti in modo analogo al caso di cricca.

Figura 2.1: Modo I e modo II di sollecitazione.

È stato determinato sperimentalmente da Smith e Miller nel 1978 che, dal punto di vista della resistenza a fatica, anche intagli con raggio di raccordo non nullo ($\rho \neq 0$) ma di dimensioni "piccole" si comportano come intagli a spigolo vivo.

Raggio di raccordo "piccolo" significa $\rho \lesssim 4a_0$. Nel caso di acciaio da costruzione a_0 vale circa 0.1 mm perciò nel caso di un intaglio a V con $\rho \lesssim 0.4$ mm si può ritenere che il comportamento sia equivalente a quello di un intaglio a V a spigolo vivo di uguale profondità.

In conclusione, si possono considerare a spigolo vivo gli intagli aventi raggio di raccordo $0 \le \rho \le 4a_0$: in questo caso si parla di "intagli acuti".

Figura 2.2: Equivalenza tra intaglio con raggio di raccordo piccolo e cricche.

2.2 Intagli a V: campi di tensione e Notch Stress Intensity Factor (NSIF)

Figura 2.3: Sistema di riferimento all'apice dell'intaglio.

Si consideri il caso di un intaglio a V e con le seguenti ipotesi di lavoro:

- casi piani di sollecitazione (modo I+II);
- zona plastica ridotta (equazioni lineari elastiche delle tensioni locali);
- intaglio acuto $(0 \le \rho \le 4a_0)$.

Dalla trattazione teorica della meccanica della frattura, con riferimento alla precedente figura, le distribuzioni delle tensioni per i modi di sollecitazione I e II hanno le seguenti espressioni:

$$\begin{cases} \sigma_{\theta\theta} \\ \sigma_{rr} \\ \tau_{r\theta} \end{cases} = \frac{K_1}{r^{1-\lambda_1}} \begin{cases} \tilde{\sigma}_{\theta\theta}(\theta) \\ \tilde{\sigma}_{rr}(\theta) \\ \tilde{\tau}_{r\theta}(\theta) \end{cases}_I + \frac{K_2}{r^{1-\lambda_2}} \begin{cases} \tilde{\sigma}_{\theta\theta}(\theta) \\ \tilde{\sigma}_{rr}(\theta) \\ \tilde{\tau}_{r\theta}(\theta) \\ \\ \tilde{\tau}_{r\theta}(\theta) \\ \\ \end{cases}_I$$

I campi di tensione sono singolari (per r che tende a 0, cioè la tensione che tende a infinito) e i parametri (1- λ_1) e (1- λ_2) rappresentano i gradi di singolarità di Williams (Williams, 1952), che dipendono dall'angolo di apertura 2a dell'intaglio.

Si possono trarre le seguenti osservazioni:

- per r che tende a 0, il termine $\frac{K_1}{r^{1-\lambda_1}}$ tende a + infinito per ogni 2 α ; per r che tende a 0, il termine $\frac{K_2}{r^{1-\lambda_2}}$ tende a + infinito solo per 2 α minore di 102°; •
- si ottiene una potenza della singolarità massima per $2\alpha = 0^{\circ}$ essendo $(1-\lambda_1) = (1-\lambda_2) = 0.5$, ovvero il caso della MFLE.

Nella seguente figura si riporta l'andamento dei fattori di Williams al variare dell'angolo di apertura dell'intaglio:

Figura 2.4: Andamento singolarità di Williams al varie dell'angolo 2a.

K1 e K2 rappresentano i Notch Stress Intensity Factors (NSIFs) lineari elastici di modo I e modo II rispettivamente. Tali fattori esprimono l'intensità dei campi asintotici locali e sono stati definiti analiticamente da Gross e Mendelson (1972):

$$K_1 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_1} \sigma_{\theta\theta}(r, \theta = 0) \right]$$
$$K_2 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_2} \tau_{r\theta}(r, \theta = 0) \right]$$

In particolare, lo Stress Intensity Factor K_I della MFLE è un caso particolare di NSIF quando $2\alpha = 0^{\circ}$ (caso cricca).

 K_1 K_2 resistenza fatica dell'intaglio allo K_I. e governano la а stesso modo di

Applicazione: intagli con 2a fissato e modo I di sollecitazione 2.3

Si considerino due intagli a V con lo stesso angolo di apertura 2α e con sollecitazione applicata di modo I.

Se i due intagli sono soggetti allo stesso valore del range di NSIF di modo I, ΔK_1 , allora saranno caratterizzati anche dalla stessa vita a fatica N_f.

Per determinare la resistenza a fatica dell'intaglio in esame è necessario conoscere solo ΔK_1 e non la geometria del componente, il suo spessore o il tipo di carichi nominali (a patto che generino una sollecitazione locale di modo I).

Figura 2.5: Equivalenza tra $\Delta K_1 e N_f$.

L'approccio secondo il quale la vita a fatica è governata dal range dei NSIF di modo I e II, $\Delta K_1 \Delta K_2$, che esprime l'intensità dei campi di tensione locali, trova un'importante applicazione nell'analisi a fatica dei giunti saldati.

Figura 2.6: Esempio di giunto saldato con intaglio a V a spigolo vivo con angolo di apertura $2\alpha=135^{\circ}$.

In particolare, in normativa (Eurocodice 3), si propone di valutare la resistenza a fatica di giunti saldati in acciaio con un approccio nominale, cioè basato sul range di tensione nominale $\Delta\sigma$. Se si considera la resistenza a fatica $\Delta\sigma$ di giunti saldati in acciaio a cordone non portante di diversa geometria in funzione del numero di cicli N, si osserva che i dati sperimentali sono contenuti in una banda di dispersione molto ampia, perché c'è una grande variabilità nella geometria considerata.

Non è possibile includere tutti i dati in un'unica banda in quanto, secondo l'approccio nominale, è necessario adottare diverse curve di progetto (o classi/categorie) al variare della geometria del giunto.

Questo è dovuto al fatto che la fatica è un fenomeno locale che nei giunti del tipo a cordone non portante consiste nell'innesco e propagazione di una cricca dal piede del cordone di saldatura.

La valutazione della resistenza a fatica con la tensione nominale $\Delta \sigma_n$ a monte e a valle della saldatura comporta una fortissima dispersione dei dati perché per ciascuna geometria esiste un diverso rapporto tra la tensione nominale applicata al giunto e l'intensità del campo di tensione locale al piede del cordone di

saldatura, che è invece l'unico parametro che definisce la resistenza a fatica della particolare categoria di giunto saldato.

Si potrebbe pensare perciò di usare direttamente l'intensità dei campi locali di tensione per definire la resistenza a fatica di giunti saldati in modo da svincolarsi dalla definizione della geometria/categoria di giunto.

Questo approccio è stato già utilizzato da Lazzarin Tovo (1998) per i giunti saldati ad arco e si è osservato che se si abbandona il parametro nominale, $\Delta \sigma_n$, per valutare la resistenza a fatica dei giunti saldati e si adotta il parametro locale, ΔK_1 , i dati sperimentali si distribuiscono all'interno di una banda molto più ristretta.

In ultima analisi i range dei NSIFs di modo 1 e modo 2 correlano la resistenza a fatica di giunti aventi diversa geometria e diversi spessori/lunghezze, al contrario del range della tensione nominale. Questo importante risultato è dovuto al fatto che l'effetto della forma e della scala del giunto sono inclusi nel fattore di intensificazione delle tensioni all'apice dell'intaglio (in maniera analoga a quanto accade nella MFLE con l'utilizzo dello Stress Intensity Factor K_I).

Categoria di particolare		Particolare costruttivo	Descrizione	Requisiti
80	L ≤ 50 mm		Elementi collegati longitudinali:	Lo spessore dell'elemento
71	50 < L ≤ 80 mm		1) La categoria del particolare	collegato deve essere minore
63	80 < L≤ 100 mm		dell'elemento collegato L.	vedere prospetto 8.5.
56	L > 100 mm			particolari 5 o 6.
71	L > 100 mm α < 45°		 Elementi collegati longitudinalmente a lamiere o tubi. 	
80	r > 150 mm	3 rinforzato	 Fazzoletti longitudinali saldati a cordone d'angolo aventi un raggio che consenta un raccordo alla lamiera o al tubo; zona terminale di giunzione saldata rinforzata (a completa penetrazione); lunghezza della saldatura rinforzata >r. 	Particolari 3) e 4): Il fazzoletto deve essere realizzato prima delle operazioni di saldatura, mediante taglio meccanico o termico, con un raggio r che consenta un raccordo dolce con la lamiera. Dopo
90	$\frac{l}{L} \ge \frac{1}{3}$ oppure l > 150 mm		 Fazzoletto saldato al bordo di una lamiera o all'ala di una trave. 	l'esecuzione del giunto la zona della saldatura deve essere molata nella direzione della freccia fino a rimuovere completamente il piede della
71	$\frac{1}{6} \leq \frac{l}{L} \leq \frac{1}{3}$			saldatura.
50	$\frac{L}{L} < \frac{1}{6}$	L : Lunghezza dell'elemento collegato come nel particolare 1, 2 o 3		
40		5	 Come saldato, senza raggio di raccordo. 	
80	/≤ 50 mm		Elementi collegati trasversali:	Particolari 6) e 7):
71	50 < l≤ 80 mm		 6) Saldati a lamiere. 7) Irrigidimenti verticali saldati a travi o a travi composte. 8) Diaframmi di travi a cassone saldati all'ala o all'anima. Possono non essere possibili per piccole sezioni tubolari. I valori sono anche validi per anelli di irrigidimento. 	Le zone terminali delle saldature devono essere accuratamente rettificate per rimuovere tutte le incisioni che possono essere presenti. 7) Δσ deve essere calcolato utilizzando tensioni principali se l'irrigidimento termina nell'anima, vedere il lato sinistro.
80			 Ueffetto di connettori a taglio saldati sul materiale base. 	

Figura 2.7: Esempio di categorie di dettagli dell'Eurocodice.

2.4 Peak Stress Method

Recentemente è stato proposto il Peak Stress Method (PSM) [3] [4] per stimare gli NSIFs con un approccio semplificato e rapido basato su analisi agli elementi finiti con mesh grossolane. I vantaggi del PSM rispetto all'approccio basato sulla valutazione dell'intera distribuzione tensionale lineare elastica locale, descritto nel paragrafo precedente, si possono così sintetizzare:

- si usano mesh di diversi ordini di grandezza più grossolane;
- si utilizza solamente la tensione di picco valutata nel nodo posizionato all'apice dell'intaglio V e non un'intera distribuzione tensionale locale (stress vs distance), che andrebbe successivamente elaborata.

Essenzialmente il PSM consente di stimare rapidamente l'NSIF di modo I K₁ per mezzo della tensione di picco σ_{peak} , calcolata nel nodo situato all'apice dell'intaglio a V con un'analisi agli elementi finiti, in cui risultano calibrati:

- il software utilizzato
- la tipologia di elemento utilizzato (Element type)
- la conformazione della mesh (Mesh pattern)

Più precisamente, è stata verificata la seguente espressione:

$$K_1 = K_{FE}^* \sigma_{peak} d^{1-\lambda_1}$$

dove d è la dimensione media degli elementi finiti, cioè la cosiddetta "global element size", impostata nel meshatore automatico. La costante K^*_{FE} dipende da software, tipologia di elemento e conformazione della mesh.

Ad oggi il PSM è stato calibrato nelle seguenti condizioni:

- software utilizzato: Ansys®.
- tipologia di elementi (libreria di Ansys®):
 - piano quadrangolare a 4 nodi a funzioni di forma lineari (PLANE 42 oppure PLANE 182 con K-option 1 impostata a 3, che significa opzione 'simple enhanced strain' attivata);
 - solido brick a 8 nodi a funzioni di forma lineari (SOLID45 oppure SOLID185 con K-option 2 impostata a 3, che significa opzione 'simple enhanced strain' attivata);
- conformazione della mesh: generata automaticamente dall'algoritmo free-mesh generation presente in Ansys, dopo aver impostato la dimensione media di elemento da utilizzare con il comando 'global element size' disponibile nel software. Più in dettaglio, 4 elementi devono condividere il nodo posizionato all'apice dell'intaglio se l'angolo di apertura 2α è minore o uguale a 90°, mentre 2 elementi devono condividere il nodo all'apice dell'intaglio quando l'angolo di apertura 2α è maggiore di 90°.

In tali condizioni risulta valido il seguente parametro: $K^*_{FE}=1.38$. Per applicare l'espressione di K₁, la dimensione media di elemento può essere scelta arbitrariamente, ma all'interno di un range di applicabilità discusso in dettaglio nelle pubblicazioni scientifiche sull'argomento e riportato sinteticamente di seguito. Per carichi di modo I, il rapporto di densità di mesh a/d deve essere maggiore di 3 per ottenere $K^*_{FE}=1.38 \pm 5\%$. In particolare a è la dimensione di riferimento del componente intagliato in esame.

2.5 Applicazione: intagli con 2a diverso e modo I+II di sollecitazione

Consideriamo ora il caso di giunti con cordone portante, la cricca di fatica che porta a rottura il giunto può innescare sia dal piede (weld toe) che dalla radice (weld root) del cordone di saldatura. In particolare, al lato piede il modo I è singolare e il modo II è non singolare (essendo $2\alpha = 135^{\circ} > 102^{\circ}$), mentre al lato radice sia il modo I che il modo II sono singolari, ma nel caso in esame il modo II è trascurabile. Perciò in entrambi i potenziali punti critici, piede e radice, l'NSIF di modo I K₁ consente di quantificare l'intensità dei campi di tensione locali, tuttavia un confronto in termini di NSIF richiede la costanza dell'angolo di apertura dell'intaglio in quanto le unità di misura dell'NSIF dipendono proprio da tale angolo. Questo non permette di confrontare la criticità in termini di NSIF che si ha al lato piede ($2\alpha = 135^{\circ}$, l'unità di misura dell'NSIF è MPa·m^{0.326}) e al lato radice ($2\alpha = 0^{\circ}$, l'unità di misura dell'NSIF è MPa·m^{0.50}) del cordone di saldatura. I campi di tensione locali al lato piede e radice del cordone non sono comparabili in termini di gravosità in quanto non sono paralleli per il diverso grado di singolarità.

Un ulteriore caso in cui l'approccio locale basato sull'NSIF di modo I non è applicabile è quello di un giunto a sovrapposizione in cui alla radice siano singolari sia il modo I che il modo II, in questo caso infatti l'intensità dei campi di tensione locali non dipende più esclusivamente da K₁, ma assume un ruolo determinante anche l'NSIF di modo II K₂.

Il criterio energetico descritto nel prossimo paragrafo supera questi problemi e permette di confrontare anche unioni saldate caratterizzate da differenti angoli di apertura o sollecitate a modo I+II sulla base della densità di energia di deformazione mediata in un volume strutturale di raggio R_c che circoscrive i punti di singolarità tensionale.

2.5.1 Criterio basato sulla densità di energia di deformazione mediata (SED)

Il criterio energetico proposto da Lazzarin e Zambardi considera come parametro critico per la resistenza strutturale la densità di energia di deformazione mediata su un settore circolare di raggio R_c , considerata una proprietà del materiale. L'approccio è basato sull'idea di volume strutturale elementare proposta da Neuber, in base alla quale i materiali sono sensibili allo stato tensionale medio in un volume strutturale la cui dimensione è proprietà del materiale.

Di seguito sono riportati brevemente i passaggi che conducono all'espressione finale della densità di energia di deformazione mediata su un volume strutturale di raggio R_c in funzione degli NSIF di modo I e II di un generico intaglio a V con angolo di apertura 2α .

In un caso piano, la densità di energia di deformazione totale per un materiale isotropo e lineare elastico vale secondo Beltrami:

$$W(r,\theta) = \frac{1}{2} \sigma_{rr} \epsilon_{rr} + \frac{1}{2} \sigma_{\theta\theta} \epsilon_{\theta\theta} + \frac{1}{2} \sigma_{zz} \epsilon_{zz} + \frac{\tau_{r\theta}^{2}}{2G} =$$
$$= \frac{1}{2F} (\sigma_{rr}^{2} + \sigma_{\theta\theta}^{2} + \sigma_{zz}^{2} - 2v(\sigma_{rr}\sigma_{\theta\theta} + \sigma_{rr}\sigma_{\theta\theta} + \sigma_{\theta\theta}\sigma_{zz}) + 2(1+v)\tau_{r\theta}^{2})$$

con riferimento alle componenti di tensione in un sistema di riferimento polare. Sostituendo è possibile ottenere in maniera sintetica:

$$W_{1}(r,\theta) = \frac{1}{2E} \frac{K_{1}^{2}}{r^{2(1-\lambda_{1})}} f_{1}(\theta)$$
$$W_{2}(r,\theta) = \frac{1}{2E} \frac{K_{2}^{2}}{r^{2(1-\lambda_{2})}} f_{2}(\theta)$$

Dove f_1 ed f_2 rappresentano i termini dipendenti dalla coordinata angolare θ .

È possibile valutare l'energia di deformazione elastica totale contenuta in un settore circolare di raggio R_c centrato sull'apice dell'intaglio:

$$E(R) = \int_{A} W \, dA = \int_{0}^{R_{c}} \int_{-\gamma}^{+\gamma} [W_{1}(r,\theta) + W_{2}(r,\theta)] \, r \, dr \, d\theta = = \frac{1}{E} \left(\frac{I_{1}(\gamma)}{4\lambda_{1}} K_{1}^{2} R_{c}^{2\lambda_{1}} + \frac{I_{2}(\gamma)}{4\lambda_{2}} K_{2}^{2} R_{c}^{2\lambda_{2}} \right)$$

Dove I_1 e I_2 sono gli integrali delle funzioni angolari $f_1(\theta)$ e $f_2(\theta)$ e dipendono da γ e dal rapporto di Poisson v.

L'area del settore circolare di raggio R_c sul quale viene effettuata l'integrazione vale:

$$A(R) = \int_0^{R_c} \int_{-\gamma}^{+\gamma} r \, dr \, d\theta = R_c^2 \gamma$$

Quindi l'energia di deformazione elastica mediata sull'area A risulta essere:

$$\bar{W} = \frac{E(R)}{A(R)} = \frac{1}{E} \left(\frac{I_1(\gamma)}{4\lambda_1 \gamma} \frac{K_1^2}{R_c^{2(1-\lambda_1)}} + \frac{I_2(\gamma)}{4\lambda_2 \gamma} \frac{K_2^2}{R_c^{2(1-\lambda_2)}} \right) = \frac{1}{E} \left(e_1 \frac{K_1^2}{R_c^{2(1-\lambda_1)}} + e_2 \frac{K_2^2}{R_c^{2(1-\lambda_2)}} \right)$$

Dove e_1 ed e_2 sono due parametri che sintetizzano la dipendenza dall'angolo di apertura. I loro corrispondenti valori si possono trovare in letteratura.

In base all'approccio SED, due intagli a V acuti con angolo di apertura 2α generico, soggetti a condizioni di carico nominali generiche, che determinano una sollecitazione locale di modo I+II, se caratterizzati dallo stesso range di densità di energia di deformazione mediata $\Delta \overline{W}$ allora saranno caratterizzati anche dalla stessa vita a fatica N_f.

2.5.1.1 Resistenza a fatica di giunti saldati espressa in termini di SED

Nota la formulazione analitica del criterio SED, rimane il problema di stimare il raggio del volume di controllo R_c . Pensato come una proprietà del materiale, il raggio di controllo R_c si può stimare imponendo l'uguaglianza tra i valori di densità di energia di deformazione relativi al materiale liscio e al materiale intagliato, rispettivamente, calcolati al limite di fatica o ad un numero di cicli di riferimento. Di seguito si descrive la procedura per la stima del raggio di controllo R_c nel caso di giunti saldati in acciaio, come proposta da Lazzarin e Livieri.

I processi di saldatura alterano localmente le proprietà del materiale base nelle zone adiacenti al piede della saldatura. Non si dovrà quindi stimare R_c partendo dalle proprietà di resistenza a fatica del materiale base ma utilizzando direttamente le proprietà di resistenza dei giunti saldati.

Con riferimento al materiale intagliato, se è nota la variazione del parametro di campo ΔK_1 e se il contributo di modo II è trascurabile (tipicamente nel caso di carichi esterni di puro modo I o nel caso di intagli con angolo di apertura $2\alpha > 102^{\circ}$ come al lato piede del cordone di saldatura), è possibile determinare la variazione della densità di energia di deformazione lineare elastica utilizzando l'espressione:

$$\Delta \overline{W}_{intagliato} \cong \frac{e_1}{E} \frac{\Delta K_1^2}{R_c^{2(1-\lambda_1)}}$$

Con riferimento al materiale liscio, l'ipotesi di un campo di tensione uniforme è rispettata dai giunti saldati testa a testa con cordone rasato. In assenza di effetto di intaglio indotto dai cordoni, la resistenza a fatica $\Delta \sigma_D$ risulta influenzata solo dalle alterazioni indotte dal processo di saldatura. Il valore medio della densità di energia di deformazione totale si potrà calcolare con la seguente espressione:

$$\Delta W_{liscio} \cong \frac{\Delta \sigma^2}{2E}$$

In accordo con l'ipotesi di Beltrami.

Uguagliando l'energia di deformazione per il provino liscio e intagliato, al limite di fatica ($N_D=5 \cdot 10^6$ cicli), è possibile ottenere la seguente espressione per il raggio del volume di controllo:

$$\Delta W_{intagliato} = \Delta W_{liscio}$$

$$\mathbf{R}_{c} = \left(\sqrt{2e_{1}} \left(\frac{\Delta K_{1D}}{\Delta \sigma_{D}}\right)\right)^{\frac{1}{(1-\lambda_{1})}}$$

L'equazione permette di determinare il valore del raggio di controllo R_c se sono noti i valori limite $\Delta \sigma_D$ e $\Delta K_{1, D}$.

Con riferimento ad una vita a fatica $N_D=5 \cdot 10^6$ cicli e ad un rapporto nominale di ciclo R=0, si ottiene che:

1. giunti con un cordone d'angolo di 135° (allo stato 'as-welded'), soggetti a trazione o flessione, risultano caratterizzati da una curva ΔK_1 -N con un valore medio ΔK_{1D} = 22.65 MPa m^{0.326}= 211 MPa mm^{0.326} (pendenza inversa k = 3.0, probabilità di sopravvivenza Ps = 50%).

2. giunti rasati in acciaio strutturale ('as welded') hanno un range di resistenza a fatica media, Ps = 50%, pari a $\Delta \sigma_D = 155$ MPa (Atzori e Dattoma, 1983, Taylor, 2002).

Sostituendo questi valori nell'espressione ricavata precedentemente e ricordando che per un angolo di 135° si ha: $\lambda_1 = 0.6736$ ed $e_1 = 0.118$, si ottiene:

$$\mathbf{R}_{c} = \left(\sqrt{2*0.118} \left(\frac{211}{155}\right)\right)^{\frac{1}{0.326}} \cong 0.28 \, mm$$

Noto il valore di R_c , è ora possibile applicare il criterio SED in ogni potenziale punto di innesco della cricca di fatica di un giunto saldato in acciaio. In particolare con l'approccio SED è possibile confrontare e mettere insieme dati relativi a rotture a fatica dal piede cordone con dati relativi a rotture dalla radice, infatti i parametri in gioco hanno la stessa unità di misura (quella di una energia).

In conclusione, secondo l'approccio SED si ha che:

• La rottura a fatica è prevista nel punto caratterizzato dal valore più elevato di $\Delta \overline{W}$;

• Noto il valore di $\Delta \overline{W}$ nel punto più critico è possibile prevedere la vita a fatica per mezzo della curva di progetto con riferimento a giunti saldati in acciaio.

2.5.2 Calcolo del SED mediato

Per quanto riguarda il calcolo del SED mediato esistono diversi metodi:

- calcolo degli NSIF K₁ e K₂ per mezzo di analisi FEM con mesh fitte applicando le definizioni e sostituzione dei valori ottenuti nell'espressione del SED in forma chiusa. Tale metodo presenta gli stessi svantaggi già evidenziati con riferimento al calcolo degli NSIF per mezzo delle definizioni: le analisi FEM sono molto onerose vista la fittezza della mesh richiesta (d_{min} = 10-5 mm);
- calcolo diretto del SED da analisi FEM con mesh rade. È stato infatti dimostrato che il SED mediato è pressoché insensibile alla mesh, quindi sono sufficienti pochi elementi all'interno del volume di controllo di raggio R_c per calcolare correttamente il SED mediato;
- un ulteriore metodo rapido per il calcolo del SED mediato è basato sull'applicazione del Peak Stress Method (PSM). Tale metodo è discusso in dettaglio nel prossimo paragrafo.

2.5.2.1 Applicazione del Peak Stress Method (PSM) per la stima della resistenza a fatica di giunti saldati

Si consideri un intaglio a V a spigolo vivo in condizioni di carico di puro modo I o modo I con modo II trascurabile (tipicamente con $2\alpha > 102^{\circ}$, come al lato piede del cordone di saldatura).

Usando la relazione di base del PSM, l'espressione in forma chiusa del SED mediato può essere riscritta in funzione della tensione di picco singolare σ_{peak} calcolata mediante analisi agli elementi finiti eseguite secondo il PSM. Inoltre, in ipotesi di stato piano di deformazione, è possibile ricavare una tensione equivalente di picco $\sigma_{eq,peak}$ dall'espressione seguente:

$$\Delta \overline{W} = \frac{e_1}{E} \left[K_{FE}^* \, \Delta \sigma_{peak} \, \left(\frac{d}{R_c} \right)^{1-\lambda_1} \right]^2 \rightarrow = \frac{1-v^2}{2E} \, \Delta \sigma_{eq,peak}^2$$

Esplicitando la tensione di picco equivalente:

$$\Delta \sigma_{eq,peak} = f_{w1} \Delta \sigma_{peak}$$

Il fattore correttivo f_{w1} risulta:

$$f_{w1} = K_{FE}^* \sqrt{\frac{2e_1}{1 - \nu^2}} \left(\frac{d}{R_c}\right)^{1 - \lambda_1}$$

Di seguito è riportato un esempio di applicazione del PSM ad un tipico giunto saldato con potenziali criticità al lato piede e al lato radice, entrambe soggette a modo I singolare.

I vantaggi di tale metodo sono:

- non è necessario modellare il volume di controllo per il calcolo del SED mediato;
- la dimensione globale di elemento d può essere maggiore del raggio di controllo R_c , a differenza del metodo di calcolo diretto del SED con mesh rada in cui necessariamente si deve avere d < R_c .

Nel caso in cui sia presente una sollecitazione di modo I+II al lato radice del cordone di saldatura, è possibile estendere la precedente espressione della tensione equivalente. Infatti, il PSM consente di stimare rapidamente anche lo Stress Intensity Factor K_2 per mezzo della tensione di picco lineare elastica di slittamento τ_{peak} calcolata all'apice della radice del cordone (o della cricca) secondo la relazione:

$$K_2 = K_{FE}^{**} \tau_{peak} d^{1-\lambda_2}$$

Per quanto riguarda le condizioni di applicabilità dell'equazione vale quanto riportato nella sezione precedente con riferimento al modo I. In particolare risulta valido il seguente parametro: $K^{**}_{FE} = 3.38$. Tuttavia, per quanto riguarda la densità di mesh richiesta, nel caso di carichi di modo II si devono adottare mesh più fitte, a/d dovendo essere maggiore di 14 per ottenere $K^{**}_{FE} = 3.38 \pm 5\%$, essendo a la lunghezza della radice o della cricca in esame.

Come visto sopra, l'espressione in forma chiusa del SED mediato può essere riscritta in funzione delle tensioni di picco, inoltre, è possibile ricavare una tensione equivalente di picco $\sigma_{eq,peak}$ valida in condizioni di carico di modo I+II:

$$\Delta \overline{W} = \frac{e_1}{E} \left[K_{FE}^* \,\Delta \sigma_{peak} \, \left(\frac{d}{R_c}\right)^{1-\lambda_1} \right]^2 + \frac{e_2}{E} \left[K_{FE}^{**} \,\Delta \tau_{peak} \, \left(\frac{d}{R_c}\right)^{1-\lambda_2} \right]^2 \rightarrow = \frac{1-\nu^2}{2E} \,\Delta \sigma_{eq,peak}^2$$

Esplicitando la tensione di picco equivalente:

$$\Delta \sigma_{eq,peak} = \sqrt{f_{w1}^{2} \Delta \sigma_{peak}^{2} + f_{w2}^{2} \Delta \tau_{peak}^{2}}$$

Il fattore correttivo f_{w2} risulta, in maniera analoga ad f_{w1}:

$$f_{w2} = K_{FE}^{**} \sqrt{\frac{2e_2}{1 - \nu^2}} \left(\frac{d}{R_c}\right)^{1 - \lambda_2}$$

Adottando la tensione equivalente di picco è possibile ottenere una sintesi di dati a fatica relativi a rotture di giunti saldati in acciaio originate dal piede o dalla radice del cordone di saldatura.

In Fig. 2.8 è riportata la banda per la progettazione a fatica di giunti saldati in acciaio soggetti a carichi di modo I+II in termini di tensione equivalente di picco.

Figura 2.8: Schema e nomenclatura dei campioni sperimentali esaminati [1].

In conclusione, secondo la formulazione PSM dell'approccio SED si ha che:

- la rottura a fatica è prevista nel punto caratterizzato dal valore più elevato di $\Delta \sigma_{eq,peak}$;
- noto il valore di $\Delta \sigma_{eq,peak}$ nel punto più critico è possibile prevedere la vita a fatica per mezzo della curva di progetto riportata in Fig. 2.8 con riferimento a giunti saldati in acciaio.

2.5.3 Termini di ordine superiore al primo

In questo capitolo si farà riferimento all'articolo "*Rapid finite element evaluation of the averaged strain* energy density of mixed-mode (I+II) crack tip fields including the T-stress contribution" di A. Campagnolo, G. Meneghetti [6].

Come già accennato, Williams dimostrò che il campo locale di tensione in corrispondenza di un intaglio può essere formulato con una serie di cui i termini principali sono relativi ai vari modi di sollecitazione.

Esistono però anche termini di ordine superiore che compongono la serie, in particolare si evidenzia qui il contributo della T-stress in un sistema di riferimento polare.

$$\begin{cases} \sigma_{\theta\theta} \\ \sigma_{rr} \\ \tau_{r\theta} \end{cases} = \frac{K_I}{\sqrt{2\pi r}} \begin{cases} -\frac{1}{4}\cos\left(\frac{3}{2}\theta\right) + \frac{5}{4}\cos\left(\frac{\theta}{2}\right) \\ \cos^3\left(\frac{\theta}{2}\right) \\ \frac{1}{4}\sin\left(\frac{\theta}{2}\right) + \frac{1}{4}\sin\left(\frac{3}{2}\theta\right) \end{cases} + \frac{K_{II}}{\sqrt{2\pi r}} \begin{cases} \frac{3}{4}\sin\left(\frac{3}{2}\theta\right) - \frac{5}{4}\sin\left(\frac{\theta}{2}\right) \\ -3\sin\left(\frac{\theta}{2}\right)\cos^2\left(\frac{\theta}{2}\right) \\ \frac{1}{4}\cos\left(\frac{\theta}{2}\right) + \frac{3}{4}\cos\left(\frac{3}{2}\theta\right) \end{cases} + T \begin{cases} \cos^2(\theta) \\ \sin^2(\theta) \\ -\frac{1}{2}\sin(2\theta) \end{cases} + O\left(r^{\frac{1}{2}}\right) \end{cases}$$

Il termine costante T è una tensione di trazione o compressione parallela alla direzione dell'intaglio, chiamata "T-stress" da Larsson e Carlsson, e può essere valutata tramite la seguente equazione:

$$T = \lim_{r \to 0} [(\sigma_{rr})_{\theta=0} - (\sigma_{\theta\theta})_{\theta=0}]$$

Dove θ definisce la bisettrice della linea di frattura.

Si può perciò calcolare l'energia mediata SED nel volume di controllo tenendo conto del contributo di ordine superiore dovuto alla T-stress, la formulazione analitica SED diventa perciò:

$$\Delta \overline{W}_{AN} = \frac{e_1}{E} \frac{K_I^2}{R_0} + \frac{e_2}{E} \frac{K_{II}^2}{R_0} + \frac{1 - v^2}{2E} T^2 + \frac{8\sqrt{2}}{15(\pi)^{3/2}} \frac{(1 + v)(2 - 5v)}{E} \frac{K_I T}{\sqrt{R_0}}$$

All'avvicinarsi all'apice dell'intaglio, soprattutto per saldature con piatti molto sottili, i termini di ordine superiore diventano molto importanti nel definire il reale stato di tensione in prossimità della singolarità.

2.5.3.1 Applicazione del Peak Stress Method (PSM) per la stima della Tstress

Sostituendo le coordinate polari $\theta = +\pi$ e $\theta = -\pi$ nell'equazione generale dello sviluppo in serie, si ottiene rispettivamente:

$$(\sigma_{rr})_{\theta=\pi} = -\frac{2K_{II}}{\sqrt{2\pi r}} + T + O\left(r^{\frac{1}{2}}\right)$$
$$(\sigma_{rr})_{\theta=-\pi} = +\frac{2K_{II}}{\sqrt{2\pi r}} + T + O\left(r^{\frac{1}{2}}\right)$$

A questo punto si può ricavare il contributo della T-stress come:

$$T = \frac{(\sigma_{rr})_{\theta=\pi} + (\sigma_{rr})_{\theta=-\pi}}{2}$$

E' stato dimostrato nell'articolo: "Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I+II) crack tip fields including the T-stress contribution" di A. Campagnolo, G. Meneghetti and F. Berto che è sufficiente calcolare le tensioni $(\sigma_{rr})_{\theta=\pi}$ e $(\sigma_{rr})_{\theta=-\pi}$ in due nodi distanti r=2d, dove d è la dimensione della mesh utilizzata, per valutare con un errore inferiore al 3% il contributo della T-stress. Una techina FEM per valutare rapidamente il contributo della T-stress può essere perciò definita con la seguente espressione:

Nodal T - stress =
$$\frac{(\sigma_{rr})_{\theta=\pi,r=2d} + (\sigma_{rr})_{\theta=-\pi,r=2d}}{2}$$

Ovviamente la presenza della T-stress comporta un aumento anche dell'energia SED all'apice dell'intaglio nel volume di controllo.

Il valore mediato dell'energia SED nel volume di controllo può essere stimato attraverso il PSM con la seguente equazione che tiene conto anche del contributo della T-stress:

$$\begin{split} \Delta \overline{W}_{PSM} &= \left\{ \frac{e_1}{E} \left[K_{FE}^* \, \sigma_{peak} \, \left(\frac{d}{R_c} \right)^{0.5} \right]^2 + \frac{e_2}{E} \left[K_{FE}^{**} \, \tau_{peak} \, \left(\frac{d}{R_c} \right)^{0.5} \right]^2 \right\} \\ &+ \left\{ \frac{1 - v^2}{2E} \left(\frac{(\sigma_{rr})_{\theta = \pi, r = 2d} + (\sigma_{rr})_{\theta = -\pi, r = 2d}}{2} \right)^2 \\ &+ \frac{8\sqrt{2}}{15(\pi)^{3/2}} \frac{(1 + v)(2 - 5v)}{E} \left[K_{FE}^* \, \sigma_{peak} \, \left(\frac{d}{R_c} \right)^{0.5} \right] \left[\frac{(\sigma_{rr})_{\theta = \pi, r = 2d} + (\sigma_{rr})_{\theta = -\pi, r = 2d}}{2} \right] \right\} \end{split}$$

Quest'ultima espressione può perciò essere utilizzata per valutare rapidamente l'energia SED mediata nel volume di controllo attraverso il PSM.
Capitolo 3: ANALISI SPERIMENTALI ARTICOLO REMES

3.1 Campioni sperimentali

In questo capitolo si analizzeranno prove sperimentali già effettuate da altri autori, in particolare ci si riferisce all'articolo "Fatigue assessment of laser stake-welded T-joints" di Darko Frank, Heikki Remes, Jani Romanoff pubblicato nel 2010 [2] e all'articolo "J-integral-based approach to fatigue assessment of laser stake-welded T-joints" di Darko Frank, Heikki Remes, Jani Romanoff pubblicato nel 2013 [16].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia di giunto a T saldato laser, composto da anima verticale e piastra orizzontale connesse con saldatura laser in corrispondenza della linea media dell'anima della piastra verticale.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo 2α=0 sollecitati a modo I.

Come indicato in figura 3.1, le lunghezze a_1 e a_2 risultanti dalla saldatura laser possono essere considerate come intagli/cricche con raggio di raccordo pari a 0.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

I campioni hanno lunghezza l_s nella direzione x come indicato in figura 3.1.

Si definiscono t_f e b_f rispettivamente lo spessore e l'ampiezza della piastra orizzontale nel piano XY, mentre la piastra verticale è definita sul piano XZ e le sue grandezze caratteristiche sono lo spessore t_w e l'altezza h_w . La sezione tipica taglia il giunto a T nel piano YZ lungo l'asse x, come si può notare nella Figura 3.1.

Ogni campione ha 30 sezioni. In ogni sezione ci sono due fessure, provocate dalla saldatura incompleta dell'anima, che possono essere identificate. Le lunghezze di queste fessure in direzione Y sono indicate con a_1 ed a_2 rispettivamente.

Figura 3.1: Schema e nomenclatura dei campioni sperimentali esaminati [2].

Sulla base di queste lunghezze è possibile definire uno spessore di saldatura come:

$$t_{weld} = t_{web} - a_1 - a_2$$

e l'eccentricità della saldatura come:

$$e_{weld} = \frac{a_1 - a_2}{2}$$

L'eccentricità della saldatura è misurata come la distanza tra la linea media della saldatura e la linea media dell'anima della piastra verticale.

Il lato del campione che ha un valore maggiore di lunghezza di fessura sarà soggetto a campi locali di tensione più elevati ed è perciò il lato che provocherà la rottura del campione.

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_I e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_I .

3.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. Lo studio è condotto su 5 serie denominate come:

- FWA
- FWB
- FWC
- FWE
- T

I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

Series	FWA	FWB	FWC	FWE	Т
Thickness of web tw (mm)	8	8	8	12	4
Thickness of face plate tf (mm)	8	8	8	16	16
Specimen length ls (mm)	24	50	50	24	24
Material	А	А	DH36	А	DIN S235JR & DIN S355MC
Material yield strength o _{yield} (N/mm2)	235	235	355	235	235 / 355
Material ultimate tensile strength σ _{UTS} (N/mm2)	400	400	490	400	355 / 400
No. of specimens	6	6	8	8	13

Tabella 3.1: Proprietà e geometria dei campioni sperimentali.

Come si evince dalla tabella, sono presenti due tipologie di acciaio aventi differente tensione di snervamento:

- materiale denominato A: σ_s =235 MPa
- materiale denominato DH36: σ_s =355 MPa

I campioni in esame presentano poi differente spessore di anima per la piastra verticale:

- FWA, FWB, FWC: t_{web}=8 mm
- FWE: tweb=12 mm
- T: $t_{web}=4 \text{ mm}$

È presente, inoltre, un differente spessore per la piastra orizzontale:

- FWA, FWB, FWC: tweb=8 mm
 - FWE, T: $t_{web}=16 \text{ mm}$

Per finire i campioni sperimentali si possono suddividere anche per lunghezza totale del provino:

- FWA, FWE, T: $l_s=24 \text{ mm}$
- FWB, FWC: $l_s=50 \text{ mm}$

In totale 28 campioni del tipo FWA, FWB, FWC, FWE e 13 campioni del tipo T sono stati sottoposti a carichi tensionali ciclici con fattore R=0 fino a rottura.

Il carico è stato applicato sull'anima verticale in direzione dell'asse Z come indicato nella seguente figura.

Figura 3.2: Modalità di applicazione del carico.

La piastra orizzontale è fissata ad un supporto inferiore attraverso bulloni M8 avvitati a 15 mm dalla zona saldata.

3.3 Elaborazione risultati sperimentali

Sorios	compione	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range
Series	campione	[cycle]	[MPa]
	FW01A	5381	187.5
	FW02A	93,069	113
E \	FW03A	18,591	150
FWA	FW04A	2222	225
	FW05A	249,169	75
	FW08A	146,342	75
	FW01B	2494	225
	FW02B	7625	187.5
	FW03B	19,865	150
FVVD	FW04B	63,414	113
	FW05B	181,782	75
	FW06B	233,919	75
	FW01C	4013	225
	FW02C	9435	187.5
	FW03C	32,902	150
EMIC	FW04C	26,038	150
FVVC	FW05C	58,579	113
	FW06C	349,212	75
	FW07C	3700	225
	FW08C	281,018	75
	FW01E	3723	150
	FW02E	42,957	100
	FW03E	157,424	75
E\A/E	FW04E	12,563	125
	FW05E	1277	150
	FW06E	28,102	100
	FW07E	507,653	50
	FW08E	1,001,102	50

Nelle Tabelle 3.2 e 3.3 sono riportati i risultati delle analisi sperimentali condotte:

Tabella 3.2: Elaborazione risultati sperimentali per serie di campioni FWA FWB FWC FWE (sforzo assiale).

Sorios	campione	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	
Selles	campione	[cycle]	[MPa]	
	T1	833168	50	
	Т3	1,975,586	42	
	T4	125,030	75	
	T5	905027	50	
	Т6	163,166	75	
	T7	274,438	58	
Т	Т8	251114	58.3	
	Т9	103352	75	
	T11	262,625	58	
	T13	94,557	100	
	T14	740,670	50	
	T15	62,922	100	
	T16	65556	100	

Tabella 3.3: Elaborazione risultati sperimentali per serie di campioni T (sforzo assiale).

La frattura è stata individuata attraverso un'alta risoluzione dpi con un'accuratezza di circa 1/100 di mm. Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

Per ogni serie è stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 3.3: Risultati sperimentali a fatica campioni FWA FWB FWC FWE (sforzo assiale)

Figura 3.4: Risultati sperimentali a fatica campioni T (sforzo assiale)

3.4 Analisi statistica geometria campioni sperimentali

La distribuzione dello spessore di saldatura lungo la lunghezza del provino sperimentale ed i relativi valori di eccentricità di saldatura sono riportate nelle Tabelle 3.3.

FW	01A	FW	02A	FW	03A	FW	04A	FW	05A	FW0	
t weld	e weld										
3.51	-0.10	2.89	-0.16	3.44	-0.80	2.91	0.64	3.49	-0.30	3.35	-0.56
3.57	0.12	3.09	-0.13	3.26	-0.60	2.50	0.68	3.48	-0.26	2.97	-0.30
3.62	0.18	2.97	-0.15	3.03	-0.57	2.83	0.50	3.21	-0.38	2.73	-0.39
3.75	0.10	3.45	0.00	3.23	-0.44	2.76	0.58	3.07	-0.46	2.77	-0.31
4.11	0.06	3.49	0.05	3.26	-0.49	2.60	0.65	3.16	-0.30	2.95	-0.23
3.74	0.08	3.01	0.05	3.52	-0.57	2.83	0.58	3.34	-0.21	2.86	-0.12
3.64	0.17	2.97	0.05	3.63	-0.37	2.96	0.60	2.89	-0.42	2.63	-0.28
3.29	0.13	2.88	0.05	3.47	-0.63	3.15	0.53	3.11	-0.35	2.47	-0.25
3.47	-0.06	3.03	0.37	3.71	-0.33	2.56	0.35	2.96	-0.43	2.71	-0.18
3.03	0.06	2.79	0.22	3.61	-0.60	2.45	0.35	3.43	-0.36	2.50	-0.22
3.09	0.05	2.54	0.35	4.53	-0.13	2.46	0.32	3.47	-0.50	2.92	-0.18
3.04	-0.05	2.93	0.38	3.63	-0.45	2.64	0.40	3.29	-0.46	3.29	-0.35
3.14	0.02	3.39	0.26	3.24	-0.68	2.58	0.32	2.96	-0.35	3.33	-0.39
3.17	0.00	3.61	0.13	3.59	-0.23	2.58	0.34	2.89	-0.18	3.33	-0.36
3.53	-0.09	3.35	0.16	3.32	-0.47	2.74	0.21	2.99	-0.18	3.06	-0.29
3.05	0.25	3.47	-0.14	2.98	-0.56	2.70	0.43	3.38	0.08	2.96	-0.26
3.13	-0.02	3.32	-0.03	3.22	-0.71	2.64	0.28	4.07	-0.24	3.31	-0.25
2.97	0.10	3.12	-0.02	3.28	-0.43	2.83	0.45	3.94	-0.42	3.02	-0.36
2.99	-0.22	3.41	0.17	3.27	-0.46	2.86	0.26	3.16	-0.63	3.17	-0.17
2.62	0.02	5.39	1.10	3.12	-0.44	2.50	0.34	3.06	-0.67	3.52	-0.13
2.47	0.21	3.32	0.18	3.13	-0.52	2.32	0.54	3.29	-0.64	3.77	0.08
3.36	-0.02	3.66	0.19	3.72	-0.33	2.20	0.46	3.65	-0.55	3.19	-0.36
2.56	0.30	4.01	-0.19	3.71	-0.57	2.69	0.60	3.78	-0.39	3.06	-0.19
2.45	0.34	4.01	0.03	3.42	-0.56	2.46	0.45	3.98	-0.07	2.87	-0.41
2.42	0.24	3.84	0.04	3.40	-0.52	3.00	0.33	3.49	0.00	3.15	-0.25
2.64	0.40	3.34	-0.09	3.50	-0.63	2.66	0.48	3.55	-0.23	3.14	-0.29
2.39	0.35	3.43	-0.01	3.61	-0.64	2.84	0.34	3.80	-0.28	2.78	-0.33
2.33	0.67	4.08	-0.44	3.74	-0.64	2.77	0.41	3.17	-0.56	2.70	-0.33
2.22	0.76	3.65	-0.16	3.29	-0.73	3.04	0.39	3.49	-0.45	3.09	-0.48
2.55	0.81	3.82	-0.09	3.68	-0.86	2.62	0.43	3.64	-0.56	3.33	-0.40

		FW	01B	FW	J2B	FW	03B	FW	04B	FW	05B	FW	/06B]	
	t	weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld]	
		3.27	-0.72	2.85	0.05	3.09	0.28	2.84	-0.24	3.10	-0.47	2.71	-0.49	Ð	
		3.29	-0.67	3.24	-0.07	3.00	0.29	2.74	-0.14	2.90	-0.36	2.83	-0.44	1	
		2.94	-0.61	3.22	0.09	3.34	0.41	2.80	-0.29	3.03	-0.52	2.78	-0.39	Ð	
		3.03	-0.63	3.25	-0.16	3.42	0.27	2.80	-0.28	2.80	-0.52	2.67	-0.56	5	
		3.16	-0.63	3.40	-0.17	3.49	0.19	2.76	-0.24	2.85	-0.46	2.79	-0.38	3	
		3.29	-0.77	3.86	-0.09	3.60	0.19	2.47	-0.18	2.75	-0.49	2.77	-0.35	5	
		3.02	-0.48	3.81	-0.01	3.13	0.24	2.87	-0.11	2.92	-0.50	3.08	-0.45	5	
		3.41	-0.67	3.45	-0.06	3.53	0.25	2.87	-0.22	3.10	-0.42	2.74	-0.29)	
		3.01	-0.53	3.46	-0.03	3.33	0.29	2.84	-0.24	3.01	-0.48	2.76	-0.41	ī	
		3.15	-0.70	3.44	-0.05	3.01	0.25	2.86	-0.29	2.97	-0.55	2.71	-0.28	3	
		3.13	-0.60	3.20	-0.14	3.52	0.29	2.75	-0.22	3.25	-0.47	2.59	-0.42	2	
		3.19	-0.55	3.25	-0.25	3.04	0.37	2.87	-0.18	3.09	-0.48	2.44	-0.46	5	
		3.45	-0.59	3.24	-0.10	3.43	0.33	2.82	-0.22	2.82	-0.49	2.35	-0.46	5	
		3,23	-0.59	3.11	-0.25	3 22	0.33	3 34	-0.10	3.02	-0.57	2.65	-0.39	3	
	_	2 99	-0.52	3 24	0.03	2 80	0.36	3 26	-0.17	2.68	-0.45	2.05	-0.42	>	
	-	3.06	-0.60	3 54	-0.04	3 23	0.30	3.11	-0.14	2.00	-0.55	2.70	-0.31		
	-	3.00	-0.71	3.54	_0.04	3.23	0.31	3.00	-0.10	3 16	-0.54	2.01	_0.30	2	
	-	3.24	-0.61	3.15	0.22	3.31	0.10	3.00	-0.10	2.85	-0.35	2.33	-0.4	7	
	_	2 11	0.01	2.45	0.00	2 5/	0.00	2.03	-0.11	2.05	-0.33	2.30	0.47	1	
	-	2.11	-0.08	3.40 2.72	_0.00	2 11	0.30	2.01	-0.23	3.17	-0.47	2.61	2		
	F	2.90	-0.53	3.72	-0.12	3.11	0.33	2.91	-0.19	2.64	-0.45	2.05	-0.30	4	
	-	3.25	-0.60	2.45	-0.09	2.95	0.13	2.91	-0.02	3.13	-0.55	3.03	-0.4	2	
	-	3.35	-0.67	3.37	-0.08	3.11	0.19	3.03	-0.11	2.71	-0.43	3.15	-0.30	2	
	_	3.43	-0.61	3.35	-0.05	3.12	0.21	2.95	-0.13	3.07	-0.54	2.78	-0.54	1	
	-	3.35	-0.50	3.02	-0.12	3.30	0.13	3.05	-0.19	2.93	-0.49	3.05	-0.4	1	
	_	3.33	-0.72	3.16	0.02	3.28	0.21	2.85	0.05	3.02	-0.47	3.1/	-0.44	<u>+</u>	
	_	3.15	-0.62	3.43	-0.05	2.99	0.16	3.02	-0.01	2.80	-0.61	2.76	-0.51	4	
	_	3.21	-0.75	3.31	-0.03	3.58	0.14	3.23	-0.21	2.89	-0.48	2.48	-0.48	3	
	_	3.42	-0.69	3.28	-0.02	3.20	0.27	2.91	-0.13	2.84	-0.52	2.72	-0.71	4	
	_	3.78	-0.56	2.88	-0.05	3.18	0.24	3.31	-0.03	2.80	-0.53	3.29	-0.31	L	
		2 0 5 1		2 81	-0.08	3.14	0.19	3.06	0.04	2.89	-0.63	2.80	-0.36	5	
	L	2.00	-0.50	2.01	0.00	0.2.								-	
FW	010	2.03 FW	-0.50	FW	1030	FW	040	FW	050	FW	060	FW07C		FW	/080
FW t weld	01C e weld	د.می FW tweld	-0.50 V02C	FW FW	'03C e weld	FW FW	/04C e weld	FW t weld	05C e weld	FW(D6C	FW07C	e weld	FW	/08C
FW t weld 2 67	01C e weld 0 13	EV FW t weld	-0.50 V02C e weld	FW t weld	(03C e weld	FW t weld	04C e weld 0 41	FW t weld 3 04	05C e weld -0 55	FW(t weld 2 88	D6C e weld	FW07C t weld 3 61	e weld -0 70	FW t weld 3 24	08C e weld 0.67
FW t weld 2.67 2.98	01C e weld 0.13 0.24	2.03 FW t weld 3.25 3.38	-0.50 v02C e weld 5 -0.29 3 -0.28	FW t weld 3.41	(03C e weld 0.28	FW t weld 3.21 3.19	04C e weld 0.41 0.40	FW t weld 3.04 3.37	05C e weld -0.55 -0.41	FW(t weld 2.88 2.98	06C e weld 0.25 0.18	FW07C t weld 3.61 3.23	e weld -0.70 -0.69	FW t weld 3.24 3.49	08C e weld 0.67 0.44
FW/ t weld 2.67 2.98 3.18	01C e weld 0.13 0.24 0.09	2.03 FW t weld 3.25 3.38 3.17	-0.50 V02C e weld 5 -0.29 3 -0.28 7 -0.34	FW t weld 3.41 3.35 3.28	(03C e weld 0.28 0.27 0.26	FW t weld 3.21 3.19 3.13	04C e weld 0.41 0.40 0.37	FW t weld 3.04 3.37 3.34	05C e weld -0.55 -0.41 -0.54	FW0 t weld 2.88 2.98 2.98	06C e weld 0.25 0.18 0.24	FW07C t weld 3.61 3.23 3.48	e weld -0.70 -0.69 -0.66	FW t weld 3.24 3.49 3.61	08C e weld 0.67 0.44 0.53
FW/ t weld 2.67 2.98 3.18 2.99	01C e weld 0.13 0.24 0.09 0.09	2.03 FW t weld 3.25 3.38 3.17 3.11	-0.50 V02C e weld 5 -0.29 3 -0.28 7 -0.34 L -0.33	FW t weld 3.41 3.35 3.28 2.92	(03C e weld 0.28 0.27 0.26 0.17	FW t weld 3.19 3.13 3.11	04C e weld 0.41 0.40 0.37 0.36	FW t weld 3.04 3.37 3.34 3.13	05C e weld -0.55 -0.41 -0.54 -0.41	FW0 t weld 2.88 2.98 2.98 2.95	06C e weld 0.25 0.18 0.24 0.16	FW07C t weld 3.61 3.23 3.48 3.83	e weld -0.70 -0.69 -0.66 -0.49	FW t weld 3.24 3.49 3.61 3.59	08C e weld 0.67 0.44 0.53 0.51
FW/ t weld 2.67 2.98 3.18 2.99 3.36	01C e weld 0.13 0.24 0.09 0.09 0.24	2.03 FV t weld 3.25 3.38 3.17 3.11 2.89	-0.30 v02C e weld -0.29 -0.28 -0.34 -0.33 -0.33	FW t weld 3.41 3.35 3.28 2.92 2.85	/03C e weld 0.28 0.27 0.26 0.17 0.31	FW t weld 3.21 3.19 3.13 3.11 3.07	04C e weld 0.41 0.40 0.37 0.36 0.34	FW t weld 3.04 3.37 3.34 3.13 2.96	05C e weld -0.55 -0.41 -0.54 -0.41 -0.81	FW0 t weld 2.88 2.98 2.98 2.95 3.06	06C e weld 0.25 0.18 0.24 0.16 0.29	FW07C t weld 3.61 3.23 3.48 3.83 3.74	e weld -0.70 -0.69 -0.66 -0.49 -0.53	FW t weld 3.24 3.49 3.61 3.59 3.56	/08C e weld 0.67 0.44 0.53 0.51 0.60
FW t weld 2.67 2.98 3.18 2.99 3.36 2.98	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16	2.03 FV t weld 3.25 3.38 3.17 3.11 2.89 3.02	-0.30 e weld 5 -0.29 3 -0.28 7 -0.34 1 -0.33 9 -0.38 2 -0.42	FW t weld 3.41 3.35 3.28 2.92 2.85 3.08	0.3C e weld 0.28 0.27 0.26 0.17 0.31 0.03	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01	05C e weld -0.55 -0.41 -0.54 -0.41 -0.81 -0.63	FW0 t weld 2.88 2.98 2.98 2.95 3.06 3.00	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62
FW/ t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24	2.03 FV t weld 3.25 3.38 3.17 3.11 2.89 3.02 3.20	-0.30 e weld 5 -0.29 3 -0.28 7 -0.34 1 -0.33 2 -0.38 2 -0.42 2 -0.42	FW. t weld 3.41 3.35 3.28 2.92 2.85 3.08 2.92	0.00 03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98	05C e weld -0.55 -0.41 -0.54 -0.41 -0.81 -0.63 -0.58	FW0 t weld 2.88 2.98 2.98 2.95 3.06 3.00 3.01	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59
FW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37	2.03 FV t weld 3.25 3.38 3.17 3.11 2.89 3.02 3.20 3.20 3.02	-0.30 v02C e weld -0.29 -0.29 -0.28 -0.28 -0.38 -0.38 -0.38 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.34 -0.38 -0.38 -0.38 -0.48 -0.38 -0.48 -0.48 -0.48 -0.48 -0.48 -0.58 -0.48 -0	FW t weld 3.3.41 3.3.55 3.28 3.285 3.08 2.92 3.08 2.92 3.34	0.30 e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.63 -0.58 -0.53	FW0 t weld 2.88 2.98 2.98 2.95 3.06 3.00 3.01 2.99	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69	e weld -0.70 -0.69 -0.49 -0.53 -0.47 -0.63 -0.76	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56
FW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39	2.03 FV t weld 3.25 3.38 3.17 3.11 2.85 3.02 3.02 3.02 3.02 3.14	-0.30 V02C e weld -0.29 -0.28 -0.38 -0.38 -0.38 -0.38 -0.38 -0.32 -0.42 -0.42 -0.42 -0.42 -0.44 -0	FW t weld 3.341 3.355 3.28 2.92 2.85 3.08 2.92 3.34 4.42	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52	05C e weld -0.55 -0.41 -0.54 -0.54 -0.63 -0.58 -0.53 -0.71	FW0 t weld 2.88 2.98 2.98 2.95 3.06 3.00 3.01 2.99 2.89	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.59	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57	/08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60
FW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41	2.03 FV t weld 3.22 3.33 3.17 3.11 2.88 3.00 3.20 3.20 3.20 3.14 3.07	-0.30 VO2C e weld -0.29 -0.28 -0.28 -0.34 -0.33 -0.38 -0.38 -0.42 -0.42 -0.42 -0.47 -0.37 -0.31	FW t weld 3.335 3.28 3.292 2.85 3.08 2.92 2.85 3.08 2.92 3.34 4.42 3.23	03C e weld 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.22	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.52 3.90	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.63 -0.58 -0.53 -0.71 -0.49	FW/ t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.28	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.59 3.03	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.73	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33	2.03 FV t weld 3.25 3.38 3.17 3.11 2.88 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02	-0.30 V02C e weld -0.29 -0.28 -0.28 -0.34 -0.33 -0.38 -0.42 -0.42 -0.42 -0.47 -0.37 -0.31 -0.37 -0.31 -0.31 -0.37 -0.31 -0.31 -0.31 -0.32 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.38 -0.42 -0.42 -0.38 -0.42 -0.42 -0.38 -0.42 -0.38 -0.42 -0.42 -0.38 -0.42 -0.42 -0.38 -0.42 -0.42 -0.38 -0.42 -0	FW tweld 3.41 3.35 2.92 2.85 3.08 2.92 3.08 3.34 4.42 3.23 3.23	03C e weld 0.28 0.27 0.26 0.17 0.31 0.31 0.31 0.22 -0.31 0.12 -0.05	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.02 3.22 3.18	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85	05C e weld -0.55 -0.41 -0.54 -0.54 -0.58 -0.58 -0.53 -0.71 -0.49 -0.64	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79	06C e weld 0.25 0.18 0.24 0.16 0.29 0.35 0.27 0.27 0.27 0.28 0.48	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.69 3.03 3.20	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.76 -0.63 -0.76 -0.81 -0.69 -0.60	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.45 3.42 3.52 3.73 3.81	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.73 2.70 2.76	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39	2.33 FV t weld 3.32 3.37 3.11 2.88 3.00 3.20 3.00 3.00 3.00 3.00 3.00 3.00	-0.30 V02C e weld -0.29 -0.29 -0.28 -0.34 -0.33 -0.38 -0.38 -0.42 -0.42 -0.42 -0.47 -0.31 -0.31 -0.33 -0.36 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.38 -0.42 -0.42 -0.42 -0.38 -0.42 -0.38 -0.42 -0.42 -0.42 -0.38 -0.42 -0.42 -0.42 -0.42 -0.38 -0.42 -0.43 -0.33 -0.42 -0.42 -0.42 -0.43 -0.33 -0.42 -0.42 -0.43 -0.33 -0.42 -0.42 -0.43 -0.33 -0.36 -0	FW tweld 3.41 3.35 2.92 2.85 3.08 2.92 3.34 3.35 3.32 3.34 3.32 3.28 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.32 3.28	03C e weld 0.28 0.27 0.26 0.17 0.31 0.31 0.31 0.22 -0.31 0.12 -0.05 0.04	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.21 3.00 3.21 3.00 3.21 3.00 3.21 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.855 3.16	05C e weld -0.55 -0.41 -0.54 -0.54 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.79	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.28 0.48 0.48	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.00 3.03 3.20 3.37	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.76 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.73 3.73 3.73 3.81 4.08	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.18	2.33 FV t weld 3.25 3.38 3.17 3.11 2.88 3.00 3.20 3.00 3.10 3.00 3.14 3.00 2.99 2.99 3.00	-0.30 VO2C e weld -0.29 -0.29 -0.28 -0.34 -0.33 -0.38 -0.38 -0.38 -0.32 -0.44 -0.44 -0	FW tweld 3.41 3.35 3.28 2.92 3.285 3.08 2.92 3.34 3.32 3.32 3.285 3.08 2.92 3.34 3.34 3.32 3.23 3.23 3.28 2.88 2.88	03C e weld 0.28 0.27 0.26 0.17 0.31 0.31 0.31 0.31 0.22 -0.31 0.12 -0.05 0.044 0.19	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.22 3.18 3.30 3.03 3.03 3.17	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.35 0.27 0.27 0.28 0.48 0.48 0.36 0.41	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.00 3.03 3.20 3.37 3.38	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.76 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.70 2.70 2.96 2.96 2.71	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.18 0.27	2.03 FV t weld 3.25 3.38 3.17 3.11 2.88 3.00 3.20 3.00 3.10 3.00 2.90 2.99 3.00 2.99 3.00 2.99 3.00 2.99	-0.30 VO2C e weld -0.29 -0.28 -0.28 -0.34 -0.33 -0.38 -0.38 -0.38 -0.32 -0.42 -0.42 -0.42 -0.47 -0.31 -0.36 -0.36 -0.36 -0.36 -0.37 -0.31 -0.37 -0.34 -0.31 -0.31 -0.34 -0.34 -0.34 -0.35 -0.34 -0.34 -0.35 -0	FW tweld 3.35 3.28 2.92 3.285 3.285 3.285 3.285 3.285 3.285 3.08 2.92 3.341 3.342 3.323 3.323 3.223 3.228 2.888 2.99	03C e weld 0.28 0.27 0.26 0.17 0.31 0.31 0.31 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05	FW tweld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.03 3.07 3.01 3.07 3.01 3.02 3.03 3.04 3.04 3.04 3.04 3.03 3.04 3.	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.31	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.51 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67	FW/ t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.79 2.78 3.05 3.24	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.35 0.27 0.27 0.28 0.48 0.48 0.36 0.41 0.33	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.09 3.03 3.20 3.32 3.32 3.32 3.33 3.32	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.76 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.81	FW t weld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.54 0.53 0.42 0.42
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.76 2.71 2.65	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.18 0.27 0.50	2.83 FV t weld 3.32 3.38 3.17 3.11 2.88 3.00 3.20 3.00 3.10 3.00 3.14 3.00 2.99 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	-0.30 VO2C e weld -0.29 -0.28 -0.28 -0.28 -0.38 -0.38 -0.38 -0.38 -0.38 -0.42 -0.42 -0.47 -0.31 -0.31 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.37 -0.37 -0.36 -0.37 -0.37 -0.37 -0.38 -0.38 -0.42 -0.45 -0.42 -0.45 -0	FW tweld 3.35 3.28 2.92 2.85 3.08 2.92 3.08 2.92 3.34 3.38 2.92 3.34 3.32 3.34 4.42 3.23 3.23 3.28 2.99 3.06	03C e weld 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.31 0.41	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55	FWW t weld 2.88 2.98 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.27 0.28 0.48 0.48 0.46 0.41 0.33 0.36	FW07C tweld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.20 3.20 3.37 3.38 3.19 3.12	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.81 -0.64	FW tweld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.49 0.59
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.96 3.20	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.18 0.27 0.50 0.27	2.83 FV t weld 3.32 3.31 3.11 2.89 3.00 3.20 3.12 3.00 2.90 2.90 2.95 2.88 2.76	V02C e weld 5 -0.29 3 -0.28 7 -0.34 1 -0.33 9 -0.38 2 -0.42 2 -0.47 1 -0.37 7 -0.31 0 -0.26 3 -0.37 7 -0.31 0 -0.36 7 -0.31 0 -0.36 3 -0.36 7 -0.31 0 -0.45 3 -0.47 5 -0.47 5 -0.47 6 -0.31 7 -0.31 7 -0.31 7 -0.31 7 -0.35 7 -0.35 7 -0.35 7 -0.35 7 -0.35 7 -0.35 7 -0.37 7 -0.31 0 -0.25 7 -0.37 7 -0.31 0 -0.25 7 -0.37 7 -0.31 0 -0.25 7 -0.37 7 -0.31 0 -0.25 7 -0.37 7 -0.31 0 -0.35 7 -0.55 7 -0.55	FW tweld 3.35 3.28 2.92 3.28 2.92 3.08 2.92 3.34 4.42 3.23 3.23 3.23 3.24 4.42 3.23 3.28 2.88 2.99 3.06 3.16	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06 0.06	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.43 0.51 0.49 0.52 0.39 0.31 0.41	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.13 3.45 3.09 3.29	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74	FWW t weld 2.88 2.98 2.98 2.98 3.06 3.00 3.01 2.99 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.28 0.48 0.48 0.36 0.41 0.33 0.36 0.37	FW07C tweld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.20 3.37 3.38 3.19 3.12 3.33	e weld -0.70 -0.69 -0.69 -0.69 -0.47 -0.63 -0.77 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.81 -0.44 -0.44	FW tweld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.49 0.59
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.96 3.20 2.96	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.18 0.27 0.50 0.27 0.50	2.83 FV t weld 3.25 3.33 3.17 3.11 2.89 3.00 3.20 3.10 3.00 2.90 2.90 3.00 2.95 3.00 2.95 3.00 2.95 2.88 2.76 2.98	-0.50 VO2C e weld 5 -0.29 3 -0.28 7 -0.34 1 -0.33 9 -0.38 2 -0.42 2 -0.47 1 -0.37 7 -0.31 0 -0.26 3 -0.36 7 -0.31 0 -0.45 3 -0.47 5 -0.50 9 -0.52 1 -0.50 -0.52 -0.50 -0.	FW tweld 3.35 3.28 2.92 3.28 2.92 3.08 2.92 3.34 4.42 3.23 3.23 3.24 4.42 3.23 3.28 2.88 2.99 3.06 3.14	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06 0.06 -0.02 0.10	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.22 3.00 3.22 3.30 3.11 3.01 3.22 3.03 3.10 3.22 3.03 3.10 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.49 0.52 0.39 0.31 0.41	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.29 3.29	05C e weld -0.55 -0.41 -0.41 -0.41 -0.41 -0.63 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.65 -0.74 -0.68	FWW t weld 2.88 2.98 2.98 2.98 3.06 3.00 3.01 2.99 2.89 2.89 2.79 2.78 3.05 3.24 3.34 3.34 2.90 3.13	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.28 0.48 0.36 0.41 0.33 0.36 0.41 0.33 0.36	FW07C tweld 3.61 3.23 3.48 3.74 3.87 3.94 3.69 3.59 3.03 3.20 3.37 3.38 3.19 3.12 3.33 3.34	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.71 -0.61 -0.71 -0.81 -0.71 -0.84 -0.44 -0.44 -0.44	FW tweld 3.24 3.49 3.56 3.49 3.56 3.49 3.45 3.42 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.49 0.59 0.50 0.60
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.65 3.60 2.96 3.00	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.18 0.27 0.50 0.27 0.37	2.03 FV t weld 3.21 3.31 3.11 2.89 3.02 3.02 3.02 3.02 2.99 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	-0.30 VO2C e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.33 9 -0.38 2 -0.42 2 -0.42 2 -0.42 2 -0.47 4 -0.37 7 -0.31 0 -0.26 3 -0.36 7 -0.31 7 -0.31 0 -0.42 2 -0.47 4 -0.37 7 -0.31 0 -0.26 3 -0.36 7 -0.31 0 -0.42 2 -0.47 3 -0.36 7 -0.31 0 -0.42 3 -0.36 7 -0.31 0 -0.42 3 -0.42 0 -0.45 0 -0.45 0 -0.45 0 -0.45 0 -0.55 0 -0.55	FW FW tweld 3.35 3.28 2.92 3.88 2.92 3.341 3.28 2.92 3.34 4.42 3.23 3.23 3.23 3.23 3.24 4.42 3.23 3.28 2.88 2.99 3.66 3.16 3.14 3.14	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.55 0.04 0.19 0.05 0.06 -0.02 0.10	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 0.02 8.89	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.37 0.35 0.45	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.13	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.53 -0.53 -0.71 -0.64 -0.57 -0.62 -0.67 -0.62 -0.74 -0.64 -0.55	FWW t weld 2.88 2.98 2.98 3.06 3.00 3.00 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34 3.34 3.34 3.30	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.27 0.27 0.28 0.48 0.36 0.33 0.33 0.33 0.37 0.46 0.34	FW07C tweld 3.61 3.23 3.48 3.83 3.83 3.87 3.94 3.69 3.59 3.03 3.20 3.33 3.20 3.37 3.38 3.19 3.12 3.12 3.12 3.33 3.34 4.342	e weld -0.70 -0.69 -0.69 -0.47 -0.63 -0.77 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.81 -0.44 -0.44 -0.44 -0.43 -0.49	FW t weld 3.24 3.49 3.56 3.49 3.55 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.51 3.51 3.51 3.51	08C e weld 0.67 0.44 0.53 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.49 0.59 0.50 0.60 0.41
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 2.96 3.00	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.18 0.27 0.50 0.27 0.57 0.40	2.03 FV t weld 3.25 3.31 3.11 2.86 3.02 3.02 3.02 3.02 3.02 3.02 2.99 3.00 2.99 2.99 3.00 3.00 2.99 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	-0.30 VO2C e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.33 9 -0.38 2 -0.42 2 -0.42 2 -0.42 2 -0.47 4 -0.37 7 -0.31 0 -0.26 3 -0.36 7 -0.31 7 -0.31 0 -0.45 3 -0.55 3 -0.55 1 -0.55	FW tweld 3.41 3.35 3.28 2.92 2.85 2.85 2.85 2.385 2.323 3.341 4.42 3.23 3.23 3.28 2.92 3.34 4.42 3.23 3.28 2.999 3.06 3.14 3.14 3.14	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06 0.02 0.010 0.12 0.12	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 0 2.89 3.34	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.37 0.35 0.39 0.31 0.41	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.13 3.45 3.09 3.29 3.16 3.13 3.45 3.09 3.16 3.13 3.45 3.09 3.16 3.13 3.45 3.13 3.45 3.13 3.45 3.13 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.4	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.53 -0.53 -0.71 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.54 -0.55	FWW t weld 2.88 2.98 2.98 3.06 3.00 3.00 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34 3.34 3.34 3.307 2.86	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.27 0.27 0.27 0.28 0.48 0.36 0.36 0.33 0.33 0.37 0.46 0.34 0.46	FW07C tweld 3.61 3.23 3.48 3.83 3.83 3.87 3.94 3.69 3.59 3.03 3.20 3.33 3.20 3.37 3.38 3.19 3.12 3.12 3.33 3.34 3.33	e weld -0.70 -0.69 -0.69 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.81 -0.63 -0.72 -0.71 -0.81 -0.44 -0.44 -0.49 -0.55	FW t weld 3.24 3.49 3.59 3.59 3.49 3.45 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.51 3.51 3.51 3.51 3.51 3.51	08C e weld 0.67 0.44 0.53 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.49 0.59 0.50 0.50 0.50 0.51
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.00 3.00	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.18 0.27 0.50 0.50 0.50 0.50 0.57 0.50 0.50 0.5	2.03 FV t weld 3.2 ^t 3.31 3.11 2.89 3.02 3.02 3.02 3.02 3.02 3.02 2.99 3.00 2.99 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.11 3.00 3.00	U.SU VO2C e weld 50.29 80.28 70.34 10.33 90.38 20.42 20.42 20.42 20.47 40.37 70.31 00.26 30.36 70.31 70.31 00.45 30.52 30.52 30.52 30.53 30.53 30.53 30.53 30.53 30.53 30.55 0.55	FW tweld 3.35 3.35 3.35 3.35 3.328 2.922 2.852 3.388 2.923 3.388 2.924 3.341 3.323 3.233 3.233 3.234 2.999 3.060 3.164 3.144 2.955 2.777	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.03 0.31 0.022 -0.31 0.12 -0.05 0.044 0.19 0.05 0.06 0.02 0.002 0.10 0.11	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 2.89 3.34 3.25	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.37 0.35 0.45 0.41	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.61 3.31 3.45 3.01 3.16 3.61 3.16 3.61 3.52 3.16 3.61 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52	05C e weld -0.55 -0.41 -0.63 -0.53 -0.53 -0.53 -0.71 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.64 -0.55	FWW t weld 2.88 2.98 2.98 3.06 3.00 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.07 2.86 3.34	06C e weld 0.25 0.18 0.24 0.16 0.29 0.35 0.27 0.27 0.27 0.27 0.27 0.28 0.48 0.36 0.41 0.33 0.36 0.37 0.46 0.34 0.46 0.33	FW07C tweld 3.61 3.23 3.48 3.83 3.83 3.87 3.94 3.69 3.59 3.03 3.20 3.33 3.34 3.19 3.12 3.33 3.34 3.33 3.34 3.33	e weld -0.70 -0.69 -0.69 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.81 -0.63 -0.44 -0.44 -0.44 -0.44 -0.49 -0.55 -0.61	FW t weld 3.24 3.49 3.61 3.59 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.51 3.51 3.51 3.51 3.51 3.51	08C e weld 0.67 0.44 0.53 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.49 0.59 0.50 0.50 0.50 0.60 0.51 0.62 0.59 0.55
FWWeld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.78 3.08 2.73 2.81 2.70 2.76 2.96 3.20 2.96 3.00 3.01 3.02 2.89	01C e weld 0.13 0.24 0.09 0.24 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.18 0.27 0.50 0.27 0.50 0.27 0.37 0.40 0.33 0.33 0.33	2.03 FV t weld 3.25 3.33 3.11 2.88 3.02 3.12 3.02 3.11 3.02 3.11 3.02 3.11 3.02 2.92 3.02 2.92 3.07 2.93 3.07 2.95 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	-0.30 e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.33 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.43 3 -0.36 7 -0.31 7 -0.36 7 -0.36 3 -0.43 3 -0.50 3 -0.50 3 -0.53 3 -0.43 3 -0.43	FW tweld 3.35 3.35 3.35 3.35 3.328 2.92 3.38 2.92 3.341 3.328 2.92 3.341 4.422 3.23 3.23 3.23 3.23 3.23 3.28 2.99 3.06 3.14 3.14 2.95 2.77 2.73	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.03 0.31 0.22 -0.31 0.12 -0.55 0.04 0.19 0.05 0.06 -0.02 0.10 0.12 0.112 0.12 0.112	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.300 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 2.89 3.34 3.12 3.25 5.2.97	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.37 0.35 0.45 0.45 0.45 0.45	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.16 3.315 3.315 3.315 3.23	05C e weld -0.55 -0.41 -0.54 -0.63 -0.53 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.64 -0.70 -0.55 -0.53	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.13 3.13 3.13	06C e weld 0.25 0.18 0.24 0.29 0.35 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.69 3.59 3.03 3.20 3.30 3.20 3.37 3.38 3.19 3.12 3.33 3.34 3.34 3.34 3.34 3.30 3.18 3.32	e weld -0.70 -0.69 -0.69 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.63 -0.72 -0.71 -0.63 -0.44 -0.44 -0.44 -0.44 -0.55 -0.61 -0.55	FW tweld 3.24 3.49 3.61 3.59 3.46 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.53 3.51 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.53 3.78 3.78 3.78 3.64 3.78	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.49 0.59 0.50 0.60 0.60 0.54 0.53 0.42 0.44 0.53 0.62 0.54 0.55 0.55 0.60 0.55 0.60 0.55 0.55 0.60 0.55 0.56 0.56 0.56 0.55 0.56
FWWeld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.01 3.02 2.89 2.84	01C e weld 0.13 0.24 0.09 0.09 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.30 0.27	2.03) FV t weld 3.25 3.33 3.11 2.88 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02	-0.30 e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.33 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 3 -0.31 7 -0.36 7 -0.31 7 -0.45 3 -0.45 3 -0.50 3 -0.51 3 -0.52 3 -0.43 3 -0.42 3 -0.42	FW tweld 3.35 3.35 3.35 3.35 3.35 3.328 2.922 3.341 3.35 3.328 2.852 3.08 2.922 3.323 3.233 3.233 3.234 2.858 2.999 3.060 3.161 3.141 3.142 3.141 3.142 3.142 3.141 3.142 3.143 3.144 3.142 3.143 3.144 3.144 3.145 3.141 3.142 3.143 3.144 3.145 3.145 3.145 3.145 3.145 3.145 3.145 3.145 </td <td>/03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.03 0.31 0.12 -0.05 0.04 0.19 0.05 0.06 -0.02 0.10 0.12 0.11 0.22 0.11</td> <td>FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 2.89 3.34 3.25 3.22 3.34 3.10 3.10 3.10 3.11 3.12 3.22 3.33 3.11 3.12 3.22 3.32 3.13 3.12 3.22 3.2</td> <td>04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.52 0.39 0.31 0.41 0.41 0.37 0.35 0.45 0.45 0.47 0.43 0.49</td> <td>FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.61 3.61 3.61 3.61 3.35 3.15 3.23 3.23</td> <td>05C e weld -0.55 -0.41 -0.54 -0.63 -0.53 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.64 -0.70 -0.55 -0.53 -0.53 -0.53 -0.58</td> <td>FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.13 3.13 3.07 2.86 3.34 3.37 3.18</td> <td>06C e weld 0.25 0.18 0.24 0.29 0.35 0.27 0.27 0.27 0.27 0.27 0.28 0.48 0.36 0.41 0.33 0.36 0.37 0.34 0.46 0.33 0.41 0.41 0.44 0.44 0.45</td> <td>FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.69 3.59 3.03 3.20 3.30 3.20 3.32 3.33 3.34 3.34 3.34 3.34 3.34 3.34</td> <td>e weld -0.70 -0.69 -0.69 -0.53 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.63 -0.72 -0.71 -0.63 -0.44 -0.44 -0.63 -0.49 -0.55 -0.61 -0.58</td> <td>FW tweld 3.24 3.49 3.61 3.59 3.46 3.45 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.85 3.73 3.73 3.73 3.73</td> <td>08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.42 0.43 0.59 0.50 0.50 0.50 0.51 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.55 0.56 0.60 0.55 0.56 0.60 0.55 0.56 0.60 0.55 0.56 0.55</td>	/03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.03 0.31 0.12 -0.05 0.04 0.19 0.05 0.06 -0.02 0.10 0.12 0.11 0.22 0.11	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 2.89 3.34 3.25 3.22 3.34 3.10 3.10 3.10 3.11 3.12 3.22 3.33 3.11 3.12 3.22 3.32 3.13 3.12 3.22 3.2	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.52 0.39 0.31 0.41 0.41 0.37 0.35 0.45 0.45 0.47 0.43 0.49	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.61 3.61 3.61 3.61 3.35 3.15 3.23 3.23	05C e weld -0.55 -0.41 -0.54 -0.63 -0.53 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.64 -0.70 -0.55 -0.53 -0.53 -0.53 -0.58	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.13 3.13 3.07 2.86 3.34 3.37 3.18	06C e weld 0.25 0.18 0.24 0.29 0.35 0.27 0.27 0.27 0.27 0.27 0.28 0.48 0.36 0.41 0.33 0.36 0.37 0.34 0.46 0.33 0.41 0.41 0.44 0.44 0.45	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.69 3.59 3.03 3.20 3.30 3.20 3.32 3.33 3.34 3.34 3.34 3.34 3.34 3.34	e weld -0.70 -0.69 -0.69 -0.53 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.63 -0.72 -0.71 -0.63 -0.44 -0.44 -0.63 -0.49 -0.55 -0.61 -0.58	FW tweld 3.24 3.49 3.61 3.59 3.46 3.45 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.85 3.73 3.73 3.73 3.73	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.42 0.43 0.59 0.50 0.50 0.50 0.51 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.55 0.56 0.60 0.55 0.56 0.60 0.55 0.56 0.60 0.55 0.56 0.55
FWWeld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.01 3.02 2.89 2.84 4.2.92	01C e weld 0.13 0.24 0.09 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.27 0.50 0.27 0.37 0.50 0.27 0.33 0.24 0.33 0.30 0.24 0.44 0.33 0.30 0.24 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.3	2.83 FV t weld 3.25 3.33 3.11 2.85 3.02 3.02 3.02 3.02 3.02 3.02 2.93 3.07 2.99 2.99 3.00 3.00 2.99 3.00 3.00 2.99 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	-0.50 VO2C e weld -0.29 -0.28 -0.28 -0.34 -0.33 -0.38 -0.32 -0.42 -0.42 -0.42 -0.42 -0.42 -0.43 -0.31 -0.31 -0.36 -0.31 -0.36 -0.36 -0.36 -0.36 -0.37 -0.31 -0.35 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.37 -0.31 -0.35 -0.36 -0.36 -0.36 -0.36 -0.37 -0.37 -0.31 -0.35 -0.36 -0.36 -0.36 -0.36 -0.36 -0.37 -0.31 -0.35 -0.36 -0.50 -0.50 -0.50 -0.50 -0.42 -0.42 -0.42 -0.50 -0.50 -0.42 -0	FW tweld 3.335 3.35 3.328 2.922 2.852 2.852 3.08 2.922 3.344 4.42 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.28 2.99 3.06 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.12 2.88 3.02	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.022 -0.55 0.04 0.19 0.055 0.066 -0.02 0.111 0.122 0.111 0.25 0.29 0.13 0.04	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.32 3.25 3.22 3.00 3.33 3.01 3.25 3.25 3.22 3.30 3.00 3.32 3.33 3.310 3.32 3.32 3.32 3.33 3.310 3.32 3.32 3.32 3.32 3.32 3.33 3.310 3.32 3.32 3.32 3.33 3.310 3.32 3.32 3.32 3.33 3.32 3.34 3.32 3.34 3.32 3.34 3.32 3.34 3.32 3.34 3.32 3.34 3.34	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.52 0.39 0.31 0.41 0.41 0.37 0.35 0.45 0.45 0.45 0.44 0.43 0.49 0.49 0.49 0.49	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.61 3.61 3.35 3.35 3.35 3.23 3.23 3.23	05C e weld -0.55 -0.41 -0.54 -0.64 -0.63 -0.58 -0.53 -0.71 -0.49 -0.64 -0.67 -0.62 -0.67 -0.55 -0.74 -0.68 -0.64 -0.65 -0.53 -0.53 -0.53 -0.58 -0.58	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.07 2.84 3.34 2.90 3.13 3.07 2.86 3.37 3.18 3.37	06C e weld 0.25 0.18 0.24 0.29 0.35 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.59 3.03 3.20 3.30 3.20 3.32 3.33 3.34 3.34 3.42 3.30 3.30 3.32 5 3.32 5 3.35 3.25	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.61 -0.63 -0.44 -0.44 -0.44 -0.44 -0.44 -0.55 -0.55 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.66 -0.53 -0.66 -0.53 -0.66 -0.53 -0.66 -0.53 -0.66 -0.53 -0.66 -0.53 -0.66 -0.53 -0.66 -0.81 -0.69 -0.60 -0.72 -0.61 -0.51 -0.51 -0.51 -0.69 -0.60 -0.51 -0.69 -0.60 -0.51 -0.51 -0.51 -0.51 -0.55 -0	FW tweld 3.24 3.49 3.61 3.59 3.56 3.45 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.85 3.73 3.73 3.73 3.73 3.73 3.73	08C e weld 0.67 0.44 0.53 0.51 0.60 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.42 0.49 0.59 0.50 0.60 0.51 0.53 0.62 0.53 0.62 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.55
FWWeld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.01 3.02 2.96 4.00 3.01 3.02 2.84 4.2.92 2.79	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.30 0.27 0.40 0.27 0.50 0.27 0.37 0.40 0.24 0.34 0.44	2.03) FV t weld 3.25 3.33 3.11 3.11 2.88 3.02 3.02 3.02 3.02 3.02 3.02 2.93 3.07 2.99 3.00 2.99 3.00 2.99 3.00 3.12 3.00 3.12 3.00 3.12 3.00 3.00 3.12 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	-0.30 e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.33 2 -0.42 1 -0.38 2 -0.42 1 -0.31 1 -0.36 2 -0.42 1 -0.37 7 -0.31 1 -0.36 7 -0.36 3 -0.47 5 -0.50 9 -0.52 5 -0.50 9 -0.42 9 -0.42 9 -0.43 9 -0.43 9 -0.42 1 -0.43 9 -0.42 1 -0.43 1 -0.43 1 -0.48 2 -0.48 2 -0.50	FW tweld 3.335 3.35 3.328 2.922 2.852 2.852 3.08 2.922 3.334 7.3.34 7.3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.28 2.88 2.99 3.66 3.14 3.14 3.14 3.12 2.88 3.02 2.88 3.02 3.14	03C e weld 0.28 0.27 0.26 0.17 0.31 0.31 0.31 0.31 0.12 -0.05 0.04 0.19 0.05 0.06 -0.02 0.11 0.12 0.11 0.12 0.11 0.12 0.13 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.33 3.25 3.33 3.31 7.7 3.01 3.33 3.31 7.7 3.33 3.31 7.7 3.31 3.32 3.33 3.31 7.7 3.31 3.32 3.33 3.31 7.7 3.31 3.32 3.33 3.31 7.7 3.31 3.32 3.33 3.31 7.7 3.31 3.32 3.33 3.31 7.7 3.31 3.32 3.33 3.31 7.7 3.31 3.32 3.33 3.31 3.32 3.32 3.32 3.33 3.33 3.33 3.32 3.33 3.32 3.333 3.333 3.333 3.333 3.3333 3.3333 3.3333 3.3333 3.33333 3.3333 3.33333 3.33333 3.33333 3.333333	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.52 0.39 0.52 0.39 0.55 0.45 0.45 0.45 0.45 0.49 0.49 0.49 0.49 0.49 0.49	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.61 3.35 3.15 3.15 3.23 3.23 3.223	05C e weld -0.55 -0.41 -0.54 -0.63 -0.53 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.64 -0.55 -0.53 -0.55 -	FWW t weld 2.88 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.13 3.07 2.86 3.34 2.90 3.10 3.01 3.01 3.01 3.01 3.01 3.01 3.0	06C e weld 0.25 0.18 0.24 0.16 0.29 0.35 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.48 0.36 0.31 0.33 0.36 0.37 0.46 0.33 0.46 0.33 0.44 0.33 0.44 0.33	FW07C t weld 3.61 3.23 3.48 3.83 3.74 3.87 3.87 3.87 3.87 3.69 3.03 3.20 3.30 3.20 3.32 3.33 3.34 3.42 3.30 3.18 3.25 3.35 3.25 3.35 3.25 3.35	e weld -0.70 -0.69 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.61 -0.44 -0.44 -0.44 -0.44 -0.44 -0.63 -0.49 -0.55 -0.61 -0.53 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.61 -0.53 -0.63 -0.61 -0.53 -0.63 -0.63 -0.64 -0.65 -0.64 -0.65 -0.64 -0.65 -0.64 -0.65 -0.64 -0.64 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.55 -0.65 -0.55 -0.65 -0.53 -0.65 -0.55 -0.64 -0.53 -0.55 -0.64 -0.53 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.38 -0.53 -0.68 -0.38 -0.53 -0.68 -0.38 -0.53 -0.68 -0.38 -0.53 -0.68 -0.38 -0.53 -0.68 -0.38 -0.53 -0.68 -0.38 -0.53 -0.68 -0.53 -0.53 -0.68 -0.53 -0.54 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.54 -0.54 -0.55 -0.54 -0.55 -	FW tweld 3.24 3.49 3.61 3.59 3.45 3.45 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.85 3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.7	08C e weld 0.67 0.44 0.53 0.51 0.60 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.42 0.49 0.59 0.50 0.60 0.50 0.60 0.54 0.53 0.62 0.53 0.62 0.53 0.62 0.54 0.53 0.62 0.54 0.53 0.62 0.53 0.62 0.54 0.53 0.54 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.55 0.60 0.55 0.55 0.60 0.55
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.01 3.02 2.89 2.84 2.84 2.84 2.279	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.30 0.27 0.37 0.40 0.18 0.33 0.30 0.24 0.44 0.34 0.24 0.44	2.33 FV t weld 3.25 3.33 3.11 3.11 2.88 3.00 3.00 3.00 2.99 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00 3.11 3.00 3.00 3.00 3.00 3.00 3.00	-0.30 e weld -0.29 -0.34 -0.33 -0.34 -0.33 -0.34 -0.32 -0.33 -0.34 -0.33 -0.34 -0.31 -0.42 -0.42 -0.42 -0.42 -0.43 -0.43 -0.43 -0.45 -0.31 -0.45 -0.45 -0.47 -0.45 -0.45 -0.47 -0.50 -0.51 -0.52 -0.53 -0.43 -0.43 -0.43 -0.48 -0.48	FW tweld 3.35 3.35 3.35 3.35 3.328 2.922 2.852 3.08 2.922 3.344 4.422 3.323 3.233 3.233 3.234 2.888 2.999 3.060 3.161 3.144 2.955 2.773 2.788 3.020 3.144 3.221	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06 -0.02 0.04 0.19 0.05 0.06 -0.02 0.11 0.12 0.12 0.12 0.13 0.04 0.12 0.12 0.12 0.13 0.04 0.12 0.12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.18 3.03 3.17 3.01 3.22 3.33 3.10 2.89 3.34 3.25 2.97 3.17 3.09 3.38 3.47	04C e weld 0.41 0.40 0.37 0.365 0.34 0.33 0.41 0.40 0.43 0.51 0.43 0.52 0.39 0.31 0.41 0.41 0.41 0.37 0.35 0.45 0.45 0.49 0.49 0.49 0.49 0.49 0.45 0.39 0.44	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.35 3.15 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.2	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.57 -0.55 -0.74 -0.55 -0.57 -0.55 -0.57 -0.55 -0.55 -0.55 -0.57 -0.55 -	FWW t weld 2.88 2.98 2.98 2.99 3.06 3.00 3.01 2.99 2.89 2.89 2.79 2.78 3.02 3.13 3.34 3.34 3.34 3.37 3.37 3.18 3.34 3.37 3.18	06C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.28 0.48 0.46 0.33 0.36 0.37 0.48 0.34 0.46 0.33 0.34 0.46 0.33 0.46 0.34 0.46 0.35 0.41 0.50 0.50	FW07C tweld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.20 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.34 3.34 3.34 3.34 3.32 5.325 3.25 3.35 3.25 3.325	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.61 -0.44 -0.44 -0.44 -0.44 -0.55 -0.61 -0.58 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.55 -0.69 -0.69 -0.53 -0.69 -0.53 -0.69 -0.69 -0.53 -0.69 -0.69 -0.69 -0.76 -0.76 -0.76 -0.72 -0.71 -0.51 -0.69 -0.69 -0.69 -0.69 -0.69 -0.76 -0.72 -0.72 -0.71 -0.53 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.60 -0.55 -0.61 -0.55 -0.55 -0.61 -0.55 -0.61 -0.58 -0.53 -0.68 -0.53 -0.69 -0.55 -0.61 -0.58 -0.53 -0.64 -0.58 -0.55 -0.61 -0.58 -0.53 -0.68 -0.53 -0.68 -0.53 -0.68 -0.55 -0.61 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0.55 -0.64 -0.58 -0	FW tweld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.85 3.73 3.73 3.78 3.64 3.65 3.667 3.60	08C e weld 0.67 0.44 0.53 0.51 0.60 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.42 0.42 0.49 0.59 0.50 0.60 0.60 0.51 0.62 0.62 0.63 0.64 0.65 0.62 0.53 0.54 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.55 0.60 0.55 0.55 0.60 0.55 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.55 0.60 0.60 0.55 0.60 0.60 0.55 0.60 0.60 0.62 0.62 0.62 0.62 0.62 0.63 0.66 0.65 0.66 0.65 0.66 0.65 0.55
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.01 3.02 2.89 2.84 2.84 2.84 2.79 3.09 2.76 3.00	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.44 0.44 0.34 0.34 0.34 0.34 0.34 0.34	2.83 FV t weld 3.25 3.33 3.11 3.11 2.88 3.00 3.00 3.00 2.99 2.99 3.00 2.99 3.00 2.99 3.00 3.11 3.00 3.11 3.00 3.00 3.11 3.00 3.00	-0.30 e weld -0.29 -0.34 -0.33 -0.34 1 -0.38 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 3 -0.43 3 -0.50 3 -0.50 3 -0.42 3 -0.43 3 -0.48 3 -0.50 -0.51 3 -0.48 -0.54	FW tweld 3.35 3.35 3.285 2.922 2.852 3.08 2.922 3.285 3.08 2.922 3.344 4.422 3.233 3.233 3.233 3.234 2.888 2.999 3.060 3.160 3.141 2.955 2.777 2.733 3.020 3.141 3.222 3.306	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06 -0.02 0.10 0.12 0.12 0.12 0.13 0.04 0.13 0.04 0.13 0.04 0.13 0.04 0.12 0.13 0.04 0.12 0.13 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.10 3.01 3.01 3.01 3.25 3.22 3.10 3.12 3.01 3.12 3.01 3.12 3.01 3.12 3.13 3.11 3.01 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.1	04C e weld 0.41 0.40 0.37 0.36 0.33 0.41 0.43 0.43 0.51 0.43 0.52 0.39 0.31 0.41 0.49 0.49 0.49 0.52 0.39 0.31 0.41 0.43 0.45 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.44	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.13 3.45 3.09 3.29 3.16 3.35 3.15 3.23 3.23 3.23 3.23 3.23 3.29 8 2.91 3.16 3.31	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.67 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.55 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.59 -0.74	FWW t weld 2.88 2.98 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.99 2.89 2.79 2.78 3.05 3.24 3.34 2.90 3.13 3.07 2.86 3.34 3.37 3.18 3.47 3.50 3.36 2.91	b6C e weld 0.25 0.18 0.24 0.16 0.29 0.33 0.35 0.27 0.28 0.48 0.36 0.37 0.36 0.37 0.36 0.37 0.46 0.33 0.46 0.33 0.46 0.33 0.46 0.33 0.41 0.46 0.33 0.41 0.42 0.43	FW07C tweld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.03 3.20 3.37 3.30 3.20 3.37 3.37 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.34 3.34 3.34 3.32 3.35 3.35 3.34 3.32	e weld -0.70 -0.69 -0.66 -0.49 -0.53 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.61 -0.44 -0.44 -0.44 -0.44 -0.55 -0.61 -0.58 -0.53 -0.53 -0.68 -0.38 -0.54 -0.54 -0.54	FW tweld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.06 3.53 3.51 3.49 3.64 3.53 3.73 3.73 3.85 3.73 3.73 3.64 3.68 3.64 3.64 3.65 3.60 3.60 3.10	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.49 0.49 0.59 0.50 0.60 0.60 0.60 0.60 0.62 0.63 0.62 0.63 0.62 0.63 0.65 0.55 0.55
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.70 2.96 2.96 3.20 2.96 3.20 2.96 3.20 2.96 3.00 3.01 3.02 2.89 2.84 2.92 2.99 2.76 3.09 3.01	01C e weld 0.13 0.24 0.09 0.24 0.16 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.37 0.40 0.27 0.50 0.27 0.37 0.40 0.13 0.33 0.32 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34	2.83 FV t weld 3.22 3.33 3.11 2.88 3.00 3.20 3.00 3.00 3.00 2.99 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00 2.99 3.00	-0.50 e weld -0.29 -0.34 -0.33 -0.34 -0.33 -0.34 -0.33 -0.34 -0.33 -0.34 -0.35 -0.42 -0.42 -0.42 -0.42 -0.42 -0.43 -0.31 -0.33 -0.36 -0.37 -0.38 -0.42 -0.31 -0.35 -0.36 -0.37 -0.38 -0.45 -0.45 -0.50 -0.51 -0.43 -0.43 -0.44 -0.48 -0.44	FW tweld 3.41 3.35 3.28 2.92 3.35 3.285 3.285 3.302 2.922 3.302 3.302 2.922 3.302 3.323 3.233 3.235 3.235 3.235 3.235 3.235 3.236 3.24 2.999 3.060 3.144 3.124 3.225 3.266 3.277 2.733 2.888 3.022 3.366 3.455	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.06 0.04 0.19 0.05 0.06 -0.02 0.11 0.12 0.12 0.12 0.12 0.13 0.04 0.12 0.13 0.04 0.12 0.12 0.05 0.06 0.00 0.12 0.05 0.06 0.00 0.00 0.00 0.00 0.00 0.00	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.10 3.00 3.25 3.22 3.10 3.22 3.33 3.10 3.00 3.25 3.22 3.12 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.22 3.12 3.00 3.25 3.22 3.22 3.22 3.22 3.22 3.22 3.22	04C e weld 0.41 0.40 0.37 0.36 0.33 0.41 0.43 0.43 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.49 0.52 0.39 0.31 0.41 0.43 0.45 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.44	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.09 3.29 3.16 3.61 3.35 3.15 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.2	05C e weld -0.55 -0.41 -0.54 -0.41 -0.63 -0.58 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.55 -0.74 -0.68 -0.58 -0.53 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58 -0.58	FWW t weld 2.88 2.98 2.98 2.95 3.06 3.00 3.01 2.99 2.89 2.99 2.89 2.79 2.78 3.05 3.24 3.30 3.13 3.07 2.86 3.34 3.37 3.18 3.47 3.50 3.36 2.91 3.30	J6C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.28 0.48 0.36 0.37 0.26 0.33 0.36 0.37 0.48 0.33 0.36 0.37 0.46 0.33 0.41 0.60 0.56 0.50 0.49 0.39 0.26	FW07C tweld 3.61 3.23 3.48 3.74 3.87 3.94 3.69 3.03 3.03 3.20 3.37 3.30 3.12 3.33 3.34 3.34 3.34 3.34 3.32 3.35 3.25 3.25 3.25 3.24 3.32	e weld -0.70 -0.69 -0.69 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.60 -0.71 -0.61 -0.44 -0.44 -0.44 -0.44 -0.55 -0.61 -0.55 -0.61 -0.58 -0.58 -0.58 -0.54 -0.55 -0.55 -0.66 -0.47 -0.55 -0.66 -0.47 -0.55 -0.66 -0.47 -0.55 -0.66 -0.47 -0.55 -0.66 -0.47 -0.69 -0.69 -0.55 -0.66 -0.47 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.70 -0.69 -0.69 -0.70 -0.69 -0.76 -0.69 -0.57 -0.71 -0.63 -0.71 -0.63 -0.55 -0.64 -0.55 -0.64 -0.55 -0.64 -0.55 -0.64 -0.55 -0.64 -0.55 -0.64 -0.55 -0.64 -0.55 -0.66 -0.55 -0.61 -0.55 -0.61 -0.55 -0.66 -0.55 -0.61 -0.55 -0.61 -0.55 -0.68 -0.55 -0.61 -0.55 -0.68 -0.55 -0.61 -0.55 -0.68 -0.55 -0.68 -0.55 -0.61 -0.55 -0.68 -0.55 -0.66 -0.55 -0.61 -0.55 -0.68 -0.55 -0.68 -0.55 -0.66 -0.55	FW tweld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.49 3.64 3.53 3.51 3.49 3.64 3.85 3.73 3.78 3.68 3.64 3.64 3.65 3.66 3.66 3.66 3.57 3.60 3.57 3.60 3.55 3.53 3.51 3.55 3.55 3.55 3.55 3.55	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.54 0.53 0.42 0.42 0.42 0.49 0.59 0.50 0.60 0.60 0.61 0.62 0.63 0.62 0.63 0.62 0.63 0.62 0.63 0.62 0.63 0.62 0.63 0.64 0.67 0.55 0.50 0.60 0.62 0.59 0.50 0.60 0.62 0.59
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.20 2.96 3.00 3.01 3.02 2.89 2.84 2.92 2.79 2.79 2.79 3.00	01C e weld 0.13 0.24 0.09 0.09 0.24 0.37 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.44 0.37 0.40 0.44 0.33 0.30 0.27 0.37 0.40 0.44 0.33 0.39 0.44 0.44 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55	2.83 FV t weld 3.22 3.33 3.11 2.89 3.02	-0.30 e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.33 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 3 -0.36 7 -0.31 7 -0.36 7 -0.36 7 -0.36 7 -0.37 3 -0.42 3 -0.43 3 -0.43 3 -0.42 3 -0.43 3 -0.44 3 -0.48 3 -0.48 3 -0.48 3 -0.48 3 -0.48	FW tweld 3.41 3.35 3.28 2.92 3.35 2.85 2.85 2.85 3.38 2.92 3.341 3.28 2.92 3.344 4.42 3.23 3.28 2.88 2.99 3.16 3.14 3.14 3.22 3.36 3.41 3.22 3.36 3.45	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.044 0.19 0.05 0.066 -0.02 0.10 0.12 0.11 0.25 0.066 -0.02 0.13 0.04 0.18 0.026 0.012 0.12 0.12 0.0	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.00 3.25 3.22 3.30 3.00 3.25 3.22 3.30 3.00 3.25 3.22 3.22 3.30 3.00 3.25 3.22 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.00 3.25 3.22 3.22 3.30 3.00 3.25 3.22 3.22 3.30 3.00 3.25 3.22 3.30 3.00 3.25 3.22 3.30 3.00 3.25 3.22 3.30 3.00 3.25 3.22 3.30 3.00 3.25 3.22 3.30 3.00 3.31 3.00 3.31 3.00 3.32 3.30 3.30 3.30 3.30 3.30 3.30	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.49 0.52 0.39 0.31 0.41 0.43 0.45 0.45 0.44 0.43 0.44 0.44 0.44 0.44 0.44 0.44	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.90 3.85 3.16 3.13 3.45 3.16 3.13 3.45 3.16 3.13 3.45 3.15 3.29 3.29 3.29 3.15 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.2	05C e weld -0.55 -0.41 -0.54 -0.53 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.65 -0.74 -0.68 -0.68 -0.64 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.63 -0.55 -0.74 -0.63 -0.55 -0.74 -0.63 -0.55 -0.74 -0.63 -0.57 -0.57 -0.55 -0.74 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.55 -0.74 -0.55 -0.74 -0.55 -0.57 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.74 -0.55 -0.75 -0.55 -0.74 -0.55 -0.75 -0.55 -0.74 -0.55 -0.55 -0.74 -0.55 -0.55 -0.74 -0.55 -0.55 -0.74 -0.55 -0.55 -0.74 -0.55 -0.57 -0.55 -0.57 -0.55 -0.57 -0.55 -0.57 -0.55 -0.57 -0.55 -0.57 -0.55 -0.57 -0.55 -0.57 -0.77 -0.	FWW t weld 2.88 2.98 2.98 3.06 3.00 3.01 2.99 2.89 2.89 2.89 2.79 2.78 3.05 3.24 3.30 3.07 2.86 3.34 3.30 3.30 3.37 3.18 3.37 3.18 3.37 3.50 3.30 3.50 3.30	J6C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.28 0.48 0.36 0.37 0.28 0.48 0.36 0.37 0.48 0.33 0.36 0.37 0.46 0.33 0.41 0.60 0.56 0.50 0.49 0.39 0.26 0.54	FW07C tweld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.59 3.03 3.20 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.34 3.32 3.33 3.34 3.32 3.33 3.34 3.32 3.33 3.34 3.32 3.32	e weld -0.70 -0.69 -0.69 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.61 -0.44 -0.44 -0.63 -0.49 -0.55 -0.61 -0.58 -0.53 -0.68 -0.53 -0.68 -0.54 -0.54 -0.52 -0.52	FW tweld 3.24 3.49 3.56 3.49 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.51 3.51 3.51 3.53 3.51 3.54 3.53 3.51 3.54 3.53 3.54 3.55 3.53 3.54 3.55 3.55	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.53 0.42 0.43 0.59 0.50 0.60 0.60 0.61 0.53 0.42 0.42 0.42 0.43 0.59 0.59 0.59 0.50 0.60 0.62 0.62 0.63 0.62 0.63 0.62 0.63 0.62 0.63 0.44 0.53 0.62 0.59
FWW t weld 2.67 2.98 3.18 2.99 3.36 2.98 2.78 3.08 2.73 2.81 2.70 2.76 2.96 2.71 2.65 3.20 2.96 3.00 3.01 3.02 2.89 2.84 2.92 2.79 2.76 3.09 3.01 3.02 2.89 2.84 2.92 2.79 2.76	01C e weld 0.13 0.24 0.09 0.09 0.24 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.41 0.33 0.39 0.44 0.33 0.30 0.40 0.50 0.50 0.34 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.33 0.30 0.44 0.34 0.33 0.30 0.50 0.50 0.50 0.50 0.50 0.54 0.55	2.33 FV t weld 3.21 3.31 3.11 2.85 3.02 3.02 3.02 3.02 3.02 3.02 3.02 2.99 3.00 2.99 3.00 2.99 3.00 3.11 3.00 3.01 3.02 3.00 3.02 3.00 3.02 3.00 3.00 3.00	-0.30 e weld 5 -0.29 8 -0.28 7 -0.34 1 -0.32 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 2 -0.42 3 -0.36 7 -0.31 0 -0.26 3 -0.43 3 -0.43 3 -0.43 3 -0.43 4 -0.50 3 -0.48 4 -0.54 3 -0.48 4 -0.54 3 -0.48 4 -0.54	FW tweld 3.41 3.35 3.28 2.92 2.85 2.85 2.85 2.3.84 2.92 3.341 3.328 2.929 3.341 3.23 3.23 3.23 3.23 3.23 3.23 3.24 2.999 3.16 3.14 3.14 2.97 2.73 2.88 3.002 3.14 3.22 3.36 3.41 3.22 3.36 3.51 3.51	03C e weld 0.28 0.27 0.26 0.17 0.31 0.03 0.31 0.03 0.31 0.22 -0.31 0.12 -0.05 0.04 0.19 0.05 0.06 -0.02 0.10 0.12 0.11 0.25 0.06 -0.02 0.11 0.12 0.12 0.11 0.05 0.06 -0.02 0.11 0.12 0.05 0.06 -0.02 0.11 0.05 0.06 -0.02 0.11 0.05 0.06 -0.02 0.11 0.05 0.05 0.05 0.05 0.05 0.05 0.05	FW t weld 3.21 3.19 3.13 3.11 3.07 3.25 3.22 3.300 3.311 3.007 3.22 3.3000 3.3000 3.3000 3.3000 3.3000 3.3000 3.3000 3.3000 3.3000 3.30000 3.30000 3.300000000	04C e weld 0.41 0.40 0.37 0.36 0.34 0.33 0.41 0.40 0.43 0.51 0.49 0.52 0.39 0.31 0.41 0.49 0.55 0.45 0.45 0.45 0.45 0.44 0.37 0.35 0.44 0.55 0.45 0.44 0.37 0.35 0.44 0.40 0.41 0.40 0.40 0.41 0.40 0.41 0.40 0.41 0.41 0.40 0.41 0.41 0.41 0.41 0.42 0.41 0.42 0.44 0.42 0.44 0.42 0.44 0.44 0.42 0.44 0.44 0.44 0.45 0.44 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.44 0.49 0.44 0.49 0.44 0.49 0.44 0.49 0.44 0.49 0.44 0.49 0.44 0.49 0.44 0.49 0.44 0.44 0.49 0.44	FW t weld 3.04 3.37 3.34 3.13 2.96 3.01 2.98 3.02 3.52 3.10 3.85 3.16 3.13 3.45 3.13 3.45 3.09 3.29 3.29 3.16 3.61 3.35 3.15 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.2	05C e weld -0.55 -0.41 -0.54 -0.53 -0.53 -0.53 -0.53 -0.71 -0.49 -0.64 -0.57 -0.62 -0.67 -0.62 -0.67 -0.65 -0.74 -0.68 -0.64 -0.55 -0.74 -0.68 -0.53 -0.53 -0.53 -0.58 -0.53 -0.53 -0.58 -0.64 -0.67 -0.55 -0.74 -0.68 -0.64 -0.70 -0.55 -0.74 -0.63 -0.57 -0.75 -0.75 -0.74 -0.62 -0.55 -0.74 -0.63 -0.57 -0.62 -0.55 -0.74 -0.68 -0.64 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.55 -0.74 -0.68 -0.55 -0.74 -0.68 -0.55 -0.74 -0.55 -0.75 -0.55 -0.74 -0.68 -0.55 -0.74 -0.58 -0.57 -0.74 -0.77 -0.77 -0.77 -0.77 -0.77 -0.74 -0.77 -0.74 -0.77 -0.74 -0.77 -0.74 -0.	FWW t weld 2.88 2.98 2.98 3.06 3.00 3.00 2.99 2.89 2.89 2.79 2.78 3.05 3.24 3.30 3.24 3.34 3.30 3.24 3.34 3.30 3.31 3.30 3.34 3.37 3.318 3.34 3.37 3.318 3.34 3.37 3.36 3.36 3.36 3.36 2.74	b6C e weld 0.25 0.18 0.24 0.16 0.29 0.39 0.35 0.27 0.28 0.48 0.36 0.48 0.36 0.37 0.48 0.36 0.37 0.46 0.33 0.46 0.33 0.46 0.33 0.46 0.39 0.46 0.39 0.46 0.50 0.50 0.50 0.54 0.36	FW07C tweld 3.61 3.23 3.48 3.83 3.74 3.87 3.94 3.69 3.59 3.03 3.20 3.33 3.20 3.33 3.20 3.33 3.20 3.33 3.34 3.12 3.33 3.34 3.32 3.33 3.34 3.32 3.35 3.25 3.35 3.25 3.35 3.25 3.32 3.32	e weld -0.70 -0.69 -0.69 -0.47 -0.63 -0.76 -0.81 -0.69 -0.60 -0.72 -0.71 -0.60 -0.72 -0.71 -0.63 -0.69 -0.69 -0.69 -0.69 -0.69 -0.55 -0.61 -0.55 -0.61 -0.55 -0.61 -0.55 -0.68 -0.53 -0.68 -0.38 -0.55 -0.61 -0.55 -0.61 -0.55 -0.61 -0.55 -0.62 -0.55 -0.61 -0.55 -0.61 -0.55 -0.61 -0.55 -0.62 -0.55 -0.61 -0.55 -0.61 -0.55 -0.62 -0.55 -0.61 -0.55 -0.62 -0.55 -0.61 -0.55 -0.62 -0.55 -0.61 -0.55 -0.62 -0.55 -0	FW tweld 3.24 3.49 3.61 3.59 3.56 3.49 3.45 3.42 3.57 3.73 3.81 4.08 4.06 3.53 3.51 3.51 3.51 3.51 3.51 3.51 3.51	08C e weld 0.67 0.44 0.53 0.51 0.60 0.62 0.59 0.56 0.60 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.53 0.60 0.60 0.60 0.61 0.53 0.60 0.62 0.59 0.50 0.60 0.62 0.59 0.50 0.60 0.62 0.59 0.50 0.60 0.62 0.59 0.50 0.60 0.62 0.59 0.50 0.50 0.62 0.59 0.55 0.50 0.60 0.62 0.59 0.55 0.50 0.60 0.62 0.59 0.55 0.50 0.60 0.62 0.59 0.55 0.50 0.60 0.62 0.59 0.59 0.50 0.60 0.62 0.59 0.59 0.50 0.60 0.62 0.59 0.59 0.50 0.60 0.62 0.59 0.59 0.50 0.60 0.62 0.59 0.50 0.60 0.62 0.59 0.55 0.50 0.60 0.59 0.55 0.50 0.60 0.59 0.55 0.50 0.60 0.62 0.59 0.55 0.60 0.60 0.59 0.55 0.60 0.60 0.62 0.59 0.55 0.60 0.60 0.62 0.59 0.55 0.60 0.62 0.63 0.62 0.55 0.62 0.63 0.67 0.55 0.55 0.55 0.55 0.62 0.62 0.63 0.67 0.55 0.60 0.67 0.55 0.55 0.60 0.67 0.55 0.55 0.60 0.67 0.55 0.55 0.50 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.67 0.66 0.67 0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.67 0.66

3.3 Analisi statistica geometria campioni sperimentali

une de verde tuerd tuerd <tht th="" uerd<=""> tuerd</tht>		FW	/01E	FV	V02E	FW	/03E	FW	/04E	FW	/05E	FW	/06E	FW07E		FW	/08E
3.16 0.00 3.26 0.00 1.11 3.38 0.00 4.40 0.16 3.60 0.01 3.80 0.24 4.30 0.04 3.00 3.260 0.01 3.24 0.06 3.24 0.00 3.41 0.00 4.37 0.00 3.41 0.00 4.38 0.01 3.85 0.00 3.85 0.00 3.85 0.00 3.41 0.00 4.37 0.02 3.85 0.00 3.95 0.38 0.02 3.90 0.41 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.04 3.99 0.21 3.99 0.21 3.99 0.21 3.99 0.21 3.99 0.21 3.99 0.21 3.99 0.21 3.99 0.21 <	1	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld	t weld	e weld
3.26 -0.06 3.24 -0.11 3.94 0.03 2.94 0.00 4.17 0.09 3.62 -0.01 3.86 0.44 3.86 0.44 3.86 0.44 3.86 0.04 3.46 0.01 3.31 -0.01 3.87 -0.01 3.87 0.00 3.86 0.02 3.44 0.01 3.95 0.03 3.46 0.11 3.47 -0.12 3.87 -0.01 3.87 -0.01 3.87 -0.01 3.88 0.02 3.28 -0.02 2.84 -0.22 3.64 -0.02 3.67 -0.01 3.85 -0.01 3.95 -0.51 3.95 -0.51 3.95 -0.51 3.95 -0.51 3.95 -0.51 3.95 -0.51 3.95 -0.51 3.95 -0.11 3.95 -0.13 3.96 -0.36 3.95 -0.13 3.95 -0.13 3.96 -0.36 3.96 -0.21 3.96 -0.21 3.97 -0.12 3.96 <		3.14	0.01	. 3.42	-0.04	4.05	0.11	3.18	0.00	4.40	0.16	3.69	-0.19	3.84	0.24	4.03	-0.47
3.00 -0.18 3.24 -0.06 3.84 -0.11 3.17 -0.02 4.34 -0.00 4.34 -0.00 3.89 -0.34 3.44 0.16 3.39 -0.21 3.90 0.06 3.27 -0.00 3.97 0.39 0.14 3.99 0.34 3.99 0.34 3.99 0.34 3.99 0.34 0.93 3.99 0.34 0.93 3.99 0.34 0.93 3.99 0.34 0.93 3.99 0.22 2.86 -0.25 3.66 0.02 3.36 0.02 3.36 0.02 3.36 0.02 3.36 0.02 3.36 0.02 3.36 0.02 3.36 0.02 3.36 0.02 3.31 0.01 3.35 0.01 3.36 0.02 3.36 0.02 3.36 0.02 3.31 0.21 3.04 0.01 3.36 0.02 3.04 0.02 3.04 0.02 3.04 0.02 3.04 0.02 3.04 0.02	Γ	3.26	-0.06	3.24	-0.1	L 3.94	0.15	2.94	0.00	4.17	0.09	3.62	-0.01	3.88	0.14	3.95	-0.40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.09	-0.13	3.24	-0.06	3.84	0.11	3.17	-0.05	4.30	-0.02	3.41	0.03	4.04	0.03	3.95	-0.34
3.46 0.16 3.37 0.02 3.97 0.04 3.92 0.01 3.97 0.04 3.99 0.14 3.99 0.03 3.46 0.01 3.37 0.06 3.27 0.01 3.15 0.20 3.16 0.02 3.61 0.	Ē	3.43	0.00	3.43	-0.13	3 4.06	-0.01	3.21	-0.01	3.89	0.06	3.21	-0.02	4.34	0.12	3.95	-0.33
3.46 0.11 3.47 0.11 3.17 0.14 2.88 0.22 3.77 0.20 4.31 0.33 3.06 0.01 3.36 0.01 3.38 0.07 3.04 0.35 3.57 0.11 3.28 0.15 3.95 0.00 3.06 0.02 3.07 0.01 3.36 0.07 3.04 0.35 3.57 0.11 3.28 0.15 3.95 0.03 3.06 0.04 3.28 0.11 3.46 0.06 3.16 0.04 3.27 0.04 3.06 0.02 3.20 0.06 3.35 0.00 3.35 0.00 3.02 0.06 3.07 0.04 3.07 0.04 3.07 0.04 3.07 0.02 3.07 0.01 3.07 0.02 3.07 0.02 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.		3.46	0.16	3.39	-0.20	3.90	0.06	3.21	-0.02	3.57	0.09	3.12	0.01	3.99	0.14	3.99	-0.39
3.0 0.02 3.07 0.08 3.16 0.20 2.84 0.22 2.84 0.02 3.26 0.00 4.05 0.35 3.00 0.04 2.95 0.01 3.38 0.07 3.04 0.05 3.57 0.11 3.28 0.02 3.05 0.02 3.06 0.06 3.35 0.01 3.28 0.04 3.06 0.02 3.08 0.02 3.08 0.02 3.06 0.04 3.06 0.07 2.88 0.14 3.75 0.04 3.06 0.00 3.02 0.02 3.75 0.04 3.00 0.02 3.77 0.02 3.00 0.06 3.35 0.02 3.36 0.00 3.47 0.06 3.47 0.06 3.47 0.06 3.47 0.06 3.47 0.07 3.38 0.01 3.77 0.12 3.26 0.01 3.77 0.12 3.26 0.01 3.77 0.12 3.26 0.01 3.77 0.12 3.26 </td <td></td> <td>3.46</td> <td>0.11</td> <td>3.47</td> <td>-0.12</td> <td>3.82</td> <td>-0.06</td> <td>3.27</td> <td>-0.11</td> <td>3.17</td> <td>-0.14</td> <td>2.84</td> <td>-0.28</td> <td>3.77</td> <td>0.20</td> <td>4.31</td> <td>-0.34</td>		3.46	0.11	3.47	-0.12	3.82	-0.06	3.27	-0.11	3.17	-0.14	2.84	-0.28	3.77	0.20	4.31	-0.34
3.00 0.01 3.06 0.00 3.36 0.07 3.04 4.03 3.07 0.11 3.28 0.15 3.28 0.15 3.28 0.15 3.31 0.01 3.31 0.01 3.31 0.02 3.02 0.01 3.31 0.02 3.02 0.01 3.31 0.02 3.02 0.01 3.35 0.00 3.06 0.06 3.13 0.02 3.02 0.01 3.35 0.00 3.06 0.06 3.35 0.00 3.05 0.00 3.07 0.01 3.07 0.01 3.07 0.00 3.07 0.01 3.07 0.01 3.07 0.00 3.07 0.01 3.07 0.01 3.07 0.00 3.06 0.02 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 3.07 0.01 <th< td=""><td>-</td><td>3.08</td><td>-0.02</td><td>3.07</td><td>7 -0.02</td><td>3 76</td><td>0.00</td><td>3 57</td><td>0.00</td><td>3 16</td><td>-0.20</td><td>2.84</td><td>-0.25</td><td>3.64</td><td>0.00</td><td>4.05</td><td>-0.45</td></th<>	-	3.08	-0.02	3.07	7 -0.02	3 76	0.00	3 57	0.00	3 16	-0.20	2.84	-0.25	3.64	0.00	4.05	-0.45
300 0.06 2.05 0.07 2.06 0.07 2.07 0.08 3.17 0.02 3.07 0.02 3.07 0.02 3.07 0.02 3.07 0.09 3.17 0.02 3.07 0.09 3.17 0.02 3.07 0.00	F	3.04	-0.13	3 16	-0.06	3 3 40	0.01	3 39	0.07	3.04	-0.35	3 57	_0.11	3 28	-0.15	3 95	-0.35
Job Job <td>F</td> <td>3.04</td> <td>-0.04</td> <td>2 0/</td> <td>0.00</td> <td>2 91</td> <td>0.01</td> <td>3.30</td> <td>_0.07</td> <td>3.04</td> <td>_0.18</td> <td>3.0</td> <td>_0.00</td> <td>3 13</td> <td>_0.13</td> <td>3.55</td> <td>-0.31</td>	F	3.04	-0.04	2 0/	0.00	2 91	0.01	3.30	_0.07	3.04	_0.18	3.0	_0.00	3 13	_0.13	3.55	-0.31
3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.00 0.00 3.11 0.18 3.00 0.00 3.01 0.32 0.01 3.32 0.01 3.32 0.01 3.32 0.00 3.01 0.00 3.00 0.00 3.34 0.00 3.00 0.00 3.30 0.00 3.30 0.00 3.30 0.00 3.30 0.00 3.30 0.00 3.30 0.01 3.37 0.13 3.37 0.02 3.38 0.03 3.44 0.03 3.28 0.00 3.26 0.01 3.38 0.01 3.38 0.03 3.44 0.38 0.30 0.01 3.44 0.38 0.31 3.44 0.38 0.37 0.01 3.38 0.01 3.44 0.03 3.44 0.03 3.44 0.03 <th< td=""><td>-</td><td>2.00</td><td>0.04</td><td>2.0</td><td></td><td>2 2 60</td><td>0.05</td><td>2.45</td><td>0.05</td><td>2.06</td><td>0.10</td><td>2 72</td><td>0.03</td><td>2.04</td><td>0.21</td><td>2 02</td><td>0.51</td></th<>	-	2.00	0.04	2.0		2 2 60	0.05	2.45	0.05	2.06	0.10	2 72	0.03	2.04	0.21	2 02	0.51
2.59 0.00 3.11 0.01 3.01 0.00 3.02 0.00 3.02 0.00 3.71 0.14 3.00 0.06 3.45 0.02 3.25 0.01 3.46 0.05 3.47 0.01 3.77 0.01 3.10 0.06 3.45 0.02 3.55 0.02 3.77 0.00 3.46 0.06 3.77 0.01 3.00 0.08 3.72 0.28 0.01 4.27 0.05 3.66 0.38 0.01 3.74 0.11 3.77 0.00 3.24 0.38 0.06 3.38 0.06 2.88 0.013 3.76 0.18 3.77 0.02 3.46 0.38 2.76 0.08 3.26 0.01 3.74 0.21 3.00 0.01 3.56 0.013 3.86 0.03 3.36 0.32 2.46 0.37 3.11 0.14 3.44 0.28 3.27 0.23 3.27 0.23 3.27	F	2.03	0.02	2 11	0.0	1 2 15	0.15	2 51	0.00	2.00	0.04	1.04	0.04	2.04	0.23	2 72	-0.17
3.00 -0.06 3.31 -0.11 3.46 -0.01 3.47 -0.10 3.47 -0.10 3.47 -0.12 3.71 -0.12 3.10 0.06 3.43 -0.06 3.44 -0.05 3.47 -0.08 3.71 -0.21 3.71 -0.21 3.00 0.08 3.72 -0.22 3.55 -0.12 3.66 -0.01 3.82 -0.06 3.38 -0.01 3.37 -0.20 3.04 0.14 3.66 -0.13 3.61 -0.38 2.28 -0.06 3.38 -0.01 3.38 -0.01 3.38 -0.01 3.38 -0.01 3.36 -0.11 3.61 -0.12 3.61 -0.01 3.56 -0.12 3.00 -0.01 3.74 -0.12 3.61 -0.01 3.56 -0.02 3.62 -0.66 2.86 -0.01 3.57 -0.03 3.74 -0.21 3.61 -0.31 2.74 -0.21 3.61 -0.31 2.74 -0.21	-	2.33	0.04	3.11	-0.14	+ 3.13	0.10	2.01	0.04	3.02	-0.21	4.04	0.07	2.05	-0.14	3.72	-0.20
3.00 0.006 3.42 0.12 3.28 0.007 3.44 0.007 3.44 0.11 3.75 0.02 3.01 0.068 3.27 0.02 3.66 0.02 3.86 0.01 3.27 0.02 3.86 0.01 3.77 0.00 3.66 0.02 3.86 0.01 3.77 0.02 3.86 0.01 3.77 0.02 3.86 0.01 3.86 0.02 3.86 0.02 3.86 0.02 3.86 0.02 3.86 0.02 3.86 0.02 3.86 0.02 3.86 0.02 3.86 0.03 3.44 0.38 2.86 0.012 3.86 0.02 2.94 0.02 3.86 0.11 3.86 0.02 4.63 0.06 3.84 0.01 3.37 0.29 3.71 0.23 3.72 0.23 3.72 0.23 3.72 0.23 3.72 0.23 3.72 0.23 3.72 0.23 3.71 0.23	H	3.09	-0.06	2.00	0.02	2 3.20	0.11	3.40	-0.05	5.15	-0.10	3.40	-0.02	2.95	-0.09	3.71	-0.14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	3.20	0.06	3.43	-0.1	3.55	0.12	3.58	-0.09	3.43	0.05	3.4/	-0.06	3.0/	-0.12	3.79	-0.22
3.02 0.08 3.12 -0.08 4.06 -0.01 4.27 0.19 2.77 -0.10 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.02 -0.01 3.34 -0.03 3.24 -0.03 3.24 -0.03 3.24 -0.03 3.24 -0.03 3.24 -0.03 3.24 -0.03 3.24 -0.01 3.26 -0.01 3.24 -0.21 3.06 -0.01 3.25 -0.02 3.26 -0.03 3.37 -0.22 3.01 -0.11 3.23 -0.03 3.32 -0.23 3.31 -0.14 3.22 -0.23 3.33 -0.33 3.38 0.33 -0.33 3.36 -0.31 2.24 -0.09 3.25 -0.03 3.35 -0.03 3.30 -0.33 3.33 -	-	3.11	0.09	3.82	-0.2	3.51	0.22	3./3	0.00	3.61	0.02	3.03	-0.07	3.34	-0.14	3.71	-0.20
1.44 0.14 3.56 0.15 3.88 0.12 3.88 0.06 3.86 0.02 2.83 0.013 3.76 0.16 4.56 0.03 3.34 0.08 3.26 0.018 3.26 0.012 3.36 0.01 2.72 0.02 3.71 0.01 3.74 0.011 3.75 0.02 3.74 0.021 3.74 0.013 3.74 0.021 3.74 0.021 3.01 0.01 3.75 0.02 3.64 0.15 3.88 0.022 2.42 0.377 0.16 3.77 0.01 3.72 0.023 3.73 0.029 3.21 0.00 3.66 0.00 3.36 0.02 3.56 0.00 3.17 0.16 3.27 0.03 3.28 0.03 3.39 0.33 3.46 0.11 3.45 0.11 3.55 0.06 3.27 0.01 3.16 0.021 3.36 0.03 3.37 0.023 3.31 <	⊢	3.02	0.08	3.72	-0.28	4.06	-0.01	4.27	0.05	3.65	-0.19	2.77	-0.10	3.02	-0.11	3.73	-0.18
249 0.13 3.78 0.018 3.77 0.06 4.56 0.03 3.34 0.38 2.78 0.028 3.26 0.12 3.85 0.012 2.77 0.02 3.71 -0.17 3.79 0.12 4.35 0.07 2.35 -0.46 3.34 -0.25 3.28 0.03 3.74 -0.21 3.01 -0.01 3.59 -0.22 3.64 0.15 3.83 0.13 2.34 -0.55 3.07 -0.19 3.12 0.01 3.72 -0.23 3.01 -0.02 3.66 -0.13 3.86 0.05 2.26 -0.11 2.94 -0.09 3.67 -0.03 3.92 -0.32 3.21 0.06 3.06 -0.23 3.86 0.26 3.70 -0.08 3.47 -0.15 3.56 -0.03 3.93 -0.38 3.31 0.02 3.56 -0.21 3.56 -0.22 3.56 -0.21 3.56 -0.25 3.38	⊢	3.04	0.14	3.68	s -0.25	3.88	-0.13	4.31	0.03	3.61	-0.38	2.84	-0.09	3.26	0.06	3.98	-0.02
2.94 0.02 3.82 -0.13 3.61 0.20 4.83 0.04 3.47 -0.66 2.80 -0.21 3.09 0.01 3.74 -0.21 3.01 -0.01 3.59 -0.22 3.64 0.15 3.83 0.13 2.34 -0.56 3.07 -0.19 3.12 0.01 3.74 -0.21 3.02 0.09 3.26 0.03 3.66 0.011 3.68 0.02 2.42 -0.37 3.11 -0.14 3.23 -0.23 3.73 -0.23 3.21 0.06 3.06 -0.09 3.86 0.24 3.94 0.08 3.17 -0.15 2.96 -0.19 3.55 -0.03 3.92 -0.32 3.34 0.06 3.06 -0.02 3.35 0.03 3.92 -0.32 3.35 -0.20 3.35 -0.26 3.35 -0.26 3.35 -0.22 3.36 -0.12 4.31 -0.28 3.36 -0.12 4.31 -0.28	ŀ	2.83	0.13	3.78	-0.18	3.77	0.06	4.56	0.03	3.34	-0.38	2.78	-0.08	3.26	0.12	3.85	-0.10
1 1	ŀ	2.94	0.02	3.82	-0.13	3.61	. 0.20	4.63	0.04	3.47	-0.66	2.80	-0.12	3.09	0.01	. 3.74	-0.18
3.01 -0.01 3.59 -0.22 3.64 0.15 3.83 0.13 2.34 -0.56 3.07 -0.19 3.12 0.01 3.72 -0.23 3.21 0.09 3.26 0.01 3.63 0.11 3.88 0.02 2.42 -0.37 3.11 -0.14 3.23 -0.23 3.73 -0.29 3.21 0.09 3.26 0.09 3.86 0.37 3.56 -0.05 2.86 -0.11 2.94 -0.09 3.67 -0.03 3.93 -0.33 3.31 0.02 3.36 0.02 3.35 0.02 3.56 -0.01 3.18 -0.03 4.24 -0.03 3.60 0.04 2.37 -0.23 3.81 0.31 3.95 0.06 2.95 -0.14 3.45 -0.10 3.18 -0.03 4.44 -0.34 3.66 0.04 3.39 -0.22 3.17 -0.10 3.21 -0.15 3.20 -0.18 4.41		2.72	0.02	3.71	-0.1	3.79	0.12	4.35	0.07	2.35	-0.46	3.34	-0.25	3.28	-0.03	3.74	-0.21
3.08 0.10 3.63 0.11 3.88 0.02 2.42 0.37 3.11 0.14 3.23 0.02 3.73 0.02 3.21 0.06 3.66 0.03 3.80 0.37 3.56 -0.05 2.86 0.11 2.94 -0.02 3.67 -0.03 3.92 -0.32 3.31 0.02 3.05 -0.33 3.88 0.26 3.70 0.08 3.42 -0.02 3.35 -0.26 4.24 -0.03 4.24 -0.03 3.46 0.06 3.12 -0.22 3.85 0.01 3.43 0.06 2.95 -0.14 3.45 -0.10 3.18 -0.03 4.31 -0.25 3.89 0.04 3.39 -0.32 3.17 0.13 3.27 -0.00 3.28 -0.025 3.39 -0.12 4.41 -0.34 3.66 0.04 3.75 -0.18 3.00 -0.17 3.41 0.00 3.28 -0.025 3.39	Ļ	3.01	-0.01	. 3.59	-0.22	3.64	0.15	3.83	0.13	2.34	-0.56	3.07	-0.19	3.12	0.01	. 3.72	-0.23
3.21 0.09 3.26 0.03 3.80 0.37 3.56 -0.05 2.86 -0.11 2.94 -0.09 3.67 -0.03 3.92 -0.32 3.31 0.02 3.05 -0.33 3.88 0.26 3.70 0.08 3.42 -0.06 3.55 -0.10 3.55 -0.03 3.93 -0.28 3.46 0.06 3.12 -0.22 3.95 0.34 3.95 0.11 3.53 -0.16 3.12 -0.23 3.81 0.31 3.95 0.06 2.95 -0.14 3.45 -0.10 3.18 -0.25 3.39 -0.12 4.31 -0.25 3.66 0.04 3.39 -0.22 3.17 0.18 3.30 -0.17 3.41 0.08 3.05 -0.12 3.18 -0.25 4.16 -0.26 3.66 0.09 3.39 -0.22 3.17 0.18 3.30 -0.17 3.41 0.08 3.05 -0.12 3.18 0.10 <td></td> <td>3.08</td> <td>0.10</td> <td>3.63</td> <td>-0.1</td> <td>L 3.63</td> <td>0.11</td> <td>3.88</td> <td>0.02</td> <td>2.42</td> <td>-0.37</td> <td>3.11</td> <td>-0.14</td> <td>3.23</td> <td>-0.23</td> <td>3.73</td> <td>-0.29</td>		3.08	0.10	3.63	-0.1	L 3.63	0.11	3.88	0.02	2.42	-0.37	3.11	-0.14	3.23	-0.23	3.73	-0.29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.21	0.09	3.26	5 0.03	3.80	0.37	3.56	-0.05	2.86	-0.11	2.94	-0.09	3.67	-0.03	3.92	-0.32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.21	0.06	3.06	-0.09	3.96	0.24	3.94	0.08	3.17	-0.15	2.96	-0.19	3.55	-0.03	3.93	-0.38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.31	0.02	3.05	-0.33	3.83	0.26	3.70	0.08	3.42	-0.08	3.05	-0.21	3.60	-0.16	4.12	-0.33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.46	0.06	3.12	-0.22	3.95	0.34	3.95	0.11	3.53	-0.16	3.27	-0.20	3.35	-0.25	4.24	-0.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.60	0.04	2.87	-0.23	3.81	. 0.31	3.95	0.06	2.95	-0.14	3.45	-0.10	3.18	-0.03	4.33	-0.29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.58	0.01	. 3.04	-0.29	3.76	0.30	3.19	0.02	2.75	0.00	3.28	-0.25	3.39	-0.12	4.31	-0.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Γ	3.89	-0.04	3.39	-0.24	3.62	0.05	3.29	-0.06	3.37	-0.10	3.21	-0.15	3.20	-0.18	4.41	-0.34
3.68 0.04 3.75 -0.18 3.48 0.19 3.24 -0.22 3.24 0.00 2.83 -0.04 3.14 -0.11 4.53 -0.26 1 13 14 15 16 weld weld <td>Γ</td> <td>3.69</td> <td>0.09</td> <td>3.39</td> <td>-0.32</td> <td>2 3.17</td> <td>0.18</td> <td>3.30</td> <td>-0.17</td> <td>3.41</td> <td>0.08</td> <td>3.05</td> <td>-0.12</td> <td>3.18</td> <td>-0.25</td> <td>4.16</td> <td>-0.36</td>	Γ	3.69	0.09	3.39	-0.32	2 3.17	0.18	3.30	-0.17	3.41	0.08	3.05	-0.12	3.18	-0.25	4.16	-0.36
1 74 75 76 76 77 78 79 711 713 74 75 76 eweld tweld tweld eweld tweld tweld		3.68	0.04	3.75	-0.18	3 3.48	0.19	3.24	-0.22	3.24	0.00	2.83	-0.04	3.14	-0.11	4.53	-0.26
I I						· · ·							ļ		ι		·
46 0.03 146 0.04 151 0.04 1.27 0.05 1.22 0.03 1.49 0.22 1.67 0.48 1.56 0.13 1.54 0.16 1.07 38 0.03 1.66 0.12 1.46 0.02 1.18 0.04 1.22 0.04 1.20 0.14 0.02 1.15 0.02 1.16 0.07 1.16 0.07 1.16 0.07 1.16 0.07 1.16 0.08 1.27 0.02 1.38 0.03 1.45 0.04 1.51 0.16 1.44 0.02 1.28 0.03 1.45 0.04 1.51 0.16 1.44 0.02 1.15 0.15 1.46 0.05 1.45 0.02 1.18 0.02 1.45 0.03 1.16 0.64 1.51 0.16 1.44 0.15 1.61 0.64 1.51 0.16 1.44 0.15 1.62 0.64 1.51 0.16 1.44 0.23 1.51 0.12 1.44 0.16 1.51 0.16 1.44 0.21 1.26 0.65 1.	T1 e	weld twe	T3 d e weld	T4 tweld ewe	eld tweld	T5 e weld t we	T6 Id e weld	T7 tweld ewe	ld tweld	eweld twe	T9 Id e weld	T11 tweld ew	eld tweld	13 e weld two	T14 eld e weld	t weld e w	eld tweld ev
42 0.32 153 0.11 1.42 0.02 1.17 0.81 1.11 0.45 1.21 0.02 1.24 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.02 1.48 0.01 1.42 0.22 1.38 0.03 1.42 0.22 1.38 0.03 1.46 0.12 1.58 0.66 1.31 0.02 1.34 0.02 1.38 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.35 0.03 1.44 0.14 1.42 0.12 1.42 0.12 1.42 0.12 1.42 0.12 1.42 0.12 1.42 0.12 1.44 0.14 1.49 0.14 1.49 0.14 1.49 0.14 1.49 0.14 1.49 <t< td=""><td>.45</td><td>-0.35</td><td>1.46 -0.04</td><td>1.51</td><td>0.04 1.2</td><td>-0.78</td><td>0.91 -0.57</td><td>1.36</td><td>0.06 1.22</td><td>0.26</td><td>1.32 -0.31</td><td>1.49</td><td>-0.23 1.67</td><td>0.48</td><td>1.36 0.1</td><td>3 1.54</td><td>0.16 1.07</td></t<>	.45	-0.35	1.46 -0.04	1.51	0.04 1.2	-0.78	0.91 -0.57	1.36	0.06 1.22	0.26	1.32 -0.31	1.49	-0.23 1.67	0.48	1.36 0.1	3 1.54	0.16 1.07
33 -0.30 1.47 -0.35 1.40 0.07 1.14 -0.82 1.33 0.48 1.36 0.02 1.50 0.03 1.12 0.21 1.50 0.05 1.45 0.16 1.42 0.02 1.38 49 -0.28 1.15 -0.04 1.55 0.08 1.11 -0.82 1.37 -0.44 0.05 1.34 0.02 1.38 -0.03 1.26 0.18 1.02 0.15 1.01 1.61 -0.78 1.31 -0.44 1.40 0.05 1.34 0.07 1.54 -0.03 1.14 -0.12 1.52 0.01 1.42 0.12 1.42 0.14 1.40 0.16 1.47 0.06 1.27 0.23 1.51 -0.33 1.40 0.14 0.27 1.32 0.44 1.40 0.21 1.44 0.14 0.14 0.14 0.02 1.45 0.22 1.50 0.17 1.48 0.59 1.55 0.27 1.44 0.14 0.14 0.12 1.31 0.20 1.51 0.33 1.45 0.02 1.45 <td>.42 .34</td> <td>-0.32</td> <td>1.53 -0.11</td> <td>1.42</td> <td>0.02 1.1</td> <td>-0.81</td> <td>1.11 -0.45</td> <td>1.21</td> <td>0.02 1.21</td> <td>0.24</td> <td>1.52 -0.38</td> <td>1.56</td> <td>-0.22 1.49</td> <td>0.69</td> <td>1.39 0.1 1.45 0.1</td> <td>4 1.49 4 1.42</td> <td>0.20 1.02</td>	.42 .34	-0.32	1.53 -0.11	1.42	0.02 1.1	-0.81	1.11 -0.45	1.21	0.02 1.21	0.24	1.52 -0.38	1.56	-0.22 1.49	0.69	1.39 0.1 1.45 0.1	4 1.49 4 1.42	0.20 1.02
del 0.28 1.13 -0.08 1.11 -0.22 1.37 -0.49 1.34 0.05 1.20 0.21 1.18 -0.15 1.61 0.06 1.51 0.18 1.57 0.16 1.45 0.03 1.14 -0.12 1.52 0.03 1.19 -0.78 1.12 -0.44 1.47 0.06 1.51 -0.31 1.40 0.19 1.47 0.74 1.42 0.02 1.52 0.19 1.43 0.24 1.51 -0.22 1.52 0.16 0.67 1.52 0.11 1.42 0.12 1.44 0.14 0.00 1.42 0.14 0.02 1.42 0.14 0.05 1.44 0.23 1.52 0.25 1.42 0.17 1.45 0.05 1.55 0.02 1.44 0.21 1.44 0.21 1.44 0.22 1.42 0.17 1.45 0.25 1.42 0.12 1.44 0.21 1.44 0.22 1.42 0.12 1.44 0.21 1.45 0.12 1.41 0.22 1.42 0.12 1.44 0.22 <td>. 38</td> <td>-0.30</td> <td>1.47 -0.15</td> <td>1.60</td> <td>0.07 1.14</td> <td>-0.85</td> <td>1.39 -0.49</td> <td>1.38</td> <td>0.08 1.25</td> <td>0.27</td> <td>1.50 -0.38</td> <td>1.32</td> <td>-0.21 1.80</td> <td>0.59</td> <td>1.45 0.1</td> <td>6 1.42</td> <td>0.22 1.38</td>	. 38	-0.30	1.47 -0.15	1.60	0.07 1.14	-0.85	1.39 -0.49	1.38	0.08 1.25	0.27	1.50 -0.38	1.32	-0.21 1.80	0.59	1.45 0.1	6 1.42	0.22 1.38
22 -0.33 1.44 -0.12 1.52 0.03 1.15 -0.31 1.40 -0.19 1.47 0.74 1.42 0.21 1.52 0.19 1.43 12 -0.28 1.31 -0.08 1.40 0.00 1.28 -0.71 1.18 0.33 1.43 0.21 1.52 0.32 1.56 0.57 1.58 0.07 1.48 0.01 1.44 0.01 1.44 0.01 1.44 0.01 1.44 0.02 1.43 0.79 1.46 0.45 1.43 0.27 1.47 0.27 1.47 0.22 1.42 0.21 1.44 0.02 1.57 0.31 1.57 0.31 1.57 0.31 1.57 0.37 1.49 0.58 1.42 0.21 1.44 0.17 1.15 48 -0.38 1.51 -0.02 1.40 0.02 1.53 0.31 1.53 0.17 1.49 0.58 1.59 0.22 1.46 0.21 1.46 0.21 1.46 0.21 1.46 0.21 1.46 0.21 1.46	.49 .30	-0.28	1.43 -0.04 1.54 -0.12	1.55	0.08 1.1	-0.82	1.37 -0.49 1.31 -0.45	1.34	0.05 1.20	0.23	1.38 -0.31 1.54 -0.33	1.36	-0.15 1.63	0.64	1.51 0.1 1.31 0.2	8 1.57 5 1.54	0.16 1.45
12 12<	.20	-0.33	1.44 -0.12	1.52	0.03 1.1	-0.78	1.22 -0.44	1.47	0.06 1.27	0.23	1.51 -0.31	1.40	-0.19 1.47	0.74	1.42 0.2	1 1.52	0.19 1.43
18 -0.26 1.12 -0.08 1.49 -0.03 1.43 -0.79 1.46 -0.45 1.43 0.12 1.44 0.20 1.57 -0.31 1.17 -0.17 1.49 0.57 1.47 0.22 1.42 0.20 1.15 53 -0.3 1.51 -0.02 1.51 -0.02 1.51 -0.02 1.50 -0.17 1.48 0.58 1.58 0.02 1.46 0.17 1.48 0.58 1.58 0.02 1.46 0.12 1.15 0.07 1.55 -0.02 1.51 0.03 1.44 -0.17 1.48 0.58 1.58 0.22 1.46 0.12 1.23 47 -0.27 1.55 -0.02 1.51 0.03 1.47 0.03 1.48 0.03 1.63 0.03 1.44 0.10 1.55 0.22 1.44 0.02 1.46 0.22 1.46 0.22 1.46 0.22 1.46 0.22 1.46 0.22 1.46 0.22 1.46 0.22 1.46 0.22 1.46 0.22	. 12	-0.28	1.31 -0.08 1.23 -0.08	1.40	-0.02 1.4	-U./1 3 -0.80	1.18 -0.39	1.33	0.14 1.33	0.24	1.51 -0.32	1.36 1.42	-0.22 1.50	0.6/	1.58 0.1	/ 1.42 5 1.47	0.19 1.34
33 1 x 1 1 x 2 0 x 2 1 x 3 0 x 2 <th1 3="" <="" th="" x=""> <th1 3="" <="" th="" x=""> <th1 3="" <<="" td="" x=""><td>18</td><td>-0.26</td><td>1.32 -0.08</td><td>1.49</td><td>-0.03 1.4</td><td>3 -0.79</td><td>1.46 -0.45</td><td>1.43</td><td>0.12 1.34</td><td>0.20</td><td>1.57 -0.31</td><td>1.37</td><td>-0.17 1.49</td><td>0.57</td><td>1.47 0.2</td><td>2 1.42</td><td>0.22 1.25</td></th1></th1></th1>	18	-0.26	1.32 -0.08	1.49	-0.03 1.4	3 -0.79	1.46 -0.45	1.43	0.12 1.34	0.20	1.57 -0.31	1.37	-0.17 1.49	0.57	1.47 0.2	2 1.42	0.22 1.25
47 0.07 1.55 0.02 1.51 0.03 1.48 0.02 1.32 0.02 1.32 0.26 1.57 0.03 1.57 0.25 1.46 0.02 1.26 0.26 1.36 0.33 1.36 0.33 1.36 0.35 1.57 0.28 1.46 0.02 1.46 0.02 1.26 0.26 1.36 0.38 1.36 0.33 1.46 0.19 1.60 0.59 1.57 0.22 1.46 0.02 1.44 0.31 1.44 0.17 1.55 0.54 1.49 0.22 1.44 0.33 1.44 0.17 1.55 0.54 1.49 0.22 1.44 0.33 1.44 0.19 1.68 0.50 1.59 0.22 1.44 0.33 1.41 0.10 1.27 0.28 1.30 0.33 1.41 0.10 1.27 0.22 1.43 0.21 1.44 0.21 1.44 0.21 1.44 0.21 1.44 0.21 1	53 48	-0.33	1.41 -0.11 1.51 -0.02	1.45	0.02 1.3	-0.79	1.42 -0.42	1.52	0.09 1.31	0.20	1.54 -0.28	1.46	-0.17 1.43	0.59	1.55 0.2	2 1.46 7 1.40	0.1/ 1.15
42 -1.00 -1.00 -1.00 1.45 -0.02 1.50 0.01 1.45 -0.02 1.50 0.02 1.50 0.02 1.50 0.02 1.55 0.54 0.26 1.56 0.25 1.55 0.54 0.26 1.60 0.25 1.50 0.25 1.55 0.55 1.44 0.02 1.44 0.03 1.44 0.01 1.55 0.54 1.49 0.22 1.44 0.03 1.44 0.01 1.55 0.54 1.49 0.22 1.44 0.20 1.44 0.20 1.45 0.25 1.45 0.25 1.55 0.54 1.49 0.22 1.44 0.29 1.44 0.20 1.44 0.20 1.44 0.20 1.45 0.50 1.55 0.50 1.55 0.50 1.55 0.50 1.55 0.20 1.44 0.12 1.44 0.22 1.44 0.20 1.44 0.20 1.44 0.20 1.45 0.50 1.55 0.50	47	-0.27	1.55 -0.02	1.51	0.03 1.4	-0.85	1.32 -0.42	1.36	0.02 1.32	0.24	1.57 -0.34	1.43	-0.13 1.63	0.54	1.57 0.2	9 1.46	0.22 1.26
39 -0.29 1.33 -0.06 1.55 0.03 1.48 -0.78 1.27 -0.43 1.44 0.12 1.21 0.33 1.36 -0.32 1.30 -0.19 1.68 0.50 1.59 0.28 1.45 0.19 1.24 46 -0.29 1.36 -0.06 1.53 0.03 1.44 -0.79 1.28 -0.02 1.38 -0.21 1.57 0.48 1.65 0.24 1.53 0.20 1.44 0.19 1.54 -0.05 1.53 0.20 1.44 0.19 1.54 -0.05 1.56 0.20 1.44 0.19 1.54 0.50 1.56 0.21 1.54 0.20 1.44 0.19 1.54 0.50 1.55 0.26 1.43 0.19 1.41 0.10 1.38 0.22 1.44 -0.23 1.44 -0.15 1.72 0.46 1.66 0.25 1.53 0.26 1.43 0.16 0.11 1.11 1.33 1.41 -0.10 1.32 0.26 1.44 -0.20 1.44 -0.21 1.46 0.	.42 .46	-0.28	1.45 -0.04 1.45 -0.02	1.56	0.01 1.4	2 -0.72	1.36 -0.38 1.31 -0.43	1.3/	0.15 1.38	0.20	1.54 -0.33 1.50 -0.31	1.45	-0.19 1.60	0.59	1.54 0.2 1.49 0.2	b 1.60 2 1.44	0.26 1.36
	.39	-0.29	1.33 -0.06	1.55	0.03 1.4	3 -0.78	1.27 -0.43	1.44	0.12 1.21	0.31	1.36 -0.32	1.30	-0.19 1.68	0.50	1.59 0.2	8 1.45	0.19 1.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46 29	-0.29	1.36 -0.06 1.40 -0.05	1.53	0.03 1.4	+ -0.79 7 -0.80	<u>1.22</u> -0.42 <u>1.30</u> -0.43	1.39	0.10 1.10	0.26	<u>1.44</u> -0.29 <u>1.54</u> -0.33	1.38	-0.21 1.57 -0.24 1.54	0.48	1.65 0.2	4 1.53 0 1.43	0.20 1.24
33 0.32 0.33 0.34 0.35 0.34 1.45 0.35 0.44 1.49 0.42 1.49 0.12 1.42 0.48 1.65 0.25 1.53 0.18 1.65 0.14 1.65 0.15 1.65 0.18 1.61 1.65 0.12 1.53 0.18 1.46 39 0.29 1.41 0.08 1.28 0.00 1.31 0.03 1.47 0.03 1.44 0.02 1.55 0.58 1.46 0.11 0.33 1.47 0.11 1.90 3.14 0.33 1.44 0.32 1.46 0.25 1.47 0.17 1.39 0.15 1.36 30 0.33 1.49 0.02 1.33 0.02 1.33 0.03 1.45 0.02 1.33 0.05 1.47 0.11 0.13 1.36 0.25 1.47 0.13 1.36 0.16 1.36 0.31 1.45 0.12 1.38 0.21 1.33 0.31	.27	-0.31	1.55 -0.10	1.57	0.06 1.3	-0.77	1.41 -0.40	1.40	0.05 1.19	0.26	1.56 -0.33	1.41	-0.17 1.73	0.47	1.55 0.2	6 1.43	0.16 1.11
39 -0.29 141 -0.08 1.28 0.03 1.37 -0.83 1.31 -0.38 1.50 0.10 1.29 0.29 1.32 -0.36 1.14 -0.21 1.65 0.54 1.47 0.17 1.39 0.15 1.36 31 -0.33 1.49 -0.02 1.53 -0.07 1.37 -0.40 1.36 0.06 1.33 0.25 1.44 -0.34 1.55 -0.19 1.74 0.55 1.47 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.18 1.31 0.31 1.45 0.021 1.48 0.047 1.52 0.21 1.38 0.32 1.48 0.17 1.29 0.55 1.24 0.31 1.44 0.05 1.44 <td>.33 .40</td> <td>-0.31</td> <td>1.31 -0.10 1.43 -0.15</td> <td>1.38</td> <td>0.02 1.3</td> <td>-0.81</td> <td>1.34 -0.33</td> <td>1.42</td> <td>0.12 1.48</td> <td>0.27</td> <td>1.49 -0.32</td> <td>1.44</td> <td>-0.19 1.72</td> <td>0.48</td> <td>1.46 0.2</td> <td>1 1.53</td> <td>0.18 1.46</td>	.33 .40	-0.31	1.31 -0.10 1.43 -0.15	1.38	0.02 1.3	-0.81	1.34 -0.33	1.42	0.12 1.48	0.27	1.49 -0.32	1.44	-0.19 1.72	0.48	1.46 0.2	1 1.53	0.18 1.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 39	-0.29	1.41 -0.08	1.28	0.03 1.3	-0.83	1.31 -0.38	1.50	0.10 1.29	0.29	1.32 -0.36	1.14	-0.21 1.65	0.54	1.47 0.1	7 1.39	0.15 1.36
1.54 -0.31 1.52 -0.10 1.47 0.03 1.21 -0.74 1.47 -0.40 1.48 0.12 1.58 -0.21 1.50 -0.31 1.43 -0.17 1.72 0.56 1.44 0.25 1.53 0.15 1.24 46 -0.33 1.44 -0.06 1.46 -0.01 1.32 -0.72 1.45 -0.44 1.50 0.10 1.48 0.28 1.32 -0.33 1.48 -0.16 1.66 0.55 1.44 0.25 1.49 0.18 1.09 12 -0.33 1.43 -0.09 1.31 0.02 1.48 0.10 1.48 0.25 1.45 -0.14 1.40 0.25 1.43 0.19 1.09 11 -0.26 1.37 -0.31 1.28 0.32 1.56 0.31 1.45 -0.14 1.66 0.55 1.42 0.25 1.53 0.17 1.08 11 -0.26 1.37 -0.31 1.50 0.31 1.36 0.32 1.56 0.34 1.60 0.34 1.66<	1.31 1.46	-0.33	1.49 -0.02 1.33 -0.06	1.53	-0.02 1.3	0 -0.79	1.37 -0.40 1.44 -0.39	1.36	0.06 1.33	0.25	1.44 -0.34	1.35	-0.19 1.74	0.55	1.4/ 0.1	2 1.36	0.18 1.31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.54	-0.31	1.52 -0.10	1.47	0.03 1.2	-0.74	1.47 -0.40	1.48	0.12 1.38	0.22	1.50 -0.31	1.43	-0.17 1.72	0.56	1.44 0.2	5 1.53	0.15 1.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.40	-0.33	1.44 -0.08 1.43 -0.09	1.49	0.02 1.0	-0.72	1.45 -0.44 1.43 -0.39	1.50	0.10 1.48	0.28	1.45 -0.31	1.48	-0.10 1.66 -0.14 1.74	0.55	1.52 0.2	5 1.33	0.16 1.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.11	-0.26	1.37 -0.13	1.28	0.04 1.3	3 -0.82	1.26 -0.36	1.45	0.12 1.36	0.27	1.61 -0.32	1.54	-0.14 1.60	0.55	1.42 0.2	1 1.36	0.20 1.27
	.07	-0.27	1.47 -0.07	1.50	0.03 1.4	-0.76	1.40 -0.36	1.30	0.05 1.13	0.21	1.47 -0.29	1.34	-0.19 1.53	0.60	1.30 0.1	9 1.57	0.17 1.42

Tabella 3.4: Andamento spessori saldatura ed eccentricità lungo i campioni analizzati

Si riporta in Figura 3.4 l'andamento dello spessore della saldatura rispetto alla lunghezza x dei campioni FWA, FWB, FWC, FWE per mostrarne l'aleatorietà nella variazione geometrica in termini di spessore.

Figura 3.5: Variabilità spessore saldatura per i campioni analizzati.

In Figura 3.5 si può osservare l'andamento dell'eccentricità dell'asse medio della saldatura per i diversi campioni in esame al variare della lunghezza del campione x.

Figura 3.6: Variabilità eccentricità saldatura per i campioni analizzati

È stata eseguita un'analisi statistica dei valori di spessore di saldatura t_{weld} la quale dimostra che la loro distribuzione è gaussiana. E' stato così possibile calcolare lo spessore minimo al 97.7% di probabilità di essere superato. Questo valore rappresenta un'assunzione a favore di sicurezza in quanto uno spessore di saldatura minore comporta campi tensionali locali più elevati e perciò un maggiore valore del fattore di intensificazione delle tensioni.

L'eccentricità della saldatura è stata considerata con il suo valore medio nella lunghezza del campione rispetto alla linea media dell'anima del plate verticale.

L'analisi statistica è stata eseguita per le seguenti categorie di campioni:

• FWA FWB FWC considerando tutti gli spessori che si presentano lungo la lunghezza dei vari campioni

Figura 3.7: Distribuzione statistica dello spessore di saldatura t_{web} = 8 mm FWE

Figura 3.8: Distribuzione statistica dello spessore di saldatura t_{web} = 12 mm

• T

•

Figura 3.9: Distribuzione statistica dello spessore di saldatura t_{web} = 4 mm

La necessità di dividere l'analisi in queste tre categorie nasce dal fatto che lo spessore del plate orizzontale superiore è diverso per i vari campioni. Questo potrebbe comportare teoricamente una variabilità sistematica sul valore dello spessore della saldatura nella zona in esame.

Come già accennato dalla distribuzione gaussiana degli spessori di saldatura, è stato possibile definire lo spessore minimo di saldatura con il 97,7% di possibilità di essere superato, pari a:

 $t_{(97,7\%)} = t_{medio} - 2\sigma$

dove σ è la deviazione standard rispetto al valore medio.

Per le due tipologie di dettagli sono stati quindi trovati i seguenti spessori minimi al 97,7%:

- t_{web}= 8mm, spessore di saldatura pari a 2.44mm
- t_{web} = 12mm, spessore di saldatura pari a 2.62mm.
- t_{web} = 4mm, spessore di saldatura pari a 1.13mm.

Il valor medio dell'eccentricità della saldatura invece ha un valore diverso per ogni campione considerato:

- FWA, ecc. media= 0.33mm
- FWB, ecc. media= 0.34mm
- FWC, ecc. media= 0.43mm
- FWE, ecc. media= 0.14mm
- T, ecc. media= 0.29mm

3.5 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1. Sono state eseguite due analisi con due geometrie differenti. Gli spessori dei plate orizzontali e verticali rispecchiano quelli dei campioni analizzati sperimentalmente.

È stata modellata la sezione a T lungo la lunghezza del campione in corrispondenza dello spessore minimo di saldatura.

La saldatura perciò è stata modellata con il valor medio di eccentricità mentre lo spessore della saldatura è stato modellato come lo spessore minimo che ha il 97,7% di probabilità di essere superato. Questo dato, quindi, proviene dall'analisi statistica precedentemente indicata.

In totale è stata effettuata l'analisi di tutte e 4 le geometrie geometrie:

- modello FWA: spessore di anima pari a 8mm, spessore di saldatura pari a 2.44 mm, eccentricità pari a 0.33 mm;
- modello FWB: spessore di anima pari a 8mm, spessore di saldatura pari a 2.44 mm, eccentricità pari a 0.34 mm;
- modello FWC: spessore di anima pari a 8mm, spessore di saldatura pari a 2.44 mm, eccentricità pari a 0.43 mm;
- modello FWE: spessore di anima pari a 12mm, spessore di saldatura pari a 2.62 mm, eccentricità pari a 0.14 mm;
- modello T: spessore di anima pari a 4mm, spessore di saldatura pari a 1.13 mm, eccentricità pari a 0.29 mm.

Il vincolo costituito dai bulloni è stato modellato come un incastro in corrispondenza dell'asse medio del bullone stesso.

E' stata tentata anche una modellazione più sofisticata, cercando di modellare il sistema di vincolo presentato nell'articolo successivo: "J-integral-based approach to fatigue assessment of laser stake-welded T-joints" di Darko Frank, Heikki Remes, Jani Romanoff pubblicato nel 2013, dove gli autori hanno specificato chiaramente il sistema di vincolo utilizzato durante le prove sperimentali. Nella seguente figura presa dall'articolo in esame si può notare il sistema di vincolo adottato:

Figura 3.10: Sistema di vincolo adottato sperimentalmente.

Nell'analisi più sofisticata del problema si è cercato di modellare il vincolo di contatto tra la piastra orizzontale del campione e la piastra orizzontale di supporto.

Inoltre è stato tolto il vincolo di incastro ipotizzato adottando il sistema di vincolo di figura 3.8.

Sono stati adottati elementi di contatto per modellare il reale comportamento nell'interazione tra le due piastre orizzontali. All'aumentare del carico il comportamento è non lineare e dipende dalla porzione delle due piastre che effettivamente entra in contatto.

L'analisi condotta per il campione FWA ha fornito i seguente risultati in termini di tensione equivalente di picco che sono stati confrontati con quelli ottenuti dal modello con vincoli di incastro a parità di geometria e carico:

Figura 3.11: Confronto in tensione equivalente fra modello con contatti e modello con vincoli di incastro.

Come si può chiaramente leggere nel grafico, i risultati sono pressoché identici.

L'errore massimo è del 2 % per un carico pari a 75 MPa.

Si può perciò certamente asserire che il vincolo di incastro rispecchia il reale comportamento dei campioni sperimentali e nel proseguo si effettuerà la modellazione dei campioni con questo sistema di vincolo.

Nel modello più generale, si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10⁻⁵ mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio. Sono stati usati gli elementi plane 182 in plane strain, cioè la deformazione lungo l'asse perpendicolare al piano dell'elemento è bloccata e pari a 0 quindi nasce una tensione lungo questo asse che provoca un aumento del fattore di intensificazione delle tensioni.

Infine, è stata applicata una tensione di trazione pari a 1MPa sull'anima della piastra verticale.

Figura 3.12: Modello FEM analizzato.

Figura 3.13: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

3.6 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riporta un esempio dei risultati per il caso di anima da 8 mm. I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 3.14: Risultati analisi FEM: tensione σ_{yy} *, caso t_{web}*= 8 mm.

Figura 3.15: Risultati analisi FEM: tensione locale σ_{yy} *ad apice intaglio, caso t_{web}= 8 mm.*

3.6.1 Sforzo assiale

3.6.1.1 tweb=8mm

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 3.16: Tensione locale σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 3.17: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

- FWA: $K_1 = 4.26$
- FWB: $K_1 = 4.26$
- FWC: $K_1 = 4.23$

E' presente anche modo II, il valore del fattore di intensificazione delle tensioni K_2 per x che tende a zero si ricava pari a :

- FWA: K₂ = 1.49
- FWB: $K_2 = 1.49$
- FWC: $K_2 = 1.52$

3.6.1.2 tweb=12mm

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 3.18: Tensione locale σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_1 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_1} \, \sigma_{\theta\theta}(r,\theta=0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 3.19: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

• FWE: $K_1 = 5.89$.

E' presente anche modo II, il valore del fattore di intensificazione delle tensioni K_2 per x che tende a zero si ricava pari a :

• FWE: $K_2 = 0.68$

3.7 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 in plane strain con l'opzione "simple enhanced strain" attivata;
- quattro elementi che condividono l'apice dell'intaglio.

Si prevede che i dati ottenuti col peak stress method siano comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte così da poter utilizzare il PSM per l'analisi di questa tipologia di giunti saldati, il quale permette analisi più veloci e molto meno onerose in termini computazionali.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ al variare del numero di cicli a rottura.

Schema di vincolo utilizzato:

Figura 3.20: Schema di vincolo utilizzato.

Figura 3.21: Mesh dei campioni sperimentali (PSM) con eccentricità saldatura e vincoli aggiuntivi. Esempio dei risultati ottenuti in termini di tensione principale 11.

Figura 3.22: Tensione principale 11 di picco in corrispondenza dell'apice dell'intaglio.

$\Delta \mathbf{K}_1$.							
Campioni	d		λ1	σ_{peak}	$ au_{peak}$	ΔK1 _{,PSM}	ΔK2 _{,PSM}
FWA		0.04	0.5	14.965	2.057	4.13	1.39
FWB		0.05	0.5	13.282	1.799	4.10	1.36
FWC		0.05	0.5	12.991	1.863	4.01	1.41
FWE		0.05	0.5	18.754	0.841	. 5.79	0.64
Campioni	d		λ1	σ_{peak}	τ_{peak}	ΔK1 _{,PSM}	∆K2 _{,PSM}
Т		0.04	4 0.	5 11.9	78 2.926	3.31	1.98

I quattro modelli FEM analizzati con il Peak Stress Method hanno fornito i seguenti risultati in termini di ΔK_1 :

Tabella 3.5: valori di ΔK_1 e ΔK_2 ottenuti considerando l'eccentricità media dello spessore di saldatura e i vincoli aggiuntivi (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Sorios	campione	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	Δσeq
561163	campione	[cycle]	[MPa]	[MPa]
	FW01A	5381	187.5	953
	FW02A	93,069	113	572
	FW03A	18,591	150	763
FVVA	FW04A	2222	225	1144
	FW05A	249,169	75	381
	FW08A	146,342	75	381
	FW01B	2494	225	1145
	FW02B	7625	187.5	954
	FW03B	19,865	150	763
FVVB	FW04B	63,414	113	572
	FW05B	181,782	75	382
	FW06B	233,919	75	382
	FW01C	4013	225	1153
	FW02C	9435	187.5	961
	FW03C	32,902	150	769
FILIC	FW04C	26,038	150	769
FVVC	FW05C	58,579	113	576
	FW06C	349,212	75	384
	FW07C	3700	225	1153
	FW08C	281,018	75	384
	FW01E	3723	150	895
	FW02E	42,957	100	597
	FW03E	157,424	75	447
	FW04E	12,563	125	746
FVVE	FW05E	1277	150	895
	FW06E	28,102	100	597
	FW07E	507,653	50	298
	FW08E	1,001,102	50	298
<u> </u>		Nf Cycle to failure	Δσ _n Nominal stress range	Δσeg
Series	campione	[cycle]	[MPa]	[MPa]
	T1	833168	50	273
	Т3	1,975,586	42	228
	T4	125,030	75	410
	Т5	905027	50	273
	Т6	163,166	75	410
	Т7	274,438	58	319
Т	Т8	251114	58.3	319
	Т9	103352	75	410
	T11	262,625	58	319
	T13	94,557	100	547
	T14	740,670	50	273
	T15	62,922	100	547
	T16	65556	100	547

T1665556100547Tabella 3.6: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali
analizzati

Nel seguente grafico si possono leggere i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$ al variare del numero di cicli a rottura.

Figura 3.23: Risultati dei campioni sperimentali rielaborati con il PSM in termini di tensione equivalente di picco per i campioni FWA FWB FWC FWE.

Figura 3.24: Risultati dei campioni sperimentali rielaborati con il PSM in termini di tensione equivalente di picco per i campioni T.

3.8 Analisi SED

Al fine di completare l'analisi condotta, sono stati elaborati altri modelli FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente dai modelli FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

Sono state perciò modellate nuovamente le geometrie creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 3.25: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di concentazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED per i campioni FWA FWB FWC FWE.

CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
T-JOINT REMES FWA	SFORZO ASSIALE	4.26	4.20	-1.4%
T-JOINT REMES FWB	SFORZO ASSIALE	4.26	4.19	-1.6%
T-JOINT REMES FWC	SFORZO ASSIALE	4.23	4.17	-1.4%
T-JOINT REMES FWE	SFORZO ASSIALE	5.89	5.75	-2.4%
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
CAMPIONI SPERIMENTAL T-JOINT REMES FWA	I ANALIZZATI SFORZO ASSIALE	ΔK2 _{,esatto} [Mpa*mm^0.5] 1.49	ΔK2 _{,PSM} [Mpa*mm^0.5] 1.46	ERR (%) -2.1%
CAMPIONI SPERIMENTAL T-JOINT REMES FWA T-JOINT REMES FWB	I ANALIZZATI SFORZO ASSIALE SFORZO ASSIALE	ΔK2 _{,esatto} [Mpa*mm^0.5] <u>1.49</u> 1.49	ΔK2 _{,PSM} [Mpa*mm^0.5] 1.46 1.46	ERR (%) -2.1% -2.3%
CAMPIONI SPERIMENTAL T-JOINT REMES FWA T-JOINT REMES FWB T-JOINT REMES FWC	I ANALIZZATI SFORZO ASSIALE SFORZO ASSIALE SFORZO ASSIALE	ΔK2 _{,esatto} [Mpa*mm^0.5] 1.49 1.49 1.52	ΔK2 _{,PSM} [Mpa*mm^0.5] 1.46 1.46 1.58	ERR (%) -2.1% -2.3% 3.7%

CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
T-JOINT REMES FWA	SFORZO ASSIALE	0.00	0.00	-
T-JOINT REMES FWB	SFORZO ASSIALE	0.00	0.00	-
T-JOINT REMES FWC	SFORZO ASSIALE	0.00	0.00	-
T-JOINT REMES FWE	SFORZO ASSIALE	0.00	0.00	-
CAMPIONI SPERIMENTAL	I ANALIZZATI	T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)
CAMPIONI SPERIMENTAI T-JOINT REMES FWA	I ANALIZZATI SFORZO ASSIALE	T _{,esatto} [Mpa] 0.98	T _{,PSM} [Mpa] 1.00	ERR (%) 2.0%
CAMPIONI SPERIMENTAI T-JOINT REMES FWA T-JOINT REMES FWB	I ANALIZZATI SFORZO ASSIALE SFORZO ASSIALE	T _{,esatto} [Mpa] 0.98 0.98	T _{,PSM} [Mpa] 1.00 1.00	ERR (%) 2.0% 2.0%
CAMPIONI SPERIMENTAI T-JOINT REMES FWA T-JOINT REMES FWB T-JOINT REMES FWC	I ANALIZZATI SFORZO ASSIALE SFORZO ASSIALE SFORZO ASSIALE	T _{,esatto} [Mpa] 0.98 0.98 0.98	T _{,PSM} [Mpa] 1.00 1.00 1.03	ERR (%) 2.0% 2.0% 4.9%

Tabella 3.7: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)
T-JOINT REMES FWA	SFORZO ASSIALE	6.19E-05	5.93E-05	-4.4%
T-JOINT REMES FWB	SFORZO ASSIALE	6.19E-05	5.93E-05	-4.4%
T-JOINT REMES FWC	SFORZO ASSIALE	6.25E-05	5.92E-05	-5.6%
T-JOINT REMES FWE	SFORZO ASSIALE	8.71E-05	8.17E-05	-6.5%
CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)
CAMPIONI SPERIMENTALI ANALI T-JOINT REMES FWA	ZZATI SFORZO ASSIALE	W _{FEM} [N/mm^2] 6.19E-05	W _{PSM, I+II+III+T+tnom} [N/mm^2] 5.78E-05	ERR PSM/FEM (%) -7.1%
CAMPIONI SPERIMENTALI ANALI T-JOINT REMES FWA T-JOINT REMES FWB	ZZATI SFORZO ASSIALE SFORZO ASSIALE	W _{FEM} [N/mm^2] 6.19E-05 6.19E-05	W _{PSM, I+II+III+T+tnom} [N/mm^2] 5.78E-05 5.76E-05	ERR PSM/FEM (%) -7.1% -7.6%
CAMPIONI SPERIMENTALI ANALI T-JOINT REMES FWA T-JOINT REMES FWB T-JOINT REMES FWC	ZZATI SFORZO ASSIALE SFORZO ASSIALE SFORZO ASSIALE	W _{FEM} [N/mm^2] 6.19E-05 6.19E-05 6.25E-05	W _{PSM, I+II+III+T+tnom} [N/mm^2] 5.78E-05 5.76E-05 5.95E-05	ERR PSM/FEM (%) -7.1% -7.6% -4.9%

	Tabella 3.8:	Confronto tra	i valori SED	mediati calcolati	con FEM,	mesh fitte	e PSM
--	--------------	---------------	--------------	-------------------	----------	------------	-------

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% quasi tutti i valori dei fattori di intensificazione delle tensioni. Si ha un errore superiore solo per fattori che hanno un peso molto basso nel calcolo della tensione equivalente di picco e perciò non rovinano la bontà dell'analisi.

L'energia SED calcolata con il FEM è inoltre approssimata bene con un errore inferiore al 12.5% tramite il PSM tenendo conto anche dell'effetto della T-stress.

I valori di tensione equivalente calcolati precedentemente con il PSM sono quindi descrittivi del reale stato di sollecitazione all'apice dell'intaglio e approssimano con un errore inferiore al 5% il reale stato di tensione equivalente di picco.

Si può perciò nel proseguo adottare tali valori, $\Delta \sigma_{eq}$ da PSM, per effettuare una scelta della banda di progettazione, in quanto non è necessario calcolare direttamente l'energia SED da FEM dato il piccolo errore ricavato dal confronto.

Se l'errore fosse stato maggiore sarebbe stato necessario abbandonare la tecnica PSM e ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM.

Capitolo 4: ANALISI SPERIMENTALI ARTICOLO WIEBESIEK

4.1 Campioni sperimentali

Le prove sperimentali, analizzate in questo capitolo, sono state ricavate dall'articolo: "Multiaxial fatigue behaviour of laserbeam-welded thin steel and aluminium sheets under proportional and non-proportional combined loading" di J. Wiebesiek, K. Storzel, T. Bruder, H. Kaufmann pubblicato nel 2010 [9].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia di giunto a tubo con tubo saldato laser su tutto il perimetro.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le grandezze caratteristiche sono il diametro dei tubi e lo spessore di saldatura. La sezione tipica è presentata in Figura 4.1.

 $w \approx 1.0 \text{ mm} \text{ (steel)}$

Figura 4.1: Schema e nomenclatura dei campioni sperimentali esaminati [9].

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

4.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

	<i>R</i> _{p0.2} [MPa]	R _m [MPa]	E [GPa]	e [%]	v	HV0.1
St35	235	405	210	26	0.30	203
					0.25 (01	

Tabella 4.1: Proprietà e geometria dei campioni sperimentali, materiale St35 [9].

In totale 54 campioni sono stati sottoposti a carichi tensionali ciclici con fattore R=-1 fino a rottura. Sono state adottate diverse tipologie di sollecitazione:

- sforzo assiale centrato di trazione;
- torsione pura;
- carico combinato di sforzo assiale e torsione in fase (0°), con rapporto M/F=28 Nm/kN;
- carico combinato di sforzo assiale e torsione fuori fase (90°), con rapporto M/F=28 Nm/kN.

Da una parte il tubo è sollecitato dallo sforzo corrispondente mentre dall'altra parte risulta vincolato con un incastro.

È stato perciò rilevato il numero di cicli a fatica a rottura in base alla tensione nominale applicata.

4.3 Elaborazione risultati sperimentali

1		1		
Sorios	Nf Cycle to failure	ΔFn	$\Delta\sigma_n Nominal \ stress \ range$	
Series	[cycle]	[kN]	[MPa]	
Sforzo assiale	1.39E+05	15.00	53.05	
Sforzo assiale	2.20E+05	15.00	53.05	
Sforzo assiale	1.34E+05	11.64	41.19	
Sforzo assiale	1.51E+05	11.63	41.12	
Sforzo assiale	1.62E+05	11.63	41.14	
Sforzo assiale	3.40E+05	11.65	41.20	
Sforzo assiale	3.11E+05	10.03	35.46	
Sforzo assiale	7.16E+05	8.74	30.90	
Sforzo assiale	7.67E+05	8.72	30.85	
Sforzo assiale	8.92E+05	8.71	30.82	
Sforzo assiale	1.01E+06	8.71	30.82	
Sforzo assiale	2.91E+06	7.26	25.66	
Sforzo assiale	5.80E+06	7.25	25.64	
Sforzo assiale	6.21E+06	7.25	25.64	

Nelle Tabelle 4.2 e 4.3 sono riportati i risultati delle analisi sperimentali condotte:

Tabella 4.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).

Series	Nf Cycle to failure	Fn	M _n	$\Delta\sigma_n Nominal \ stress \ range$	$\Delta \tau_n Nominal \ stress \ range$
Series	[cycle]	[kN]	[Nmm]	[MPa]	[MPa]
TORSIONE PURA	2.00E+04	0.00	400223.08	0.00	62.42
TORSIONE PURA	2.82E+04	0.00	400223.08	0.00	62.42
TORSIONE PURA	3.12E+04	0.00	400268.45	0.00	62.42
TORSIONE PURA	6.72E+04	0.00	349637.18	0.00	54.53
TORSIONE PURA	7.68E+04	0.00	325907.07	0.00	50.83
TORSIONE PURA	1.34E+05	0.00	325907.07	0.00	50.83
TORSIONE PURA	1.91E+05	0.00	350033.76	0.00	54.59
TORSIONE PURA	2.84E+05	0.00	350033.76	0.00	54.59
TORSIONE PURA	7.54E+05	0.00	350033.76	0.00	54.59
TORSIONE PURA	1.11E+06	0.00	300669.82	0.00	46.89
TORSIONE PURA	1.48E+06	0.00	300806.19	0.00	46.91
TORSIONE PURA	1.77E+06	0.00	301420.61	0.00	47.01
TORSIONE PURA	1.61E+06	0.00	281281.67	0.00	43.87
TORSIONE PURA	2.56E+06	0.00	281281.67	0.00	43.87
TORSIONE PURA	5.66E+06	0.00	260472.66	0.00	40.62
TORSIONE PURA	2.79E+06	0.00	197352.33	0.00	30.78
COMBINATI ASSIALE E TORSIONE 0°	4.52E+04	9.99	279660.16	35.32	43.62
COMBINATI ASSIALE E TORSIONE 0°	3.01E+05	8.68	243069.60	30.70	37.91
COMBINATI ASSIALE E TORSIONE 0°	3.81E+05	8.68	243069.60	30.70	37.91
COMBINATI ASSIALE E TORSIONE 0°	5.27E+05	8.68	243069.60	30.70	37.91
COMBINATI ASSIALE E TORSIONE 0°	5.16E+05	9.99	279660.16	35.32	43.62
COMBINATI ASSIALE E TORSIONE 0°	1.02E+06	7.17	200668.57	25.35	31.30
COMBINATI ASSIALE E TORSIONE 0°	1.19E+06	7.18	200987.30	25.39	31.35
COMBINATI ASSIALE E TORSIONE 0°	1.65E+06	7.20	201557.71	25.46	31.43
COMBINATI ASSIALE E TORSIONE 0°	3.14E+06	5.49	153686.78	19.41	23.97
COMBINATI ASSIALE E TORSIONE 0°	4.42E+06	5.49	153686.78	19.41	23.97
COMBINATI ASSIALE E TORSIONE 0°	5.21E+06	5.50	153965.79	19.45	24.01
COMBINATI ASSIALE E TORSIONE 0°	1.01E+07	5.51	154245.30	19.48	24.06
COMBINATI ASSIALE E TORSIONE 90°	2.15E+04	11.51	322160.37	40.69	50.24
COMBINATI ASSIALE E TORSIONE 90°	6.07E+04	8.72	244174.28	30.84	38.08
COMBINATI ASSIALE E TORSIONE 90°	6.48E+04	8.72	244174.28	30.84	38.08
COMBINATI ASSIALE E TORSIONE 90°	7.40E+04	8.74	244784.00	30.92	38.18
COMBINATI ASSIALE E TORSIONE 90°	1.88E+05	7.21	201809.20	25.49	31.47
COMBINATI ASSIALE E TORSIONE 90°	3.71E+05	7.22	202267.27	25.55	31.55
COMBINATI ASSIALE E TORSIONE 90°	4.21E+05	5.50	153878.54	19.44	24.00
COMBINATI ASSIALE E TORSIONE 90°	5.35E+05	5.53	154753.21	19.55	24.13
COMBINATI ASSIALE E TORSIONE 90°	5.54E+05	5.53	154753.21	19.55	24.13
COMBINATI ASSIALE E TORSIONE 90°	1.05E+06	5.51	154227.81	19.48	24.05
COMBINATI ASSIALE E TORSIONE 90°	2.72E+06	4.49	125661.00	15.87	19.60
COMBINATI ASSIALE E TORSIONE 90°	7.41E+06	4.06	113627.26	14.35	17.72

Tabella 4.3: Elaborazione risultati sperimentali per serie di campioni (torsione e combinati).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

Per ogni serie è stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 4.3: Risultati sperimentali a fatica (torsione e combinati)

4.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1. E' stata condotta l'analisi sfruttando l'assial-simmetria (asse di simmetria Y verticale) e quindi è stata modellata solo una fetta longitudinale del tubo.

La saldatura è stata modellata con spessore pari a 1 mm.

Il vincolo alla base del modello è un incastro.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10^{-5} mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Per il carico di trazione assiale sono stati usati gli elementi plane 182 in axial-simmetry, mentre per la sollecitazione di torsione sono stati utilizzati elementi plane 25 in axial-simmetry.

I carichi sono stati imposti nel seguente modo:

- Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa in sommità al tubo.
- Torsione: sono state applicate delle forze in direzione Z tali da provocare una tensione tangenziale di torsione unitaria.

Figura 4.4: Modello FEM analizzato.

Figura 4.5: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

4.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riporta un esempio dei risultati trovati per il caso di trazione assiale.

I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 4.6: Risultati analisi FEM: tensione σ_{xx} .

Figura 4.7: Risultati analisi FEM: tensione locale σ_{xx} *ad apice intaglio.*

4.5.1 Sforzo assiale

4.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 4.8: Tensione locale σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 4.9: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

•
$$K_1 = 1.27$$

4.5.1.2 K₂

È stato analizzato l'andamento della tensione tangenziale τ_{xy} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 4.10: Tensione locale τ_{xy} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K2 con la seguente formula

$$K_2 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_2} \tau_{\theta r}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_2 .

Figura 4.11: NSIF factor ΔK_2 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_2 per x che tende a zero, si ricava il seguente valore limite

• $K_2 = 3.78$.

4.5.2 Torsione

4.5.2.1 K₃

È stato analizzato l'andamento della tensione τ_{xz} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 4.12: Tensione locale τ_{xz} ad apice intaglio.

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K3 con la seguente formula

$$K_3 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_3} \sigma_{rz}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_3 .

Figura 4.13: NSIF factor ΔK_3 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_3 per x che tende a zero, si ricava il seguente valore limite

• K₃ = 3.65.

4.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 o elementi plane 25 in axial-simmetry;
- quattro elementi che condividono l'apice dell'intaglio.

Si prevede che i dati ottenuti col peak stress method siano comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte così da poter utilizzare il PSM per l'analisi di questa tipologia di giunti saldati, il quale permette analisi più veloci e molto meno onerose in termini computazionali.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ al variare del numero di cicli a rottura.

Schema di vincolo utilizzato:

Figura 4.14: Schema di vincolo utilizzato.

Figura 4.15: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in termini di tensione τ_{xz} per il caso di torsione.

Figura 4.16: Tensione τ_{xz} di picco in corrispondenza dell'apice dell'intaglio.

I modelli FEM analizzati con il Peak Stress Method hanno fornito i	i seguenti risultati in termini di NSIFs:
--	---

Campioni	d (mm)	λ	$\sigma_{peak}[MPa]$	ΔK _{,PSM}
К1	0.05	0.5	3.880	1.20
К2	0.05	0.5	4.683	3.54
КЗ	0.072	0.5	7.075	3.66

Tabella 4.4: valori di $\Delta K1$, $\Delta K2$ e $\Delta K3$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Sorios	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	$fw^*\sigma_{peak}$	fw*τ _{peak}	$\Delta\sigma_{eq}$
561165	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	1.39E+05	53.05	64.90	307.23	314
Sforzo assiale	2.20E+05	53.05	64.90	307.23	314
Sforzo assiale	1.34E+05	41.19	50.38	238.49	244
Sforzo assiale	1.51E+05	41.12	50.29	238.09	243
Sforzo assiale	1.62E+05	41.14	50.32	238.22	243
Sforzo assiale	3.40E+05	41.20	50.40	238.57	244
Sforzo assiale	3.11E+05	35.46	43.38	205.35	210
Sforzo assiale	7.16E+05	30.90	37.80	178.93	183
Sforzo assiale	7.67E+05	30.85	37.74	178.66	183
Sforzo assiale	8.92E+05	30.82	37.70	178.48	182
Sforzo assiale	1.01E+06	30.82	37.70	178.48	182
Sforzo assiale	2.91E+06	25.66	31.39	148.60	152
Sforzo assiale	5.80E+06	25.64	31.36	148.47	152
Sforzo assiale	6.21E+06	25.64	31.36	148.47	152

Sorios	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n Nominal \ stress \ range$	$f_{w1}^{}*\Delta\tau_{\theta\theta,peak}$	$f_{w2}{}^{*}\sigma_{r\theta,peak}$	${f_{w3}}^*\Delta \tau_{\theta z, peak}$	$\Delta\sigma_{eq}$
Series	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
TORSIONE PURA	2.00E+04	0.00	62.42	0.00	0.00	412.16	412
TORSIONE PURA	2.82E+04	0.00	62.42	0.00	0.00	412.16	412
TORSIONE PURA	3.12E+04	0.00	62.42	0.00	0.00	412.21	412
TORSIONE PURA	6.72E+04	0.00	54.53	0.00	0.00	360.07	360
TORSIONE PURA	7.68E+04	0.00	50.83	0.00	0.00	335.63	336
TORSIONE PURA	1.34E+05	0.00	50.83	0.00	0.00	335.63	336
TORSIONE PURA	1.91E+05	0.00	54.59	0.00	0.00	360.47	360
TORSIONE PURA	2.84E+05	0.00	54.59	0.00	0.00	360.47	360
TORSIONE PURA	7.54E+05	0.00	54.59	0.00	0.00	360.47	360
TORSIONE PURA	1.11E+06	0.00	46.89	0.00	0.00	309.64	310
TORSIONE PURA	1.48E+06	0.00	46.91	0.00	0.00	309.78	310
TORSIONE PURA	1.77E+06	0.00	47.01	0.00	0.00	310.41	310
TORSIONE PURA	1.61E+06	0.00	43.87	0.00	0.00	289.67	290
TORSIONE PURA	2.56E+06	0.00	43.87	0.00	0.00	289.67	290
TORSIONE PURA	5.66E+06	0.00	40.62	0.00	0.00	268.24	268
TORSIONE PURA	2.79E+06	0.00	30.78	0.00	0.00	203.24	203
COMBINATI ASSIALE E TORSIONE 0°	4.52E+04	35.32	43.62	43.21	204.56	288.00	356
COMBINATI ASSIALE E TORSIONE 0°	3.01E+05	30.70	37.91	37.56	177.79	250.32	309
COMBINATI ASSIALE E TORSIONE 0°	3.81E+05	30.70	37.91	37.56	177.79	250.32	309
COMBINATI ASSIALE E TORSIONE 0°	5.27E+05	30.70	37.91	37.56	177.79	250.32	309
COMBINATI ASSIALE E TORSIONE 0°	5.16E+05	35.32	43.62	43.21	204.56	288.00	356
COMBINATI ASSIALE E TORSIONE 0°	1.02E+06	25.35	31.30	31.01	146.78	206.65	255
COMBINATI ASSIALE E TORSIONE 0°	1.19E+06	25.39	31.35	31.05	147.01	206.98	256
COMBINATI ASSIALE E TORSIONE 0°	1.65E+06	25.46	31.43	31.14	147.43	207.57	256
COMBINATI ASSIALE E TORSIONE 0°	3.14E+06	19.41	23.97	23.75	112.41	158.27	196
COMBINATI ASSIALE E TORSIONE 0°	4.42E+06	19.41	23.97	23.75	112.41	158.27	196
COMBINATI ASSIALE E TORSIONE 0°	5.21E+06	19.45	24.01	23.79	112.62	158.56	196
COMBINATI ASSIALE E TORSIONE 0°	1.01E+07	19.48	24.06	23.83	112.82	158.85	196
COMBINATI ASSIALE E TORSIONE 90°	2.15E+04	40.69	50.24	49.78	235.64	331.77	410
COMBINATI ASSIALE E TORSIONE 90°	6.07E+04	30.84	38.08	37.73	178.60	251.46	311
COMBINATI ASSIALE E TORSIONE 90°	6.48E+04	30.84	38.08	37.73	178.60	251.46	311
COMBINATI ASSIALE E TORSIONE 90°	7.40E+04	30.92	38.18	37.82	179.05	252.09	312
COMBINATI ASSIALE E TORSIONE 90°	1.88E+05	25.49	31.47	31.18	147.61	207.83	257
COMBINATI ASSIALE E TORSIONE 90°	3.71E+05	25.55	31.55	31.25	147.95	208.30	257
COMBINATI ASSIALE E TORSIONE 90°	4.21E+05	19.44	24.00	23.78	112.55	158.47	196
COMBINATI ASSIALE E TORSIONE 90°	5.35E+05	19.55	24.13	23.91	113.19	159.37	197
COMBINATI ASSIALE E TORSIONE 90°	5.54E+05	19.55	24.13	23.91	113.19	159.37	197
COMBINATI ASSIALE E TORSIONE 90°	1.05E+06	19.48	24.05	23.83	112.81	158.83	196
COMBINATI ASSIALE E TORSIONE 90°	2.72E+06	15.87	19.60	19.42	91.91	129.41	160
COMBINATI ASSIALE E TORSIONE 90°	7.41E+06	14.35	17.72	17.56	83.11	117.02	145

Tabella 4.5: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali analizzati

Nei seguenti grafici si possono notare i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 4.17: Dati sperimentali rielaborati in termini di $\Delta \sigma eq$.

4.7 Analisi SED

Al fine di completare l'analisi condotta, è stato elaborato un altro modello FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 4.18: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di concentazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

Si evidenzia che nel calcolo dell'energia SED per la geometria tube con PSM è stato aggiunto un termine dovuto all'effetto di una tensione tangenziale nominale costante lungo lo spessore di saldatura che comporta un aumento dell'energia di deformazione nel volume di controllo.

CAMPIONI SPERIMENTALI ANALIZZATI		ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE WIEBESIEK	SFORZO ASSIALE	1.28	1.20	-6.9%
TUBE WIEBESIEK	TORSIONE PURA	0.00	0.00	-
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
CAMPIONI SPERIMENTAL TUBE WIEBESIEK	I ANALIZZATI SFORZO ASSIALE	ΔK2 _{,esatto} [Mpa*mm^0.5] 3.78	ΔK2 _{,PSM} [Mpa*mm^0.5] 3.54	ERR (%) -6.8%

CAMPIONI SPERIMENTALI ANALIZZATI		ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE WIEBESIEK	SFORZO ASSIALE	0.00	0.00	-
TUBE WIEBESIEK	TORSIONE PURA	3.65	3.65	0.0%
CAMPIONI SPERIMENTALI ANALIZZATI		T [Mpa]	T[Mpa]	ERR (%)
CAIVIETONI JE LINIVILIVIA		i,esatto [ivipa]	i 'bew [iniba]	
TUBE WIEBESIEK	SFORZO ASSIALE	3.38	3.43	1.5%
TUBE WIEBESIEK TUBE WIEBESIEK	SFORZO ASSIALE TORSIONE PURA	3.38 0.00	3.43 0.00	1.5% -

Tabella 4.8: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)
TUBE WIEBESIEK	SFORZO ASSIALE	1.03E-04	1.15E-04	10.2%
TUBE WIEBESIEK	TORSIONE PURA	1.12E-04	9.37E-05	-20.0%
CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)
TUBE WIEBESIEK	SFORZO ASSIALE	1.03E-04	1.05E-04	1.6%
TUBE WIEBESIEK	TORSIONE PURA	1.12E-04	1.07E-04	-5.3%

Tabella 4.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni sia nel caso di sforzo assiale che nel caso di torsione.

L'energia SED calcolata con il FEM è inoltre approssimata bene con un errore inferiore al 12.5% tramite il PSM tenendo conto anche dell'effetto della tensione tangenziale nominale e della T-stress.

I valori di tensione equivalente calcolati precedentemente con il PSM sono quindi descrittivi del reale stato di sollecitazione all'apice dell'intaglio e approssimano con un errore inferiore al 5% il reale stato di tensione equivalente di picco.

Si può perciò nel proseguo adottare tali valori, $\Delta \sigma_{eq}$ da PSM, per effettuare una scelta della banda di progettazione, in quanto non è necessario calcolare direttamente l'energia SED da FEM dato il piccolo errore ricavato dal confronto.

Se l'errore fosse stato maggiore sarebbe stato necessario abbandonare la tecnica PSM e ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM.

Capitolo 5: ANALISI SPERIMENTALI ARTICOLO SONSINO

5.1 Campioni sperimentali

Le prove sperimentali analizzate in questo articolo sono state ricavate dall'articolo: "Fatigue strength of laser beam welded thin steel structures under multiaxial loading" di C. M. Sonsino, M. Kueppers, M. Eibl, G. Zhang pubblicato nel 2005 [10]. Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia di giunto a tubo con tubo saldato laser su tutto il perimetro.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le grandezze caratteristiche sono il diametro dei tubi e lo spessore di saldatura. La sezione tipica è presentata in Figura 5.1.

Figura 5.1: Schema e nomenclatura dei campioni sperimentali esaminati [10].

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

5.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

$R_{p0.2}$ (MPa)	$R_{\rm m}~({\rm MPa})$	E (GPa)	e (%)	HV0.2
235	405	206	26	140

Tabella 5.1: Proprietà e geometria dei campioni sperimentali, materiale St35 [10].

In totale 36 campioni sono stati sottoposti a carichi tensionali ciclici con fattore R=-1 fino a rottura. Sono state adottate diverse tipologie di sollecitazione:

- sforzo assiale centrato di trazione;
- torsione pura;
- carico combinato di sforzo assiale e torsione in fase (0°) , con rapporto $\tau an/\sigma an=0.58$;
- carico combinato di sforzo assiale e torsione fuori fase (90°), con rapporto $\tau an/\sigma an=0.58$.

Da una parte il tubo è sollecitato dallo sforzo corrispondente mentre dall'altra parte risulta vincolato con un incastro.

È stato perciò rilevato il numero di cicli a fatica a rottura in base alla tensione nominale applicata.

5.3 Elaborazione risultati sperimentali

Nelle Tabelle 5.2 e 5.3 sono riportati i risultati delle analisi sperimentali condotte:

Sorios	Nf Cycle to failure	ΔF	$\Delta \sigma_n$ Nominal stress range	
Series	[cycle]	[kN]	[MPa]	
Sforzo assiale	5.31E+04	19.96	70.60	
Sforzo assiale	5.53E+04	19.96	70.60	
Sforzo assiale	5.78E+04	19.96	70.60	
Sforzo assiale	7.10E+04	19.96	70.60	
Sforzo assiale	6.21E+05	12.48	44.14	
Sforzo assiale	6.99E+05	12.48	44.14	
Sforzo assiale	7.36E+05	12.48	44.14	
Sforzo assiale	2.00E+06	10.03	35.48	

Tabella 5.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).

Sories	Nf Cycle to failure	ΔM _n	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n$ Nominal stress range	
Series	[cycle]	[Nmm]	[MPa]	[MPa]	
TORSIONE PURA	3.50E+04	498494.15	0.00	77.74	
TORSIONE PURA	2.04E+05	349113.62	0.00	54.45	
TORSIONE PURA	2.15E+05	349113.62	0.00	54.45	
TORSIONE PURA	2.50E+05	349113.62	0.00	54.45	
TORSIONE PURA	2.59E+05	349113.62	0.00	54.45	
TORSIONE PURA	1.08E+06	270314.96	0.00	42.16	
TORSIONE PURA	1.11E+06	270314.96	0.00	42.16	
TORSIONE PURA	2.00E+06	270718.46	0.00	42.22	
TORSIONE PURA	2.00E+06	249544.68	0.00	38.92	
COMBINATI ASSIALE E TORSIONE 0°	3.85E+04	310167.80	83.40	48.37	
COMBINATI ASSIALE E TORSIONE 0°	4.54E+04	310167.80	83.40	48.37	
COMBINATI ASSIALE E TORSIONE 0°	4.90E+04	310167.80	83.40	48.37	
COMBINATI ASSIALE E TORSIONE 0°	2.68E+05	259489.94	69.77	40.47	
COMBINATI ASSIALE E TORSIONE 0°	7.26E+05	206541.82	55.54	32.21	
COMBINATI ASSIALE E TORSIONE 0°	7.64E+05	206726.75	55.59	32.24	
COMBINATI ASSIALE E TORSIONE 0°	8.66E+05	207004.45	55.66	32.28	
COMBINATI ASSIALE E TORSIONE 0°	1.17E+06	181892.97	48.91	28.37	
COMBINATI ASSIALE E TORSIONE 0°	1.48E+06	181974.39	48.93	28.38	
COMBINATI ASSIALE E TORSIONE 0°	2.00E+06	166098.33	44.66	25.90	
COMBINATI ASSIALE E TORSIONE 90°	5.33E+04	309936.56	83.34	48.34	
COMBINATI ASSIALE E TORSIONE 90°	1.86E+05	258832.77	69.60	40.37	
COMBINATI ASSIALE E TORSIONE 90°	4.01E+05	206911.84	55.64	32.27	
COMBINATI ASSIALE E TORSIONE 90°	4.15E+05	207097.10	55.69	32.30	
COMBINATI ASSIALE E TORSIONE 90°	4.32E+05	207097.10	55.69	32.30	
COMBINATI ASSIALE E TORSIONE 90°	1.49E+06	155942.16	41.93	24.32	
COMBINATI ASSIALE E TORSIONE 90°	1.58E+06	155779.43	41.89	24.30	
COMBINATI ASSIALE E TORSIONE 90°	2.00E+06	155756.19	41.88	24.29	
COMBINATI ASSIALE E TORSIONE 90°	2.00E+06	140062.66	37.66	21.84	

Tabella 5.3: Elaborazione risultati sperimentali per serie di campioni (torsione e combinati).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

Per ogni serie è stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 5.3: Risultati sperimentali a fatica (torsione e combinati)

5.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1. E' stata condotta l'analisi sfruttando l'assial-simmetria (asse di simmetria Y verticale) e quindi è stata modellata solo una fetta longitudinale del tubo.

La saldatura è stata modellata con spessore pari a 0.8 mm.

Il vincolo alla base del modello è un incastro.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10^{-5} mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Per il carico di trazione assiale sono stati usati gli elementi plane 182 in axial-simmetry, mentre per la sollecitazione di torsione sonos tati utilizzati elementi plane 25 in axial-simmetry.

I carichi sono stati imposti nel seguente modo:

- Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa in sommità al tubo.
- Torsione: sono state applicate delle forze in direzione Z tali da provocare una tensione tangenziale di torsione unitaria.

Figura 5.4: Modello FEM analizzato.

Figura 5.5: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

5.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riporta un esempio dei risultati trovati per il caso di trazione assiale.

I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 5.6: Risultati analisi FEM: tensione σ_{xx} .

Figura 5.7: Risultati analisi FEM: tensione locale σ_{xx} *ad apice intaglio.*

5.5.1 Sforzo assiale

5.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 5.8: Tensione locale σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_1 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_1} \, \sigma_{\theta\theta}(r,\theta=0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 5.9: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

• $K_1 = 0.96$.

5.5.1.2 K₂

È stato analizzato l'andamento della tensione tangenziale τ_{xy} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 5.10: Tensione locale τ_{xy} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K2 con la seguente formula

$$K_2 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_2} \tau_{\theta r}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_2 .

Figura 5.11: NSIF factor ΔK_2 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_2 per x che tende a zero, si ricava il seguente valore limite

• $K_2 = 3.63$.

5.5.2 Torsione

5.5.2.1 K₃

È stato analizzato l'andamento della tensione τ_{xz} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 5.12: Tensione locale τ_{xz} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K3 con la seguente formula

$$K_3 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_3} \sigma_{rz}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_3 .

Figura 5.13: NSIF factor ΔK_3 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_3 per x che tende a zero, si ricava il seguente valore limite

• K₃ = 3.90.

5.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 o plane 25 in axial-simmetry;
- quattro elementi che condividono l'apice dell'intaglio.

I dati ottenuti col peak stress method sono comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte e questo ne dimostra la validità nella stima del notch stress intensity factor per questa tipologia di giunto saldato laser.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ per effettuare successivamente un confronto con curve di progettazione in termini di tensione di picco equivalente di picco fornite da letteratura per giunti saldati laser.

Schema di vincolo utilizzato:

Figura 5.14: Schema di vincolo utilizzato.

Figura 5.15: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in termini di tensione τ_{xz} per il caso di torsione.

Figura 5.16: Tensione τ_{xz} di picco in corrispondenza dell'apice dell'intaglio.

I modelli FEM analizzati con il Peak Stress Method hanno fornito i seguenti risultati in termini di NSIFs:

Campioni	d (mm)	λ	σ_{peak} [MPa]	ΔK _{,PSM}
К1	0.04	0.5	3.383	0.93
К2	0.04	0.5	5.129	3.47
КЗ	0.04	0.5	9.597	3.70

Tabella 5.4: valori di $\Delta K1$, $\Delta K2$ e $\Delta K3$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

		Nf Cycle to failure	$\Delta \sigma_n$ Nominal s	tress range	fw1*σ _{ne}	ak fw2*	τ _{neak} Δ	σ _{eq}	
	Series	[cvcle]	[MP	al	[MPa]	[Mi	Pal [N	/IPal	
	Sforzo assiale	5.31E+04		70.60	6	7.35 40	0.45	406	
	Sforzo assiale	5 53E+04		70.60	6	7 35 40	0 45	406	
	Sforzo assiale	5.385±+04		70.60	6	7 35 40	0 45	406	
	Sforzo assialo	7 10E+04		70.00	6	7.25 //	0.45	406	
	Storze assiale	7.10L+04		70.00	07	7.55 40 2.10 20	0.45	400	
		0.212+05		44.14	42	2.10 25	0.50	254	
	Sforzo assiale	6.99E+05		44.14	44	2.10 25	0.36	254	
	Sforzo assiale	7.36E+05		44.14	42	2.10 25	0.36	254	
	Sforzo assiale	2.00E+06		35.48	33	3.85 20	1.28	204	-
	Series	Nf Cycle to failure	Δσ _n Nominal stress	$\Delta \tau_n$ Nominal st	ress range	$f_{w1}^* \Delta \tau_{\theta\theta, peak}$	$f_{w2}^*\sigma_{r\theta,peak}$	$f_{w3}^{}*\Delta\tau_{\theta z,pea}^{}$	$_{k}$ $\Delta\sigma_{eq}$
	Selles	[cycle]	[MPa]	[MPa	a]	[MPa]	[MPa]	[MPa]	[MPa]
TORSIONE PUR	A	3.50E+04	0.00		77.74	0.00	0.00	519.0	5 519
TORSIONE PUR	A	2.04E+05	0.00		54.45	0.00	0.00	363.5	1 364
TORSIONE PUR	A	2.15E+05	0.00		54.45	0.00	0.00	363.5	1 364
TORSIONE PUR	A	2.50E+05	0.00		54.45	0.00	0.00	363.5	1 364
TORSIONE PUR	A	2.59E+05	0.00		54.45	0.00	0.00	363.5	1 364
TORSIONE PUR	A	1.08E+06	0.00		42.16	0.00	0.00	281.4	6 281
TORSIONE PUR	A	1.11E+06	0.00		42.16	0.00	0.00	281.4	5 281
TORSIONE PUR	A	2.00E+06	0.00		42.22	0.00	0.00	281.8	8 282
TORSIONE PUR	A	2.00E+06	0.00		38.92	0.00	0.00	259.8	3 260
COMBINATI AS	SIALE E TORSIONE ()° 3.85E+04	83.40		48.37	79.56	473.08	322.9	578
COMBINATI AS	SIALE E TORSIONE ()° 4.54E+04	83.40		48.37	79.56	473.08	322.9	578
COMBINATI AS	SIALE E TORSIONE ()° 4.90E+04	83.40		48.37	79.56	473.08	322.9	6 578
COMBINATI AS	SIALE E TORSIONE ()° 2.68E+05	69.77		40.47	66.56	395.78	270.1	9 484
COMBINATI AS	SIALE E TORSIONE ()° 7.26E+05	55.54		32.21	52.98	315.02	215.0	6 385
COMBINATI AS	SIALE E TORSIONE ()° 7.64E+05	55.59		32.24	53.03	315.31	215.2	5 385
COMBINATI AS	SIALE E TORSIONE O)° 8.66E+05	55.66		32.28	53.10	315.73	215.5	4 386
COMBINATI AS	SIALE E TORSIONE ()° 1.17E+06	48.91		28.37	46.66	277.43	189.3	9 339
COMBINATI AS	SIALE E TORSIONE ()° 1.48E+06	48.93		28.38	46.68	277.55	189.4	8 339
COMBINATI AS	SIALE E TORSIONE ()° 2.00E+06	44.66		25.90	42.61	253.34	172.9	5 310
COMBINATI AS	SIALE E TORSIONE 9	00° 5.33E+04	83.34		48.34	79.50	472.73	322.7	2 578
COMBINATI AS	SIALE E TORSIONE S	00° 1.86E+05	69.60		40.37	66.39	394.78	269.5	1 483
COMBINATI AS	SIALE E TORSIONE 9	00° 4.01E+05	55.64		32.27	53.07	315.59	215.4	4 386
COMBINATI AS	SIALE E TORSIONE 9	00° 4.15E+05	55.69		32.30	53.12	315.87	215.6	4 386
COMBINATI AS	SIALE E TORSIONE 9	00° 4.32E+05	55.69		32.30	53.12	315.87	215.6	4 386
COMBINATI AS	SIALE E TORSIONE 9	00° 1.49E+06	41.93		24.32	40.00	237.85	162.3	7 291
COMBINATI AS	SIALE E TORSIONE 9	00° 1.58E+06	41.89		24.30	39.96	237.60	162.2	290
COMBINATI AS	SIALE E TORSIONE 9	00° 2.00E+06	41.88		24.29	39.95	237.56	162.1	8 290
COMBINATI AS	SIALE E TORSIONE 9	90° 2.00E+06	37.66		21.84	35.93	213.63	145.8	4 261

Tabella 5.5: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali analizzati

CAPITOLO 3

Nei seguenti grafici si possono notare i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 5.17: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

5.7 Analisi SED

Al fine di completare l'analisi condotta, è stato elaborato un altro modello FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 5.18: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di concentazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

Si evidenzia che nel calcolo dell'energia SED per la geometria tube con PSM è stato aggiunto un termine dovuto all'effetto di una tensione tangenziale nominale costante lungo lo spessore di saldatura che comporta un aumento dell'energia di deformazione nel volume di controllo.

CAMPIONI SPERIMENTALI ANALIZZATI		ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE SONSINO	SFORZO ASSIALE	0.96	0.93	-2.8%
TUBE SONSINO	TORSIONE PURA	0.00	0.00	-
CAMPIONI SPERIMENTALI ANALIZZATI		ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE SONSINO	SFORZO ASSIALE	3.63	3.47	-4.7%

CAMPIONI SPERIMENTALI ANALIZZATI		ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)	
TUBE SONSINO	SFORZO ASSIALE	0.00	0.00	-	
TUBE SONSINO	TORSIONE PURA	3.90	3.70	-5.3%	
CAMPIONI SPERIMENTALI ANALIZZATI		T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)	
TUBE SONSINO	SFORZO ASSIALE	1.77	1.89	6.3%	
TUBE SONSINO	TORSIONE PURA	0.00	0.00	-	
Tabella 5.6: Confronto tra i NSIEs, calcolati con mash fitta, a DSM					

Tabella 5.6: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)
TUBE SONSINO	SFORZO ASSIALE	8.10E-05	8.66E-05	6.5%
TUBE SONSINO	TORSIONE PURA	1.08E-04	1.07E-04	-1.3%
CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)
CAMPIONI SPERIMENTALI ANALI TUBE SONSINO	ZZATI SFORZO ASSIALE	W _{FEM} [N/mm^2] 8.10E-05	W _{PSM, I+II+III+T+τnom} [N/mm^2] 8.08E-05	ERR PSM/FEM (%) -0.3%

Tabella 5.7: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni sia nel caso di sforzo assiale che nel caso di torsione.

L'energia SED calcolata con il FEM è inoltre approssimata bene con un errore inferiore al 12.5% tramite il PSM tenendo conto anche dell'effetto della tensione tangenziale nominale e della T-stress.

I valori di tensione equivalente calcolati precedentemente con il PSM sono quindi descrittivi del reale stato di sollecitazione all'apice dell'intaglio e approssimano con un errore inferiore al 5% il reale stato di tensione equivalente di picco.

Si può perciò nel proseguo adottare tali valori, $\Delta \sigma_{eq}$ da PSM, per effettuare una scelta della banda di progettazione, in quanto non è necessario calcolare direttamente l'energia SED da FEM dato il piccolo errore ricavato dal confronto.

Se l'errore fosse stato maggiore sarebbe stato necessario abbandonare la tecnica PSM e ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM.

3.1 Campioni sperimentali

Capitolo 6: ANALISI SPERIMENTALI ARTICOLO BRUDER

6.1 Campioni sperimentali

Le prove sperimentali analizzate in questo capitolo sono state ricavate dall'articolo: "Fatigue assessment of seam welds of automotive components by local stress approaches" di T. Bruder, K. Storzel, J. Baumgartner pubblicato nel 2008 [11].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia di giunto a tubo con tubo saldato laser su tutto il perimetro.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le grandezze caratteristiche sono il diametro dei tubi e lo spessore di saldatura. La sezione tipica è presentata in Figura 6.1.

Figura 6.1: Schema e nomenclatura dei campioni sperimentali esaminati [11].

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

6.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

$R_{p0.2}$ (MPa)	$R_{\rm m}~({ m MPa})$	E (GPa)	e (%)	HV0.2
235	405	206	26	140

Tabella 6.1: Proprietà e geometria dei campioni sperimentali, materiale St35 [11].

In totale 36 campioni sono stati sottoposti a carichi tensionali ciclici con fattore R=-1 fino a rottura.

Sono state adottate diverse tipologie di sollecitazione:

- sforzo assiale centrato di trazione;
- torsione pura;
- carico combinato di sforzo assiale e torsione in fase (0°), con rapporto v=28 Nm/kN;
- carico combinato di sforzo assiale e torsione alternati (45°), con rapporto v=28 Nm/kN;
- carico combinato di sforzo assiale e torsione fuori fase (90°), con rapporto v=28 Nm/kN;
- carico combinato di sforzo assiale e torsione in fase (0°), con rapporto v=12 Nm/kN;
- carico combinato di sforzo assiale e torsione fuori fase (90°), con rapporto υ=12 Nm/kN.

Da una parte il tubo è sollecitato dallo sforzo corrispondente mentre dall'altra parte risulta vincolato con un incastro.

È stato perciò rilevato il numero di cicli a fatica a rottura in base alla tensione nominale applicata.

6.3 Elaborazione risultati sperimentali

	-	_		
Sorios	Nf Cycle to failure	ΔF	$\Delta \sigma_n$ Nominal stress range	
Series	[cycle]	[kN]	[MPa]	
Sforzo assiale	1.40E+05	15.00	53.06	
Sforzo assiale	2.22E+05	15.00	53.06	
Sforzo assiale	1.35E+05	11.62	41.10	
Sforzo assiale	1.53E+05	11.62	41.10	
Sforzo assiale	1.63E+05	11.62	41.10	
Sforzo assiale	3.12E+05	10.00	35.36	
Sforzo assiale	7.14E+05	8.70	30.78	
Sforzo assiale	7.74E+05	8.70	30.78	
Sforzo assiale	8.90E+05	8.71	30.81	
Sforzo assiale	1.00E+06	8.67	30.67	
Sforzo assiale	2.90E+06	7.19	25.44	
Sforzo assiale	5.84E+06	7.23	25.58	
Sforzo assiale	6.25E+06	7.23	25.58	

Nelle Tabelle 6.2 e 6.3 sono riportati i risultati delle analisi sperimentali condotte:

Tabella 6.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).
Sories	Nf Cycle to failure	Δ Fn (combined) Δ N	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n$ Nominal stress range
Series	[cycle]	[kN] o [Nm]	[MPa]	[MPa]
TORSIONE PURA	2.00E+04	399.92	0.00	62.37
TORSIONE PURA	2.80E+04	399.92	0.00	62.37
TORSIONE PURA	3.06E+04	399.92	0.00	62.37
TORSIONE PURA	6.62E+04	351.78	0.00	54.86
TORSIONE PURA	7.52E+04	327.41	0.00	51.06
TORSIONE PURA	1.37E+05	327.41	0.00	51.06
TORSIONE PURA	1.88E+05	351.45	0.00	54.81
TORSIONE PURA	2.80E+05	347.09	0.00	54.13
TORSIONE PURA	7.55E+05	351.59	0.00	54.83
TORSIONE PURA	1.09E+06	301.34	0.00	47.00
TORSIONE PURA	1.46E+06	301.34	0.00	47.00
TORSIONE PURA	1.75E+06	299.81	0.00	46.76
TORSIONE PURA	1.58E+06	280.89	0.00	43.81
TORSIONE PURA	2.55E+06	280.89	0.00	43.81
TORSIONE PURA	2.80E+06	201.64	0.00	31.45
TORSIONE PURA	5.17E+06	262.47	0.00	40.93
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	3.01E+05	8.72	30.83	38.06
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	3.78E+05	8.72	30.83	38.06
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	5.23E+05	8.72	30.83	38.06
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	1.01E+06	7.27	25.71	31.75
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	1.18E+06	7.27	25.71	31.75
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	1.62E+06	7.22	25.53	31.52
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	3.12E+06	5.51	19.49	24.06
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	4.40E+06	5.51	19.50	24.08
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	5.18E+06	5.51	19.48	24.05
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.16E+05	8.68	30.70	37.91
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.36E+05	8.68	30.70	37.91
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	9.28E+05	5.51	19.50	24.08
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.40E+06	5.52	19.51	24.09
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.54E+06	5.51	19.49	24.07
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	2.11E+04	11.48	40.61	50.13
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	5.96E+04	8.72	30.83	38.07
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	6.37E+04	8.72	30.83	38.07
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	7.27E+04	8.72	30.84	38.08
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	1.87E+05	7.23	25.57	31.57
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	3.69E+05	7.21	25.51	31.50
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	4.13E+05	5.51	19.50	24.07
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	5.37E+05	5.52	19.51	24.09
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	1.03E+06	5.55	19.63	24.23
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	2.70E+06	4.50	15.92	19.65
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	7.29E+06	4.00	14.14	17.46
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	2.63E+05	11.22	39.68	21.00
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	3.00E+05	11.22	39.68	21.00
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	3.31E+05	11.27	39.87	21.10
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	1.43E+06	8.53	30.16	15.96
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	1.80E+06	8.53	30.16	15.96
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	2.26E+06	8.53	30.16	15.96
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	3.36E+05	8.54	30.20	15.98
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	4.98E+05	8.51	30.11	15.93
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	9.07E+05	7.09	25.06	13.26
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	1.09E+06	7.09	25.06	13.26
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	2.40E+06	7.09	25.06	13.26

Tabella 6.3: Elaborazione risultati sperimentali per serie di campioni (torsione e combinati).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

Per ogni serie è stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 6.2: Risultati sperimentali a fatica (sforzo assiale)

Figura 6.3: Risultati sperimentali a fatica (torsione e combinati)

6.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1. E' stata condotta l'analisi sfruttando l'assial-simmetria (asse di simmetria Y verticale) e quindi è stata modellata solo una fetta longitudinale del tubo.

La saldatura è stata modellata con spessore pari a 0.7 mm.

Il vincolo alla base del modello è un incastro.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10^{-5} mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Per il carico di trazione assiale sono stati usati gli elementi plane 182 in axial-simmetry, mentre per la sollecitazione di torsione sono stati utilizzati elementi plane 25 in axial-simmetry.

I carichi sono stati imposti nel seguente modo:

- Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa in sommità al tubo.
- Torsione: sono state applicate delle forze in direzione Z tali da provocare una tensione tangenziale di torsione unitaria.

Figura 6.4: Modello FEM analizzato.

Figura 6.5: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

6.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riporta un esempio dei risultati trovati per il caso di trazione assiale.

I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 6.6: Risultati analisi FEM: tensione σ_{xx} .

Figura 6.7: *Risultati analisi FEM: tensione locale* σ_{xx} *ad apice intaglio.*

6.5.1 Sforzo assiale

6.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 6.8: *Tensione locale* σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 6.9: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

•
$$K_1 = 1.50.$$

6.5.1.2 K₂

È stato analizzato l'andamento della tensione tangenziale τ_{xy} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 6.10: Tensione locale τ_{xy} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K2 con la seguente formula

$$K_2 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_2} \tau_{\theta r}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_2 .

Figura 6.11: NSIF factor ΔK_2 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_2 per x che tende a zero, si ricava il seguente valore limite

• $K_2 = 4.11$.

6.5.2 Torsione

6.5.2.1 K₃

È stato analizzato l'andamento della tensione τ_{xz} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 6.12: Tensione locale τ_{xz} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K3 con la seguente formula

$$K_3 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_3} \sigma_{rz}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_3 .

Figura 6.13: NSIF factor ΔK_3 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_3 per x che tende a zero, si ricava il seguente valore limite

• $K_3 = 4.14$.

6.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 o plane 25 in axial-simmetry;
- quattro elementi che condividono l'apice dell'intaglio.

I dati ottenuti col peak stress method sono comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte e questo ne dimostra la validità nella stima del notch stress intensity factor per questa tipologia di giunto saldato laser.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ per effettuare successivamente un confronto con curve di progettazione in termini di tensione di picco equivalente di picco fornite da letteratura per giunti saldati laser.

Schema di vincolo utilizzato:

Figura 6.14: Schema di vincolo utilizzato.

Figura 6.15: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in termini di tensione τ_{xz} per il caso di torsione.

Figura 6.16: Tensione τ_{xz} di picco in corrispondenza dell'apice dell'intaglio.

I modelli FEM analizzati con il Peak Stress Method ha	anno fornito i seguenti risultati in termini di NSIFs:
---	--

Campioni	d (mm)	λ	$\sigma_{peak}[MPa]$	ΔK, _{PSM}
К1	0.015	0.5	8.501	1.44
К2	0.015	0.5	9.731	4.03
КЗ	0.05	0.5	9.544	4.12

Tabella 6.4: valori di $\Delta K1$, $\Delta K2$ e $\Delta K3$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Sorios	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	$fw^*\sigma_{peak}$	fw*τ _{peak}	$\Delta\sigma_{eq}$
Series	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	1.40E+05	53.06	77.89	349.66	408
Sforzo assiale	2.22E+05	53.06	77.89	349.66	408
Sforzo assiale	1.35E+05	41.10	60.33	270.86	316
Sforzo assiale	1.53E+05	41.10	60.33	270.86	316
Sforzo assiale	1.63E+05	41.10	60.33	270.86	316
Sforzo assiale	3.12E+05	35.36	51.91	233.03	272
Sforzo assiale	7.14E+05	30.78	45.18	202.82	237
Sforzo assiale	7.74E+05	30.78	45.18	202.82	237
Sforzo assiale	8.90E+05	30.81	45.23	203.05	237
Sforzo assiale	1.00E+06	30.67	45.03	202.13	236
Sforzo assiale	2.90E+06	25.44	37.35	167.66	196
Sforzo assiale	5.84E+06	25.58	37.55	168.55	197
Sforzo assiale	6.25E+06	25.58	37.55	168.55	197

Sories	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n$ Nominal stress range	$f_{w1}^{}*\Delta\tau_{\theta\theta,peak}$	$f_{w2}{}^*\sigma_{r\theta,peak}$	$f_{w3}^{}*\!\Delta\tau_{\theta z,peak}$	$\Delta \sigma_{eq}$
Series	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
TORSIONE PURA	2.00E+04	0.00	62.37	0.00	0.00	462.97	509
TORSIONE PURA	2.80E+04	0.00	62.37	0.00	0.00	462.97	509
TORSIONE PURA	3.06E+04	0.00	62.37	0.00	0.00	462.97	509
TORSIONE PURA	6.62E+04	0.00	54.86	0.00	0.00	407.25	447
TORSIONE PURA	7.52E+04	0.00	51.06	0.00	0.00	379.03	416
TORSIONE PURA	1.37E+05	0.00	51.06	0.00	0.00	379.03	416
TORSIONE PURA	1.88E+05	0.00	54.81	0.00	0.00	406.86	447
TORSIONE PURA	2.80E+05	0.00	54.13	0.00	0.00	401.81	442
TORSIONE PURA	7.55E+05	0.00	54.83	0.00	0.00	407.01	447
TORSIONE PURA	1.09E+06	0.00	47.00	0.00	0.00	348.85	383
TORSIONE PURA	1.46E+06	0.00	47.00	0.00	0.00	348.85	383
TORSIONE PURA	1.75E+06	0.00	46.76	0.00	0.00	347.07	381
TORSIONE PURA	1.58E+06	0.00	43.81	0.00	0.00	325.18	357
TORSIONE PURA	2.55E+06	0.00	43.81	0.00	0.00	325.18	357
TORSIONE PURA	2.80E+06	0.00	31.45	0.00	0.00	233.42	256
TORSIONE PURA	5.17E+06	0.00	40.93	0.00	0.00	303.85	334
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	3.01E+05	30.83	38.06	45.26	203.17	282.55	391
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	3.78E+05	30.83	38.06	45.26	203.17	282.55	391
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	5.23E+05	30.83	38.06	45.26	203.17	282.55	391
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	1.01E+06	25.71	31.75	37.75	169.45	235.65	326
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	1.18E+06	25.71	31.75	37.75	169.45	235.65	326
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	1.62E+06	25.53	31.52	37.47	168.23	233.96	324
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	3.12E+06	19.49	24.06	28.60	128.41	178.58	247
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	4.40E+06	19.50	24.08	28.63	128.51	178.71	247
COMBINATI ASSIALE E TORSIONE 0° v=28Nm/kN	5.18E+06	19.48	24.05	28.60	128.38	178.55	247
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.16E+05	30.70	37.91	45.07	202.32	281.37	389
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.36E+05	30.70	37.91	45.07	202.32	281.37	389
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	9.28E+05	19.50	24.08	28.63	128.53	178.75	247
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.40E+06	19.51	24.09	28.64	128.58	178.82	247
COMBINATI ASSIALE E TORSIONE 45° v=28Nm/kN	1.54E+06	19.49	24.07	28.61	128.46	178.65	247
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	2.11E+04	40.61	50.13	59.61	267.59	372.15	515
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	5.96E+04	30.83	38.07	45.26	203.21	282.60	391
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	6.37E+04	30.83	38.07	45.26	203.21	282.60	391
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	7.27E+04	30.84	38.08	45.27	203.24	282.65	391
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	1.87E+05	25.57	31.57	37.54	168.52	234.36	324
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	3.69E+05	25.51	31.50	37.45	168.14	233.83	323
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	4.13E+05	19.50	24.07	28.62	128.48	178.68	247
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	5.37E+05	19.51	24.09	28.65	128.60	178.85	247
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	1.03E+06	19.63	24.23	28.81	129.34	179.87	249
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	2.70E+06	15.92	19.65	23.36	104.89	145.87	202
COMBINATI ASSIALE E TORSIONE 90° v=28Nm/kN	7.29E+06	14.14	17.46	20.76	93.18	129.58	179
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	2.63E+05	39.68	21.00	58.25	261.48	155.85	350
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	3.00E+05	39.68	21.00	58.25	261.48	155.85	350
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	3.31E+05	39.87	21.10	58.53	262.77	156.62	352
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	1.43E+06	30.16	15.96	44.27	198.75	118.46	266
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	1.80E+06	30.16	15.96	44.27	198.75	118.46	266
COMBINATI ASSIALE E TORSIONE 0° v=12Nm/kN	2.26E+06	30.16	15.96	44.27	198.75	118.46	266
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	3.36E+05	30.20	15.98	44.33	199.01	118.62	266
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	4.98E+05	30.11	15.93	44.20	198.41	118.26	266
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	9.07E+05	25.06	13.26	36.79	165.14	98.43	221
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	1.09E+06	25.06	13.26	36.79	165.14	98.43	221
COMBINATI ASSIALE E TORSIONE 90° v=12Nm/kN	2.40E+06	25.06	13.26	36.79	165.14	98.43	221

Tabella 6.5: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali analizzati

Nei seguenti grafici si possono notare i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 6.17: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

6.7 Analisi SED

Al fine di completare l'analisi condotta, è stato elaborato un altro modello FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 6.18: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di concentazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

Si evidenzia che nel calcolo dell'energia SED per la geometria tube con PSM è stato aggiunto un termine dovuto all'effetto di una tensione tangenziale nominale costante lungo lo spessore di saldatura che comporta un aumento dell'energia di deformazione nel volume di controllo.

CAMPIONI SPERIMENTALI ANALIZZATI		ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE BRUDER	SFORZO ASSIALE	1.50	1.44	-4.5%
TUBE BRUDER	TORSIONE PURA	0.00	0.00	-
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE BRUDER	SFORZO ASSIALE	4.11	4.03	-2.1%
TUBE BRUDER	TORSIONE PURA	0.00	0.00	-

CAMPIONI SPERIMENTALI ANALIZZATI		ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE BRUDER	SFORZO ASSIALE	0.00	0.00	-
TUBE BRUDER	TORSIONE PURA	4.14	4.12	-0.5%
CAMPIONI SPERIMENTALI ANALIZZATI		T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)
TUBE BRUDER	SFORZO ASSIALE	3.29	3.43	4.2%
TUBE BRUDER	TORSIONE PURA	0.00	0.00	-

Tabella 6.6: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)
TUBE BRUDER	SFORZO ASSIALE	1.17E-04	1.31E-04	10.7%
TUBE BRUDER	TORSIONE PURA	1.48E-04	1.21E-04	-22.9%
CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)
TUBE BRUDER	SFORZO ASSIALE	1.17E-04	1.28E-04	9.0%
TUBE BRUDER	TORSIONE PURA	1.48E-04	1.32E-04	-12.5%

Tabella 6.7: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni sia nel caso di sforzo assiale che nel caso di torsione.

L'energia SED calcolata con il FEM è inoltre approssimata bene con un errore inferiore al 12.5% tramite il PSM tenendo conto anche dell'effetto della tensione tangenziale nominale e della T-stress.

I valori di tensione equivalente calcolati precedentemente con il PSM sono quindi descrittivi del reale stato di sollecitazione all'apice dell'intaglio e approssimano con un errore inferiore al 5% il reale stato di tensione equivalente di picco.

Si può perciò nel proseguo adottare tali valori, $\Delta \sigma_{eq}$ da PSM, per effettuare una scelta della banda di progettazione, in quanto non è necessario calcolare direttamente l'energia SED da FEM dato il piccolo errore ricavato dal confronto.

Se l'errore fosse stato maggiore sarebbe stato necessario abbandonare la tecnica PSM e ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM.

Capitolo 7: ANALISI SPERIMENTALI ARTICOLO ASIM

7.1 Campioni sperimentali

Le prove sperimentali analizzate in questo capitolo sono state ricavate dall'articolo: "Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy steel sheets" di Kamran Asim, Kulthida Sripichai, Jwo Pan pubblicato nel 2013 [12].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia lap-joint, cioè due lamiere sottili sovrapposte saldate laser su tutta la larghezza del campione.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le grandezze caratteristiche sono la geometria dei piatti e lo spessore di saldatura. La sezione tipica è presentata in Figura 7.1.

Figura 7.1: Schema e nomenclatura dei campioni sperimentali esaminati [12].

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

7.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

Elastic modulus (GPa)	Yield strength (MPa)	Tensile strength (MPa)	Hardening exponent, <i>n</i>	Strength coefficient, <i>K</i> (MPa)
206	315	415	0.15	633

Tabella 7.1: Proprietà e geometria dei campioni sperimentali, materiale HSLA [12].

Si deve far notare che la larghezza di saldatura indicata nella descrizione geometrica dell'articolo in esame non corrisponde con alcune foto riportate nello stesso articolo.

Analizzando la figura 7.2, in cui è presente una quota, si può risalire alla vera larghezza di saldatura che risulta essere pari a 0.73 mm.

Nel proseguo perciò è stato adottato questo valore al posto di quello indicato nella figura che descrive la geometria ricavata dall'articolo in esame.

Figura 7.2: Ingrandimento della saldatura laser con quota [12].

In totale 28 campioni sono stati sottoposti a carichi tensionali ciclici di trazione con fattore R=0.2 fino a rottura.

L'estremità di una lamiera è sottoposta a trazione mentre l'estremità dell'altra lamiera è vincolata alla traslazione nella direzione della sollecitazione.

Sono impediti inoltre, nella zona di afferraggio, gli spostamenti perpendicolari all'asse di sollecitazione in quanto i meccanismi di afferraggio sicuramente bloccano questa modalità di deformazione.

È stato perciò rilevato il numero di cicli a fatica a rottura in base alla tensione nominale applicata.

7.3 Elaborazione risultati sperimentali

Nella Tabella 7.2 sono riportati i risultati delle analisi sperimentali condotte:

Series	Nf Cycle to failure	ΔF	$\Delta \sigma_n$ Nominal stress range
Series	[cycle]	[kN]	[MPa]
Sforzo assiale	5.48E+03	2.12	142.16
Sforzo assiale	6.48E+03	1.99	134.07
Sforzo assiale	8.65E+03	1.99	133.70
Sforzo assiale	8.65E+03	1.89	127.29
Sforzo assiale	1.16E+04	1.88	126.14
Sforzo assiale	1.59E+04	1.88	126.14
Sforzo assiale	1.06E+04	1.76	118.34
Sforzo assiale	1.08E+04	1.64	109.97
Sforzo assiale	1.20E+04	1.63	109.69
Sforzo assiale	1.45E+04	1.60	107.64
Sforzo assiale	1.71E+04	1.65	110.80
Sforzo assiale	1.53E+04	1.53	102.51
Sforzo assiale	1.73E+04	1.41	94.77
Sforzo assiale	1.64E+04	1.39	93.38
Sforzo assiale	2.95E+04	1.40	93.92
Sforzo assiale	2.30E+04	1.29	86.77
Sforzo assiale	3.84E+04	1.18	79.57
Sforzo assiale	3.74E+04	1.14	76.58
Sforzo assiale	3.59E+04	1.05	70.58
Sforzo assiale	6.88E+04	1.00	67.49
Sforzo assiale	1.09E+05	1.01	67.85
Sforzo assiale	5.65E+04	0.93	62.74
Sforzo assiale	6.66E+04	0.91	60.91
Sforzo assiale	1.06E+05	0.82	55.23
Sforzo assiale	1.66E+05	0.82	55.22
Sforzo assiale	1.86E+05	0.69	46.64
Sforzo assiale	2.60E+05	0.70	47.30
Sforzo assiale	1.06E+06	0.81	54.74

Tabella 7.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 7.3: Risultati sperimentali a fatica (sforzo assiale)

7.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1.

E' stata modellata solo una fetta longitudinale del campione di spessore 1 mm.

Come già descritto, la saldatura è stata modellata con spessore pari a 0.73 mm.

Il vincolo alla base del modello è solo allo spostamento in direzione Y, mentre in corrispondenza del doubler sono bloccate anche le traslazioni in direzione X.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10^{-5} mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Sono stati usati gli elementi plane 182 in plane strain.

I carichi sono stati imposti nel seguente modo:

• Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa all'estremità della piastra superiore.

Figura 7.4: Modello FEM analizzato.

Figura 7.5: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

7.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riportano i risultati trovati per il caso di trazione assiale. I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 7.6: Risultati analisi FEM: tensione τ_{xy} .

Figura 7.7: Risultati analisi FEM: tensione locale τ_{xy} *ad apice intaglio.*

7.5.1 Sforzo assiale

7.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 7.8: *Tensione locale* σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 7.9: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

•
$$K_1 = 0.91$$

7.5.1.2 K₂

È stato analizzato l'andamento della tensione tangenziale τ_{xy} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 7.10: Tensione locale τ_{xy} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K2 con la seguente formula

$$K_2 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_2} \tau_{\theta r}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_2 .

Figura 7.11: NSIF factor ΔK_2 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_2 per x che tende a zero, si ricava il seguente valore limite

• $K_2 = 1.92$.

7.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 in plane strain con l'opzione "simple enhanced strain" attiva;
- quattro elementi che condividono l'apice dell'intaglio.

I dati ottenuti col peak stress method sono comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte e questo ne dimostra la validità nella stima del notch stress intensity factor per questa tipologia di giunto saldato laser.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ per effettuare successivamente un confronto con curve di progettazione in termini di tensione di picco equivalente di picco fornite da letteratura per giunti saldati laser.

Schema di vincolo utilizzato:

Figura 7.12: Schema di vincolo utilizzato.

Figura 7.13: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in termini di tensione τ_{xy} .

Figura 7.14: Tensione τ_{xy} di picco in corrispondenza dell'apice dell'intaglio.

I modelli FEM analizzati c	on il Peak Stress Metho	od hanno fornito i seguent	ti risultati in termini di NSIFs

Campioni	d (mm)	λ	$\sigma_{peak}[MPa]$	ΔK _{,PSM}
К1	0.01	0.5	6.637	0.92
К2	0.01	0.5	5.549	1.88

Tabella 7.3: valori di $\Delta K1$, $\Delta K2$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Carias	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	fw1* σ_{peak}	$fw2^*\tau_{peak}$	$\Delta \sigma_{eq}$
Series	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	5.48E+03	142.16	133.04	436.20	727
Sforzo assiale	6.48E+03	134.07	125.47	411.37	686
Sforzo assiale	8.65E+03	133.70	125.13	410.26	684
Sforzo assiale	8.65E+03	127.29	119.12	390.58	651
Sforzo assiale	1.16E+04	126.14	118.05	387.07	645
Sforzo assiale	1.59E+04	126.14	118.05	387.07	645
Sforzo assiale	1.06E+04	118.34	110.75	363.11	605
Sforzo assiale	1.08E+04	109.97	102.92	337.44	563
Sforzo assiale	1.20E+04	109.69	102.65	336.57	561
Sforzo assiale	1.45E+04	107.64	100.73	330.28	551
Sforzo assiale	1.71E+04	110.80	103.69	339.97	567
Sforzo assiale	1.53E+04	102.51	95.94	314.56	525
Sforzo assiale	1.73E+04	94.77	88.69	290.79	485
Sforzo assiale	1.64E+04	93.38	87.39	286.53	478
Sforzo assiale	2.95E+04	93.92	87.90	288.20	481
Sforzo assiale	2.30E+04	86.77	81.21	266.25	444
Sforzo assiale	3.84E+04	79.57	74.47	244.17	407
Sforzo assiale	3.74E+04	76.58	71.67	234.98	392
Sforzo assiale	3.59E+04	70.58	66.06	216.58	361
Sforzo assiale	6.88E+04	67.49	63.16	207.08	345
Sforzo assiale	1.09E+05	67.85	63.50	208.20	347
Sforzo assiale	5.65E+04	62.74	58.71	192.50	321
Sforzo assiale	6.66E+04	60.91	57.01	186.91	312
Sforzo assiale	1.06E+05	55.23	51.69	169.47	283
Sforzo assiale	1.66E+05	55.22	51.68	169.43	283
Sforzo assiale	1.86E+05	46.64	43.65	143.11	239
Sforzo assiale	2.60E+05	47.30	44.27	145.15	242
Sforzo assiale	1.06E+06	54.74	51.23	167.98	280

Tabella 7.4: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali analizzati

CAPITOLO 3

Nel seguente grafico si possono notare i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 7.15: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

7.7 Analisi SED

Al fine di completare l'analisi condotta, è stato elaborato un altro modello FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 7.16: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di intensificazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
SHEAR ASIM	SFORZO ASSIALE	0.91	0.92	0.6%
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
SHEAR ASIM	SFORZO ASSIALE	1.92	1.88	-2.3%
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
SHEAR ASIM	SFORZO ASSIALE	0.00	0.00	-
CAMPIONI SPERIMENTAL	I ANALIZZATI	T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)
SHEAR ASIM	SFORZO ASSIALE	3.82	3.82	0.2%

Tabella 7.5: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)	
SHEAR ASIM	SFORZO ASSIALE	3.55E-0	5 5.75E-05	38.3%	
CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)	
SHEAR ASIM	SFORZO ASSIALE	3.55E-0	5 5.67E-05	37.4%	

Tabella 7.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni nel caso di sforzo assiale.

L'energia SED calcolata con il FEM però non è approssimata bene, si ottiene un errore superiore al 12.5% anche tenendo conto dell'effetto della T-stress.

L'errore perciò è troppo elevato (38%) e le tensioni equivalenti ricavate con il PSM non approssimano bene il comportamento reale del campione.

E' necessario perciò ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM e adottare tali valori, $\Delta \sigma_{eq}$ da SED, per effettuare una scelta della banda di progettazione.

Le tensioni equivalenti di picco ricavate direttamente da SED FEM sono riportate nella tabella seguente:

Sorios	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	$\Delta\sigma_{eq,\;SED\;FEM}$	
Selles	[cycle]	[MPa]	[MPa]	
Sforzo assiale	5.48E+03	142.16	646	
Sforzo assiale	6.48E+03	134.07	609	
Sforzo assiale	8.65E+03	133.70	607	
Sforzo assiale	8.65E+03	127.29	578	
Sforzo assiale	1.16E+04	126.14	573	
Sforzo assiale	1.59E+04	126.14	573	
Sforzo assiale	1.06E+04	118.34	538	
Sforzo assiale	1.08E+04	109.97	500	
Sforzo assiale	1.20E+04	109.69	498	
Sforzo assiale	1.45E+04	107.64	489	
Sforzo assiale	1.71E+04	110.80	503	
Sforzo assiale	1.53E+04	102.51	466	
Sforzo assiale	1.73E+04	94.77	431	
Sforzo assiale	1.64E+04	93.38	424	
Sforzo assiale	2.95E+04	93.92	427	
Sforzo assiale	2.30E+04	86.77	394	
Sforzo assiale	3.84E+04	79.57	362	
Sforzo assiale	3.74E+04	76.58	348	
Sforzo assiale	3.59E+04	70.58	321	
Sforzo assiale	6.88E+04	67.49	307	
Sforzo assiale	1.09E+05	67.85	308	
Sforzo assiale	5.65E+04	62.74	285	
Sforzo assiale	6.66E+04	60.91	277	
Sforzo assiale	1.06E+05	55.23	251	
Sforzo assiale	1.66E+05	55.22	251	
Sforzo assiale	1.86E+05	46.64	212	
Sforzo assiale	2.60E+05	47.30	215	
Sforzo assiale	1.06E+06	54.74	249	

Tabella 7.7: Tensione equivalente di picco ricavata da SED FEM

Nel seguente grafico si possono notare i nuovi dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 7.17: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

7.8 Analisi 3D SED

Per concludere, al fine di dimostrare che non sono presenti effetti di concentrazione delle tensioni dovuti alla forma dei campioni, è stata condotta un'ultima analisi FEM 3D.

E' stato modellato metà campione sfruttando la simmetria, i vincoli e i carichi sono come quelli descritti precedentemente.

Nella seguente figura si presenta un'immagine del modello 3D:

Si riportano i risultati di questo modello evidenziando i valori SED nel volume di controllo costruito in corrispondenza delle singolarità dell'intaglio.

Figura 7.19: Risultati SED FEM 3D Asim.

Come si può notare, i valori SED sono più elevati nel lato interno del campione rispetto al lato esterno. Questo comportamento esclude qualsiasi forma di concentrazione delle tensioni e perciò l'analisi condotta precedentemente è corretta.

Capitolo 8: ANALISI SPERIMENTALI ARTICOLO ALBRIGHT

8.1 Campioni sperimentali

Le prove sperimentali analizzate in questo capitolo sono state ricavate dall'articolo: "Fatigue Strength of Laser-Welded Lap Joints" di Charles E. Albright, Chris Hsu, R. Olan Lund pubblicato nel 1990 [12] e nel successivo articolo degli stessi autori del 1991 "Fatigue analysis of laser-welded lap joints" [13].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia lap-joint, cioè due lamiere sottili sovrapposte saldate laser su tutta la larghezza del campione.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le grandezze caratteristiche sono la geometria dei piatti e lo spessore di saldatura. La sezione tipica è presentata in Figura 8.1.

Figura 8.1: Schema e nomenclatura dei campioni sperimentali esaminati [13].

Sono stati analizzati 4 campioni che si differenziano in base allo spessore dei piatti:

- 0.41 mm
- 0.61mm
- 0.76 mm
- 2.54 mm

Tutti i campioni sono stati saldati in tutta la larghezza pari a 38.1 mm, i piatti sono lunghi 152.2 mm e sono sovrapposti per 25.4 mm.

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

8.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

Yield strength (MPa)	Tensile strength (MPa)	
180	320	

Tabella 8.1: Proprietà e geometria dei campioni sperimentali, materiale AISI 1008 [13].

La larghezza di saldatura è stata assunta pari a 0.61 mm dall'analisi delle figure presenti nell'articolo in esame.

In totale 12 campioni sono stati sottoposti a carichi tensionali ciclici di trazione con fattore R compreso tra 0.25 e 0.3 fino a rottura.

L'estremità di una lamiera è sottoposta a trazione mentre l'estremità dell'altra lamiera è vincolata alla traslazione nella direzione della sollecitazione.

Sono impediti inoltre, nella zona di afferraggio, gli spostamenti perpendicolari all'asse di sollecitazione in quanto i meccanismi di afferraggio sicuramente bloccano questa modalità di deformazione.

È stato perciò rilevato il numero di cicli a fatica a rottura in base alla tensione nominale applicata.

8.3 Elaborazione risultati sperimentali

Sorios	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range prova	
Series	[mm]	[cycle]	[kN]	
Sforzo assiale	0.41	3.96E+04	170.00	
Sforzo assiale	0.41	4.60E+04	150.00	
Sforzo assiale	0.41	1.72E+05	120.00	
Sforzo assiale	0.41	3.46E+05	100.00	
Sforzo assiale	0.61	2.27E+04	200.00	
Sforzo assiale	0.61	4.80E+04	150.00	
Sforzo assiale	0.61	1.69E+05	120.00	
Sforzo assiale	0.61	1.69E+05	100.00	
Sforzo assiale	0.76	4.70E+04	150.00	
Sforzo assiale	0.76	7.80E+04	120.00	
Sforzo assiale	2.54	3.50E+02	200.00	
Sforzo assiale	2.54	2.20E+03	150.00	

Nella Tabella 8.2 sono riportati i risultati delle analisi sperimentali condotte:

Tabella 8.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 8.3: Risultati sperimentali a fatica (sforzo assiale)

8.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1.

E' stata modellata solo una fetta longitudinale del campione di spessore 1 mm.

Come già descritto, la saldatura è stata modellata con spessore pari a 0.61 mm.

Il vincolo alla base del modello è solo allo spostamento in direzione Y, mentre in corrispondenza del doubler sono bloccate anche le traslazioni in direzione X.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10⁻⁵ mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Sono stati usati gli elementi plane 182 in plane strain.

I carichi sono stati imposti nel seguente modo:

• Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa all'estremità della piastra superiore.

Figura 8.2: Modello FEM analizzato.

Figura 8.3: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

8.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riportano i risultati trovati per il caso di trazione assiale per il campione con piatti spessi 0.61 mm.

I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 8.4: Risultati analisi FEM: tensione τ_{xy} .

Figura 8.5: Risultati analisi FEM: tensione locale τ_{xy} ad apice intaglio.

8.5.1 Sforzo assiale

8.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 8.6: Tensione locale σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 8.7: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

• $K_1 = 0.66$.

8.5.1.2 K₂

È stato analizzato l'andamento della tensione tangenziale τ_{xy} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 8.8: *Tensione locale* τ_{xy} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K2 con la seguente formula

$$K_2 = \sqrt{2\pi} \lim_{r \to 0^+} \left[r^{1-\lambda_2} \tau_{\theta r}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_2 .

Figura 8.9: NSIF factor ΔK_2 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_2 per x che tende a zero, si ricava il seguente valore limite

• $K_2 = 1.56.$

8.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 in plane strain con l'opzione "simple enhanced strain" attiva;
- quattro elementi che condividono l'apice dell'intaglio.

I dati ottenuti col peak stress method sono comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte e questo ne dimostra la validità nella stima del notch stress intensity factor per questa tipologia di giunto saldato laser.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ per effettuare successivamente un confronto con curve di progettazione in termini di tensione di picco equivalente di picco fornite da letteratura per giunti saldati laser.

Schema di vincolo utilizzato:

Figura 8.10: Schema di vincolo utilizzato.

Figura 8.11: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in termini di tensione τ_{xy} .

Figura 8.12: Tensione τ_{xy} di picco in corrispondenza dell'apice dell'intaglio.

I modelli FEM analizzati con il Peak Stress Method hanno fornito i seguenti risultati in termini di NSIFs:

Campioni	d (mm)	λ	$\sigma_{peak}[MPa]$	ΔK _{,PSM}
K1 t=0.41mm	0.01	0.5	5.870	0.81
K2 t=0.41mm	0.01	0.5	3.396	1.15
K1 t=0.61mm	0.01	0.5	4.666	0.64
K2 t=0.61mm	0.01	0.5	4.408	1.49
K1 t=0.76mm	0.01	0.5	3.897	0.54
K2 t=0.76mm	0.01	0.5	5.182	1.75
K1 t=2.54mm	0.01	0.5	2.403	0.33
K2 t=2.54mm	0.01	0.5	15.292	5.17

Tabella 8.3: valori di $\Delta K1$, $\Delta K2$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Sorios	t	Mode Mix	Nf Cycle to failure	Nominal stress ra	fw1* σ_{peak}	$fw2^*\tau_{peak}$	$\Delta\sigma_{eq,PSM}$
Selles	[mm]	[-]	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	0.41	2.269	3.96E+04	85.00	70.06	158.98	378
Sforzo assiale	0.41	2.269	4.60E+04	75.00	61.81	140.27	334
Sforzo assiale	0.41	2.269	1.72E+05	60.00	49.45	112.22	267
Sforzo assiale	0.41	2.269	3.46E+05	50.00	41.21	93.52	223
Sforzo assiale	0.61	3.704	2.27E+04	100.00	82.42	187.03	445
Sforzo assiale	0.61	3.704	4.80E+04	75.00	61.81	140.27	334
Sforzo assiale	0.61	3.704	1.69E+05	60.00	49.45	112.22	267
Sforzo assiale	0.61	3.704	1.69E+05	50.00	41.21	93.52	223
Sforzo assiale	0.76	5.214	4.70E+04	75.00	61.81	140.27	334
Sforzo assiale	0.76	5.214	7.80E+04	60.00	49.45	112.22	267
Sforzo assiale	2.54	24.960	3.50E+02	100.00	82.42	187.03	445
Sforzo assiale	2.54	24.960	2.20E+03	75.00	61.81	140.27	334

Tabella 8.4: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali analizzati

Nel seguente grafico si possono notare i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 8.13: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

8.7 Analisi SED

Al fine di completare l'analisi condotta, è stato elaborato un altro modello FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 8.14: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di intensificazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
SHEAR ALBRIGHT t=0.41	SFORZO ASSIALE	0.85	0.81	-4.7%
SHEAR ALBRIGHT t=0.61	SFORZO ASSIALE	0.66	0.64	-2.8%
SHEAR ALBRIGHT t=0.76	SFORZO ASSIALE	0.56	0.54	-3.4%
SHEAR ALBRIGHT t=2.54	SFORZO ASSIALE	0.30	0.33	8.7%
CAMPIONI SPERIMENTALI ANALIZZATI		ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
SHEAR ALBRIGHT t=0.41	SFORZO ASSIALE	1.20	1.15	-4.5%
SHEAR ALBRIGHT t=0.61	SFORZO ASSIALE	1.56	1.49	-4.9%
SHEAR ALBRIGHT t=0.76	SFORZO ASSIALE	1.83	1.75	-4.2%
SHEAR ALBRIGHT t=2.54	SFORZO ASSIALE	5.29	5.17	-2.4%
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
SHEAR ALBRIGHT t=0.41	SFORZO ASSIALE	0.00	0.00	-
SHEAR ALBRIGHT t=0.61	SFORZO ASSIALE	0.00	0.00	-
SHEAR ALBRIGHT t=0.76	SFORZO ASSIALE	0.00	0.00	-
SHEAR ALBRIGHT t=2.54	SFORZO ASSIALE	0.00	0.00	-

4.5 Applicazione Peak Stress Method (PSM) - eccentricità media

CAMPIONI SPERIMENTAL	I ANALIZZATI	T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)
SHEAR ALBRIGHT t=0.41	SFORZO ASSIALE	3.70	3.78	1.9%
SHEAR ALBRIGHT t=0.61	SFORZO ASSIALE	3.86	3.91	1.1%
SHEAR ALBRIGHT t=0.76	SFORZO ASSIALE	3.91	3.94	0.8%
SHEAR ALBRIGHT t=2.54	SFORZO ASSIALE	3.88	3.97	2.1%

Tabella 8.5: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)
SHEAR ALBRIGHT t=0.41	SFORZO ASSIALE	2.12E-05	4.22E-05	49.8%
SHEAR ALBRIGHT t=0.61	SFORZO ASSIALE	3.15E-05	4.95E-05	36.5%
SHEAR ALBRIGHT t=0.76	SFORZO ASSIALE	3.86E-05	5.49E-05	29.6%
SHEAR ALBRIGHT t=2.54	SFORZO ASSIALE	1.76E-04	1.96E-04	10.2%
CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)
SHEAR ALBRIGHT t=0.41	SFORZO ASSIALE	2.12E-05	4.24E-05	50.0%
SHEAR ALBRIGHT t=0.61	SFORZO ASSIALE	3.15E-05	4.89E-05	35.6%
SHEAR ALBRIGHT t=0.76	SFORZO ASSIALE	3.86E-05	5.38E-05	28.2%
SHEAR ALBRIGHT t=2.54	SFORZO ASSIALE	1.76E-04	1.90E-04	7.3%

Tabella 8.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni nel caso di sforzo assiale.

L'energia SED calcolata con il FEM però non è approssimata bene, si ottiene un errore superiore al 12.5% anche tenendo conto dell'effetto della T-stress.

L'errore perciò è troppo elevato (anche 50%) e le tensioni equivalenti ricavate con il PSM non approssimano bene il comportamento reale del campione, in particolare l'effetto risulta molto più marcato al diminuire dello spessore dei piatti saldati.

E' necessario perciò ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM e adottare tali valori, $\Delta \sigma_{eq}$ da SED, per effettuare una scelta della banda di progettazione.

Le tensioni equivalenti di picco ricavate direttamente da SED FEM sono riportate nella tabella seguente:

Sorios	t	Nf Cycle to failure	$\Delta\sigma_n$ Nominal stress range	$\Delta\sigma_{\text{eq,SED FEM}}$
Selles	[mm]	[cycle]	[MPa]	[MPa]
Sforzo assiale	0.41	3.96E+04	85.00	260
Sforzo assiale	0.41	4.60E+04	75.00	229
Sforzo assiale	0.41	1.72E+05	60.00	183
Sforzo assiale	0.41	3.46E+05	50.00	153
Sforzo assiale	0.61	2.27E+04	100.00	372
Sforzo assiale	0.61	4.80E+04	75.00	279
Sforzo assiale	0.61	1.69E+05	60.00	223
Sforzo assiale	0.61	1.69E+05	50.00	186
Sforzo assiale	0.76	4.70E+04	75.00	309
Sforzo assiale	0.76	7.80E+04	60.00	247
Sforzo assiale	2.54	3.50E+02	100.00	881
Sforzo assiale	2.54	2.20E+03	75.00	661

Tabella 8.7: Tensione equivalente di picco ricavata da SED FEM

Nel seguente grafico si possono notare i nuovi dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 8.15: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

Capitolo 9: ANALISI SPERIMENTALI ARTICOLO ZHANG

9.1 Campioni sperimentali

Le prove sperimentali analizzate in questo capitolo sono state ricavate dall'articolo: "A new approach to the numerical fatigue-life prediction of spot-welded structures" di G. Zhang e B. Richter pubblicato nel 2000 [15].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono della tipologia double-cup, cioè due lamiere piegate in una forma a tazza e saldate con una saldatura spot (circolare) nella zona di sovrapposizione.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le grandezze caratteristiche sono la geometria dei piatti e lo spessore di saldatura. La sezione tipica è presentata in Figura 8.1.

Figura 9.1: Schema e nomenclatura dei campioni sperimentali esaminati [15].

Sono stati analizzati 3 campioni che si differenziano in base allo spessore dei piatti t e al diametro della saldatura d:

- t = 0.8 mm, d = 4.1 mm
- t = 1.5 mm, d = 4.4 mm
- t = 1.5 mm, d = 6.0 mm

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

9.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

Yield strength (MPa)	Tensile strength (MPa)
195	310

La larghezza di saldatura è stata assunta pari al diametro della saldatura e di forma circolare. In totale 24 campioni sono stati sottoposti a carichi tensionali ciclici di trazione con fattore R=0. L'estremità di una lamiera è sottoposta a trazione mentre l'estremità dell'altra lamiera è vincolata alla traslazione nella direzione della sollecitazione.

Sono impediti inoltre, nella zona di afferraggio, gli spostamenti perpendicolari all'asse di sollecitazione in quanto i meccanismi di afferraggio sicuramente bloccano questa modalità di deformazione.

È stato perciò rilevato il numero di cicli a fatica a rottura in base alla tensione nominale applicata.

9.3 Elaborazione risultati sperimentali

Sorios		t	Nf Cycle to failure	ΔF
Series	campione	[mm]	[cycle]	[N]
Sforzo assiale	d=4.1mm	0.8	7.86E+04	199.21
Sforzo assiale	d=4.1mm	0.8	9.51E+04	199.21
Sforzo assiale	d=4.1mm	0.8	1.10E+05	199.21
Sforzo assiale	d=4.1mm	0.8	1.34E+05	199.21
Sforzo assiale	d=4.1mm	0.8	1.38E+05	199.21
Sforzo assiale	d=4.1mm	0.8	2.69E+05	159.12
Sforzo assiale	d=4.1mm	0.8	2.90E+05	159.12
Sforzo assiale	d=4.1mm	0.8	3.54E+05	159.12
Sforzo assiale	d=4.1mm	0.8	5.68E+05	159.12
Sforzo assiale	d=4.1mm	0.8	5.98E+05	159.12
Sforzo assiale	d=4.4mm	1.5	8.40E+04	598.94
Sforzo assiale	d=4.4mm	1.5	9.48E+04	598.94
Sforzo assiale	d=4.4mm	1.5	1.81E+05	598.94
Sforzo assiale	d=4.4mm	1.5	3.46E+05	397.76
Sforzo assiale	d=4.4mm	1.5	6.03E+05	397.76
Sforzo assiale	d=4.4mm	1.5	6.36E+05	397.76
Sforzo assiale	d=4.4mm	1.5	7.95E+05	397.76
Sforzo assiale	d=4.4mm	1.5	8.48E+05	397.76
Sforzo assiale	d=6.0mm	1.5	3.47E+04	748.62
Sforzo assiale	d=6.0mm	1.5	5.94E+04	748.62
Sforzo assiale	d=6.0mm	1.5	6.80E+04	748.62
Sforzo assiale	d=6.0mm	1.5	7.13E+04	748.62
Sforzo assiale	d=6.0mm	1.5	7.26E+05	496.67
Sforzo assiale	d=6.0mm	1.5	9.16E+05	496.67

Nella Tabella 8.2 sono riportati i risultati delle analisi sperimentali condotte:

Tabella 9.2: Elaborazione risultati sperimentali per serie di campioni (sforzo assiale).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di forza di trazione assiale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di trazione assiale.

Figura 9.2: Risultati sperimentali a fatica (sforzo assiale)

9.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1.

E' stata sfruttata l'assialsimmetria, visto che la geometria è assialsimmetrica rispetto all'asse longitudinale di applicazione del carico.

Il modello è stato vincolato sfruttando la simmetria rispetto all'asse della saldatura, mentre in corrispondenza del dell'afferraggio sono bloccate anche le traslazioni in direzione X.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10⁻⁵ mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Sono stati usati gli elementi plane 182 in axial-simmetry.

I carichi sono stati imposti nel seguente modo:

• Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa in tutte e due gli estremi dell'appendice della lamiera superiore.

Figura 9.3: Modello FEM analizzato.

4.1 Modellazione analisi elementi finiti

Figura 9.4: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

9.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riportano i risultati trovati per il caso di trazione assiale per il campione con piatti spessi 1.5 mm e diametro della saldatura pari a 4.4 mm.

I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 9.5: Risultati analisi FEM: tensione τ_{xy} .

Figura 9.6: *Risultati analisi FEM: tensione locale* τ_{xy} *ad apice intaglio.*

9.5.1 Sforzo assiale

9.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{yy} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 9.7*: Tensione locale* σ_{yy} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 9.8: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

• $K_1 = 687.49$.

9.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 in axial-simmetry;
- quattro elementi che condividono l'apice dell'intaglio.

I dati ottenuti col peak stress method sono comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte e questo ne dimostra la validità nella stima del notch stress intensity factor per questa tipologia di giunto saldato laser.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ per effettuare successivamente un confronto con curve di progettazione in termini di tensione di picco equivalente di picco fornite da letteratura per giunti saldati laser.

Schema di vincolo utilizzato:

Figura 9.9: Schema di vincolo utilizzato.

Figura 9.10: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti in termini di tensione σ_{yy} .

Figura 9.11: Tensione σ_{yy} di picco in corrispondenza dell'apice dell'intaglio.

I modelli FEM analizzati con il Peak Stress Method hanno fornito i seguenti risultati in termini di NSIFs:

Campioni	d (mm)	λ	σ _{peak} [MPa]	ΔK _{,PSM}
K1 t=0.8mm d=4.1mm	0.01	0.5	12653.500	1746.18
K1 t=1.5mm d=4.4mm	0.01	0.5	4775.850	659.07
K1 t=1.5mm d=6.0mm	0.01	0.5	4178.660	576.66
	T 1 1 0 0	1 1 1 1 1 1 1 1 1	(1)	

Tabella 9.3: valori di $\Delta K1$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Series	campiono	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress	f _{w1} *Δτ _{θθ,peak}	$\Delta\sigma_{eq}$
	campione	[mm]	[cycle]	[MPa]	[MPa]	[MPa]
Sforzo assiale	d=4.1mm	0.8	7.86E+04	0.15	270.72	503
Sforzo assiale	d=4.1mm	0.8	9.51E+04	0.15	270.72	503
Sforzo assiale	d=4.1mm	0.8	1.10E+05	0.15	270.72	503
Sforzo assiale	d=4.1mm	0.8	1.34E+05	0.15	270.72	503
Sforzo assiale	d=4.1mm	0.8	1.38E+05	0.15	270.72	503
Sforzo assiale	d=4.1mm	0.8	2.69E+05	0.12	216.24	402
Sforzo assiale	d=4.1mm	0.8	2.90E+05	0.12	216.24	402
Sforzo assiale	d=4.1mm	0.8	3.54E+05	0.12	216.24	402
Sforzo assiale	d=4.1mm	0.8	5.68E+05	0.12	216.24	402
Sforzo assiale	d=4.1mm	0.8	5.98E+05	0.12	216.24	402
Sforzo assiale	d=4.4mm	1.5	8.40E+04	0.46	307.21	454
Sforzo assiale	d=4.4mm	1.5	9.48E+04	0.46	307.21	454
Sforzo assiale	d=4.4mm	1.5	1.81E+05	0.46	307.21	454
Sforzo assiale	d=4.4mm	1.5	3.46E+05	0.30	204.02	301
Sforzo assiale	d=4.4mm	1.5	6.03E+05	0.30	204.02	301
Sforzo assiale	d=4.4mm	1.5	6.36E+05	0.30	204.02	301
Sforzo assiale	d=4.4mm	1.5	7.95E+05	0.30	204.02	301
Sforzo assiale	d=4.4mm	1.5	8.48E+05	0.30	204.02	301
Sforzo assiale	d=6.0mm	1.5	3.47E+04	0.57	335.97	500
Sforzo assiale	d=6.0mm	1.5	5.94E+04	0.57	335.97	500
Sforzo assiale	d=6.0mm	1.5	6.80E+04	0.57	335.97	500
Sforzo assiale	d=6.0mm	1.5	7.13E+04	0.57	335.97	500
Sforzo assiale	d=6.0mm	1.5	7.26E+05	0.38	222.90	332
Sforzo assiale	d=6.0mm	1.5	9.16E+05	0.38	222.90	332

Tabella 9.4: Calcolo della tensione equivalente di picco (PSM) per tutti i campioni sperimentali analizzati

Nel seguente grafico si possono notare i dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 9.12: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

9.7 Analisi SED

Al fine di completare l'analisi condotta, è stato elaborato un altro modello FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 9.13: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di intensificazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
DC ZHANG t=0.8mm d=4.1mm	SFORZO ASSIALE	1836.63	1746.18	-5.2%
DC ZHANG t=1.5mm d=4.4mm	SFORZO ASSIALE	687.49	659.07	-4.3%
DC ZHANG t=1.5mm d=6.0mm	SFORZO ASSIALE	604.48	576.66	-4.8%
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
DC ZHANG t=0.8mm d=4.1mm	SFORZO ASSIALE	0.00	0.00	-
DC ZHANG t=1.5mm d=4.4mm	SFORZO ASSIALE	0.00	0.00	-
DC ZHANG t=1.5mm d=6.0mm	SFORZO ASSIALE	0.00	0.00	-
CAMPIONI SPERIMENTAL	I ANALIZZATI	ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
DC ZHANG t=0.8mm d=4.1mm	SFORZO ASSIALE	0.00	0.00	-
DC ZHANG t=1.5mm d=4.4mm	SFORZO ASSIALE	0.00	0.00	-
DC ZHANG t=1.5mm d=6.0mm	SFORZO ASSIALE	0.00	0.00	-

CAMPIONI SPERIMENTAL	I ANALIZZATI	T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)
DC ZHANG t=0.8mm d=4.1mm	SFORZO ASSIALE	2384.32	2491.54	4.3%
DC ZHANG t=1.5mm d=4.4mm	SFORZO ASSIALE	583.68	620.86	6.0%
DC ZHANG t=1.5mm d=6.0mm	SFORZO ASSIALE	515.13	552.76	6.8%

Tabella 9.5: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALIZZATI		W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)	
DC ZHANG t=0.8mm d=4.1mm	SFORZO ASSIALE	1.18E+01	2.34E+01	49.6%	
DC ZHANG t=1.5mm d=4.4mm	SFORZO ASSIALE	1.54E+00	2.13E+00	27.5%	
DC ZHANG t=1.5mm d=6.0mm	SFORZO ASSIALE	1.14E+00	1.65E+00	30.7%	
CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)	
CAMPIONI SPERIMENTALI ANALI DC ZHANG t=0.8mm d=4.1mm	ZZATI SFORZO ASSIALE	W _{FEM} [N/mm^2] 1.18E+01	W _{PSM, I+II+III+T+tnom} [N/mm^2] 2.38E+01	ERR PSM/FEM (%) 50.4%	
CAMPIONI SPERIMENTALI ANALI DC ZHANG t=0.8mm d=4.1mm DC ZHANG t=1.5mm d=4.4mm	ZZATI SFORZO ASSIALE SFORZO ASSIALE	W _{FEM} [N/mm^2] 1.18E+01 1.54E+00	W _{PSM, I+II+III+T+tnom} [N/mm^2] 2.38E+01 2.14E+00	ERR PSM/FEM (%) 50.4% 28.1%	

Tabella 9.6: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni nel caso di sforzo assiale.

L'energia SED calcolata con il FEM però non è approssimata bene, si ottiene un errore superiore al 12.5% anche tenendo conto dell'effetto della T-stress.

L'errore perciò è troppo elevato (anche 50%) e le tensioni equivalenti ricavate con il PSM non approssimano bene il comportamento reale del campione, in particolare l'effetto risulta molto più marcato al diminuire dello spessore dei piatti saldati.

E' necessario perciò ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM e adottare tali valori, $\Delta \sigma_{eq}$ da SED, per effettuare una scelta della banda di progettazione.

Le tensioni equivalenti di picco ricavate direttamente da SED FEM sono riportate nella tabella seguente:

Series	campione	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	$\Delta\sigma_{eq, SED FEM}$
		[mm]	[cycle]	[MPa]	[MPa]
Sforzo assiale	d=4.1mm	0.8	7.86E+04	0.15	354
Sforzo assiale	d=4.1mm	0.8	9.51E+04	0.15	354
Sforzo assiale	d=4.1mm	0.8	1.10E+05	0.15	354
Sforzo assiale	d=4.1mm	0.8	1.34E+05	0.15	354
Sforzo assiale	d=4.1mm	0.8	1.38E+05	0.15	354
Sforzo assiale	d=4.1mm	0.8	2.69E+05	0.12	283
Sforzo assiale	d=4.1mm	0.8	2.90E+05	0.12	283
Sforzo assiale	d=4.1mm	0.8	3.54E+05	0.12	283
Sforzo assiale	d=4.1mm	0.8	5.68E+05	0.12	283
Sforzo assiale	d=4.1mm	0.8	5.98E+05	0.12	283
Sforzo assiale	d=4.4mm	1.5	8.40E+04	0.46	385
Sforzo assiale	d=4.4mm	1.5	9.48E+04	0.46	385
Sforzo assiale	d=4.4mm	1.5	1.81E+05	0.46	385
Sforzo assiale	d=4.4mm	1.5	3.46E+05	0.30	255
Sforzo assiale	d=4.4mm	1.5	6.03E+05	0.30	255
Sforzo assiale	d=4.4mm	1.5	6.36E+05	0.30	255
Sforzo assiale	d=4.4mm	1.5	7.95E+05	0.30	255
Sforzo assiale	d=4.4mm	1.5	8.48E+05	0.30	255
Sforzo assiale	d=6.0mm	1.5	3.47E+04	0.57	414
Sforzo assiale	d=6.0mm	1.5	5.94E+04	0.57	414
Sforzo assiale	d=6.0mm	1.5	6.80E+04	0.57	414
Sforzo assiale	d=6.0mm	1.5	7.13E+04	0.57	414
Sforzo assiale	d=6.0mm	1.5	7.26E+05	0.38	275
Sforzo assiale	d=6.0mm	1.5	9.16E+05	0.38	275

Tabella 9.7: Tensione equivalente di picco ricavata da SED FEM

Nel seguente grafico si possono notare i nuovi dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 9.14: Dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

Capitolo 10: ANALISI SPERIMENTALI EIBL

10.1 Campioni sperimentali

Le prove sperimentali analizzate in questo capitolo sono state ricavate dalla tesi di dottorato: "Berechnung der Schwingfestigkeit laserstrahlgeschweißter Feinbleche mit lokalen Konzepten" di Martin Eibl pubblicato nel 2003 [17].

Le prove sperimentali e i relativi dati sperimentali vengono quindi ereditati da questo articolo, nel seguito se ne presenterà un'elaborazione con un approccio locale.

I campioni sperimentali analizzati sono di diverse tipologie:

- Lap joints;
- Tube;
- Peel;
- Hut-profile.

La geometria lap joint è stata già analizzata anche precedentemente, in particolare le dimensioni dei campioni relativi a questo articolo sono presentati nella seguente figura 10.1:

Figura 10.1: Dimensioni geometriche campioni lap joints [17].

Anche la geometria tube è stata già analizzata precedentemente, le dimensioni dei campioni relativi a questo articolo sono presentati nella seguente figura 10.2:

Zusammenbau

Figura 10.2: Dimensioni geometriche campioni tube [17].

La geometria Peel è una nuova tipologia di geometria in cui due lamiere sottili vengono piegate e saldate lungo tutta la larghezza proprio nella zona si sovrapposizione ripiegata:

Figura 10.3: Dimensioni geometriche campioni peel [17].

In particolare nel documento in esame si esegue una distinzione tra due tipologie: con o senza contatto.

Questa differenza, come si vede in figura, indica se oltre la zona di saldatura sono stati o no eliminati i prolungamenti delle due lamiere saldate.

Infine un'ultima tipologia di geometria presa in esame è l'hut-profile.

Si tratta di una lamiera opportunamente piegata che viene saldata longitudinalmente lungo due bordi di sovrapposizione con una piastra orizzontale.

Figura 10.4: Dimensioni geometriche campioni hut-profile [17].

Si deve far presente però che nel documento di Eibl i dati sperimentali forniti non riescono a graficare una curva di Wöhler. Lo stesso Eibl scarta i risultati da lui ottenuti e per questa tipologia di geometria recupera dati sperimentali ottenuti da Sonsino e Mueller nell'articolo: "Berechnung und Fertigung lasergeschweißter Verbindungen im Automobilbau" del 1993 [18] che fanno riferimento alla stessa tipologia di geometria con spessore di lamiere però 2,00 mm. La larghezza di saldatura non è meglio specificata nelle due referenze e quindi si manterrà quella prevista nell'articolo di Eibl.

Anche la trattazione seguente, per questa tipologia di geometria, farà riferimento ai dati sperimentali contenuti nell'articolo di Sonsino-Mueller.

Questi giunti si possono considerare come intagli a V a spigolo vivo con angolo $2\alpha=0$ sollecitati a modo I, modo II o modo III in base al tipo di sollecitazione.

È possibile quindi trattare la verifica a fatica di questa tipologia di giunti con la meccanica della frattura e la sua estensione ad intaglio a spigolo vivo.

Le larghezze di saldatura sono state definite nel documento originario in base al materiale e allo spessore delle lamiere in esame. Si riporta nella seguente figura l'estratto ralativo:

0.4	DC	04	St 35			
Blechdicke $t [mm]$	0,8	$1,\!9$	1,0	1,5	2,0	
Schweißnahtbreite w [mm]	0,8	1,2	0,7	0,8	0,95	

Figura 10.5: Dimensioni larghezza saldatura in base materiale e spessore lamiere saldate [17].

Nella verifica a fatica il range della tensione nominale è indicato come $\Delta \sigma_n$; il simbolo N_f è usato per indicare il numero dei cicli che provocano la rottura del campione. Il fattore di intensificazione delle tensioni è indicato con K_n e il rispettivo range di variazione del fattore di intensificazione della tensione è indicato con ΔK_n . La curva di resistenza a fatica è indicata attraverso la pendenza m e la costante C.

10.2 Test a fatica

I test sperimentali di resistenza a fatica, come già accennato, sono stati elaborati da altri autori e, nello studio in esame, ci si vuole focalizzare sull'analisi dettagliata delle geometrie di saldatura di questi campioni. I campioni sperimentali tube hanno materiale St35, mentre per tutti gli altri il materiale è DC04 I dati geometrici e di proprietà dei materiali sono indicati nella seguente tabella:

	Tensione snervamento (MPa)	Resistenza rottura (MPa)
DC04	227	313
St35	235	405

Tabella 10.1: Proprietà e geometria dei campioni sperimentali, materiale DC04 e st35.

In totale 28 campioni sono stati sottoposti a carichi tensionali ciclici di trazione con fattore R=0.2 fino a rottura.

- 27 campioni lap-joints con rapporto R=0
- 73 campioni tube con rapporto R=-1

- 45 campioni peel con rapporto R=0
- 11 campioni hut-profile con rapporto R=-1

Per le geometrie lap-joints e tube le condizioni di vincolo sono identiche a quelle dei campioni sperimentali già analizzati precedentemente.

Per la geometria peel si ha un vincolo allo alla traslazione orizzontale ad un'estremità del campione mentre all'estremità opposta è stato applicato il carico. Inoltre sono stati simulati gli effetti dell'afferraggio bloccando anche la traslazione verticale delle lamiere in corrispondenza delle due zone di afferraggio. Per la geometria hut-profile si ha un vincolo di incastro ad un'estremità mentre all'altra è stato applicato il momento torcente.

10.3 Elaborazione risultati sperimentali

Sorios	compiono	t	Nf Cycle to failure	ΔF	$\Delta \sigma_n$ Nominal stress range	
Series	campione	[mm]	[cycle]	[N]	[MPa]	
Sforzo assiale	Lap-joint	0.8	2.70E+04	3006.62	234.89	
Sforzo assiale	Lap-joint	0.8	3.03E+04	2010.45	157.07	
Sforzo assiale	Lap-joint	0.8	3.42E+04	2010.45	157.07	
Sforzo assiale	Lap-joint	0.8	3.67E+04	2010.45	157.07	
Sforzo assiale	Lap-joint	0.8	6.44E+04	1608.82	125.69	
Sforzo assiale	Lap-joint	0.8	7.16E+04	1608.82	125.69	
Sforzo assiale	Lap-joint	0.8	7.58E+04	1608.82	125.69	
Sforzo assiale	Lap-joint	0.8	3.29E+05	1256.14	98.14	
Sforzo assiale	Lap-joint	0.8	3.37E+05	1256.14	98.14	
Sforzo assiale	Lap-joint	0.8	5.53E+05	1256.91	98.20	
Sforzo assiale	Lap-joint	0.8	8.55E+05	1256.91	98.20	
Sforzo assiale	Lap-joint	0.8	6.30E+06	856.47	66.91	
Sforzo assiale	Lap-joint	0.8	1.00E+07	1004.38	78.47	
Sforzo assiale	Lap-joint	1.9	9.68E+03	5029.99	165.46	
Sforzo assiale	Lap-joint	1.9	1.77E+04	4523.19	148.79	
Sforzo assiale	Lap-joint	1.9	2.36E+04	4523.19	148.79	
Sforzo assiale	Lap-joint	1.9	2.59E+04	4523.19	148.79	
Sforzo assiale	Lap-joint	1.9	3.30E+04	4523.19	148.79	
Sforzo assiale	Lap-joint	1.9	7.70E+04	3012.17	99.08	
Sforzo assiale	Lap-joint	1.9	8.26E+04	3012.17	99.08	
Sforzo assiale	Lap-joint	1.9	1.04E+05	3012.17	99.08	
Sforzo assiale	Lap-joint	1.9	7.81E+05	2006.34	66.00	
Sforzo assiale	Lap-joint	1.9	8.85E+05	2006.34	66.00	
Sforzo assiale	Lap-joint	1.9	1.26E+06	2006.34	66.00	
Sforzo assiale	Lap-joint	1.9	1.73E+06	2006.34	66.00	
Sforzo assiale	Lap-joint	1.9	1.00E+07	1761.42	57.94	
Sforzo assiale	Lap-joint	1.9	1.00E+07	1506.97	49.57	

Nella Tabella 10.2 sono riportati i risultati delle analisi sperimentali condotte per i campioni lap-joints:

Tabella 10.2: Elaborazione risultati sperimentali per serie di campioni lap-joints (sforzo assiale).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 10.6: Risultati sperimentali a fatica geometria lap joints (sforzo assiale)

Nelle Tabelle 7.3 e 7.4 sono riportati i risultati delle analisi sperimentali condotte per i campioni t	tube
---	------

	1	1			
Sorios	compiono	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n$ Nominal stress range
Series	Campione	[mm]	[cycle]	[MPa]	[MPa]
Sforzo assiale	tube	1	3.23E+04	38.87	0.00
Sforzo assiale	tube	1	8.21E+04	38.87	0.00
Sforzo assiale	tube	1	1.10E+05	38.87	0.00
Sforzo assiale	tube	1	1.47E+05	35.39	0.00
Sforzo assiale	tube	1	1.57E+05	35.39	0.00
Sforzo assiale	tube	1	5.10E+05	24.71	0.00
Sforzo assiale	tube	1	6.85E+05	24.73	0.00
Sforzo assiale	tube	1	8.01E+05	21.23	0.00
Sforzo assiale	tube	1	2.00E+06	20.16	0.00
Sforzo assiale	tube	1	2.00E+06	19.43	0.00
Sforzo assiale	tube	1.5	8.83E+04	60.12	0.00
Sforzo assiale	tube	1.5	i 1.72E+05	53.02	0.00
Sforzo assiale	tube	1.5	i 1.76E+05	53.02	0.00
Sforzo assiale	tube	1.5	2.01E+05	52.98	0.00
Sforzo assiale	tube	1.5	4.17E+05	35.29	0.00
Sforzo assiale	tube	1.5	5.20E+05	35.29	0.00
Sforzo assiale	tube	1.5	6.23E+05	35.28	0.00
Sforzo assiale	tube	1.5	i 1.30E+06	31.82	0.00
Sforzo assiale	tube	1.5	2.00E+06	31.81	0.00
Sforzo assiale	tube	2	5.29E+04	70.66	0.00
Sforzo assiale	tube	2	5.54E+04	70.66	0.00
Sforzo assiale	tube	2	5.79E+04	70.66	0.00
Sforzo assiale	tube	2	7.08E+04	70.66	0.00
Sforzo assiale	tube	2	6.21E+05	44.20	0.00
Sforzo assiale	tube	2	7.00E+05	44.20	0.00
Sforzo assiale	tube	2	7.39E+05	44.21	0.00
Sforzo assiale	tube	2	2.00E+06	35.29	0.00

Tabella 10.3: Elaborazione risultati sperimentali per serie di campioni tube (sforzo assiale).

Series	campione	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n Nominal \ stress \ range$
Selles	campione	[mm]	[cycle]	[MPa]	[MPa]
Torsione pura	tube	1	7.75E+04	0.00	54.71
Torsione pura	tube	1	9.72E+04	0.00	54.71
Torsione pura	tube	1	1.26E+05	0.00	54.71
Torsione pura	tube	1	4.29E+05	0.00	42.14
Torsione pura	tube	1	4.35E+05	0.00	42.14
Torsione pura	tube	1	7.61E+05	0.00	42.16
Torsione pura	tube	1	8.98E+05	0.00	42.25
Torsione pura	tube	1	1.21E+06	0.00	38.94
Torsione pura	tube	1	1.53E+06	0.00	37.55
Torsione pura	tube	1.5	1.54E+04	0.00	54.75
Torsione pura	tube	1.5	8.17E+04	0.00	54.75
Torsione pura	tube	1.5	3.15E+05	0.00	42.18
Torsione pura	tube	1.5	7.22E+05	0.00	42.16
Torsione pura	tube	1.5	8.86E+05	0.00	42.20
Torsione pura	tube	1.5	2.00E+06	0.00	35.93
Torsione pura	tube	2	1.40E+04	0.00	62.35
Torsione pura	tube	2	3.50E+04	0.00	78.05
Torsione pura	tube	2	2.04E+05	0.00	54.63
Torsione pura	tube	2	2.14E+05	0.00	54.63
Torsione pura	tube	2	2.51E+05	0.00	54.63
Torsione pura	tube	2	2.58E+05	0.00	54.63
Torsione pura	tube	2	1.08E+06	0.00	42.14
Torsione pura	tube	2	1.11E+06	0.00	42.14
Torsione pura	tube	2	2.00E+06	0.00	42.13
Torsione pura	tube	2	2.00E+06	0.00	38.95
Combinati T/S=0.5	tube	2	3.86E+04	62.68	36.35
Combinati T/S=0.5	tube	2	4.55E+04	62.68	36.35
Combinati T/S=0.5	tube	2	4.92E+04	62.68	36.35
Combinati T/S=0.5	tube	2	2.69E+05	52.25	30.30
Combinati T/S=0.5	tube	2	7.31E+05	41.67	24.17
Combinati T/S=0.5	tube	2	7.69E+05	41.67	24.17
Combinati T/S=0.5	tube	2	8.71E+05	41.67	24.17
Combinati T/S=0.5	tube	2	1.18E+06	36.58	21.21
Combinati T/S=0.5	tube	2	1.49E+06	36.58	21.21
Combinati T/S=0.5	tube	2	2.02E+06	33.43	19.39
Combinati T/S=0.5	tube	2	2.26E+06	33.43	19.39
Combinati T/S=1	tube	2	3.82E+04	52.00	52.00
Combinati T/S=1	tube	2	4.61E+04	52.00	52.00
Combinati T/S=1	tube	2	5.04E+04	52.00	52.00
Combinati T/S=1	tube	2	3.19E+05	41.64	41.64
Combinati T/S=1	tube	2	3.59E+05	41.64	41.64
Combinati T/S=1	tube	2	5.99E+05	41.66	41.66
Combinati T/S=1	tube	2	1.28E+06	36.45	36.45
Combinati T/S=1	tube	2	1.74E+06	33.40	33.40
Combinati T/S=1	tube	2	2.01E+06	36.48	36.48
Combinati T/S=1	tube	2	1.98E+06	33.40	33.40

Tabella 10.4: Elaborazione risultati sperimentali per serie di campioni tube (torsione).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 10.7: Risultati sperimentali a fatica geometria tube (sforzo assiale)

Figura 10.8: Risultati sperimentali a fatica geometria tube (torsione)

Nella Tabella 7.5 sono riportati i risultati delle analisi sperimentali condotte per i campioni peel:

Series	campione	t	Nf Cycle to failure	Δσ _n Nominal stress range
Sforzo oscialo	Do al con contatta	[mm]		[IVIPa]
Storzo assiale	Peel con contatto	0.8	1.64E+04	39.17
Storzo assiale		0.8	2.74E+04	27.43
Storzo assiale	Peel con contatto	0.8	3.00E+04	27.43
Storzo assiale		0.8	3.01E+04	20.72
Storzo assiale		0.8	3.01E+04	17.00
Sforzo assiale	Peel con contatto	0.8	4.90E+04	17.00
Sforzo assiale	Peel con contatto	0.8	2.092+03	12.17
Sforzo assiale	Peel con contatto	0.8	2.00E+05 3.56E±05	11.75
Sforzo assiale	Peel con contatto	0.8	5.30E+03	9.77
Sforzo assiale	Peel con contatto	0.8	6.32E+06	7.81
Sforzo assiale	Peel con contatto	0.8	1.00E+07	7.01
Sforzo assiale	Peel con contatto	0.9	0 30E+03	/1.00
Sforzo assiale	Peel con contatto	1.5	1 28F+04	32.96
Sforzo assiale	Peel con contatto	1.9	1.20E+04	32.90
Sforzo assiale	Peel con contatto	1.9	1.50E+04	32.95
Sforzo assiale	Peel con contatto	1.9	5.09E+04	24.74
Sforzo assiale	Peel con contatto	1.9	5.67E+04	24.74
Sforzo assiale	Peel con contatto	1.9	6.44E+04	24.73
Sforzo assiale	Peel con contatto	1.9	1.51E+05	14.89
Sforzo assiale	Peel con contatto	1.9	2.11E+05	14.89
Sforzo assiale	Peel con contatto	1.9	2.22E+05	14.89
Sforzo assiale	Peel con contatto	1.9	5.25E+05	12.36
Sforzo assiale	Peel con contatto	1.9	1.06E+07	12.35
Sforzo assiale	Peel con contatto	1.9	1.01E+07	9.89
Sforzo assiale	Peel con contatto	1.9	1.01E+07	8.26
Sforzo assiale	Peel senza contatto	0.8	3.19E+04	27.40
Sforzo assiale	Peel senza contatto	0.8	3.35E+04	19.58
Sforzo assiale	Peel senza contatto	0.8	4.21E+04	19.58
Sforzo assiale	Peel senza contatto	0.8	5.84E+04	19.44
Sforzo assiale	Peel senza contatto	0.8	1.32E+05	13.72
Sforzo assiale	Peel senza contatto	0.8	1.40E+05	13.72
Sforzo assiale	Peel senza contatto	0.8	1.53E+05	13.72
Sforzo assiale	Peel senza contatto	0.8	6.47E+05	9.82
Sforzo assiale	Peel senza contatto	0.8	7.02E+05	9.82
Sforzo assiale	Peel senza contatto	0.8	1.55E+06	9.82
Sforzo assiale	Peel senza contatto	1.9	8.09E+03	14.88
Sforzo assiale	Peel senza contatto	1.9	1.23E+04	14.88
Sforzo assiale	Peel senza contatto	1.9	1.50E+04	14.88
Sforzo assiale	Peel senza contatto	1.9	2.12E+04	14.88
Sforzo assiale	Peel senza contatto	1.9	8.55E+04	9.88
Sforzo assiale	Peel senza contatto	1.9	1.95E+05	6.62
Sforzo assiale	Peel senza contatto	1.9	3.65E+05	6.61
Sforzo assiale	Peel senza contatto	1.9	2.86E+06	6.62
Sforzo assiale	Peel senza contatto	1.9	5.62E+06	5.31

Tabella 10.5: Elaborazione risultati sperimentali per serie di campioni peel (sforzo assiale).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 10.9: Risultati sperimentali a fatica geometria peel (sforzo assiale)

Cariaa		t	Nf Cycle to failure	Δσ	
Series	campione	[mm] [cycle to failure [mm] [cycle] [N 2 8.13E+04 2 2 1.09E+05 2 2 1.73E+05 2 2 2.60E+05 2 2 1.58E+05 2 2 2.17E+05 2 2 2.17E+05 2 2 2.17E+05 2 2 2.17E+05 2 2 2.776E+05 2	[MPa]		
Torsione	hut-profile	2	8.13E+04	148.93	
Torsione	hut-profile	2	1.09E+05	169.02	
Torsione	hut-profile	2	1.73E+05	148.93	
Torsione	hut-profile	2	2.60E+05	148.93	
Torsione	hut-profile	2	1.58E+05	119.01	
Torsione	hut-profile	2	2.17E+05	119.01	
Torsione	hut-profile	2	6.19E+05	99.39	
Torsione	hut-profile	2	7.76E+05	99.39	
Torsione	hut-profile	2	8.52E+05	99.39	
Torsione	hut-profile	2	2.08E+06	79.38	
Torsione	hut-profile	2	2.17E+06	59.70	

Tabella 10.6: Elaborazione risultati sperimentali per serie di campioni hut-profile (torsione).

Viene riportato il numero di cicli che ha provocato la rottura a fatica con il rispettivo range di tensione nominale.

E' stato, quindi, costruito un grafico in scala doppio logaritmica nel quale nell'asse orizzontale è indicato il numero di cicli a rottura a fatica mentre nell'asse verticale il range di tensione nominale.

Figura 10.10: Risultati sperimentali a fatica geometria hut-profile (torsione)

10.4 Modellazione analisi Elementi Finiti

È stata eseguita una modellazione FEM con il software di calcolo Ansys 18.1.

E' stata effettuata una modellazione diversa per ogni tipologia di geometria.

In particolare la geometria tube è stata modellata sfruttando l'assialsimmetria, delle geometrie lap joints e peel è stata modellata solo una fetta longitudinale del campione di spessore 1 mm, per la geometria hut-profile è stato effettuato un modello 3D.

I vincoli imposti, come già spiegato, sono diversi per ogni tipologia di geometria.

Nel modello si è cercato di infittire la mesh in corrispondenza dell'apice della fessura con dimensione degli elementi pari a 10⁻⁵ mm in corrispondenza dell'apice dell'intaglio. La mesh è stata poi gradualmente diradata allontanandosi dall'apice dell'intaglio.

Sono stati usati gli elementi plane 182 in plane strain per i modelli delle geometrie lap joints e peel.

Per la geometria tube invece: nel carico di trazione assiale sono stati usati gli elementi plane 182 in axial-simmetry, mentre nel caso di sollecitazione di torsione sono stati utilizzati elementi plane 25 in axial-simmetry

I carichi sono stati imposti nel seguente modo:

- Sforzo assiale: è stata applicata una tensione di trazione pari a 1MPa ad una estremità della piastra.
- Torsione: sono state applicate delle forze puntuali tali da provocare una tensione tangenziale di torsione unitaria.

Figura 10.11: Modello FEM analizzato per geometria peel.

Figura 10.12: Graduale infittimento della mesh in corrispondenza dell'apice dell'intaglio.

10.5 Risultati analisi FEM

È stata condotta l'analisi FEM e di seguito si riportano, a titolo di esempio, i risultati trovati per il caso di trazione assiale per la geometria peel con spessore di lamiera 1.9 mm e con contatto.

I risultati sono stati letti lungo lo spessore della saldatura come teoricamente indicato dalla descrizione dello stato tensionale all'apice degli intagli.

Figura 10.13: Risultati analisi FEM: tensione σ_{xx} *per geometria peel.*

Figura 10.14: Risultati analisi FEM: tensione locale σ_{xx} *ad apice intaglio.*

10.5.1 Sforzo assiale

10.5.1.1 K₁

È stato analizzato l'andamento della tensione σ_{xx} lungo lo spessore della saldatura, il cui sviluppo è mostrato nel seguente grafico in scala logaritmica:

Figura 10.15: Tensione locale σ_{xx} *ad apice intaglio.*

Come si vede le tensioni si concentrano in prossimità dell'apice dell'intaglio. In scala doppio logaritmica è possibile apprezzare la pendenza della retta che interpola i dati la quale risulta pari a 0.5 come previsto dalla trattazione teorica per angoli di intaglio $2\alpha=0$.

È stato quindi possibile calcolare il fattore di intensificazione delle tensioni K1 con la seguente formula

$$K_{1} = \sqrt{2\pi} \lim_{r \to 0^{+}} \left[r^{1-\lambda_{1}} \sigma_{\theta\theta}(r, \theta = 0) \right]$$

Il limite è stato ricavato attraverso il valore a cui tende la precedente equazione calcolato puntualmente per ogni x tendente a 0. Questo limite esiste ed è finito, come si può apprezzare dall'andamento nel grafico in scala doppio logaritmica del valore K_1 .

Figura 10.16: NSIF factor ΔK_1 .

Dal grafico si vede che, interpolando i valori del fattore di intensificazione delle tensioni K_1 per x che tende a zero, si ricava il seguente valore limite

• $K_1 = 16.21$.

10.6 Applicazione Peak Stress Method (PSM) ai dati sperimentali

In questo capitolo è stata condotta l'analisi tramite il Peak Stress Method.

Il modello FEM per l'analisi tramite Peak Stress Method è stato ottenuto considerando le seguenti tre condizioni:

- dimensione di elemento massima pari a 1/3 dello semi-spessore della saldatura opporre 1/3 della lunghezza dell'intaglio;"
- elementi plane 182 in plane strain con l'opzione "simple enhanced strain" attiva, oppure elementi plane 182 o elementi plane 25 in axial-simmetry per la geometria tube
- quattro elementi che condividono l'apice dell'intaglio.

I dati ottenuti col peak stress method sono comparabili coi dati ottenuti dai modelli FEM sofisticati con mesh fitte e questo ne dimostra la validità nella stima del notch stress intensity factor per questa tipologia di giunto saldato laser.

I dati ottenuti precedentemente in termini di tensioni nominali sono stati rielaborati con il Peak Stress Method in termini di $\Delta \sigma_{eq}$ per effettuare successivamente un confronto con curve di progettazione in termini di tensione di picco equivalente di picco fornite da letteratura per giunti saldati laser.

Per le geometrie lap-joint e tube si rimanda agli schemi di vincolo precedentemente descritti nei relativi capitoli.

Schema di vincolo utilizzato per la geometria peel:

Figura 10.17: Schema di vincolo utilizzato.

Per la geometria hut-profile lo schema di vincolo è semplicemente un incastro ad una estremità del campione, mentre all'altra estremità viene applicato il momento torcente.

Si presentano i risultati ottenuti con il PSM per la geometria peel, spessore 1.9 mm con contatti.

Figura 10.18: Mesh dei campioni sperimentali (PSM). Esempio dei risultati ottenuti per la geometria peel spessore 1.9 mm con contatti in termini di tensione σ_{xx} .

Figura 10.19: Tensione σ_{xx} di picco in corrispondenza dell'apice dell'intaglio.

Per la geometria peel, a titolo di esempio, i modelli FEM analizzati con il Peak Stress Method hanno fornito i seguenti risultati in termini di NSIFs:

Campioni	d (mm)	λ	$\sigma_{peak}[MPa]$	ΔK _{,PSM}
K1 con contatto t=0.8mm	0.03	0.5	158.576	37.90
K1 con contatto t=1.9mm	0.03	0.5	183.594	43.88
K1 senza contatto t=0.8mm	0.03	0.5	171.012	40.88
K1 senza contatto t=1.9mm	0.03	0.5	212.383	50.76

Tabella 10.7: valori di $\Delta K1$ (PSM)

I dati sperimentali sono stati rielaborati con i valori di NSIFs ottenuti con il Peak Stress Method ed è stata calcolata la tensione equivalente di picco.

Si presentano di seguito tutti i risultati ottenuti per tutte le geometrie analizzate ricavate dall'articolo di Eibl.

Series	compiono	t	Nf Cycle to failure	Nominal stress ra	$fw1^*\sigma_{peak}$	$fw2^*\tau_{peak}$	$\Delta\sigma_{eq}$
Series	campione	[mm]	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	Lap-joint	0.8	2.70E+04	234.89	91.08	357.20	605
Sforzo assiale	Lap-joint	0.8	3.03E+04	157.07	60.90	238.85	405
Sforzo assiale	Lap-joint	0.8	3.42E+04	157.07	60.90	238.85	405
Sforzo assiale	Lap-joint	0.8	3.67E+04	157.07	60.90	238.85	405
Sforzo assiale	Lap-joint	0.8	6.44E+04	125.69	48.74	191.14	324
Sforzo assiale	Lap-joint	0.8	7.16E+04	125.69	48.74	191.14	324
Sforzo assiale	Lap-joint	0.8	7.58E+04	125.69	48.74	191.14	324
Sforzo assiale	Lap-joint	0.8	3.29E+05	98.14	38.05	149.23	253
Sforzo assiale	Lap-joint	0.8	3.37E+05	98.14	38.05	149.23	253
Sforzo assiale	Lap-joint	0.8	5.53E+05	98.20	38.08	149.33	253
Sforzo assiale	Lap-joint	0.8	8.55E+05	98.20	38.08	149.33	253
Sforzo assiale	Lap-joint	0.8	6.30E+06	66.91	25.95	101.75	172
Sforzo assiale	Lap-joint	0.8	1.00E+07	78.47	30.43	119.32	202
Sforzo assiale	Lap-joint	1.9	9.68E+03	165.46	56.46	411.21	533
Sforzo assiale	Lap-joint	1.9	1.77E+04	148.79	50.77	369.78	480
Sforzo assiale	Lap-joint	1.9	2.36E+04	148.79	50.77	369.78	480
Sforzo assiale	Lap-joint	1.9	2.59E+04	148.79	50.77	369.78	480
Sforzo assiale	Lap-joint	1.9	3.30E+04	148.79	50.77	369.78	480
Sforzo assiale	Lap-joint	1.9	7.70E+04	99.08	33.81	246.25	319
Sforzo assiale	Lap-joint	1.9	8.26E+04	99.08	33.81	246.25	319
Sforzo assiale	Lap-joint	1.9	1.04E+05	99.08	33.81	246.25	319
Sforzo assiale	Lap-joint	1.9	7.81E+05	66.00	22.52	164.02	213
Sforzo assiale	Lap-joint	1.9	8.85E+05	66.00	22.52	164.02	213
Sforzo assiale	Lap-joint	1.9	1.26E+06	66.00	22.52	164.02	213
Sforzo assiale	Lap-joint	1.9	1.73E+06	66.00	22.52	164.02	213
Sforzo assiale	Lap-joint	1.9	1.00E+07	57.94	19.77	144.00	187
Sforzo assiale	Lap-joint	1.9	1.00E+07	49.57	16.92	123.20	160

Tabella 10.8: Calcolo della tensione equivalente di picco (PSM) campioni lap joints

Series	campione	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress	$\Delta \tau_n Nominal stress range$	$f_{w1}^{}*\Delta\tau_{\theta\theta,peak}$	$f_{w2}{}^*\sigma_{r\theta,peak}$	$f_{w3}^{}*\!\Delta\tau_{\theta_{Z,peak}}$	$\Delta\sigma_{eq}$
Jenes	campione	[mm]	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	Tube	1	3.23E+04	38.87	0.00	57.05	256.13	0.00	299
Sforzo assiale	Tube	1	8.21E+04	38.87	0.00	57.05	256.13	0.00	299
Sforzo assiale	Tube	1	1.10E+05	38.8/	0.00	57.05	256.13	0.00	299
Sforzo assiale	Tube	1	1.47E+05	35.39	0.00	51.95	233.22	0.00	272
Sforzo assiale	Tube	1	5.10E+05	24.71	0.00	36.27	162.83	0.00	190
Sforzo assiale	Tube	1	6.85E+05	24.73	0.00	36.31	163.00	0.00	190
Sforzo assiale	Tube	1	8.01E+05	21.23	0.00	31.17	139.92	0.00	163
Sforzo assiale	Tube	1	2.00E+06	20.16	0.00	29.59	132.86	0.00	155
Sforzo assiale	Tube	1	2.00E+06	19.43	0.00	28.53	128.06	0.00	149
Sforzo assiale	Tube	1.5	8.83E+04	60.12	0.00	68.10	353.15	0.00	389
Sforzo assiale	Tube	1.5	1.72E+05	53.02	0.00	60.06	311.44	0.00	343
Sforzo assiale	Tube	1.5	1.76E+05	53.02	0.00	60.06	311.44	0.00	343
Sforzo assiale	Tube	1.5	2.01E+05	52.98	0.00	60.02	311.21	0.00	343
Sforzo assiale	Tube	1.5	4.17E+05 5.20E+05	35.29	0.00	39.98	207.30	0.00	229
Sforzo assiale	Tube	1.5	6.23E+05	35.28	0.00	39.97	207.24	0.00	228
Sforzo assiale	Tube	1.5	1.30E+06	31.82	0.00	36.04	186.90	0.00	206
Sforzo assiale	Tube	1.5	2.00E+06	31.81	0.00	36.04	186.87	0.00	206
Sforzo assiale	Tube	2	5.29E+04	70.66	0.00	61.59	377.55	0.00	408
Sforzo assiale	Tube	2	5.54E+04	70.66	0.00	61.59	377.55	0.00	408
Sforzo assiale	Tube	2	5.79E+04	70.66	0.00	61.59	377.55	0.00	408
Sforzo assiale	Tube	2	7.08E+04	70.66	0.00	61.59	377.55	0.00	408
Sforzo assiale	Tube	2	6.21E+05	44.20	0.00	38.52	236.16	0.00	255
Sforzo assiale	Tube	2	7.00E+05	44.20	0.00	38.52	236.16	0.00	255
Sforzo assiale	Tube	2	7.39E+05	44.21	0.00	38.54	236.23	0.00	255
Storzo assiale	Tube	2	2.00E+06	35.29	0.00	30.76	188.57	0.00	204
Torsione pura	Tube	1	7.75E+04	0.00	54.71	0.00	0.00	406.09	446
Torsione pura	Tube	1	9.72E+04	0.00	54.71	0.00	0.00	406.09	446
Torsione pura	Tube	1	4 29E+05	0.00	42.14	0.00	0.00	312 78	3440
Torsione pura	Tube	1	4 35E+05	0.00	42.14	0.00	0.00	312.70	344
Torsione pura	Tube	1	7.61E+05	0.00	42.16	0.00	0.00	312.97	344
Torsione pura	Tube	1	8.98E+05	0.00	42.25	0.00	0.00	313.64	345
Torsione pura	Tube	1	1.21E+06	0.00	38.94	0.00	0.00	289.06	318
Torsione pura	Tube	1	1.53E+06	0.00	37.55	0.00	0.00	278.73	306
Torsione pura	Tube	1.5	1.54E+04	0.00	54.75	0.00	0.00	384.90	409
Torsione pura	Tube	1.5	8.17E+04	0.00	54.75	0.00	0.00	384.90	409
Torsione pura	Tube	1.5	3.15E+05	0.00	42.18	0.00	0.00	296.55	315
Torsione pura	Tube	1.5	7.22E+05	0.00	42.16	0.00	0.00	296.42	315
Torsione pura	Tube	1.5	8.86E+05	0.00	42.20	0.00	0.00	296.64	315
Torsione pura	Tube	1.5	2.00E+0E	0.00	35.93	0.00	0.00	252.59	269
Torsione pura	Tube	2	1.40E+04	0.00	62.35	0.00	0.00	402.70	416
Torsione pura	Tube	2	3.50E+04 2.04E+05	0.00	78.05	0.00	0.00	352 78	365
Torsione pura	Tube	2	2.14E+05	0.00	54.63	0.00	0.00	352.78	365
Torsione pura	Tube	2	2.51E+05	0.00	54.63	0.00	0.00	352.84	365
Torsione pura	Tube	2	2.58E+05	0.00	54.63	0.00	0.00	352.84	365
Torsione pura	Tube	2	1.08E+06	0.00	42.14	0.00	0.00	272.14	281
Torsione pura	Tube	2	1.11E+06	0.00	42.14	0.00	0.00	272.14	281
Torsione pura	Tube	2	2.00E+06	0.00	42.13	0.00	0.00	272.09	281
Torsione pura	Tube	2	2.00E+06	0.00	38.95	0.00	0.00	251.57	260
Combinati T/S=0.5	Tube	2	3.86E+04	62.68	36.35	54.63	334.91	234.77	436
Combinati T/S=0.5	Tube	2	4.55E+04	62.68	36.35	54.63	334.91	234.77	436
Lombinati T/S=0.5	Tube	2	4.92E+04	62.68	36.35	54.63	334.91	234.77	436
Combinati T/S=0.5	Tube	2	2.69E+05	52.25	30.30	45.54	279.18	195.71	363
Combinati T/S=0.5	Tube	2	7.31E+03	41.67	24.17	30.32	222.07	150.09	290
Combinati T/S=0.5	Tube	2	8 71E+05	41.07	24.17	30.32	222.07	156.09	290
Combinati T/S=0.5	Tube	2	1.18E+06	36.58	24.17	31.88	195.45	137.01	250
Combinati T/S=0.5	Tube	2	1.49E+06	36.58	21.21	31.88	195.45	137.01	254
Combinati T/S=0.5	Tube	2	2.02E+06	33.43	19.39	29.14	178.64	125.23	232
Combinati T/S=0.5	Tube	2	2.26E+06	33.43	19.39	29.14	178.64	125.23	232
Combinati T/S=1	Tube	2	3.82E+04	52.00	52.00	45.33	277.88	335.86	459
Combinati T/S=1	Tube	2	4.61E+04	52.00	52.00	45.33	277.88	335.86	459
Combinati T/S=1	Tube	2	5.04E+04	52.00	52.00	45.33	277.88	335.86	459
Combinati T/S=1	Tube	2	3.19E+05	41.64	41.64	36.30	222.50	268.92	367
Combinati T/S=1	Tube	2	3.59E+05	41.64	41.64	36.30	222.50	268.92	367
Combinati T/S=1	Tube	2	5.99E+05	41.66	41.66	36.32	222.63	269.08	368
Combinati I/S=1	Tube	2	1.28E+06	36.45	36.45	31.77	194.74	235.37	322
Combinati T/S=1	Tube	2	1./4E+06	33.40	33.40	29.11	1/8.45	215.68	295
Combinati T/S=1	Tube	2	1 005100	30.48	30.48	31.80	194.92	233.58	322
555inuu 1/5-1		۷ ۲	1.301+00	J.40	33.40	23.11	1 1/0.43	210.00	233

 Tube
 2
 2.01±06
 36.48
 30.48
 31.80
 194.92
 235.58
 322

 Tube
 2
 1.98±06
 33.40
 33.40
 29.11
 178.45
 215.68
 295

 Tabella 10.9: Calcolo della tensione equivalente di picco (PSM) campioni tube

4.5 Applicazione Peak Stress Method (PSM) – eccentricità media

Series	campione	t	Nf Cycle to failure	$\Delta \sigma_n Nominal stress range$	fw1* σ_{peak}	$fw2^{*}\tau_{\text{peak}}$	$\Delta\sigma_{eq}$
561163	campione	[mm]	[cycle]	[MPa]	[MPa]	[MPa]	[MPa]
Sforzo assiale	Peel con contatto	0.8	1.64E+04	39.17	1423.45	0.00	2493
Sforzo assiale	Peel con contatto	0.8	2.74E+04	27.43	996.76	0.00	1746
Sforzo assiale	Peel con contatto	0.8	3.06E+04	27.43	996.76	0.00	1746
Sforzo assiale	Peel con contatto	0.8	3.61E+04	28.72	1043.61	0.00	1828
Sforzo assiale	Peel con contatto	0.8	3.61E+04	17.66	641.84	0.00	1124
Sforzo assiale	Peel con contatto	0.8	4.90E+04	17.66	641.84	0.00	1124
Sforzo assiale	Peel con contatto	0.8	2.09E+05	12.17	442.22	0.00	774
Sforzo assiale	Peel con contatto	0.8	2.66E+05	11.73	426.29	0.00	747
Sforzo assiale	Peel con contatto	0.8	3.56E+05	11.76	427.51	0.00	749
Sforzo assiale	Peel con contatto	0.8	6.08E+05	9.77	355.19	0.00	622
Sforzo assiale	Peel con contatto	0.8	6.32E+06	7.81	283.82	0.00	497
Sforzo assiale	Peel con contatto	0.8	1.00E+07	7.08	257.22	0.00	450
Sforzo assiale	Peel con contatto	1.9	9.39E+03	41.41	1690.79	0.00	1962
Sforzo assiale	Peel con contatto	1.9	1.28E+04	32.96	1345.83	0.00	1562
Sforzo assiale	Peel con contatto	1.9	1.50E+04	32.95	1345.28	0.00	1561
Sforzo assiale	Peel con contatto	1.9	1.66E+04	32.96	1345.55	0.00	1561
Sforzo assiale	Peel con contatto	1.9	5.09E+04	24.74	1010.03	0.00	1172
Sforzo assiale	Peel con contatto	1.9	5.67E+04	24.74	1010.03	0.00	1172
Sforzo assiale	Peel con contatto	1.9	6.44E+04	24.73	1009.82	0.00	1172
Sforzo assiale	Peel con contatto	1.9	1.51E+05	14.89	608.08	0.00	706
Sforzo assiale	Peel con contatto	1.9	2.11E+05	14.89	607.96	0.00	705
Sforzo assiale	Peel con contatto	1.9	2.22E+05	14.89	607.71	0.00	705
Sforzo assiale	Peel con contatto	1.9	5.25E+05	12.36	504.48	0.00	585
Sforzo assiale	Peel con contatto	1.9	1.06E+07	12.35	504.28	0.00	585
Sforzo assiale	Peel con contatto	1.9	1.01E+07	9.89	403.62	0.00	468
Sforzo assiale	Peel con contatto	1.9	1.01E+07	8.26	337.41	0.00	392
Sforzo assiale	Peel senza contatto	0.8	3.19E+04	27.40	1067.85	0.00	1777
Sforzo assiale	Peel senza contatto	0.8	3.35E+04	19.58	762.93	0.00	1270
Sforzo assiale	Peel senza contatto	0.8	4.21E+04	19.58	762.93	0.00	1270
Sforzo assiale	Peel senza contatto	0.8	5.84E+04	19.44	757.47	0.00	1261
Sforzo assiale	Peel senza contatto	0.8	1.32E+05	13.72	534.46	0.00	890
Sforzo assiale	Peel senza contatto	0.8	1.40E+05	13.72	534.46	0.00	890
Sforzo assiale	Peel senza contatto	0.8	1.53E+05	13.72	534.46	0.00	890
Sforzo assiale	Peel senza contatto	0.8	6.47E+05	9.82	382.47	0.00	637
Sforzo assiale	Peel senza contatto	0.8	7.02E+05	9.82	382.47	0.00	637
Sforzo assiale	Peel senza contatto	0.8	1.55E+06	9.82	382.47	0.00	637
Sforzo assiale	Peel senza contatto	1.9	8.09E+03	14.88	697.29	0.00	798
Sforzo assiale	Peel senza contatto	1.9	1.23E+04	14.88	697.29	0.00	798
Sforzo assiale	Peel senza contatto	1.9	1.50E+04	14.88	697.29	0.00	798
Sforzo assiale	Peel senza contatto	1.9	2.12E+04	14.88	697.29	0.00	798
Storzo assiale	Peel senza contatto	1.9	8.55E+04	9.88	463.12	0.00	530
Storzo assiale	Peel senza contatto	1.9	1.95E+05	6.62	310.25	0.00	355
Storzo assiale	Peel senza contatto	1.9	3.65E+05	6.61	309.99	0.00	355
Storzo assiale	Peel senza contatto	1.9	2.86E+06	6.62	310.25	0.00	355
Storzo assiale	Peel senza contatto	1.9	5.62E+06	5.31	248.88	0.00	285

Tabella 10.10: Calcolo della tensione equivalente di picco (PSM) campioni peel

Sorios	compione	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	fw1* σ_{peak}	$\Delta\sigma_{eq}$
Series	campione	[mm]	[cycle]	[MPa]	[MPa]	[MPa]
torsione	hut-profile	2	8.13E+04	148.93	461.21	471
torsione	hut-profile	2	1.09E+05	169.02	523.42	523
torsione	hut-profile	2	1.73E+05	148.93	461.21	461
torsione	hut-profile	2	2.60E+05	148.93	461.21	461
torsione	hut-profile	2	1.58E+05	119.01	368.55	369
torsione	hut-profile	2	2.17E+05	119.01	368.55	369
torsione	hut-profile	2	6.19E+05	99.39	307.81	308
torsione	hut-profile	2	7.76E+05	99.39	307.81	308
torsione	hut-profile	2	8.52E+05	99.39	307.81	308
torsione	hut-profile	2	2.08E+06	79.38	245.82	246
torsione	hut-profile	2	2.17F+06	59.70	184.90	185

Tabella 10.11: Calcolo della tensione equivalente di picco (PSM) campioni hut-profile

Nei seguenti grafici sono raccolti i risultati ottenuti dai dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 10.20: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$.

Figura 10.21: Dati sperimentali geometria tube (sforzo assiale) rielaborati in termini di $\Delta \sigma_{eq}$.

Figura 10.22: Dati sperimentali geometria tube (torsione) rielaborati in termini di $\Delta \sigma_{eq}$.

Figura 10.23: Dati sperimentali geometria peel rielaborati in termini di $\Delta \sigma_{eq}$.

4.5 Applicazione Peak Stress Method (PSM) – eccentricità media

Figura 10.24: Dati sperimentali geometria hut-profile rielaborati in termini di $\Delta \sigma_{eq}$.

10.7 Analisi SED

Al fine di completare e validare l'analisi condotta, sono stati elaborati altri modelli FEM per valutare l'energia SED contenuta nel volume di controllo ed evidenziare quindi se l'energia SED calcolata direttamente da modello FEM corrisponde con quella ricavata dai modelli con PSM e con mesh fitta.

E' stato perciò modellata nuovamente la geometria creando in corrispondenza dell'apice dell'intaglio un volume di controllo di raggio pari a 0.28 mm.

E' stata discretizzata la geometria con una mesh di tipo "free" con dimensione di elemento circa 0.1 mm per far in modo che all'interno del volume di controllo ci siano almeno 50 elementi circa.

Figura 10.25: Mesh dei campioni sperimentali (SED).

E' stata perciò lanciata la soluzione di questo modello, sono stati enucleati gli elementi contenuti nel volume di controllo e se ne è calcolata l'energia SED mediata.

E' stato quindi effettuato un confronto tra l'energia SED calcolata da FEM e quella ricavata con i NSIFs esatti da mesh fitta e quella ricavata con il PSM.

Di seguito si riportano tutti i fattori di intensificazione delle tensioni ricavati sia da mesh fitta che dal PSM e poi si riporta il confronto in termini di energia SED.

CAMPIONI SPERIMENT	ALI ANALIZZATI	ΔK1 _{,esatto} [Mpa*mm^0.5]	ΔK1 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE EIBL t=1.0mm	SFORZO ASSIALE	1.50	1.44	-4.5%
TUBE EIBL t=1.5mm	SFORZO ASSIALE	1.18	1.11	-6.4%
TUBE EIBL t=2.0mm	SFORZO ASSIALE	0.99	0.85	-15.7%
TUBE EIBL t=1.0mm	TORSIONE PURA	0.00	0.00	-
TUBE EIBL t=1.5mm	TORSIONE PURA	0.00	0.00	-
TUBE EIBL t=2.0mm	TORSIONE PURA	0.00	0.00	-
SHEAR EIBL t=0.8mm	SFORZO ASSIALE	0.39	0.38	-3.7%
SHEAR EIBL t=1.9mm	SFORZO ASSIALE	0.35	0.33	-3.6%
PEEL EIBL con cont. t=0.8mm	SFORZO ASSIALE	39.84	37.90	-5.1%
PEEL EIBL con cont. t=1.9mm	SFORZO ASSIALE	45.29	43.88	-3.2%
PEEL EIBL senza cont. t=0.8mm	SFORZO ASSIALE	42.70	40.88	-4.5%
PEEL EIBL senza cont. t=1.9mm	SFORZO ASSIALE	52.45	50.76	-3.3%
HUT EIBL t=2.0mm	TORSIONE PURA	0.00	0.00	-

4.5 Applicazione Peak Stress Method (PSM) – eccentricità media

CAMPIONI SPERIMENTA	LI ANALIZZATI	ΔK2 _{,esatto} [Mpa*mm^0.5]	ΔK2 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE EIBL t=1.0mm	SFORZO ASSIALE	4.11	4.03	-2.1%
TUBE EIBL t=1.5mm	SFORZO ASSIALE	3.78	3.67	-3.0%
TUBE EIBL t=2.0mm	SFORZO ASSIALE	3.33	3.27	-1.8%
TUBE EIBL t=1.0mm	TORSIONE PURA	0.00	0.00	-
TUBE EIBL t=1.5mm	TORSIONE PURA	0.00	0.00	-
TUBE EIBL t=2.0mm	TORSIONE PURA	0.00	0.00	-
SHEAR EIBL t=0.8mm	SFORZO ASSIALE	0.91	0.93	1.9%
SHEAR EIBL t=1.9mm	SFORZO ASSIALE	1.55	1.52	-1.9%
PEEL EIBL con cont. t=0.8mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL con cont. t=1.9mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL senza cont. t=0.8mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL senza cont. t=1.9mm	SFORZO ASSIALE	0.00	0.00	-
HUT EIBL t=2.0mm	TORSIONE PURA	0.00	0.00	-
CAMPIONI SPERIMENTA	LI ANALIZZATI	ΔK3 _{,esatto} [Mpa*mm^0.5]	ΔK3 _{,PSM} [Mpa*mm^0.5]	ERR (%)
TUBE EIBL t=1.0mm	SFORZO ASSIALE	0.00	0.00	-
TUBE EIBL t=1.5mm	SFORZO ASSIALE	0.00	0.00	-
TUBE EIBL t=2.0mm	SFORZO ASSIALE	0.00	0.00	-
TUBE EIBL t=1.0mm	TORSIONE PURA	4.14	4.12	-0.5%
TUBE EIBL t=1.5mm	TORSIONE PURA	3.82	3.90	2.0%
TUBE EIBL t=2.0mm	TORSIONE PURA	3.52	3.58	1.9%
SHEAR EIBL t=0.8mm	SFORZO ASSIALE	0.00	0.00	-
SHEAR EIBL t=1.9mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL con cont. t=0.8mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL con cont. t=1.9mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL senza cont. t=0.8mm	SFORZO ASSIALE	0.00	0.00	-
PEEL EIBL senza cont. t=1.9mm	SFORZO ASSIALE	0.00	0.00	-
HUT EIBL t=2.0mm	TORSIONE PURA	1.85	1.72	-7.7%
CAMPIONI SPERIMENTA	LI ANALIZZATI	T _{,esatto} [Mpa]	T _{,PSM} [Mpa]	ERR (%)
TUBE EIBL t=1.0mm	SFORZO ASSIALE	3.29	3.43	4.2%
TUBE EIBL t=1.5mm	SFORZO ASSIALE	2.14	2.29	6.4%
TUBE EIBL t=2.0mm	SFORZO ASSIALE	1.74	1.85	5.8%
TUBE EIBL t=1.0mm	TORSIONE PURA	0.00	0.00	-
TUBE EIBL t=1.5mm	TORSIONE PURA	0.00	0.00	-
TUBE EIBL t=2.0mm	TORSIONE PURA	0.00	0.00	-
SHEAR EIBL t=0.8mm	SFORZO ASSIALE	1.94	1.97	2.0%
SHEAR EIBL t=1.9mm	SFORZO ASSIALE	1.96	1.96	0.3%
PEEL EIBL con cont. t=0.8mm	SFORZO ASSIALE	46.61	49.75	6.3%
PEEL EIBL con cont. t=1.9mm	SFORZO ASSIALE	18.12	19.88	8.8%
PEEL EIBL senza cont. t=0.8mm	SFORZO ASSIALE	46.12	48.90	5.7%
PEEL EIBL senza cont. t=1.9mm	SFORZO ASSIALE	20.07	21.43	6.3%
HUT EIBL t=2.0mm	TORSIONE PURA	0.00	0.00	-

Tabella 10.12: Confronto tra i NSIFs calcolati con mesh fitte e PSM

CAMPIONI SPERIMENTALI ANALI	ZZATI	W _{FEM} [N/mm^2]	W _{esatto, I+II+III+T} [N/mm^2]	ERR Esatto/FEM (%)
TUBE EIBL t=1.0mm	SFORZO ASSIALE	1.17E-04	1.31E-04	10.3%
TUBE EIBL t=1.5mm	SFORZO ASSIALE	8.77E-05	9.79E-05	10.5%
TUBE EIBL t=2.0mm	SFORZO ASSIALE	7.10E-05	7.42E-05	4.3%
TUBE EIBL t=1.0mm	TORSIONE PURA	1.48E-04	1.21E-04	-22.6%
TUBE EIBL t=1.5mm	TORSIONE PURA	1.16E-04	1.03E-04	-12.7%
TUBE EIBL t=2.0mm	TORSIONE PURA	9.49E-05	8.70E-05	-9.1%
SHEAR EIBL t=0.8mm	SFORZO ASSIALE	9.88E-06	1.39E-05	28.9%
SHEAR EIBL t=1.9mm	SFORZO ASSIALE	2.07E-05	2.30E-05	10.2%
PEEL EIBL con cont. t=0.8mm	SFORZO ASSIALE	4.16E-03	8.46E-03	50.8%
PEEL EIBL con cont. t=1.9mm	SFORZO ASSIALE	3.66E-03	4.88E-03	25.1%
PEEL EIBL senza cont. t=0.8mm	SFORZO ASSIALE	4.39E-03	8.90E-03	50.6%
PEEL EIBL senza cont. t=1.9mm	SFORZO ASSIALE	4.62E-03	6.43E-03	28.1%
HUT EIBL t=2.0mm	TORSIONE PURA	2.64E-05	2.41E-05	-9.4%

CAMPIONI SPERIMENTALI ANAL	IZZATI	W _{FEM} [N/mm^2]	W _{PSM, I+II+III+T+tnom} [N/mm^2]	ERR PSM/FEM (%)
TUBE EIBL t=1.0mm	SFORZO ASSIALE	1.17E-04	1.28E-04	8.6%
TUBE EIBL t=1.5mm	SFORZO ASSIALE	8.77E-05	9.09E-05	3.5%
TUBE EIBL t=2.0mm	SFORZO ASSIALE	7.10E-05	7.21E-05	1.5%
TUBE EIBL t=1.0mm	TORSIONE PURA	1.48E-04	1.32E-04	-12.3%
TUBE EIBL t=1.5mm	TORSIONE PURA	1.16E-04	1.16E-04	0.4%
TUBE EIBL t=2.0mm	TORSIONE PURA	9.49E-05	9.66E-05	1.7%
SHEAR EIBL t=0.8mm	SFORZO ASSIALE	9.88E-06	1.44E-05	31.3%
SHEAR EIBL t=1.9mm	SFORZO ASSIALE	2.07E-05	2.25E-05	8.1%
PEEL EIBL con cont. t=0.8mm	SFORZO ASSIALE	4.16E-03	9.25E-03	55.0%
PEEL EIBL con cont. t=1.9mm	SFORZO ASSIALE	3.66E-03	5.66E-03	35.4%
PEEL EIBL senza cont. t=0.8mm	SFORZO ASSIALE	4.39E-03	9.70E-03	54.7%
PEEL EIBL senza cont. t=1.9mm	SFORZO ASSIALE	4.62E-03	7.38E-03	37.4%
HUT EIBL t=2.0mm	TORSIONE PURA	2.64E-05	2.08E-05	-26.9%

Tabella 10.13: Confronto tra i valori SED mediati calcolati con FEM, mesh fitte e PSM

Dal confronto tra i NSIFs si vede che il PSM riesce a stimare con un errore inferiore al 5% i valori dei fattori di intensificazione delle tensioni. Si ha un errore maggiore solo per fattori che numericamente sono trascurabili rispetto al termine che fa riferimento al modo principale di sollecitazione.

Si deve far notare però che per il campione hut-profile invece l'errore tra l'analisi con mesh fitta e PSM è maggiore del 5%.

Per la geometria hut-profile, per applicare il PSM, è stato necessario modellare un MAIN MODEL e poi costruire un SUBMODEL dove sono stati incollati i CUT BOUNDARIES esportati dal MAIN MODEL in una fascia opportuna di modello corrispondente al SUBMODEL.

In questo caso l'errore è dovuto all'impossibilità di infittire ulteriormente il SUBMODEL del PSM, a causa dell'elevato onere computazionale e quindi probabilmente il fattore di intensificazione delle tensioni ottenuto con il PSM non è a convergenza.

L'energia SED calcolata con il FEM però è approssimata bene con il PSM solo per la geometria tube.

Per le geometrie lap-joints, peel e hut-profile si ottiene un errore superiore al 12.5% anche tenendo conto dell'effetto della T-stress, dove presente.

L'errore perciò è troppo elevato (54%) e le tensioni equivalenti ricavate con il PSM non approssimano bene il comportamento reale del campione per queste geometrie.

E' necessario perciò ricavare i valori di tensione equivalente di picco dai valori SED mediati calcolati direttamente con il FEM e adottare tali valori, $\Delta \sigma_{eq}$ da SED, per effettuare una scelta della banda di progettazione.

Si deve inoltre prendere in considerazione un ulteriore aspetto relativo alla geometria peel con spessore t=0.8mm: dati gli spessori sottili di lamiera e il sistema di vincolo, durante la prova a fatica si producono degli spostamenti/deformazioni rilevanti. Non sono quindi trascurabili gli effetti del secondo ordine e perciò per questa tipologia di campione si effettua una analisi SED tenendo in conto però gli effetti del secondo ordine attraverso una analisi non lineare.

Nel seguente grafico si mostra un confronto ottenuto per la geometria peel spessore 0.8 mm tra le analisi SED lineari e le analisi SED non lineari/grandi spostamenti. Si può evidenziare che il contenuto energetico cala notevolmente passando dalle analisi in piccoli spostamenti alle analisi in grandi spostamenti. L'effetto sembrerebbe essere dovuto ad una diminuzione dell'eccentricità della saldatura rispetto alla linea di applicazione del carico per effetto delle deformazioni che subisce il campione sotto il carico a trazione.

Figura 10.26: Confronto SED tra analisi piccoli spostamenti e grandi spostamenti per i campioni peel spessore t=0.8mm.

Sono stati perciò assunti i valori SED ottenuti dall'analisi in grandi spostamenti per il calcolo della tensione equivalente di picco nei campioni peel spessore 0.8mm.

Per le geometrie lap-joints, peel e hut-profile, le tensioni equivalenti di picco ricalcolate direttamente da SED FEM sono riportate nella tabella seguente:

Sorios	compiono	t	Nf Cycle to failure	$\Delta\sigma_n Nominal \ stress \ range$	$\Delta\sigma_{eq}$
Series	campione	[mm]	[cycle]	[MPa]	[MPa]
Sforzo assiale	Lap-joint	0.8	2.70E+04	234.89	505
Sforzo assiale	Lap-joint	0.8	3.03E+04	157.07	338
Sforzo assiale	Lap-joint	0.8	3.42E+04	157.07	338
Sforzo assiale	Lap-joint	0.8	3.67E+04	157.07	338
Sforzo assiale	Lap-joint	0.8	6.44E+04	125.69	270
Sforzo assiale	Lap-joint	0.8	7.16E+04	125.69	270
Sforzo assiale	Lap-joint	0.8	7.58E+04	125.69	270
Sforzo assiale	Lap-joint	0.8	3.29E+05	98.14	211
Sforzo assiale	Lap-joint	0.8	3.37E+05	98.14	211
Sforzo assiale	Lap-joint	0.8	5.53E+05	98.20	211
Sforzo assiale	Lap-joint	0.8	8.55E+05	98.20	211
Sforzo assiale	Lap-joint	0.8	6.30E+06	66.91	144
Sforzo assiale	Lap-joint	0.8	1.00E+07	78.47	169
Sforzo assiale	Lap-joint	1.9	9.68E+03	165.46	511
Sforzo assiale	Lap-joint	1.9	1.77E+04	148.79	460
Sforzo assiale	Lap-joint	1.9	2.36E+04	148.79	460
Sforzo assiale	Lap-joint	1.9	2.59E+04	148.79	460
Sforzo assiale	Lap-joint	1.9	3.30E+04	148.79	460
Sforzo assiale	Lap-joint	1.9	7.70E+04	99.08	306
Sforzo assiale	Lap-joint	1.9	8.26E+04	99.08	306
Sforzo assiale	Lap-joint	1.9	1.04E+05	99.08	306
Sforzo assiale	Lap-joint	1.9	7.81E+05	66.00	204
Sforzo assiale	Lap-joint	1.9	8.85E+05	66.00	204
Sforzo assiale	Lap-joint	1.9	1.26E+06	66.00	204
Sforzo assiale	Lap-joint	1.9	1.73E+06	66.00	204
Sforzo assiale	Lap-joint	1.9	1.00E+07	57.94	179
Sforzo assiale	Lap-joint	1.9	1.00E+07	49.57	153
Tabella 10.14	4: Calcolo del	la tensior	ne equivalente di	picco (SED) campioni	lap joints

4.5 Applicazione Peak Stress Method (PSM) – eccentricità media

Series	campione	t	Nf Cycle to failure	$\Delta\sigma_n$ Nominal stress range	$\Delta\sigma_{eq,\ SED\ large\ displ.}$
50105	campione	[mm]	[cycle]	[MPa]	
Sforzo assiale	Peel con contatto	0.8	1.64E+04	39.17	1389
Sforzo assiale	Peel con contatto	0.8	2.74E+04	27.43	1012
Sforzo assiale	Peel con contatto	0.8	3.06E+04	27.43	1012
Sforzo assiale	Peel con contatto	0.8	3.61E+04	28.72	1036
Sforzo assiale	Peel con contatto	0.8	3.61E+04	17.66	667
Sforzo assiale	Peel con contatto	0.8	4.90E+04	17.66	667
Sforzo assiale	Peel con contatto	0.8	2.09E+05	12.17	467
Sforzo assiale	Peel con contatto	0.8	2.66E+05	11.73	459
Sforzo assiale	Peel con contatto	0.8	3.56E+05	11.76	459
Sforzo assiale	Peel con contatto	0.8	6.08E+05	9.77	381
Sforzo assiale	Peel con contatto	0.8	6.32E+06	7.81	302
Sforzo assiale	Peel con contatto	0.8	1.00E+07	7.08	288
Sforzo assiale	Peel con contatto	1.9	9.39E+03	41.41	1128
Sforzo assiale	Peel con contatto	1.9	1.28E+04	32.96	898
Sforzo assiale	Peel con contatto	1.9	1.50E+04	32.95	897
Sforzo assiale	Peel con contatto	1.9	1.66E+04	32.96	898
Sforzo assiale	Peel con contatto	1.9	5.09E+04	24.74	674
Sforzo assiale	Peel con contatto	1.9	5.67E+04	24.74	674
Sforzo assiale	Peel con contatto	1.9	6.44E+04	24.73	674
Sforzo assiale	Peel con contatto	1.9	1.51E+05	14.89	406
Sforzo assiale	Peel con contatto	1.9	2.11E+05	14.89	406
Sforzo assiale	Peel con contatto	1.9	2.22E+05	14.89	405
Sforzo assiale	Peel con contatto	1.9	5.25E+05	12.36	337
Sforzo assiale	Peel con contatto	1.9	1.06E+07	12.35	336
Sforzo assiale	Peel con contatto	1.9	1.01E+07	9.89	269
Sforzo assiale	Peel con contatto	1.9	1.01E+07	8.26	225
Sforzo assiale	Peel senza contatto	0.8	3.19E+04	27.40	1089
Sforzo assiale	Peel senza contatto	0.8	3.35E+04	19.58	797
Sforzo assiale	Peel senza contatto	0.8	4.21E+04	19.58	797
Sforzo assiale	Peel senza contatto	0.8	5.84E+04	19.44	794
Sforzo assiale	Peel senza contatto	0.8	1.32E+05	13.72	573
Sforzo assiale	Peel senza contatto	0.8	1.40E+05	13.72	573
Sforzo assiale	Peel senza contatto	0.8	1.53E+05	13.72	573
Sforzo assiale	Peel senza contatto	0.8	6.47E+05	9.82	417
Sforzo assiale	Peel senza contatto	0.8	7.02E+05	9.82	417
Sforzo assiale	Peel senza contatto	0.8	1.55E+06	9.82	417
Sforzo assiale	Peel senza contatto	1.9	8.09E+03	14.88	687
Sforzo assiale	Peel senza contatto	1.9	1.23E+04	14.88	687
Sforzo assiale	Peel senza contatto	1.9	1.50E+04	14.88	687
Sforzo assiale	Peel senza contatto	1.9	2.12E+04	14.88	687
Sforzo assiale	Peel senza contatto	1.9	8.55E+04	9.88	456
Sforzo assiale	Peel senza contatto	1.9	1.95E+05	6.62	306
Sforzo assiale	Peel senza contatto	1.9	3.65E+05	6.61	305
Sforzo assiale	Peel senza contatto	1.9	2.86E+06	6.62	306
Sforzo assiale	Peel senza contatto	1.9	5.62E+06	5.31	245

Tabella 10.15: Calcolo della tensione equivalente di picco (SED) campioni peel

Sorios	campiono	t	Nf Cycle to failure	$\Delta \sigma_n$ Nominal stress range	$\Delta\sigma_{eq,SEDFEM}$
Series	campione	[mm]	[cycle]	[MPa]	[MPa]
torsione	hut-profile	2	8.13E+04	148.93	520
torsione	hut-profile	2	1.09E+05	169.02	590
torsione	hut-profile	2	1.73E+05	148.93	520
torsione	hut-profile	2	2.60E+05	148.93	520
torsione	hut-profile	2	1.58E+05	119.01	415
torsione	hut-profile	2	2.17E+05	119.01	415
torsione	hut-profile	2	6.19E+05	99.39	347
torsione	hut-profile	2	7.76E+05	99.39	347
torsione	hut-profile	2	8.52E+05	99.39	347
torsione	hut-profile	2	2.08E+06	79.38	277
torsione	hut-profile	2	2.17E+06	59.70	208

Tabella 10.16: Calcolo della tensione equivalente di picco (SED) campioni hut-profile

Nel seguente grafico si possono notare i nuovi dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$:

Figura 10.27: Dati sperimentali geometria lap-joints rielaborati in termini di $\Delta \sigma_{eq}$.

Figura 10.29: Dati sperimentali geometria hut-profile rielaborati in termini di $\Delta \sigma_{eq}$.

Capitolo 11: BANDE DI PROGETTAZIONE A FATICA PER GIUNTI LASER

11.1 Local biaxiality ratio

In questo capitolo si vuole analizzare dove tutti i risultati in termini di tensione equivalente di picco si posizionano in un grafico al variare del numero di cicli.

Nella seguente figura sono riassunti tutti i dati sperimentali rielaborati:

Figura 11.1: Riassunto dati sperimentali rielaborati in termini di $\Delta \sigma_{eq}$.

In totale sono stati rielaborati 416 dati.

Come si vede dal grafico non si riesce a delineare nessuna tendenza evidente. La dispersione è molto aleatoria, è necessario perciò considerare altri parametri per distinguere alcune tipologie di dati da altri. Si è scelto di adottare il Local Biaxiality Ratio come criterio.

Il L.B.R. fornisce informazioni circa il modo di sollecitazione dell'intaglio.

Si calcola nel seguente modo:

$$\frac{Mode II + III}{Mode I} = \frac{f_{w2}^{2} \Delta \tau_{r\vartheta,\vartheta=0,peak}^{2} + f_{w3}^{2} \Delta \tau_{\vartheta,\vartheta=0,peak}^{2} \left(\frac{\tau_{a}}{\sigma_{a}}\right)^{2}}{f_{w1}^{2} \Delta \sigma_{\vartheta\vartheta,\vartheta=0,peak}^{2}}$$

In base al valora del L.B.R. si può determinare se l'intaglio è sollecitato a puro modo 1, oppure modo 1 con modo 2, oppure modo 3.

In particolare nel caso in cui abbia un valore nullo allora è presente puro modo 1.

Nel caso in cui invece abbia valori tendenti a infinito allora è presente puro modo 3.

Per valori intermedi è presente a seconda dei casi una combinazione tra i modi di sollecitazione.

Si può determinare tale parametro per tutti i dati analizzati e si riportano nella seguente tabella tali valori per ogni geometria presa in esame.

RIF.	TIPO DI GEOMETRIA	SPESSORE E DIMENSIONI DEL COMPONENTE SOLLECITATO [mm]	spessore di saldatura [mm]	TIPO DI SOLLECITAZIONE	L.B.R.
		spessore anima verticale 8 mm spessore piatto orizzontale 8 mm lunghezza campione 24 mm	2.45 mm (da analisi statistica)	Trazione	0.54
		spessore anima verticale 8 mm spessore piatto orizzontale 8 mm lunghezza campione 50 mm	2.45 mm (da analisi statistica)	Trazione	0.53
REMES	T-JUNCTION	spessore anima verticale 8 mm spessore piatto orizzontale 8 mm lunghezza campione 50 mm	2.45 mm (da analisi statistica)	Trazione	0.56
		spessore anima verticale 12 mm spessore piatto orizzontale 16 mm lunghezza campione 24 mm		Trazione	0.15
		spessore anima verticale 4 mm spessore piatto orizzontale 2.5 mm lunghezza campione 30 mm	1.13 mm (da analisi statistica)	Trazione	0.96
	TUBE			Trazione	4.73
MEDECIEV		diametro esterno 49mm diametro interno 41mm spessore tubo in zona saldatura 1mm	1mm	Torsione	88
WIEBESIEK				Combinati Trazione-Torsione in fase 0° τ _n /σ _n =1.3	66.83
				Combinati Trazione-Torsione fuori fase 90° τ _n /σ _n =1.3	66.83
				Trazione	5.95
SONSINO	TIDE	diametro esterno 49 mm	0.8 mm	Torsione	æ
	1.00L	diametro interno 41 mm spessore tubo in zona saldatura 2 mm		Combinati Trazione-Torsione in fase 0° τ _n /σ _n =0.58	51.84
				Combinati Trazione-Torsione fuori fase 90° τ _n /σ _n =0.58	51.84

				Trazione	20.15
BRUDER TUBE				Torsione	80
				Combinati Trazione-Torsione in fase 0° τ _n /σ _n =1.23	59.13
	TUBE	diametro esterno 49mm diametro interno 41mm spessore tubo in zona saldatura 1mm	0.7 mm	Combinati Trazione-Torsione in fase 45° τ _n /σ _n =1.23	59.13
				Combinati Trazione-Torsione fuori fase 90° τ _n /σ _n =1.23	59.13
				Combinati Trazione-Torsione in fase 0° τ _n /σ _n =0.53	27.31
				Combinati Trazione-Torsione fuori fase 90° τ _n /σ _n =0.53	27.31
ASIM	SHEAR	Larghezza piatto 8 mm spessore piatto 0.93 mm lunghezza campione 160 mm	1 mm	Trazione	1.36
		diametro maggiore 70mm diametro minore 32mm altezza 17mm spessore piatti 0.8mm	4.1mm (diametro)	Trazione	0.00
ZHANG	DOUBLE CUP	diametro maggiore 70mm diametro minore 32mm altezza 17mm spessore piatti 1.5mm	4.4 mm (diametro)	Trazione	0.00
		diametro maggiore 70mm diametro minore 32mm altezza 17mm spessore piatti 1.5mm		Trazione	0.00

		Larghezza piatto 32mm spessore piatto 0.8mm lunghezza campione 220mm altezza 16mm con contatto	0.8 mm	Trazione	0.00
	DEFI	Larghezza piatto 32mm spessore piatto 1.9mm lunghezza campione 220mm altezza 16mm con contatto	1.2 mm	Trazione	0.00
	PEEL	Larghezza piatto 32mm spessore piatto 0.8mm lunghezza campione 220mm altezza 9mm senza contatto	0.8 mm	Trazione	0.00
		Larghezza piatto 32mm spessore piatto 1.9mm lunghezza campione 220mm altezza 9mm senza contatto	1.2 mm	Trazione	0.00
	HUT-PROFILE	Larghezza piatto 80mm spessore piatto 2.0mm lunghezza campione 500mm altezza 34mm	1.2 mm	Torsione	8
	SHEAR	Larghezza piatto 32 mm spessore piatto 0.8 mm lunghezza campione 220 mm	0.8 mm	Trazione	1.29
		Larghezza piatto 32 mm spessore piatto 1.9 mm lunghezza campione 220 mm	1.2 mm	Trazione	0.82
EIBL		diametro esterno 49mm diametro interno 41mm spessore tubo in zona saldatura 1mm diametro esterno 49mm	0.7 mm	Trazione	20.15
EIBL			0.7 mm	Torsione	8
				Trazione	26.89
	TIDE	spessore tubo in zona saldatura 1.5 mm	0.811111	Torsione	80
	TUBE			Trazione	37.58
		diametro esterno 49 mm	0.95 mm	Torsione	∞
		diametro interno 41 mm spessore tubo in zona saldatura 2.0 mm	0.95 mm	Combinati Trazione-Torsione in fase 0° τ _n /σ _n =0.58	56.04
				Combinati Trazione-Torsione in fase 0° τ _n /σ _n =1.00	92.47
ALEDICHT	SHEAR	Larghezza piatto 38.1 mm spessore piatto 0.41 mm lunghezza campione 152.2 mm	0.61	Trazione	2.27
----------	-------	--	--	----------	-------
		Larghezza piatto 38.1 mm spessore piatto 0.61 mm	0.61	Trazione	3.70
		lunghezza campione 152.2 mm			
ALDRIGHT		Larghezza piatto 38.1 mm			
		spessore piatto 0.76 mm	spessore piatto 0.76 mm 0.61 Trazione ghezza campione 152.2 mm		5.21
		lunghezza campione 152.2 mm			
		Larghezza piatto 38.1 mm			
		spessore piatto 2.54 mm	0.61	Trazione	24.96
		lunghezza campione 152.2 mm			

Tabella 11.1: L.B.R. per tutti i dati sperimentali analizzati.

Si può perciò ipotizzare un diverso raggruppamento dei dati in base ai valori del L.B.R.. In particolare sono proposte le seguenti suddivisioni:

- L.B.R.=0
- 0.18<L.B.R.<0.56
- 0.82<L.B.R.<20.15
- 24.96<L.B.R.<∞

Si dati precedentemente graficati perciò vengono suddivisi in queste classi e se ne presenta il risultato:

Figura 11.2: Suddivisione in classi dei dati in base al L.B.R..

11.2 Bande di progettazionpresenti in letteratura

I dati ricavati precedentemente e classificati in base al L.B.R. sono stati perciò interpretati in base a bande di progettazione a fatica presenti già in lettaratura che sono state ricavate per giunti in acciaio saldati ad arco. Le bande prese in esame sono le seguenti:

 Curva a fatica Δσ_{eq}-N_f giunti saldati in termini di tensione di picco elastica (PSM), per rotture a piede cordone e alla radice del cordone di saldatura (Meneghetti, Lazzarin 2011). Le caratteristiche di tale curva sono le seguenti:

k=	3
$\Delta \sigma_{A,50\%} =$	214
$N_A =$	2.10 ⁶ cicli

- Curva a fatica $\Delta \sigma_{eq}$ -N_f giunti saldati in termini di tensione di picco elastica (PSM), per rotture a piede cordone e alla radice del cordone di saldatura (Meneghetti, Lazzarin 2011) modificata con k=3.72. Le caratteristiche di tale curva sono le seguenti:

k=	3.72
$\Delta \sigma_{A,50\%} =$	214
$N_A =$	2.10 ⁶ cicli

 Curva a fatica Δσeq-Nf giunti saldati in termini di tensione di picco elastica (PSM), per spot welded joints (Lazzarin, Berto, Atzori 2013).

Le caratteristiche di tale curva sono le seguenti:

k=	3.72
$\Delta \sigma_{A,50\%} =$	230
$N_A =$	$2 \cdot 10^6$ cicli

Curva a fatica Δσ_{eq}-N_f giunti saldati in termini di tensione di picco elastica (PSM), per rotture a piede cordone e alla radice del cordone di saldatura (Meneghetti, Lazzarin 2011), modificata con k=5. Le caratteristiche di tale curva sono le seguenti:

k=	5			
$\Delta \sigma_{A,50\%} =$	214			
$N_A =$	$2 \cdot 10^6$ cicli			

Si riportano perciò nei seguenti grafici le bande presentate precedentemente e se ne analizza l'efficacia nella previsione della resistenza a fatica anche per i giunti laser.

Figura 11.3: Riassunto dati con banda Meneghetti Lazzarin k=3

Figura 11.4: Riassunto dati con banda Meneghetti Lazzarin k=3.72

Figura 11.5: Riassunto dati con banda Lazzarin, Berto, Atzori k=3.72

Figura 11.6: Riassunto dati con banda Meneghetti Lazzarin k=5

Dai grafici presentati si può notare come non sia possibile raggruppare tutti i dati tramite una sola banda di progettazione a fatica.

In particolare si può notare che al crescere del valore del L.B.R. la pendenza media dei dati sperimentali aumenta: mentre per valori del L.B.R. tendenti a zero si ha una pendenza prossima a 3, per valori del L.B.R. che tendono a infinito si ha una pendenza maggiore prossima a 5.

Per valori di L.B.R. minori di 0.56 i dati in termini di tensione equivalente di picco sembrano ricadere nella banda di progettazione Meneghetti Lazzarin modificata con k=3.72, sono pochi i dati che a sfavore di sicurezza cadono fuori dalla banda.

Figura 11.7: Riassunto dati con banda Meneghetti Lazzarin modificata con k=3.72, L.B.R. <0.56

Per valori di L.B.R. maggiori di 0.82 invece i dati sembrano ricadere nella curva di progettazione a fatica di Meneghetti Lazzarin modificata con k=5.

Figura 11.8: Riassunto dati con banda Meneghetti Lazzarin modificata con k=5, L.B.R. >0.82

Si deve sottolineare che, in questo caso, ci sono molti dati, nei grafici sono colorati in verde, che cadono fuori banda a sfavore di sicurezza.

Tali dati sono quelli ricavati dalle geometrie shear e non è ancora chiaro come mai il loro comportamento sia molto diverso dalle altre geometrie analizzate.

Togliendo tali valori si vede che la banda di progettazione proposta prevede bene il comportamento nei campioni in cui il L.B.R. è maggiore di 0.82.

Figura 11.9: Riassunto dati con banda Meneghetti Lazzarin modificata con k=5, L.B.R. >0.82, esclusa geometria shear

Per effettuare la scelta delle bande di progettazione si deve comunque effettuare un confronto più accurato tra le varie bande di progettazione.

Si riporta di seguito in tabella le percentuali di dati che ricadono dentro ogni banda di progettazione e le percentuali di dati che sono a favore di sicurezza per ogni banda in esame.

La banda migliore sarà quella che comprende la maggior parte di dati e che ha comunque una percentuale elevata di dati in favore di sicurezza.

L.B.R.	$\Delta\sigma_{\text{A},50\%,2*10^{6}\text{cicli}}$	k	% dati compresi nella banda	% dati a favore sicurezza
< 0.5	214	3	59.8%	68.0%
< 0.5	230.1552271	3.72	69.1%	83.5%
< 0.5	214	3.72	80.4%	96.9%

Tabella 11.2	: L.B.R.<0.5;	percentuali dati	compresi nelle	e bande.
--------------	---------------	------------------	----------------	----------

L.B.R.	Δσ _{A,50%, 2*10^6 cicli}	k	% dati compresi nella banda	% dati a favore sicurezza
>0.5	214	5	78.4%	89.7%

Tabella 11.3: L.B.R.>0.5; percentuali dati compresi nelle bande.

L.B.R.	$\Delta\sigma_{\text{A},50\%,2*10^{6}\text{ cicli}}$	k	% dati compresi nella banda	% dati a favore sicurezza
> 0.5	214	5	82.5%	96.8%

Tabella 11.4: L.B.R.>0.5; percentuali dati compresi nelle bande escludendo la geometria lap-joints.

Si nota chiaramente che le band di progettazione migliori per giunti saldati laser sono le seguenti:

- L.B.R.<0.5: curva a fatica $\Delta \sigma_{eq}$ -N_f giunti saldati in termini di tensione di picco elastica (PSM), per rotture a piede cordone e alla radice del cordone di saldatura (Meneghetti, Lazzarin 2011) modificata con k=3.72.

Nella banda cadono almeno l'80% dei dati con L.B.R.<0.5, a favore di sicurezza si ha comunque più del 96.5% dei dati.

- L.B.R.>0.5: curva a fatica $\Delta \sigma_{eq}$ -N_f giunti saldati in termini di tensione di picco elastica (PSM), per rotture a piede cordone e alla radice del cordone di saldatura (Meneghetti, Lazzarin 2011) modificata con k=5.

Nella banda cadono almeno il 78% dei dati con L.B.R.>0.5, a favore di sicurezza si ha comunque almeno il 89.5% dei dati.

Escludendo per i motivi già accennati i dati ricavati dalle geometrie lap-joints, nella banda cadono almeno l'82% dei dati con L.B.R.>0.5, a favore di sicurezza si ha più del 96.5% dei dati.

CONCLUSIONI

Si deve evidenziare alcuni approfondimenti che sarebbero necessari per completare l'analisi di giunti saldati laser.

Innanzitutto sarebbe necessario confermare sperimentalmente il valore del raggio di controllo. In questa trattazione si è assunto tale valore uguale a quello dei giunti saldati ad arco in acciaio. Sperimentalmente si potrebbe verificare se questa assunzione è esatta.

Un altro ambito di approfondimento sarebbe l'analisi più accurata delle caratteristiche geometriche delle saldature laser.

Solo nell'articolo di Darko Frank, Heikki Remes, Jani Romanoff [2] viene effettuata un'analisi puntuale nella lunghezza del campione ricavando la variabilità di spessore di saldatura ed eccentricità della stessa. Tali informazioni sarebbero necessarie per poter effettuare un'analisi statistica di tali valori.

Per ultimo è necessario approfondire il comportamento dei giunti shear, lap-joints, in quanto i dati ricavati da tali campioni si separano nettamente da tutti gli altri conducendo ad una resistenza molto inferiore.

I dati ricavati dalle analisi in tensione equivalente di picco possono essere suddivisi in base al Local Biaxiality Ratio in due categorie: L.B.R. < 0.56 e L.B.R. > 0.82. Si possono proporre per le due categorie delle bande di progettazione diverse.

Le bande proposte hanno tutte e due un valore $\Delta \sigma_{eq}$, con il 50% di probabilità di essere superato, a 2 milioni di cicli pari a 214 MPa.

In base alla variazione del L.B.R. si propone di passare da una pendenza pari a 3.72 quando il L.B.R. è minore di 0.5 ad un valore di pendenza pari a 5 quando il L.B.R. è maggiore di 0.5.

Bibliografia

- G. Meneghetti, A. Campagnolo, Progettazione a fatica di componenti meccanici indeboliti da intagli a V a spigolo vivo – applicazione ai giunti saldati, Padova, Ottobre 2017
- [2] Darko Frank, Heikki Remes, Jani Romanoff, *Fatigue assessment of laser stake-welded T-joints*, Department of Applied Mechanics, Aalto University, Finland, Maggio 2010
- [3] G. Meneghetti, P. Lazzarin, Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components, Padova, 2006
- [4] G. Meneghetti, P. Lazzarin, *The peak stress method for fatigue strength assessment of welded joints with weld toe or weld root failures*, Padova, 2011
- [5] G. Meneghetti, The peak stress method for fatigue strength assessment of tube-to-flange welded joints under torsion loading, Padova, 2013
- [6] A. Campagnolo, G. Meneghetti, F. Berto, *Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I+II) crack tip fields including the T-stress contribution*, Padova-Vicenza, 2016
- [7] G. Meneghetti, A. Campagnolo, D. Rigon, *Multiaxial fatigue strength assessment of welded joints using* the Peak Stress Method – Part I: Approach and application to aluminium joints, Padova, 2017
- [8] G. Meneghetti, A. Campagnolo, D. Rigon, Multiaxial fatigue strength assessment of welded joints using the Peak Stress Method – Part II: Application to structural steel joints, Padova, 2017
- [9] J. Wiebesiek, K. Störzel, T. Bruder, H. Kaufmann, Multiaxial fatigue behaviour of laserbeam-welded thin steel and aluminium sheets under proportional and non-proportional combined loading, Darmstadt, 2010
- [10] C.M. Sonsino, M. Kueppers, M. Eibl, G. Zhang, *Fatigue strength of laser beam welded thin steel structures under multiaxial loading*, Wolfsburg, 2006
- [11] T. Bruder, K. Störzel, J. Baumgartner, Fatigue assessment of seam welds of automotive components by local stress approaches, 2008
- [12] Kamran Asim, Kulthida Sripichai, Jwo Pan, Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy steel sheets, 2013
- [13] Charles E. Albright, Chris Hsu, R. Olan Lund, Fatigue Strength of Laser-Welded Lap Joints, Columbus, 1990
- [14] Chris Hsu, Charles E. Albright, Fatigue analysis of laser welded lap joints, Columbus, 1991
- [15] G. Zhang, B. Richter, A new approach to the numerical fatigue-life prediction of spot-welded structures, Wolfsburg, 2000
- [16] Darko Frank, Heikki Remes, Jani Romanoff, J-integral-based approach to fatigue assessment of laser stake-welded T-joints, Department of Applied Mechanics, Aalto University, Finland, 2013

- [17] Martin Eibl, Berechnung der Schwingfestigkeit laserstrahlgeschweißter Feinbleche mit lokalen Konzepten, Technischen Universit¨at Darmstadt, 2003
- [18] C.M. Sonsino, F. Mueller, Konstruktion, Berechnung und Fertigung lasergeschweißter Verbindungen im Automobilbau, Fraunhofer-Institut fur Betriebsfestigkeit, Darmstadt, 1993